1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Based on arch/arm/include/asm/uaccess.h
4  *
5  * Copyright (C) 2012 ARM Ltd.
6  */
7 #ifndef __ASM_UACCESS_H
8 #define __ASM_UACCESS_H
9 
10 #include <asm/alternative.h>
11 #include <asm/kernel-pgtable.h>
12 #include <asm/sysreg.h>
13 
14 /*
15  * User space memory access functions
16  */
17 #include <linux/bitops.h>
18 #include <linux/kasan-checks.h>
19 #include <linux/string.h>
20 
21 #include <asm/asm-extable.h>
22 #include <asm/cpufeature.h>
23 #include <asm/mmu.h>
24 #include <asm/mte.h>
25 #include <asm/ptrace.h>
26 #include <asm/memory.h>
27 #include <asm/extable.h>
28 
29 static inline int __access_ok(const void __user *ptr, unsigned long size);
30 
31 /*
32  * Test whether a block of memory is a valid user space address.
33  * Returns 1 if the range is valid, 0 otherwise.
34  *
35  * This is equivalent to the following test:
36  * (u65)addr + (u65)size <= (u65)TASK_SIZE_MAX
37  */
access_ok(const void __user * addr,unsigned long size)38 static inline int access_ok(const void __user *addr, unsigned long size)
39 {
40 	/*
41 	 * Asynchronous I/O running in a kernel thread does not have the
42 	 * TIF_TAGGED_ADDR flag of the process owning the mm, so always untag
43 	 * the user address before checking.
44 	 */
45 	if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI) &&
46 	    (current->flags & PF_KTHREAD || test_thread_flag(TIF_TAGGED_ADDR)))
47 		addr = untagged_addr(addr);
48 
49 	return likely(__access_ok(addr, size));
50 }
51 #define access_ok access_ok
52 
53 #include <asm-generic/access_ok.h>
54 
55 /*
56  * User access enabling/disabling.
57  */
58 #ifdef CONFIG_ARM64_SW_TTBR0_PAN
__uaccess_ttbr0_disable(void)59 static inline void __uaccess_ttbr0_disable(void)
60 {
61 	unsigned long flags, ttbr;
62 
63 	local_irq_save(flags);
64 	ttbr = read_sysreg(ttbr1_el1);
65 	ttbr &= ~TTBR_ASID_MASK;
66 	/* reserved_pg_dir placed before swapper_pg_dir */
67 	write_sysreg(ttbr - RESERVED_SWAPPER_OFFSET, ttbr0_el1);
68 	isb();
69 	/* Set reserved ASID */
70 	write_sysreg(ttbr, ttbr1_el1);
71 	isb();
72 	local_irq_restore(flags);
73 }
74 
__uaccess_ttbr0_enable(void)75 static inline void __uaccess_ttbr0_enable(void)
76 {
77 	unsigned long flags, ttbr0, ttbr1;
78 
79 	/*
80 	 * Disable interrupts to avoid preemption between reading the 'ttbr0'
81 	 * variable and the MSR. A context switch could trigger an ASID
82 	 * roll-over and an update of 'ttbr0'.
83 	 */
84 	local_irq_save(flags);
85 	ttbr0 = READ_ONCE(current_thread_info()->ttbr0);
86 
87 	/* Restore active ASID */
88 	ttbr1 = read_sysreg(ttbr1_el1);
89 	ttbr1 &= ~TTBR_ASID_MASK;		/* safety measure */
90 	ttbr1 |= ttbr0 & TTBR_ASID_MASK;
91 	write_sysreg(ttbr1, ttbr1_el1);
92 	isb();
93 
94 	/* Restore user page table */
95 	write_sysreg(ttbr0, ttbr0_el1);
96 	isb();
97 	local_irq_restore(flags);
98 }
99 
uaccess_ttbr0_disable(void)100 static inline bool uaccess_ttbr0_disable(void)
101 {
102 	if (!system_uses_ttbr0_pan())
103 		return false;
104 	__uaccess_ttbr0_disable();
105 	return true;
106 }
107 
uaccess_ttbr0_enable(void)108 static inline bool uaccess_ttbr0_enable(void)
109 {
110 	if (!system_uses_ttbr0_pan())
111 		return false;
112 	__uaccess_ttbr0_enable();
113 	return true;
114 }
115 #else
uaccess_ttbr0_disable(void)116 static inline bool uaccess_ttbr0_disable(void)
117 {
118 	return false;
119 }
120 
uaccess_ttbr0_enable(void)121 static inline bool uaccess_ttbr0_enable(void)
122 {
123 	return false;
124 }
125 #endif
126 
__uaccess_disable_hw_pan(void)127 static inline void __uaccess_disable_hw_pan(void)
128 {
129 	asm(ALTERNATIVE("nop", SET_PSTATE_PAN(0), ARM64_HAS_PAN,
130 			CONFIG_ARM64_PAN));
131 }
132 
__uaccess_enable_hw_pan(void)133 static inline void __uaccess_enable_hw_pan(void)
134 {
135 	asm(ALTERNATIVE("nop", SET_PSTATE_PAN(1), ARM64_HAS_PAN,
136 			CONFIG_ARM64_PAN));
137 }
138 
139 /*
140  * The Tag Check Flag (TCF) mode for MTE is per EL, hence TCF0
141  * affects EL0 and TCF affects EL1 irrespective of which TTBR is
142  * used.
143  * The kernel accesses TTBR0 usually with LDTR/STTR instructions
144  * when UAO is available, so these would act as EL0 accesses using
145  * TCF0.
146  * However futex.h code uses exclusives which would be executed as
147  * EL1, this can potentially cause a tag check fault even if the
148  * user disables TCF0.
149  *
150  * To address the problem we set the PSTATE.TCO bit in uaccess_enable()
151  * and reset it in uaccess_disable().
152  *
153  * The Tag check override (TCO) bit disables temporarily the tag checking
154  * preventing the issue.
155  */
__uaccess_disable_tco(void)156 static inline void __uaccess_disable_tco(void)
157 {
158 	asm volatile(ALTERNATIVE("nop", SET_PSTATE_TCO(0),
159 				 ARM64_MTE, CONFIG_KASAN_HW_TAGS));
160 }
161 
__uaccess_enable_tco(void)162 static inline void __uaccess_enable_tco(void)
163 {
164 	asm volatile(ALTERNATIVE("nop", SET_PSTATE_TCO(1),
165 				 ARM64_MTE, CONFIG_KASAN_HW_TAGS));
166 }
167 
168 /*
169  * These functions disable tag checking only if in MTE async mode
170  * since the sync mode generates exceptions synchronously and the
171  * nofault or load_unaligned_zeropad can handle them.
172  */
__uaccess_disable_tco_async(void)173 static inline void __uaccess_disable_tco_async(void)
174 {
175 	if (system_uses_mte_async_or_asymm_mode())
176 		 __uaccess_disable_tco();
177 }
178 
__uaccess_enable_tco_async(void)179 static inline void __uaccess_enable_tco_async(void)
180 {
181 	if (system_uses_mte_async_or_asymm_mode())
182 		__uaccess_enable_tco();
183 }
184 
uaccess_disable_privileged(void)185 static inline void uaccess_disable_privileged(void)
186 {
187 	__uaccess_disable_tco();
188 
189 	if (uaccess_ttbr0_disable())
190 		return;
191 
192 	__uaccess_enable_hw_pan();
193 }
194 
uaccess_enable_privileged(void)195 static inline void uaccess_enable_privileged(void)
196 {
197 	__uaccess_enable_tco();
198 
199 	if (uaccess_ttbr0_enable())
200 		return;
201 
202 	__uaccess_disable_hw_pan();
203 }
204 
205 /*
206  * Sanitize a uaccess pointer such that it cannot reach any kernel address.
207  *
208  * Clearing bit 55 ensures the pointer cannot address any portion of the TTBR1
209  * address range (i.e. any kernel address), and either the pointer falls within
210  * the TTBR0 address range or must cause a fault.
211  */
212 #define uaccess_mask_ptr(ptr) (__typeof__(ptr))__uaccess_mask_ptr(ptr)
__uaccess_mask_ptr(const void __user * ptr)213 static inline void __user *__uaccess_mask_ptr(const void __user *ptr)
214 {
215 	void __user *safe_ptr;
216 
217 	asm volatile(
218 	"	bic	%0, %1, %2\n"
219 	: "=r" (safe_ptr)
220 	: "r" (ptr),
221 	  "i" (BIT(55))
222 	);
223 
224 	return safe_ptr;
225 }
226 
227 /*
228  * The "__xxx" versions of the user access functions do not verify the address
229  * space - it must have been done previously with a separate "access_ok()"
230  * call.
231  *
232  * The "__xxx_error" versions set the third argument to -EFAULT if an error
233  * occurs, and leave it unchanged on success.
234  */
235 #define __get_mem_asm(load, reg, x, addr, err, type)			\
236 	asm volatile(							\
237 	"1:	" load "	" reg "1, [%2]\n"			\
238 	"2:\n"								\
239 	_ASM_EXTABLE_##type##ACCESS_ERR_ZERO(1b, 2b, %w0, %w1)		\
240 	: "+r" (err), "=&r" (x)						\
241 	: "r" (addr))
242 
243 #define __raw_get_mem(ldr, x, ptr, err, type)					\
244 do {										\
245 	unsigned long __gu_val;							\
246 	switch (sizeof(*(ptr))) {						\
247 	case 1:									\
248 		__get_mem_asm(ldr "b", "%w", __gu_val, (ptr), (err), type);	\
249 		break;								\
250 	case 2:									\
251 		__get_mem_asm(ldr "h", "%w", __gu_val, (ptr), (err), type);	\
252 		break;								\
253 	case 4:									\
254 		__get_mem_asm(ldr, "%w", __gu_val, (ptr), (err), type);		\
255 		break;								\
256 	case 8:									\
257 		__get_mem_asm(ldr, "%x",  __gu_val, (ptr), (err), type);	\
258 		break;								\
259 	default:								\
260 		BUILD_BUG();							\
261 	}									\
262 	(x) = (__force __typeof__(*(ptr)))__gu_val;				\
263 } while (0)
264 
265 /*
266  * We must not call into the scheduler between uaccess_ttbr0_enable() and
267  * uaccess_ttbr0_disable(). As `x` and `ptr` could contain blocking functions,
268  * we must evaluate these outside of the critical section.
269  */
270 #define __raw_get_user(x, ptr, err)					\
271 do {									\
272 	__typeof__(*(ptr)) __user *__rgu_ptr = (ptr);			\
273 	__typeof__(x) __rgu_val;					\
274 	__chk_user_ptr(ptr);						\
275 									\
276 	uaccess_ttbr0_enable();						\
277 	__raw_get_mem("ldtr", __rgu_val, __rgu_ptr, err, U);		\
278 	uaccess_ttbr0_disable();					\
279 									\
280 	(x) = __rgu_val;						\
281 } while (0)
282 
283 #define __get_user_error(x, ptr, err)					\
284 do {									\
285 	__typeof__(*(ptr)) __user *__p = (ptr);				\
286 	might_fault();							\
287 	if (access_ok(__p, sizeof(*__p))) {				\
288 		__p = uaccess_mask_ptr(__p);				\
289 		__raw_get_user((x), __p, (err));			\
290 	} else {							\
291 		(x) = (__force __typeof__(x))0; (err) = -EFAULT;	\
292 	}								\
293 } while (0)
294 
295 #define __get_user(x, ptr)						\
296 ({									\
297 	int __gu_err = 0;						\
298 	__get_user_error((x), (ptr), __gu_err);				\
299 	__gu_err;							\
300 })
301 
302 #define get_user	__get_user
303 
304 /*
305  * We must not call into the scheduler between __uaccess_enable_tco_async() and
306  * __uaccess_disable_tco_async(). As `dst` and `src` may contain blocking
307  * functions, we must evaluate these outside of the critical section.
308  */
309 #define __get_kernel_nofault(dst, src, type, err_label)			\
310 do {									\
311 	__typeof__(dst) __gkn_dst = (dst);				\
312 	__typeof__(src) __gkn_src = (src);				\
313 	int __gkn_err = 0;						\
314 									\
315 	__uaccess_enable_tco_async();					\
316 	__raw_get_mem("ldr", *((type *)(__gkn_dst)),			\
317 		      (__force type *)(__gkn_src), __gkn_err, K);	\
318 	__uaccess_disable_tco_async();					\
319 									\
320 	if (unlikely(__gkn_err))					\
321 		goto err_label;						\
322 } while (0)
323 
324 #define __put_mem_asm(store, reg, x, addr, err, type)			\
325 	asm volatile(							\
326 	"1:	" store "	" reg "1, [%2]\n"			\
327 	"2:\n"								\
328 	_ASM_EXTABLE_##type##ACCESS_ERR(1b, 2b, %w0)			\
329 	: "+r" (err)							\
330 	: "r" (x), "r" (addr))
331 
332 #define __raw_put_mem(str, x, ptr, err, type)					\
333 do {										\
334 	__typeof__(*(ptr)) __pu_val = (x);					\
335 	switch (sizeof(*(ptr))) {						\
336 	case 1:									\
337 		__put_mem_asm(str "b", "%w", __pu_val, (ptr), (err), type);	\
338 		break;								\
339 	case 2:									\
340 		__put_mem_asm(str "h", "%w", __pu_val, (ptr), (err), type);	\
341 		break;								\
342 	case 4:									\
343 		__put_mem_asm(str, "%w", __pu_val, (ptr), (err), type);		\
344 		break;								\
345 	case 8:									\
346 		__put_mem_asm(str, "%x", __pu_val, (ptr), (err), type);		\
347 		break;								\
348 	default:								\
349 		BUILD_BUG();							\
350 	}									\
351 } while (0)
352 
353 /*
354  * We must not call into the scheduler between uaccess_ttbr0_enable() and
355  * uaccess_ttbr0_disable(). As `x` and `ptr` could contain blocking functions,
356  * we must evaluate these outside of the critical section.
357  */
358 #define __raw_put_user(x, ptr, err)					\
359 do {									\
360 	__typeof__(*(ptr)) __user *__rpu_ptr = (ptr);			\
361 	__typeof__(*(ptr)) __rpu_val = (x);				\
362 	__chk_user_ptr(__rpu_ptr);					\
363 									\
364 	uaccess_ttbr0_enable();						\
365 	__raw_put_mem("sttr", __rpu_val, __rpu_ptr, err, U);		\
366 	uaccess_ttbr0_disable();					\
367 } while (0)
368 
369 #define __put_user_error(x, ptr, err)					\
370 do {									\
371 	__typeof__(*(ptr)) __user *__p = (ptr);				\
372 	might_fault();							\
373 	if (access_ok(__p, sizeof(*__p))) {				\
374 		__p = uaccess_mask_ptr(__p);				\
375 		__raw_put_user((x), __p, (err));			\
376 	} else	{							\
377 		(err) = -EFAULT;					\
378 	}								\
379 } while (0)
380 
381 #define __put_user(x, ptr)						\
382 ({									\
383 	int __pu_err = 0;						\
384 	__put_user_error((x), (ptr), __pu_err);				\
385 	__pu_err;							\
386 })
387 
388 #define put_user	__put_user
389 
390 /*
391  * We must not call into the scheduler between __uaccess_enable_tco_async() and
392  * __uaccess_disable_tco_async(). As `dst` and `src` may contain blocking
393  * functions, we must evaluate these outside of the critical section.
394  */
395 #define __put_kernel_nofault(dst, src, type, err_label)			\
396 do {									\
397 	__typeof__(dst) __pkn_dst = (dst);				\
398 	__typeof__(src) __pkn_src = (src);				\
399 	int __pkn_err = 0;						\
400 									\
401 	__uaccess_enable_tco_async();					\
402 	__raw_put_mem("str", *((type *)(__pkn_src)),			\
403 		      (__force type *)(__pkn_dst), __pkn_err, K);	\
404 	__uaccess_disable_tco_async();					\
405 									\
406 	if (unlikely(__pkn_err))					\
407 		goto err_label;						\
408 } while(0)
409 
410 extern unsigned long __must_check __arch_copy_from_user(void *to, const void __user *from, unsigned long n);
411 #define raw_copy_from_user(to, from, n)					\
412 ({									\
413 	unsigned long __acfu_ret;					\
414 	uaccess_ttbr0_enable();						\
415 	__acfu_ret = __arch_copy_from_user((to),			\
416 				      __uaccess_mask_ptr(from), (n));	\
417 	uaccess_ttbr0_disable();					\
418 	__acfu_ret;							\
419 })
420 
421 extern unsigned long __must_check __arch_copy_to_user(void __user *to, const void *from, unsigned long n);
422 #define raw_copy_to_user(to, from, n)					\
423 ({									\
424 	unsigned long __actu_ret;					\
425 	uaccess_ttbr0_enable();						\
426 	__actu_ret = __arch_copy_to_user(__uaccess_mask_ptr(to),	\
427 				    (from), (n));			\
428 	uaccess_ttbr0_disable();					\
429 	__actu_ret;							\
430 })
431 
432 #define INLINE_COPY_TO_USER
433 #define INLINE_COPY_FROM_USER
434 
435 extern unsigned long __must_check __arch_clear_user(void __user *to, unsigned long n);
__clear_user(void __user * to,unsigned long n)436 static inline unsigned long __must_check __clear_user(void __user *to, unsigned long n)
437 {
438 	if (access_ok(to, n)) {
439 		uaccess_ttbr0_enable();
440 		n = __arch_clear_user(__uaccess_mask_ptr(to), n);
441 		uaccess_ttbr0_disable();
442 	}
443 	return n;
444 }
445 #define clear_user	__clear_user
446 
447 extern long strncpy_from_user(char *dest, const char __user *src, long count);
448 
449 extern __must_check long strnlen_user(const char __user *str, long n);
450 
451 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
452 struct page;
453 void memcpy_page_flushcache(char *to, struct page *page, size_t offset, size_t len);
454 extern unsigned long __must_check __copy_user_flushcache(void *to, const void __user *from, unsigned long n);
455 
__copy_from_user_flushcache(void * dst,const void __user * src,unsigned size)456 static inline int __copy_from_user_flushcache(void *dst, const void __user *src, unsigned size)
457 {
458 	kasan_check_write(dst, size);
459 	return __copy_user_flushcache(dst, __uaccess_mask_ptr(src), size);
460 }
461 #endif
462 
463 #ifdef CONFIG_ARCH_HAS_SUBPAGE_FAULTS
464 
465 /*
466  * Return 0 on success, the number of bytes not probed otherwise.
467  */
probe_subpage_writeable(const char __user * uaddr,size_t size)468 static inline size_t probe_subpage_writeable(const char __user *uaddr,
469 					     size_t size)
470 {
471 	if (!system_supports_mte())
472 		return 0;
473 	return mte_probe_user_range(uaddr, size);
474 }
475 
476 #endif /* CONFIG_ARCH_HAS_SUBPAGE_FAULTS */
477 
478 #endif /* __ASM_UACCESS_H */
479