1 #ifndef __LINUX_PERCPU_H 2 #define __LINUX_PERCPU_H 3 4 #include <linux/preempt.h> 5 #include <linux/smp.h> 6 #include <linux/cpumask.h> 7 #include <linux/pfn.h> 8 #include <linux/init.h> 9 10 #include <asm/percpu.h> 11 12 /* enough to cover all DEFINE_PER_CPUs in modules */ 13 #ifdef CONFIG_MODULES 14 #define PERCPU_MODULE_RESERVE (8 << 10) 15 #else 16 #define PERCPU_MODULE_RESERVE 0 17 #endif 18 19 #ifndef PERCPU_ENOUGH_ROOM 20 #define PERCPU_ENOUGH_ROOM \ 21 (ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) + \ 22 PERCPU_MODULE_RESERVE) 23 #endif 24 25 /* 26 * Must be an lvalue. Since @var must be a simple identifier, 27 * we force a syntax error here if it isn't. 28 */ 29 #define get_cpu_var(var) (*({ \ 30 preempt_disable(); \ 31 &__get_cpu_var(var); })) 32 33 /* 34 * The weird & is necessary because sparse considers (void)(var) to be 35 * a direct dereference of percpu variable (var). 36 */ 37 #define put_cpu_var(var) do { \ 38 (void)&(var); \ 39 preempt_enable(); \ 40 } while (0) 41 42 #define get_cpu_ptr(var) ({ \ 43 preempt_disable(); \ 44 this_cpu_ptr(var); }) 45 46 #define put_cpu_ptr(var) do { \ 47 (void)(var); \ 48 preempt_enable(); \ 49 } while (0) 50 51 /* minimum unit size, also is the maximum supported allocation size */ 52 #define PCPU_MIN_UNIT_SIZE PFN_ALIGN(32 << 10) 53 54 /* 55 * Percpu allocator can serve percpu allocations before slab is 56 * initialized which allows slab to depend on the percpu allocator. 57 * The following two parameters decide how much resource to 58 * preallocate for this. Keep PERCPU_DYNAMIC_RESERVE equal to or 59 * larger than PERCPU_DYNAMIC_EARLY_SIZE. 60 */ 61 #define PERCPU_DYNAMIC_EARLY_SLOTS 128 62 #define PERCPU_DYNAMIC_EARLY_SIZE (12 << 10) 63 64 /* 65 * PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy 66 * back on the first chunk for dynamic percpu allocation if arch is 67 * manually allocating and mapping it for faster access (as a part of 68 * large page mapping for example). 69 * 70 * The following values give between one and two pages of free space 71 * after typical minimal boot (2-way SMP, single disk and NIC) with 72 * both defconfig and a distro config on x86_64 and 32. More 73 * intelligent way to determine this would be nice. 74 */ 75 #if BITS_PER_LONG > 32 76 #define PERCPU_DYNAMIC_RESERVE (20 << 10) 77 #else 78 #define PERCPU_DYNAMIC_RESERVE (12 << 10) 79 #endif 80 81 extern void *pcpu_base_addr; 82 extern const unsigned long *pcpu_unit_offsets; 83 84 struct pcpu_group_info { 85 int nr_units; /* aligned # of units */ 86 unsigned long base_offset; /* base address offset */ 87 unsigned int *cpu_map; /* unit->cpu map, empty 88 * entries contain NR_CPUS */ 89 }; 90 91 struct pcpu_alloc_info { 92 size_t static_size; 93 size_t reserved_size; 94 size_t dyn_size; 95 size_t unit_size; 96 size_t atom_size; 97 size_t alloc_size; 98 size_t __ai_size; /* internal, don't use */ 99 int nr_groups; /* 0 if grouping unnecessary */ 100 struct pcpu_group_info groups[]; 101 }; 102 103 enum pcpu_fc { 104 PCPU_FC_AUTO, 105 PCPU_FC_EMBED, 106 PCPU_FC_PAGE, 107 108 PCPU_FC_NR, 109 }; 110 extern const char *pcpu_fc_names[PCPU_FC_NR]; 111 112 extern enum pcpu_fc pcpu_chosen_fc; 113 114 typedef void * (*pcpu_fc_alloc_fn_t)(unsigned int cpu, size_t size, 115 size_t align); 116 typedef void (*pcpu_fc_free_fn_t)(void *ptr, size_t size); 117 typedef void (*pcpu_fc_populate_pte_fn_t)(unsigned long addr); 118 typedef int (pcpu_fc_cpu_distance_fn_t)(unsigned int from, unsigned int to); 119 120 extern struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, 121 int nr_units); 122 extern void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai); 123 124 extern int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, 125 void *base_addr); 126 127 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK 128 extern int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, 129 size_t atom_size, 130 pcpu_fc_cpu_distance_fn_t cpu_distance_fn, 131 pcpu_fc_alloc_fn_t alloc_fn, 132 pcpu_fc_free_fn_t free_fn); 133 #endif 134 135 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 136 extern int __init pcpu_page_first_chunk(size_t reserved_size, 137 pcpu_fc_alloc_fn_t alloc_fn, 138 pcpu_fc_free_fn_t free_fn, 139 pcpu_fc_populate_pte_fn_t populate_pte_fn); 140 #endif 141 142 /* 143 * Use this to get to a cpu's version of the per-cpu object 144 * dynamically allocated. Non-atomic access to the current CPU's 145 * version should probably be combined with get_cpu()/put_cpu(). 146 */ 147 #ifdef CONFIG_SMP 148 #define per_cpu_ptr(ptr, cpu) SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu))) 149 #else 150 #define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); VERIFY_PERCPU_PTR((ptr)); }) 151 #endif 152 153 extern void __percpu *__alloc_reserved_percpu(size_t size, size_t align); 154 extern bool is_kernel_percpu_address(unsigned long addr); 155 156 #if !defined(CONFIG_SMP) || !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) 157 extern void __init setup_per_cpu_areas(void); 158 #endif 159 extern void __init percpu_init_late(void); 160 161 extern void __percpu *__alloc_percpu(size_t size, size_t align); 162 extern void free_percpu(void __percpu *__pdata); 163 extern phys_addr_t per_cpu_ptr_to_phys(void *addr); 164 165 #define alloc_percpu(type) \ 166 (typeof(type) __percpu *)__alloc_percpu(sizeof(type), __alignof__(type)) 167 168 /* 169 * Optional methods for optimized non-lvalue per-cpu variable access. 170 * 171 * @var can be a percpu variable or a field of it and its size should 172 * equal char, int or long. percpu_read() evaluates to a lvalue and 173 * all others to void. 174 * 175 * These operations are guaranteed to be atomic. 176 * The generic versions disable interrupts. Archs are 177 * encouraged to implement single-instruction alternatives which don't 178 * require protection. 179 */ 180 #ifndef percpu_read 181 # define percpu_read(var) \ 182 ({ \ 183 typeof(var) *pr_ptr__ = &(var); \ 184 typeof(var) pr_ret__; \ 185 pr_ret__ = get_cpu_var(*pr_ptr__); \ 186 put_cpu_var(*pr_ptr__); \ 187 pr_ret__; \ 188 }) 189 #endif 190 191 #define __percpu_generic_to_op(var, val, op) \ 192 do { \ 193 typeof(var) *pgto_ptr__ = &(var); \ 194 get_cpu_var(*pgto_ptr__) op val; \ 195 put_cpu_var(*pgto_ptr__); \ 196 } while (0) 197 198 #ifndef percpu_write 199 # define percpu_write(var, val) __percpu_generic_to_op(var, (val), =) 200 #endif 201 202 #ifndef percpu_add 203 # define percpu_add(var, val) __percpu_generic_to_op(var, (val), +=) 204 #endif 205 206 #ifndef percpu_sub 207 # define percpu_sub(var, val) __percpu_generic_to_op(var, (val), -=) 208 #endif 209 210 #ifndef percpu_and 211 # define percpu_and(var, val) __percpu_generic_to_op(var, (val), &=) 212 #endif 213 214 #ifndef percpu_or 215 # define percpu_or(var, val) __percpu_generic_to_op(var, (val), |=) 216 #endif 217 218 #ifndef percpu_xor 219 # define percpu_xor(var, val) __percpu_generic_to_op(var, (val), ^=) 220 #endif 221 222 /* 223 * Branching function to split up a function into a set of functions that 224 * are called for different scalar sizes of the objects handled. 225 */ 226 227 extern void __bad_size_call_parameter(void); 228 229 #define __pcpu_size_call_return(stem, variable) \ 230 ({ typeof(variable) pscr_ret__; \ 231 __verify_pcpu_ptr(&(variable)); \ 232 switch(sizeof(variable)) { \ 233 case 1: pscr_ret__ = stem##1(variable);break; \ 234 case 2: pscr_ret__ = stem##2(variable);break; \ 235 case 4: pscr_ret__ = stem##4(variable);break; \ 236 case 8: pscr_ret__ = stem##8(variable);break; \ 237 default: \ 238 __bad_size_call_parameter();break; \ 239 } \ 240 pscr_ret__; \ 241 }) 242 243 #define __pcpu_size_call_return2(stem, variable, ...) \ 244 ({ \ 245 typeof(variable) pscr2_ret__; \ 246 __verify_pcpu_ptr(&(variable)); \ 247 switch(sizeof(variable)) { \ 248 case 1: pscr2_ret__ = stem##1(variable, __VA_ARGS__); break; \ 249 case 2: pscr2_ret__ = stem##2(variable, __VA_ARGS__); break; \ 250 case 4: pscr2_ret__ = stem##4(variable, __VA_ARGS__); break; \ 251 case 8: pscr2_ret__ = stem##8(variable, __VA_ARGS__); break; \ 252 default: \ 253 __bad_size_call_parameter(); break; \ 254 } \ 255 pscr2_ret__; \ 256 }) 257 258 /* 259 * Special handling for cmpxchg_double. cmpxchg_double is passed two 260 * percpu variables. The first has to be aligned to a double word 261 * boundary and the second has to follow directly thereafter. 262 * We enforce this on all architectures even if they don't support 263 * a double cmpxchg instruction, since it's a cheap requirement, and it 264 * avoids breaking the requirement for architectures with the instruction. 265 */ 266 #define __pcpu_double_call_return_bool(stem, pcp1, pcp2, ...) \ 267 ({ \ 268 bool pdcrb_ret__; \ 269 __verify_pcpu_ptr(&pcp1); \ 270 BUILD_BUG_ON(sizeof(pcp1) != sizeof(pcp2)); \ 271 VM_BUG_ON((unsigned long)(&pcp1) % (2 * sizeof(pcp1))); \ 272 VM_BUG_ON((unsigned long)(&pcp2) != \ 273 (unsigned long)(&pcp1) + sizeof(pcp1)); \ 274 switch(sizeof(pcp1)) { \ 275 case 1: pdcrb_ret__ = stem##1(pcp1, pcp2, __VA_ARGS__); break; \ 276 case 2: pdcrb_ret__ = stem##2(pcp1, pcp2, __VA_ARGS__); break; \ 277 case 4: pdcrb_ret__ = stem##4(pcp1, pcp2, __VA_ARGS__); break; \ 278 case 8: pdcrb_ret__ = stem##8(pcp1, pcp2, __VA_ARGS__); break; \ 279 default: \ 280 __bad_size_call_parameter(); break; \ 281 } \ 282 pdcrb_ret__; \ 283 }) 284 285 #define __pcpu_size_call(stem, variable, ...) \ 286 do { \ 287 __verify_pcpu_ptr(&(variable)); \ 288 switch(sizeof(variable)) { \ 289 case 1: stem##1(variable, __VA_ARGS__);break; \ 290 case 2: stem##2(variable, __VA_ARGS__);break; \ 291 case 4: stem##4(variable, __VA_ARGS__);break; \ 292 case 8: stem##8(variable, __VA_ARGS__);break; \ 293 default: \ 294 __bad_size_call_parameter();break; \ 295 } \ 296 } while (0) 297 298 /* 299 * Optimized manipulation for memory allocated through the per cpu 300 * allocator or for addresses of per cpu variables. 301 * 302 * These operation guarantee exclusivity of access for other operations 303 * on the *same* processor. The assumption is that per cpu data is only 304 * accessed by a single processor instance (the current one). 305 * 306 * The first group is used for accesses that must be done in a 307 * preemption safe way since we know that the context is not preempt 308 * safe. Interrupts may occur. If the interrupt modifies the variable 309 * too then RMW actions will not be reliable. 310 * 311 * The arch code can provide optimized functions in two ways: 312 * 313 * 1. Override the function completely. F.e. define this_cpu_add(). 314 * The arch must then ensure that the various scalar format passed 315 * are handled correctly. 316 * 317 * 2. Provide functions for certain scalar sizes. F.e. provide 318 * this_cpu_add_2() to provide per cpu atomic operations for 2 byte 319 * sized RMW actions. If arch code does not provide operations for 320 * a scalar size then the fallback in the generic code will be 321 * used. 322 */ 323 324 #define _this_cpu_generic_read(pcp) \ 325 ({ typeof(pcp) ret__; \ 326 preempt_disable(); \ 327 ret__ = *this_cpu_ptr(&(pcp)); \ 328 preempt_enable(); \ 329 ret__; \ 330 }) 331 332 #ifndef this_cpu_read 333 # ifndef this_cpu_read_1 334 # define this_cpu_read_1(pcp) _this_cpu_generic_read(pcp) 335 # endif 336 # ifndef this_cpu_read_2 337 # define this_cpu_read_2(pcp) _this_cpu_generic_read(pcp) 338 # endif 339 # ifndef this_cpu_read_4 340 # define this_cpu_read_4(pcp) _this_cpu_generic_read(pcp) 341 # endif 342 # ifndef this_cpu_read_8 343 # define this_cpu_read_8(pcp) _this_cpu_generic_read(pcp) 344 # endif 345 # define this_cpu_read(pcp) __pcpu_size_call_return(this_cpu_read_, (pcp)) 346 #endif 347 348 #define _this_cpu_generic_to_op(pcp, val, op) \ 349 do { \ 350 unsigned long flags; \ 351 raw_local_irq_save(flags); \ 352 *__this_cpu_ptr(&(pcp)) op val; \ 353 raw_local_irq_restore(flags); \ 354 } while (0) 355 356 #ifndef this_cpu_write 357 # ifndef this_cpu_write_1 358 # define this_cpu_write_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 359 # endif 360 # ifndef this_cpu_write_2 361 # define this_cpu_write_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 362 # endif 363 # ifndef this_cpu_write_4 364 # define this_cpu_write_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 365 # endif 366 # ifndef this_cpu_write_8 367 # define this_cpu_write_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) 368 # endif 369 # define this_cpu_write(pcp, val) __pcpu_size_call(this_cpu_write_, (pcp), (val)) 370 #endif 371 372 #ifndef this_cpu_add 373 # ifndef this_cpu_add_1 374 # define this_cpu_add_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 375 # endif 376 # ifndef this_cpu_add_2 377 # define this_cpu_add_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 378 # endif 379 # ifndef this_cpu_add_4 380 # define this_cpu_add_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 381 # endif 382 # ifndef this_cpu_add_8 383 # define this_cpu_add_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) 384 # endif 385 # define this_cpu_add(pcp, val) __pcpu_size_call(this_cpu_add_, (pcp), (val)) 386 #endif 387 388 #ifndef this_cpu_sub 389 # define this_cpu_sub(pcp, val) this_cpu_add((pcp), -(val)) 390 #endif 391 392 #ifndef this_cpu_inc 393 # define this_cpu_inc(pcp) this_cpu_add((pcp), 1) 394 #endif 395 396 #ifndef this_cpu_dec 397 # define this_cpu_dec(pcp) this_cpu_sub((pcp), 1) 398 #endif 399 400 #ifndef this_cpu_and 401 # ifndef this_cpu_and_1 402 # define this_cpu_and_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 403 # endif 404 # ifndef this_cpu_and_2 405 # define this_cpu_and_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 406 # endif 407 # ifndef this_cpu_and_4 408 # define this_cpu_and_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 409 # endif 410 # ifndef this_cpu_and_8 411 # define this_cpu_and_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) 412 # endif 413 # define this_cpu_and(pcp, val) __pcpu_size_call(this_cpu_and_, (pcp), (val)) 414 #endif 415 416 #ifndef this_cpu_or 417 # ifndef this_cpu_or_1 418 # define this_cpu_or_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 419 # endif 420 # ifndef this_cpu_or_2 421 # define this_cpu_or_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 422 # endif 423 # ifndef this_cpu_or_4 424 # define this_cpu_or_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 425 # endif 426 # ifndef this_cpu_or_8 427 # define this_cpu_or_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) 428 # endif 429 # define this_cpu_or(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val)) 430 #endif 431 432 #ifndef this_cpu_xor 433 # ifndef this_cpu_xor_1 434 # define this_cpu_xor_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 435 # endif 436 # ifndef this_cpu_xor_2 437 # define this_cpu_xor_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 438 # endif 439 # ifndef this_cpu_xor_4 440 # define this_cpu_xor_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 441 # endif 442 # ifndef this_cpu_xor_8 443 # define this_cpu_xor_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) 444 # endif 445 # define this_cpu_xor(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val)) 446 #endif 447 448 #define _this_cpu_generic_add_return(pcp, val) \ 449 ({ \ 450 typeof(pcp) ret__; \ 451 unsigned long flags; \ 452 raw_local_irq_save(flags); \ 453 __this_cpu_add(pcp, val); \ 454 ret__ = __this_cpu_read(pcp); \ 455 raw_local_irq_restore(flags); \ 456 ret__; \ 457 }) 458 459 #ifndef this_cpu_add_return 460 # ifndef this_cpu_add_return_1 461 # define this_cpu_add_return_1(pcp, val) _this_cpu_generic_add_return(pcp, val) 462 # endif 463 # ifndef this_cpu_add_return_2 464 # define this_cpu_add_return_2(pcp, val) _this_cpu_generic_add_return(pcp, val) 465 # endif 466 # ifndef this_cpu_add_return_4 467 # define this_cpu_add_return_4(pcp, val) _this_cpu_generic_add_return(pcp, val) 468 # endif 469 # ifndef this_cpu_add_return_8 470 # define this_cpu_add_return_8(pcp, val) _this_cpu_generic_add_return(pcp, val) 471 # endif 472 # define this_cpu_add_return(pcp, val) __pcpu_size_call_return2(this_cpu_add_return_, pcp, val) 473 #endif 474 475 #define this_cpu_sub_return(pcp, val) this_cpu_add_return(pcp, -(val)) 476 #define this_cpu_inc_return(pcp) this_cpu_add_return(pcp, 1) 477 #define this_cpu_dec_return(pcp) this_cpu_add_return(pcp, -1) 478 479 #define _this_cpu_generic_xchg(pcp, nval) \ 480 ({ typeof(pcp) ret__; \ 481 unsigned long flags; \ 482 raw_local_irq_save(flags); \ 483 ret__ = __this_cpu_read(pcp); \ 484 __this_cpu_write(pcp, nval); \ 485 raw_local_irq_restore(flags); \ 486 ret__; \ 487 }) 488 489 #ifndef this_cpu_xchg 490 # ifndef this_cpu_xchg_1 491 # define this_cpu_xchg_1(pcp, nval) _this_cpu_generic_xchg(pcp, nval) 492 # endif 493 # ifndef this_cpu_xchg_2 494 # define this_cpu_xchg_2(pcp, nval) _this_cpu_generic_xchg(pcp, nval) 495 # endif 496 # ifndef this_cpu_xchg_4 497 # define this_cpu_xchg_4(pcp, nval) _this_cpu_generic_xchg(pcp, nval) 498 # endif 499 # ifndef this_cpu_xchg_8 500 # define this_cpu_xchg_8(pcp, nval) _this_cpu_generic_xchg(pcp, nval) 501 # endif 502 # define this_cpu_xchg(pcp, nval) \ 503 __pcpu_size_call_return2(this_cpu_xchg_, (pcp), nval) 504 #endif 505 506 #define _this_cpu_generic_cmpxchg(pcp, oval, nval) \ 507 ({ \ 508 typeof(pcp) ret__; \ 509 unsigned long flags; \ 510 raw_local_irq_save(flags); \ 511 ret__ = __this_cpu_read(pcp); \ 512 if (ret__ == (oval)) \ 513 __this_cpu_write(pcp, nval); \ 514 raw_local_irq_restore(flags); \ 515 ret__; \ 516 }) 517 518 #ifndef this_cpu_cmpxchg 519 # ifndef this_cpu_cmpxchg_1 520 # define this_cpu_cmpxchg_1(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval) 521 # endif 522 # ifndef this_cpu_cmpxchg_2 523 # define this_cpu_cmpxchg_2(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval) 524 # endif 525 # ifndef this_cpu_cmpxchg_4 526 # define this_cpu_cmpxchg_4(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval) 527 # endif 528 # ifndef this_cpu_cmpxchg_8 529 # define this_cpu_cmpxchg_8(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval) 530 # endif 531 # define this_cpu_cmpxchg(pcp, oval, nval) \ 532 __pcpu_size_call_return2(this_cpu_cmpxchg_, pcp, oval, nval) 533 #endif 534 535 /* 536 * cmpxchg_double replaces two adjacent scalars at once. The first 537 * two parameters are per cpu variables which have to be of the same 538 * size. A truth value is returned to indicate success or failure 539 * (since a double register result is difficult to handle). There is 540 * very limited hardware support for these operations, so only certain 541 * sizes may work. 542 */ 543 #define _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 544 ({ \ 545 int ret__; \ 546 unsigned long flags; \ 547 raw_local_irq_save(flags); \ 548 ret__ = __this_cpu_generic_cmpxchg_double(pcp1, pcp2, \ 549 oval1, oval2, nval1, nval2); \ 550 raw_local_irq_restore(flags); \ 551 ret__; \ 552 }) 553 554 #ifndef this_cpu_cmpxchg_double 555 # ifndef this_cpu_cmpxchg_double_1 556 # define this_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 557 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 558 # endif 559 # ifndef this_cpu_cmpxchg_double_2 560 # define this_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 561 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 562 # endif 563 # ifndef this_cpu_cmpxchg_double_4 564 # define this_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 565 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 566 # endif 567 # ifndef this_cpu_cmpxchg_double_8 568 # define this_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 569 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 570 # endif 571 # define this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 572 __pcpu_double_call_return_bool(this_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2)) 573 #endif 574 575 /* 576 * Generic percpu operations for context that are safe from preemption/interrupts. 577 * Either we do not care about races or the caller has the 578 * responsibility of handling preemption/interrupt issues. Arch code can still 579 * override these instructions since the arch per cpu code may be more 580 * efficient and may actually get race freeness for free (that is the 581 * case for x86 for example). 582 * 583 * If there is no other protection through preempt disable and/or 584 * disabling interupts then one of these RMW operations can show unexpected 585 * behavior because the execution thread was rescheduled on another processor 586 * or an interrupt occurred and the same percpu variable was modified from 587 * the interrupt context. 588 */ 589 #ifndef __this_cpu_read 590 # ifndef __this_cpu_read_1 591 # define __this_cpu_read_1(pcp) (*__this_cpu_ptr(&(pcp))) 592 # endif 593 # ifndef __this_cpu_read_2 594 # define __this_cpu_read_2(pcp) (*__this_cpu_ptr(&(pcp))) 595 # endif 596 # ifndef __this_cpu_read_4 597 # define __this_cpu_read_4(pcp) (*__this_cpu_ptr(&(pcp))) 598 # endif 599 # ifndef __this_cpu_read_8 600 # define __this_cpu_read_8(pcp) (*__this_cpu_ptr(&(pcp))) 601 # endif 602 # define __this_cpu_read(pcp) __pcpu_size_call_return(__this_cpu_read_, (pcp)) 603 #endif 604 605 #define __this_cpu_generic_to_op(pcp, val, op) \ 606 do { \ 607 *__this_cpu_ptr(&(pcp)) op val; \ 608 } while (0) 609 610 #ifndef __this_cpu_write 611 # ifndef __this_cpu_write_1 612 # define __this_cpu_write_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 613 # endif 614 # ifndef __this_cpu_write_2 615 # define __this_cpu_write_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 616 # endif 617 # ifndef __this_cpu_write_4 618 # define __this_cpu_write_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 619 # endif 620 # ifndef __this_cpu_write_8 621 # define __this_cpu_write_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) 622 # endif 623 # define __this_cpu_write(pcp, val) __pcpu_size_call(__this_cpu_write_, (pcp), (val)) 624 #endif 625 626 #ifndef __this_cpu_add 627 # ifndef __this_cpu_add_1 628 # define __this_cpu_add_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 629 # endif 630 # ifndef __this_cpu_add_2 631 # define __this_cpu_add_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 632 # endif 633 # ifndef __this_cpu_add_4 634 # define __this_cpu_add_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 635 # endif 636 # ifndef __this_cpu_add_8 637 # define __this_cpu_add_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) 638 # endif 639 # define __this_cpu_add(pcp, val) __pcpu_size_call(__this_cpu_add_, (pcp), (val)) 640 #endif 641 642 #ifndef __this_cpu_sub 643 # define __this_cpu_sub(pcp, val) __this_cpu_add((pcp), -(val)) 644 #endif 645 646 #ifndef __this_cpu_inc 647 # define __this_cpu_inc(pcp) __this_cpu_add((pcp), 1) 648 #endif 649 650 #ifndef __this_cpu_dec 651 # define __this_cpu_dec(pcp) __this_cpu_sub((pcp), 1) 652 #endif 653 654 #ifndef __this_cpu_and 655 # ifndef __this_cpu_and_1 656 # define __this_cpu_and_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 657 # endif 658 # ifndef __this_cpu_and_2 659 # define __this_cpu_and_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 660 # endif 661 # ifndef __this_cpu_and_4 662 # define __this_cpu_and_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 663 # endif 664 # ifndef __this_cpu_and_8 665 # define __this_cpu_and_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) 666 # endif 667 # define __this_cpu_and(pcp, val) __pcpu_size_call(__this_cpu_and_, (pcp), (val)) 668 #endif 669 670 #ifndef __this_cpu_or 671 # ifndef __this_cpu_or_1 672 # define __this_cpu_or_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 673 # endif 674 # ifndef __this_cpu_or_2 675 # define __this_cpu_or_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 676 # endif 677 # ifndef __this_cpu_or_4 678 # define __this_cpu_or_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 679 # endif 680 # ifndef __this_cpu_or_8 681 # define __this_cpu_or_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) 682 # endif 683 # define __this_cpu_or(pcp, val) __pcpu_size_call(__this_cpu_or_, (pcp), (val)) 684 #endif 685 686 #ifndef __this_cpu_xor 687 # ifndef __this_cpu_xor_1 688 # define __this_cpu_xor_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 689 # endif 690 # ifndef __this_cpu_xor_2 691 # define __this_cpu_xor_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 692 # endif 693 # ifndef __this_cpu_xor_4 694 # define __this_cpu_xor_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 695 # endif 696 # ifndef __this_cpu_xor_8 697 # define __this_cpu_xor_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) 698 # endif 699 # define __this_cpu_xor(pcp, val) __pcpu_size_call(__this_cpu_xor_, (pcp), (val)) 700 #endif 701 702 #define __this_cpu_generic_add_return(pcp, val) \ 703 ({ \ 704 __this_cpu_add(pcp, val); \ 705 __this_cpu_read(pcp); \ 706 }) 707 708 #ifndef __this_cpu_add_return 709 # ifndef __this_cpu_add_return_1 710 # define __this_cpu_add_return_1(pcp, val) __this_cpu_generic_add_return(pcp, val) 711 # endif 712 # ifndef __this_cpu_add_return_2 713 # define __this_cpu_add_return_2(pcp, val) __this_cpu_generic_add_return(pcp, val) 714 # endif 715 # ifndef __this_cpu_add_return_4 716 # define __this_cpu_add_return_4(pcp, val) __this_cpu_generic_add_return(pcp, val) 717 # endif 718 # ifndef __this_cpu_add_return_8 719 # define __this_cpu_add_return_8(pcp, val) __this_cpu_generic_add_return(pcp, val) 720 # endif 721 # define __this_cpu_add_return(pcp, val) \ 722 __pcpu_size_call_return2(__this_cpu_add_return_, pcp, val) 723 #endif 724 725 #define __this_cpu_sub_return(pcp, val) __this_cpu_add_return(pcp, -(val)) 726 #define __this_cpu_inc_return(pcp) __this_cpu_add_return(pcp, 1) 727 #define __this_cpu_dec_return(pcp) __this_cpu_add_return(pcp, -1) 728 729 #define __this_cpu_generic_xchg(pcp, nval) \ 730 ({ typeof(pcp) ret__; \ 731 ret__ = __this_cpu_read(pcp); \ 732 __this_cpu_write(pcp, nval); \ 733 ret__; \ 734 }) 735 736 #ifndef __this_cpu_xchg 737 # ifndef __this_cpu_xchg_1 738 # define __this_cpu_xchg_1(pcp, nval) __this_cpu_generic_xchg(pcp, nval) 739 # endif 740 # ifndef __this_cpu_xchg_2 741 # define __this_cpu_xchg_2(pcp, nval) __this_cpu_generic_xchg(pcp, nval) 742 # endif 743 # ifndef __this_cpu_xchg_4 744 # define __this_cpu_xchg_4(pcp, nval) __this_cpu_generic_xchg(pcp, nval) 745 # endif 746 # ifndef __this_cpu_xchg_8 747 # define __this_cpu_xchg_8(pcp, nval) __this_cpu_generic_xchg(pcp, nval) 748 # endif 749 # define __this_cpu_xchg(pcp, nval) \ 750 __pcpu_size_call_return2(__this_cpu_xchg_, (pcp), nval) 751 #endif 752 753 #define __this_cpu_generic_cmpxchg(pcp, oval, nval) \ 754 ({ \ 755 typeof(pcp) ret__; \ 756 ret__ = __this_cpu_read(pcp); \ 757 if (ret__ == (oval)) \ 758 __this_cpu_write(pcp, nval); \ 759 ret__; \ 760 }) 761 762 #ifndef __this_cpu_cmpxchg 763 # ifndef __this_cpu_cmpxchg_1 764 # define __this_cpu_cmpxchg_1(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval) 765 # endif 766 # ifndef __this_cpu_cmpxchg_2 767 # define __this_cpu_cmpxchg_2(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval) 768 # endif 769 # ifndef __this_cpu_cmpxchg_4 770 # define __this_cpu_cmpxchg_4(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval) 771 # endif 772 # ifndef __this_cpu_cmpxchg_8 773 # define __this_cpu_cmpxchg_8(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval) 774 # endif 775 # define __this_cpu_cmpxchg(pcp, oval, nval) \ 776 __pcpu_size_call_return2(__this_cpu_cmpxchg_, pcp, oval, nval) 777 #endif 778 779 #define __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 780 ({ \ 781 int __ret = 0; \ 782 if (__this_cpu_read(pcp1) == (oval1) && \ 783 __this_cpu_read(pcp2) == (oval2)) { \ 784 __this_cpu_write(pcp1, (nval1)); \ 785 __this_cpu_write(pcp2, (nval2)); \ 786 __ret = 1; \ 787 } \ 788 (__ret); \ 789 }) 790 791 #ifndef __this_cpu_cmpxchg_double 792 # ifndef __this_cpu_cmpxchg_double_1 793 # define __this_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 794 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 795 # endif 796 # ifndef __this_cpu_cmpxchg_double_2 797 # define __this_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 798 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 799 # endif 800 # ifndef __this_cpu_cmpxchg_double_4 801 # define __this_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 802 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 803 # endif 804 # ifndef __this_cpu_cmpxchg_double_8 805 # define __this_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 806 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) 807 # endif 808 # define __this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \ 809 __pcpu_double_call_return_bool(__this_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2)) 810 #endif 811 812 #endif /* __LINUX_PERCPU_H */ 813