1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  *
21  * Fixes:
22  *		Alan Cox	:	Numerous verify_area() calls
23  *		Alan Cox	:	Set the ACK bit on a reset
24  *		Alan Cox	:	Stopped it crashing if it closed while
25  *					sk->inuse=1 and was trying to connect
26  *					(tcp_err()).
27  *		Alan Cox	:	All icmp error handling was broken
28  *					pointers passed where wrong and the
29  *					socket was looked up backwards. Nobody
30  *					tested any icmp error code obviously.
31  *		Alan Cox	:	tcp_err() now handled properly. It
32  *					wakes people on errors. poll
33  *					behaves and the icmp error race
34  *					has gone by moving it into sock.c
35  *		Alan Cox	:	tcp_send_reset() fixed to work for
36  *					everything not just packets for
37  *					unknown sockets.
38  *		Alan Cox	:	tcp option processing.
39  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40  *					syn rule wrong]
41  *		Herp Rosmanith  :	More reset fixes
42  *		Alan Cox	:	No longer acks invalid rst frames.
43  *					Acking any kind of RST is right out.
44  *		Alan Cox	:	Sets an ignore me flag on an rst
45  *					receive otherwise odd bits of prattle
46  *					escape still
47  *		Alan Cox	:	Fixed another acking RST frame bug.
48  *					Should stop LAN workplace lockups.
49  *		Alan Cox	: 	Some tidyups using the new skb list
50  *					facilities
51  *		Alan Cox	:	sk->keepopen now seems to work
52  *		Alan Cox	:	Pulls options out correctly on accepts
53  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55  *					bit to skb ops.
56  *		Alan Cox	:	Tidied tcp_data to avoid a potential
57  *					nasty.
58  *		Alan Cox	:	Added some better commenting, as the
59  *					tcp is hard to follow
60  *		Alan Cox	:	Removed incorrect check for 20 * psh
61  *	Michael O'Reilly	:	ack < copied bug fix.
62  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63  *		Alan Cox	:	FIN with no memory -> CRASH
64  *		Alan Cox	:	Added socket option proto entries.
65  *					Also added awareness of them to accept.
66  *		Alan Cox	:	Added TCP options (SOL_TCP)
67  *		Alan Cox	:	Switched wakeup calls to callbacks,
68  *					so the kernel can layer network
69  *					sockets.
70  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71  *		Alan Cox	:	Handle FIN (more) properly (we hope).
72  *		Alan Cox	:	RST frames sent on unsynchronised
73  *					state ack error.
74  *		Alan Cox	:	Put in missing check for SYN bit.
75  *		Alan Cox	:	Added tcp_select_window() aka NET2E
76  *					window non shrink trick.
77  *		Alan Cox	:	Added a couple of small NET2E timer
78  *					fixes
79  *		Charles Hedrick :	TCP fixes
80  *		Toomas Tamm	:	TCP window fixes
81  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82  *		Charles Hedrick	:	Rewrote most of it to actually work
83  *		Linus		:	Rewrote tcp_read() and URG handling
84  *					completely
85  *		Gerhard Koerting:	Fixed some missing timer handling
86  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87  *		Gerhard Koerting:	PC/TCP workarounds
88  *		Adam Caldwell	:	Assorted timer/timing errors
89  *		Matthew Dillon	:	Fixed another RST bug
90  *		Alan Cox	:	Move to kernel side addressing changes.
91  *		Alan Cox	:	Beginning work on TCP fastpathing
92  *					(not yet usable)
93  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94  *		Alan Cox	:	TCP fast path debugging
95  *		Alan Cox	:	Window clamping
96  *		Michael Riepe	:	Bug in tcp_check()
97  *		Matt Dillon	:	More TCP improvements and RST bug fixes
98  *		Matt Dillon	:	Yet more small nasties remove from the
99  *					TCP code (Be very nice to this man if
100  *					tcp finally works 100%) 8)
101  *		Alan Cox	:	BSD accept semantics.
102  *		Alan Cox	:	Reset on closedown bug.
103  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104  *		Michael Pall	:	Handle poll() after URG properly in
105  *					all cases.
106  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107  *					(multi URG PUSH broke rlogin).
108  *		Michael Pall	:	Fix the multi URG PUSH problem in
109  *					tcp_readable(), poll() after URG
110  *					works now.
111  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112  *					BSD api.
113  *		Alan Cox	:	Changed the semantics of sk->socket to
114  *					fix a race and a signal problem with
115  *					accept() and async I/O.
116  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119  *					clients/servers which listen in on
120  *					fixed ports.
121  *		Alan Cox	:	Cleaned the above up and shrank it to
122  *					a sensible code size.
123  *		Alan Cox	:	Self connect lockup fix.
124  *		Alan Cox	:	No connect to multicast.
125  *		Ross Biro	:	Close unaccepted children on master
126  *					socket close.
127  *		Alan Cox	:	Reset tracing code.
128  *		Alan Cox	:	Spurious resets on shutdown.
129  *		Alan Cox	:	Giant 15 minute/60 second timer error
130  *		Alan Cox	:	Small whoops in polling before an
131  *					accept.
132  *		Alan Cox	:	Kept the state trace facility since
133  *					it's handy for debugging.
134  *		Alan Cox	:	More reset handler fixes.
135  *		Alan Cox	:	Started rewriting the code based on
136  *					the RFC's for other useful protocol
137  *					references see: Comer, KA9Q NOS, and
138  *					for a reference on the difference
139  *					between specifications and how BSD
140  *					works see the 4.4lite source.
141  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142  *					close.
143  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145  *		Alan Cox	:	Reimplemented timers as per the RFC
146  *					and using multiple timers for sanity.
147  *		Alan Cox	:	Small bug fixes, and a lot of new
148  *					comments.
149  *		Alan Cox	:	Fixed dual reader crash by locking
150  *					the buffers (much like datagram.c)
151  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152  *					now gets fed up of retrying without
153  *					(even a no space) answer.
154  *		Alan Cox	:	Extracted closing code better
155  *		Alan Cox	:	Fixed the closing state machine to
156  *					resemble the RFC.
157  *		Alan Cox	:	More 'per spec' fixes.
158  *		Jorge Cwik	:	Even faster checksumming.
159  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160  *					only frames. At least one pc tcp stack
161  *					generates them.
162  *		Alan Cox	:	Cache last socket.
163  *		Alan Cox	:	Per route irtt.
164  *		Matt Day	:	poll()->select() match BSD precisely on error
165  *		Alan Cox	:	New buffers
166  *		Marc Tamsky	:	Various sk->prot->retransmits and
167  *					sk->retransmits misupdating fixed.
168  *					Fixed tcp_write_timeout: stuck close,
169  *					and TCP syn retries gets used now.
170  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171  *					ack if state is TCP_CLOSED.
172  *		Alan Cox	:	Look up device on a retransmit - routes may
173  *					change. Doesn't yet cope with MSS shrink right
174  *					but it's a start!
175  *		Marc Tamsky	:	Closing in closing fixes.
176  *		Mike Shaver	:	RFC1122 verifications.
177  *		Alan Cox	:	rcv_saddr errors.
178  *		Alan Cox	:	Block double connect().
179  *		Alan Cox	:	Small hooks for enSKIP.
180  *		Alexey Kuznetsov:	Path MTU discovery.
181  *		Alan Cox	:	Support soft errors.
182  *		Alan Cox	:	Fix MTU discovery pathological case
183  *					when the remote claims no mtu!
184  *		Marc Tamsky	:	TCP_CLOSE fix.
185  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186  *					window but wrong (fixes NT lpd problems)
187  *		Pedro Roque	:	Better TCP window handling, delayed ack.
188  *		Joerg Reuter	:	No modification of locked buffers in
189  *					tcp_do_retransmit()
190  *		Eric Schenk	:	Changed receiver side silly window
191  *					avoidance algorithm to BSD style
192  *					algorithm. This doubles throughput
193  *					against machines running Solaris,
194  *					and seems to result in general
195  *					improvement.
196  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197  *	Willy Konynenberg	:	Transparent proxying support.
198  *	Mike McLagan		:	Routing by source
199  *		Keith Owens	:	Do proper merging with partial SKB's in
200  *					tcp_do_sendmsg to avoid burstiness.
201  *		Eric Schenk	:	Fix fast close down bug with
202  *					shutdown() followed by close().
203  *		Andi Kleen 	:	Make poll agree with SIGIO
204  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205  *					lingertime == 0 (RFC 793 ABORT Call)
206  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207  *					csum_and_copy_from_user() if possible.
208  *
209  * Description of States:
210  *
211  *	TCP_SYN_SENT		sent a connection request, waiting for ack
212  *
213  *	TCP_SYN_RECV		received a connection request, sent ack,
214  *				waiting for final ack in three-way handshake.
215  *
216  *	TCP_ESTABLISHED		connection established
217  *
218  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219  *				transmission of remaining buffered data
220  *
221  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222  *				to shutdown
223  *
224  *	TCP_CLOSING		both sides have shutdown but we still have
225  *				data we have to finish sending
226  *
227  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228  *				closed, can only be entered from FIN_WAIT2
229  *				or CLOSING.  Required because the other end
230  *				may not have gotten our last ACK causing it
231  *				to retransmit the data packet (which we ignore)
232  *
233  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234  *				us to finish writing our data and to shutdown
235  *				(we have to close() to move on to LAST_ACK)
236  *
237  *	TCP_LAST_ACK		out side has shutdown after remote has
238  *				shutdown.  There may still be data in our
239  *				buffer that we have to finish sending
240  *
241  *	TCP_CLOSE		socket is finished
242  */
243 
244 #define pr_fmt(fmt) "TCP: " fmt
245 
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270 
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/sock.h>
278 
279 #include <linux/uaccess.h>
280 #include <asm/ioctls.h>
281 #include <net/busy_poll.h>
282 
283 /* Track pending CMSGs. */
284 enum {
285 	TCP_CMSG_INQ = 1,
286 	TCP_CMSG_TS = 2
287 };
288 
289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
291 
292 long sysctl_tcp_mem[3] __read_mostly;
293 EXPORT_SYMBOL(sysctl_tcp_mem);
294 
295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp;	/* Current allocated memory. */
296 EXPORT_SYMBOL(tcp_memory_allocated);
297 
298 #if IS_ENABLED(CONFIG_SMC)
299 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
300 EXPORT_SYMBOL(tcp_have_smc);
301 #endif
302 
303 /*
304  * Current number of TCP sockets.
305  */
306 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
307 EXPORT_SYMBOL(tcp_sockets_allocated);
308 
309 /*
310  * TCP splice context
311  */
312 struct tcp_splice_state {
313 	struct pipe_inode_info *pipe;
314 	size_t len;
315 	unsigned int flags;
316 };
317 
318 /*
319  * Pressure flag: try to collapse.
320  * Technical note: it is used by multiple contexts non atomically.
321  * All the __sk_mem_schedule() is of this nature: accounting
322  * is strict, actions are advisory and have some latency.
323  */
324 unsigned long tcp_memory_pressure __read_mostly;
325 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
326 
tcp_enter_memory_pressure(struct sock * sk)327 void tcp_enter_memory_pressure(struct sock *sk)
328 {
329 	unsigned long val;
330 
331 	if (READ_ONCE(tcp_memory_pressure))
332 		return;
333 	val = jiffies;
334 
335 	if (!val)
336 		val--;
337 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
338 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
339 }
340 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
341 
tcp_leave_memory_pressure(struct sock * sk)342 void tcp_leave_memory_pressure(struct sock *sk)
343 {
344 	unsigned long val;
345 
346 	if (!READ_ONCE(tcp_memory_pressure))
347 		return;
348 	val = xchg(&tcp_memory_pressure, 0);
349 	if (val)
350 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
351 			      jiffies_to_msecs(jiffies - val));
352 }
353 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
354 
355 /* Convert seconds to retransmits based on initial and max timeout */
secs_to_retrans(int seconds,int timeout,int rto_max)356 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
357 {
358 	u8 res = 0;
359 
360 	if (seconds > 0) {
361 		int period = timeout;
362 
363 		res = 1;
364 		while (seconds > period && res < 255) {
365 			res++;
366 			timeout <<= 1;
367 			if (timeout > rto_max)
368 				timeout = rto_max;
369 			period += timeout;
370 		}
371 	}
372 	return res;
373 }
374 
375 /* Convert retransmits to seconds based on initial and max timeout */
retrans_to_secs(u8 retrans,int timeout,int rto_max)376 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
377 {
378 	int period = 0;
379 
380 	if (retrans > 0) {
381 		period = timeout;
382 		while (--retrans) {
383 			timeout <<= 1;
384 			if (timeout > rto_max)
385 				timeout = rto_max;
386 			period += timeout;
387 		}
388 	}
389 	return period;
390 }
391 
tcp_compute_delivery_rate(const struct tcp_sock * tp)392 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
393 {
394 	u32 rate = READ_ONCE(tp->rate_delivered);
395 	u32 intv = READ_ONCE(tp->rate_interval_us);
396 	u64 rate64 = 0;
397 
398 	if (rate && intv) {
399 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
400 		do_div(rate64, intv);
401 	}
402 	return rate64;
403 }
404 
405 /* Address-family independent initialization for a tcp_sock.
406  *
407  * NOTE: A lot of things set to zero explicitly by call to
408  *       sk_alloc() so need not be done here.
409  */
tcp_init_sock(struct sock * sk)410 void tcp_init_sock(struct sock *sk)
411 {
412 	struct inet_connection_sock *icsk = inet_csk(sk);
413 	struct tcp_sock *tp = tcp_sk(sk);
414 
415 	tp->out_of_order_queue = RB_ROOT;
416 	sk->tcp_rtx_queue = RB_ROOT;
417 	tcp_init_xmit_timers(sk);
418 	INIT_LIST_HEAD(&tp->tsq_node);
419 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
420 
421 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
422 	icsk->icsk_rto_min = TCP_RTO_MIN;
423 	icsk->icsk_delack_max = TCP_DELACK_MAX;
424 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
425 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
426 
427 	/* So many TCP implementations out there (incorrectly) count the
428 	 * initial SYN frame in their delayed-ACK and congestion control
429 	 * algorithms that we must have the following bandaid to talk
430 	 * efficiently to them.  -DaveM
431 	 */
432 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
433 
434 	/* There's a bubble in the pipe until at least the first ACK. */
435 	tp->app_limited = ~0U;
436 
437 	/* See draft-stevens-tcpca-spec-01 for discussion of the
438 	 * initialization of these values.
439 	 */
440 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
441 	tp->snd_cwnd_clamp = ~0;
442 	tp->mss_cache = TCP_MSS_DEFAULT;
443 
444 	tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
445 	tcp_assign_congestion_control(sk);
446 
447 	tp->tsoffset = 0;
448 	tp->rack.reo_wnd_steps = 1;
449 
450 	sk->sk_write_space = sk_stream_write_space;
451 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
452 
453 	icsk->icsk_sync_mss = tcp_sync_mss;
454 
455 	WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
456 	WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
457 
458 	sk_sockets_allocated_inc(sk);
459 }
460 EXPORT_SYMBOL(tcp_init_sock);
461 
tcp_tx_timestamp(struct sock * sk,u16 tsflags)462 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
463 {
464 	struct sk_buff *skb = tcp_write_queue_tail(sk);
465 
466 	if (tsflags && skb) {
467 		struct skb_shared_info *shinfo = skb_shinfo(skb);
468 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
469 
470 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
471 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
472 			tcb->txstamp_ack = 1;
473 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
474 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
475 	}
476 }
477 
tcp_stream_is_readable(struct sock * sk,int target)478 static bool tcp_stream_is_readable(struct sock *sk, int target)
479 {
480 	if (tcp_epollin_ready(sk, target))
481 		return true;
482 	return sk_is_readable(sk);
483 }
484 
485 /*
486  *	Wait for a TCP event.
487  *
488  *	Note that we don't need to lock the socket, as the upper poll layers
489  *	take care of normal races (between the test and the event) and we don't
490  *	go look at any of the socket buffers directly.
491  */
tcp_poll(struct file * file,struct socket * sock,poll_table * wait)492 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
493 {
494 	__poll_t mask;
495 	struct sock *sk = sock->sk;
496 	const struct tcp_sock *tp = tcp_sk(sk);
497 	int state;
498 
499 	sock_poll_wait(file, sock, wait);
500 
501 	state = inet_sk_state_load(sk);
502 	if (state == TCP_LISTEN)
503 		return inet_csk_listen_poll(sk);
504 
505 	/* Socket is not locked. We are protected from async events
506 	 * by poll logic and correct handling of state changes
507 	 * made by other threads is impossible in any case.
508 	 */
509 
510 	mask = 0;
511 
512 	/*
513 	 * EPOLLHUP is certainly not done right. But poll() doesn't
514 	 * have a notion of HUP in just one direction, and for a
515 	 * socket the read side is more interesting.
516 	 *
517 	 * Some poll() documentation says that EPOLLHUP is incompatible
518 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
519 	 * all. But careful, it tends to be safer to return too many
520 	 * bits than too few, and you can easily break real applications
521 	 * if you don't tell them that something has hung up!
522 	 *
523 	 * Check-me.
524 	 *
525 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
526 	 * our fs/select.c). It means that after we received EOF,
527 	 * poll always returns immediately, making impossible poll() on write()
528 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
529 	 * if and only if shutdown has been made in both directions.
530 	 * Actually, it is interesting to look how Solaris and DUX
531 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
532 	 * then we could set it on SND_SHUTDOWN. BTW examples given
533 	 * in Stevens' books assume exactly this behaviour, it explains
534 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
535 	 *
536 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
537 	 * blocking on fresh not-connected or disconnected socket. --ANK
538 	 */
539 	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
540 		mask |= EPOLLHUP;
541 	if (sk->sk_shutdown & RCV_SHUTDOWN)
542 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
543 
544 	/* Connected or passive Fast Open socket? */
545 	if (state != TCP_SYN_SENT &&
546 	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
547 		int target = sock_rcvlowat(sk, 0, INT_MAX);
548 		u16 urg_data = READ_ONCE(tp->urg_data);
549 
550 		if (unlikely(urg_data) &&
551 		    READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
552 		    !sock_flag(sk, SOCK_URGINLINE))
553 			target++;
554 
555 		if (tcp_stream_is_readable(sk, target))
556 			mask |= EPOLLIN | EPOLLRDNORM;
557 
558 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
559 			if (__sk_stream_is_writeable(sk, 1)) {
560 				mask |= EPOLLOUT | EPOLLWRNORM;
561 			} else {  /* send SIGIO later */
562 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
563 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
564 
565 				/* Race breaker. If space is freed after
566 				 * wspace test but before the flags are set,
567 				 * IO signal will be lost. Memory barrier
568 				 * pairs with the input side.
569 				 */
570 				smp_mb__after_atomic();
571 				if (__sk_stream_is_writeable(sk, 1))
572 					mask |= EPOLLOUT | EPOLLWRNORM;
573 			}
574 		} else
575 			mask |= EPOLLOUT | EPOLLWRNORM;
576 
577 		if (urg_data & TCP_URG_VALID)
578 			mask |= EPOLLPRI;
579 	} else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
580 		/* Active TCP fastopen socket with defer_connect
581 		 * Return EPOLLOUT so application can call write()
582 		 * in order for kernel to generate SYN+data
583 		 */
584 		mask |= EPOLLOUT | EPOLLWRNORM;
585 	}
586 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
587 	smp_rmb();
588 	if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
589 		mask |= EPOLLERR;
590 
591 	return mask;
592 }
593 EXPORT_SYMBOL(tcp_poll);
594 
tcp_ioctl(struct sock * sk,int cmd,unsigned long arg)595 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
596 {
597 	struct tcp_sock *tp = tcp_sk(sk);
598 	int answ;
599 	bool slow;
600 
601 	switch (cmd) {
602 	case SIOCINQ:
603 		if (sk->sk_state == TCP_LISTEN)
604 			return -EINVAL;
605 
606 		slow = lock_sock_fast(sk);
607 		answ = tcp_inq(sk);
608 		unlock_sock_fast(sk, slow);
609 		break;
610 	case SIOCATMARK:
611 		answ = READ_ONCE(tp->urg_data) &&
612 		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
613 		break;
614 	case SIOCOUTQ:
615 		if (sk->sk_state == TCP_LISTEN)
616 			return -EINVAL;
617 
618 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
619 			answ = 0;
620 		else
621 			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
622 		break;
623 	case SIOCOUTQNSD:
624 		if (sk->sk_state == TCP_LISTEN)
625 			return -EINVAL;
626 
627 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
628 			answ = 0;
629 		else
630 			answ = READ_ONCE(tp->write_seq) -
631 			       READ_ONCE(tp->snd_nxt);
632 		break;
633 	default:
634 		return -ENOIOCTLCMD;
635 	}
636 
637 	return put_user(answ, (int __user *)arg);
638 }
639 EXPORT_SYMBOL(tcp_ioctl);
640 
tcp_mark_push(struct tcp_sock * tp,struct sk_buff * skb)641 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
642 {
643 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
644 	tp->pushed_seq = tp->write_seq;
645 }
646 
forced_push(const struct tcp_sock * tp)647 static inline bool forced_push(const struct tcp_sock *tp)
648 {
649 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
650 }
651 
tcp_skb_entail(struct sock * sk,struct sk_buff * skb)652 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
653 {
654 	struct tcp_sock *tp = tcp_sk(sk);
655 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
656 
657 	tcb->seq     = tcb->end_seq = tp->write_seq;
658 	tcb->tcp_flags = TCPHDR_ACK;
659 	__skb_header_release(skb);
660 	tcp_add_write_queue_tail(sk, skb);
661 	sk_wmem_queued_add(sk, skb->truesize);
662 	sk_mem_charge(sk, skb->truesize);
663 	if (tp->nonagle & TCP_NAGLE_PUSH)
664 		tp->nonagle &= ~TCP_NAGLE_PUSH;
665 
666 	tcp_slow_start_after_idle_check(sk);
667 }
668 
tcp_mark_urg(struct tcp_sock * tp,int flags)669 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
670 {
671 	if (flags & MSG_OOB)
672 		tp->snd_up = tp->write_seq;
673 }
674 
675 /* If a not yet filled skb is pushed, do not send it if
676  * we have data packets in Qdisc or NIC queues :
677  * Because TX completion will happen shortly, it gives a chance
678  * to coalesce future sendmsg() payload into this skb, without
679  * need for a timer, and with no latency trade off.
680  * As packets containing data payload have a bigger truesize
681  * than pure acks (dataless) packets, the last checks prevent
682  * autocorking if we only have an ACK in Qdisc/NIC queues,
683  * or if TX completion was delayed after we processed ACK packet.
684  */
tcp_should_autocork(struct sock * sk,struct sk_buff * skb,int size_goal)685 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
686 				int size_goal)
687 {
688 	return skb->len < size_goal &&
689 	       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
690 	       !tcp_rtx_queue_empty(sk) &&
691 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
692 	       tcp_skb_can_collapse_to(skb);
693 }
694 
tcp_push(struct sock * sk,int flags,int mss_now,int nonagle,int size_goal)695 void tcp_push(struct sock *sk, int flags, int mss_now,
696 	      int nonagle, int size_goal)
697 {
698 	struct tcp_sock *tp = tcp_sk(sk);
699 	struct sk_buff *skb;
700 
701 	skb = tcp_write_queue_tail(sk);
702 	if (!skb)
703 		return;
704 	if (!(flags & MSG_MORE) || forced_push(tp))
705 		tcp_mark_push(tp, skb);
706 
707 	tcp_mark_urg(tp, flags);
708 
709 	if (tcp_should_autocork(sk, skb, size_goal)) {
710 
711 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
712 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
713 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
714 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
715 		}
716 		/* It is possible TX completion already happened
717 		 * before we set TSQ_THROTTLED.
718 		 */
719 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
720 			return;
721 	}
722 
723 	if (flags & MSG_MORE)
724 		nonagle = TCP_NAGLE_CORK;
725 
726 	__tcp_push_pending_frames(sk, mss_now, nonagle);
727 }
728 
tcp_splice_data_recv(read_descriptor_t * rd_desc,struct sk_buff * skb,unsigned int offset,size_t len)729 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
730 				unsigned int offset, size_t len)
731 {
732 	struct tcp_splice_state *tss = rd_desc->arg.data;
733 	int ret;
734 
735 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
736 			      min(rd_desc->count, len), tss->flags);
737 	if (ret > 0)
738 		rd_desc->count -= ret;
739 	return ret;
740 }
741 
__tcp_splice_read(struct sock * sk,struct tcp_splice_state * tss)742 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
743 {
744 	/* Store TCP splice context information in read_descriptor_t. */
745 	read_descriptor_t rd_desc = {
746 		.arg.data = tss,
747 		.count	  = tss->len,
748 	};
749 
750 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
751 }
752 
753 /**
754  *  tcp_splice_read - splice data from TCP socket to a pipe
755  * @sock:	socket to splice from
756  * @ppos:	position (not valid)
757  * @pipe:	pipe to splice to
758  * @len:	number of bytes to splice
759  * @flags:	splice modifier flags
760  *
761  * Description:
762  *    Will read pages from given socket and fill them into a pipe.
763  *
764  **/
tcp_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)765 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
766 			struct pipe_inode_info *pipe, size_t len,
767 			unsigned int flags)
768 {
769 	struct sock *sk = sock->sk;
770 	struct tcp_splice_state tss = {
771 		.pipe = pipe,
772 		.len = len,
773 		.flags = flags,
774 	};
775 	long timeo;
776 	ssize_t spliced;
777 	int ret;
778 
779 	sock_rps_record_flow(sk);
780 	/*
781 	 * We can't seek on a socket input
782 	 */
783 	if (unlikely(*ppos))
784 		return -ESPIPE;
785 
786 	ret = spliced = 0;
787 
788 	lock_sock(sk);
789 
790 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
791 	while (tss.len) {
792 		ret = __tcp_splice_read(sk, &tss);
793 		if (ret < 0)
794 			break;
795 		else if (!ret) {
796 			if (spliced)
797 				break;
798 			if (sock_flag(sk, SOCK_DONE))
799 				break;
800 			if (sk->sk_err) {
801 				ret = sock_error(sk);
802 				break;
803 			}
804 			if (sk->sk_shutdown & RCV_SHUTDOWN)
805 				break;
806 			if (sk->sk_state == TCP_CLOSE) {
807 				/*
808 				 * This occurs when user tries to read
809 				 * from never connected socket.
810 				 */
811 				ret = -ENOTCONN;
812 				break;
813 			}
814 			if (!timeo) {
815 				ret = -EAGAIN;
816 				break;
817 			}
818 			/* if __tcp_splice_read() got nothing while we have
819 			 * an skb in receive queue, we do not want to loop.
820 			 * This might happen with URG data.
821 			 */
822 			if (!skb_queue_empty(&sk->sk_receive_queue))
823 				break;
824 			sk_wait_data(sk, &timeo, NULL);
825 			if (signal_pending(current)) {
826 				ret = sock_intr_errno(timeo);
827 				break;
828 			}
829 			continue;
830 		}
831 		tss.len -= ret;
832 		spliced += ret;
833 
834 		if (!timeo)
835 			break;
836 		release_sock(sk);
837 		lock_sock(sk);
838 
839 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
840 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
841 		    signal_pending(current))
842 			break;
843 	}
844 
845 	release_sock(sk);
846 
847 	if (spliced)
848 		return spliced;
849 
850 	return ret;
851 }
852 EXPORT_SYMBOL(tcp_splice_read);
853 
tcp_stream_alloc_skb(struct sock * sk,int size,gfp_t gfp,bool force_schedule)854 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
855 				     bool force_schedule)
856 {
857 	struct sk_buff *skb;
858 
859 	if (unlikely(tcp_under_memory_pressure(sk)))
860 		sk_mem_reclaim_partial(sk);
861 
862 	skb = alloc_skb_fclone(size + MAX_TCP_HEADER, gfp);
863 	if (likely(skb)) {
864 		bool mem_scheduled;
865 
866 		skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
867 		if (force_schedule) {
868 			mem_scheduled = true;
869 			sk_forced_mem_schedule(sk, skb->truesize);
870 		} else {
871 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
872 		}
873 		if (likely(mem_scheduled)) {
874 			skb_reserve(skb, MAX_TCP_HEADER);
875 			skb->ip_summed = CHECKSUM_PARTIAL;
876 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
877 			return skb;
878 		}
879 		__kfree_skb(skb);
880 	} else {
881 		sk->sk_prot->enter_memory_pressure(sk);
882 		sk_stream_moderate_sndbuf(sk);
883 	}
884 	return NULL;
885 }
886 
tcp_xmit_size_goal(struct sock * sk,u32 mss_now,int large_allowed)887 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
888 				       int large_allowed)
889 {
890 	struct tcp_sock *tp = tcp_sk(sk);
891 	u32 new_size_goal, size_goal;
892 
893 	if (!large_allowed)
894 		return mss_now;
895 
896 	/* Note : tcp_tso_autosize() will eventually split this later */
897 	new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
898 
899 	/* We try hard to avoid divides here */
900 	size_goal = tp->gso_segs * mss_now;
901 	if (unlikely(new_size_goal < size_goal ||
902 		     new_size_goal >= size_goal + mss_now)) {
903 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
904 				     sk->sk_gso_max_segs);
905 		size_goal = tp->gso_segs * mss_now;
906 	}
907 
908 	return max(size_goal, mss_now);
909 }
910 
tcp_send_mss(struct sock * sk,int * size_goal,int flags)911 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
912 {
913 	int mss_now;
914 
915 	mss_now = tcp_current_mss(sk);
916 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
917 
918 	return mss_now;
919 }
920 
921 /* In some cases, both sendpage() and sendmsg() could have added
922  * an skb to the write queue, but failed adding payload on it.
923  * We need to remove it to consume less memory, but more
924  * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
925  * users.
926  */
tcp_remove_empty_skb(struct sock * sk)927 void tcp_remove_empty_skb(struct sock *sk)
928 {
929 	struct sk_buff *skb = tcp_write_queue_tail(sk);
930 
931 	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
932 		tcp_unlink_write_queue(skb, sk);
933 		if (tcp_write_queue_empty(sk))
934 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
935 		tcp_wmem_free_skb(sk, skb);
936 	}
937 }
938 
939 /* skb changing from pure zc to mixed, must charge zc */
tcp_downgrade_zcopy_pure(struct sock * sk,struct sk_buff * skb)940 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
941 {
942 	if (unlikely(skb_zcopy_pure(skb))) {
943 		u32 extra = skb->truesize -
944 			    SKB_TRUESIZE(skb_end_offset(skb));
945 
946 		if (!sk_wmem_schedule(sk, extra))
947 			return -ENOMEM;
948 
949 		sk_mem_charge(sk, extra);
950 		skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
951 	}
952 	return 0;
953 }
954 
tcp_wmem_schedule(struct sock * sk,int copy)955 static int tcp_wmem_schedule(struct sock *sk, int copy)
956 {
957 	int left;
958 
959 	if (likely(sk_wmem_schedule(sk, copy)))
960 		return copy;
961 
962 	/* We could be in trouble if we have nothing queued.
963 	 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
964 	 * to guarantee some progress.
965 	 */
966 	left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued;
967 	if (left > 0)
968 		sk_forced_mem_schedule(sk, min(left, copy));
969 	return min(copy, sk->sk_forward_alloc);
970 }
971 
tcp_build_frag(struct sock * sk,int size_goal,int flags,struct page * page,int offset,size_t * size)972 static struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags,
973 				      struct page *page, int offset, size_t *size)
974 {
975 	struct sk_buff *skb = tcp_write_queue_tail(sk);
976 	struct tcp_sock *tp = tcp_sk(sk);
977 	bool can_coalesce;
978 	int copy, i;
979 
980 	if (!skb || (copy = size_goal - skb->len) <= 0 ||
981 	    !tcp_skb_can_collapse_to(skb)) {
982 new_segment:
983 		if (!sk_stream_memory_free(sk))
984 			return NULL;
985 
986 		skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation,
987 					   tcp_rtx_and_write_queues_empty(sk));
988 		if (!skb)
989 			return NULL;
990 
991 #ifdef CONFIG_TLS_DEVICE
992 		skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
993 #endif
994 		tcp_skb_entail(sk, skb);
995 		copy = size_goal;
996 	}
997 
998 	if (copy > *size)
999 		copy = *size;
1000 
1001 	i = skb_shinfo(skb)->nr_frags;
1002 	can_coalesce = skb_can_coalesce(skb, i, page, offset);
1003 	if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) {
1004 		tcp_mark_push(tp, skb);
1005 		goto new_segment;
1006 	}
1007 	if (tcp_downgrade_zcopy_pure(sk, skb))
1008 		return NULL;
1009 
1010 	copy = tcp_wmem_schedule(sk, copy);
1011 	if (!copy)
1012 		return NULL;
1013 
1014 	if (can_coalesce) {
1015 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1016 	} else {
1017 		get_page(page);
1018 		skb_fill_page_desc_noacc(skb, i, page, offset, copy);
1019 	}
1020 
1021 	if (!(flags & MSG_NO_SHARED_FRAGS))
1022 		skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1023 
1024 	skb->len += copy;
1025 	skb->data_len += copy;
1026 	skb->truesize += copy;
1027 	sk_wmem_queued_add(sk, copy);
1028 	sk_mem_charge(sk, copy);
1029 	WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1030 	TCP_SKB_CB(skb)->end_seq += copy;
1031 	tcp_skb_pcount_set(skb, 0);
1032 
1033 	*size = copy;
1034 	return skb;
1035 }
1036 
do_tcp_sendpages(struct sock * sk,struct page * page,int offset,size_t size,int flags)1037 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
1038 			 size_t size, int flags)
1039 {
1040 	struct tcp_sock *tp = tcp_sk(sk);
1041 	int mss_now, size_goal;
1042 	int err;
1043 	ssize_t copied;
1044 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1045 
1046 	if (IS_ENABLED(CONFIG_DEBUG_VM) &&
1047 	    WARN_ONCE(!sendpage_ok(page),
1048 		      "page must not be a Slab one and have page_count > 0"))
1049 		return -EINVAL;
1050 
1051 	/* Wait for a connection to finish. One exception is TCP Fast Open
1052 	 * (passive side) where data is allowed to be sent before a connection
1053 	 * is fully established.
1054 	 */
1055 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1056 	    !tcp_passive_fastopen(sk)) {
1057 		err = sk_stream_wait_connect(sk, &timeo);
1058 		if (err != 0)
1059 			goto out_err;
1060 	}
1061 
1062 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1063 
1064 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1065 	copied = 0;
1066 
1067 	err = -EPIPE;
1068 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1069 		goto out_err;
1070 
1071 	while (size > 0) {
1072 		struct sk_buff *skb;
1073 		size_t copy = size;
1074 
1075 		skb = tcp_build_frag(sk, size_goal, flags, page, offset, &copy);
1076 		if (!skb)
1077 			goto wait_for_space;
1078 
1079 		if (!copied)
1080 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1081 
1082 		copied += copy;
1083 		offset += copy;
1084 		size -= copy;
1085 		if (!size)
1086 			goto out;
1087 
1088 		if (skb->len < size_goal || (flags & MSG_OOB))
1089 			continue;
1090 
1091 		if (forced_push(tp)) {
1092 			tcp_mark_push(tp, skb);
1093 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1094 		} else if (skb == tcp_send_head(sk))
1095 			tcp_push_one(sk, mss_now);
1096 		continue;
1097 
1098 wait_for_space:
1099 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1100 		tcp_push(sk, flags & ~MSG_MORE, mss_now,
1101 			 TCP_NAGLE_PUSH, size_goal);
1102 
1103 		err = sk_stream_wait_memory(sk, &timeo);
1104 		if (err != 0)
1105 			goto do_error;
1106 
1107 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1108 	}
1109 
1110 out:
1111 	if (copied) {
1112 		tcp_tx_timestamp(sk, sk->sk_tsflags);
1113 		if (!(flags & MSG_SENDPAGE_NOTLAST))
1114 			tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1115 	}
1116 	return copied;
1117 
1118 do_error:
1119 	tcp_remove_empty_skb(sk);
1120 	if (copied)
1121 		goto out;
1122 out_err:
1123 	/* make sure we wake any epoll edge trigger waiter */
1124 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1125 		sk->sk_write_space(sk);
1126 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1127 	}
1128 	return sk_stream_error(sk, flags, err);
1129 }
1130 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1131 
tcp_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)1132 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1133 			size_t size, int flags)
1134 {
1135 	if (!(sk->sk_route_caps & NETIF_F_SG))
1136 		return sock_no_sendpage_locked(sk, page, offset, size, flags);
1137 
1138 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1139 
1140 	return do_tcp_sendpages(sk, page, offset, size, flags);
1141 }
1142 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1143 
tcp_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1144 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1145 		 size_t size, int flags)
1146 {
1147 	int ret;
1148 
1149 	lock_sock(sk);
1150 	ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1151 	release_sock(sk);
1152 
1153 	return ret;
1154 }
1155 EXPORT_SYMBOL(tcp_sendpage);
1156 
tcp_free_fastopen_req(struct tcp_sock * tp)1157 void tcp_free_fastopen_req(struct tcp_sock *tp)
1158 {
1159 	if (tp->fastopen_req) {
1160 		kfree(tp->fastopen_req);
1161 		tp->fastopen_req = NULL;
1162 	}
1163 }
1164 
tcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,int * copied,size_t size,struct ubuf_info * uarg)1165 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1166 				int *copied, size_t size,
1167 				struct ubuf_info *uarg)
1168 {
1169 	struct tcp_sock *tp = tcp_sk(sk);
1170 	struct inet_sock *inet = inet_sk(sk);
1171 	struct sockaddr *uaddr = msg->msg_name;
1172 	int err, flags;
1173 
1174 	if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1175 	      TFO_CLIENT_ENABLE) ||
1176 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1177 	     uaddr->sa_family == AF_UNSPEC))
1178 		return -EOPNOTSUPP;
1179 	if (tp->fastopen_req)
1180 		return -EALREADY; /* Another Fast Open is in progress */
1181 
1182 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1183 				   sk->sk_allocation);
1184 	if (unlikely(!tp->fastopen_req))
1185 		return -ENOBUFS;
1186 	tp->fastopen_req->data = msg;
1187 	tp->fastopen_req->size = size;
1188 	tp->fastopen_req->uarg = uarg;
1189 
1190 	if (inet->defer_connect) {
1191 		err = tcp_connect(sk);
1192 		/* Same failure procedure as in tcp_v4/6_connect */
1193 		if (err) {
1194 			tcp_set_state(sk, TCP_CLOSE);
1195 			inet->inet_dport = 0;
1196 			sk->sk_route_caps = 0;
1197 		}
1198 	}
1199 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1200 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1201 				    msg->msg_namelen, flags, 1);
1202 	/* fastopen_req could already be freed in __inet_stream_connect
1203 	 * if the connection times out or gets rst
1204 	 */
1205 	if (tp->fastopen_req) {
1206 		*copied = tp->fastopen_req->copied;
1207 		tcp_free_fastopen_req(tp);
1208 		inet->defer_connect = 0;
1209 	}
1210 	return err;
1211 }
1212 
tcp_sendmsg_locked(struct sock * sk,struct msghdr * msg,size_t size)1213 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1214 {
1215 	struct tcp_sock *tp = tcp_sk(sk);
1216 	struct ubuf_info *uarg = NULL;
1217 	struct sk_buff *skb;
1218 	struct sockcm_cookie sockc;
1219 	int flags, err, copied = 0;
1220 	int mss_now = 0, size_goal, copied_syn = 0;
1221 	int process_backlog = 0;
1222 	bool zc = false;
1223 	long timeo;
1224 
1225 	flags = msg->msg_flags;
1226 
1227 	if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) {
1228 		skb = tcp_write_queue_tail(sk);
1229 		uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1230 		if (!uarg) {
1231 			err = -ENOBUFS;
1232 			goto out_err;
1233 		}
1234 
1235 		zc = sk->sk_route_caps & NETIF_F_SG;
1236 		if (!zc)
1237 			uarg->zerocopy = 0;
1238 	}
1239 
1240 	if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1241 	    !tp->repair) {
1242 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1243 		if (err == -EINPROGRESS && copied_syn > 0)
1244 			goto out;
1245 		else if (err)
1246 			goto out_err;
1247 	}
1248 
1249 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1250 
1251 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1252 
1253 	/* Wait for a connection to finish. One exception is TCP Fast Open
1254 	 * (passive side) where data is allowed to be sent before a connection
1255 	 * is fully established.
1256 	 */
1257 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1258 	    !tcp_passive_fastopen(sk)) {
1259 		err = sk_stream_wait_connect(sk, &timeo);
1260 		if (err != 0)
1261 			goto do_error;
1262 	}
1263 
1264 	if (unlikely(tp->repair)) {
1265 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1266 			copied = tcp_send_rcvq(sk, msg, size);
1267 			goto out_nopush;
1268 		}
1269 
1270 		err = -EINVAL;
1271 		if (tp->repair_queue == TCP_NO_QUEUE)
1272 			goto out_err;
1273 
1274 		/* 'common' sending to sendq */
1275 	}
1276 
1277 	sockcm_init(&sockc, sk);
1278 	if (msg->msg_controllen) {
1279 		err = sock_cmsg_send(sk, msg, &sockc);
1280 		if (unlikely(err)) {
1281 			err = -EINVAL;
1282 			goto out_err;
1283 		}
1284 	}
1285 
1286 	/* This should be in poll */
1287 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1288 
1289 	/* Ok commence sending. */
1290 	copied = 0;
1291 
1292 restart:
1293 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1294 
1295 	err = -EPIPE;
1296 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1297 		goto do_error;
1298 
1299 	while (msg_data_left(msg)) {
1300 		int copy = 0;
1301 
1302 		skb = tcp_write_queue_tail(sk);
1303 		if (skb)
1304 			copy = size_goal - skb->len;
1305 
1306 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1307 			bool first_skb;
1308 
1309 new_segment:
1310 			if (!sk_stream_memory_free(sk))
1311 				goto wait_for_space;
1312 
1313 			if (unlikely(process_backlog >= 16)) {
1314 				process_backlog = 0;
1315 				if (sk_flush_backlog(sk))
1316 					goto restart;
1317 			}
1318 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1319 			skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation,
1320 						   first_skb);
1321 			if (!skb)
1322 				goto wait_for_space;
1323 
1324 			process_backlog++;
1325 
1326 			tcp_skb_entail(sk, skb);
1327 			copy = size_goal;
1328 
1329 			/* All packets are restored as if they have
1330 			 * already been sent. skb_mstamp_ns isn't set to
1331 			 * avoid wrong rtt estimation.
1332 			 */
1333 			if (tp->repair)
1334 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1335 		}
1336 
1337 		/* Try to append data to the end of skb. */
1338 		if (copy > msg_data_left(msg))
1339 			copy = msg_data_left(msg);
1340 
1341 		if (!zc) {
1342 			bool merge = true;
1343 			int i = skb_shinfo(skb)->nr_frags;
1344 			struct page_frag *pfrag = sk_page_frag(sk);
1345 
1346 			if (!sk_page_frag_refill(sk, pfrag))
1347 				goto wait_for_space;
1348 
1349 			if (!skb_can_coalesce(skb, i, pfrag->page,
1350 					      pfrag->offset)) {
1351 				if (i >= READ_ONCE(sysctl_max_skb_frags)) {
1352 					tcp_mark_push(tp, skb);
1353 					goto new_segment;
1354 				}
1355 				merge = false;
1356 			}
1357 
1358 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1359 
1360 			if (tcp_downgrade_zcopy_pure(sk, skb))
1361 				goto wait_for_space;
1362 
1363 			copy = tcp_wmem_schedule(sk, copy);
1364 			if (!copy)
1365 				goto wait_for_space;
1366 
1367 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1368 						       pfrag->page,
1369 						       pfrag->offset,
1370 						       copy);
1371 			if (err)
1372 				goto do_error;
1373 
1374 			/* Update the skb. */
1375 			if (merge) {
1376 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1377 			} else {
1378 				skb_fill_page_desc(skb, i, pfrag->page,
1379 						   pfrag->offset, copy);
1380 				page_ref_inc(pfrag->page);
1381 			}
1382 			pfrag->offset += copy;
1383 		} else {
1384 			/* First append to a fragless skb builds initial
1385 			 * pure zerocopy skb
1386 			 */
1387 			if (!skb->len)
1388 				skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1389 
1390 			if (!skb_zcopy_pure(skb)) {
1391 				copy = tcp_wmem_schedule(sk, copy);
1392 				if (!copy)
1393 					goto wait_for_space;
1394 			}
1395 
1396 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1397 			if (err == -EMSGSIZE || err == -EEXIST) {
1398 				tcp_mark_push(tp, skb);
1399 				goto new_segment;
1400 			}
1401 			if (err < 0)
1402 				goto do_error;
1403 			copy = err;
1404 		}
1405 
1406 		if (!copied)
1407 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1408 
1409 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1410 		TCP_SKB_CB(skb)->end_seq += copy;
1411 		tcp_skb_pcount_set(skb, 0);
1412 
1413 		copied += copy;
1414 		if (!msg_data_left(msg)) {
1415 			if (unlikely(flags & MSG_EOR))
1416 				TCP_SKB_CB(skb)->eor = 1;
1417 			goto out;
1418 		}
1419 
1420 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1421 			continue;
1422 
1423 		if (forced_push(tp)) {
1424 			tcp_mark_push(tp, skb);
1425 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1426 		} else if (skb == tcp_send_head(sk))
1427 			tcp_push_one(sk, mss_now);
1428 		continue;
1429 
1430 wait_for_space:
1431 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1432 		if (copied)
1433 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1434 				 TCP_NAGLE_PUSH, size_goal);
1435 
1436 		err = sk_stream_wait_memory(sk, &timeo);
1437 		if (err != 0)
1438 			goto do_error;
1439 
1440 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1441 	}
1442 
1443 out:
1444 	if (copied) {
1445 		tcp_tx_timestamp(sk, sockc.tsflags);
1446 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1447 	}
1448 out_nopush:
1449 	net_zcopy_put(uarg);
1450 	return copied + copied_syn;
1451 
1452 do_error:
1453 	tcp_remove_empty_skb(sk);
1454 
1455 	if (copied + copied_syn)
1456 		goto out;
1457 out_err:
1458 	net_zcopy_put_abort(uarg, true);
1459 	err = sk_stream_error(sk, flags, err);
1460 	/* make sure we wake any epoll edge trigger waiter */
1461 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1462 		sk->sk_write_space(sk);
1463 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1464 	}
1465 	return err;
1466 }
1467 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1468 
tcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)1469 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1470 {
1471 	int ret;
1472 
1473 	lock_sock(sk);
1474 	ret = tcp_sendmsg_locked(sk, msg, size);
1475 	release_sock(sk);
1476 
1477 	return ret;
1478 }
1479 EXPORT_SYMBOL(tcp_sendmsg);
1480 
1481 /*
1482  *	Handle reading urgent data. BSD has very simple semantics for
1483  *	this, no blocking and very strange errors 8)
1484  */
1485 
tcp_recv_urg(struct sock * sk,struct msghdr * msg,int len,int flags)1486 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1487 {
1488 	struct tcp_sock *tp = tcp_sk(sk);
1489 
1490 	/* No URG data to read. */
1491 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1492 	    tp->urg_data == TCP_URG_READ)
1493 		return -EINVAL;	/* Yes this is right ! */
1494 
1495 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1496 		return -ENOTCONN;
1497 
1498 	if (tp->urg_data & TCP_URG_VALID) {
1499 		int err = 0;
1500 		char c = tp->urg_data;
1501 
1502 		if (!(flags & MSG_PEEK))
1503 			WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1504 
1505 		/* Read urgent data. */
1506 		msg->msg_flags |= MSG_OOB;
1507 
1508 		if (len > 0) {
1509 			if (!(flags & MSG_TRUNC))
1510 				err = memcpy_to_msg(msg, &c, 1);
1511 			len = 1;
1512 		} else
1513 			msg->msg_flags |= MSG_TRUNC;
1514 
1515 		return err ? -EFAULT : len;
1516 	}
1517 
1518 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1519 		return 0;
1520 
1521 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1522 	 * the available implementations agree in this case:
1523 	 * this call should never block, independent of the
1524 	 * blocking state of the socket.
1525 	 * Mike <pall@rz.uni-karlsruhe.de>
1526 	 */
1527 	return -EAGAIN;
1528 }
1529 
tcp_peek_sndq(struct sock * sk,struct msghdr * msg,int len)1530 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1531 {
1532 	struct sk_buff *skb;
1533 	int copied = 0, err = 0;
1534 
1535 	/* XXX -- need to support SO_PEEK_OFF */
1536 
1537 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1538 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1539 		if (err)
1540 			return err;
1541 		copied += skb->len;
1542 	}
1543 
1544 	skb_queue_walk(&sk->sk_write_queue, skb) {
1545 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1546 		if (err)
1547 			break;
1548 
1549 		copied += skb->len;
1550 	}
1551 
1552 	return err ?: copied;
1553 }
1554 
1555 /* Clean up the receive buffer for full frames taken by the user,
1556  * then send an ACK if necessary.  COPIED is the number of bytes
1557  * tcp_recvmsg has given to the user so far, it speeds up the
1558  * calculation of whether or not we must ACK for the sake of
1559  * a window update.
1560  */
tcp_cleanup_rbuf(struct sock * sk,int copied)1561 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1562 {
1563 	struct tcp_sock *tp = tcp_sk(sk);
1564 	bool time_to_ack = false;
1565 
1566 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1567 
1568 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1569 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1570 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1571 
1572 	if (inet_csk_ack_scheduled(sk)) {
1573 		const struct inet_connection_sock *icsk = inet_csk(sk);
1574 
1575 		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1576 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1577 		    /*
1578 		     * If this read emptied read buffer, we send ACK, if
1579 		     * connection is not bidirectional, user drained
1580 		     * receive buffer and there was a small segment
1581 		     * in queue.
1582 		     */
1583 		    (copied > 0 &&
1584 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1585 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1586 		       !inet_csk_in_pingpong_mode(sk))) &&
1587 		      !atomic_read(&sk->sk_rmem_alloc)))
1588 			time_to_ack = true;
1589 	}
1590 
1591 	/* We send an ACK if we can now advertise a non-zero window
1592 	 * which has been raised "significantly".
1593 	 *
1594 	 * Even if window raised up to infinity, do not send window open ACK
1595 	 * in states, where we will not receive more. It is useless.
1596 	 */
1597 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1598 		__u32 rcv_window_now = tcp_receive_window(tp);
1599 
1600 		/* Optimize, __tcp_select_window() is not cheap. */
1601 		if (2*rcv_window_now <= tp->window_clamp) {
1602 			__u32 new_window = __tcp_select_window(sk);
1603 
1604 			/* Send ACK now, if this read freed lots of space
1605 			 * in our buffer. Certainly, new_window is new window.
1606 			 * We can advertise it now, if it is not less than current one.
1607 			 * "Lots" means "at least twice" here.
1608 			 */
1609 			if (new_window && new_window >= 2 * rcv_window_now)
1610 				time_to_ack = true;
1611 		}
1612 	}
1613 	if (time_to_ack)
1614 		tcp_send_ack(sk);
1615 }
1616 
tcp_eat_recv_skb(struct sock * sk,struct sk_buff * skb)1617 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1618 {
1619 	__skb_unlink(skb, &sk->sk_receive_queue);
1620 	if (likely(skb->destructor == sock_rfree)) {
1621 		sock_rfree(skb);
1622 		skb->destructor = NULL;
1623 		skb->sk = NULL;
1624 		return skb_attempt_defer_free(skb);
1625 	}
1626 	__kfree_skb(skb);
1627 }
1628 
tcp_recv_skb(struct sock * sk,u32 seq,u32 * off)1629 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1630 {
1631 	struct sk_buff *skb;
1632 	u32 offset;
1633 
1634 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1635 		offset = seq - TCP_SKB_CB(skb)->seq;
1636 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1637 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1638 			offset--;
1639 		}
1640 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1641 			*off = offset;
1642 			return skb;
1643 		}
1644 		/* This looks weird, but this can happen if TCP collapsing
1645 		 * splitted a fat GRO packet, while we released socket lock
1646 		 * in skb_splice_bits()
1647 		 */
1648 		tcp_eat_recv_skb(sk, skb);
1649 	}
1650 	return NULL;
1651 }
1652 
1653 /*
1654  * This routine provides an alternative to tcp_recvmsg() for routines
1655  * that would like to handle copying from skbuffs directly in 'sendfile'
1656  * fashion.
1657  * Note:
1658  *	- It is assumed that the socket was locked by the caller.
1659  *	- The routine does not block.
1660  *	- At present, there is no support for reading OOB data
1661  *	  or for 'peeking' the socket using this routine
1662  *	  (although both would be easy to implement).
1663  */
tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor)1664 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1665 		  sk_read_actor_t recv_actor)
1666 {
1667 	struct sk_buff *skb;
1668 	struct tcp_sock *tp = tcp_sk(sk);
1669 	u32 seq = tp->copied_seq;
1670 	u32 offset;
1671 	int copied = 0;
1672 
1673 	if (sk->sk_state == TCP_LISTEN)
1674 		return -ENOTCONN;
1675 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1676 		if (offset < skb->len) {
1677 			int used;
1678 			size_t len;
1679 
1680 			len = skb->len - offset;
1681 			/* Stop reading if we hit a patch of urgent data */
1682 			if (unlikely(tp->urg_data)) {
1683 				u32 urg_offset = tp->urg_seq - seq;
1684 				if (urg_offset < len)
1685 					len = urg_offset;
1686 				if (!len)
1687 					break;
1688 			}
1689 			used = recv_actor(desc, skb, offset, len);
1690 			if (used <= 0) {
1691 				if (!copied)
1692 					copied = used;
1693 				break;
1694 			}
1695 			if (WARN_ON_ONCE(used > len))
1696 				used = len;
1697 			seq += used;
1698 			copied += used;
1699 			offset += used;
1700 
1701 			/* If recv_actor drops the lock (e.g. TCP splice
1702 			 * receive) the skb pointer might be invalid when
1703 			 * getting here: tcp_collapse might have deleted it
1704 			 * while aggregating skbs from the socket queue.
1705 			 */
1706 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1707 			if (!skb)
1708 				break;
1709 			/* TCP coalescing might have appended data to the skb.
1710 			 * Try to splice more frags
1711 			 */
1712 			if (offset + 1 != skb->len)
1713 				continue;
1714 		}
1715 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1716 			tcp_eat_recv_skb(sk, skb);
1717 			++seq;
1718 			break;
1719 		}
1720 		tcp_eat_recv_skb(sk, skb);
1721 		if (!desc->count)
1722 			break;
1723 		WRITE_ONCE(tp->copied_seq, seq);
1724 	}
1725 	WRITE_ONCE(tp->copied_seq, seq);
1726 
1727 	tcp_rcv_space_adjust(sk);
1728 
1729 	/* Clean up data we have read: This will do ACK frames. */
1730 	if (copied > 0) {
1731 		tcp_recv_skb(sk, seq, &offset);
1732 		tcp_cleanup_rbuf(sk, copied);
1733 	}
1734 	return copied;
1735 }
1736 EXPORT_SYMBOL(tcp_read_sock);
1737 
tcp_peek_len(struct socket * sock)1738 int tcp_peek_len(struct socket *sock)
1739 {
1740 	return tcp_inq(sock->sk);
1741 }
1742 EXPORT_SYMBOL(tcp_peek_len);
1743 
1744 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
tcp_set_rcvlowat(struct sock * sk,int val)1745 int tcp_set_rcvlowat(struct sock *sk, int val)
1746 {
1747 	int cap;
1748 
1749 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1750 		cap = sk->sk_rcvbuf >> 1;
1751 	else
1752 		cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1753 	val = min(val, cap);
1754 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1755 
1756 	/* Check if we need to signal EPOLLIN right now */
1757 	tcp_data_ready(sk);
1758 
1759 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1760 		return 0;
1761 
1762 	val <<= 1;
1763 	if (val > sk->sk_rcvbuf) {
1764 		WRITE_ONCE(sk->sk_rcvbuf, val);
1765 		tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1766 	}
1767 	return 0;
1768 }
1769 EXPORT_SYMBOL(tcp_set_rcvlowat);
1770 
tcp_update_recv_tstamps(struct sk_buff * skb,struct scm_timestamping_internal * tss)1771 void tcp_update_recv_tstamps(struct sk_buff *skb,
1772 			     struct scm_timestamping_internal *tss)
1773 {
1774 	if (skb->tstamp)
1775 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1776 	else
1777 		tss->ts[0] = (struct timespec64) {0};
1778 
1779 	if (skb_hwtstamps(skb)->hwtstamp)
1780 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1781 	else
1782 		tss->ts[2] = (struct timespec64) {0};
1783 }
1784 
1785 #ifdef CONFIG_MMU
1786 static const struct vm_operations_struct tcp_vm_ops = {
1787 };
1788 
tcp_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)1789 int tcp_mmap(struct file *file, struct socket *sock,
1790 	     struct vm_area_struct *vma)
1791 {
1792 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1793 		return -EPERM;
1794 	vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1795 
1796 	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1797 	vma->vm_flags |= VM_MIXEDMAP;
1798 
1799 	vma->vm_ops = &tcp_vm_ops;
1800 	return 0;
1801 }
1802 EXPORT_SYMBOL(tcp_mmap);
1803 
skb_advance_to_frag(struct sk_buff * skb,u32 offset_skb,u32 * offset_frag)1804 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1805 				       u32 *offset_frag)
1806 {
1807 	skb_frag_t *frag;
1808 
1809 	if (unlikely(offset_skb >= skb->len))
1810 		return NULL;
1811 
1812 	offset_skb -= skb_headlen(skb);
1813 	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1814 		return NULL;
1815 
1816 	frag = skb_shinfo(skb)->frags;
1817 	while (offset_skb) {
1818 		if (skb_frag_size(frag) > offset_skb) {
1819 			*offset_frag = offset_skb;
1820 			return frag;
1821 		}
1822 		offset_skb -= skb_frag_size(frag);
1823 		++frag;
1824 	}
1825 	*offset_frag = 0;
1826 	return frag;
1827 }
1828 
can_map_frag(const skb_frag_t * frag)1829 static bool can_map_frag(const skb_frag_t *frag)
1830 {
1831 	return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag);
1832 }
1833 
find_next_mappable_frag(const skb_frag_t * frag,int remaining_in_skb)1834 static int find_next_mappable_frag(const skb_frag_t *frag,
1835 				   int remaining_in_skb)
1836 {
1837 	int offset = 0;
1838 
1839 	if (likely(can_map_frag(frag)))
1840 		return 0;
1841 
1842 	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1843 		offset += skb_frag_size(frag);
1844 		++frag;
1845 	}
1846 	return offset;
1847 }
1848 
tcp_zerocopy_set_hint_for_skb(struct sock * sk,struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 offset)1849 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1850 					  struct tcp_zerocopy_receive *zc,
1851 					  struct sk_buff *skb, u32 offset)
1852 {
1853 	u32 frag_offset, partial_frag_remainder = 0;
1854 	int mappable_offset;
1855 	skb_frag_t *frag;
1856 
1857 	/* worst case: skip to next skb. try to improve on this case below */
1858 	zc->recv_skip_hint = skb->len - offset;
1859 
1860 	/* Find the frag containing this offset (and how far into that frag) */
1861 	frag = skb_advance_to_frag(skb, offset, &frag_offset);
1862 	if (!frag)
1863 		return;
1864 
1865 	if (frag_offset) {
1866 		struct skb_shared_info *info = skb_shinfo(skb);
1867 
1868 		/* We read part of the last frag, must recvmsg() rest of skb. */
1869 		if (frag == &info->frags[info->nr_frags - 1])
1870 			return;
1871 
1872 		/* Else, we must at least read the remainder in this frag. */
1873 		partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1874 		zc->recv_skip_hint -= partial_frag_remainder;
1875 		++frag;
1876 	}
1877 
1878 	/* partial_frag_remainder: If part way through a frag, must read rest.
1879 	 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1880 	 * in partial_frag_remainder.
1881 	 */
1882 	mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1883 	zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1884 }
1885 
1886 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1887 			      int flags, struct scm_timestamping_internal *tss,
1888 			      int *cmsg_flags);
receive_fallback_to_copy(struct sock * sk,struct tcp_zerocopy_receive * zc,int inq,struct scm_timestamping_internal * tss)1889 static int receive_fallback_to_copy(struct sock *sk,
1890 				    struct tcp_zerocopy_receive *zc, int inq,
1891 				    struct scm_timestamping_internal *tss)
1892 {
1893 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1894 	struct msghdr msg = {};
1895 	struct iovec iov;
1896 	int err;
1897 
1898 	zc->length = 0;
1899 	zc->recv_skip_hint = 0;
1900 
1901 	if (copy_address != zc->copybuf_address)
1902 		return -EINVAL;
1903 
1904 	err = import_single_range(READ, (void __user *)copy_address,
1905 				  inq, &iov, &msg.msg_iter);
1906 	if (err)
1907 		return err;
1908 
1909 	err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
1910 				 tss, &zc->msg_flags);
1911 	if (err < 0)
1912 		return err;
1913 
1914 	zc->copybuf_len = err;
1915 	if (likely(zc->copybuf_len)) {
1916 		struct sk_buff *skb;
1917 		u32 offset;
1918 
1919 		skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1920 		if (skb)
1921 			tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1922 	}
1923 	return 0;
1924 }
1925 
tcp_copy_straggler_data(struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 copylen,u32 * offset,u32 * seq)1926 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1927 				   struct sk_buff *skb, u32 copylen,
1928 				   u32 *offset, u32 *seq)
1929 {
1930 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1931 	struct msghdr msg = {};
1932 	struct iovec iov;
1933 	int err;
1934 
1935 	if (copy_address != zc->copybuf_address)
1936 		return -EINVAL;
1937 
1938 	err = import_single_range(READ, (void __user *)copy_address,
1939 				  copylen, &iov, &msg.msg_iter);
1940 	if (err)
1941 		return err;
1942 	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1943 	if (err)
1944 		return err;
1945 	zc->recv_skip_hint -= copylen;
1946 	*offset += copylen;
1947 	*seq += copylen;
1948 	return (__s32)copylen;
1949 }
1950 
tcp_zc_handle_leftover(struct tcp_zerocopy_receive * zc,struct sock * sk,struct sk_buff * skb,u32 * seq,s32 copybuf_len,struct scm_timestamping_internal * tss)1951 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1952 				  struct sock *sk,
1953 				  struct sk_buff *skb,
1954 				  u32 *seq,
1955 				  s32 copybuf_len,
1956 				  struct scm_timestamping_internal *tss)
1957 {
1958 	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1959 
1960 	if (!copylen)
1961 		return 0;
1962 	/* skb is null if inq < PAGE_SIZE. */
1963 	if (skb) {
1964 		offset = *seq - TCP_SKB_CB(skb)->seq;
1965 	} else {
1966 		skb = tcp_recv_skb(sk, *seq, &offset);
1967 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1968 			tcp_update_recv_tstamps(skb, tss);
1969 			zc->msg_flags |= TCP_CMSG_TS;
1970 		}
1971 	}
1972 
1973 	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1974 						  seq);
1975 	return zc->copybuf_len < 0 ? 0 : copylen;
1976 }
1977 
tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct * vma,struct page ** pending_pages,unsigned long pages_remaining,unsigned long * address,u32 * length,u32 * seq,struct tcp_zerocopy_receive * zc,u32 total_bytes_to_map,int err)1978 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1979 					      struct page **pending_pages,
1980 					      unsigned long pages_remaining,
1981 					      unsigned long *address,
1982 					      u32 *length,
1983 					      u32 *seq,
1984 					      struct tcp_zerocopy_receive *zc,
1985 					      u32 total_bytes_to_map,
1986 					      int err)
1987 {
1988 	/* At least one page did not map. Try zapping if we skipped earlier. */
1989 	if (err == -EBUSY &&
1990 	    zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
1991 		u32 maybe_zap_len;
1992 
1993 		maybe_zap_len = total_bytes_to_map -  /* All bytes to map */
1994 				*length + /* Mapped or pending */
1995 				(pages_remaining * PAGE_SIZE); /* Failed map. */
1996 		zap_page_range(vma, *address, maybe_zap_len);
1997 		err = 0;
1998 	}
1999 
2000 	if (!err) {
2001 		unsigned long leftover_pages = pages_remaining;
2002 		int bytes_mapped;
2003 
2004 		/* We called zap_page_range, try to reinsert. */
2005 		err = vm_insert_pages(vma, *address,
2006 				      pending_pages,
2007 				      &pages_remaining);
2008 		bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
2009 		*seq += bytes_mapped;
2010 		*address += bytes_mapped;
2011 	}
2012 	if (err) {
2013 		/* Either we were unable to zap, OR we zapped, retried an
2014 		 * insert, and still had an issue. Either ways, pages_remaining
2015 		 * is the number of pages we were unable to map, and we unroll
2016 		 * some state we speculatively touched before.
2017 		 */
2018 		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
2019 
2020 		*length -= bytes_not_mapped;
2021 		zc->recv_skip_hint += bytes_not_mapped;
2022 	}
2023 	return err;
2024 }
2025 
tcp_zerocopy_vm_insert_batch(struct vm_area_struct * vma,struct page ** pages,unsigned int pages_to_map,unsigned long * address,u32 * length,u32 * seq,struct tcp_zerocopy_receive * zc,u32 total_bytes_to_map)2026 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
2027 					struct page **pages,
2028 					unsigned int pages_to_map,
2029 					unsigned long *address,
2030 					u32 *length,
2031 					u32 *seq,
2032 					struct tcp_zerocopy_receive *zc,
2033 					u32 total_bytes_to_map)
2034 {
2035 	unsigned long pages_remaining = pages_to_map;
2036 	unsigned int pages_mapped;
2037 	unsigned int bytes_mapped;
2038 	int err;
2039 
2040 	err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2041 	pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2042 	bytes_mapped = PAGE_SIZE * pages_mapped;
2043 	/* Even if vm_insert_pages fails, it may have partially succeeded in
2044 	 * mapping (some but not all of the pages).
2045 	 */
2046 	*seq += bytes_mapped;
2047 	*address += bytes_mapped;
2048 
2049 	if (likely(!err))
2050 		return 0;
2051 
2052 	/* Error: maybe zap and retry + rollback state for failed inserts. */
2053 	return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2054 		pages_remaining, address, length, seq, zc, total_bytes_to_map,
2055 		err);
2056 }
2057 
2058 #define TCP_VALID_ZC_MSG_FLAGS   (TCP_CMSG_TS)
tcp_zc_finalize_rx_tstamp(struct sock * sk,struct tcp_zerocopy_receive * zc,struct scm_timestamping_internal * tss)2059 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2060 				      struct tcp_zerocopy_receive *zc,
2061 				      struct scm_timestamping_internal *tss)
2062 {
2063 	unsigned long msg_control_addr;
2064 	struct msghdr cmsg_dummy;
2065 
2066 	msg_control_addr = (unsigned long)zc->msg_control;
2067 	cmsg_dummy.msg_control = (void *)msg_control_addr;
2068 	cmsg_dummy.msg_controllen =
2069 		(__kernel_size_t)zc->msg_controllen;
2070 	cmsg_dummy.msg_flags = in_compat_syscall()
2071 		? MSG_CMSG_COMPAT : 0;
2072 	cmsg_dummy.msg_control_is_user = true;
2073 	zc->msg_flags = 0;
2074 	if (zc->msg_control == msg_control_addr &&
2075 	    zc->msg_controllen == cmsg_dummy.msg_controllen) {
2076 		tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2077 		zc->msg_control = (__u64)
2078 			((uintptr_t)cmsg_dummy.msg_control);
2079 		zc->msg_controllen =
2080 			(__u64)cmsg_dummy.msg_controllen;
2081 		zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2082 	}
2083 }
2084 
2085 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
tcp_zerocopy_receive(struct sock * sk,struct tcp_zerocopy_receive * zc,struct scm_timestamping_internal * tss)2086 static int tcp_zerocopy_receive(struct sock *sk,
2087 				struct tcp_zerocopy_receive *zc,
2088 				struct scm_timestamping_internal *tss)
2089 {
2090 	u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2091 	unsigned long address = (unsigned long)zc->address;
2092 	struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2093 	s32 copybuf_len = zc->copybuf_len;
2094 	struct tcp_sock *tp = tcp_sk(sk);
2095 	const skb_frag_t *frags = NULL;
2096 	unsigned int pages_to_map = 0;
2097 	struct vm_area_struct *vma;
2098 	struct sk_buff *skb = NULL;
2099 	u32 seq = tp->copied_seq;
2100 	u32 total_bytes_to_map;
2101 	int inq = tcp_inq(sk);
2102 	int ret;
2103 
2104 	zc->copybuf_len = 0;
2105 	zc->msg_flags = 0;
2106 
2107 	if (address & (PAGE_SIZE - 1) || address != zc->address)
2108 		return -EINVAL;
2109 
2110 	if (sk->sk_state == TCP_LISTEN)
2111 		return -ENOTCONN;
2112 
2113 	sock_rps_record_flow(sk);
2114 
2115 	if (inq && inq <= copybuf_len)
2116 		return receive_fallback_to_copy(sk, zc, inq, tss);
2117 
2118 	if (inq < PAGE_SIZE) {
2119 		zc->length = 0;
2120 		zc->recv_skip_hint = inq;
2121 		if (!inq && sock_flag(sk, SOCK_DONE))
2122 			return -EIO;
2123 		return 0;
2124 	}
2125 
2126 	mmap_read_lock(current->mm);
2127 
2128 	vma = vma_lookup(current->mm, address);
2129 	if (!vma || vma->vm_ops != &tcp_vm_ops) {
2130 		mmap_read_unlock(current->mm);
2131 		return -EINVAL;
2132 	}
2133 	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2134 	avail_len = min_t(u32, vma_len, inq);
2135 	total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2136 	if (total_bytes_to_map) {
2137 		if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2138 			zap_page_range(vma, address, total_bytes_to_map);
2139 		zc->length = total_bytes_to_map;
2140 		zc->recv_skip_hint = 0;
2141 	} else {
2142 		zc->length = avail_len;
2143 		zc->recv_skip_hint = avail_len;
2144 	}
2145 	ret = 0;
2146 	while (length + PAGE_SIZE <= zc->length) {
2147 		int mappable_offset;
2148 		struct page *page;
2149 
2150 		if (zc->recv_skip_hint < PAGE_SIZE) {
2151 			u32 offset_frag;
2152 
2153 			if (skb) {
2154 				if (zc->recv_skip_hint > 0)
2155 					break;
2156 				skb = skb->next;
2157 				offset = seq - TCP_SKB_CB(skb)->seq;
2158 			} else {
2159 				skb = tcp_recv_skb(sk, seq, &offset);
2160 			}
2161 
2162 			if (TCP_SKB_CB(skb)->has_rxtstamp) {
2163 				tcp_update_recv_tstamps(skb, tss);
2164 				zc->msg_flags |= TCP_CMSG_TS;
2165 			}
2166 			zc->recv_skip_hint = skb->len - offset;
2167 			frags = skb_advance_to_frag(skb, offset, &offset_frag);
2168 			if (!frags || offset_frag)
2169 				break;
2170 		}
2171 
2172 		mappable_offset = find_next_mappable_frag(frags,
2173 							  zc->recv_skip_hint);
2174 		if (mappable_offset) {
2175 			zc->recv_skip_hint = mappable_offset;
2176 			break;
2177 		}
2178 		page = skb_frag_page(frags);
2179 		prefetchw(page);
2180 		pages[pages_to_map++] = page;
2181 		length += PAGE_SIZE;
2182 		zc->recv_skip_hint -= PAGE_SIZE;
2183 		frags++;
2184 		if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2185 		    zc->recv_skip_hint < PAGE_SIZE) {
2186 			/* Either full batch, or we're about to go to next skb
2187 			 * (and we cannot unroll failed ops across skbs).
2188 			 */
2189 			ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2190 							   pages_to_map,
2191 							   &address, &length,
2192 							   &seq, zc,
2193 							   total_bytes_to_map);
2194 			if (ret)
2195 				goto out;
2196 			pages_to_map = 0;
2197 		}
2198 	}
2199 	if (pages_to_map) {
2200 		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2201 						   &address, &length, &seq,
2202 						   zc, total_bytes_to_map);
2203 	}
2204 out:
2205 	mmap_read_unlock(current->mm);
2206 	/* Try to copy straggler data. */
2207 	if (!ret)
2208 		copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2209 
2210 	if (length + copylen) {
2211 		WRITE_ONCE(tp->copied_seq, seq);
2212 		tcp_rcv_space_adjust(sk);
2213 
2214 		/* Clean up data we have read: This will do ACK frames. */
2215 		tcp_recv_skb(sk, seq, &offset);
2216 		tcp_cleanup_rbuf(sk, length + copylen);
2217 		ret = 0;
2218 		if (length == zc->length)
2219 			zc->recv_skip_hint = 0;
2220 	} else {
2221 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2222 			ret = -EIO;
2223 	}
2224 	zc->length = length;
2225 	return ret;
2226 }
2227 #endif
2228 
2229 /* Similar to __sock_recv_timestamp, but does not require an skb */
tcp_recv_timestamp(struct msghdr * msg,const struct sock * sk,struct scm_timestamping_internal * tss)2230 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2231 			struct scm_timestamping_internal *tss)
2232 {
2233 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2234 	bool has_timestamping = false;
2235 
2236 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2237 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2238 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2239 				if (new_tstamp) {
2240 					struct __kernel_timespec kts = {
2241 						.tv_sec = tss->ts[0].tv_sec,
2242 						.tv_nsec = tss->ts[0].tv_nsec,
2243 					};
2244 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2245 						 sizeof(kts), &kts);
2246 				} else {
2247 					struct __kernel_old_timespec ts_old = {
2248 						.tv_sec = tss->ts[0].tv_sec,
2249 						.tv_nsec = tss->ts[0].tv_nsec,
2250 					};
2251 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2252 						 sizeof(ts_old), &ts_old);
2253 				}
2254 			} else {
2255 				if (new_tstamp) {
2256 					struct __kernel_sock_timeval stv = {
2257 						.tv_sec = tss->ts[0].tv_sec,
2258 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2259 					};
2260 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2261 						 sizeof(stv), &stv);
2262 				} else {
2263 					struct __kernel_old_timeval tv = {
2264 						.tv_sec = tss->ts[0].tv_sec,
2265 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2266 					};
2267 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2268 						 sizeof(tv), &tv);
2269 				}
2270 			}
2271 		}
2272 
2273 		if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
2274 			has_timestamping = true;
2275 		else
2276 			tss->ts[0] = (struct timespec64) {0};
2277 	}
2278 
2279 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2280 		if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
2281 			has_timestamping = true;
2282 		else
2283 			tss->ts[2] = (struct timespec64) {0};
2284 	}
2285 
2286 	if (has_timestamping) {
2287 		tss->ts[1] = (struct timespec64) {0};
2288 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2289 			put_cmsg_scm_timestamping64(msg, tss);
2290 		else
2291 			put_cmsg_scm_timestamping(msg, tss);
2292 	}
2293 }
2294 
tcp_inq_hint(struct sock * sk)2295 static int tcp_inq_hint(struct sock *sk)
2296 {
2297 	const struct tcp_sock *tp = tcp_sk(sk);
2298 	u32 copied_seq = READ_ONCE(tp->copied_seq);
2299 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2300 	int inq;
2301 
2302 	inq = rcv_nxt - copied_seq;
2303 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2304 		lock_sock(sk);
2305 		inq = tp->rcv_nxt - tp->copied_seq;
2306 		release_sock(sk);
2307 	}
2308 	/* After receiving a FIN, tell the user-space to continue reading
2309 	 * by returning a non-zero inq.
2310 	 */
2311 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2312 		inq = 1;
2313 	return inq;
2314 }
2315 
2316 /*
2317  *	This routine copies from a sock struct into the user buffer.
2318  *
2319  *	Technical note: in 2.3 we work on _locked_ socket, so that
2320  *	tricks with *seq access order and skb->users are not required.
2321  *	Probably, code can be easily improved even more.
2322  */
2323 
tcp_recvmsg_locked(struct sock * sk,struct msghdr * msg,size_t len,int flags,struct scm_timestamping_internal * tss,int * cmsg_flags)2324 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2325 			      int flags, struct scm_timestamping_internal *tss,
2326 			      int *cmsg_flags)
2327 {
2328 	struct tcp_sock *tp = tcp_sk(sk);
2329 	int copied = 0;
2330 	u32 peek_seq;
2331 	u32 *seq;
2332 	unsigned long used;
2333 	int err;
2334 	int target;		/* Read at least this many bytes */
2335 	long timeo;
2336 	struct sk_buff *skb, *last;
2337 	u32 urg_hole = 0;
2338 
2339 	err = -ENOTCONN;
2340 	if (sk->sk_state == TCP_LISTEN)
2341 		goto out;
2342 
2343 	if (tp->recvmsg_inq) {
2344 		*cmsg_flags = TCP_CMSG_INQ;
2345 		msg->msg_get_inq = 1;
2346 	}
2347 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2348 
2349 	/* Urgent data needs to be handled specially. */
2350 	if (flags & MSG_OOB)
2351 		goto recv_urg;
2352 
2353 	if (unlikely(tp->repair)) {
2354 		err = -EPERM;
2355 		if (!(flags & MSG_PEEK))
2356 			goto out;
2357 
2358 		if (tp->repair_queue == TCP_SEND_QUEUE)
2359 			goto recv_sndq;
2360 
2361 		err = -EINVAL;
2362 		if (tp->repair_queue == TCP_NO_QUEUE)
2363 			goto out;
2364 
2365 		/* 'common' recv queue MSG_PEEK-ing */
2366 	}
2367 
2368 	seq = &tp->copied_seq;
2369 	if (flags & MSG_PEEK) {
2370 		peek_seq = tp->copied_seq;
2371 		seq = &peek_seq;
2372 	}
2373 
2374 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2375 
2376 	do {
2377 		u32 offset;
2378 
2379 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2380 		if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2381 			if (copied)
2382 				break;
2383 			if (signal_pending(current)) {
2384 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2385 				break;
2386 			}
2387 		}
2388 
2389 		/* Next get a buffer. */
2390 
2391 		last = skb_peek_tail(&sk->sk_receive_queue);
2392 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2393 			last = skb;
2394 			/* Now that we have two receive queues this
2395 			 * shouldn't happen.
2396 			 */
2397 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2398 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2399 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2400 				 flags))
2401 				break;
2402 
2403 			offset = *seq - TCP_SKB_CB(skb)->seq;
2404 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2405 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2406 				offset--;
2407 			}
2408 			if (offset < skb->len)
2409 				goto found_ok_skb;
2410 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2411 				goto found_fin_ok;
2412 			WARN(!(flags & MSG_PEEK),
2413 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2414 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2415 		}
2416 
2417 		/* Well, if we have backlog, try to process it now yet. */
2418 
2419 		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2420 			break;
2421 
2422 		if (copied) {
2423 			if (!timeo ||
2424 			    sk->sk_err ||
2425 			    sk->sk_state == TCP_CLOSE ||
2426 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2427 			    signal_pending(current))
2428 				break;
2429 		} else {
2430 			if (sock_flag(sk, SOCK_DONE))
2431 				break;
2432 
2433 			if (sk->sk_err) {
2434 				copied = sock_error(sk);
2435 				break;
2436 			}
2437 
2438 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2439 				break;
2440 
2441 			if (sk->sk_state == TCP_CLOSE) {
2442 				/* This occurs when user tries to read
2443 				 * from never connected socket.
2444 				 */
2445 				copied = -ENOTCONN;
2446 				break;
2447 			}
2448 
2449 			if (!timeo) {
2450 				copied = -EAGAIN;
2451 				break;
2452 			}
2453 
2454 			if (signal_pending(current)) {
2455 				copied = sock_intr_errno(timeo);
2456 				break;
2457 			}
2458 		}
2459 
2460 		if (copied >= target) {
2461 			/* Do not sleep, just process backlog. */
2462 			__sk_flush_backlog(sk);
2463 		} else {
2464 			tcp_cleanup_rbuf(sk, copied);
2465 			sk_wait_data(sk, &timeo, last);
2466 		}
2467 
2468 		if ((flags & MSG_PEEK) &&
2469 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
2470 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2471 					    current->comm,
2472 					    task_pid_nr(current));
2473 			peek_seq = tp->copied_seq;
2474 		}
2475 		continue;
2476 
2477 found_ok_skb:
2478 		/* Ok so how much can we use? */
2479 		used = skb->len - offset;
2480 		if (len < used)
2481 			used = len;
2482 
2483 		/* Do we have urgent data here? */
2484 		if (unlikely(tp->urg_data)) {
2485 			u32 urg_offset = tp->urg_seq - *seq;
2486 			if (urg_offset < used) {
2487 				if (!urg_offset) {
2488 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2489 						WRITE_ONCE(*seq, *seq + 1);
2490 						urg_hole++;
2491 						offset++;
2492 						used--;
2493 						if (!used)
2494 							goto skip_copy;
2495 					}
2496 				} else
2497 					used = urg_offset;
2498 			}
2499 		}
2500 
2501 		if (!(flags & MSG_TRUNC)) {
2502 			err = skb_copy_datagram_msg(skb, offset, msg, used);
2503 			if (err) {
2504 				/* Exception. Bailout! */
2505 				if (!copied)
2506 					copied = -EFAULT;
2507 				break;
2508 			}
2509 		}
2510 
2511 		WRITE_ONCE(*seq, *seq + used);
2512 		copied += used;
2513 		len -= used;
2514 
2515 		tcp_rcv_space_adjust(sk);
2516 
2517 skip_copy:
2518 		if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2519 			WRITE_ONCE(tp->urg_data, 0);
2520 			tcp_fast_path_check(sk);
2521 		}
2522 
2523 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2524 			tcp_update_recv_tstamps(skb, tss);
2525 			*cmsg_flags |= TCP_CMSG_TS;
2526 		}
2527 
2528 		if (used + offset < skb->len)
2529 			continue;
2530 
2531 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2532 			goto found_fin_ok;
2533 		if (!(flags & MSG_PEEK))
2534 			tcp_eat_recv_skb(sk, skb);
2535 		continue;
2536 
2537 found_fin_ok:
2538 		/* Process the FIN. */
2539 		WRITE_ONCE(*seq, *seq + 1);
2540 		if (!(flags & MSG_PEEK))
2541 			tcp_eat_recv_skb(sk, skb);
2542 		break;
2543 	} while (len > 0);
2544 
2545 	/* According to UNIX98, msg_name/msg_namelen are ignored
2546 	 * on connected socket. I was just happy when found this 8) --ANK
2547 	 */
2548 
2549 	/* Clean up data we have read: This will do ACK frames. */
2550 	tcp_cleanup_rbuf(sk, copied);
2551 	return copied;
2552 
2553 out:
2554 	return err;
2555 
2556 recv_urg:
2557 	err = tcp_recv_urg(sk, msg, len, flags);
2558 	goto out;
2559 
2560 recv_sndq:
2561 	err = tcp_peek_sndq(sk, msg, len);
2562 	goto out;
2563 }
2564 
tcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)2565 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2566 		int *addr_len)
2567 {
2568 	int cmsg_flags = 0, ret;
2569 	struct scm_timestamping_internal tss;
2570 
2571 	if (unlikely(flags & MSG_ERRQUEUE))
2572 		return inet_recv_error(sk, msg, len, addr_len);
2573 
2574 	if (sk_can_busy_loop(sk) &&
2575 	    skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2576 	    sk->sk_state == TCP_ESTABLISHED)
2577 		sk_busy_loop(sk, flags & MSG_DONTWAIT);
2578 
2579 	lock_sock(sk);
2580 	ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2581 	release_sock(sk);
2582 
2583 	if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2584 		if (cmsg_flags & TCP_CMSG_TS)
2585 			tcp_recv_timestamp(msg, sk, &tss);
2586 		if (msg->msg_get_inq) {
2587 			msg->msg_inq = tcp_inq_hint(sk);
2588 			if (cmsg_flags & TCP_CMSG_INQ)
2589 				put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2590 					 sizeof(msg->msg_inq), &msg->msg_inq);
2591 		}
2592 	}
2593 	return ret;
2594 }
2595 EXPORT_SYMBOL(tcp_recvmsg);
2596 
tcp_set_state(struct sock * sk,int state)2597 void tcp_set_state(struct sock *sk, int state)
2598 {
2599 	int oldstate = sk->sk_state;
2600 
2601 	/* We defined a new enum for TCP states that are exported in BPF
2602 	 * so as not force the internal TCP states to be frozen. The
2603 	 * following checks will detect if an internal state value ever
2604 	 * differs from the BPF value. If this ever happens, then we will
2605 	 * need to remap the internal value to the BPF value before calling
2606 	 * tcp_call_bpf_2arg.
2607 	 */
2608 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2609 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2610 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2611 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2612 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2613 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2614 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2615 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2616 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2617 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2618 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2619 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2620 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2621 
2622 	/* bpf uapi header bpf.h defines an anonymous enum with values
2623 	 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2624 	 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2625 	 * But clang built vmlinux does not have this enum in DWARF
2626 	 * since clang removes the above code before generating IR/debuginfo.
2627 	 * Let us explicitly emit the type debuginfo to ensure the
2628 	 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2629 	 * regardless of which compiler is used.
2630 	 */
2631 	BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2632 
2633 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2634 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2635 
2636 	switch (state) {
2637 	case TCP_ESTABLISHED:
2638 		if (oldstate != TCP_ESTABLISHED)
2639 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2640 		break;
2641 
2642 	case TCP_CLOSE:
2643 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2644 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2645 
2646 		sk->sk_prot->unhash(sk);
2647 		if (inet_csk(sk)->icsk_bind_hash &&
2648 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2649 			inet_put_port(sk);
2650 		fallthrough;
2651 	default:
2652 		if (oldstate == TCP_ESTABLISHED)
2653 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2654 	}
2655 
2656 	/* Change state AFTER socket is unhashed to avoid closed
2657 	 * socket sitting in hash tables.
2658 	 */
2659 	inet_sk_state_store(sk, state);
2660 }
2661 EXPORT_SYMBOL_GPL(tcp_set_state);
2662 
2663 /*
2664  *	State processing on a close. This implements the state shift for
2665  *	sending our FIN frame. Note that we only send a FIN for some
2666  *	states. A shutdown() may have already sent the FIN, or we may be
2667  *	closed.
2668  */
2669 
2670 static const unsigned char new_state[16] = {
2671   /* current state:        new state:      action:	*/
2672   [0 /* (Invalid) */]	= TCP_CLOSE,
2673   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2674   [TCP_SYN_SENT]	= TCP_CLOSE,
2675   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2676   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2677   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2678   [TCP_TIME_WAIT]	= TCP_CLOSE,
2679   [TCP_CLOSE]		= TCP_CLOSE,
2680   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2681   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2682   [TCP_LISTEN]		= TCP_CLOSE,
2683   [TCP_CLOSING]		= TCP_CLOSING,
2684   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2685 };
2686 
tcp_close_state(struct sock * sk)2687 static int tcp_close_state(struct sock *sk)
2688 {
2689 	int next = (int)new_state[sk->sk_state];
2690 	int ns = next & TCP_STATE_MASK;
2691 
2692 	tcp_set_state(sk, ns);
2693 
2694 	return next & TCP_ACTION_FIN;
2695 }
2696 
2697 /*
2698  *	Shutdown the sending side of a connection. Much like close except
2699  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2700  */
2701 
tcp_shutdown(struct sock * sk,int how)2702 void tcp_shutdown(struct sock *sk, int how)
2703 {
2704 	/*	We need to grab some memory, and put together a FIN,
2705 	 *	and then put it into the queue to be sent.
2706 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2707 	 */
2708 	if (!(how & SEND_SHUTDOWN))
2709 		return;
2710 
2711 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2712 	if ((1 << sk->sk_state) &
2713 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2714 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2715 		/* Clear out any half completed packets.  FIN if needed. */
2716 		if (tcp_close_state(sk))
2717 			tcp_send_fin(sk);
2718 	}
2719 }
2720 EXPORT_SYMBOL(tcp_shutdown);
2721 
tcp_orphan_count_sum(void)2722 int tcp_orphan_count_sum(void)
2723 {
2724 	int i, total = 0;
2725 
2726 	for_each_possible_cpu(i)
2727 		total += per_cpu(tcp_orphan_count, i);
2728 
2729 	return max(total, 0);
2730 }
2731 
2732 static int tcp_orphan_cache;
2733 static struct timer_list tcp_orphan_timer;
2734 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2735 
tcp_orphan_update(struct timer_list * unused)2736 static void tcp_orphan_update(struct timer_list *unused)
2737 {
2738 	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2739 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2740 }
2741 
tcp_too_many_orphans(int shift)2742 static bool tcp_too_many_orphans(int shift)
2743 {
2744 	return READ_ONCE(tcp_orphan_cache) << shift >
2745 		READ_ONCE(sysctl_tcp_max_orphans);
2746 }
2747 
tcp_check_oom(struct sock * sk,int shift)2748 bool tcp_check_oom(struct sock *sk, int shift)
2749 {
2750 	bool too_many_orphans, out_of_socket_memory;
2751 
2752 	too_many_orphans = tcp_too_many_orphans(shift);
2753 	out_of_socket_memory = tcp_out_of_memory(sk);
2754 
2755 	if (too_many_orphans)
2756 		net_info_ratelimited("too many orphaned sockets\n");
2757 	if (out_of_socket_memory)
2758 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2759 	return too_many_orphans || out_of_socket_memory;
2760 }
2761 
__tcp_close(struct sock * sk,long timeout)2762 void __tcp_close(struct sock *sk, long timeout)
2763 {
2764 	struct sk_buff *skb;
2765 	int data_was_unread = 0;
2766 	int state;
2767 
2768 	sk->sk_shutdown = SHUTDOWN_MASK;
2769 
2770 	if (sk->sk_state == TCP_LISTEN) {
2771 		tcp_set_state(sk, TCP_CLOSE);
2772 
2773 		/* Special case. */
2774 		inet_csk_listen_stop(sk);
2775 
2776 		goto adjudge_to_death;
2777 	}
2778 
2779 	/*  We need to flush the recv. buffs.  We do this only on the
2780 	 *  descriptor close, not protocol-sourced closes, because the
2781 	 *  reader process may not have drained the data yet!
2782 	 */
2783 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2784 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2785 
2786 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2787 			len--;
2788 		data_was_unread += len;
2789 		__kfree_skb(skb);
2790 	}
2791 
2792 	sk_mem_reclaim(sk);
2793 
2794 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2795 	if (sk->sk_state == TCP_CLOSE)
2796 		goto adjudge_to_death;
2797 
2798 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2799 	 * data was lost. To witness the awful effects of the old behavior of
2800 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2801 	 * GET in an FTP client, suspend the process, wait for the client to
2802 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2803 	 * Note: timeout is always zero in such a case.
2804 	 */
2805 	if (unlikely(tcp_sk(sk)->repair)) {
2806 		sk->sk_prot->disconnect(sk, 0);
2807 	} else if (data_was_unread) {
2808 		/* Unread data was tossed, zap the connection. */
2809 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2810 		tcp_set_state(sk, TCP_CLOSE);
2811 		tcp_send_active_reset(sk, sk->sk_allocation);
2812 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2813 		/* Check zero linger _after_ checking for unread data. */
2814 		sk->sk_prot->disconnect(sk, 0);
2815 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2816 	} else if (tcp_close_state(sk)) {
2817 		/* We FIN if the application ate all the data before
2818 		 * zapping the connection.
2819 		 */
2820 
2821 		/* RED-PEN. Formally speaking, we have broken TCP state
2822 		 * machine. State transitions:
2823 		 *
2824 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2825 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2826 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2827 		 *
2828 		 * are legal only when FIN has been sent (i.e. in window),
2829 		 * rather than queued out of window. Purists blame.
2830 		 *
2831 		 * F.e. "RFC state" is ESTABLISHED,
2832 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2833 		 *
2834 		 * The visible declinations are that sometimes
2835 		 * we enter time-wait state, when it is not required really
2836 		 * (harmless), do not send active resets, when they are
2837 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2838 		 * they look as CLOSING or LAST_ACK for Linux)
2839 		 * Probably, I missed some more holelets.
2840 		 * 						--ANK
2841 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2842 		 * in a single packet! (May consider it later but will
2843 		 * probably need API support or TCP_CORK SYN-ACK until
2844 		 * data is written and socket is closed.)
2845 		 */
2846 		tcp_send_fin(sk);
2847 	}
2848 
2849 	sk_stream_wait_close(sk, timeout);
2850 
2851 adjudge_to_death:
2852 	state = sk->sk_state;
2853 	sock_hold(sk);
2854 	sock_orphan(sk);
2855 
2856 	local_bh_disable();
2857 	bh_lock_sock(sk);
2858 	/* remove backlog if any, without releasing ownership. */
2859 	__release_sock(sk);
2860 
2861 	this_cpu_inc(tcp_orphan_count);
2862 
2863 	/* Have we already been destroyed by a softirq or backlog? */
2864 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2865 		goto out;
2866 
2867 	/*	This is a (useful) BSD violating of the RFC. There is a
2868 	 *	problem with TCP as specified in that the other end could
2869 	 *	keep a socket open forever with no application left this end.
2870 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2871 	 *	our end. If they send after that then tough - BUT: long enough
2872 	 *	that we won't make the old 4*rto = almost no time - whoops
2873 	 *	reset mistake.
2874 	 *
2875 	 *	Nope, it was not mistake. It is really desired behaviour
2876 	 *	f.e. on http servers, when such sockets are useless, but
2877 	 *	consume significant resources. Let's do it with special
2878 	 *	linger2	option.					--ANK
2879 	 */
2880 
2881 	if (sk->sk_state == TCP_FIN_WAIT2) {
2882 		struct tcp_sock *tp = tcp_sk(sk);
2883 		if (tp->linger2 < 0) {
2884 			tcp_set_state(sk, TCP_CLOSE);
2885 			tcp_send_active_reset(sk, GFP_ATOMIC);
2886 			__NET_INC_STATS(sock_net(sk),
2887 					LINUX_MIB_TCPABORTONLINGER);
2888 		} else {
2889 			const int tmo = tcp_fin_time(sk);
2890 
2891 			if (tmo > TCP_TIMEWAIT_LEN) {
2892 				inet_csk_reset_keepalive_timer(sk,
2893 						tmo - TCP_TIMEWAIT_LEN);
2894 			} else {
2895 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2896 				goto out;
2897 			}
2898 		}
2899 	}
2900 	if (sk->sk_state != TCP_CLOSE) {
2901 		sk_mem_reclaim(sk);
2902 		if (tcp_check_oom(sk, 0)) {
2903 			tcp_set_state(sk, TCP_CLOSE);
2904 			tcp_send_active_reset(sk, GFP_ATOMIC);
2905 			__NET_INC_STATS(sock_net(sk),
2906 					LINUX_MIB_TCPABORTONMEMORY);
2907 		} else if (!check_net(sock_net(sk))) {
2908 			/* Not possible to send reset; just close */
2909 			tcp_set_state(sk, TCP_CLOSE);
2910 		}
2911 	}
2912 
2913 	if (sk->sk_state == TCP_CLOSE) {
2914 		struct request_sock *req;
2915 
2916 		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2917 						lockdep_sock_is_held(sk));
2918 		/* We could get here with a non-NULL req if the socket is
2919 		 * aborted (e.g., closed with unread data) before 3WHS
2920 		 * finishes.
2921 		 */
2922 		if (req)
2923 			reqsk_fastopen_remove(sk, req, false);
2924 		inet_csk_destroy_sock(sk);
2925 	}
2926 	/* Otherwise, socket is reprieved until protocol close. */
2927 
2928 out:
2929 	bh_unlock_sock(sk);
2930 	local_bh_enable();
2931 }
2932 
tcp_close(struct sock * sk,long timeout)2933 void tcp_close(struct sock *sk, long timeout)
2934 {
2935 	lock_sock(sk);
2936 	__tcp_close(sk, timeout);
2937 	release_sock(sk);
2938 	sock_put(sk);
2939 }
2940 EXPORT_SYMBOL(tcp_close);
2941 
2942 /* These states need RST on ABORT according to RFC793 */
2943 
tcp_need_reset(int state)2944 static inline bool tcp_need_reset(int state)
2945 {
2946 	return (1 << state) &
2947 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2948 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2949 }
2950 
tcp_rtx_queue_purge(struct sock * sk)2951 static void tcp_rtx_queue_purge(struct sock *sk)
2952 {
2953 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2954 
2955 	tcp_sk(sk)->highest_sack = NULL;
2956 	while (p) {
2957 		struct sk_buff *skb = rb_to_skb(p);
2958 
2959 		p = rb_next(p);
2960 		/* Since we are deleting whole queue, no need to
2961 		 * list_del(&skb->tcp_tsorted_anchor)
2962 		 */
2963 		tcp_rtx_queue_unlink(skb, sk);
2964 		tcp_wmem_free_skb(sk, skb);
2965 	}
2966 }
2967 
tcp_write_queue_purge(struct sock * sk)2968 void tcp_write_queue_purge(struct sock *sk)
2969 {
2970 	struct sk_buff *skb;
2971 
2972 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2973 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2974 		tcp_skb_tsorted_anchor_cleanup(skb);
2975 		tcp_wmem_free_skb(sk, skb);
2976 	}
2977 	tcp_rtx_queue_purge(sk);
2978 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2979 	sk_mem_reclaim(sk);
2980 	tcp_clear_all_retrans_hints(tcp_sk(sk));
2981 	tcp_sk(sk)->packets_out = 0;
2982 	inet_csk(sk)->icsk_backoff = 0;
2983 }
2984 
tcp_disconnect(struct sock * sk,int flags)2985 int tcp_disconnect(struct sock *sk, int flags)
2986 {
2987 	struct inet_sock *inet = inet_sk(sk);
2988 	struct inet_connection_sock *icsk = inet_csk(sk);
2989 	struct tcp_sock *tp = tcp_sk(sk);
2990 	int old_state = sk->sk_state;
2991 	u32 seq;
2992 
2993 	if (old_state != TCP_CLOSE)
2994 		tcp_set_state(sk, TCP_CLOSE);
2995 
2996 	/* ABORT function of RFC793 */
2997 	if (old_state == TCP_LISTEN) {
2998 		inet_csk_listen_stop(sk);
2999 	} else if (unlikely(tp->repair)) {
3000 		sk->sk_err = ECONNABORTED;
3001 	} else if (tcp_need_reset(old_state) ||
3002 		   (tp->snd_nxt != tp->write_seq &&
3003 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
3004 		/* The last check adjusts for discrepancy of Linux wrt. RFC
3005 		 * states
3006 		 */
3007 		tcp_send_active_reset(sk, gfp_any());
3008 		sk->sk_err = ECONNRESET;
3009 	} else if (old_state == TCP_SYN_SENT)
3010 		sk->sk_err = ECONNRESET;
3011 
3012 	tcp_clear_xmit_timers(sk);
3013 	__skb_queue_purge(&sk->sk_receive_queue);
3014 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3015 	WRITE_ONCE(tp->urg_data, 0);
3016 	tcp_write_queue_purge(sk);
3017 	tcp_fastopen_active_disable_ofo_check(sk);
3018 	skb_rbtree_purge(&tp->out_of_order_queue);
3019 
3020 	inet->inet_dport = 0;
3021 
3022 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
3023 		inet_reset_saddr(sk);
3024 
3025 	sk->sk_shutdown = 0;
3026 	sock_reset_flag(sk, SOCK_DONE);
3027 	tp->srtt_us = 0;
3028 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3029 	tp->rcv_rtt_last_tsecr = 0;
3030 
3031 	seq = tp->write_seq + tp->max_window + 2;
3032 	if (!seq)
3033 		seq = 1;
3034 	WRITE_ONCE(tp->write_seq, seq);
3035 
3036 	icsk->icsk_backoff = 0;
3037 	icsk->icsk_probes_out = 0;
3038 	icsk->icsk_probes_tstamp = 0;
3039 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
3040 	icsk->icsk_rto_min = TCP_RTO_MIN;
3041 	icsk->icsk_delack_max = TCP_DELACK_MAX;
3042 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3043 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3044 	tp->snd_cwnd_cnt = 0;
3045 	tp->window_clamp = 0;
3046 	tp->delivered = 0;
3047 	tp->delivered_ce = 0;
3048 	if (icsk->icsk_ca_ops->release)
3049 		icsk->icsk_ca_ops->release(sk);
3050 	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3051 	icsk->icsk_ca_initialized = 0;
3052 	tcp_set_ca_state(sk, TCP_CA_Open);
3053 	tp->is_sack_reneg = 0;
3054 	tcp_clear_retrans(tp);
3055 	tp->total_retrans = 0;
3056 	inet_csk_delack_init(sk);
3057 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3058 	 * issue in __tcp_select_window()
3059 	 */
3060 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3061 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3062 	__sk_dst_reset(sk);
3063 	dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
3064 	tcp_saved_syn_free(tp);
3065 	tp->compressed_ack = 0;
3066 	tp->segs_in = 0;
3067 	tp->segs_out = 0;
3068 	tp->bytes_sent = 0;
3069 	tp->bytes_acked = 0;
3070 	tp->bytes_received = 0;
3071 	tp->bytes_retrans = 0;
3072 	tp->data_segs_in = 0;
3073 	tp->data_segs_out = 0;
3074 	tp->duplicate_sack[0].start_seq = 0;
3075 	tp->duplicate_sack[0].end_seq = 0;
3076 	tp->dsack_dups = 0;
3077 	tp->reord_seen = 0;
3078 	tp->retrans_out = 0;
3079 	tp->sacked_out = 0;
3080 	tp->tlp_high_seq = 0;
3081 	tp->last_oow_ack_time = 0;
3082 	/* There's a bubble in the pipe until at least the first ACK. */
3083 	tp->app_limited = ~0U;
3084 	tp->rack.mstamp = 0;
3085 	tp->rack.advanced = 0;
3086 	tp->rack.reo_wnd_steps = 1;
3087 	tp->rack.last_delivered = 0;
3088 	tp->rack.reo_wnd_persist = 0;
3089 	tp->rack.dsack_seen = 0;
3090 	tp->syn_data_acked = 0;
3091 	tp->rx_opt.saw_tstamp = 0;
3092 	tp->rx_opt.dsack = 0;
3093 	tp->rx_opt.num_sacks = 0;
3094 	tp->rcv_ooopack = 0;
3095 
3096 
3097 	/* Clean up fastopen related fields */
3098 	tcp_free_fastopen_req(tp);
3099 	inet->defer_connect = 0;
3100 	tp->fastopen_client_fail = 0;
3101 
3102 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3103 
3104 	if (sk->sk_frag.page) {
3105 		put_page(sk->sk_frag.page);
3106 		sk->sk_frag.page = NULL;
3107 		sk->sk_frag.offset = 0;
3108 	}
3109 	sk_error_report(sk);
3110 	return 0;
3111 }
3112 EXPORT_SYMBOL(tcp_disconnect);
3113 
tcp_can_repair_sock(const struct sock * sk)3114 static inline bool tcp_can_repair_sock(const struct sock *sk)
3115 {
3116 	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3117 		(sk->sk_state != TCP_LISTEN);
3118 }
3119 
tcp_repair_set_window(struct tcp_sock * tp,sockptr_t optbuf,int len)3120 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3121 {
3122 	struct tcp_repair_window opt;
3123 
3124 	if (!tp->repair)
3125 		return -EPERM;
3126 
3127 	if (len != sizeof(opt))
3128 		return -EINVAL;
3129 
3130 	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3131 		return -EFAULT;
3132 
3133 	if (opt.max_window < opt.snd_wnd)
3134 		return -EINVAL;
3135 
3136 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3137 		return -EINVAL;
3138 
3139 	if (after(opt.rcv_wup, tp->rcv_nxt))
3140 		return -EINVAL;
3141 
3142 	tp->snd_wl1	= opt.snd_wl1;
3143 	tp->snd_wnd	= opt.snd_wnd;
3144 	tp->max_window	= opt.max_window;
3145 
3146 	tp->rcv_wnd	= opt.rcv_wnd;
3147 	tp->rcv_wup	= opt.rcv_wup;
3148 
3149 	return 0;
3150 }
3151 
tcp_repair_options_est(struct sock * sk,sockptr_t optbuf,unsigned int len)3152 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3153 		unsigned int len)
3154 {
3155 	struct tcp_sock *tp = tcp_sk(sk);
3156 	struct tcp_repair_opt opt;
3157 	size_t offset = 0;
3158 
3159 	while (len >= sizeof(opt)) {
3160 		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3161 			return -EFAULT;
3162 
3163 		offset += sizeof(opt);
3164 		len -= sizeof(opt);
3165 
3166 		switch (opt.opt_code) {
3167 		case TCPOPT_MSS:
3168 			tp->rx_opt.mss_clamp = opt.opt_val;
3169 			tcp_mtup_init(sk);
3170 			break;
3171 		case TCPOPT_WINDOW:
3172 			{
3173 				u16 snd_wscale = opt.opt_val & 0xFFFF;
3174 				u16 rcv_wscale = opt.opt_val >> 16;
3175 
3176 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3177 					return -EFBIG;
3178 
3179 				tp->rx_opt.snd_wscale = snd_wscale;
3180 				tp->rx_opt.rcv_wscale = rcv_wscale;
3181 				tp->rx_opt.wscale_ok = 1;
3182 			}
3183 			break;
3184 		case TCPOPT_SACK_PERM:
3185 			if (opt.opt_val != 0)
3186 				return -EINVAL;
3187 
3188 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3189 			break;
3190 		case TCPOPT_TIMESTAMP:
3191 			if (opt.opt_val != 0)
3192 				return -EINVAL;
3193 
3194 			tp->rx_opt.tstamp_ok = 1;
3195 			break;
3196 		}
3197 	}
3198 
3199 	return 0;
3200 }
3201 
3202 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3203 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3204 
tcp_enable_tx_delay(void)3205 static void tcp_enable_tx_delay(void)
3206 {
3207 	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3208 		static int __tcp_tx_delay_enabled = 0;
3209 
3210 		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3211 			static_branch_enable(&tcp_tx_delay_enabled);
3212 			pr_info("TCP_TX_DELAY enabled\n");
3213 		}
3214 	}
3215 }
3216 
3217 /* When set indicates to always queue non-full frames.  Later the user clears
3218  * this option and we transmit any pending partial frames in the queue.  This is
3219  * meant to be used alongside sendfile() to get properly filled frames when the
3220  * user (for example) must write out headers with a write() call first and then
3221  * use sendfile to send out the data parts.
3222  *
3223  * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3224  * TCP_NODELAY.
3225  */
__tcp_sock_set_cork(struct sock * sk,bool on)3226 void __tcp_sock_set_cork(struct sock *sk, bool on)
3227 {
3228 	struct tcp_sock *tp = tcp_sk(sk);
3229 
3230 	if (on) {
3231 		tp->nonagle |= TCP_NAGLE_CORK;
3232 	} else {
3233 		tp->nonagle &= ~TCP_NAGLE_CORK;
3234 		if (tp->nonagle & TCP_NAGLE_OFF)
3235 			tp->nonagle |= TCP_NAGLE_PUSH;
3236 		tcp_push_pending_frames(sk);
3237 	}
3238 }
3239 
tcp_sock_set_cork(struct sock * sk,bool on)3240 void tcp_sock_set_cork(struct sock *sk, bool on)
3241 {
3242 	lock_sock(sk);
3243 	__tcp_sock_set_cork(sk, on);
3244 	release_sock(sk);
3245 }
3246 EXPORT_SYMBOL(tcp_sock_set_cork);
3247 
3248 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3249  * remembered, but it is not activated until cork is cleared.
3250  *
3251  * However, when TCP_NODELAY is set we make an explicit push, which overrides
3252  * even TCP_CORK for currently queued segments.
3253  */
__tcp_sock_set_nodelay(struct sock * sk,bool on)3254 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3255 {
3256 	if (on) {
3257 		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3258 		tcp_push_pending_frames(sk);
3259 	} else {
3260 		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3261 	}
3262 }
3263 
tcp_sock_set_nodelay(struct sock * sk)3264 void tcp_sock_set_nodelay(struct sock *sk)
3265 {
3266 	lock_sock(sk);
3267 	__tcp_sock_set_nodelay(sk, true);
3268 	release_sock(sk);
3269 }
3270 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3271 
__tcp_sock_set_quickack(struct sock * sk,int val)3272 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3273 {
3274 	if (!val) {
3275 		inet_csk_enter_pingpong_mode(sk);
3276 		return;
3277 	}
3278 
3279 	inet_csk_exit_pingpong_mode(sk);
3280 	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3281 	    inet_csk_ack_scheduled(sk)) {
3282 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3283 		tcp_cleanup_rbuf(sk, 1);
3284 		if (!(val & 1))
3285 			inet_csk_enter_pingpong_mode(sk);
3286 	}
3287 }
3288 
tcp_sock_set_quickack(struct sock * sk,int val)3289 void tcp_sock_set_quickack(struct sock *sk, int val)
3290 {
3291 	lock_sock(sk);
3292 	__tcp_sock_set_quickack(sk, val);
3293 	release_sock(sk);
3294 }
3295 EXPORT_SYMBOL(tcp_sock_set_quickack);
3296 
tcp_sock_set_syncnt(struct sock * sk,int val)3297 int tcp_sock_set_syncnt(struct sock *sk, int val)
3298 {
3299 	if (val < 1 || val > MAX_TCP_SYNCNT)
3300 		return -EINVAL;
3301 
3302 	lock_sock(sk);
3303 	inet_csk(sk)->icsk_syn_retries = val;
3304 	release_sock(sk);
3305 	return 0;
3306 }
3307 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3308 
tcp_sock_set_user_timeout(struct sock * sk,u32 val)3309 void tcp_sock_set_user_timeout(struct sock *sk, u32 val)
3310 {
3311 	lock_sock(sk);
3312 	inet_csk(sk)->icsk_user_timeout = val;
3313 	release_sock(sk);
3314 }
3315 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3316 
tcp_sock_set_keepidle_locked(struct sock * sk,int val)3317 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3318 {
3319 	struct tcp_sock *tp = tcp_sk(sk);
3320 
3321 	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3322 		return -EINVAL;
3323 
3324 	tp->keepalive_time = val * HZ;
3325 	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3326 	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3327 		u32 elapsed = keepalive_time_elapsed(tp);
3328 
3329 		if (tp->keepalive_time > elapsed)
3330 			elapsed = tp->keepalive_time - elapsed;
3331 		else
3332 			elapsed = 0;
3333 		inet_csk_reset_keepalive_timer(sk, elapsed);
3334 	}
3335 
3336 	return 0;
3337 }
3338 
tcp_sock_set_keepidle(struct sock * sk,int val)3339 int tcp_sock_set_keepidle(struct sock *sk, int val)
3340 {
3341 	int err;
3342 
3343 	lock_sock(sk);
3344 	err = tcp_sock_set_keepidle_locked(sk, val);
3345 	release_sock(sk);
3346 	return err;
3347 }
3348 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3349 
tcp_sock_set_keepintvl(struct sock * sk,int val)3350 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3351 {
3352 	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3353 		return -EINVAL;
3354 
3355 	lock_sock(sk);
3356 	tcp_sk(sk)->keepalive_intvl = val * HZ;
3357 	release_sock(sk);
3358 	return 0;
3359 }
3360 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3361 
tcp_sock_set_keepcnt(struct sock * sk,int val)3362 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3363 {
3364 	if (val < 1 || val > MAX_TCP_KEEPCNT)
3365 		return -EINVAL;
3366 
3367 	lock_sock(sk);
3368 	tcp_sk(sk)->keepalive_probes = val;
3369 	release_sock(sk);
3370 	return 0;
3371 }
3372 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3373 
tcp_set_window_clamp(struct sock * sk,int val)3374 int tcp_set_window_clamp(struct sock *sk, int val)
3375 {
3376 	struct tcp_sock *tp = tcp_sk(sk);
3377 
3378 	if (!val) {
3379 		if (sk->sk_state != TCP_CLOSE)
3380 			return -EINVAL;
3381 		tp->window_clamp = 0;
3382 	} else {
3383 		tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3384 			SOCK_MIN_RCVBUF / 2 : val;
3385 		tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3386 	}
3387 	return 0;
3388 }
3389 
3390 /*
3391  *	Socket option code for TCP.
3392  */
do_tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3393 static int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3394 		sockptr_t optval, unsigned int optlen)
3395 {
3396 	struct tcp_sock *tp = tcp_sk(sk);
3397 	struct inet_connection_sock *icsk = inet_csk(sk);
3398 	struct net *net = sock_net(sk);
3399 	int val;
3400 	int err = 0;
3401 
3402 	/* These are data/string values, all the others are ints */
3403 	switch (optname) {
3404 	case TCP_CONGESTION: {
3405 		char name[TCP_CA_NAME_MAX];
3406 
3407 		if (optlen < 1)
3408 			return -EINVAL;
3409 
3410 		val = strncpy_from_sockptr(name, optval,
3411 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3412 		if (val < 0)
3413 			return -EFAULT;
3414 		name[val] = 0;
3415 
3416 		lock_sock(sk);
3417 		err = tcp_set_congestion_control(sk, name, true,
3418 						 ns_capable(sock_net(sk)->user_ns,
3419 							    CAP_NET_ADMIN));
3420 		release_sock(sk);
3421 		return err;
3422 	}
3423 	case TCP_ULP: {
3424 		char name[TCP_ULP_NAME_MAX];
3425 
3426 		if (optlen < 1)
3427 			return -EINVAL;
3428 
3429 		val = strncpy_from_sockptr(name, optval,
3430 					min_t(long, TCP_ULP_NAME_MAX - 1,
3431 					      optlen));
3432 		if (val < 0)
3433 			return -EFAULT;
3434 		name[val] = 0;
3435 
3436 		lock_sock(sk);
3437 		err = tcp_set_ulp(sk, name);
3438 		release_sock(sk);
3439 		return err;
3440 	}
3441 	case TCP_FASTOPEN_KEY: {
3442 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3443 		__u8 *backup_key = NULL;
3444 
3445 		/* Allow a backup key as well to facilitate key rotation
3446 		 * First key is the active one.
3447 		 */
3448 		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3449 		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3450 			return -EINVAL;
3451 
3452 		if (copy_from_sockptr(key, optval, optlen))
3453 			return -EFAULT;
3454 
3455 		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3456 			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3457 
3458 		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3459 	}
3460 	default:
3461 		/* fallthru */
3462 		break;
3463 	}
3464 
3465 	if (optlen < sizeof(int))
3466 		return -EINVAL;
3467 
3468 	if (copy_from_sockptr(&val, optval, sizeof(val)))
3469 		return -EFAULT;
3470 
3471 	lock_sock(sk);
3472 
3473 	switch (optname) {
3474 	case TCP_MAXSEG:
3475 		/* Values greater than interface MTU won't take effect. However
3476 		 * at the point when this call is done we typically don't yet
3477 		 * know which interface is going to be used
3478 		 */
3479 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3480 			err = -EINVAL;
3481 			break;
3482 		}
3483 		tp->rx_opt.user_mss = val;
3484 		break;
3485 
3486 	case TCP_NODELAY:
3487 		__tcp_sock_set_nodelay(sk, val);
3488 		break;
3489 
3490 	case TCP_THIN_LINEAR_TIMEOUTS:
3491 		if (val < 0 || val > 1)
3492 			err = -EINVAL;
3493 		else
3494 			tp->thin_lto = val;
3495 		break;
3496 
3497 	case TCP_THIN_DUPACK:
3498 		if (val < 0 || val > 1)
3499 			err = -EINVAL;
3500 		break;
3501 
3502 	case TCP_REPAIR:
3503 		if (!tcp_can_repair_sock(sk))
3504 			err = -EPERM;
3505 		else if (val == TCP_REPAIR_ON) {
3506 			tp->repair = 1;
3507 			sk->sk_reuse = SK_FORCE_REUSE;
3508 			tp->repair_queue = TCP_NO_QUEUE;
3509 		} else if (val == TCP_REPAIR_OFF) {
3510 			tp->repair = 0;
3511 			sk->sk_reuse = SK_NO_REUSE;
3512 			tcp_send_window_probe(sk);
3513 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3514 			tp->repair = 0;
3515 			sk->sk_reuse = SK_NO_REUSE;
3516 		} else
3517 			err = -EINVAL;
3518 
3519 		break;
3520 
3521 	case TCP_REPAIR_QUEUE:
3522 		if (!tp->repair)
3523 			err = -EPERM;
3524 		else if ((unsigned int)val < TCP_QUEUES_NR)
3525 			tp->repair_queue = val;
3526 		else
3527 			err = -EINVAL;
3528 		break;
3529 
3530 	case TCP_QUEUE_SEQ:
3531 		if (sk->sk_state != TCP_CLOSE) {
3532 			err = -EPERM;
3533 		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3534 			if (!tcp_rtx_queue_empty(sk))
3535 				err = -EPERM;
3536 			else
3537 				WRITE_ONCE(tp->write_seq, val);
3538 		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3539 			if (tp->rcv_nxt != tp->copied_seq) {
3540 				err = -EPERM;
3541 			} else {
3542 				WRITE_ONCE(tp->rcv_nxt, val);
3543 				WRITE_ONCE(tp->copied_seq, val);
3544 			}
3545 		} else {
3546 			err = -EINVAL;
3547 		}
3548 		break;
3549 
3550 	case TCP_REPAIR_OPTIONS:
3551 		if (!tp->repair)
3552 			err = -EINVAL;
3553 		else if (sk->sk_state == TCP_ESTABLISHED)
3554 			err = tcp_repair_options_est(sk, optval, optlen);
3555 		else
3556 			err = -EPERM;
3557 		break;
3558 
3559 	case TCP_CORK:
3560 		__tcp_sock_set_cork(sk, val);
3561 		break;
3562 
3563 	case TCP_KEEPIDLE:
3564 		err = tcp_sock_set_keepidle_locked(sk, val);
3565 		break;
3566 	case TCP_KEEPINTVL:
3567 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
3568 			err = -EINVAL;
3569 		else
3570 			tp->keepalive_intvl = val * HZ;
3571 		break;
3572 	case TCP_KEEPCNT:
3573 		if (val < 1 || val > MAX_TCP_KEEPCNT)
3574 			err = -EINVAL;
3575 		else
3576 			tp->keepalive_probes = val;
3577 		break;
3578 	case TCP_SYNCNT:
3579 		if (val < 1 || val > MAX_TCP_SYNCNT)
3580 			err = -EINVAL;
3581 		else
3582 			icsk->icsk_syn_retries = val;
3583 		break;
3584 
3585 	case TCP_SAVE_SYN:
3586 		/* 0: disable, 1: enable, 2: start from ether_header */
3587 		if (val < 0 || val > 2)
3588 			err = -EINVAL;
3589 		else
3590 			tp->save_syn = val;
3591 		break;
3592 
3593 	case TCP_LINGER2:
3594 		if (val < 0)
3595 			tp->linger2 = -1;
3596 		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3597 			tp->linger2 = TCP_FIN_TIMEOUT_MAX;
3598 		else
3599 			tp->linger2 = val * HZ;
3600 		break;
3601 
3602 	case TCP_DEFER_ACCEPT:
3603 		/* Translate value in seconds to number of retransmits */
3604 		icsk->icsk_accept_queue.rskq_defer_accept =
3605 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3606 					TCP_RTO_MAX / HZ);
3607 		break;
3608 
3609 	case TCP_WINDOW_CLAMP:
3610 		err = tcp_set_window_clamp(sk, val);
3611 		break;
3612 
3613 	case TCP_QUICKACK:
3614 		__tcp_sock_set_quickack(sk, val);
3615 		break;
3616 
3617 #ifdef CONFIG_TCP_MD5SIG
3618 	case TCP_MD5SIG:
3619 	case TCP_MD5SIG_EXT:
3620 		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3621 		break;
3622 #endif
3623 	case TCP_USER_TIMEOUT:
3624 		/* Cap the max time in ms TCP will retry or probe the window
3625 		 * before giving up and aborting (ETIMEDOUT) a connection.
3626 		 */
3627 		if (val < 0)
3628 			err = -EINVAL;
3629 		else
3630 			icsk->icsk_user_timeout = val;
3631 		break;
3632 
3633 	case TCP_FASTOPEN:
3634 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3635 		    TCPF_LISTEN))) {
3636 			tcp_fastopen_init_key_once(net);
3637 
3638 			fastopen_queue_tune(sk, val);
3639 		} else {
3640 			err = -EINVAL;
3641 		}
3642 		break;
3643 	case TCP_FASTOPEN_CONNECT:
3644 		if (val > 1 || val < 0) {
3645 			err = -EINVAL;
3646 		} else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3647 			   TFO_CLIENT_ENABLE) {
3648 			if (sk->sk_state == TCP_CLOSE)
3649 				tp->fastopen_connect = val;
3650 			else
3651 				err = -EINVAL;
3652 		} else {
3653 			err = -EOPNOTSUPP;
3654 		}
3655 		break;
3656 	case TCP_FASTOPEN_NO_COOKIE:
3657 		if (val > 1 || val < 0)
3658 			err = -EINVAL;
3659 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3660 			err = -EINVAL;
3661 		else
3662 			tp->fastopen_no_cookie = val;
3663 		break;
3664 	case TCP_TIMESTAMP:
3665 		if (!tp->repair)
3666 			err = -EPERM;
3667 		else
3668 			tp->tsoffset = val - tcp_time_stamp_raw();
3669 		break;
3670 	case TCP_REPAIR_WINDOW:
3671 		err = tcp_repair_set_window(tp, optval, optlen);
3672 		break;
3673 	case TCP_NOTSENT_LOWAT:
3674 		tp->notsent_lowat = val;
3675 		sk->sk_write_space(sk);
3676 		break;
3677 	case TCP_INQ:
3678 		if (val > 1 || val < 0)
3679 			err = -EINVAL;
3680 		else
3681 			tp->recvmsg_inq = val;
3682 		break;
3683 	case TCP_TX_DELAY:
3684 		if (val)
3685 			tcp_enable_tx_delay();
3686 		tp->tcp_tx_delay = val;
3687 		break;
3688 	default:
3689 		err = -ENOPROTOOPT;
3690 		break;
3691 	}
3692 
3693 	release_sock(sk);
3694 	return err;
3695 }
3696 
tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3697 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3698 		   unsigned int optlen)
3699 {
3700 	const struct inet_connection_sock *icsk = inet_csk(sk);
3701 
3702 	if (level != SOL_TCP)
3703 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
3704 						     optval, optlen);
3705 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3706 }
3707 EXPORT_SYMBOL(tcp_setsockopt);
3708 
tcp_get_info_chrono_stats(const struct tcp_sock * tp,struct tcp_info * info)3709 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3710 				      struct tcp_info *info)
3711 {
3712 	u64 stats[__TCP_CHRONO_MAX], total = 0;
3713 	enum tcp_chrono i;
3714 
3715 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3716 		stats[i] = tp->chrono_stat[i - 1];
3717 		if (i == tp->chrono_type)
3718 			stats[i] += tcp_jiffies32 - tp->chrono_start;
3719 		stats[i] *= USEC_PER_SEC / HZ;
3720 		total += stats[i];
3721 	}
3722 
3723 	info->tcpi_busy_time = total;
3724 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3725 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3726 }
3727 
3728 /* Return information about state of tcp endpoint in API format. */
tcp_get_info(struct sock * sk,struct tcp_info * info)3729 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3730 {
3731 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3732 	const struct inet_connection_sock *icsk = inet_csk(sk);
3733 	unsigned long rate;
3734 	u32 now;
3735 	u64 rate64;
3736 	bool slow;
3737 
3738 	memset(info, 0, sizeof(*info));
3739 	if (sk->sk_type != SOCK_STREAM)
3740 		return;
3741 
3742 	info->tcpi_state = inet_sk_state_load(sk);
3743 
3744 	/* Report meaningful fields for all TCP states, including listeners */
3745 	rate = READ_ONCE(sk->sk_pacing_rate);
3746 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3747 	info->tcpi_pacing_rate = rate64;
3748 
3749 	rate = READ_ONCE(sk->sk_max_pacing_rate);
3750 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3751 	info->tcpi_max_pacing_rate = rate64;
3752 
3753 	info->tcpi_reordering = tp->reordering;
3754 	info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
3755 
3756 	if (info->tcpi_state == TCP_LISTEN) {
3757 		/* listeners aliased fields :
3758 		 * tcpi_unacked -> Number of children ready for accept()
3759 		 * tcpi_sacked  -> max backlog
3760 		 */
3761 		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3762 		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3763 		return;
3764 	}
3765 
3766 	slow = lock_sock_fast(sk);
3767 
3768 	info->tcpi_ca_state = icsk->icsk_ca_state;
3769 	info->tcpi_retransmits = icsk->icsk_retransmits;
3770 	info->tcpi_probes = icsk->icsk_probes_out;
3771 	info->tcpi_backoff = icsk->icsk_backoff;
3772 
3773 	if (tp->rx_opt.tstamp_ok)
3774 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3775 	if (tcp_is_sack(tp))
3776 		info->tcpi_options |= TCPI_OPT_SACK;
3777 	if (tp->rx_opt.wscale_ok) {
3778 		info->tcpi_options |= TCPI_OPT_WSCALE;
3779 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3780 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3781 	}
3782 
3783 	if (tp->ecn_flags & TCP_ECN_OK)
3784 		info->tcpi_options |= TCPI_OPT_ECN;
3785 	if (tp->ecn_flags & TCP_ECN_SEEN)
3786 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3787 	if (tp->syn_data_acked)
3788 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
3789 
3790 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3791 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3792 	info->tcpi_snd_mss = tp->mss_cache;
3793 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3794 
3795 	info->tcpi_unacked = tp->packets_out;
3796 	info->tcpi_sacked = tp->sacked_out;
3797 
3798 	info->tcpi_lost = tp->lost_out;
3799 	info->tcpi_retrans = tp->retrans_out;
3800 
3801 	now = tcp_jiffies32;
3802 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3803 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3804 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3805 
3806 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3807 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3808 	info->tcpi_rtt = tp->srtt_us >> 3;
3809 	info->tcpi_rttvar = tp->mdev_us >> 2;
3810 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3811 	info->tcpi_advmss = tp->advmss;
3812 
3813 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3814 	info->tcpi_rcv_space = tp->rcvq_space.space;
3815 
3816 	info->tcpi_total_retrans = tp->total_retrans;
3817 
3818 	info->tcpi_bytes_acked = tp->bytes_acked;
3819 	info->tcpi_bytes_received = tp->bytes_received;
3820 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3821 	tcp_get_info_chrono_stats(tp, info);
3822 
3823 	info->tcpi_segs_out = tp->segs_out;
3824 
3825 	/* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
3826 	info->tcpi_segs_in = READ_ONCE(tp->segs_in);
3827 	info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
3828 
3829 	info->tcpi_min_rtt = tcp_min_rtt(tp);
3830 	info->tcpi_data_segs_out = tp->data_segs_out;
3831 
3832 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3833 	rate64 = tcp_compute_delivery_rate(tp);
3834 	if (rate64)
3835 		info->tcpi_delivery_rate = rate64;
3836 	info->tcpi_delivered = tp->delivered;
3837 	info->tcpi_delivered_ce = tp->delivered_ce;
3838 	info->tcpi_bytes_sent = tp->bytes_sent;
3839 	info->tcpi_bytes_retrans = tp->bytes_retrans;
3840 	info->tcpi_dsack_dups = tp->dsack_dups;
3841 	info->tcpi_reord_seen = tp->reord_seen;
3842 	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3843 	info->tcpi_snd_wnd = tp->snd_wnd;
3844 	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3845 	unlock_sock_fast(sk, slow);
3846 }
3847 EXPORT_SYMBOL_GPL(tcp_get_info);
3848 
tcp_opt_stats_get_size(void)3849 static size_t tcp_opt_stats_get_size(void)
3850 {
3851 	return
3852 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3853 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3854 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3855 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3856 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3857 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3858 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3859 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3860 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3861 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3862 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3863 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3864 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3865 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3866 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3867 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3868 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3869 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3870 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3871 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3872 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3873 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3874 		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3875 		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3876 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3877 		nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3878 		0;
3879 }
3880 
3881 /* Returns TTL or hop limit of an incoming packet from skb. */
tcp_skb_ttl_or_hop_limit(const struct sk_buff * skb)3882 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3883 {
3884 	if (skb->protocol == htons(ETH_P_IP))
3885 		return ip_hdr(skb)->ttl;
3886 	else if (skb->protocol == htons(ETH_P_IPV6))
3887 		return ipv6_hdr(skb)->hop_limit;
3888 	else
3889 		return 0;
3890 }
3891 
tcp_get_timestamping_opt_stats(const struct sock * sk,const struct sk_buff * orig_skb,const struct sk_buff * ack_skb)3892 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3893 					       const struct sk_buff *orig_skb,
3894 					       const struct sk_buff *ack_skb)
3895 {
3896 	const struct tcp_sock *tp = tcp_sk(sk);
3897 	struct sk_buff *stats;
3898 	struct tcp_info info;
3899 	unsigned long rate;
3900 	u64 rate64;
3901 
3902 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3903 	if (!stats)
3904 		return NULL;
3905 
3906 	tcp_get_info_chrono_stats(tp, &info);
3907 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3908 			  info.tcpi_busy_time, TCP_NLA_PAD);
3909 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3910 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
3911 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3912 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3913 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3914 			  tp->data_segs_out, TCP_NLA_PAD);
3915 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3916 			  tp->total_retrans, TCP_NLA_PAD);
3917 
3918 	rate = READ_ONCE(sk->sk_pacing_rate);
3919 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3920 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3921 
3922 	rate64 = tcp_compute_delivery_rate(tp);
3923 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3924 
3925 	nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
3926 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3927 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3928 
3929 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3930 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3931 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3932 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3933 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3934 
3935 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3936 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3937 
3938 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3939 			  TCP_NLA_PAD);
3940 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3941 			  TCP_NLA_PAD);
3942 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3943 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3944 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3945 	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3946 	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
3947 		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
3948 	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
3949 			  TCP_NLA_PAD);
3950 	if (ack_skb)
3951 		nla_put_u8(stats, TCP_NLA_TTL,
3952 			   tcp_skb_ttl_or_hop_limit(ack_skb));
3953 
3954 	return stats;
3955 }
3956 
do_tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)3957 static int do_tcp_getsockopt(struct sock *sk, int level,
3958 		int optname, char __user *optval, int __user *optlen)
3959 {
3960 	struct inet_connection_sock *icsk = inet_csk(sk);
3961 	struct tcp_sock *tp = tcp_sk(sk);
3962 	struct net *net = sock_net(sk);
3963 	int val, len;
3964 
3965 	if (get_user(len, optlen))
3966 		return -EFAULT;
3967 
3968 	len = min_t(unsigned int, len, sizeof(int));
3969 
3970 	if (len < 0)
3971 		return -EINVAL;
3972 
3973 	switch (optname) {
3974 	case TCP_MAXSEG:
3975 		val = tp->mss_cache;
3976 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3977 			val = tp->rx_opt.user_mss;
3978 		if (tp->repair)
3979 			val = tp->rx_opt.mss_clamp;
3980 		break;
3981 	case TCP_NODELAY:
3982 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
3983 		break;
3984 	case TCP_CORK:
3985 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
3986 		break;
3987 	case TCP_KEEPIDLE:
3988 		val = keepalive_time_when(tp) / HZ;
3989 		break;
3990 	case TCP_KEEPINTVL:
3991 		val = keepalive_intvl_when(tp) / HZ;
3992 		break;
3993 	case TCP_KEEPCNT:
3994 		val = keepalive_probes(tp);
3995 		break;
3996 	case TCP_SYNCNT:
3997 		val = icsk->icsk_syn_retries ? :
3998 			READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
3999 		break;
4000 	case TCP_LINGER2:
4001 		val = tp->linger2;
4002 		if (val >= 0)
4003 			val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4004 		break;
4005 	case TCP_DEFER_ACCEPT:
4006 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
4007 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
4008 		break;
4009 	case TCP_WINDOW_CLAMP:
4010 		val = tp->window_clamp;
4011 		break;
4012 	case TCP_INFO: {
4013 		struct tcp_info info;
4014 
4015 		if (get_user(len, optlen))
4016 			return -EFAULT;
4017 
4018 		tcp_get_info(sk, &info);
4019 
4020 		len = min_t(unsigned int, len, sizeof(info));
4021 		if (put_user(len, optlen))
4022 			return -EFAULT;
4023 		if (copy_to_user(optval, &info, len))
4024 			return -EFAULT;
4025 		return 0;
4026 	}
4027 	case TCP_CC_INFO: {
4028 		const struct tcp_congestion_ops *ca_ops;
4029 		union tcp_cc_info info;
4030 		size_t sz = 0;
4031 		int attr;
4032 
4033 		if (get_user(len, optlen))
4034 			return -EFAULT;
4035 
4036 		ca_ops = icsk->icsk_ca_ops;
4037 		if (ca_ops && ca_ops->get_info)
4038 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4039 
4040 		len = min_t(unsigned int, len, sz);
4041 		if (put_user(len, optlen))
4042 			return -EFAULT;
4043 		if (copy_to_user(optval, &info, len))
4044 			return -EFAULT;
4045 		return 0;
4046 	}
4047 	case TCP_QUICKACK:
4048 		val = !inet_csk_in_pingpong_mode(sk);
4049 		break;
4050 
4051 	case TCP_CONGESTION:
4052 		if (get_user(len, optlen))
4053 			return -EFAULT;
4054 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4055 		if (put_user(len, optlen))
4056 			return -EFAULT;
4057 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
4058 			return -EFAULT;
4059 		return 0;
4060 
4061 	case TCP_ULP:
4062 		if (get_user(len, optlen))
4063 			return -EFAULT;
4064 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4065 		if (!icsk->icsk_ulp_ops) {
4066 			if (put_user(0, optlen))
4067 				return -EFAULT;
4068 			return 0;
4069 		}
4070 		if (put_user(len, optlen))
4071 			return -EFAULT;
4072 		if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
4073 			return -EFAULT;
4074 		return 0;
4075 
4076 	case TCP_FASTOPEN_KEY: {
4077 		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4078 		unsigned int key_len;
4079 
4080 		if (get_user(len, optlen))
4081 			return -EFAULT;
4082 
4083 		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4084 				TCP_FASTOPEN_KEY_LENGTH;
4085 		len = min_t(unsigned int, len, key_len);
4086 		if (put_user(len, optlen))
4087 			return -EFAULT;
4088 		if (copy_to_user(optval, key, len))
4089 			return -EFAULT;
4090 		return 0;
4091 	}
4092 	case TCP_THIN_LINEAR_TIMEOUTS:
4093 		val = tp->thin_lto;
4094 		break;
4095 
4096 	case TCP_THIN_DUPACK:
4097 		val = 0;
4098 		break;
4099 
4100 	case TCP_REPAIR:
4101 		val = tp->repair;
4102 		break;
4103 
4104 	case TCP_REPAIR_QUEUE:
4105 		if (tp->repair)
4106 			val = tp->repair_queue;
4107 		else
4108 			return -EINVAL;
4109 		break;
4110 
4111 	case TCP_REPAIR_WINDOW: {
4112 		struct tcp_repair_window opt;
4113 
4114 		if (get_user(len, optlen))
4115 			return -EFAULT;
4116 
4117 		if (len != sizeof(opt))
4118 			return -EINVAL;
4119 
4120 		if (!tp->repair)
4121 			return -EPERM;
4122 
4123 		opt.snd_wl1	= tp->snd_wl1;
4124 		opt.snd_wnd	= tp->snd_wnd;
4125 		opt.max_window	= tp->max_window;
4126 		opt.rcv_wnd	= tp->rcv_wnd;
4127 		opt.rcv_wup	= tp->rcv_wup;
4128 
4129 		if (copy_to_user(optval, &opt, len))
4130 			return -EFAULT;
4131 		return 0;
4132 	}
4133 	case TCP_QUEUE_SEQ:
4134 		if (tp->repair_queue == TCP_SEND_QUEUE)
4135 			val = tp->write_seq;
4136 		else if (tp->repair_queue == TCP_RECV_QUEUE)
4137 			val = tp->rcv_nxt;
4138 		else
4139 			return -EINVAL;
4140 		break;
4141 
4142 	case TCP_USER_TIMEOUT:
4143 		val = icsk->icsk_user_timeout;
4144 		break;
4145 
4146 	case TCP_FASTOPEN:
4147 		val = icsk->icsk_accept_queue.fastopenq.max_qlen;
4148 		break;
4149 
4150 	case TCP_FASTOPEN_CONNECT:
4151 		val = tp->fastopen_connect;
4152 		break;
4153 
4154 	case TCP_FASTOPEN_NO_COOKIE:
4155 		val = tp->fastopen_no_cookie;
4156 		break;
4157 
4158 	case TCP_TX_DELAY:
4159 		val = tp->tcp_tx_delay;
4160 		break;
4161 
4162 	case TCP_TIMESTAMP:
4163 		val = tcp_time_stamp_raw() + tp->tsoffset;
4164 		break;
4165 	case TCP_NOTSENT_LOWAT:
4166 		val = tp->notsent_lowat;
4167 		break;
4168 	case TCP_INQ:
4169 		val = tp->recvmsg_inq;
4170 		break;
4171 	case TCP_SAVE_SYN:
4172 		val = tp->save_syn;
4173 		break;
4174 	case TCP_SAVED_SYN: {
4175 		if (get_user(len, optlen))
4176 			return -EFAULT;
4177 
4178 		lock_sock(sk);
4179 		if (tp->saved_syn) {
4180 			if (len < tcp_saved_syn_len(tp->saved_syn)) {
4181 				if (put_user(tcp_saved_syn_len(tp->saved_syn),
4182 					     optlen)) {
4183 					release_sock(sk);
4184 					return -EFAULT;
4185 				}
4186 				release_sock(sk);
4187 				return -EINVAL;
4188 			}
4189 			len = tcp_saved_syn_len(tp->saved_syn);
4190 			if (put_user(len, optlen)) {
4191 				release_sock(sk);
4192 				return -EFAULT;
4193 			}
4194 			if (copy_to_user(optval, tp->saved_syn->data, len)) {
4195 				release_sock(sk);
4196 				return -EFAULT;
4197 			}
4198 			tcp_saved_syn_free(tp);
4199 			release_sock(sk);
4200 		} else {
4201 			release_sock(sk);
4202 			len = 0;
4203 			if (put_user(len, optlen))
4204 				return -EFAULT;
4205 		}
4206 		return 0;
4207 	}
4208 #ifdef CONFIG_MMU
4209 	case TCP_ZEROCOPY_RECEIVE: {
4210 		struct scm_timestamping_internal tss;
4211 		struct tcp_zerocopy_receive zc = {};
4212 		int err;
4213 
4214 		if (get_user(len, optlen))
4215 			return -EFAULT;
4216 		if (len < 0 ||
4217 		    len < offsetofend(struct tcp_zerocopy_receive, length))
4218 			return -EINVAL;
4219 		if (unlikely(len > sizeof(zc))) {
4220 			err = check_zeroed_user(optval + sizeof(zc),
4221 						len - sizeof(zc));
4222 			if (err < 1)
4223 				return err == 0 ? -EINVAL : err;
4224 			len = sizeof(zc);
4225 			if (put_user(len, optlen))
4226 				return -EFAULT;
4227 		}
4228 		if (copy_from_user(&zc, optval, len))
4229 			return -EFAULT;
4230 		if (zc.reserved)
4231 			return -EINVAL;
4232 		if (zc.msg_flags &  ~(TCP_VALID_ZC_MSG_FLAGS))
4233 			return -EINVAL;
4234 		lock_sock(sk);
4235 		err = tcp_zerocopy_receive(sk, &zc, &tss);
4236 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4237 							  &zc, &len, err);
4238 		release_sock(sk);
4239 		if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4240 			goto zerocopy_rcv_cmsg;
4241 		switch (len) {
4242 		case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4243 			goto zerocopy_rcv_cmsg;
4244 		case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4245 		case offsetofend(struct tcp_zerocopy_receive, msg_control):
4246 		case offsetofend(struct tcp_zerocopy_receive, flags):
4247 		case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4248 		case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4249 		case offsetofend(struct tcp_zerocopy_receive, err):
4250 			goto zerocopy_rcv_sk_err;
4251 		case offsetofend(struct tcp_zerocopy_receive, inq):
4252 			goto zerocopy_rcv_inq;
4253 		case offsetofend(struct tcp_zerocopy_receive, length):
4254 		default:
4255 			goto zerocopy_rcv_out;
4256 		}
4257 zerocopy_rcv_cmsg:
4258 		if (zc.msg_flags & TCP_CMSG_TS)
4259 			tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4260 		else
4261 			zc.msg_flags = 0;
4262 zerocopy_rcv_sk_err:
4263 		if (!err)
4264 			zc.err = sock_error(sk);
4265 zerocopy_rcv_inq:
4266 		zc.inq = tcp_inq_hint(sk);
4267 zerocopy_rcv_out:
4268 		if (!err && copy_to_user(optval, &zc, len))
4269 			err = -EFAULT;
4270 		return err;
4271 	}
4272 #endif
4273 	default:
4274 		return -ENOPROTOOPT;
4275 	}
4276 
4277 	if (put_user(len, optlen))
4278 		return -EFAULT;
4279 	if (copy_to_user(optval, &val, len))
4280 		return -EFAULT;
4281 	return 0;
4282 }
4283 
tcp_bpf_bypass_getsockopt(int level,int optname)4284 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4285 {
4286 	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4287 	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4288 	 */
4289 	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4290 		return true;
4291 
4292 	return false;
4293 }
4294 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4295 
tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)4296 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4297 		   int __user *optlen)
4298 {
4299 	struct inet_connection_sock *icsk = inet_csk(sk);
4300 
4301 	if (level != SOL_TCP)
4302 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
4303 						     optval, optlen);
4304 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
4305 }
4306 EXPORT_SYMBOL(tcp_getsockopt);
4307 
4308 #ifdef CONFIG_TCP_MD5SIG
4309 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
4310 static DEFINE_MUTEX(tcp_md5sig_mutex);
4311 static bool tcp_md5sig_pool_populated = false;
4312 
__tcp_alloc_md5sig_pool(void)4313 static void __tcp_alloc_md5sig_pool(void)
4314 {
4315 	struct crypto_ahash *hash;
4316 	int cpu;
4317 
4318 	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
4319 	if (IS_ERR(hash))
4320 		return;
4321 
4322 	for_each_possible_cpu(cpu) {
4323 		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
4324 		struct ahash_request *req;
4325 
4326 		if (!scratch) {
4327 			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
4328 					       sizeof(struct tcphdr),
4329 					       GFP_KERNEL,
4330 					       cpu_to_node(cpu));
4331 			if (!scratch)
4332 				return;
4333 			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
4334 		}
4335 		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
4336 			continue;
4337 
4338 		req = ahash_request_alloc(hash, GFP_KERNEL);
4339 		if (!req)
4340 			return;
4341 
4342 		ahash_request_set_callback(req, 0, NULL, NULL);
4343 
4344 		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
4345 	}
4346 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
4347 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
4348 	 */
4349 	smp_wmb();
4350 	tcp_md5sig_pool_populated = true;
4351 }
4352 
tcp_alloc_md5sig_pool(void)4353 bool tcp_alloc_md5sig_pool(void)
4354 {
4355 	if (unlikely(!tcp_md5sig_pool_populated)) {
4356 		mutex_lock(&tcp_md5sig_mutex);
4357 
4358 		if (!tcp_md5sig_pool_populated) {
4359 			__tcp_alloc_md5sig_pool();
4360 			if (tcp_md5sig_pool_populated)
4361 				static_branch_inc(&tcp_md5_needed);
4362 		}
4363 
4364 		mutex_unlock(&tcp_md5sig_mutex);
4365 	}
4366 	return tcp_md5sig_pool_populated;
4367 }
4368 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
4369 
4370 
4371 /**
4372  *	tcp_get_md5sig_pool - get md5sig_pool for this user
4373  *
4374  *	We use percpu structure, so if we succeed, we exit with preemption
4375  *	and BH disabled, to make sure another thread or softirq handling
4376  *	wont try to get same context.
4377  */
tcp_get_md5sig_pool(void)4378 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
4379 {
4380 	local_bh_disable();
4381 
4382 	if (tcp_md5sig_pool_populated) {
4383 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
4384 		smp_rmb();
4385 		return this_cpu_ptr(&tcp_md5sig_pool);
4386 	}
4387 	local_bh_enable();
4388 	return NULL;
4389 }
4390 EXPORT_SYMBOL(tcp_get_md5sig_pool);
4391 
tcp_md5_hash_skb_data(struct tcp_md5sig_pool * hp,const struct sk_buff * skb,unsigned int header_len)4392 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
4393 			  const struct sk_buff *skb, unsigned int header_len)
4394 {
4395 	struct scatterlist sg;
4396 	const struct tcphdr *tp = tcp_hdr(skb);
4397 	struct ahash_request *req = hp->md5_req;
4398 	unsigned int i;
4399 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4400 					   skb_headlen(skb) - header_len : 0;
4401 	const struct skb_shared_info *shi = skb_shinfo(skb);
4402 	struct sk_buff *frag_iter;
4403 
4404 	sg_init_table(&sg, 1);
4405 
4406 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4407 	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4408 	if (crypto_ahash_update(req))
4409 		return 1;
4410 
4411 	for (i = 0; i < shi->nr_frags; ++i) {
4412 		const skb_frag_t *f = &shi->frags[i];
4413 		unsigned int offset = skb_frag_off(f);
4414 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4415 
4416 		sg_set_page(&sg, page, skb_frag_size(f),
4417 			    offset_in_page(offset));
4418 		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4419 		if (crypto_ahash_update(req))
4420 			return 1;
4421 	}
4422 
4423 	skb_walk_frags(skb, frag_iter)
4424 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4425 			return 1;
4426 
4427 	return 0;
4428 }
4429 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4430 
tcp_md5_hash_key(struct tcp_md5sig_pool * hp,const struct tcp_md5sig_key * key)4431 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4432 {
4433 	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4434 	struct scatterlist sg;
4435 
4436 	sg_init_one(&sg, key->key, keylen);
4437 	ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4438 
4439 	/* We use data_race() because tcp_md5_do_add() might change key->key under us */
4440 	return data_race(crypto_ahash_update(hp->md5_req));
4441 }
4442 EXPORT_SYMBOL(tcp_md5_hash_key);
4443 
4444 /* Called with rcu_read_lock() */
4445 enum skb_drop_reason
tcp_inbound_md5_hash(const struct sock * sk,const struct sk_buff * skb,const void * saddr,const void * daddr,int family,int dif,int sdif)4446 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4447 		     const void *saddr, const void *daddr,
4448 		     int family, int dif, int sdif)
4449 {
4450 	/*
4451 	 * This gets called for each TCP segment that arrives
4452 	 * so we want to be efficient.
4453 	 * We have 3 drop cases:
4454 	 * o No MD5 hash and one expected.
4455 	 * o MD5 hash and we're not expecting one.
4456 	 * o MD5 hash and its wrong.
4457 	 */
4458 	const __u8 *hash_location = NULL;
4459 	struct tcp_md5sig_key *hash_expected;
4460 	const struct tcphdr *th = tcp_hdr(skb);
4461 	struct tcp_sock *tp = tcp_sk(sk);
4462 	int genhash, l3index;
4463 	u8 newhash[16];
4464 
4465 	/* sdif set, means packet ingressed via a device
4466 	 * in an L3 domain and dif is set to the l3mdev
4467 	 */
4468 	l3index = sdif ? dif : 0;
4469 
4470 	hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family);
4471 	hash_location = tcp_parse_md5sig_option(th);
4472 
4473 	/* We've parsed the options - do we have a hash? */
4474 	if (!hash_expected && !hash_location)
4475 		return SKB_NOT_DROPPED_YET;
4476 
4477 	if (hash_expected && !hash_location) {
4478 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
4479 		return SKB_DROP_REASON_TCP_MD5NOTFOUND;
4480 	}
4481 
4482 	if (!hash_expected && hash_location) {
4483 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4484 		return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4485 	}
4486 
4487 	/* Check the signature.
4488 	 * To support dual stack listeners, we need to handle
4489 	 * IPv4-mapped case.
4490 	 */
4491 	if (family == AF_INET)
4492 		genhash = tcp_v4_md5_hash_skb(newhash,
4493 					      hash_expected,
4494 					      NULL, skb);
4495 	else
4496 		genhash = tp->af_specific->calc_md5_hash(newhash,
4497 							 hash_expected,
4498 							 NULL, skb);
4499 
4500 	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4501 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4502 		if (family == AF_INET) {
4503 			net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n",
4504 					saddr, ntohs(th->source),
4505 					daddr, ntohs(th->dest),
4506 					genhash ? " tcp_v4_calc_md5_hash failed"
4507 					: "", l3index);
4508 		} else {
4509 			net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n",
4510 					genhash ? "failed" : "mismatch",
4511 					saddr, ntohs(th->source),
4512 					daddr, ntohs(th->dest), l3index);
4513 		}
4514 		return SKB_DROP_REASON_TCP_MD5FAILURE;
4515 	}
4516 	return SKB_NOT_DROPPED_YET;
4517 }
4518 EXPORT_SYMBOL(tcp_inbound_md5_hash);
4519 
4520 #endif
4521 
tcp_done(struct sock * sk)4522 void tcp_done(struct sock *sk)
4523 {
4524 	struct request_sock *req;
4525 
4526 	/* We might be called with a new socket, after
4527 	 * inet_csk_prepare_forced_close() has been called
4528 	 * so we can not use lockdep_sock_is_held(sk)
4529 	 */
4530 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4531 
4532 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4533 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4534 
4535 	tcp_set_state(sk, TCP_CLOSE);
4536 	tcp_clear_xmit_timers(sk);
4537 	if (req)
4538 		reqsk_fastopen_remove(sk, req, false);
4539 
4540 	sk->sk_shutdown = SHUTDOWN_MASK;
4541 
4542 	if (!sock_flag(sk, SOCK_DEAD))
4543 		sk->sk_state_change(sk);
4544 	else
4545 		inet_csk_destroy_sock(sk);
4546 }
4547 EXPORT_SYMBOL_GPL(tcp_done);
4548 
tcp_abort(struct sock * sk,int err)4549 int tcp_abort(struct sock *sk, int err)
4550 {
4551 	if (!sk_fullsock(sk)) {
4552 		if (sk->sk_state == TCP_NEW_SYN_RECV) {
4553 			struct request_sock *req = inet_reqsk(sk);
4554 
4555 			local_bh_disable();
4556 			inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4557 			local_bh_enable();
4558 			return 0;
4559 		}
4560 		return -EOPNOTSUPP;
4561 	}
4562 
4563 	/* Don't race with userspace socket closes such as tcp_close. */
4564 	lock_sock(sk);
4565 
4566 	if (sk->sk_state == TCP_LISTEN) {
4567 		tcp_set_state(sk, TCP_CLOSE);
4568 		inet_csk_listen_stop(sk);
4569 	}
4570 
4571 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4572 	local_bh_disable();
4573 	bh_lock_sock(sk);
4574 
4575 	if (!sock_flag(sk, SOCK_DEAD)) {
4576 		sk->sk_err = err;
4577 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
4578 		smp_wmb();
4579 		sk_error_report(sk);
4580 		if (tcp_need_reset(sk->sk_state))
4581 			tcp_send_active_reset(sk, GFP_ATOMIC);
4582 		tcp_done(sk);
4583 	}
4584 
4585 	bh_unlock_sock(sk);
4586 	local_bh_enable();
4587 	tcp_write_queue_purge(sk);
4588 	release_sock(sk);
4589 	return 0;
4590 }
4591 EXPORT_SYMBOL_GPL(tcp_abort);
4592 
4593 extern struct tcp_congestion_ops tcp_reno;
4594 
4595 static __initdata unsigned long thash_entries;
set_thash_entries(char * str)4596 static int __init set_thash_entries(char *str)
4597 {
4598 	ssize_t ret;
4599 
4600 	if (!str)
4601 		return 0;
4602 
4603 	ret = kstrtoul(str, 0, &thash_entries);
4604 	if (ret)
4605 		return 0;
4606 
4607 	return 1;
4608 }
4609 __setup("thash_entries=", set_thash_entries);
4610 
tcp_init_mem(void)4611 static void __init tcp_init_mem(void)
4612 {
4613 	unsigned long limit = nr_free_buffer_pages() / 16;
4614 
4615 	limit = max(limit, 128UL);
4616 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
4617 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
4618 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
4619 }
4620 
tcp_init(void)4621 void __init tcp_init(void)
4622 {
4623 	int max_rshare, max_wshare, cnt;
4624 	unsigned long limit;
4625 	unsigned int i;
4626 
4627 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4628 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4629 		     sizeof_field(struct sk_buff, cb));
4630 
4631 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4632 
4633 	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4634 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4635 
4636 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4637 			    thash_entries, 21,  /* one slot per 2 MB*/
4638 			    0, 64 * 1024);
4639 	tcp_hashinfo.bind_bucket_cachep =
4640 		kmem_cache_create("tcp_bind_bucket",
4641 				  sizeof(struct inet_bind_bucket), 0,
4642 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4643 				  SLAB_ACCOUNT,
4644 				  NULL);
4645 
4646 	/* Size and allocate the main established and bind bucket
4647 	 * hash tables.
4648 	 *
4649 	 * The methodology is similar to that of the buffer cache.
4650 	 */
4651 	tcp_hashinfo.ehash =
4652 		alloc_large_system_hash("TCP established",
4653 					sizeof(struct inet_ehash_bucket),
4654 					thash_entries,
4655 					17, /* one slot per 128 KB of memory */
4656 					0,
4657 					NULL,
4658 					&tcp_hashinfo.ehash_mask,
4659 					0,
4660 					thash_entries ? 0 : 512 * 1024);
4661 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4662 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4663 
4664 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
4665 		panic("TCP: failed to alloc ehash_locks");
4666 	tcp_hashinfo.bhash =
4667 		alloc_large_system_hash("TCP bind",
4668 					sizeof(struct inet_bind_hashbucket),
4669 					tcp_hashinfo.ehash_mask + 1,
4670 					17, /* one slot per 128 KB of memory */
4671 					0,
4672 					&tcp_hashinfo.bhash_size,
4673 					NULL,
4674 					0,
4675 					64 * 1024);
4676 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4677 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4678 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4679 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4680 	}
4681 
4682 
4683 	cnt = tcp_hashinfo.ehash_mask + 1;
4684 	sysctl_tcp_max_orphans = cnt / 2;
4685 
4686 	tcp_init_mem();
4687 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
4688 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4689 	max_wshare = min(4UL*1024*1024, limit);
4690 	max_rshare = min(6UL*1024*1024, limit);
4691 
4692 	init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
4693 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4694 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4695 
4696 	init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
4697 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4698 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4699 
4700 	pr_info("Hash tables configured (established %u bind %u)\n",
4701 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4702 
4703 	tcp_v4_init();
4704 	tcp_metrics_init();
4705 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4706 	tcp_tasklet_init();
4707 	mptcp_init();
4708 }
4709