1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2002 Richard Henderson
4 * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
5 */
6
7 #define INCLUDE_VERMAGIC
8
9 #include <linux/export.h>
10 #include <linux/extable.h>
11 #include <linux/moduleloader.h>
12 #include <linux/module_signature.h>
13 #include <linux/trace_events.h>
14 #include <linux/init.h>
15 #include <linux/kallsyms.h>
16 #include <linux/buildid.h>
17 #include <linux/fs.h>
18 #include <linux/kernel.h>
19 #include <linux/kernel_read_file.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/elf.h>
23 #include <linux/seq_file.h>
24 #include <linux/syscalls.h>
25 #include <linux/fcntl.h>
26 #include <linux/rcupdate.h>
27 #include <linux/capability.h>
28 #include <linux/cpu.h>
29 #include <linux/moduleparam.h>
30 #include <linux/errno.h>
31 #include <linux/err.h>
32 #include <linux/vermagic.h>
33 #include <linux/notifier.h>
34 #include <linux/sched.h>
35 #include <linux/device.h>
36 #include <linux/string.h>
37 #include <linux/mutex.h>
38 #include <linux/rculist.h>
39 #include <linux/uaccess.h>
40 #include <asm/cacheflush.h>
41 #include <linux/set_memory.h>
42 #include <asm/mmu_context.h>
43 #include <linux/license.h>
44 #include <asm/sections.h>
45 #include <linux/tracepoint.h>
46 #include <linux/ftrace.h>
47 #include <linux/livepatch.h>
48 #include <linux/async.h>
49 #include <linux/percpu.h>
50 #include <linux/kmemleak.h>
51 #include <linux/jump_label.h>
52 #include <linux/pfn.h>
53 #include <linux/bsearch.h>
54 #include <linux/dynamic_debug.h>
55 #include <linux/audit.h>
56 #include <linux/cfi.h>
57 #include <uapi/linux/module.h>
58 #include "internal.h"
59
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/module.h>
62
63 /*
64 * Mutex protects:
65 * 1) List of modules (also safely readable with preempt_disable),
66 * 2) module_use links,
67 * 3) mod_tree.addr_min/mod_tree.addr_max.
68 * (delete and add uses RCU list operations).
69 */
70 DEFINE_MUTEX(module_mutex);
71 LIST_HEAD(modules);
72
73 /* Work queue for freeing init sections in success case */
74 static void do_free_init(struct work_struct *w);
75 static DECLARE_WORK(init_free_wq, do_free_init);
76 static LLIST_HEAD(init_free_list);
77
78 struct mod_tree_root mod_tree __cacheline_aligned = {
79 .addr_min = -1UL,
80 };
81
82 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
83 struct mod_tree_root mod_data_tree __cacheline_aligned = {
84 .addr_min = -1UL,
85 };
86 #endif
87
88 #define module_addr_min mod_tree.addr_min
89 #define module_addr_max mod_tree.addr_max
90
91 struct symsearch {
92 const struct kernel_symbol *start, *stop;
93 const s32 *crcs;
94 enum mod_license license;
95 };
96
97 /*
98 * Bounds of module text, for speeding up __module_address.
99 * Protected by module_mutex.
100 */
__mod_update_bounds(void * base,unsigned int size,struct mod_tree_root * tree)101 static void __mod_update_bounds(void *base, unsigned int size, struct mod_tree_root *tree)
102 {
103 unsigned long min = (unsigned long)base;
104 unsigned long max = min + size;
105
106 if (min < tree->addr_min)
107 tree->addr_min = min;
108 if (max > tree->addr_max)
109 tree->addr_max = max;
110 }
111
mod_update_bounds(struct module * mod)112 static void mod_update_bounds(struct module *mod)
113 {
114 __mod_update_bounds(mod->core_layout.base, mod->core_layout.size, &mod_tree);
115 if (mod->init_layout.size)
116 __mod_update_bounds(mod->init_layout.base, mod->init_layout.size, &mod_tree);
117 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
118 __mod_update_bounds(mod->data_layout.base, mod->data_layout.size, &mod_data_tree);
119 #endif
120 }
121
122 /* Block module loading/unloading? */
123 int modules_disabled;
124 core_param(nomodule, modules_disabled, bint, 0);
125
126 /* Waiting for a module to finish initializing? */
127 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
128
129 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
130
register_module_notifier(struct notifier_block * nb)131 int register_module_notifier(struct notifier_block *nb)
132 {
133 return blocking_notifier_chain_register(&module_notify_list, nb);
134 }
135 EXPORT_SYMBOL(register_module_notifier);
136
unregister_module_notifier(struct notifier_block * nb)137 int unregister_module_notifier(struct notifier_block *nb)
138 {
139 return blocking_notifier_chain_unregister(&module_notify_list, nb);
140 }
141 EXPORT_SYMBOL(unregister_module_notifier);
142
143 /*
144 * We require a truly strong try_module_get(): 0 means success.
145 * Otherwise an error is returned due to ongoing or failed
146 * initialization etc.
147 */
strong_try_module_get(struct module * mod)148 static inline int strong_try_module_get(struct module *mod)
149 {
150 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
151 if (mod && mod->state == MODULE_STATE_COMING)
152 return -EBUSY;
153 if (try_module_get(mod))
154 return 0;
155 else
156 return -ENOENT;
157 }
158
add_taint_module(struct module * mod,unsigned flag,enum lockdep_ok lockdep_ok)159 static inline void add_taint_module(struct module *mod, unsigned flag,
160 enum lockdep_ok lockdep_ok)
161 {
162 add_taint(flag, lockdep_ok);
163 set_bit(flag, &mod->taints);
164 }
165
166 /*
167 * A thread that wants to hold a reference to a module only while it
168 * is running can call this to safely exit.
169 */
__module_put_and_kthread_exit(struct module * mod,long code)170 void __noreturn __module_put_and_kthread_exit(struct module *mod, long code)
171 {
172 module_put(mod);
173 kthread_exit(code);
174 }
175 EXPORT_SYMBOL(__module_put_and_kthread_exit);
176
177 /* Find a module section: 0 means not found. */
find_sec(const struct load_info * info,const char * name)178 static unsigned int find_sec(const struct load_info *info, const char *name)
179 {
180 unsigned int i;
181
182 for (i = 1; i < info->hdr->e_shnum; i++) {
183 Elf_Shdr *shdr = &info->sechdrs[i];
184 /* Alloc bit cleared means "ignore it." */
185 if ((shdr->sh_flags & SHF_ALLOC)
186 && strcmp(info->secstrings + shdr->sh_name, name) == 0)
187 return i;
188 }
189 return 0;
190 }
191
192 /* Find a module section, or NULL. */
section_addr(const struct load_info * info,const char * name)193 static void *section_addr(const struct load_info *info, const char *name)
194 {
195 /* Section 0 has sh_addr 0. */
196 return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
197 }
198
199 /* Find a module section, or NULL. Fill in number of "objects" in section. */
section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)200 static void *section_objs(const struct load_info *info,
201 const char *name,
202 size_t object_size,
203 unsigned int *num)
204 {
205 unsigned int sec = find_sec(info, name);
206
207 /* Section 0 has sh_addr 0 and sh_size 0. */
208 *num = info->sechdrs[sec].sh_size / object_size;
209 return (void *)info->sechdrs[sec].sh_addr;
210 }
211
212 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */
find_any_sec(const struct load_info * info,const char * name)213 static unsigned int find_any_sec(const struct load_info *info, const char *name)
214 {
215 unsigned int i;
216
217 for (i = 1; i < info->hdr->e_shnum; i++) {
218 Elf_Shdr *shdr = &info->sechdrs[i];
219 if (strcmp(info->secstrings + shdr->sh_name, name) == 0)
220 return i;
221 }
222 return 0;
223 }
224
225 /*
226 * Find a module section, or NULL. Fill in number of "objects" in section.
227 * Ignores SHF_ALLOC flag.
228 */
any_section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)229 static __maybe_unused void *any_section_objs(const struct load_info *info,
230 const char *name,
231 size_t object_size,
232 unsigned int *num)
233 {
234 unsigned int sec = find_any_sec(info, name);
235
236 /* Section 0 has sh_addr 0 and sh_size 0. */
237 *num = info->sechdrs[sec].sh_size / object_size;
238 return (void *)info->sechdrs[sec].sh_addr;
239 }
240
241 #ifndef CONFIG_MODVERSIONS
242 #define symversion(base, idx) NULL
243 #else
244 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
245 #endif
246
kernel_symbol_name(const struct kernel_symbol * sym)247 static const char *kernel_symbol_name(const struct kernel_symbol *sym)
248 {
249 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
250 return offset_to_ptr(&sym->name_offset);
251 #else
252 return sym->name;
253 #endif
254 }
255
kernel_symbol_namespace(const struct kernel_symbol * sym)256 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
257 {
258 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
259 if (!sym->namespace_offset)
260 return NULL;
261 return offset_to_ptr(&sym->namespace_offset);
262 #else
263 return sym->namespace;
264 #endif
265 }
266
cmp_name(const void * name,const void * sym)267 int cmp_name(const void *name, const void *sym)
268 {
269 return strcmp(name, kernel_symbol_name(sym));
270 }
271
find_exported_symbol_in_section(const struct symsearch * syms,struct module * owner,struct find_symbol_arg * fsa)272 static bool find_exported_symbol_in_section(const struct symsearch *syms,
273 struct module *owner,
274 struct find_symbol_arg *fsa)
275 {
276 struct kernel_symbol *sym;
277
278 if (!fsa->gplok && syms->license == GPL_ONLY)
279 return false;
280
281 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
282 sizeof(struct kernel_symbol), cmp_name);
283 if (!sym)
284 return false;
285
286 fsa->owner = owner;
287 fsa->crc = symversion(syms->crcs, sym - syms->start);
288 fsa->sym = sym;
289 fsa->license = syms->license;
290
291 return true;
292 }
293
294 /*
295 * Find an exported symbol and return it, along with, (optional) crc and
296 * (optional) module which owns it. Needs preempt disabled or module_mutex.
297 */
find_symbol(struct find_symbol_arg * fsa)298 bool find_symbol(struct find_symbol_arg *fsa)
299 {
300 static const struct symsearch arr[] = {
301 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
302 NOT_GPL_ONLY },
303 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
304 __start___kcrctab_gpl,
305 GPL_ONLY },
306 };
307 struct module *mod;
308 unsigned int i;
309
310 module_assert_mutex_or_preempt();
311
312 for (i = 0; i < ARRAY_SIZE(arr); i++)
313 if (find_exported_symbol_in_section(&arr[i], NULL, fsa))
314 return true;
315
316 list_for_each_entry_rcu(mod, &modules, list,
317 lockdep_is_held(&module_mutex)) {
318 struct symsearch arr[] = {
319 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
320 NOT_GPL_ONLY },
321 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
322 mod->gpl_crcs,
323 GPL_ONLY },
324 };
325
326 if (mod->state == MODULE_STATE_UNFORMED)
327 continue;
328
329 for (i = 0; i < ARRAY_SIZE(arr); i++)
330 if (find_exported_symbol_in_section(&arr[i], mod, fsa))
331 return true;
332 }
333
334 pr_debug("Failed to find symbol %s\n", fsa->name);
335 return false;
336 }
337
338 /*
339 * Search for module by name: must hold module_mutex (or preempt disabled
340 * for read-only access).
341 */
find_module_all(const char * name,size_t len,bool even_unformed)342 struct module *find_module_all(const char *name, size_t len,
343 bool even_unformed)
344 {
345 struct module *mod;
346
347 module_assert_mutex_or_preempt();
348
349 list_for_each_entry_rcu(mod, &modules, list,
350 lockdep_is_held(&module_mutex)) {
351 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
352 continue;
353 if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
354 return mod;
355 }
356 return NULL;
357 }
358
find_module(const char * name)359 struct module *find_module(const char *name)
360 {
361 return find_module_all(name, strlen(name), false);
362 }
363
364 #ifdef CONFIG_SMP
365
mod_percpu(struct module * mod)366 static inline void __percpu *mod_percpu(struct module *mod)
367 {
368 return mod->percpu;
369 }
370
percpu_modalloc(struct module * mod,struct load_info * info)371 static int percpu_modalloc(struct module *mod, struct load_info *info)
372 {
373 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
374 unsigned long align = pcpusec->sh_addralign;
375
376 if (!pcpusec->sh_size)
377 return 0;
378
379 if (align > PAGE_SIZE) {
380 pr_warn("%s: per-cpu alignment %li > %li\n",
381 mod->name, align, PAGE_SIZE);
382 align = PAGE_SIZE;
383 }
384
385 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
386 if (!mod->percpu) {
387 pr_warn("%s: Could not allocate %lu bytes percpu data\n",
388 mod->name, (unsigned long)pcpusec->sh_size);
389 return -ENOMEM;
390 }
391 mod->percpu_size = pcpusec->sh_size;
392 return 0;
393 }
394
percpu_modfree(struct module * mod)395 static void percpu_modfree(struct module *mod)
396 {
397 free_percpu(mod->percpu);
398 }
399
find_pcpusec(struct load_info * info)400 static unsigned int find_pcpusec(struct load_info *info)
401 {
402 return find_sec(info, ".data..percpu");
403 }
404
percpu_modcopy(struct module * mod,const void * from,unsigned long size)405 static void percpu_modcopy(struct module *mod,
406 const void *from, unsigned long size)
407 {
408 int cpu;
409
410 for_each_possible_cpu(cpu)
411 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
412 }
413
__is_module_percpu_address(unsigned long addr,unsigned long * can_addr)414 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
415 {
416 struct module *mod;
417 unsigned int cpu;
418
419 preempt_disable();
420
421 list_for_each_entry_rcu(mod, &modules, list) {
422 if (mod->state == MODULE_STATE_UNFORMED)
423 continue;
424 if (!mod->percpu_size)
425 continue;
426 for_each_possible_cpu(cpu) {
427 void *start = per_cpu_ptr(mod->percpu, cpu);
428 void *va = (void *)addr;
429
430 if (va >= start && va < start + mod->percpu_size) {
431 if (can_addr) {
432 *can_addr = (unsigned long) (va - start);
433 *can_addr += (unsigned long)
434 per_cpu_ptr(mod->percpu,
435 get_boot_cpu_id());
436 }
437 preempt_enable();
438 return true;
439 }
440 }
441 }
442
443 preempt_enable();
444 return false;
445 }
446
447 /**
448 * is_module_percpu_address() - test whether address is from module static percpu
449 * @addr: address to test
450 *
451 * Test whether @addr belongs to module static percpu area.
452 *
453 * Return: %true if @addr is from module static percpu area
454 */
is_module_percpu_address(unsigned long addr)455 bool is_module_percpu_address(unsigned long addr)
456 {
457 return __is_module_percpu_address(addr, NULL);
458 }
459
460 #else /* ... !CONFIG_SMP */
461
mod_percpu(struct module * mod)462 static inline void __percpu *mod_percpu(struct module *mod)
463 {
464 return NULL;
465 }
percpu_modalloc(struct module * mod,struct load_info * info)466 static int percpu_modalloc(struct module *mod, struct load_info *info)
467 {
468 /* UP modules shouldn't have this section: ENOMEM isn't quite right */
469 if (info->sechdrs[info->index.pcpu].sh_size != 0)
470 return -ENOMEM;
471 return 0;
472 }
percpu_modfree(struct module * mod)473 static inline void percpu_modfree(struct module *mod)
474 {
475 }
find_pcpusec(struct load_info * info)476 static unsigned int find_pcpusec(struct load_info *info)
477 {
478 return 0;
479 }
percpu_modcopy(struct module * mod,const void * from,unsigned long size)480 static inline void percpu_modcopy(struct module *mod,
481 const void *from, unsigned long size)
482 {
483 /* pcpusec should be 0, and size of that section should be 0. */
484 BUG_ON(size != 0);
485 }
is_module_percpu_address(unsigned long addr)486 bool is_module_percpu_address(unsigned long addr)
487 {
488 return false;
489 }
490
__is_module_percpu_address(unsigned long addr,unsigned long * can_addr)491 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
492 {
493 return false;
494 }
495
496 #endif /* CONFIG_SMP */
497
498 #define MODINFO_ATTR(field) \
499 static void setup_modinfo_##field(struct module *mod, const char *s) \
500 { \
501 mod->field = kstrdup(s, GFP_KERNEL); \
502 } \
503 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \
504 struct module_kobject *mk, char *buffer) \
505 { \
506 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \
507 } \
508 static int modinfo_##field##_exists(struct module *mod) \
509 { \
510 return mod->field != NULL; \
511 } \
512 static void free_modinfo_##field(struct module *mod) \
513 { \
514 kfree(mod->field); \
515 mod->field = NULL; \
516 } \
517 static struct module_attribute modinfo_##field = { \
518 .attr = { .name = __stringify(field), .mode = 0444 }, \
519 .show = show_modinfo_##field, \
520 .setup = setup_modinfo_##field, \
521 .test = modinfo_##field##_exists, \
522 .free = free_modinfo_##field, \
523 };
524
525 MODINFO_ATTR(version);
526 MODINFO_ATTR(srcversion);
527
528 static struct {
529 char name[MODULE_NAME_LEN + 1];
530 char taints[MODULE_FLAGS_BUF_SIZE];
531 } last_unloaded_module;
532
533 #ifdef CONFIG_MODULE_UNLOAD
534
535 EXPORT_TRACEPOINT_SYMBOL(module_get);
536
537 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
538 #define MODULE_REF_BASE 1
539
540 /* Init the unload section of the module. */
module_unload_init(struct module * mod)541 static int module_unload_init(struct module *mod)
542 {
543 /*
544 * Initialize reference counter to MODULE_REF_BASE.
545 * refcnt == 0 means module is going.
546 */
547 atomic_set(&mod->refcnt, MODULE_REF_BASE);
548
549 INIT_LIST_HEAD(&mod->source_list);
550 INIT_LIST_HEAD(&mod->target_list);
551
552 /* Hold reference count during initialization. */
553 atomic_inc(&mod->refcnt);
554
555 return 0;
556 }
557
558 /* Does a already use b? */
already_uses(struct module * a,struct module * b)559 static int already_uses(struct module *a, struct module *b)
560 {
561 struct module_use *use;
562
563 list_for_each_entry(use, &b->source_list, source_list) {
564 if (use->source == a) {
565 pr_debug("%s uses %s!\n", a->name, b->name);
566 return 1;
567 }
568 }
569 pr_debug("%s does not use %s!\n", a->name, b->name);
570 return 0;
571 }
572
573 /*
574 * Module a uses b
575 * - we add 'a' as a "source", 'b' as a "target" of module use
576 * - the module_use is added to the list of 'b' sources (so
577 * 'b' can walk the list to see who sourced them), and of 'a'
578 * targets (so 'a' can see what modules it targets).
579 */
add_module_usage(struct module * a,struct module * b)580 static int add_module_usage(struct module *a, struct module *b)
581 {
582 struct module_use *use;
583
584 pr_debug("Allocating new usage for %s.\n", a->name);
585 use = kmalloc(sizeof(*use), GFP_ATOMIC);
586 if (!use)
587 return -ENOMEM;
588
589 use->source = a;
590 use->target = b;
591 list_add(&use->source_list, &b->source_list);
592 list_add(&use->target_list, &a->target_list);
593 return 0;
594 }
595
596 /* Module a uses b: caller needs module_mutex() */
ref_module(struct module * a,struct module * b)597 static int ref_module(struct module *a, struct module *b)
598 {
599 int err;
600
601 if (b == NULL || already_uses(a, b))
602 return 0;
603
604 /* If module isn't available, we fail. */
605 err = strong_try_module_get(b);
606 if (err)
607 return err;
608
609 err = add_module_usage(a, b);
610 if (err) {
611 module_put(b);
612 return err;
613 }
614 return 0;
615 }
616
617 /* Clear the unload stuff of the module. */
module_unload_free(struct module * mod)618 static void module_unload_free(struct module *mod)
619 {
620 struct module_use *use, *tmp;
621
622 mutex_lock(&module_mutex);
623 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
624 struct module *i = use->target;
625 pr_debug("%s unusing %s\n", mod->name, i->name);
626 module_put(i);
627 list_del(&use->source_list);
628 list_del(&use->target_list);
629 kfree(use);
630 }
631 mutex_unlock(&module_mutex);
632 }
633
634 #ifdef CONFIG_MODULE_FORCE_UNLOAD
try_force_unload(unsigned int flags)635 static inline int try_force_unload(unsigned int flags)
636 {
637 int ret = (flags & O_TRUNC);
638 if (ret)
639 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
640 return ret;
641 }
642 #else
try_force_unload(unsigned int flags)643 static inline int try_force_unload(unsigned int flags)
644 {
645 return 0;
646 }
647 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
648
649 /* Try to release refcount of module, 0 means success. */
try_release_module_ref(struct module * mod)650 static int try_release_module_ref(struct module *mod)
651 {
652 int ret;
653
654 /* Try to decrement refcnt which we set at loading */
655 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
656 BUG_ON(ret < 0);
657 if (ret)
658 /* Someone can put this right now, recover with checking */
659 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
660
661 return ret;
662 }
663
try_stop_module(struct module * mod,int flags,int * forced)664 static int try_stop_module(struct module *mod, int flags, int *forced)
665 {
666 /* If it's not unused, quit unless we're forcing. */
667 if (try_release_module_ref(mod) != 0) {
668 *forced = try_force_unload(flags);
669 if (!(*forced))
670 return -EWOULDBLOCK;
671 }
672
673 /* Mark it as dying. */
674 mod->state = MODULE_STATE_GOING;
675
676 return 0;
677 }
678
679 /**
680 * module_refcount() - return the refcount or -1 if unloading
681 * @mod: the module we're checking
682 *
683 * Return:
684 * -1 if the module is in the process of unloading
685 * otherwise the number of references in the kernel to the module
686 */
module_refcount(struct module * mod)687 int module_refcount(struct module *mod)
688 {
689 return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
690 }
691 EXPORT_SYMBOL(module_refcount);
692
693 /* This exists whether we can unload or not */
694 static void free_module(struct module *mod);
695
SYSCALL_DEFINE2(delete_module,const char __user *,name_user,unsigned int,flags)696 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
697 unsigned int, flags)
698 {
699 struct module *mod;
700 char name[MODULE_NAME_LEN];
701 char buf[MODULE_FLAGS_BUF_SIZE];
702 int ret, forced = 0;
703
704 if (!capable(CAP_SYS_MODULE) || modules_disabled)
705 return -EPERM;
706
707 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
708 return -EFAULT;
709 name[MODULE_NAME_LEN-1] = '\0';
710
711 audit_log_kern_module(name);
712
713 if (mutex_lock_interruptible(&module_mutex) != 0)
714 return -EINTR;
715
716 mod = find_module(name);
717 if (!mod) {
718 ret = -ENOENT;
719 goto out;
720 }
721
722 if (!list_empty(&mod->source_list)) {
723 /* Other modules depend on us: get rid of them first. */
724 ret = -EWOULDBLOCK;
725 goto out;
726 }
727
728 /* Doing init or already dying? */
729 if (mod->state != MODULE_STATE_LIVE) {
730 /* FIXME: if (force), slam module count damn the torpedoes */
731 pr_debug("%s already dying\n", mod->name);
732 ret = -EBUSY;
733 goto out;
734 }
735
736 /* If it has an init func, it must have an exit func to unload */
737 if (mod->init && !mod->exit) {
738 forced = try_force_unload(flags);
739 if (!forced) {
740 /* This module can't be removed */
741 ret = -EBUSY;
742 goto out;
743 }
744 }
745
746 ret = try_stop_module(mod, flags, &forced);
747 if (ret != 0)
748 goto out;
749
750 mutex_unlock(&module_mutex);
751 /* Final destruction now no one is using it. */
752 if (mod->exit != NULL)
753 mod->exit();
754 blocking_notifier_call_chain(&module_notify_list,
755 MODULE_STATE_GOING, mod);
756 klp_module_going(mod);
757 ftrace_release_mod(mod);
758
759 async_synchronize_full();
760
761 /* Store the name and taints of the last unloaded module for diagnostic purposes */
762 strscpy(last_unloaded_module.name, mod->name, sizeof(last_unloaded_module.name));
763 strscpy(last_unloaded_module.taints, module_flags(mod, buf, false), sizeof(last_unloaded_module.taints));
764
765 free_module(mod);
766 /* someone could wait for the module in add_unformed_module() */
767 wake_up_all(&module_wq);
768 return 0;
769 out:
770 mutex_unlock(&module_mutex);
771 return ret;
772 }
773
__symbol_put(const char * symbol)774 void __symbol_put(const char *symbol)
775 {
776 struct find_symbol_arg fsa = {
777 .name = symbol,
778 .gplok = true,
779 };
780
781 preempt_disable();
782 BUG_ON(!find_symbol(&fsa));
783 module_put(fsa.owner);
784 preempt_enable();
785 }
786 EXPORT_SYMBOL(__symbol_put);
787
788 /* Note this assumes addr is a function, which it currently always is. */
symbol_put_addr(void * addr)789 void symbol_put_addr(void *addr)
790 {
791 struct module *modaddr;
792 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
793
794 if (core_kernel_text(a))
795 return;
796
797 /*
798 * Even though we hold a reference on the module; we still need to
799 * disable preemption in order to safely traverse the data structure.
800 */
801 preempt_disable();
802 modaddr = __module_text_address(a);
803 BUG_ON(!modaddr);
804 module_put(modaddr);
805 preempt_enable();
806 }
807 EXPORT_SYMBOL_GPL(symbol_put_addr);
808
show_refcnt(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)809 static ssize_t show_refcnt(struct module_attribute *mattr,
810 struct module_kobject *mk, char *buffer)
811 {
812 return sprintf(buffer, "%i\n", module_refcount(mk->mod));
813 }
814
815 static struct module_attribute modinfo_refcnt =
816 __ATTR(refcnt, 0444, show_refcnt, NULL);
817
__module_get(struct module * module)818 void __module_get(struct module *module)
819 {
820 if (module) {
821 preempt_disable();
822 atomic_inc(&module->refcnt);
823 trace_module_get(module, _RET_IP_);
824 preempt_enable();
825 }
826 }
827 EXPORT_SYMBOL(__module_get);
828
try_module_get(struct module * module)829 bool try_module_get(struct module *module)
830 {
831 bool ret = true;
832
833 if (module) {
834 preempt_disable();
835 /* Note: here, we can fail to get a reference */
836 if (likely(module_is_live(module) &&
837 atomic_inc_not_zero(&module->refcnt) != 0))
838 trace_module_get(module, _RET_IP_);
839 else
840 ret = false;
841
842 preempt_enable();
843 }
844 return ret;
845 }
846 EXPORT_SYMBOL(try_module_get);
847
module_put(struct module * module)848 void module_put(struct module *module)
849 {
850 int ret;
851
852 if (module) {
853 preempt_disable();
854 ret = atomic_dec_if_positive(&module->refcnt);
855 WARN_ON(ret < 0); /* Failed to put refcount */
856 trace_module_put(module, _RET_IP_);
857 preempt_enable();
858 }
859 }
860 EXPORT_SYMBOL(module_put);
861
862 #else /* !CONFIG_MODULE_UNLOAD */
module_unload_free(struct module * mod)863 static inline void module_unload_free(struct module *mod)
864 {
865 }
866
ref_module(struct module * a,struct module * b)867 static int ref_module(struct module *a, struct module *b)
868 {
869 return strong_try_module_get(b);
870 }
871
module_unload_init(struct module * mod)872 static inline int module_unload_init(struct module *mod)
873 {
874 return 0;
875 }
876 #endif /* CONFIG_MODULE_UNLOAD */
877
module_flags_taint(unsigned long taints,char * buf)878 size_t module_flags_taint(unsigned long taints, char *buf)
879 {
880 size_t l = 0;
881 int i;
882
883 for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
884 if (taint_flags[i].module && test_bit(i, &taints))
885 buf[l++] = taint_flags[i].c_true;
886 }
887
888 return l;
889 }
890
show_initstate(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)891 static ssize_t show_initstate(struct module_attribute *mattr,
892 struct module_kobject *mk, char *buffer)
893 {
894 const char *state = "unknown";
895
896 switch (mk->mod->state) {
897 case MODULE_STATE_LIVE:
898 state = "live";
899 break;
900 case MODULE_STATE_COMING:
901 state = "coming";
902 break;
903 case MODULE_STATE_GOING:
904 state = "going";
905 break;
906 default:
907 BUG();
908 }
909 return sprintf(buffer, "%s\n", state);
910 }
911
912 static struct module_attribute modinfo_initstate =
913 __ATTR(initstate, 0444, show_initstate, NULL);
914
store_uevent(struct module_attribute * mattr,struct module_kobject * mk,const char * buffer,size_t count)915 static ssize_t store_uevent(struct module_attribute *mattr,
916 struct module_kobject *mk,
917 const char *buffer, size_t count)
918 {
919 int rc;
920
921 rc = kobject_synth_uevent(&mk->kobj, buffer, count);
922 return rc ? rc : count;
923 }
924
925 struct module_attribute module_uevent =
926 __ATTR(uevent, 0200, NULL, store_uevent);
927
show_coresize(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)928 static ssize_t show_coresize(struct module_attribute *mattr,
929 struct module_kobject *mk, char *buffer)
930 {
931 return sprintf(buffer, "%u\n", mk->mod->core_layout.size);
932 }
933
934 static struct module_attribute modinfo_coresize =
935 __ATTR(coresize, 0444, show_coresize, NULL);
936
937 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
show_datasize(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)938 static ssize_t show_datasize(struct module_attribute *mattr,
939 struct module_kobject *mk, char *buffer)
940 {
941 return sprintf(buffer, "%u\n", mk->mod->data_layout.size);
942 }
943
944 static struct module_attribute modinfo_datasize =
945 __ATTR(datasize, 0444, show_datasize, NULL);
946 #endif
947
show_initsize(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)948 static ssize_t show_initsize(struct module_attribute *mattr,
949 struct module_kobject *mk, char *buffer)
950 {
951 return sprintf(buffer, "%u\n", mk->mod->init_layout.size);
952 }
953
954 static struct module_attribute modinfo_initsize =
955 __ATTR(initsize, 0444, show_initsize, NULL);
956
show_taint(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)957 static ssize_t show_taint(struct module_attribute *mattr,
958 struct module_kobject *mk, char *buffer)
959 {
960 size_t l;
961
962 l = module_flags_taint(mk->mod->taints, buffer);
963 buffer[l++] = '\n';
964 return l;
965 }
966
967 static struct module_attribute modinfo_taint =
968 __ATTR(taint, 0444, show_taint, NULL);
969
970 struct module_attribute *modinfo_attrs[] = {
971 &module_uevent,
972 &modinfo_version,
973 &modinfo_srcversion,
974 &modinfo_initstate,
975 &modinfo_coresize,
976 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
977 &modinfo_datasize,
978 #endif
979 &modinfo_initsize,
980 &modinfo_taint,
981 #ifdef CONFIG_MODULE_UNLOAD
982 &modinfo_refcnt,
983 #endif
984 NULL,
985 };
986
987 size_t modinfo_attrs_count = ARRAY_SIZE(modinfo_attrs);
988
989 static const char vermagic[] = VERMAGIC_STRING;
990
try_to_force_load(struct module * mod,const char * reason)991 int try_to_force_load(struct module *mod, const char *reason)
992 {
993 #ifdef CONFIG_MODULE_FORCE_LOAD
994 if (!test_taint(TAINT_FORCED_MODULE))
995 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
996 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
997 return 0;
998 #else
999 return -ENOEXEC;
1000 #endif
1001 }
1002
1003 static char *get_modinfo(const struct load_info *info, const char *tag);
1004 static char *get_next_modinfo(const struct load_info *info, const char *tag,
1005 char *prev);
1006
verify_namespace_is_imported(const struct load_info * info,const struct kernel_symbol * sym,struct module * mod)1007 static int verify_namespace_is_imported(const struct load_info *info,
1008 const struct kernel_symbol *sym,
1009 struct module *mod)
1010 {
1011 const char *namespace;
1012 char *imported_namespace;
1013
1014 namespace = kernel_symbol_namespace(sym);
1015 if (namespace && namespace[0]) {
1016 imported_namespace = get_modinfo(info, "import_ns");
1017 while (imported_namespace) {
1018 if (strcmp(namespace, imported_namespace) == 0)
1019 return 0;
1020 imported_namespace = get_next_modinfo(
1021 info, "import_ns", imported_namespace);
1022 }
1023 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1024 pr_warn(
1025 #else
1026 pr_err(
1027 #endif
1028 "%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
1029 mod->name, kernel_symbol_name(sym), namespace);
1030 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1031 return -EINVAL;
1032 #endif
1033 }
1034 return 0;
1035 }
1036
inherit_taint(struct module * mod,struct module * owner,const char * name)1037 static bool inherit_taint(struct module *mod, struct module *owner, const char *name)
1038 {
1039 if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints))
1040 return true;
1041
1042 if (mod->using_gplonly_symbols) {
1043 pr_err("%s: module using GPL-only symbols uses symbols %s from proprietary module %s.\n",
1044 mod->name, name, owner->name);
1045 return false;
1046 }
1047
1048 if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) {
1049 pr_warn("%s: module uses symbols %s from proprietary module %s, inheriting taint.\n",
1050 mod->name, name, owner->name);
1051 set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints);
1052 }
1053 return true;
1054 }
1055
1056 /* Resolve a symbol for this module. I.e. if we find one, record usage. */
resolve_symbol(struct module * mod,const struct load_info * info,const char * name,char ownername[])1057 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1058 const struct load_info *info,
1059 const char *name,
1060 char ownername[])
1061 {
1062 struct find_symbol_arg fsa = {
1063 .name = name,
1064 .gplok = !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)),
1065 .warn = true,
1066 };
1067 int err;
1068
1069 /*
1070 * The module_mutex should not be a heavily contended lock;
1071 * if we get the occasional sleep here, we'll go an extra iteration
1072 * in the wait_event_interruptible(), which is harmless.
1073 */
1074 sched_annotate_sleep();
1075 mutex_lock(&module_mutex);
1076 if (!find_symbol(&fsa))
1077 goto unlock;
1078
1079 if (fsa.license == GPL_ONLY)
1080 mod->using_gplonly_symbols = true;
1081
1082 if (!inherit_taint(mod, fsa.owner, name)) {
1083 fsa.sym = NULL;
1084 goto getname;
1085 }
1086
1087 if (!check_version(info, name, mod, fsa.crc)) {
1088 fsa.sym = ERR_PTR(-EINVAL);
1089 goto getname;
1090 }
1091
1092 err = verify_namespace_is_imported(info, fsa.sym, mod);
1093 if (err) {
1094 fsa.sym = ERR_PTR(err);
1095 goto getname;
1096 }
1097
1098 err = ref_module(mod, fsa.owner);
1099 if (err) {
1100 fsa.sym = ERR_PTR(err);
1101 goto getname;
1102 }
1103
1104 getname:
1105 /* We must make copy under the lock if we failed to get ref. */
1106 strncpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN);
1107 unlock:
1108 mutex_unlock(&module_mutex);
1109 return fsa.sym;
1110 }
1111
1112 static const struct kernel_symbol *
resolve_symbol_wait(struct module * mod,const struct load_info * info,const char * name)1113 resolve_symbol_wait(struct module *mod,
1114 const struct load_info *info,
1115 const char *name)
1116 {
1117 const struct kernel_symbol *ksym;
1118 char owner[MODULE_NAME_LEN];
1119
1120 if (wait_event_interruptible_timeout(module_wq,
1121 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1122 || PTR_ERR(ksym) != -EBUSY,
1123 30 * HZ) <= 0) {
1124 pr_warn("%s: gave up waiting for init of module %s.\n",
1125 mod->name, owner);
1126 }
1127 return ksym;
1128 }
1129
module_memfree(void * module_region)1130 void __weak module_memfree(void *module_region)
1131 {
1132 /*
1133 * This memory may be RO, and freeing RO memory in an interrupt is not
1134 * supported by vmalloc.
1135 */
1136 WARN_ON(in_interrupt());
1137 vfree(module_region);
1138 }
1139
module_arch_cleanup(struct module * mod)1140 void __weak module_arch_cleanup(struct module *mod)
1141 {
1142 }
1143
module_arch_freeing_init(struct module * mod)1144 void __weak module_arch_freeing_init(struct module *mod)
1145 {
1146 }
1147
1148 /* Free a module, remove from lists, etc. */
free_module(struct module * mod)1149 static void free_module(struct module *mod)
1150 {
1151 trace_module_free(mod);
1152
1153 mod_sysfs_teardown(mod);
1154
1155 /*
1156 * We leave it in list to prevent duplicate loads, but make sure
1157 * that noone uses it while it's being deconstructed.
1158 */
1159 mutex_lock(&module_mutex);
1160 mod->state = MODULE_STATE_UNFORMED;
1161 mutex_unlock(&module_mutex);
1162
1163 /* Remove dynamic debug info */
1164 ddebug_remove_module(mod->name);
1165
1166 /* Arch-specific cleanup. */
1167 module_arch_cleanup(mod);
1168
1169 /* Module unload stuff */
1170 module_unload_free(mod);
1171
1172 /* Free any allocated parameters. */
1173 destroy_params(mod->kp, mod->num_kp);
1174
1175 if (is_livepatch_module(mod))
1176 free_module_elf(mod);
1177
1178 /* Now we can delete it from the lists */
1179 mutex_lock(&module_mutex);
1180 /* Unlink carefully: kallsyms could be walking list. */
1181 list_del_rcu(&mod->list);
1182 mod_tree_remove(mod);
1183 /* Remove this module from bug list, this uses list_del_rcu */
1184 module_bug_cleanup(mod);
1185 /* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
1186 synchronize_rcu();
1187 if (try_add_tainted_module(mod))
1188 pr_err("%s: adding tainted module to the unloaded tainted modules list failed.\n",
1189 mod->name);
1190 mutex_unlock(&module_mutex);
1191
1192 /* This may be empty, but that's OK */
1193 module_arch_freeing_init(mod);
1194 module_memfree(mod->init_layout.base);
1195 kfree(mod->args);
1196 percpu_modfree(mod);
1197
1198 /* Free lock-classes; relies on the preceding sync_rcu(). */
1199 lockdep_free_key_range(mod->data_layout.base, mod->data_layout.size);
1200
1201 /* Finally, free the core (containing the module structure) */
1202 module_memfree(mod->core_layout.base);
1203 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
1204 vfree(mod->data_layout.base);
1205 #endif
1206 }
1207
__symbol_get(const char * symbol)1208 void *__symbol_get(const char *symbol)
1209 {
1210 struct find_symbol_arg fsa = {
1211 .name = symbol,
1212 .gplok = true,
1213 .warn = true,
1214 };
1215
1216 preempt_disable();
1217 if (!find_symbol(&fsa) || strong_try_module_get(fsa.owner)) {
1218 preempt_enable();
1219 return NULL;
1220 }
1221 preempt_enable();
1222 return (void *)kernel_symbol_value(fsa.sym);
1223 }
1224 EXPORT_SYMBOL_GPL(__symbol_get);
1225
1226 /*
1227 * Ensure that an exported symbol [global namespace] does not already exist
1228 * in the kernel or in some other module's exported symbol table.
1229 *
1230 * You must hold the module_mutex.
1231 */
verify_exported_symbols(struct module * mod)1232 static int verify_exported_symbols(struct module *mod)
1233 {
1234 unsigned int i;
1235 const struct kernel_symbol *s;
1236 struct {
1237 const struct kernel_symbol *sym;
1238 unsigned int num;
1239 } arr[] = {
1240 { mod->syms, mod->num_syms },
1241 { mod->gpl_syms, mod->num_gpl_syms },
1242 };
1243
1244 for (i = 0; i < ARRAY_SIZE(arr); i++) {
1245 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1246 struct find_symbol_arg fsa = {
1247 .name = kernel_symbol_name(s),
1248 .gplok = true,
1249 };
1250 if (find_symbol(&fsa)) {
1251 pr_err("%s: exports duplicate symbol %s"
1252 " (owned by %s)\n",
1253 mod->name, kernel_symbol_name(s),
1254 module_name(fsa.owner));
1255 return -ENOEXEC;
1256 }
1257 }
1258 }
1259 return 0;
1260 }
1261
ignore_undef_symbol(Elf_Half emachine,const char * name)1262 static bool ignore_undef_symbol(Elf_Half emachine, const char *name)
1263 {
1264 /*
1265 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as
1266 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64.
1267 * i386 has a similar problem but may not deserve a fix.
1268 *
1269 * If we ever have to ignore many symbols, consider refactoring the code to
1270 * only warn if referenced by a relocation.
1271 */
1272 if (emachine == EM_386 || emachine == EM_X86_64)
1273 return !strcmp(name, "_GLOBAL_OFFSET_TABLE_");
1274 return false;
1275 }
1276
1277 /* Change all symbols so that st_value encodes the pointer directly. */
simplify_symbols(struct module * mod,const struct load_info * info)1278 static int simplify_symbols(struct module *mod, const struct load_info *info)
1279 {
1280 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
1281 Elf_Sym *sym = (void *)symsec->sh_addr;
1282 unsigned long secbase;
1283 unsigned int i;
1284 int ret = 0;
1285 const struct kernel_symbol *ksym;
1286
1287 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
1288 const char *name = info->strtab + sym[i].st_name;
1289
1290 switch (sym[i].st_shndx) {
1291 case SHN_COMMON:
1292 /* Ignore common symbols */
1293 if (!strncmp(name, "__gnu_lto", 9))
1294 break;
1295
1296 /*
1297 * We compiled with -fno-common. These are not
1298 * supposed to happen.
1299 */
1300 pr_debug("Common symbol: %s\n", name);
1301 pr_warn("%s: please compile with -fno-common\n",
1302 mod->name);
1303 ret = -ENOEXEC;
1304 break;
1305
1306 case SHN_ABS:
1307 /* Don't need to do anything */
1308 pr_debug("Absolute symbol: 0x%08lx\n",
1309 (long)sym[i].st_value);
1310 break;
1311
1312 case SHN_LIVEPATCH:
1313 /* Livepatch symbols are resolved by livepatch */
1314 break;
1315
1316 case SHN_UNDEF:
1317 ksym = resolve_symbol_wait(mod, info, name);
1318 /* Ok if resolved. */
1319 if (ksym && !IS_ERR(ksym)) {
1320 sym[i].st_value = kernel_symbol_value(ksym);
1321 break;
1322 }
1323
1324 /* Ok if weak or ignored. */
1325 if (!ksym &&
1326 (ELF_ST_BIND(sym[i].st_info) == STB_WEAK ||
1327 ignore_undef_symbol(info->hdr->e_machine, name)))
1328 break;
1329
1330 ret = PTR_ERR(ksym) ?: -ENOENT;
1331 pr_warn("%s: Unknown symbol %s (err %d)\n",
1332 mod->name, name, ret);
1333 break;
1334
1335 default:
1336 /* Divert to percpu allocation if a percpu var. */
1337 if (sym[i].st_shndx == info->index.pcpu)
1338 secbase = (unsigned long)mod_percpu(mod);
1339 else
1340 secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
1341 sym[i].st_value += secbase;
1342 break;
1343 }
1344 }
1345
1346 return ret;
1347 }
1348
apply_relocations(struct module * mod,const struct load_info * info)1349 static int apply_relocations(struct module *mod, const struct load_info *info)
1350 {
1351 unsigned int i;
1352 int err = 0;
1353
1354 /* Now do relocations. */
1355 for (i = 1; i < info->hdr->e_shnum; i++) {
1356 unsigned int infosec = info->sechdrs[i].sh_info;
1357
1358 /* Not a valid relocation section? */
1359 if (infosec >= info->hdr->e_shnum)
1360 continue;
1361
1362 /* Don't bother with non-allocated sections */
1363 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
1364 continue;
1365
1366 if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
1367 err = klp_apply_section_relocs(mod, info->sechdrs,
1368 info->secstrings,
1369 info->strtab,
1370 info->index.sym, i,
1371 NULL);
1372 else if (info->sechdrs[i].sh_type == SHT_REL)
1373 err = apply_relocate(info->sechdrs, info->strtab,
1374 info->index.sym, i, mod);
1375 else if (info->sechdrs[i].sh_type == SHT_RELA)
1376 err = apply_relocate_add(info->sechdrs, info->strtab,
1377 info->index.sym, i, mod);
1378 if (err < 0)
1379 break;
1380 }
1381 return err;
1382 }
1383
1384 /* Additional bytes needed by arch in front of individual sections */
arch_mod_section_prepend(struct module * mod,unsigned int section)1385 unsigned int __weak arch_mod_section_prepend(struct module *mod,
1386 unsigned int section)
1387 {
1388 /* default implementation just returns zero */
1389 return 0;
1390 }
1391
1392 /* Update size with this section: return offset. */
module_get_offset(struct module * mod,unsigned int * size,Elf_Shdr * sechdr,unsigned int section)1393 long module_get_offset(struct module *mod, unsigned int *size,
1394 Elf_Shdr *sechdr, unsigned int section)
1395 {
1396 long ret;
1397
1398 *size += arch_mod_section_prepend(mod, section);
1399 ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
1400 *size = ret + sechdr->sh_size;
1401 return ret;
1402 }
1403
module_init_layout_section(const char * sname)1404 static bool module_init_layout_section(const char *sname)
1405 {
1406 #ifndef CONFIG_MODULE_UNLOAD
1407 if (module_exit_section(sname))
1408 return true;
1409 #endif
1410 return module_init_section(sname);
1411 }
1412
1413 /*
1414 * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
1415 * might -- code, read-only data, read-write data, small data. Tally
1416 * sizes, and place the offsets into sh_entsize fields: high bit means it
1417 * belongs in init.
1418 */
layout_sections(struct module * mod,struct load_info * info)1419 static void layout_sections(struct module *mod, struct load_info *info)
1420 {
1421 static unsigned long const masks[][2] = {
1422 /*
1423 * NOTE: all executable code must be the first section
1424 * in this array; otherwise modify the text_size
1425 * finder in the two loops below
1426 */
1427 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
1428 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
1429 { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
1430 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
1431 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
1432 };
1433 unsigned int m, i;
1434
1435 for (i = 0; i < info->hdr->e_shnum; i++)
1436 info->sechdrs[i].sh_entsize = ~0UL;
1437
1438 pr_debug("Core section allocation order:\n");
1439 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1440 for (i = 0; i < info->hdr->e_shnum; ++i) {
1441 Elf_Shdr *s = &info->sechdrs[i];
1442 const char *sname = info->secstrings + s->sh_name;
1443 unsigned int *sizep;
1444
1445 if ((s->sh_flags & masks[m][0]) != masks[m][0]
1446 || (s->sh_flags & masks[m][1])
1447 || s->sh_entsize != ~0UL
1448 || module_init_layout_section(sname))
1449 continue;
1450 sizep = m ? &mod->data_layout.size : &mod->core_layout.size;
1451 s->sh_entsize = module_get_offset(mod, sizep, s, i);
1452 pr_debug("\t%s\n", sname);
1453 }
1454 switch (m) {
1455 case 0: /* executable */
1456 mod->core_layout.size = strict_align(mod->core_layout.size);
1457 mod->core_layout.text_size = mod->core_layout.size;
1458 break;
1459 case 1: /* RO: text and ro-data */
1460 mod->data_layout.size = strict_align(mod->data_layout.size);
1461 mod->data_layout.ro_size = mod->data_layout.size;
1462 break;
1463 case 2: /* RO after init */
1464 mod->data_layout.size = strict_align(mod->data_layout.size);
1465 mod->data_layout.ro_after_init_size = mod->data_layout.size;
1466 break;
1467 case 4: /* whole core */
1468 mod->data_layout.size = strict_align(mod->data_layout.size);
1469 break;
1470 }
1471 }
1472
1473 pr_debug("Init section allocation order:\n");
1474 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1475 for (i = 0; i < info->hdr->e_shnum; ++i) {
1476 Elf_Shdr *s = &info->sechdrs[i];
1477 const char *sname = info->secstrings + s->sh_name;
1478
1479 if ((s->sh_flags & masks[m][0]) != masks[m][0]
1480 || (s->sh_flags & masks[m][1])
1481 || s->sh_entsize != ~0UL
1482 || !module_init_layout_section(sname))
1483 continue;
1484 s->sh_entsize = (module_get_offset(mod, &mod->init_layout.size, s, i)
1485 | INIT_OFFSET_MASK);
1486 pr_debug("\t%s\n", sname);
1487 }
1488 switch (m) {
1489 case 0: /* executable */
1490 mod->init_layout.size = strict_align(mod->init_layout.size);
1491 mod->init_layout.text_size = mod->init_layout.size;
1492 break;
1493 case 1: /* RO: text and ro-data */
1494 mod->init_layout.size = strict_align(mod->init_layout.size);
1495 mod->init_layout.ro_size = mod->init_layout.size;
1496 break;
1497 case 2:
1498 /*
1499 * RO after init doesn't apply to init_layout (only
1500 * core_layout), so it just takes the value of ro_size.
1501 */
1502 mod->init_layout.ro_after_init_size = mod->init_layout.ro_size;
1503 break;
1504 case 4: /* whole init */
1505 mod->init_layout.size = strict_align(mod->init_layout.size);
1506 break;
1507 }
1508 }
1509 }
1510
set_license(struct module * mod,const char * license)1511 static void set_license(struct module *mod, const char *license)
1512 {
1513 if (!license)
1514 license = "unspecified";
1515
1516 if (!license_is_gpl_compatible(license)) {
1517 if (!test_taint(TAINT_PROPRIETARY_MODULE))
1518 pr_warn("%s: module license '%s' taints kernel.\n",
1519 mod->name, license);
1520 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
1521 LOCKDEP_NOW_UNRELIABLE);
1522 }
1523 }
1524
1525 /* Parse tag=value strings from .modinfo section */
next_string(char * string,unsigned long * secsize)1526 static char *next_string(char *string, unsigned long *secsize)
1527 {
1528 /* Skip non-zero chars */
1529 while (string[0]) {
1530 string++;
1531 if ((*secsize)-- <= 1)
1532 return NULL;
1533 }
1534
1535 /* Skip any zero padding. */
1536 while (!string[0]) {
1537 string++;
1538 if ((*secsize)-- <= 1)
1539 return NULL;
1540 }
1541 return string;
1542 }
1543
get_next_modinfo(const struct load_info * info,const char * tag,char * prev)1544 static char *get_next_modinfo(const struct load_info *info, const char *tag,
1545 char *prev)
1546 {
1547 char *p;
1548 unsigned int taglen = strlen(tag);
1549 Elf_Shdr *infosec = &info->sechdrs[info->index.info];
1550 unsigned long size = infosec->sh_size;
1551
1552 /*
1553 * get_modinfo() calls made before rewrite_section_headers()
1554 * must use sh_offset, as sh_addr isn't set!
1555 */
1556 char *modinfo = (char *)info->hdr + infosec->sh_offset;
1557
1558 if (prev) {
1559 size -= prev - modinfo;
1560 modinfo = next_string(prev, &size);
1561 }
1562
1563 for (p = modinfo; p; p = next_string(p, &size)) {
1564 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
1565 return p + taglen + 1;
1566 }
1567 return NULL;
1568 }
1569
get_modinfo(const struct load_info * info,const char * tag)1570 static char *get_modinfo(const struct load_info *info, const char *tag)
1571 {
1572 return get_next_modinfo(info, tag, NULL);
1573 }
1574
setup_modinfo(struct module * mod,struct load_info * info)1575 static void setup_modinfo(struct module *mod, struct load_info *info)
1576 {
1577 struct module_attribute *attr;
1578 int i;
1579
1580 for (i = 0; (attr = modinfo_attrs[i]); i++) {
1581 if (attr->setup)
1582 attr->setup(mod, get_modinfo(info, attr->attr.name));
1583 }
1584 }
1585
free_modinfo(struct module * mod)1586 static void free_modinfo(struct module *mod)
1587 {
1588 struct module_attribute *attr;
1589 int i;
1590
1591 for (i = 0; (attr = modinfo_attrs[i]); i++) {
1592 if (attr->free)
1593 attr->free(mod);
1594 }
1595 }
1596
dynamic_debug_setup(struct module * mod,struct _ddebug_info * dyndbg)1597 static void dynamic_debug_setup(struct module *mod, struct _ddebug_info *dyndbg)
1598 {
1599 if (!dyndbg->num_descs)
1600 return;
1601 ddebug_add_module(dyndbg, mod->name);
1602 }
1603
dynamic_debug_remove(struct module * mod,struct _ddebug_info * dyndbg)1604 static void dynamic_debug_remove(struct module *mod, struct _ddebug_info *dyndbg)
1605 {
1606 if (dyndbg->num_descs)
1607 ddebug_remove_module(mod->name);
1608 }
1609
module_alloc(unsigned long size)1610 void * __weak module_alloc(unsigned long size)
1611 {
1612 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
1613 GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
1614 NUMA_NO_NODE, __builtin_return_address(0));
1615 }
1616
module_init_section(const char * name)1617 bool __weak module_init_section(const char *name)
1618 {
1619 return strstarts(name, ".init");
1620 }
1621
module_exit_section(const char * name)1622 bool __weak module_exit_section(const char *name)
1623 {
1624 return strstarts(name, ".exit");
1625 }
1626
validate_section_offset(struct load_info * info,Elf_Shdr * shdr)1627 static int validate_section_offset(struct load_info *info, Elf_Shdr *shdr)
1628 {
1629 #if defined(CONFIG_64BIT)
1630 unsigned long long secend;
1631 #else
1632 unsigned long secend;
1633 #endif
1634
1635 /*
1636 * Check for both overflow and offset/size being
1637 * too large.
1638 */
1639 secend = shdr->sh_offset + shdr->sh_size;
1640 if (secend < shdr->sh_offset || secend > info->len)
1641 return -ENOEXEC;
1642
1643 return 0;
1644 }
1645
1646 /*
1647 * Sanity checks against invalid binaries, wrong arch, weird elf version.
1648 *
1649 * Also do basic validity checks against section offsets and sizes, the
1650 * section name string table, and the indices used for it (sh_name).
1651 */
elf_validity_check(struct load_info * info)1652 static int elf_validity_check(struct load_info *info)
1653 {
1654 unsigned int i;
1655 Elf_Shdr *shdr, *strhdr;
1656 int err;
1657
1658 if (info->len < sizeof(*(info->hdr))) {
1659 pr_err("Invalid ELF header len %lu\n", info->len);
1660 goto no_exec;
1661 }
1662
1663 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0) {
1664 pr_err("Invalid ELF header magic: != %s\n", ELFMAG);
1665 goto no_exec;
1666 }
1667 if (info->hdr->e_type != ET_REL) {
1668 pr_err("Invalid ELF header type: %u != %u\n",
1669 info->hdr->e_type, ET_REL);
1670 goto no_exec;
1671 }
1672 if (!elf_check_arch(info->hdr)) {
1673 pr_err("Invalid architecture in ELF header: %u\n",
1674 info->hdr->e_machine);
1675 goto no_exec;
1676 }
1677 if (info->hdr->e_shentsize != sizeof(Elf_Shdr)) {
1678 pr_err("Invalid ELF section header size\n");
1679 goto no_exec;
1680 }
1681
1682 /*
1683 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is
1684 * known and small. So e_shnum * sizeof(Elf_Shdr)
1685 * will not overflow unsigned long on any platform.
1686 */
1687 if (info->hdr->e_shoff >= info->len
1688 || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
1689 info->len - info->hdr->e_shoff)) {
1690 pr_err("Invalid ELF section header overflow\n");
1691 goto no_exec;
1692 }
1693
1694 info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
1695
1696 /*
1697 * Verify if the section name table index is valid.
1698 */
1699 if (info->hdr->e_shstrndx == SHN_UNDEF
1700 || info->hdr->e_shstrndx >= info->hdr->e_shnum) {
1701 pr_err("Invalid ELF section name index: %d || e_shstrndx (%d) >= e_shnum (%d)\n",
1702 info->hdr->e_shstrndx, info->hdr->e_shstrndx,
1703 info->hdr->e_shnum);
1704 goto no_exec;
1705 }
1706
1707 strhdr = &info->sechdrs[info->hdr->e_shstrndx];
1708 err = validate_section_offset(info, strhdr);
1709 if (err < 0) {
1710 pr_err("Invalid ELF section hdr(type %u)\n", strhdr->sh_type);
1711 return err;
1712 }
1713
1714 /*
1715 * The section name table must be NUL-terminated, as required
1716 * by the spec. This makes strcmp and pr_* calls that access
1717 * strings in the section safe.
1718 */
1719 info->secstrings = (void *)info->hdr + strhdr->sh_offset;
1720 if (strhdr->sh_size == 0) {
1721 pr_err("empty section name table\n");
1722 goto no_exec;
1723 }
1724 if (info->secstrings[strhdr->sh_size - 1] != '\0') {
1725 pr_err("ELF Spec violation: section name table isn't null terminated\n");
1726 goto no_exec;
1727 }
1728
1729 /*
1730 * The code assumes that section 0 has a length of zero and
1731 * an addr of zero, so check for it.
1732 */
1733 if (info->sechdrs[0].sh_type != SHT_NULL
1734 || info->sechdrs[0].sh_size != 0
1735 || info->sechdrs[0].sh_addr != 0) {
1736 pr_err("ELF Spec violation: section 0 type(%d)!=SH_NULL or non-zero len or addr\n",
1737 info->sechdrs[0].sh_type);
1738 goto no_exec;
1739 }
1740
1741 for (i = 1; i < info->hdr->e_shnum; i++) {
1742 shdr = &info->sechdrs[i];
1743 switch (shdr->sh_type) {
1744 case SHT_NULL:
1745 case SHT_NOBITS:
1746 continue;
1747 case SHT_SYMTAB:
1748 if (shdr->sh_link == SHN_UNDEF
1749 || shdr->sh_link >= info->hdr->e_shnum) {
1750 pr_err("Invalid ELF sh_link!=SHN_UNDEF(%d) or (sh_link(%d) >= hdr->e_shnum(%d)\n",
1751 shdr->sh_link, shdr->sh_link,
1752 info->hdr->e_shnum);
1753 goto no_exec;
1754 }
1755 fallthrough;
1756 default:
1757 err = validate_section_offset(info, shdr);
1758 if (err < 0) {
1759 pr_err("Invalid ELF section in module (section %u type %u)\n",
1760 i, shdr->sh_type);
1761 return err;
1762 }
1763
1764 if (shdr->sh_flags & SHF_ALLOC) {
1765 if (shdr->sh_name >= strhdr->sh_size) {
1766 pr_err("Invalid ELF section name in module (section %u type %u)\n",
1767 i, shdr->sh_type);
1768 return -ENOEXEC;
1769 }
1770 }
1771 break;
1772 }
1773 }
1774
1775 return 0;
1776
1777 no_exec:
1778 return -ENOEXEC;
1779 }
1780
1781 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
1782
copy_chunked_from_user(void * dst,const void __user * usrc,unsigned long len)1783 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
1784 {
1785 do {
1786 unsigned long n = min(len, COPY_CHUNK_SIZE);
1787
1788 if (copy_from_user(dst, usrc, n) != 0)
1789 return -EFAULT;
1790 cond_resched();
1791 dst += n;
1792 usrc += n;
1793 len -= n;
1794 } while (len);
1795 return 0;
1796 }
1797
check_modinfo_livepatch(struct module * mod,struct load_info * info)1798 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
1799 {
1800 if (!get_modinfo(info, "livepatch"))
1801 /* Nothing more to do */
1802 return 0;
1803
1804 if (set_livepatch_module(mod)) {
1805 add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
1806 pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
1807 mod->name);
1808 return 0;
1809 }
1810
1811 pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
1812 mod->name);
1813 return -ENOEXEC;
1814 }
1815
check_modinfo_retpoline(struct module * mod,struct load_info * info)1816 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
1817 {
1818 if (retpoline_module_ok(get_modinfo(info, "retpoline")))
1819 return;
1820
1821 pr_warn("%s: loading module not compiled with retpoline compiler.\n",
1822 mod->name);
1823 }
1824
1825 /* Sets info->hdr and info->len. */
copy_module_from_user(const void __user * umod,unsigned long len,struct load_info * info)1826 static int copy_module_from_user(const void __user *umod, unsigned long len,
1827 struct load_info *info)
1828 {
1829 int err;
1830
1831 info->len = len;
1832 if (info->len < sizeof(*(info->hdr)))
1833 return -ENOEXEC;
1834
1835 err = security_kernel_load_data(LOADING_MODULE, true);
1836 if (err)
1837 return err;
1838
1839 /* Suck in entire file: we'll want most of it. */
1840 info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN);
1841 if (!info->hdr)
1842 return -ENOMEM;
1843
1844 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
1845 err = -EFAULT;
1846 goto out;
1847 }
1848
1849 err = security_kernel_post_load_data((char *)info->hdr, info->len,
1850 LOADING_MODULE, "init_module");
1851 out:
1852 if (err)
1853 vfree(info->hdr);
1854
1855 return err;
1856 }
1857
free_copy(struct load_info * info,int flags)1858 static void free_copy(struct load_info *info, int flags)
1859 {
1860 if (flags & MODULE_INIT_COMPRESSED_FILE)
1861 module_decompress_cleanup(info);
1862 else
1863 vfree(info->hdr);
1864 }
1865
rewrite_section_headers(struct load_info * info,int flags)1866 static int rewrite_section_headers(struct load_info *info, int flags)
1867 {
1868 unsigned int i;
1869
1870 /* This should always be true, but let's be sure. */
1871 info->sechdrs[0].sh_addr = 0;
1872
1873 for (i = 1; i < info->hdr->e_shnum; i++) {
1874 Elf_Shdr *shdr = &info->sechdrs[i];
1875
1876 /*
1877 * Mark all sections sh_addr with their address in the
1878 * temporary image.
1879 */
1880 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
1881
1882 }
1883
1884 /* Track but don't keep modinfo and version sections. */
1885 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
1886 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
1887
1888 return 0;
1889 }
1890
1891 /*
1892 * Set up our basic convenience variables (pointers to section headers,
1893 * search for module section index etc), and do some basic section
1894 * verification.
1895 *
1896 * Set info->mod to the temporary copy of the module in info->hdr. The final one
1897 * will be allocated in move_module().
1898 */
setup_load_info(struct load_info * info,int flags)1899 static int setup_load_info(struct load_info *info, int flags)
1900 {
1901 unsigned int i;
1902
1903 /* Try to find a name early so we can log errors with a module name */
1904 info->index.info = find_sec(info, ".modinfo");
1905 if (info->index.info)
1906 info->name = get_modinfo(info, "name");
1907
1908 /* Find internal symbols and strings. */
1909 for (i = 1; i < info->hdr->e_shnum; i++) {
1910 if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
1911 info->index.sym = i;
1912 info->index.str = info->sechdrs[i].sh_link;
1913 info->strtab = (char *)info->hdr
1914 + info->sechdrs[info->index.str].sh_offset;
1915 break;
1916 }
1917 }
1918
1919 if (info->index.sym == 0) {
1920 pr_warn("%s: module has no symbols (stripped?)\n",
1921 info->name ?: "(missing .modinfo section or name field)");
1922 return -ENOEXEC;
1923 }
1924
1925 info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
1926 if (!info->index.mod) {
1927 pr_warn("%s: No module found in object\n",
1928 info->name ?: "(missing .modinfo section or name field)");
1929 return -ENOEXEC;
1930 }
1931 /* This is temporary: point mod into copy of data. */
1932 info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset;
1933
1934 /*
1935 * If we didn't load the .modinfo 'name' field earlier, fall back to
1936 * on-disk struct mod 'name' field.
1937 */
1938 if (!info->name)
1939 info->name = info->mod->name;
1940
1941 if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
1942 info->index.vers = 0; /* Pretend no __versions section! */
1943 else
1944 info->index.vers = find_sec(info, "__versions");
1945
1946 info->index.pcpu = find_pcpusec(info);
1947
1948 return 0;
1949 }
1950
check_modinfo(struct module * mod,struct load_info * info,int flags)1951 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
1952 {
1953 const char *modmagic = get_modinfo(info, "vermagic");
1954 int err;
1955
1956 if (flags & MODULE_INIT_IGNORE_VERMAGIC)
1957 modmagic = NULL;
1958
1959 /* This is allowed: modprobe --force will invalidate it. */
1960 if (!modmagic) {
1961 err = try_to_force_load(mod, "bad vermagic");
1962 if (err)
1963 return err;
1964 } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
1965 pr_err("%s: version magic '%s' should be '%s'\n",
1966 info->name, modmagic, vermagic);
1967 return -ENOEXEC;
1968 }
1969
1970 if (!get_modinfo(info, "intree")) {
1971 if (!test_taint(TAINT_OOT_MODULE))
1972 pr_warn("%s: loading out-of-tree module taints kernel.\n",
1973 mod->name);
1974 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
1975 }
1976
1977 check_modinfo_retpoline(mod, info);
1978
1979 if (get_modinfo(info, "staging")) {
1980 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
1981 pr_warn("%s: module is from the staging directory, the quality "
1982 "is unknown, you have been warned.\n", mod->name);
1983 }
1984
1985 err = check_modinfo_livepatch(mod, info);
1986 if (err)
1987 return err;
1988
1989 /* Set up license info based on the info section */
1990 set_license(mod, get_modinfo(info, "license"));
1991
1992 if (get_modinfo(info, "test")) {
1993 if (!test_taint(TAINT_TEST))
1994 pr_warn("%s: loading test module taints kernel.\n",
1995 mod->name);
1996 add_taint_module(mod, TAINT_TEST, LOCKDEP_STILL_OK);
1997 }
1998
1999 return 0;
2000 }
2001
find_module_sections(struct module * mod,struct load_info * info)2002 static int find_module_sections(struct module *mod, struct load_info *info)
2003 {
2004 mod->kp = section_objs(info, "__param",
2005 sizeof(*mod->kp), &mod->num_kp);
2006 mod->syms = section_objs(info, "__ksymtab",
2007 sizeof(*mod->syms), &mod->num_syms);
2008 mod->crcs = section_addr(info, "__kcrctab");
2009 mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2010 sizeof(*mod->gpl_syms),
2011 &mod->num_gpl_syms);
2012 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2013
2014 #ifdef CONFIG_CONSTRUCTORS
2015 mod->ctors = section_objs(info, ".ctors",
2016 sizeof(*mod->ctors), &mod->num_ctors);
2017 if (!mod->ctors)
2018 mod->ctors = section_objs(info, ".init_array",
2019 sizeof(*mod->ctors), &mod->num_ctors);
2020 else if (find_sec(info, ".init_array")) {
2021 /*
2022 * This shouldn't happen with same compiler and binutils
2023 * building all parts of the module.
2024 */
2025 pr_warn("%s: has both .ctors and .init_array.\n",
2026 mod->name);
2027 return -EINVAL;
2028 }
2029 #endif
2030
2031 mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1,
2032 &mod->noinstr_text_size);
2033
2034 #ifdef CONFIG_TRACEPOINTS
2035 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2036 sizeof(*mod->tracepoints_ptrs),
2037 &mod->num_tracepoints);
2038 #endif
2039 #ifdef CONFIG_TREE_SRCU
2040 mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs",
2041 sizeof(*mod->srcu_struct_ptrs),
2042 &mod->num_srcu_structs);
2043 #endif
2044 #ifdef CONFIG_BPF_EVENTS
2045 mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
2046 sizeof(*mod->bpf_raw_events),
2047 &mod->num_bpf_raw_events);
2048 #endif
2049 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
2050 mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size);
2051 #endif
2052 #ifdef CONFIG_JUMP_LABEL
2053 mod->jump_entries = section_objs(info, "__jump_table",
2054 sizeof(*mod->jump_entries),
2055 &mod->num_jump_entries);
2056 #endif
2057 #ifdef CONFIG_EVENT_TRACING
2058 mod->trace_events = section_objs(info, "_ftrace_events",
2059 sizeof(*mod->trace_events),
2060 &mod->num_trace_events);
2061 mod->trace_evals = section_objs(info, "_ftrace_eval_map",
2062 sizeof(*mod->trace_evals),
2063 &mod->num_trace_evals);
2064 #endif
2065 #ifdef CONFIG_TRACING
2066 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2067 sizeof(*mod->trace_bprintk_fmt_start),
2068 &mod->num_trace_bprintk_fmt);
2069 #endif
2070 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
2071 /* sechdrs[0].sh_size is always zero */
2072 mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION,
2073 sizeof(*mod->ftrace_callsites),
2074 &mod->num_ftrace_callsites);
2075 #endif
2076 #ifdef CONFIG_FUNCTION_ERROR_INJECTION
2077 mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
2078 sizeof(*mod->ei_funcs),
2079 &mod->num_ei_funcs);
2080 #endif
2081 #ifdef CONFIG_KPROBES
2082 mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1,
2083 &mod->kprobes_text_size);
2084 mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist",
2085 sizeof(unsigned long),
2086 &mod->num_kprobe_blacklist);
2087 #endif
2088 #ifdef CONFIG_PRINTK_INDEX
2089 mod->printk_index_start = section_objs(info, ".printk_index",
2090 sizeof(*mod->printk_index_start),
2091 &mod->printk_index_size);
2092 #endif
2093 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE
2094 mod->static_call_sites = section_objs(info, ".static_call_sites",
2095 sizeof(*mod->static_call_sites),
2096 &mod->num_static_call_sites);
2097 #endif
2098 #if IS_ENABLED(CONFIG_KUNIT)
2099 mod->kunit_suites = section_objs(info, ".kunit_test_suites",
2100 sizeof(*mod->kunit_suites),
2101 &mod->num_kunit_suites);
2102 #endif
2103
2104 mod->extable = section_objs(info, "__ex_table",
2105 sizeof(*mod->extable), &mod->num_exentries);
2106
2107 if (section_addr(info, "__obsparm"))
2108 pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
2109
2110 info->dyndbg.descs = section_objs(info, "__dyndbg",
2111 sizeof(*info->dyndbg.descs), &info->dyndbg.num_descs);
2112 info->dyndbg.classes = section_objs(info, "__dyndbg_classes",
2113 sizeof(*info->dyndbg.classes), &info->dyndbg.num_classes);
2114
2115 return 0;
2116 }
2117
move_module(struct module * mod,struct load_info * info)2118 static int move_module(struct module *mod, struct load_info *info)
2119 {
2120 int i;
2121 void *ptr;
2122
2123 /* Do the allocs. */
2124 ptr = module_alloc(mod->core_layout.size);
2125 /*
2126 * The pointer to this block is stored in the module structure
2127 * which is inside the block. Just mark it as not being a
2128 * leak.
2129 */
2130 kmemleak_not_leak(ptr);
2131 if (!ptr)
2132 return -ENOMEM;
2133
2134 memset(ptr, 0, mod->core_layout.size);
2135 mod->core_layout.base = ptr;
2136
2137 if (mod->init_layout.size) {
2138 ptr = module_alloc(mod->init_layout.size);
2139 /*
2140 * The pointer to this block is stored in the module structure
2141 * which is inside the block. This block doesn't need to be
2142 * scanned as it contains data and code that will be freed
2143 * after the module is initialized.
2144 */
2145 kmemleak_ignore(ptr);
2146 if (!ptr) {
2147 module_memfree(mod->core_layout.base);
2148 return -ENOMEM;
2149 }
2150 memset(ptr, 0, mod->init_layout.size);
2151 mod->init_layout.base = ptr;
2152 } else
2153 mod->init_layout.base = NULL;
2154
2155 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
2156 /* Do the allocs. */
2157 ptr = vzalloc(mod->data_layout.size);
2158 /*
2159 * The pointer to this block is stored in the module structure
2160 * which is inside the block. Just mark it as not being a
2161 * leak.
2162 */
2163 kmemleak_not_leak(ptr);
2164 if (!ptr) {
2165 module_memfree(mod->core_layout.base);
2166 module_memfree(mod->init_layout.base);
2167 return -ENOMEM;
2168 }
2169
2170 mod->data_layout.base = ptr;
2171 #endif
2172 /* Transfer each section which specifies SHF_ALLOC */
2173 pr_debug("final section addresses:\n");
2174 for (i = 0; i < info->hdr->e_shnum; i++) {
2175 void *dest;
2176 Elf_Shdr *shdr = &info->sechdrs[i];
2177
2178 if (!(shdr->sh_flags & SHF_ALLOC))
2179 continue;
2180
2181 if (shdr->sh_entsize & INIT_OFFSET_MASK)
2182 dest = mod->init_layout.base
2183 + (shdr->sh_entsize & ~INIT_OFFSET_MASK);
2184 else if (!(shdr->sh_flags & SHF_EXECINSTR))
2185 dest = mod->data_layout.base + shdr->sh_entsize;
2186 else
2187 dest = mod->core_layout.base + shdr->sh_entsize;
2188
2189 if (shdr->sh_type != SHT_NOBITS)
2190 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2191 /* Update sh_addr to point to copy in image. */
2192 shdr->sh_addr = (unsigned long)dest;
2193 pr_debug("\t0x%lx %s\n",
2194 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
2195 }
2196
2197 return 0;
2198 }
2199
check_module_license_and_versions(struct module * mod)2200 static int check_module_license_and_versions(struct module *mod)
2201 {
2202 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
2203
2204 /*
2205 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2206 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2207 * using GPL-only symbols it needs.
2208 */
2209 if (strcmp(mod->name, "ndiswrapper") == 0)
2210 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
2211
2212 /* driverloader was caught wrongly pretending to be under GPL */
2213 if (strcmp(mod->name, "driverloader") == 0)
2214 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2215 LOCKDEP_NOW_UNRELIABLE);
2216
2217 /* lve claims to be GPL but upstream won't provide source */
2218 if (strcmp(mod->name, "lve") == 0)
2219 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2220 LOCKDEP_NOW_UNRELIABLE);
2221
2222 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
2223 pr_warn("%s: module license taints kernel.\n", mod->name);
2224
2225 #ifdef CONFIG_MODVERSIONS
2226 if ((mod->num_syms && !mod->crcs) ||
2227 (mod->num_gpl_syms && !mod->gpl_crcs)) {
2228 return try_to_force_load(mod,
2229 "no versions for exported symbols");
2230 }
2231 #endif
2232 return 0;
2233 }
2234
flush_module_icache(const struct module * mod)2235 static void flush_module_icache(const struct module *mod)
2236 {
2237 /*
2238 * Flush the instruction cache, since we've played with text.
2239 * Do it before processing of module parameters, so the module
2240 * can provide parameter accessor functions of its own.
2241 */
2242 if (mod->init_layout.base)
2243 flush_icache_range((unsigned long)mod->init_layout.base,
2244 (unsigned long)mod->init_layout.base
2245 + mod->init_layout.size);
2246 flush_icache_range((unsigned long)mod->core_layout.base,
2247 (unsigned long)mod->core_layout.base + mod->core_layout.size);
2248 }
2249
module_frob_arch_sections(Elf_Ehdr * hdr,Elf_Shdr * sechdrs,char * secstrings,struct module * mod)2250 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
2251 Elf_Shdr *sechdrs,
2252 char *secstrings,
2253 struct module *mod)
2254 {
2255 return 0;
2256 }
2257
2258 /* module_blacklist is a comma-separated list of module names */
2259 static char *module_blacklist;
blacklisted(const char * module_name)2260 static bool blacklisted(const char *module_name)
2261 {
2262 const char *p;
2263 size_t len;
2264
2265 if (!module_blacklist)
2266 return false;
2267
2268 for (p = module_blacklist; *p; p += len) {
2269 len = strcspn(p, ",");
2270 if (strlen(module_name) == len && !memcmp(module_name, p, len))
2271 return true;
2272 if (p[len] == ',')
2273 len++;
2274 }
2275 return false;
2276 }
2277 core_param(module_blacklist, module_blacklist, charp, 0400);
2278
layout_and_allocate(struct load_info * info,int flags)2279 static struct module *layout_and_allocate(struct load_info *info, int flags)
2280 {
2281 struct module *mod;
2282 unsigned int ndx;
2283 int err;
2284
2285 err = check_modinfo(info->mod, info, flags);
2286 if (err)
2287 return ERR_PTR(err);
2288
2289 /* Allow arches to frob section contents and sizes. */
2290 err = module_frob_arch_sections(info->hdr, info->sechdrs,
2291 info->secstrings, info->mod);
2292 if (err < 0)
2293 return ERR_PTR(err);
2294
2295 err = module_enforce_rwx_sections(info->hdr, info->sechdrs,
2296 info->secstrings, info->mod);
2297 if (err < 0)
2298 return ERR_PTR(err);
2299
2300 /* We will do a special allocation for per-cpu sections later. */
2301 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
2302
2303 /*
2304 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
2305 * layout_sections() can put it in the right place.
2306 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
2307 */
2308 ndx = find_sec(info, ".data..ro_after_init");
2309 if (ndx)
2310 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
2311 /*
2312 * Mark the __jump_table section as ro_after_init as well: these data
2313 * structures are never modified, with the exception of entries that
2314 * refer to code in the __init section, which are annotated as such
2315 * at module load time.
2316 */
2317 ndx = find_sec(info, "__jump_table");
2318 if (ndx)
2319 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
2320
2321 /*
2322 * Determine total sizes, and put offsets in sh_entsize. For now
2323 * this is done generically; there doesn't appear to be any
2324 * special cases for the architectures.
2325 */
2326 layout_sections(info->mod, info);
2327 layout_symtab(info->mod, info);
2328
2329 /* Allocate and move to the final place */
2330 err = move_module(info->mod, info);
2331 if (err)
2332 return ERR_PTR(err);
2333
2334 /* Module has been copied to its final place now: return it. */
2335 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2336 kmemleak_load_module(mod, info);
2337 return mod;
2338 }
2339
2340 /* mod is no longer valid after this! */
module_deallocate(struct module * mod,struct load_info * info)2341 static void module_deallocate(struct module *mod, struct load_info *info)
2342 {
2343 percpu_modfree(mod);
2344 module_arch_freeing_init(mod);
2345 module_memfree(mod->init_layout.base);
2346 module_memfree(mod->core_layout.base);
2347 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
2348 vfree(mod->data_layout.base);
2349 #endif
2350 }
2351
module_finalize(const Elf_Ehdr * hdr,const Elf_Shdr * sechdrs,struct module * me)2352 int __weak module_finalize(const Elf_Ehdr *hdr,
2353 const Elf_Shdr *sechdrs,
2354 struct module *me)
2355 {
2356 return 0;
2357 }
2358
post_relocation(struct module * mod,const struct load_info * info)2359 static int post_relocation(struct module *mod, const struct load_info *info)
2360 {
2361 /* Sort exception table now relocations are done. */
2362 sort_extable(mod->extable, mod->extable + mod->num_exentries);
2363
2364 /* Copy relocated percpu area over. */
2365 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
2366 info->sechdrs[info->index.pcpu].sh_size);
2367
2368 /* Setup kallsyms-specific fields. */
2369 add_kallsyms(mod, info);
2370
2371 /* Arch-specific module finalizing. */
2372 return module_finalize(info->hdr, info->sechdrs, mod);
2373 }
2374
2375 /* Is this module of this name done loading? No locks held. */
finished_loading(const char * name)2376 static bool finished_loading(const char *name)
2377 {
2378 struct module *mod;
2379 bool ret;
2380
2381 /*
2382 * The module_mutex should not be a heavily contended lock;
2383 * if we get the occasional sleep here, we'll go an extra iteration
2384 * in the wait_event_interruptible(), which is harmless.
2385 */
2386 sched_annotate_sleep();
2387 mutex_lock(&module_mutex);
2388 mod = find_module_all(name, strlen(name), true);
2389 ret = !mod || mod->state == MODULE_STATE_LIVE
2390 || mod->state == MODULE_STATE_GOING;
2391 mutex_unlock(&module_mutex);
2392
2393 return ret;
2394 }
2395
2396 /* Call module constructors. */
do_mod_ctors(struct module * mod)2397 static void do_mod_ctors(struct module *mod)
2398 {
2399 #ifdef CONFIG_CONSTRUCTORS
2400 unsigned long i;
2401
2402 for (i = 0; i < mod->num_ctors; i++)
2403 mod->ctors[i]();
2404 #endif
2405 }
2406
2407 /* For freeing module_init on success, in case kallsyms traversing */
2408 struct mod_initfree {
2409 struct llist_node node;
2410 void *module_init;
2411 };
2412
do_free_init(struct work_struct * w)2413 static void do_free_init(struct work_struct *w)
2414 {
2415 struct llist_node *pos, *n, *list;
2416 struct mod_initfree *initfree;
2417
2418 list = llist_del_all(&init_free_list);
2419
2420 synchronize_rcu();
2421
2422 llist_for_each_safe(pos, n, list) {
2423 initfree = container_of(pos, struct mod_initfree, node);
2424 module_memfree(initfree->module_init);
2425 kfree(initfree);
2426 }
2427 }
2428
2429 #undef MODULE_PARAM_PREFIX
2430 #define MODULE_PARAM_PREFIX "module."
2431 /* Default value for module->async_probe_requested */
2432 static bool async_probe;
2433 module_param(async_probe, bool, 0644);
2434
2435 /*
2436 * This is where the real work happens.
2437 *
2438 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
2439 * helper command 'lx-symbols'.
2440 */
do_init_module(struct module * mod)2441 static noinline int do_init_module(struct module *mod)
2442 {
2443 int ret = 0;
2444 struct mod_initfree *freeinit;
2445
2446 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
2447 if (!freeinit) {
2448 ret = -ENOMEM;
2449 goto fail;
2450 }
2451 freeinit->module_init = mod->init_layout.base;
2452
2453 do_mod_ctors(mod);
2454 /* Start the module */
2455 if (mod->init != NULL)
2456 ret = do_one_initcall(mod->init);
2457 if (ret < 0) {
2458 goto fail_free_freeinit;
2459 }
2460 if (ret > 0) {
2461 pr_warn("%s: '%s'->init suspiciously returned %d, it should "
2462 "follow 0/-E convention\n"
2463 "%s: loading module anyway...\n",
2464 __func__, mod->name, ret, __func__);
2465 dump_stack();
2466 }
2467
2468 /* Now it's a first class citizen! */
2469 mod->state = MODULE_STATE_LIVE;
2470 blocking_notifier_call_chain(&module_notify_list,
2471 MODULE_STATE_LIVE, mod);
2472
2473 /* Delay uevent until module has finished its init routine */
2474 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
2475
2476 /*
2477 * We need to finish all async code before the module init sequence
2478 * is done. This has potential to deadlock if synchronous module
2479 * loading is requested from async (which is not allowed!).
2480 *
2481 * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous
2482 * request_module() from async workers") for more details.
2483 */
2484 if (!mod->async_probe_requested)
2485 async_synchronize_full();
2486
2487 ftrace_free_mem(mod, mod->init_layout.base, mod->init_layout.base +
2488 mod->init_layout.size);
2489 mutex_lock(&module_mutex);
2490 /* Drop initial reference. */
2491 module_put(mod);
2492 trim_init_extable(mod);
2493 #ifdef CONFIG_KALLSYMS
2494 /* Switch to core kallsyms now init is done: kallsyms may be walking! */
2495 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
2496 #endif
2497 module_enable_ro(mod, true);
2498 mod_tree_remove_init(mod);
2499 module_arch_freeing_init(mod);
2500 mod->init_layout.base = NULL;
2501 mod->init_layout.size = 0;
2502 mod->init_layout.ro_size = 0;
2503 mod->init_layout.ro_after_init_size = 0;
2504 mod->init_layout.text_size = 0;
2505 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
2506 /* .BTF is not SHF_ALLOC and will get removed, so sanitize pointer */
2507 mod->btf_data = NULL;
2508 #endif
2509 /*
2510 * We want to free module_init, but be aware that kallsyms may be
2511 * walking this with preempt disabled. In all the failure paths, we
2512 * call synchronize_rcu(), but we don't want to slow down the success
2513 * path. module_memfree() cannot be called in an interrupt, so do the
2514 * work and call synchronize_rcu() in a work queue.
2515 *
2516 * Note that module_alloc() on most architectures creates W+X page
2517 * mappings which won't be cleaned up until do_free_init() runs. Any
2518 * code such as mark_rodata_ro() which depends on those mappings to
2519 * be cleaned up needs to sync with the queued work - ie
2520 * rcu_barrier()
2521 */
2522 if (llist_add(&freeinit->node, &init_free_list))
2523 schedule_work(&init_free_wq);
2524
2525 mutex_unlock(&module_mutex);
2526 wake_up_all(&module_wq);
2527
2528 return 0;
2529
2530 fail_free_freeinit:
2531 kfree(freeinit);
2532 fail:
2533 /* Try to protect us from buggy refcounters. */
2534 mod->state = MODULE_STATE_GOING;
2535 synchronize_rcu();
2536 module_put(mod);
2537 blocking_notifier_call_chain(&module_notify_list,
2538 MODULE_STATE_GOING, mod);
2539 klp_module_going(mod);
2540 ftrace_release_mod(mod);
2541 free_module(mod);
2542 wake_up_all(&module_wq);
2543 return ret;
2544 }
2545
may_init_module(void)2546 static int may_init_module(void)
2547 {
2548 if (!capable(CAP_SYS_MODULE) || modules_disabled)
2549 return -EPERM;
2550
2551 return 0;
2552 }
2553
2554 /*
2555 * We try to place it in the list now to make sure it's unique before
2556 * we dedicate too many resources. In particular, temporary percpu
2557 * memory exhaustion.
2558 */
add_unformed_module(struct module * mod)2559 static int add_unformed_module(struct module *mod)
2560 {
2561 int err;
2562 struct module *old;
2563
2564 mod->state = MODULE_STATE_UNFORMED;
2565
2566 mutex_lock(&module_mutex);
2567 old = find_module_all(mod->name, strlen(mod->name), true);
2568 if (old != NULL) {
2569 if (old->state == MODULE_STATE_COMING
2570 || old->state == MODULE_STATE_UNFORMED) {
2571 /* Wait in case it fails to load. */
2572 mutex_unlock(&module_mutex);
2573 err = wait_event_interruptible(module_wq,
2574 finished_loading(mod->name));
2575 if (err)
2576 goto out_unlocked;
2577
2578 /* The module might have gone in the meantime. */
2579 mutex_lock(&module_mutex);
2580 old = find_module_all(mod->name, strlen(mod->name),
2581 true);
2582 }
2583
2584 /*
2585 * We are here only when the same module was being loaded. Do
2586 * not try to load it again right now. It prevents long delays
2587 * caused by serialized module load failures. It might happen
2588 * when more devices of the same type trigger load of
2589 * a particular module.
2590 */
2591 if (old && old->state == MODULE_STATE_LIVE)
2592 err = -EEXIST;
2593 else
2594 err = -EBUSY;
2595 goto out;
2596 }
2597 mod_update_bounds(mod);
2598 list_add_rcu(&mod->list, &modules);
2599 mod_tree_insert(mod);
2600 err = 0;
2601
2602 out:
2603 mutex_unlock(&module_mutex);
2604 out_unlocked:
2605 return err;
2606 }
2607
complete_formation(struct module * mod,struct load_info * info)2608 static int complete_formation(struct module *mod, struct load_info *info)
2609 {
2610 int err;
2611
2612 mutex_lock(&module_mutex);
2613
2614 /* Find duplicate symbols (must be called under lock). */
2615 err = verify_exported_symbols(mod);
2616 if (err < 0)
2617 goto out;
2618
2619 /* These rely on module_mutex for list integrity. */
2620 module_bug_finalize(info->hdr, info->sechdrs, mod);
2621 module_cfi_finalize(info->hdr, info->sechdrs, mod);
2622
2623 if (module_check_misalignment(mod))
2624 goto out_misaligned;
2625
2626 module_enable_ro(mod, false);
2627 module_enable_nx(mod);
2628 module_enable_x(mod);
2629
2630 /*
2631 * Mark state as coming so strong_try_module_get() ignores us,
2632 * but kallsyms etc. can see us.
2633 */
2634 mod->state = MODULE_STATE_COMING;
2635 mutex_unlock(&module_mutex);
2636
2637 return 0;
2638
2639 out_misaligned:
2640 err = -EINVAL;
2641 out:
2642 mutex_unlock(&module_mutex);
2643 return err;
2644 }
2645
prepare_coming_module(struct module * mod)2646 static int prepare_coming_module(struct module *mod)
2647 {
2648 int err;
2649
2650 ftrace_module_enable(mod);
2651 err = klp_module_coming(mod);
2652 if (err)
2653 return err;
2654
2655 err = blocking_notifier_call_chain_robust(&module_notify_list,
2656 MODULE_STATE_COMING, MODULE_STATE_GOING, mod);
2657 err = notifier_to_errno(err);
2658 if (err)
2659 klp_module_going(mod);
2660
2661 return err;
2662 }
2663
unknown_module_param_cb(char * param,char * val,const char * modname,void * arg)2664 static int unknown_module_param_cb(char *param, char *val, const char *modname,
2665 void *arg)
2666 {
2667 struct module *mod = arg;
2668 int ret;
2669
2670 if (strcmp(param, "async_probe") == 0) {
2671 if (strtobool(val, &mod->async_probe_requested))
2672 mod->async_probe_requested = true;
2673 return 0;
2674 }
2675
2676 /* Check for magic 'dyndbg' arg */
2677 ret = ddebug_dyndbg_module_param_cb(param, val, modname);
2678 if (ret != 0)
2679 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
2680 return 0;
2681 }
2682
2683 /*
2684 * Allocate and load the module: note that size of section 0 is always
2685 * zero, and we rely on this for optional sections.
2686 */
load_module(struct load_info * info,const char __user * uargs,int flags)2687 static int load_module(struct load_info *info, const char __user *uargs,
2688 int flags)
2689 {
2690 struct module *mod;
2691 long err = 0;
2692 char *after_dashes;
2693
2694 /*
2695 * Do the signature check (if any) first. All that
2696 * the signature check needs is info->len, it does
2697 * not need any of the section info. That can be
2698 * set up later. This will minimize the chances
2699 * of a corrupt module causing problems before
2700 * we even get to the signature check.
2701 *
2702 * The check will also adjust info->len by stripping
2703 * off the sig length at the end of the module, making
2704 * checks against info->len more correct.
2705 */
2706 err = module_sig_check(info, flags);
2707 if (err)
2708 goto free_copy;
2709
2710 /*
2711 * Do basic sanity checks against the ELF header and
2712 * sections.
2713 */
2714 err = elf_validity_check(info);
2715 if (err)
2716 goto free_copy;
2717
2718 /*
2719 * Everything checks out, so set up the section info
2720 * in the info structure.
2721 */
2722 err = setup_load_info(info, flags);
2723 if (err)
2724 goto free_copy;
2725
2726 /*
2727 * Now that we know we have the correct module name, check
2728 * if it's blacklisted.
2729 */
2730 if (blacklisted(info->name)) {
2731 err = -EPERM;
2732 pr_err("Module %s is blacklisted\n", info->name);
2733 goto free_copy;
2734 }
2735
2736 err = rewrite_section_headers(info, flags);
2737 if (err)
2738 goto free_copy;
2739
2740 /* Check module struct version now, before we try to use module. */
2741 if (!check_modstruct_version(info, info->mod)) {
2742 err = -ENOEXEC;
2743 goto free_copy;
2744 }
2745
2746 /* Figure out module layout, and allocate all the memory. */
2747 mod = layout_and_allocate(info, flags);
2748 if (IS_ERR(mod)) {
2749 err = PTR_ERR(mod);
2750 goto free_copy;
2751 }
2752
2753 audit_log_kern_module(mod->name);
2754
2755 /* Reserve our place in the list. */
2756 err = add_unformed_module(mod);
2757 if (err)
2758 goto free_module;
2759
2760 #ifdef CONFIG_MODULE_SIG
2761 mod->sig_ok = info->sig_ok;
2762 if (!mod->sig_ok) {
2763 pr_notice_once("%s: module verification failed: signature "
2764 "and/or required key missing - tainting "
2765 "kernel\n", mod->name);
2766 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
2767 }
2768 #endif
2769
2770 /* To avoid stressing percpu allocator, do this once we're unique. */
2771 err = percpu_modalloc(mod, info);
2772 if (err)
2773 goto unlink_mod;
2774
2775 /* Now module is in final location, initialize linked lists, etc. */
2776 err = module_unload_init(mod);
2777 if (err)
2778 goto unlink_mod;
2779
2780 init_param_lock(mod);
2781
2782 /*
2783 * Now we've got everything in the final locations, we can
2784 * find optional sections.
2785 */
2786 err = find_module_sections(mod, info);
2787 if (err)
2788 goto free_unload;
2789
2790 err = check_module_license_and_versions(mod);
2791 if (err)
2792 goto free_unload;
2793
2794 /* Set up MODINFO_ATTR fields */
2795 setup_modinfo(mod, info);
2796
2797 /* Fix up syms, so that st_value is a pointer to location. */
2798 err = simplify_symbols(mod, info);
2799 if (err < 0)
2800 goto free_modinfo;
2801
2802 err = apply_relocations(mod, info);
2803 if (err < 0)
2804 goto free_modinfo;
2805
2806 err = post_relocation(mod, info);
2807 if (err < 0)
2808 goto free_modinfo;
2809
2810 flush_module_icache(mod);
2811
2812 /* Now copy in args */
2813 mod->args = strndup_user(uargs, ~0UL >> 1);
2814 if (IS_ERR(mod->args)) {
2815 err = PTR_ERR(mod->args);
2816 goto free_arch_cleanup;
2817 }
2818
2819 init_build_id(mod, info);
2820 dynamic_debug_setup(mod, &info->dyndbg);
2821
2822 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
2823 ftrace_module_init(mod);
2824
2825 /* Finally it's fully formed, ready to start executing. */
2826 err = complete_formation(mod, info);
2827 if (err)
2828 goto ddebug_cleanup;
2829
2830 err = prepare_coming_module(mod);
2831 if (err)
2832 goto bug_cleanup;
2833
2834 mod->async_probe_requested = async_probe;
2835
2836 /* Module is ready to execute: parsing args may do that. */
2837 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
2838 -32768, 32767, mod,
2839 unknown_module_param_cb);
2840 if (IS_ERR(after_dashes)) {
2841 err = PTR_ERR(after_dashes);
2842 goto coming_cleanup;
2843 } else if (after_dashes) {
2844 pr_warn("%s: parameters '%s' after `--' ignored\n",
2845 mod->name, after_dashes);
2846 }
2847
2848 /* Link in to sysfs. */
2849 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
2850 if (err < 0)
2851 goto coming_cleanup;
2852
2853 if (is_livepatch_module(mod)) {
2854 err = copy_module_elf(mod, info);
2855 if (err < 0)
2856 goto sysfs_cleanup;
2857 }
2858
2859 /* Get rid of temporary copy. */
2860 free_copy(info, flags);
2861
2862 /* Done! */
2863 trace_module_load(mod);
2864
2865 return do_init_module(mod);
2866
2867 sysfs_cleanup:
2868 mod_sysfs_teardown(mod);
2869 coming_cleanup:
2870 mod->state = MODULE_STATE_GOING;
2871 destroy_params(mod->kp, mod->num_kp);
2872 blocking_notifier_call_chain(&module_notify_list,
2873 MODULE_STATE_GOING, mod);
2874 klp_module_going(mod);
2875 bug_cleanup:
2876 mod->state = MODULE_STATE_GOING;
2877 /* module_bug_cleanup needs module_mutex protection */
2878 mutex_lock(&module_mutex);
2879 module_bug_cleanup(mod);
2880 mutex_unlock(&module_mutex);
2881
2882 ddebug_cleanup:
2883 ftrace_release_mod(mod);
2884 dynamic_debug_remove(mod, &info->dyndbg);
2885 synchronize_rcu();
2886 kfree(mod->args);
2887 free_arch_cleanup:
2888 module_arch_cleanup(mod);
2889 free_modinfo:
2890 free_modinfo(mod);
2891 free_unload:
2892 module_unload_free(mod);
2893 unlink_mod:
2894 mutex_lock(&module_mutex);
2895 /* Unlink carefully: kallsyms could be walking list. */
2896 list_del_rcu(&mod->list);
2897 mod_tree_remove(mod);
2898 wake_up_all(&module_wq);
2899 /* Wait for RCU-sched synchronizing before releasing mod->list. */
2900 synchronize_rcu();
2901 mutex_unlock(&module_mutex);
2902 free_module:
2903 /* Free lock-classes; relies on the preceding sync_rcu() */
2904 lockdep_free_key_range(mod->data_layout.base, mod->data_layout.size);
2905
2906 module_deallocate(mod, info);
2907 free_copy:
2908 free_copy(info, flags);
2909 return err;
2910 }
2911
SYSCALL_DEFINE3(init_module,void __user *,umod,unsigned long,len,const char __user *,uargs)2912 SYSCALL_DEFINE3(init_module, void __user *, umod,
2913 unsigned long, len, const char __user *, uargs)
2914 {
2915 int err;
2916 struct load_info info = { };
2917
2918 err = may_init_module();
2919 if (err)
2920 return err;
2921
2922 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
2923 umod, len, uargs);
2924
2925 err = copy_module_from_user(umod, len, &info);
2926 if (err)
2927 return err;
2928
2929 return load_module(&info, uargs, 0);
2930 }
2931
SYSCALL_DEFINE3(finit_module,int,fd,const char __user *,uargs,int,flags)2932 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
2933 {
2934 struct load_info info = { };
2935 void *buf = NULL;
2936 int len;
2937 int err;
2938
2939 err = may_init_module();
2940 if (err)
2941 return err;
2942
2943 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
2944
2945 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
2946 |MODULE_INIT_IGNORE_VERMAGIC
2947 |MODULE_INIT_COMPRESSED_FILE))
2948 return -EINVAL;
2949
2950 len = kernel_read_file_from_fd(fd, 0, &buf, INT_MAX, NULL,
2951 READING_MODULE);
2952 if (len < 0)
2953 return len;
2954
2955 if (flags & MODULE_INIT_COMPRESSED_FILE) {
2956 err = module_decompress(&info, buf, len);
2957 vfree(buf); /* compressed data is no longer needed */
2958 if (err)
2959 return err;
2960 } else {
2961 info.hdr = buf;
2962 info.len = len;
2963 }
2964
2965 return load_module(&info, uargs, flags);
2966 }
2967
within(unsigned long addr,void * start,unsigned long size)2968 static inline int within(unsigned long addr, void *start, unsigned long size)
2969 {
2970 return ((void *)addr >= start && (void *)addr < start + size);
2971 }
2972
2973 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
module_flags(struct module * mod,char * buf,bool show_state)2974 char *module_flags(struct module *mod, char *buf, bool show_state)
2975 {
2976 int bx = 0;
2977
2978 BUG_ON(mod->state == MODULE_STATE_UNFORMED);
2979 if (!mod->taints && !show_state)
2980 goto out;
2981 if (mod->taints ||
2982 mod->state == MODULE_STATE_GOING ||
2983 mod->state == MODULE_STATE_COMING) {
2984 buf[bx++] = '(';
2985 bx += module_flags_taint(mod->taints, buf + bx);
2986 /* Show a - for module-is-being-unloaded */
2987 if (mod->state == MODULE_STATE_GOING && show_state)
2988 buf[bx++] = '-';
2989 /* Show a + for module-is-being-loaded */
2990 if (mod->state == MODULE_STATE_COMING && show_state)
2991 buf[bx++] = '+';
2992 buf[bx++] = ')';
2993 }
2994 out:
2995 buf[bx] = '\0';
2996
2997 return buf;
2998 }
2999
3000 /* Given an address, look for it in the module exception tables. */
search_module_extables(unsigned long addr)3001 const struct exception_table_entry *search_module_extables(unsigned long addr)
3002 {
3003 const struct exception_table_entry *e = NULL;
3004 struct module *mod;
3005
3006 preempt_disable();
3007 mod = __module_address(addr);
3008 if (!mod)
3009 goto out;
3010
3011 if (!mod->num_exentries)
3012 goto out;
3013
3014 e = search_extable(mod->extable,
3015 mod->num_exentries,
3016 addr);
3017 out:
3018 preempt_enable();
3019
3020 /*
3021 * Now, if we found one, we are running inside it now, hence
3022 * we cannot unload the module, hence no refcnt needed.
3023 */
3024 return e;
3025 }
3026
3027 /**
3028 * is_module_address() - is this address inside a module?
3029 * @addr: the address to check.
3030 *
3031 * See is_module_text_address() if you simply want to see if the address
3032 * is code (not data).
3033 */
is_module_address(unsigned long addr)3034 bool is_module_address(unsigned long addr)
3035 {
3036 bool ret;
3037
3038 preempt_disable();
3039 ret = __module_address(addr) != NULL;
3040 preempt_enable();
3041
3042 return ret;
3043 }
3044
3045 /**
3046 * __module_address() - get the module which contains an address.
3047 * @addr: the address.
3048 *
3049 * Must be called with preempt disabled or module mutex held so that
3050 * module doesn't get freed during this.
3051 */
__module_address(unsigned long addr)3052 struct module *__module_address(unsigned long addr)
3053 {
3054 struct module *mod;
3055 struct mod_tree_root *tree;
3056
3057 if (addr >= mod_tree.addr_min && addr <= mod_tree.addr_max)
3058 tree = &mod_tree;
3059 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
3060 else if (addr >= mod_data_tree.addr_min && addr <= mod_data_tree.addr_max)
3061 tree = &mod_data_tree;
3062 #endif
3063 else
3064 return NULL;
3065
3066 module_assert_mutex_or_preempt();
3067
3068 mod = mod_find(addr, tree);
3069 if (mod) {
3070 BUG_ON(!within_module(addr, mod));
3071 if (mod->state == MODULE_STATE_UNFORMED)
3072 mod = NULL;
3073 }
3074 return mod;
3075 }
3076
3077 /**
3078 * is_module_text_address() - is this address inside module code?
3079 * @addr: the address to check.
3080 *
3081 * See is_module_address() if you simply want to see if the address is
3082 * anywhere in a module. See kernel_text_address() for testing if an
3083 * address corresponds to kernel or module code.
3084 */
is_module_text_address(unsigned long addr)3085 bool is_module_text_address(unsigned long addr)
3086 {
3087 bool ret;
3088
3089 preempt_disable();
3090 ret = __module_text_address(addr) != NULL;
3091 preempt_enable();
3092
3093 return ret;
3094 }
3095
3096 /**
3097 * __module_text_address() - get the module whose code contains an address.
3098 * @addr: the address.
3099 *
3100 * Must be called with preempt disabled or module mutex held so that
3101 * module doesn't get freed during this.
3102 */
__module_text_address(unsigned long addr)3103 struct module *__module_text_address(unsigned long addr)
3104 {
3105 struct module *mod = __module_address(addr);
3106 if (mod) {
3107 /* Make sure it's within the text section. */
3108 if (!within(addr, mod->init_layout.base, mod->init_layout.text_size)
3109 && !within(addr, mod->core_layout.base, mod->core_layout.text_size))
3110 mod = NULL;
3111 }
3112 return mod;
3113 }
3114
3115 /* Don't grab lock, we're oopsing. */
print_modules(void)3116 void print_modules(void)
3117 {
3118 struct module *mod;
3119 char buf[MODULE_FLAGS_BUF_SIZE];
3120
3121 printk(KERN_DEFAULT "Modules linked in:");
3122 /* Most callers should already have preempt disabled, but make sure */
3123 preempt_disable();
3124 list_for_each_entry_rcu(mod, &modules, list) {
3125 if (mod->state == MODULE_STATE_UNFORMED)
3126 continue;
3127 pr_cont(" %s%s", mod->name, module_flags(mod, buf, true));
3128 }
3129
3130 print_unloaded_tainted_modules();
3131 preempt_enable();
3132 if (last_unloaded_module.name[0])
3133 pr_cont(" [last unloaded: %s%s]", last_unloaded_module.name,
3134 last_unloaded_module.taints);
3135 pr_cont("\n");
3136 }
3137