1 /*
2    Copyright (C) 2002 Richard Henderson
3    Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
4 
5     This program is free software; you can redistribute it and/or modify
6     it under the terms of the GNU General Public License as published by
7     the Free Software Foundation; either version 2 of the License, or
8     (at your option) any later version.
9 
10     This program is distributed in the hope that it will be useful,
11     but WITHOUT ANY WARRANTY; without even the implied warranty of
12     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13     GNU General Public License for more details.
14 
15     You should have received a copy of the GNU General Public License
16     along with this program; if not, write to the Free Software
17     Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18 */
19 #include <linux/module.h>
20 #include <linux/moduleloader.h>
21 #include <linux/ftrace_event.h>
22 #include <linux/init.h>
23 #include <linux/kallsyms.h>
24 #include <linux/fs.h>
25 #include <linux/sysfs.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/elf.h>
30 #include <linux/proc_fs.h>
31 #include <linux/seq_file.h>
32 #include <linux/syscalls.h>
33 #include <linux/fcntl.h>
34 #include <linux/rcupdate.h>
35 #include <linux/capability.h>
36 #include <linux/cpu.h>
37 #include <linux/moduleparam.h>
38 #include <linux/errno.h>
39 #include <linux/err.h>
40 #include <linux/vermagic.h>
41 #include <linux/notifier.h>
42 #include <linux/sched.h>
43 #include <linux/stop_machine.h>
44 #include <linux/device.h>
45 #include <linux/string.h>
46 #include <linux/mutex.h>
47 #include <linux/rculist.h>
48 #include <asm/uaccess.h>
49 #include <asm/cacheflush.h>
50 #include <asm/mmu_context.h>
51 #include <linux/license.h>
52 #include <asm/sections.h>
53 #include <linux/tracepoint.h>
54 #include <linux/ftrace.h>
55 #include <linux/async.h>
56 #include <linux/percpu.h>
57 #include <linux/kmemleak.h>
58 #include <linux/jump_label.h>
59 #include <linux/pfn.h>
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/module.h>
63 
64 #if 0
65 #define DEBUGP printk
66 #else
67 #define DEBUGP(fmt , a...)
68 #endif
69 
70 #ifndef ARCH_SHF_SMALL
71 #define ARCH_SHF_SMALL 0
72 #endif
73 
74 /*
75  * Modules' sections will be aligned on page boundaries
76  * to ensure complete separation of code and data, but
77  * only when CONFIG_DEBUG_SET_MODULE_RONX=y
78  */
79 #ifdef CONFIG_DEBUG_SET_MODULE_RONX
80 # define debug_align(X) ALIGN(X, PAGE_SIZE)
81 #else
82 # define debug_align(X) (X)
83 #endif
84 
85 /*
86  * Given BASE and SIZE this macro calculates the number of pages the
87  * memory regions occupies
88  */
89 #define MOD_NUMBER_OF_PAGES(BASE, SIZE) (((SIZE) > 0) ?		\
90 		(PFN_DOWN((unsigned long)(BASE) + (SIZE) - 1) -	\
91 			 PFN_DOWN((unsigned long)BASE) + 1)	\
92 		: (0UL))
93 
94 /* If this is set, the section belongs in the init part of the module */
95 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
96 
97 /*
98  * Mutex protects:
99  * 1) List of modules (also safely readable with preempt_disable),
100  * 2) module_use links,
101  * 3) module_addr_min/module_addr_max.
102  * (delete uses stop_machine/add uses RCU list operations). */
103 DEFINE_MUTEX(module_mutex);
104 EXPORT_SYMBOL_GPL(module_mutex);
105 static LIST_HEAD(modules);
106 #ifdef CONFIG_KGDB_KDB
107 struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
108 #endif /* CONFIG_KGDB_KDB */
109 
110 
111 /* Block module loading/unloading? */
112 int modules_disabled = 0;
113 
114 /* Waiting for a module to finish initializing? */
115 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
116 
117 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
118 
119 /* Bounds of module allocation, for speeding __module_address.
120  * Protected by module_mutex. */
121 static unsigned long module_addr_min = -1UL, module_addr_max = 0;
122 
register_module_notifier(struct notifier_block * nb)123 int register_module_notifier(struct notifier_block * nb)
124 {
125 	return blocking_notifier_chain_register(&module_notify_list, nb);
126 }
127 EXPORT_SYMBOL(register_module_notifier);
128 
unregister_module_notifier(struct notifier_block * nb)129 int unregister_module_notifier(struct notifier_block * nb)
130 {
131 	return blocking_notifier_chain_unregister(&module_notify_list, nb);
132 }
133 EXPORT_SYMBOL(unregister_module_notifier);
134 
135 struct load_info {
136 	Elf_Ehdr *hdr;
137 	unsigned long len;
138 	Elf_Shdr *sechdrs;
139 	char *secstrings, *strtab;
140 	unsigned long *strmap;
141 	unsigned long symoffs, stroffs;
142 	struct _ddebug *debug;
143 	unsigned int num_debug;
144 	struct {
145 		unsigned int sym, str, mod, vers, info, pcpu;
146 	} index;
147 };
148 
149 /* We require a truly strong try_module_get(): 0 means failure due to
150    ongoing or failed initialization etc. */
strong_try_module_get(struct module * mod)151 static inline int strong_try_module_get(struct module *mod)
152 {
153 	if (mod && mod->state == MODULE_STATE_COMING)
154 		return -EBUSY;
155 	if (try_module_get(mod))
156 		return 0;
157 	else
158 		return -ENOENT;
159 }
160 
add_taint_module(struct module * mod,unsigned flag)161 static inline void add_taint_module(struct module *mod, unsigned flag)
162 {
163 	add_taint(flag);
164 	mod->taints |= (1U << flag);
165 }
166 
167 /*
168  * A thread that wants to hold a reference to a module only while it
169  * is running can call this to safely exit.  nfsd and lockd use this.
170  */
__module_put_and_exit(struct module * mod,long code)171 void __module_put_and_exit(struct module *mod, long code)
172 {
173 	module_put(mod);
174 	do_exit(code);
175 }
176 EXPORT_SYMBOL(__module_put_and_exit);
177 
178 /* Find a module section: 0 means not found. */
find_sec(const struct load_info * info,const char * name)179 static unsigned int find_sec(const struct load_info *info, const char *name)
180 {
181 	unsigned int i;
182 
183 	for (i = 1; i < info->hdr->e_shnum; i++) {
184 		Elf_Shdr *shdr = &info->sechdrs[i];
185 		/* Alloc bit cleared means "ignore it." */
186 		if ((shdr->sh_flags & SHF_ALLOC)
187 		    && strcmp(info->secstrings + shdr->sh_name, name) == 0)
188 			return i;
189 	}
190 	return 0;
191 }
192 
193 /* Find a module section, or NULL. */
section_addr(const struct load_info * info,const char * name)194 static void *section_addr(const struct load_info *info, const char *name)
195 {
196 	/* Section 0 has sh_addr 0. */
197 	return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
198 }
199 
200 /* Find a module section, or NULL.  Fill in number of "objects" in section. */
section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)201 static void *section_objs(const struct load_info *info,
202 			  const char *name,
203 			  size_t object_size,
204 			  unsigned int *num)
205 {
206 	unsigned int sec = find_sec(info, name);
207 
208 	/* Section 0 has sh_addr 0 and sh_size 0. */
209 	*num = info->sechdrs[sec].sh_size / object_size;
210 	return (void *)info->sechdrs[sec].sh_addr;
211 }
212 
213 /* Provided by the linker */
214 extern const struct kernel_symbol __start___ksymtab[];
215 extern const struct kernel_symbol __stop___ksymtab[];
216 extern const struct kernel_symbol __start___ksymtab_gpl[];
217 extern const struct kernel_symbol __stop___ksymtab_gpl[];
218 extern const struct kernel_symbol __start___ksymtab_gpl_future[];
219 extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
220 extern const unsigned long __start___kcrctab[];
221 extern const unsigned long __start___kcrctab_gpl[];
222 extern const unsigned long __start___kcrctab_gpl_future[];
223 #ifdef CONFIG_UNUSED_SYMBOLS
224 extern const struct kernel_symbol __start___ksymtab_unused[];
225 extern const struct kernel_symbol __stop___ksymtab_unused[];
226 extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
227 extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
228 extern const unsigned long __start___kcrctab_unused[];
229 extern const unsigned long __start___kcrctab_unused_gpl[];
230 #endif
231 
232 #ifndef CONFIG_MODVERSIONS
233 #define symversion(base, idx) NULL
234 #else
235 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
236 #endif
237 
each_symbol_in_section(const struct symsearch * arr,unsigned int arrsize,struct module * owner,bool (* fn)(const struct symsearch * syms,struct module * owner,unsigned int symnum,void * data),void * data)238 static bool each_symbol_in_section(const struct symsearch *arr,
239 				   unsigned int arrsize,
240 				   struct module *owner,
241 				   bool (*fn)(const struct symsearch *syms,
242 					      struct module *owner,
243 					      unsigned int symnum, void *data),
244 				   void *data)
245 {
246 	unsigned int i, j;
247 
248 	for (j = 0; j < arrsize; j++) {
249 		for (i = 0; i < arr[j].stop - arr[j].start; i++)
250 			if (fn(&arr[j], owner, i, data))
251 				return true;
252 	}
253 
254 	return false;
255 }
256 
257 /* Returns true as soon as fn returns true, otherwise false. */
each_symbol(bool (* fn)(const struct symsearch * arr,struct module * owner,unsigned int symnum,void * data),void * data)258 bool each_symbol(bool (*fn)(const struct symsearch *arr, struct module *owner,
259 			    unsigned int symnum, void *data), void *data)
260 {
261 	struct module *mod;
262 	static const struct symsearch arr[] = {
263 		{ __start___ksymtab, __stop___ksymtab, __start___kcrctab,
264 		  NOT_GPL_ONLY, false },
265 		{ __start___ksymtab_gpl, __stop___ksymtab_gpl,
266 		  __start___kcrctab_gpl,
267 		  GPL_ONLY, false },
268 		{ __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
269 		  __start___kcrctab_gpl_future,
270 		  WILL_BE_GPL_ONLY, false },
271 #ifdef CONFIG_UNUSED_SYMBOLS
272 		{ __start___ksymtab_unused, __stop___ksymtab_unused,
273 		  __start___kcrctab_unused,
274 		  NOT_GPL_ONLY, true },
275 		{ __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
276 		  __start___kcrctab_unused_gpl,
277 		  GPL_ONLY, true },
278 #endif
279 	};
280 
281 	if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
282 		return true;
283 
284 	list_for_each_entry_rcu(mod, &modules, list) {
285 		struct symsearch arr[] = {
286 			{ mod->syms, mod->syms + mod->num_syms, mod->crcs,
287 			  NOT_GPL_ONLY, false },
288 			{ mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
289 			  mod->gpl_crcs,
290 			  GPL_ONLY, false },
291 			{ mod->gpl_future_syms,
292 			  mod->gpl_future_syms + mod->num_gpl_future_syms,
293 			  mod->gpl_future_crcs,
294 			  WILL_BE_GPL_ONLY, false },
295 #ifdef CONFIG_UNUSED_SYMBOLS
296 			{ mod->unused_syms,
297 			  mod->unused_syms + mod->num_unused_syms,
298 			  mod->unused_crcs,
299 			  NOT_GPL_ONLY, true },
300 			{ mod->unused_gpl_syms,
301 			  mod->unused_gpl_syms + mod->num_unused_gpl_syms,
302 			  mod->unused_gpl_crcs,
303 			  GPL_ONLY, true },
304 #endif
305 		};
306 
307 		if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
308 			return true;
309 	}
310 	return false;
311 }
312 EXPORT_SYMBOL_GPL(each_symbol);
313 
314 struct find_symbol_arg {
315 	/* Input */
316 	const char *name;
317 	bool gplok;
318 	bool warn;
319 
320 	/* Output */
321 	struct module *owner;
322 	const unsigned long *crc;
323 	const struct kernel_symbol *sym;
324 };
325 
find_symbol_in_section(const struct symsearch * syms,struct module * owner,unsigned int symnum,void * data)326 static bool find_symbol_in_section(const struct symsearch *syms,
327 				   struct module *owner,
328 				   unsigned int symnum, void *data)
329 {
330 	struct find_symbol_arg *fsa = data;
331 
332 	if (strcmp(syms->start[symnum].name, fsa->name) != 0)
333 		return false;
334 
335 	if (!fsa->gplok) {
336 		if (syms->licence == GPL_ONLY)
337 			return false;
338 		if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
339 			printk(KERN_WARNING "Symbol %s is being used "
340 			       "by a non-GPL module, which will not "
341 			       "be allowed in the future\n", fsa->name);
342 			printk(KERN_WARNING "Please see the file "
343 			       "Documentation/feature-removal-schedule.txt "
344 			       "in the kernel source tree for more details.\n");
345 		}
346 	}
347 
348 #ifdef CONFIG_UNUSED_SYMBOLS
349 	if (syms->unused && fsa->warn) {
350 		printk(KERN_WARNING "Symbol %s is marked as UNUSED, "
351 		       "however this module is using it.\n", fsa->name);
352 		printk(KERN_WARNING
353 		       "This symbol will go away in the future.\n");
354 		printk(KERN_WARNING
355 		       "Please evalute if this is the right api to use and if "
356 		       "it really is, submit a report the linux kernel "
357 		       "mailinglist together with submitting your code for "
358 		       "inclusion.\n");
359 	}
360 #endif
361 
362 	fsa->owner = owner;
363 	fsa->crc = symversion(syms->crcs, symnum);
364 	fsa->sym = &syms->start[symnum];
365 	return true;
366 }
367 
368 /* Find a symbol and return it, along with, (optional) crc and
369  * (optional) module which owns it.  Needs preempt disabled or module_mutex. */
find_symbol(const char * name,struct module ** owner,const unsigned long ** crc,bool gplok,bool warn)370 const struct kernel_symbol *find_symbol(const char *name,
371 					struct module **owner,
372 					const unsigned long **crc,
373 					bool gplok,
374 					bool warn)
375 {
376 	struct find_symbol_arg fsa;
377 
378 	fsa.name = name;
379 	fsa.gplok = gplok;
380 	fsa.warn = warn;
381 
382 	if (each_symbol(find_symbol_in_section, &fsa)) {
383 		if (owner)
384 			*owner = fsa.owner;
385 		if (crc)
386 			*crc = fsa.crc;
387 		return fsa.sym;
388 	}
389 
390 	DEBUGP("Failed to find symbol %s\n", name);
391 	return NULL;
392 }
393 EXPORT_SYMBOL_GPL(find_symbol);
394 
395 /* Search for module by name: must hold module_mutex. */
find_module(const char * name)396 struct module *find_module(const char *name)
397 {
398 	struct module *mod;
399 
400 	list_for_each_entry(mod, &modules, list) {
401 		if (strcmp(mod->name, name) == 0)
402 			return mod;
403 	}
404 	return NULL;
405 }
406 EXPORT_SYMBOL_GPL(find_module);
407 
408 #ifdef CONFIG_SMP
409 
mod_percpu(struct module * mod)410 static inline void __percpu *mod_percpu(struct module *mod)
411 {
412 	return mod->percpu;
413 }
414 
percpu_modalloc(struct module * mod,unsigned long size,unsigned long align)415 static int percpu_modalloc(struct module *mod,
416 			   unsigned long size, unsigned long align)
417 {
418 	if (align > PAGE_SIZE) {
419 		printk(KERN_WARNING "%s: per-cpu alignment %li > %li\n",
420 		       mod->name, align, PAGE_SIZE);
421 		align = PAGE_SIZE;
422 	}
423 
424 	mod->percpu = __alloc_reserved_percpu(size, align);
425 	if (!mod->percpu) {
426 		printk(KERN_WARNING
427 		       "%s: Could not allocate %lu bytes percpu data\n",
428 		       mod->name, size);
429 		return -ENOMEM;
430 	}
431 	mod->percpu_size = size;
432 	return 0;
433 }
434 
percpu_modfree(struct module * mod)435 static void percpu_modfree(struct module *mod)
436 {
437 	free_percpu(mod->percpu);
438 }
439 
find_pcpusec(struct load_info * info)440 static unsigned int find_pcpusec(struct load_info *info)
441 {
442 	return find_sec(info, ".data..percpu");
443 }
444 
percpu_modcopy(struct module * mod,const void * from,unsigned long size)445 static void percpu_modcopy(struct module *mod,
446 			   const void *from, unsigned long size)
447 {
448 	int cpu;
449 
450 	for_each_possible_cpu(cpu)
451 		memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
452 }
453 
454 /**
455  * is_module_percpu_address - test whether address is from module static percpu
456  * @addr: address to test
457  *
458  * Test whether @addr belongs to module static percpu area.
459  *
460  * RETURNS:
461  * %true if @addr is from module static percpu area
462  */
is_module_percpu_address(unsigned long addr)463 bool is_module_percpu_address(unsigned long addr)
464 {
465 	struct module *mod;
466 	unsigned int cpu;
467 
468 	preempt_disable();
469 
470 	list_for_each_entry_rcu(mod, &modules, list) {
471 		if (!mod->percpu_size)
472 			continue;
473 		for_each_possible_cpu(cpu) {
474 			void *start = per_cpu_ptr(mod->percpu, cpu);
475 
476 			if ((void *)addr >= start &&
477 			    (void *)addr < start + mod->percpu_size) {
478 				preempt_enable();
479 				return true;
480 			}
481 		}
482 	}
483 
484 	preempt_enable();
485 	return false;
486 }
487 
488 #else /* ... !CONFIG_SMP */
489 
mod_percpu(struct module * mod)490 static inline void __percpu *mod_percpu(struct module *mod)
491 {
492 	return NULL;
493 }
percpu_modalloc(struct module * mod,unsigned long size,unsigned long align)494 static inline int percpu_modalloc(struct module *mod,
495 				  unsigned long size, unsigned long align)
496 {
497 	return -ENOMEM;
498 }
percpu_modfree(struct module * mod)499 static inline void percpu_modfree(struct module *mod)
500 {
501 }
find_pcpusec(struct load_info * info)502 static unsigned int find_pcpusec(struct load_info *info)
503 {
504 	return 0;
505 }
percpu_modcopy(struct module * mod,const void * from,unsigned long size)506 static inline void percpu_modcopy(struct module *mod,
507 				  const void *from, unsigned long size)
508 {
509 	/* pcpusec should be 0, and size of that section should be 0. */
510 	BUG_ON(size != 0);
511 }
is_module_percpu_address(unsigned long addr)512 bool is_module_percpu_address(unsigned long addr)
513 {
514 	return false;
515 }
516 
517 #endif /* CONFIG_SMP */
518 
519 #define MODINFO_ATTR(field)	\
520 static void setup_modinfo_##field(struct module *mod, const char *s)  \
521 {                                                                     \
522 	mod->field = kstrdup(s, GFP_KERNEL);                          \
523 }                                                                     \
524 static ssize_t show_modinfo_##field(struct module_attribute *mattr,   \
525 	                struct module *mod, char *buffer)             \
526 {                                                                     \
527 	return sprintf(buffer, "%s\n", mod->field);                   \
528 }                                                                     \
529 static int modinfo_##field##_exists(struct module *mod)               \
530 {                                                                     \
531 	return mod->field != NULL;                                    \
532 }                                                                     \
533 static void free_modinfo_##field(struct module *mod)                  \
534 {                                                                     \
535 	kfree(mod->field);                                            \
536 	mod->field = NULL;                                            \
537 }                                                                     \
538 static struct module_attribute modinfo_##field = {                    \
539 	.attr = { .name = __stringify(field), .mode = 0444 },         \
540 	.show = show_modinfo_##field,                                 \
541 	.setup = setup_modinfo_##field,                               \
542 	.test = modinfo_##field##_exists,                             \
543 	.free = free_modinfo_##field,                                 \
544 };
545 
546 MODINFO_ATTR(version);
547 MODINFO_ATTR(srcversion);
548 
549 static char last_unloaded_module[MODULE_NAME_LEN+1];
550 
551 #ifdef CONFIG_MODULE_UNLOAD
552 
553 EXPORT_TRACEPOINT_SYMBOL(module_get);
554 
555 /* Init the unload section of the module. */
module_unload_init(struct module * mod)556 static int module_unload_init(struct module *mod)
557 {
558 	mod->refptr = alloc_percpu(struct module_ref);
559 	if (!mod->refptr)
560 		return -ENOMEM;
561 
562 	INIT_LIST_HEAD(&mod->source_list);
563 	INIT_LIST_HEAD(&mod->target_list);
564 
565 	/* Hold reference count during initialization. */
566 	__this_cpu_write(mod->refptr->incs, 1);
567 	/* Backwards compatibility macros put refcount during init. */
568 	mod->waiter = current;
569 
570 	return 0;
571 }
572 
573 /* Does a already use b? */
already_uses(struct module * a,struct module * b)574 static int already_uses(struct module *a, struct module *b)
575 {
576 	struct module_use *use;
577 
578 	list_for_each_entry(use, &b->source_list, source_list) {
579 		if (use->source == a) {
580 			DEBUGP("%s uses %s!\n", a->name, b->name);
581 			return 1;
582 		}
583 	}
584 	DEBUGP("%s does not use %s!\n", a->name, b->name);
585 	return 0;
586 }
587 
588 /*
589  * Module a uses b
590  *  - we add 'a' as a "source", 'b' as a "target" of module use
591  *  - the module_use is added to the list of 'b' sources (so
592  *    'b' can walk the list to see who sourced them), and of 'a'
593  *    targets (so 'a' can see what modules it targets).
594  */
add_module_usage(struct module * a,struct module * b)595 static int add_module_usage(struct module *a, struct module *b)
596 {
597 	struct module_use *use;
598 
599 	DEBUGP("Allocating new usage for %s.\n", a->name);
600 	use = kmalloc(sizeof(*use), GFP_ATOMIC);
601 	if (!use) {
602 		printk(KERN_WARNING "%s: out of memory loading\n", a->name);
603 		return -ENOMEM;
604 	}
605 
606 	use->source = a;
607 	use->target = b;
608 	list_add(&use->source_list, &b->source_list);
609 	list_add(&use->target_list, &a->target_list);
610 	return 0;
611 }
612 
613 /* Module a uses b: caller needs module_mutex() */
ref_module(struct module * a,struct module * b)614 int ref_module(struct module *a, struct module *b)
615 {
616 	int err;
617 
618 	if (b == NULL || already_uses(a, b))
619 		return 0;
620 
621 	/* If module isn't available, we fail. */
622 	err = strong_try_module_get(b);
623 	if (err)
624 		return err;
625 
626 	err = add_module_usage(a, b);
627 	if (err) {
628 		module_put(b);
629 		return err;
630 	}
631 	return 0;
632 }
633 EXPORT_SYMBOL_GPL(ref_module);
634 
635 /* Clear the unload stuff of the module. */
module_unload_free(struct module * mod)636 static void module_unload_free(struct module *mod)
637 {
638 	struct module_use *use, *tmp;
639 
640 	mutex_lock(&module_mutex);
641 	list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
642 		struct module *i = use->target;
643 		DEBUGP("%s unusing %s\n", mod->name, i->name);
644 		module_put(i);
645 		list_del(&use->source_list);
646 		list_del(&use->target_list);
647 		kfree(use);
648 	}
649 	mutex_unlock(&module_mutex);
650 
651 	free_percpu(mod->refptr);
652 }
653 
654 #ifdef CONFIG_MODULE_FORCE_UNLOAD
try_force_unload(unsigned int flags)655 static inline int try_force_unload(unsigned int flags)
656 {
657 	int ret = (flags & O_TRUNC);
658 	if (ret)
659 		add_taint(TAINT_FORCED_RMMOD);
660 	return ret;
661 }
662 #else
try_force_unload(unsigned int flags)663 static inline int try_force_unload(unsigned int flags)
664 {
665 	return 0;
666 }
667 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
668 
669 struct stopref
670 {
671 	struct module *mod;
672 	int flags;
673 	int *forced;
674 };
675 
676 /* Whole machine is stopped with interrupts off when this runs. */
__try_stop_module(void * _sref)677 static int __try_stop_module(void *_sref)
678 {
679 	struct stopref *sref = _sref;
680 
681 	/* If it's not unused, quit unless we're forcing. */
682 	if (module_refcount(sref->mod) != 0) {
683 		if (!(*sref->forced = try_force_unload(sref->flags)))
684 			return -EWOULDBLOCK;
685 	}
686 
687 	/* Mark it as dying. */
688 	sref->mod->state = MODULE_STATE_GOING;
689 	return 0;
690 }
691 
try_stop_module(struct module * mod,int flags,int * forced)692 static int try_stop_module(struct module *mod, int flags, int *forced)
693 {
694 	if (flags & O_NONBLOCK) {
695 		struct stopref sref = { mod, flags, forced };
696 
697 		return stop_machine(__try_stop_module, &sref, NULL);
698 	} else {
699 		/* We don't need to stop the machine for this. */
700 		mod->state = MODULE_STATE_GOING;
701 		synchronize_sched();
702 		return 0;
703 	}
704 }
705 
module_refcount(struct module * mod)706 unsigned int module_refcount(struct module *mod)
707 {
708 	unsigned int incs = 0, decs = 0;
709 	int cpu;
710 
711 	for_each_possible_cpu(cpu)
712 		decs += per_cpu_ptr(mod->refptr, cpu)->decs;
713 	/*
714 	 * ensure the incs are added up after the decs.
715 	 * module_put ensures incs are visible before decs with smp_wmb.
716 	 *
717 	 * This 2-count scheme avoids the situation where the refcount
718 	 * for CPU0 is read, then CPU0 increments the module refcount,
719 	 * then CPU1 drops that refcount, then the refcount for CPU1 is
720 	 * read. We would record a decrement but not its corresponding
721 	 * increment so we would see a low count (disaster).
722 	 *
723 	 * Rare situation? But module_refcount can be preempted, and we
724 	 * might be tallying up 4096+ CPUs. So it is not impossible.
725 	 */
726 	smp_rmb();
727 	for_each_possible_cpu(cpu)
728 		incs += per_cpu_ptr(mod->refptr, cpu)->incs;
729 	return incs - decs;
730 }
731 EXPORT_SYMBOL(module_refcount);
732 
733 /* This exists whether we can unload or not */
734 static void free_module(struct module *mod);
735 
wait_for_zero_refcount(struct module * mod)736 static void wait_for_zero_refcount(struct module *mod)
737 {
738 	/* Since we might sleep for some time, release the mutex first */
739 	mutex_unlock(&module_mutex);
740 	for (;;) {
741 		DEBUGP("Looking at refcount...\n");
742 		set_current_state(TASK_UNINTERRUPTIBLE);
743 		if (module_refcount(mod) == 0)
744 			break;
745 		schedule();
746 	}
747 	current->state = TASK_RUNNING;
748 	mutex_lock(&module_mutex);
749 }
750 
SYSCALL_DEFINE2(delete_module,const char __user *,name_user,unsigned int,flags)751 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
752 		unsigned int, flags)
753 {
754 	struct module *mod;
755 	char name[MODULE_NAME_LEN];
756 	int ret, forced = 0;
757 
758 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
759 		return -EPERM;
760 
761 	if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
762 		return -EFAULT;
763 	name[MODULE_NAME_LEN-1] = '\0';
764 
765 	if (mutex_lock_interruptible(&module_mutex) != 0)
766 		return -EINTR;
767 
768 	mod = find_module(name);
769 	if (!mod) {
770 		ret = -ENOENT;
771 		goto out;
772 	}
773 
774 	if (!list_empty(&mod->source_list)) {
775 		/* Other modules depend on us: get rid of them first. */
776 		ret = -EWOULDBLOCK;
777 		goto out;
778 	}
779 
780 	/* Doing init or already dying? */
781 	if (mod->state != MODULE_STATE_LIVE) {
782 		/* FIXME: if (force), slam module count and wake up
783                    waiter --RR */
784 		DEBUGP("%s already dying\n", mod->name);
785 		ret = -EBUSY;
786 		goto out;
787 	}
788 
789 	/* If it has an init func, it must have an exit func to unload */
790 	if (mod->init && !mod->exit) {
791 		forced = try_force_unload(flags);
792 		if (!forced) {
793 			/* This module can't be removed */
794 			ret = -EBUSY;
795 			goto out;
796 		}
797 	}
798 
799 	/* Set this up before setting mod->state */
800 	mod->waiter = current;
801 
802 	/* Stop the machine so refcounts can't move and disable module. */
803 	ret = try_stop_module(mod, flags, &forced);
804 	if (ret != 0)
805 		goto out;
806 
807 	/* Never wait if forced. */
808 	if (!forced && module_refcount(mod) != 0)
809 		wait_for_zero_refcount(mod);
810 
811 	mutex_unlock(&module_mutex);
812 	/* Final destruction now no one is using it. */
813 	if (mod->exit != NULL)
814 		mod->exit();
815 	blocking_notifier_call_chain(&module_notify_list,
816 				     MODULE_STATE_GOING, mod);
817 	async_synchronize_full();
818 
819 	/* Store the name of the last unloaded module for diagnostic purposes */
820 	strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
821 
822 	free_module(mod);
823 	return 0;
824 out:
825 	mutex_unlock(&module_mutex);
826 	return ret;
827 }
828 
print_unload_info(struct seq_file * m,struct module * mod)829 static inline void print_unload_info(struct seq_file *m, struct module *mod)
830 {
831 	struct module_use *use;
832 	int printed_something = 0;
833 
834 	seq_printf(m, " %u ", module_refcount(mod));
835 
836 	/* Always include a trailing , so userspace can differentiate
837            between this and the old multi-field proc format. */
838 	list_for_each_entry(use, &mod->source_list, source_list) {
839 		printed_something = 1;
840 		seq_printf(m, "%s,", use->source->name);
841 	}
842 
843 	if (mod->init != NULL && mod->exit == NULL) {
844 		printed_something = 1;
845 		seq_printf(m, "[permanent],");
846 	}
847 
848 	if (!printed_something)
849 		seq_printf(m, "-");
850 }
851 
__symbol_put(const char * symbol)852 void __symbol_put(const char *symbol)
853 {
854 	struct module *owner;
855 
856 	preempt_disable();
857 	if (!find_symbol(symbol, &owner, NULL, true, false))
858 		BUG();
859 	module_put(owner);
860 	preempt_enable();
861 }
862 EXPORT_SYMBOL(__symbol_put);
863 
864 /* Note this assumes addr is a function, which it currently always is. */
symbol_put_addr(void * addr)865 void symbol_put_addr(void *addr)
866 {
867 	struct module *modaddr;
868 	unsigned long a = (unsigned long)dereference_function_descriptor(addr);
869 
870 	if (core_kernel_text(a))
871 		return;
872 
873 	/* module_text_address is safe here: we're supposed to have reference
874 	 * to module from symbol_get, so it can't go away. */
875 	modaddr = __module_text_address(a);
876 	BUG_ON(!modaddr);
877 	module_put(modaddr);
878 }
879 EXPORT_SYMBOL_GPL(symbol_put_addr);
880 
show_refcnt(struct module_attribute * mattr,struct module * mod,char * buffer)881 static ssize_t show_refcnt(struct module_attribute *mattr,
882 			   struct module *mod, char *buffer)
883 {
884 	return sprintf(buffer, "%u\n", module_refcount(mod));
885 }
886 
887 static struct module_attribute refcnt = {
888 	.attr = { .name = "refcnt", .mode = 0444 },
889 	.show = show_refcnt,
890 };
891 
module_put(struct module * module)892 void module_put(struct module *module)
893 {
894 	if (module) {
895 		preempt_disable();
896 		smp_wmb(); /* see comment in module_refcount */
897 		__this_cpu_inc(module->refptr->decs);
898 
899 		trace_module_put(module, _RET_IP_);
900 		/* Maybe they're waiting for us to drop reference? */
901 		if (unlikely(!module_is_live(module)))
902 			wake_up_process(module->waiter);
903 		preempt_enable();
904 	}
905 }
906 EXPORT_SYMBOL(module_put);
907 
908 #else /* !CONFIG_MODULE_UNLOAD */
print_unload_info(struct seq_file * m,struct module * mod)909 static inline void print_unload_info(struct seq_file *m, struct module *mod)
910 {
911 	/* We don't know the usage count, or what modules are using. */
912 	seq_printf(m, " - -");
913 }
914 
module_unload_free(struct module * mod)915 static inline void module_unload_free(struct module *mod)
916 {
917 }
918 
ref_module(struct module * a,struct module * b)919 int ref_module(struct module *a, struct module *b)
920 {
921 	return strong_try_module_get(b);
922 }
923 EXPORT_SYMBOL_GPL(ref_module);
924 
module_unload_init(struct module * mod)925 static inline int module_unload_init(struct module *mod)
926 {
927 	return 0;
928 }
929 #endif /* CONFIG_MODULE_UNLOAD */
930 
show_initstate(struct module_attribute * mattr,struct module * mod,char * buffer)931 static ssize_t show_initstate(struct module_attribute *mattr,
932 			   struct module *mod, char *buffer)
933 {
934 	const char *state = "unknown";
935 
936 	switch (mod->state) {
937 	case MODULE_STATE_LIVE:
938 		state = "live";
939 		break;
940 	case MODULE_STATE_COMING:
941 		state = "coming";
942 		break;
943 	case MODULE_STATE_GOING:
944 		state = "going";
945 		break;
946 	}
947 	return sprintf(buffer, "%s\n", state);
948 }
949 
950 static struct module_attribute initstate = {
951 	.attr = { .name = "initstate", .mode = 0444 },
952 	.show = show_initstate,
953 };
954 
955 static struct module_attribute *modinfo_attrs[] = {
956 	&modinfo_version,
957 	&modinfo_srcversion,
958 	&initstate,
959 #ifdef CONFIG_MODULE_UNLOAD
960 	&refcnt,
961 #endif
962 	NULL,
963 };
964 
965 static const char vermagic[] = VERMAGIC_STRING;
966 
try_to_force_load(struct module * mod,const char * reason)967 static int try_to_force_load(struct module *mod, const char *reason)
968 {
969 #ifdef CONFIG_MODULE_FORCE_LOAD
970 	if (!test_taint(TAINT_FORCED_MODULE))
971 		printk(KERN_WARNING "%s: %s: kernel tainted.\n",
972 		       mod->name, reason);
973 	add_taint_module(mod, TAINT_FORCED_MODULE);
974 	return 0;
975 #else
976 	return -ENOEXEC;
977 #endif
978 }
979 
980 #ifdef CONFIG_MODVERSIONS
981 /* If the arch applies (non-zero) relocations to kernel kcrctab, unapply it. */
maybe_relocated(unsigned long crc,const struct module * crc_owner)982 static unsigned long maybe_relocated(unsigned long crc,
983 				     const struct module *crc_owner)
984 {
985 #ifdef ARCH_RELOCATES_KCRCTAB
986 	if (crc_owner == NULL)
987 		return crc - (unsigned long)reloc_start;
988 #endif
989 	return crc;
990 }
991 
check_version(Elf_Shdr * sechdrs,unsigned int versindex,const char * symname,struct module * mod,const unsigned long * crc,const struct module * crc_owner)992 static int check_version(Elf_Shdr *sechdrs,
993 			 unsigned int versindex,
994 			 const char *symname,
995 			 struct module *mod,
996 			 const unsigned long *crc,
997 			 const struct module *crc_owner)
998 {
999 	unsigned int i, num_versions;
1000 	struct modversion_info *versions;
1001 
1002 	/* Exporting module didn't supply crcs?  OK, we're already tainted. */
1003 	if (!crc)
1004 		return 1;
1005 
1006 	/* No versions at all?  modprobe --force does this. */
1007 	if (versindex == 0)
1008 		return try_to_force_load(mod, symname) == 0;
1009 
1010 	versions = (void *) sechdrs[versindex].sh_addr;
1011 	num_versions = sechdrs[versindex].sh_size
1012 		/ sizeof(struct modversion_info);
1013 
1014 	for (i = 0; i < num_versions; i++) {
1015 		if (strcmp(versions[i].name, symname) != 0)
1016 			continue;
1017 
1018 		if (versions[i].crc == maybe_relocated(*crc, crc_owner))
1019 			return 1;
1020 		DEBUGP("Found checksum %lX vs module %lX\n",
1021 		       maybe_relocated(*crc, crc_owner), versions[i].crc);
1022 		goto bad_version;
1023 	}
1024 
1025 	printk(KERN_WARNING "%s: no symbol version for %s\n",
1026 	       mod->name, symname);
1027 	return 0;
1028 
1029 bad_version:
1030 	printk("%s: disagrees about version of symbol %s\n",
1031 	       mod->name, symname);
1032 	return 0;
1033 }
1034 
check_modstruct_version(Elf_Shdr * sechdrs,unsigned int versindex,struct module * mod)1035 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1036 					  unsigned int versindex,
1037 					  struct module *mod)
1038 {
1039 	const unsigned long *crc;
1040 
1041 	/* Since this should be found in kernel (which can't be removed),
1042 	 * no locking is necessary. */
1043 	if (!find_symbol(MODULE_SYMBOL_PREFIX "module_layout", NULL,
1044 			 &crc, true, false))
1045 		BUG();
1046 	return check_version(sechdrs, versindex, "module_layout", mod, crc,
1047 			     NULL);
1048 }
1049 
1050 /* First part is kernel version, which we ignore if module has crcs. */
same_magic(const char * amagic,const char * bmagic,bool has_crcs)1051 static inline int same_magic(const char *amagic, const char *bmagic,
1052 			     bool has_crcs)
1053 {
1054 	if (has_crcs) {
1055 		amagic += strcspn(amagic, " ");
1056 		bmagic += strcspn(bmagic, " ");
1057 	}
1058 	return strcmp(amagic, bmagic) == 0;
1059 }
1060 #else
check_version(Elf_Shdr * sechdrs,unsigned int versindex,const char * symname,struct module * mod,const unsigned long * crc,const struct module * crc_owner)1061 static inline int check_version(Elf_Shdr *sechdrs,
1062 				unsigned int versindex,
1063 				const char *symname,
1064 				struct module *mod,
1065 				const unsigned long *crc,
1066 				const struct module *crc_owner)
1067 {
1068 	return 1;
1069 }
1070 
check_modstruct_version(Elf_Shdr * sechdrs,unsigned int versindex,struct module * mod)1071 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1072 					  unsigned int versindex,
1073 					  struct module *mod)
1074 {
1075 	return 1;
1076 }
1077 
same_magic(const char * amagic,const char * bmagic,bool has_crcs)1078 static inline int same_magic(const char *amagic, const char *bmagic,
1079 			     bool has_crcs)
1080 {
1081 	return strcmp(amagic, bmagic) == 0;
1082 }
1083 #endif /* CONFIG_MODVERSIONS */
1084 
1085 /* Resolve a symbol for this module.  I.e. if we find one, record usage. */
resolve_symbol(struct module * mod,const struct load_info * info,const char * name,char ownername[])1086 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1087 						  const struct load_info *info,
1088 						  const char *name,
1089 						  char ownername[])
1090 {
1091 	struct module *owner;
1092 	const struct kernel_symbol *sym;
1093 	const unsigned long *crc;
1094 	int err;
1095 
1096 	mutex_lock(&module_mutex);
1097 	sym = find_symbol(name, &owner, &crc,
1098 			  !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1099 	if (!sym)
1100 		goto unlock;
1101 
1102 	if (!check_version(info->sechdrs, info->index.vers, name, mod, crc,
1103 			   owner)) {
1104 		sym = ERR_PTR(-EINVAL);
1105 		goto getname;
1106 	}
1107 
1108 	err = ref_module(mod, owner);
1109 	if (err) {
1110 		sym = ERR_PTR(err);
1111 		goto getname;
1112 	}
1113 
1114 getname:
1115 	/* We must make copy under the lock if we failed to get ref. */
1116 	strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1117 unlock:
1118 	mutex_unlock(&module_mutex);
1119 	return sym;
1120 }
1121 
1122 static const struct kernel_symbol *
resolve_symbol_wait(struct module * mod,const struct load_info * info,const char * name)1123 resolve_symbol_wait(struct module *mod,
1124 		    const struct load_info *info,
1125 		    const char *name)
1126 {
1127 	const struct kernel_symbol *ksym;
1128 	char owner[MODULE_NAME_LEN];
1129 
1130 	if (wait_event_interruptible_timeout(module_wq,
1131 			!IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1132 			|| PTR_ERR(ksym) != -EBUSY,
1133 					     30 * HZ) <= 0) {
1134 		printk(KERN_WARNING "%s: gave up waiting for init of module %s.\n",
1135 		       mod->name, owner);
1136 	}
1137 	return ksym;
1138 }
1139 
1140 /*
1141  * /sys/module/foo/sections stuff
1142  * J. Corbet <corbet@lwn.net>
1143  */
1144 #ifdef CONFIG_SYSFS
1145 
1146 #ifdef CONFIG_KALLSYMS
sect_empty(const Elf_Shdr * sect)1147 static inline bool sect_empty(const Elf_Shdr *sect)
1148 {
1149 	return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1150 }
1151 
1152 struct module_sect_attr
1153 {
1154 	struct module_attribute mattr;
1155 	char *name;
1156 	unsigned long address;
1157 };
1158 
1159 struct module_sect_attrs
1160 {
1161 	struct attribute_group grp;
1162 	unsigned int nsections;
1163 	struct module_sect_attr attrs[0];
1164 };
1165 
module_sect_show(struct module_attribute * mattr,struct module * mod,char * buf)1166 static ssize_t module_sect_show(struct module_attribute *mattr,
1167 				struct module *mod, char *buf)
1168 {
1169 	struct module_sect_attr *sattr =
1170 		container_of(mattr, struct module_sect_attr, mattr);
1171 	return sprintf(buf, "0x%pK\n", (void *)sattr->address);
1172 }
1173 
free_sect_attrs(struct module_sect_attrs * sect_attrs)1174 static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1175 {
1176 	unsigned int section;
1177 
1178 	for (section = 0; section < sect_attrs->nsections; section++)
1179 		kfree(sect_attrs->attrs[section].name);
1180 	kfree(sect_attrs);
1181 }
1182 
add_sect_attrs(struct module * mod,const struct load_info * info)1183 static void add_sect_attrs(struct module *mod, const struct load_info *info)
1184 {
1185 	unsigned int nloaded = 0, i, size[2];
1186 	struct module_sect_attrs *sect_attrs;
1187 	struct module_sect_attr *sattr;
1188 	struct attribute **gattr;
1189 
1190 	/* Count loaded sections and allocate structures */
1191 	for (i = 0; i < info->hdr->e_shnum; i++)
1192 		if (!sect_empty(&info->sechdrs[i]))
1193 			nloaded++;
1194 	size[0] = ALIGN(sizeof(*sect_attrs)
1195 			+ nloaded * sizeof(sect_attrs->attrs[0]),
1196 			sizeof(sect_attrs->grp.attrs[0]));
1197 	size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1198 	sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1199 	if (sect_attrs == NULL)
1200 		return;
1201 
1202 	/* Setup section attributes. */
1203 	sect_attrs->grp.name = "sections";
1204 	sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1205 
1206 	sect_attrs->nsections = 0;
1207 	sattr = &sect_attrs->attrs[0];
1208 	gattr = &sect_attrs->grp.attrs[0];
1209 	for (i = 0; i < info->hdr->e_shnum; i++) {
1210 		Elf_Shdr *sec = &info->sechdrs[i];
1211 		if (sect_empty(sec))
1212 			continue;
1213 		sattr->address = sec->sh_addr;
1214 		sattr->name = kstrdup(info->secstrings + sec->sh_name,
1215 					GFP_KERNEL);
1216 		if (sattr->name == NULL)
1217 			goto out;
1218 		sect_attrs->nsections++;
1219 		sysfs_attr_init(&sattr->mattr.attr);
1220 		sattr->mattr.show = module_sect_show;
1221 		sattr->mattr.store = NULL;
1222 		sattr->mattr.attr.name = sattr->name;
1223 		sattr->mattr.attr.mode = S_IRUGO;
1224 		*(gattr++) = &(sattr++)->mattr.attr;
1225 	}
1226 	*gattr = NULL;
1227 
1228 	if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1229 		goto out;
1230 
1231 	mod->sect_attrs = sect_attrs;
1232 	return;
1233   out:
1234 	free_sect_attrs(sect_attrs);
1235 }
1236 
remove_sect_attrs(struct module * mod)1237 static void remove_sect_attrs(struct module *mod)
1238 {
1239 	if (mod->sect_attrs) {
1240 		sysfs_remove_group(&mod->mkobj.kobj,
1241 				   &mod->sect_attrs->grp);
1242 		/* We are positive that no one is using any sect attrs
1243 		 * at this point.  Deallocate immediately. */
1244 		free_sect_attrs(mod->sect_attrs);
1245 		mod->sect_attrs = NULL;
1246 	}
1247 }
1248 
1249 /*
1250  * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1251  */
1252 
1253 struct module_notes_attrs {
1254 	struct kobject *dir;
1255 	unsigned int notes;
1256 	struct bin_attribute attrs[0];
1257 };
1258 
module_notes_read(struct file * filp,struct kobject * kobj,struct bin_attribute * bin_attr,char * buf,loff_t pos,size_t count)1259 static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1260 				 struct bin_attribute *bin_attr,
1261 				 char *buf, loff_t pos, size_t count)
1262 {
1263 	/*
1264 	 * The caller checked the pos and count against our size.
1265 	 */
1266 	memcpy(buf, bin_attr->private + pos, count);
1267 	return count;
1268 }
1269 
free_notes_attrs(struct module_notes_attrs * notes_attrs,unsigned int i)1270 static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1271 			     unsigned int i)
1272 {
1273 	if (notes_attrs->dir) {
1274 		while (i-- > 0)
1275 			sysfs_remove_bin_file(notes_attrs->dir,
1276 					      &notes_attrs->attrs[i]);
1277 		kobject_put(notes_attrs->dir);
1278 	}
1279 	kfree(notes_attrs);
1280 }
1281 
add_notes_attrs(struct module * mod,const struct load_info * info)1282 static void add_notes_attrs(struct module *mod, const struct load_info *info)
1283 {
1284 	unsigned int notes, loaded, i;
1285 	struct module_notes_attrs *notes_attrs;
1286 	struct bin_attribute *nattr;
1287 
1288 	/* failed to create section attributes, so can't create notes */
1289 	if (!mod->sect_attrs)
1290 		return;
1291 
1292 	/* Count notes sections and allocate structures.  */
1293 	notes = 0;
1294 	for (i = 0; i < info->hdr->e_shnum; i++)
1295 		if (!sect_empty(&info->sechdrs[i]) &&
1296 		    (info->sechdrs[i].sh_type == SHT_NOTE))
1297 			++notes;
1298 
1299 	if (notes == 0)
1300 		return;
1301 
1302 	notes_attrs = kzalloc(sizeof(*notes_attrs)
1303 			      + notes * sizeof(notes_attrs->attrs[0]),
1304 			      GFP_KERNEL);
1305 	if (notes_attrs == NULL)
1306 		return;
1307 
1308 	notes_attrs->notes = notes;
1309 	nattr = &notes_attrs->attrs[0];
1310 	for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1311 		if (sect_empty(&info->sechdrs[i]))
1312 			continue;
1313 		if (info->sechdrs[i].sh_type == SHT_NOTE) {
1314 			sysfs_bin_attr_init(nattr);
1315 			nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1316 			nattr->attr.mode = S_IRUGO;
1317 			nattr->size = info->sechdrs[i].sh_size;
1318 			nattr->private = (void *) info->sechdrs[i].sh_addr;
1319 			nattr->read = module_notes_read;
1320 			++nattr;
1321 		}
1322 		++loaded;
1323 	}
1324 
1325 	notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1326 	if (!notes_attrs->dir)
1327 		goto out;
1328 
1329 	for (i = 0; i < notes; ++i)
1330 		if (sysfs_create_bin_file(notes_attrs->dir,
1331 					  &notes_attrs->attrs[i]))
1332 			goto out;
1333 
1334 	mod->notes_attrs = notes_attrs;
1335 	return;
1336 
1337   out:
1338 	free_notes_attrs(notes_attrs, i);
1339 }
1340 
remove_notes_attrs(struct module * mod)1341 static void remove_notes_attrs(struct module *mod)
1342 {
1343 	if (mod->notes_attrs)
1344 		free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1345 }
1346 
1347 #else
1348 
add_sect_attrs(struct module * mod,const struct load_info * info)1349 static inline void add_sect_attrs(struct module *mod,
1350 				  const struct load_info *info)
1351 {
1352 }
1353 
remove_sect_attrs(struct module * mod)1354 static inline void remove_sect_attrs(struct module *mod)
1355 {
1356 }
1357 
add_notes_attrs(struct module * mod,const struct load_info * info)1358 static inline void add_notes_attrs(struct module *mod,
1359 				   const struct load_info *info)
1360 {
1361 }
1362 
remove_notes_attrs(struct module * mod)1363 static inline void remove_notes_attrs(struct module *mod)
1364 {
1365 }
1366 #endif /* CONFIG_KALLSYMS */
1367 
add_usage_links(struct module * mod)1368 static void add_usage_links(struct module *mod)
1369 {
1370 #ifdef CONFIG_MODULE_UNLOAD
1371 	struct module_use *use;
1372 	int nowarn;
1373 
1374 	mutex_lock(&module_mutex);
1375 	list_for_each_entry(use, &mod->target_list, target_list) {
1376 		nowarn = sysfs_create_link(use->target->holders_dir,
1377 					   &mod->mkobj.kobj, mod->name);
1378 	}
1379 	mutex_unlock(&module_mutex);
1380 #endif
1381 }
1382 
del_usage_links(struct module * mod)1383 static void del_usage_links(struct module *mod)
1384 {
1385 #ifdef CONFIG_MODULE_UNLOAD
1386 	struct module_use *use;
1387 
1388 	mutex_lock(&module_mutex);
1389 	list_for_each_entry(use, &mod->target_list, target_list)
1390 		sysfs_remove_link(use->target->holders_dir, mod->name);
1391 	mutex_unlock(&module_mutex);
1392 #endif
1393 }
1394 
module_add_modinfo_attrs(struct module * mod)1395 static int module_add_modinfo_attrs(struct module *mod)
1396 {
1397 	struct module_attribute *attr;
1398 	struct module_attribute *temp_attr;
1399 	int error = 0;
1400 	int i;
1401 
1402 	mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1403 					(ARRAY_SIZE(modinfo_attrs) + 1)),
1404 					GFP_KERNEL);
1405 	if (!mod->modinfo_attrs)
1406 		return -ENOMEM;
1407 
1408 	temp_attr = mod->modinfo_attrs;
1409 	for (i = 0; (attr = modinfo_attrs[i]) && !error; i++) {
1410 		if (!attr->test ||
1411 		    (attr->test && attr->test(mod))) {
1412 			memcpy(temp_attr, attr, sizeof(*temp_attr));
1413 			sysfs_attr_init(&temp_attr->attr);
1414 			error = sysfs_create_file(&mod->mkobj.kobj,&temp_attr->attr);
1415 			++temp_attr;
1416 		}
1417 	}
1418 	return error;
1419 }
1420 
module_remove_modinfo_attrs(struct module * mod)1421 static void module_remove_modinfo_attrs(struct module *mod)
1422 {
1423 	struct module_attribute *attr;
1424 	int i;
1425 
1426 	for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1427 		/* pick a field to test for end of list */
1428 		if (!attr->attr.name)
1429 			break;
1430 		sysfs_remove_file(&mod->mkobj.kobj,&attr->attr);
1431 		if (attr->free)
1432 			attr->free(mod);
1433 	}
1434 	kfree(mod->modinfo_attrs);
1435 }
1436 
mod_sysfs_init(struct module * mod)1437 static int mod_sysfs_init(struct module *mod)
1438 {
1439 	int err;
1440 	struct kobject *kobj;
1441 
1442 	if (!module_sysfs_initialized) {
1443 		printk(KERN_ERR "%s: module sysfs not initialized\n",
1444 		       mod->name);
1445 		err = -EINVAL;
1446 		goto out;
1447 	}
1448 
1449 	kobj = kset_find_obj(module_kset, mod->name);
1450 	if (kobj) {
1451 		printk(KERN_ERR "%s: module is already loaded\n", mod->name);
1452 		kobject_put(kobj);
1453 		err = -EINVAL;
1454 		goto out;
1455 	}
1456 
1457 	mod->mkobj.mod = mod;
1458 
1459 	memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1460 	mod->mkobj.kobj.kset = module_kset;
1461 	err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1462 				   "%s", mod->name);
1463 	if (err)
1464 		kobject_put(&mod->mkobj.kobj);
1465 
1466 	/* delay uevent until full sysfs population */
1467 out:
1468 	return err;
1469 }
1470 
mod_sysfs_setup(struct module * mod,const struct load_info * info,struct kernel_param * kparam,unsigned int num_params)1471 static int mod_sysfs_setup(struct module *mod,
1472 			   const struct load_info *info,
1473 			   struct kernel_param *kparam,
1474 			   unsigned int num_params)
1475 {
1476 	int err;
1477 
1478 	err = mod_sysfs_init(mod);
1479 	if (err)
1480 		goto out;
1481 
1482 	mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1483 	if (!mod->holders_dir) {
1484 		err = -ENOMEM;
1485 		goto out_unreg;
1486 	}
1487 
1488 	err = module_param_sysfs_setup(mod, kparam, num_params);
1489 	if (err)
1490 		goto out_unreg_holders;
1491 
1492 	err = module_add_modinfo_attrs(mod);
1493 	if (err)
1494 		goto out_unreg_param;
1495 
1496 	add_usage_links(mod);
1497 	add_sect_attrs(mod, info);
1498 	add_notes_attrs(mod, info);
1499 
1500 	kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1501 	return 0;
1502 
1503 out_unreg_param:
1504 	module_param_sysfs_remove(mod);
1505 out_unreg_holders:
1506 	kobject_put(mod->holders_dir);
1507 out_unreg:
1508 	kobject_put(&mod->mkobj.kobj);
1509 out:
1510 	return err;
1511 }
1512 
mod_sysfs_fini(struct module * mod)1513 static void mod_sysfs_fini(struct module *mod)
1514 {
1515 	remove_notes_attrs(mod);
1516 	remove_sect_attrs(mod);
1517 	kobject_put(&mod->mkobj.kobj);
1518 }
1519 
1520 #else /* !CONFIG_SYSFS */
1521 
mod_sysfs_setup(struct module * mod,const struct load_info * info,struct kernel_param * kparam,unsigned int num_params)1522 static int mod_sysfs_setup(struct module *mod,
1523 			   const struct load_info *info,
1524 			   struct kernel_param *kparam,
1525 			   unsigned int num_params)
1526 {
1527 	return 0;
1528 }
1529 
mod_sysfs_fini(struct module * mod)1530 static void mod_sysfs_fini(struct module *mod)
1531 {
1532 }
1533 
module_remove_modinfo_attrs(struct module * mod)1534 static void module_remove_modinfo_attrs(struct module *mod)
1535 {
1536 }
1537 
del_usage_links(struct module * mod)1538 static void del_usage_links(struct module *mod)
1539 {
1540 }
1541 
1542 #endif /* CONFIG_SYSFS */
1543 
mod_sysfs_teardown(struct module * mod)1544 static void mod_sysfs_teardown(struct module *mod)
1545 {
1546 	del_usage_links(mod);
1547 	module_remove_modinfo_attrs(mod);
1548 	module_param_sysfs_remove(mod);
1549 	kobject_put(mod->mkobj.drivers_dir);
1550 	kobject_put(mod->holders_dir);
1551 	mod_sysfs_fini(mod);
1552 }
1553 
1554 /*
1555  * unlink the module with the whole machine is stopped with interrupts off
1556  * - this defends against kallsyms not taking locks
1557  */
__unlink_module(void * _mod)1558 static int __unlink_module(void *_mod)
1559 {
1560 	struct module *mod = _mod;
1561 	list_del(&mod->list);
1562 	module_bug_cleanup(mod);
1563 	return 0;
1564 }
1565 
1566 #ifdef CONFIG_DEBUG_SET_MODULE_RONX
1567 /*
1568  * LKM RO/NX protection: protect module's text/ro-data
1569  * from modification and any data from execution.
1570  */
set_page_attributes(void * start,void * end,int (* set)(unsigned long start,int num_pages))1571 void set_page_attributes(void *start, void *end, int (*set)(unsigned long start, int num_pages))
1572 {
1573 	unsigned long begin_pfn = PFN_DOWN((unsigned long)start);
1574 	unsigned long end_pfn = PFN_DOWN((unsigned long)end);
1575 
1576 	if (end_pfn > begin_pfn)
1577 		set(begin_pfn << PAGE_SHIFT, end_pfn - begin_pfn);
1578 }
1579 
set_section_ro_nx(void * base,unsigned long text_size,unsigned long ro_size,unsigned long total_size)1580 static void set_section_ro_nx(void *base,
1581 			unsigned long text_size,
1582 			unsigned long ro_size,
1583 			unsigned long total_size)
1584 {
1585 	/* begin and end PFNs of the current subsection */
1586 	unsigned long begin_pfn;
1587 	unsigned long end_pfn;
1588 
1589 	/*
1590 	 * Set RO for module text and RO-data:
1591 	 * - Always protect first page.
1592 	 * - Do not protect last partial page.
1593 	 */
1594 	if (ro_size > 0)
1595 		set_page_attributes(base, base + ro_size, set_memory_ro);
1596 
1597 	/*
1598 	 * Set NX permissions for module data:
1599 	 * - Do not protect first partial page.
1600 	 * - Always protect last page.
1601 	 */
1602 	if (total_size > text_size) {
1603 		begin_pfn = PFN_UP((unsigned long)base + text_size);
1604 		end_pfn = PFN_UP((unsigned long)base + total_size);
1605 		if (end_pfn > begin_pfn)
1606 			set_memory_nx(begin_pfn << PAGE_SHIFT, end_pfn - begin_pfn);
1607 	}
1608 }
1609 
1610 /* Setting memory back to RW+NX before releasing it */
unset_section_ro_nx(struct module * mod,void * module_region)1611 void unset_section_ro_nx(struct module *mod, void *module_region)
1612 {
1613 	unsigned long total_pages;
1614 
1615 	if (mod->module_core == module_region) {
1616 		/* Set core as NX+RW */
1617 		total_pages = MOD_NUMBER_OF_PAGES(mod->module_core, mod->core_size);
1618 		set_memory_nx((unsigned long)mod->module_core, total_pages);
1619 		set_memory_rw((unsigned long)mod->module_core, total_pages);
1620 
1621 	} else if (mod->module_init == module_region) {
1622 		/* Set init as NX+RW */
1623 		total_pages = MOD_NUMBER_OF_PAGES(mod->module_init, mod->init_size);
1624 		set_memory_nx((unsigned long)mod->module_init, total_pages);
1625 		set_memory_rw((unsigned long)mod->module_init, total_pages);
1626 	}
1627 }
1628 
1629 /* Iterate through all modules and set each module's text as RW */
set_all_modules_text_rw()1630 void set_all_modules_text_rw()
1631 {
1632 	struct module *mod;
1633 
1634 	mutex_lock(&module_mutex);
1635 	list_for_each_entry_rcu(mod, &modules, list) {
1636 		if ((mod->module_core) && (mod->core_text_size)) {
1637 			set_page_attributes(mod->module_core,
1638 						mod->module_core + mod->core_text_size,
1639 						set_memory_rw);
1640 		}
1641 		if ((mod->module_init) && (mod->init_text_size)) {
1642 			set_page_attributes(mod->module_init,
1643 						mod->module_init + mod->init_text_size,
1644 						set_memory_rw);
1645 		}
1646 	}
1647 	mutex_unlock(&module_mutex);
1648 }
1649 
1650 /* Iterate through all modules and set each module's text as RO */
set_all_modules_text_ro()1651 void set_all_modules_text_ro()
1652 {
1653 	struct module *mod;
1654 
1655 	mutex_lock(&module_mutex);
1656 	list_for_each_entry_rcu(mod, &modules, list) {
1657 		if ((mod->module_core) && (mod->core_text_size)) {
1658 			set_page_attributes(mod->module_core,
1659 						mod->module_core + mod->core_text_size,
1660 						set_memory_ro);
1661 		}
1662 		if ((mod->module_init) && (mod->init_text_size)) {
1663 			set_page_attributes(mod->module_init,
1664 						mod->module_init + mod->init_text_size,
1665 						set_memory_ro);
1666 		}
1667 	}
1668 	mutex_unlock(&module_mutex);
1669 }
1670 #else
set_section_ro_nx(void * base,unsigned long text_size,unsigned long ro_size,unsigned long total_size)1671 static inline void set_section_ro_nx(void *base, unsigned long text_size, unsigned long ro_size, unsigned long total_size) { }
unset_section_ro_nx(struct module * mod,void * module_region)1672 static inline void unset_section_ro_nx(struct module *mod, void *module_region) { }
1673 #endif
1674 
1675 /* Free a module, remove from lists, etc. */
free_module(struct module * mod)1676 static void free_module(struct module *mod)
1677 {
1678 	trace_module_free(mod);
1679 
1680 	/* Delete from various lists */
1681 	mutex_lock(&module_mutex);
1682 	stop_machine(__unlink_module, mod, NULL);
1683 	mutex_unlock(&module_mutex);
1684 	mod_sysfs_teardown(mod);
1685 
1686 	/* Remove dynamic debug info */
1687 	ddebug_remove_module(mod->name);
1688 
1689 	/* Arch-specific cleanup. */
1690 	module_arch_cleanup(mod);
1691 
1692 	/* Module unload stuff */
1693 	module_unload_free(mod);
1694 
1695 	/* Free any allocated parameters. */
1696 	destroy_params(mod->kp, mod->num_kp);
1697 
1698 	/* This may be NULL, but that's OK */
1699 	unset_section_ro_nx(mod, mod->module_init);
1700 	module_free(mod, mod->module_init);
1701 	kfree(mod->args);
1702 	percpu_modfree(mod);
1703 
1704 	/* Free lock-classes: */
1705 	lockdep_free_key_range(mod->module_core, mod->core_size);
1706 
1707 	/* Finally, free the core (containing the module structure) */
1708 	unset_section_ro_nx(mod, mod->module_core);
1709 	module_free(mod, mod->module_core);
1710 
1711 #ifdef CONFIG_MPU
1712 	update_protections(current->mm);
1713 #endif
1714 }
1715 
__symbol_get(const char * symbol)1716 void *__symbol_get(const char *symbol)
1717 {
1718 	struct module *owner;
1719 	const struct kernel_symbol *sym;
1720 
1721 	preempt_disable();
1722 	sym = find_symbol(symbol, &owner, NULL, true, true);
1723 	if (sym && strong_try_module_get(owner))
1724 		sym = NULL;
1725 	preempt_enable();
1726 
1727 	return sym ? (void *)sym->value : NULL;
1728 }
1729 EXPORT_SYMBOL_GPL(__symbol_get);
1730 
1731 /*
1732  * Ensure that an exported symbol [global namespace] does not already exist
1733  * in the kernel or in some other module's exported symbol table.
1734  *
1735  * You must hold the module_mutex.
1736  */
verify_export_symbols(struct module * mod)1737 static int verify_export_symbols(struct module *mod)
1738 {
1739 	unsigned int i;
1740 	struct module *owner;
1741 	const struct kernel_symbol *s;
1742 	struct {
1743 		const struct kernel_symbol *sym;
1744 		unsigned int num;
1745 	} arr[] = {
1746 		{ mod->syms, mod->num_syms },
1747 		{ mod->gpl_syms, mod->num_gpl_syms },
1748 		{ mod->gpl_future_syms, mod->num_gpl_future_syms },
1749 #ifdef CONFIG_UNUSED_SYMBOLS
1750 		{ mod->unused_syms, mod->num_unused_syms },
1751 		{ mod->unused_gpl_syms, mod->num_unused_gpl_syms },
1752 #endif
1753 	};
1754 
1755 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
1756 		for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1757 			if (find_symbol(s->name, &owner, NULL, true, false)) {
1758 				printk(KERN_ERR
1759 				       "%s: exports duplicate symbol %s"
1760 				       " (owned by %s)\n",
1761 				       mod->name, s->name, module_name(owner));
1762 				return -ENOEXEC;
1763 			}
1764 		}
1765 	}
1766 	return 0;
1767 }
1768 
1769 /* Change all symbols so that st_value encodes the pointer directly. */
simplify_symbols(struct module * mod,const struct load_info * info)1770 static int simplify_symbols(struct module *mod, const struct load_info *info)
1771 {
1772 	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
1773 	Elf_Sym *sym = (void *)symsec->sh_addr;
1774 	unsigned long secbase;
1775 	unsigned int i;
1776 	int ret = 0;
1777 	const struct kernel_symbol *ksym;
1778 
1779 	for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
1780 		const char *name = info->strtab + sym[i].st_name;
1781 
1782 		switch (sym[i].st_shndx) {
1783 		case SHN_COMMON:
1784 			/* We compiled with -fno-common.  These are not
1785 			   supposed to happen.  */
1786 			DEBUGP("Common symbol: %s\n", name);
1787 			printk("%s: please compile with -fno-common\n",
1788 			       mod->name);
1789 			ret = -ENOEXEC;
1790 			break;
1791 
1792 		case SHN_ABS:
1793 			/* Don't need to do anything */
1794 			DEBUGP("Absolute symbol: 0x%08lx\n",
1795 			       (long)sym[i].st_value);
1796 			break;
1797 
1798 		case SHN_UNDEF:
1799 			ksym = resolve_symbol_wait(mod, info, name);
1800 			/* Ok if resolved.  */
1801 			if (ksym && !IS_ERR(ksym)) {
1802 				sym[i].st_value = ksym->value;
1803 				break;
1804 			}
1805 
1806 			/* Ok if weak.  */
1807 			if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
1808 				break;
1809 
1810 			printk(KERN_WARNING "%s: Unknown symbol %s (err %li)\n",
1811 			       mod->name, name, PTR_ERR(ksym));
1812 			ret = PTR_ERR(ksym) ?: -ENOENT;
1813 			break;
1814 
1815 		default:
1816 			/* Divert to percpu allocation if a percpu var. */
1817 			if (sym[i].st_shndx == info->index.pcpu)
1818 				secbase = (unsigned long)mod_percpu(mod);
1819 			else
1820 				secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
1821 			sym[i].st_value += secbase;
1822 			break;
1823 		}
1824 	}
1825 
1826 	return ret;
1827 }
1828 
apply_relocations(struct module * mod,const struct load_info * info)1829 static int apply_relocations(struct module *mod, const struct load_info *info)
1830 {
1831 	unsigned int i;
1832 	int err = 0;
1833 
1834 	/* Now do relocations. */
1835 	for (i = 1; i < info->hdr->e_shnum; i++) {
1836 		unsigned int infosec = info->sechdrs[i].sh_info;
1837 
1838 		/* Not a valid relocation section? */
1839 		if (infosec >= info->hdr->e_shnum)
1840 			continue;
1841 
1842 		/* Don't bother with non-allocated sections */
1843 		if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
1844 			continue;
1845 
1846 		if (info->sechdrs[i].sh_type == SHT_REL)
1847 			err = apply_relocate(info->sechdrs, info->strtab,
1848 					     info->index.sym, i, mod);
1849 		else if (info->sechdrs[i].sh_type == SHT_RELA)
1850 			err = apply_relocate_add(info->sechdrs, info->strtab,
1851 						 info->index.sym, i, mod);
1852 		if (err < 0)
1853 			break;
1854 	}
1855 	return err;
1856 }
1857 
1858 /* Additional bytes needed by arch in front of individual sections */
arch_mod_section_prepend(struct module * mod,unsigned int section)1859 unsigned int __weak arch_mod_section_prepend(struct module *mod,
1860 					     unsigned int section)
1861 {
1862 	/* default implementation just returns zero */
1863 	return 0;
1864 }
1865 
1866 /* Update size with this section: return offset. */
get_offset(struct module * mod,unsigned int * size,Elf_Shdr * sechdr,unsigned int section)1867 static long get_offset(struct module *mod, unsigned int *size,
1868 		       Elf_Shdr *sechdr, unsigned int section)
1869 {
1870 	long ret;
1871 
1872 	*size += arch_mod_section_prepend(mod, section);
1873 	ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
1874 	*size = ret + sechdr->sh_size;
1875 	return ret;
1876 }
1877 
1878 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
1879    might -- code, read-only data, read-write data, small data.  Tally
1880    sizes, and place the offsets into sh_entsize fields: high bit means it
1881    belongs in init. */
layout_sections(struct module * mod,struct load_info * info)1882 static void layout_sections(struct module *mod, struct load_info *info)
1883 {
1884 	static unsigned long const masks[][2] = {
1885 		/* NOTE: all executable code must be the first section
1886 		 * in this array; otherwise modify the text_size
1887 		 * finder in the two loops below */
1888 		{ SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
1889 		{ SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
1890 		{ SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
1891 		{ ARCH_SHF_SMALL | SHF_ALLOC, 0 }
1892 	};
1893 	unsigned int m, i;
1894 
1895 	for (i = 0; i < info->hdr->e_shnum; i++)
1896 		info->sechdrs[i].sh_entsize = ~0UL;
1897 
1898 	DEBUGP("Core section allocation order:\n");
1899 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1900 		for (i = 0; i < info->hdr->e_shnum; ++i) {
1901 			Elf_Shdr *s = &info->sechdrs[i];
1902 			const char *sname = info->secstrings + s->sh_name;
1903 
1904 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
1905 			    || (s->sh_flags & masks[m][1])
1906 			    || s->sh_entsize != ~0UL
1907 			    || strstarts(sname, ".init"))
1908 				continue;
1909 			s->sh_entsize = get_offset(mod, &mod->core_size, s, i);
1910 			DEBUGP("\t%s\n", name);
1911 		}
1912 		switch (m) {
1913 		case 0: /* executable */
1914 			mod->core_size = debug_align(mod->core_size);
1915 			mod->core_text_size = mod->core_size;
1916 			break;
1917 		case 1: /* RO: text and ro-data */
1918 			mod->core_size = debug_align(mod->core_size);
1919 			mod->core_ro_size = mod->core_size;
1920 			break;
1921 		case 3: /* whole core */
1922 			mod->core_size = debug_align(mod->core_size);
1923 			break;
1924 		}
1925 	}
1926 
1927 	DEBUGP("Init section allocation order:\n");
1928 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1929 		for (i = 0; i < info->hdr->e_shnum; ++i) {
1930 			Elf_Shdr *s = &info->sechdrs[i];
1931 			const char *sname = info->secstrings + s->sh_name;
1932 
1933 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
1934 			    || (s->sh_flags & masks[m][1])
1935 			    || s->sh_entsize != ~0UL
1936 			    || !strstarts(sname, ".init"))
1937 				continue;
1938 			s->sh_entsize = (get_offset(mod, &mod->init_size, s, i)
1939 					 | INIT_OFFSET_MASK);
1940 			DEBUGP("\t%s\n", sname);
1941 		}
1942 		switch (m) {
1943 		case 0: /* executable */
1944 			mod->init_size = debug_align(mod->init_size);
1945 			mod->init_text_size = mod->init_size;
1946 			break;
1947 		case 1: /* RO: text and ro-data */
1948 			mod->init_size = debug_align(mod->init_size);
1949 			mod->init_ro_size = mod->init_size;
1950 			break;
1951 		case 3: /* whole init */
1952 			mod->init_size = debug_align(mod->init_size);
1953 			break;
1954 		}
1955 	}
1956 }
1957 
set_license(struct module * mod,const char * license)1958 static void set_license(struct module *mod, const char *license)
1959 {
1960 	if (!license)
1961 		license = "unspecified";
1962 
1963 	if (!license_is_gpl_compatible(license)) {
1964 		if (!test_taint(TAINT_PROPRIETARY_MODULE))
1965 			printk(KERN_WARNING "%s: module license '%s' taints "
1966 				"kernel.\n", mod->name, license);
1967 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE);
1968 	}
1969 }
1970 
1971 /* Parse tag=value strings from .modinfo section */
next_string(char * string,unsigned long * secsize)1972 static char *next_string(char *string, unsigned long *secsize)
1973 {
1974 	/* Skip non-zero chars */
1975 	while (string[0]) {
1976 		string++;
1977 		if ((*secsize)-- <= 1)
1978 			return NULL;
1979 	}
1980 
1981 	/* Skip any zero padding. */
1982 	while (!string[0]) {
1983 		string++;
1984 		if ((*secsize)-- <= 1)
1985 			return NULL;
1986 	}
1987 	return string;
1988 }
1989 
get_modinfo(struct load_info * info,const char * tag)1990 static char *get_modinfo(struct load_info *info, const char *tag)
1991 {
1992 	char *p;
1993 	unsigned int taglen = strlen(tag);
1994 	Elf_Shdr *infosec = &info->sechdrs[info->index.info];
1995 	unsigned long size = infosec->sh_size;
1996 
1997 	for (p = (char *)infosec->sh_addr; p; p = next_string(p, &size)) {
1998 		if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
1999 			return p + taglen + 1;
2000 	}
2001 	return NULL;
2002 }
2003 
setup_modinfo(struct module * mod,struct load_info * info)2004 static void setup_modinfo(struct module *mod, struct load_info *info)
2005 {
2006 	struct module_attribute *attr;
2007 	int i;
2008 
2009 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
2010 		if (attr->setup)
2011 			attr->setup(mod, get_modinfo(info, attr->attr.name));
2012 	}
2013 }
2014 
free_modinfo(struct module * mod)2015 static void free_modinfo(struct module *mod)
2016 {
2017 	struct module_attribute *attr;
2018 	int i;
2019 
2020 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
2021 		if (attr->free)
2022 			attr->free(mod);
2023 	}
2024 }
2025 
2026 #ifdef CONFIG_KALLSYMS
2027 
2028 /* lookup symbol in given range of kernel_symbols */
lookup_symbol(const char * name,const struct kernel_symbol * start,const struct kernel_symbol * stop)2029 static const struct kernel_symbol *lookup_symbol(const char *name,
2030 	const struct kernel_symbol *start,
2031 	const struct kernel_symbol *stop)
2032 {
2033 	const struct kernel_symbol *ks = start;
2034 	for (; ks < stop; ks++)
2035 		if (strcmp(ks->name, name) == 0)
2036 			return ks;
2037 	return NULL;
2038 }
2039 
is_exported(const char * name,unsigned long value,const struct module * mod)2040 static int is_exported(const char *name, unsigned long value,
2041 		       const struct module *mod)
2042 {
2043 	const struct kernel_symbol *ks;
2044 	if (!mod)
2045 		ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab);
2046 	else
2047 		ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms);
2048 	return ks != NULL && ks->value == value;
2049 }
2050 
2051 /* As per nm */
elf_type(const Elf_Sym * sym,const struct load_info * info)2052 static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2053 {
2054 	const Elf_Shdr *sechdrs = info->sechdrs;
2055 
2056 	if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2057 		if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2058 			return 'v';
2059 		else
2060 			return 'w';
2061 	}
2062 	if (sym->st_shndx == SHN_UNDEF)
2063 		return 'U';
2064 	if (sym->st_shndx == SHN_ABS)
2065 		return 'a';
2066 	if (sym->st_shndx >= SHN_LORESERVE)
2067 		return '?';
2068 	if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2069 		return 't';
2070 	if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2071 	    && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2072 		if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2073 			return 'r';
2074 		else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2075 			return 'g';
2076 		else
2077 			return 'd';
2078 	}
2079 	if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2080 		if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2081 			return 's';
2082 		else
2083 			return 'b';
2084 	}
2085 	if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2086 		      ".debug")) {
2087 		return 'n';
2088 	}
2089 	return '?';
2090 }
2091 
is_core_symbol(const Elf_Sym * src,const Elf_Shdr * sechdrs,unsigned int shnum)2092 static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2093                            unsigned int shnum)
2094 {
2095 	const Elf_Shdr *sec;
2096 
2097 	if (src->st_shndx == SHN_UNDEF
2098 	    || src->st_shndx >= shnum
2099 	    || !src->st_name)
2100 		return false;
2101 
2102 	sec = sechdrs + src->st_shndx;
2103 	if (!(sec->sh_flags & SHF_ALLOC)
2104 #ifndef CONFIG_KALLSYMS_ALL
2105 	    || !(sec->sh_flags & SHF_EXECINSTR)
2106 #endif
2107 	    || (sec->sh_entsize & INIT_OFFSET_MASK))
2108 		return false;
2109 
2110 	return true;
2111 }
2112 
layout_symtab(struct module * mod,struct load_info * info)2113 static void layout_symtab(struct module *mod, struct load_info *info)
2114 {
2115 	Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2116 	Elf_Shdr *strsect = info->sechdrs + info->index.str;
2117 	const Elf_Sym *src;
2118 	unsigned int i, nsrc, ndst;
2119 
2120 	/* Put symbol section at end of init part of module. */
2121 	symsect->sh_flags |= SHF_ALLOC;
2122 	symsect->sh_entsize = get_offset(mod, &mod->init_size, symsect,
2123 					 info->index.sym) | INIT_OFFSET_MASK;
2124 	DEBUGP("\t%s\n", info->secstrings + symsect->sh_name);
2125 
2126 	src = (void *)info->hdr + symsect->sh_offset;
2127 	nsrc = symsect->sh_size / sizeof(*src);
2128 	for (ndst = i = 1; i < nsrc; ++i, ++src)
2129 		if (is_core_symbol(src, info->sechdrs, info->hdr->e_shnum)) {
2130 			unsigned int j = src->st_name;
2131 
2132 			while (!__test_and_set_bit(j, info->strmap)
2133 			       && info->strtab[j])
2134 				++j;
2135 			++ndst;
2136 		}
2137 
2138 	/* Append room for core symbols at end of core part. */
2139 	info->symoffs = ALIGN(mod->core_size, symsect->sh_addralign ?: 1);
2140 	mod->core_size = info->symoffs + ndst * sizeof(Elf_Sym);
2141 
2142 	/* Put string table section at end of init part of module. */
2143 	strsect->sh_flags |= SHF_ALLOC;
2144 	strsect->sh_entsize = get_offset(mod, &mod->init_size, strsect,
2145 					 info->index.str) | INIT_OFFSET_MASK;
2146 	DEBUGP("\t%s\n", info->secstrings + strsect->sh_name);
2147 
2148 	/* Append room for core symbols' strings at end of core part. */
2149 	info->stroffs = mod->core_size;
2150 	__set_bit(0, info->strmap);
2151 	mod->core_size += bitmap_weight(info->strmap, strsect->sh_size);
2152 }
2153 
add_kallsyms(struct module * mod,const struct load_info * info)2154 static void add_kallsyms(struct module *mod, const struct load_info *info)
2155 {
2156 	unsigned int i, ndst;
2157 	const Elf_Sym *src;
2158 	Elf_Sym *dst;
2159 	char *s;
2160 	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2161 
2162 	mod->symtab = (void *)symsec->sh_addr;
2163 	mod->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2164 	/* Make sure we get permanent strtab: don't use info->strtab. */
2165 	mod->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2166 
2167 	/* Set types up while we still have access to sections. */
2168 	for (i = 0; i < mod->num_symtab; i++)
2169 		mod->symtab[i].st_info = elf_type(&mod->symtab[i], info);
2170 
2171 	mod->core_symtab = dst = mod->module_core + info->symoffs;
2172 	src = mod->symtab;
2173 	*dst = *src;
2174 	for (ndst = i = 1; i < mod->num_symtab; ++i, ++src) {
2175 		if (!is_core_symbol(src, info->sechdrs, info->hdr->e_shnum))
2176 			continue;
2177 		dst[ndst] = *src;
2178 		dst[ndst].st_name = bitmap_weight(info->strmap,
2179 						  dst[ndst].st_name);
2180 		++ndst;
2181 	}
2182 	mod->core_num_syms = ndst;
2183 
2184 	mod->core_strtab = s = mod->module_core + info->stroffs;
2185 	for (*s = 0, i = 1; i < info->sechdrs[info->index.str].sh_size; ++i)
2186 		if (test_bit(i, info->strmap))
2187 			*++s = mod->strtab[i];
2188 }
2189 #else
layout_symtab(struct module * mod,struct load_info * info)2190 static inline void layout_symtab(struct module *mod, struct load_info *info)
2191 {
2192 }
2193 
add_kallsyms(struct module * mod,const struct load_info * info)2194 static void add_kallsyms(struct module *mod, const struct load_info *info)
2195 {
2196 }
2197 #endif /* CONFIG_KALLSYMS */
2198 
dynamic_debug_setup(struct _ddebug * debug,unsigned int num)2199 static void dynamic_debug_setup(struct _ddebug *debug, unsigned int num)
2200 {
2201 	if (!debug)
2202 		return;
2203 #ifdef CONFIG_DYNAMIC_DEBUG
2204 	if (ddebug_add_module(debug, num, debug->modname))
2205 		printk(KERN_ERR "dynamic debug error adding module: %s\n",
2206 					debug->modname);
2207 #endif
2208 }
2209 
dynamic_debug_remove(struct _ddebug * debug)2210 static void dynamic_debug_remove(struct _ddebug *debug)
2211 {
2212 	if (debug)
2213 		ddebug_remove_module(debug->modname);
2214 }
2215 
module_alloc_update_bounds(unsigned long size)2216 static void *module_alloc_update_bounds(unsigned long size)
2217 {
2218 	void *ret = module_alloc(size);
2219 
2220 	if (ret) {
2221 		mutex_lock(&module_mutex);
2222 		/* Update module bounds. */
2223 		if ((unsigned long)ret < module_addr_min)
2224 			module_addr_min = (unsigned long)ret;
2225 		if ((unsigned long)ret + size > module_addr_max)
2226 			module_addr_max = (unsigned long)ret + size;
2227 		mutex_unlock(&module_mutex);
2228 	}
2229 	return ret;
2230 }
2231 
2232 #ifdef CONFIG_DEBUG_KMEMLEAK
kmemleak_load_module(const struct module * mod,const struct load_info * info)2233 static void kmemleak_load_module(const struct module *mod,
2234 				 const struct load_info *info)
2235 {
2236 	unsigned int i;
2237 
2238 	/* only scan the sections containing data */
2239 	kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2240 
2241 	for (i = 1; i < info->hdr->e_shnum; i++) {
2242 		const char *name = info->secstrings + info->sechdrs[i].sh_name;
2243 		if (!(info->sechdrs[i].sh_flags & SHF_ALLOC))
2244 			continue;
2245 		if (!strstarts(name, ".data") && !strstarts(name, ".bss"))
2246 			continue;
2247 
2248 		kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2249 				   info->sechdrs[i].sh_size, GFP_KERNEL);
2250 	}
2251 }
2252 #else
kmemleak_load_module(const struct module * mod,const struct load_info * info)2253 static inline void kmemleak_load_module(const struct module *mod,
2254 					const struct load_info *info)
2255 {
2256 }
2257 #endif
2258 
2259 /* Sets info->hdr and info->len. */
copy_and_check(struct load_info * info,const void __user * umod,unsigned long len,const char __user * uargs)2260 static int copy_and_check(struct load_info *info,
2261 			  const void __user *umod, unsigned long len,
2262 			  const char __user *uargs)
2263 {
2264 	int err;
2265 	Elf_Ehdr *hdr;
2266 
2267 	if (len < sizeof(*hdr))
2268 		return -ENOEXEC;
2269 
2270 	/* Suck in entire file: we'll want most of it. */
2271 	/* vmalloc barfs on "unusual" numbers.  Check here */
2272 	if (len > 64 * 1024 * 1024 || (hdr = vmalloc(len)) == NULL)
2273 		return -ENOMEM;
2274 
2275 	if (copy_from_user(hdr, umod, len) != 0) {
2276 		err = -EFAULT;
2277 		goto free_hdr;
2278 	}
2279 
2280 	/* Sanity checks against insmoding binaries or wrong arch,
2281 	   weird elf version */
2282 	if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) != 0
2283 	    || hdr->e_type != ET_REL
2284 	    || !elf_check_arch(hdr)
2285 	    || hdr->e_shentsize != sizeof(Elf_Shdr)) {
2286 		err = -ENOEXEC;
2287 		goto free_hdr;
2288 	}
2289 
2290 	if (len < hdr->e_shoff + hdr->e_shnum * sizeof(Elf_Shdr)) {
2291 		err = -ENOEXEC;
2292 		goto free_hdr;
2293 	}
2294 
2295 	info->hdr = hdr;
2296 	info->len = len;
2297 	return 0;
2298 
2299 free_hdr:
2300 	vfree(hdr);
2301 	return err;
2302 }
2303 
free_copy(struct load_info * info)2304 static void free_copy(struct load_info *info)
2305 {
2306 	vfree(info->hdr);
2307 }
2308 
rewrite_section_headers(struct load_info * info)2309 static int rewrite_section_headers(struct load_info *info)
2310 {
2311 	unsigned int i;
2312 
2313 	/* This should always be true, but let's be sure. */
2314 	info->sechdrs[0].sh_addr = 0;
2315 
2316 	for (i = 1; i < info->hdr->e_shnum; i++) {
2317 		Elf_Shdr *shdr = &info->sechdrs[i];
2318 		if (shdr->sh_type != SHT_NOBITS
2319 		    && info->len < shdr->sh_offset + shdr->sh_size) {
2320 			printk(KERN_ERR "Module len %lu truncated\n",
2321 			       info->len);
2322 			return -ENOEXEC;
2323 		}
2324 
2325 		/* Mark all sections sh_addr with their address in the
2326 		   temporary image. */
2327 		shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2328 
2329 #ifndef CONFIG_MODULE_UNLOAD
2330 		/* Don't load .exit sections */
2331 		if (strstarts(info->secstrings+shdr->sh_name, ".exit"))
2332 			shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
2333 #endif
2334 	}
2335 
2336 	/* Track but don't keep modinfo and version sections. */
2337 	info->index.vers = find_sec(info, "__versions");
2338 	info->index.info = find_sec(info, ".modinfo");
2339 	info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2340 	info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2341 	return 0;
2342 }
2343 
2344 /*
2345  * Set up our basic convenience variables (pointers to section headers,
2346  * search for module section index etc), and do some basic section
2347  * verification.
2348  *
2349  * Return the temporary module pointer (we'll replace it with the final
2350  * one when we move the module sections around).
2351  */
setup_load_info(struct load_info * info)2352 static struct module *setup_load_info(struct load_info *info)
2353 {
2354 	unsigned int i;
2355 	int err;
2356 	struct module *mod;
2357 
2358 	/* Set up the convenience variables */
2359 	info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2360 	info->secstrings = (void *)info->hdr
2361 		+ info->sechdrs[info->hdr->e_shstrndx].sh_offset;
2362 
2363 	err = rewrite_section_headers(info);
2364 	if (err)
2365 		return ERR_PTR(err);
2366 
2367 	/* Find internal symbols and strings. */
2368 	for (i = 1; i < info->hdr->e_shnum; i++) {
2369 		if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2370 			info->index.sym = i;
2371 			info->index.str = info->sechdrs[i].sh_link;
2372 			info->strtab = (char *)info->hdr
2373 				+ info->sechdrs[info->index.str].sh_offset;
2374 			break;
2375 		}
2376 	}
2377 
2378 	info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
2379 	if (!info->index.mod) {
2380 		printk(KERN_WARNING "No module found in object\n");
2381 		return ERR_PTR(-ENOEXEC);
2382 	}
2383 	/* This is temporary: point mod into copy of data. */
2384 	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2385 
2386 	if (info->index.sym == 0) {
2387 		printk(KERN_WARNING "%s: module has no symbols (stripped?)\n",
2388 		       mod->name);
2389 		return ERR_PTR(-ENOEXEC);
2390 	}
2391 
2392 	info->index.pcpu = find_pcpusec(info);
2393 
2394 	/* Check module struct version now, before we try to use module. */
2395 	if (!check_modstruct_version(info->sechdrs, info->index.vers, mod))
2396 		return ERR_PTR(-ENOEXEC);
2397 
2398 	return mod;
2399 }
2400 
check_modinfo(struct module * mod,struct load_info * info)2401 static int check_modinfo(struct module *mod, struct load_info *info)
2402 {
2403 	const char *modmagic = get_modinfo(info, "vermagic");
2404 	int err;
2405 
2406 	/* This is allowed: modprobe --force will invalidate it. */
2407 	if (!modmagic) {
2408 		err = try_to_force_load(mod, "bad vermagic");
2409 		if (err)
2410 			return err;
2411 	} else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2412 		printk(KERN_ERR "%s: version magic '%s' should be '%s'\n",
2413 		       mod->name, modmagic, vermagic);
2414 		return -ENOEXEC;
2415 	}
2416 
2417 	if (get_modinfo(info, "staging")) {
2418 		add_taint_module(mod, TAINT_CRAP);
2419 		printk(KERN_WARNING "%s: module is from the staging directory,"
2420 		       " the quality is unknown, you have been warned.\n",
2421 		       mod->name);
2422 	}
2423 
2424 	/* Set up license info based on the info section */
2425 	set_license(mod, get_modinfo(info, "license"));
2426 
2427 	return 0;
2428 }
2429 
find_module_sections(struct module * mod,struct load_info * info)2430 static void find_module_sections(struct module *mod, struct load_info *info)
2431 {
2432 	mod->kp = section_objs(info, "__param",
2433 			       sizeof(*mod->kp), &mod->num_kp);
2434 	mod->syms = section_objs(info, "__ksymtab",
2435 				 sizeof(*mod->syms), &mod->num_syms);
2436 	mod->crcs = section_addr(info, "__kcrctab");
2437 	mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2438 				     sizeof(*mod->gpl_syms),
2439 				     &mod->num_gpl_syms);
2440 	mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2441 	mod->gpl_future_syms = section_objs(info,
2442 					    "__ksymtab_gpl_future",
2443 					    sizeof(*mod->gpl_future_syms),
2444 					    &mod->num_gpl_future_syms);
2445 	mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
2446 
2447 #ifdef CONFIG_UNUSED_SYMBOLS
2448 	mod->unused_syms = section_objs(info, "__ksymtab_unused",
2449 					sizeof(*mod->unused_syms),
2450 					&mod->num_unused_syms);
2451 	mod->unused_crcs = section_addr(info, "__kcrctab_unused");
2452 	mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
2453 					    sizeof(*mod->unused_gpl_syms),
2454 					    &mod->num_unused_gpl_syms);
2455 	mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
2456 #endif
2457 #ifdef CONFIG_CONSTRUCTORS
2458 	mod->ctors = section_objs(info, ".ctors",
2459 				  sizeof(*mod->ctors), &mod->num_ctors);
2460 #endif
2461 
2462 #ifdef CONFIG_TRACEPOINTS
2463 	mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2464 					     sizeof(*mod->tracepoints_ptrs),
2465 					     &mod->num_tracepoints);
2466 #endif
2467 #ifdef HAVE_JUMP_LABEL
2468 	mod->jump_entries = section_objs(info, "__jump_table",
2469 					sizeof(*mod->jump_entries),
2470 					&mod->num_jump_entries);
2471 #endif
2472 #ifdef CONFIG_EVENT_TRACING
2473 	mod->trace_events = section_objs(info, "_ftrace_events",
2474 					 sizeof(*mod->trace_events),
2475 					 &mod->num_trace_events);
2476 	/*
2477 	 * This section contains pointers to allocated objects in the trace
2478 	 * code and not scanning it leads to false positives.
2479 	 */
2480 	kmemleak_scan_area(mod->trace_events, sizeof(*mod->trace_events) *
2481 			   mod->num_trace_events, GFP_KERNEL);
2482 #endif
2483 #ifdef CONFIG_TRACING
2484 	mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2485 					 sizeof(*mod->trace_bprintk_fmt_start),
2486 					 &mod->num_trace_bprintk_fmt);
2487 	/*
2488 	 * This section contains pointers to allocated objects in the trace
2489 	 * code and not scanning it leads to false positives.
2490 	 */
2491 	kmemleak_scan_area(mod->trace_bprintk_fmt_start,
2492 			   sizeof(*mod->trace_bprintk_fmt_start) *
2493 			   mod->num_trace_bprintk_fmt, GFP_KERNEL);
2494 #endif
2495 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
2496 	/* sechdrs[0].sh_size is always zero */
2497 	mod->ftrace_callsites = section_objs(info, "__mcount_loc",
2498 					     sizeof(*mod->ftrace_callsites),
2499 					     &mod->num_ftrace_callsites);
2500 #endif
2501 
2502 	mod->extable = section_objs(info, "__ex_table",
2503 				    sizeof(*mod->extable), &mod->num_exentries);
2504 
2505 	if (section_addr(info, "__obsparm"))
2506 		printk(KERN_WARNING "%s: Ignoring obsolete parameters\n",
2507 		       mod->name);
2508 
2509 	info->debug = section_objs(info, "__verbose",
2510 				   sizeof(*info->debug), &info->num_debug);
2511 }
2512 
move_module(struct module * mod,struct load_info * info)2513 static int move_module(struct module *mod, struct load_info *info)
2514 {
2515 	int i;
2516 	void *ptr;
2517 
2518 	/* Do the allocs. */
2519 	ptr = module_alloc_update_bounds(mod->core_size);
2520 	/*
2521 	 * The pointer to this block is stored in the module structure
2522 	 * which is inside the block. Just mark it as not being a
2523 	 * leak.
2524 	 */
2525 	kmemleak_not_leak(ptr);
2526 	if (!ptr)
2527 		return -ENOMEM;
2528 
2529 	memset(ptr, 0, mod->core_size);
2530 	mod->module_core = ptr;
2531 
2532 	ptr = module_alloc_update_bounds(mod->init_size);
2533 	/*
2534 	 * The pointer to this block is stored in the module structure
2535 	 * which is inside the block. This block doesn't need to be
2536 	 * scanned as it contains data and code that will be freed
2537 	 * after the module is initialized.
2538 	 */
2539 	kmemleak_ignore(ptr);
2540 	if (!ptr && mod->init_size) {
2541 		module_free(mod, mod->module_core);
2542 		return -ENOMEM;
2543 	}
2544 	memset(ptr, 0, mod->init_size);
2545 	mod->module_init = ptr;
2546 
2547 	/* Transfer each section which specifies SHF_ALLOC */
2548 	DEBUGP("final section addresses:\n");
2549 	for (i = 0; i < info->hdr->e_shnum; i++) {
2550 		void *dest;
2551 		Elf_Shdr *shdr = &info->sechdrs[i];
2552 
2553 		if (!(shdr->sh_flags & SHF_ALLOC))
2554 			continue;
2555 
2556 		if (shdr->sh_entsize & INIT_OFFSET_MASK)
2557 			dest = mod->module_init
2558 				+ (shdr->sh_entsize & ~INIT_OFFSET_MASK);
2559 		else
2560 			dest = mod->module_core + shdr->sh_entsize;
2561 
2562 		if (shdr->sh_type != SHT_NOBITS)
2563 			memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2564 		/* Update sh_addr to point to copy in image. */
2565 		shdr->sh_addr = (unsigned long)dest;
2566 		DEBUGP("\t0x%lx %s\n",
2567 		       shdr->sh_addr, info->secstrings + shdr->sh_name);
2568 	}
2569 
2570 	return 0;
2571 }
2572 
check_module_license_and_versions(struct module * mod)2573 static int check_module_license_and_versions(struct module *mod)
2574 {
2575 	/*
2576 	 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2577 	 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2578 	 * using GPL-only symbols it needs.
2579 	 */
2580 	if (strcmp(mod->name, "ndiswrapper") == 0)
2581 		add_taint(TAINT_PROPRIETARY_MODULE);
2582 
2583 	/* driverloader was caught wrongly pretending to be under GPL */
2584 	if (strcmp(mod->name, "driverloader") == 0)
2585 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE);
2586 
2587 #ifdef CONFIG_MODVERSIONS
2588 	if ((mod->num_syms && !mod->crcs)
2589 	    || (mod->num_gpl_syms && !mod->gpl_crcs)
2590 	    || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
2591 #ifdef CONFIG_UNUSED_SYMBOLS
2592 	    || (mod->num_unused_syms && !mod->unused_crcs)
2593 	    || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
2594 #endif
2595 		) {
2596 		return try_to_force_load(mod,
2597 					 "no versions for exported symbols");
2598 	}
2599 #endif
2600 	return 0;
2601 }
2602 
flush_module_icache(const struct module * mod)2603 static void flush_module_icache(const struct module *mod)
2604 {
2605 	mm_segment_t old_fs;
2606 
2607 	/* flush the icache in correct context */
2608 	old_fs = get_fs();
2609 	set_fs(KERNEL_DS);
2610 
2611 	/*
2612 	 * Flush the instruction cache, since we've played with text.
2613 	 * Do it before processing of module parameters, so the module
2614 	 * can provide parameter accessor functions of its own.
2615 	 */
2616 	if (mod->module_init)
2617 		flush_icache_range((unsigned long)mod->module_init,
2618 				   (unsigned long)mod->module_init
2619 				   + mod->init_size);
2620 	flush_icache_range((unsigned long)mod->module_core,
2621 			   (unsigned long)mod->module_core + mod->core_size);
2622 
2623 	set_fs(old_fs);
2624 }
2625 
layout_and_allocate(struct load_info * info)2626 static struct module *layout_and_allocate(struct load_info *info)
2627 {
2628 	/* Module within temporary copy. */
2629 	struct module *mod;
2630 	Elf_Shdr *pcpusec;
2631 	int err;
2632 
2633 	mod = setup_load_info(info);
2634 	if (IS_ERR(mod))
2635 		return mod;
2636 
2637 	err = check_modinfo(mod, info);
2638 	if (err)
2639 		return ERR_PTR(err);
2640 
2641 	/* Allow arches to frob section contents and sizes.  */
2642 	err = module_frob_arch_sections(info->hdr, info->sechdrs,
2643 					info->secstrings, mod);
2644 	if (err < 0)
2645 		goto out;
2646 
2647 	pcpusec = &info->sechdrs[info->index.pcpu];
2648 	if (pcpusec->sh_size) {
2649 		/* We have a special allocation for this section. */
2650 		err = percpu_modalloc(mod,
2651 				      pcpusec->sh_size, pcpusec->sh_addralign);
2652 		if (err)
2653 			goto out;
2654 		pcpusec->sh_flags &= ~(unsigned long)SHF_ALLOC;
2655 	}
2656 
2657 	/* Determine total sizes, and put offsets in sh_entsize.  For now
2658 	   this is done generically; there doesn't appear to be any
2659 	   special cases for the architectures. */
2660 	layout_sections(mod, info);
2661 
2662 	info->strmap = kzalloc(BITS_TO_LONGS(info->sechdrs[info->index.str].sh_size)
2663 			 * sizeof(long), GFP_KERNEL);
2664 	if (!info->strmap) {
2665 		err = -ENOMEM;
2666 		goto free_percpu;
2667 	}
2668 	layout_symtab(mod, info);
2669 
2670 	/* Allocate and move to the final place */
2671 	err = move_module(mod, info);
2672 	if (err)
2673 		goto free_strmap;
2674 
2675 	/* Module has been copied to its final place now: return it. */
2676 	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2677 	kmemleak_load_module(mod, info);
2678 	return mod;
2679 
2680 free_strmap:
2681 	kfree(info->strmap);
2682 free_percpu:
2683 	percpu_modfree(mod);
2684 out:
2685 	return ERR_PTR(err);
2686 }
2687 
2688 /* mod is no longer valid after this! */
module_deallocate(struct module * mod,struct load_info * info)2689 static void module_deallocate(struct module *mod, struct load_info *info)
2690 {
2691 	kfree(info->strmap);
2692 	percpu_modfree(mod);
2693 	module_free(mod, mod->module_init);
2694 	module_free(mod, mod->module_core);
2695 }
2696 
post_relocation(struct module * mod,const struct load_info * info)2697 static int post_relocation(struct module *mod, const struct load_info *info)
2698 {
2699 	/* Sort exception table now relocations are done. */
2700 	sort_extable(mod->extable, mod->extable + mod->num_exentries);
2701 
2702 	/* Copy relocated percpu area over. */
2703 	percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
2704 		       info->sechdrs[info->index.pcpu].sh_size);
2705 
2706 	/* Setup kallsyms-specific fields. */
2707 	add_kallsyms(mod, info);
2708 
2709 	/* Arch-specific module finalizing. */
2710 	return module_finalize(info->hdr, info->sechdrs, mod);
2711 }
2712 
2713 /* Allocate and load the module: note that size of section 0 is always
2714    zero, and we rely on this for optional sections. */
load_module(void __user * umod,unsigned long len,const char __user * uargs)2715 static struct module *load_module(void __user *umod,
2716 				  unsigned long len,
2717 				  const char __user *uargs)
2718 {
2719 	struct load_info info = { NULL, };
2720 	struct module *mod;
2721 	long err;
2722 
2723 	DEBUGP("load_module: umod=%p, len=%lu, uargs=%p\n",
2724 	       umod, len, uargs);
2725 
2726 	/* Copy in the blobs from userspace, check they are vaguely sane. */
2727 	err = copy_and_check(&info, umod, len, uargs);
2728 	if (err)
2729 		return ERR_PTR(err);
2730 
2731 	/* Figure out module layout, and allocate all the memory. */
2732 	mod = layout_and_allocate(&info);
2733 	if (IS_ERR(mod)) {
2734 		err = PTR_ERR(mod);
2735 		goto free_copy;
2736 	}
2737 
2738 	/* Now module is in final location, initialize linked lists, etc. */
2739 	err = module_unload_init(mod);
2740 	if (err)
2741 		goto free_module;
2742 
2743 	/* Now we've got everything in the final locations, we can
2744 	 * find optional sections. */
2745 	find_module_sections(mod, &info);
2746 
2747 	err = check_module_license_and_versions(mod);
2748 	if (err)
2749 		goto free_unload;
2750 
2751 	/* Set up MODINFO_ATTR fields */
2752 	setup_modinfo(mod, &info);
2753 
2754 	/* Fix up syms, so that st_value is a pointer to location. */
2755 	err = simplify_symbols(mod, &info);
2756 	if (err < 0)
2757 		goto free_modinfo;
2758 
2759 	err = apply_relocations(mod, &info);
2760 	if (err < 0)
2761 		goto free_modinfo;
2762 
2763 	err = post_relocation(mod, &info);
2764 	if (err < 0)
2765 		goto free_modinfo;
2766 
2767 	flush_module_icache(mod);
2768 
2769 	/* Now copy in args */
2770 	mod->args = strndup_user(uargs, ~0UL >> 1);
2771 	if (IS_ERR(mod->args)) {
2772 		err = PTR_ERR(mod->args);
2773 		goto free_arch_cleanup;
2774 	}
2775 
2776 	/* Mark state as coming so strong_try_module_get() ignores us. */
2777 	mod->state = MODULE_STATE_COMING;
2778 
2779 	/* Now sew it into the lists so we can get lockdep and oops
2780 	 * info during argument parsing.  No one should access us, since
2781 	 * strong_try_module_get() will fail.
2782 	 * lockdep/oops can run asynchronous, so use the RCU list insertion
2783 	 * function to insert in a way safe to concurrent readers.
2784 	 * The mutex protects against concurrent writers.
2785 	 */
2786 	mutex_lock(&module_mutex);
2787 	if (find_module(mod->name)) {
2788 		err = -EEXIST;
2789 		goto unlock;
2790 	}
2791 
2792 	/* This has to be done once we're sure module name is unique. */
2793 	if (!mod->taints)
2794 		dynamic_debug_setup(info.debug, info.num_debug);
2795 
2796 	/* Find duplicate symbols */
2797 	err = verify_export_symbols(mod);
2798 	if (err < 0)
2799 		goto ddebug;
2800 
2801 	module_bug_finalize(info.hdr, info.sechdrs, mod);
2802 	list_add_rcu(&mod->list, &modules);
2803 	mutex_unlock(&module_mutex);
2804 
2805 	/* Module is ready to execute: parsing args may do that. */
2806 	err = parse_args(mod->name, mod->args, mod->kp, mod->num_kp, NULL);
2807 	if (err < 0)
2808 		goto unlink;
2809 
2810 	/* Link in to syfs. */
2811 	err = mod_sysfs_setup(mod, &info, mod->kp, mod->num_kp);
2812 	if (err < 0)
2813 		goto unlink;
2814 
2815 	/* Get rid of temporary copy and strmap. */
2816 	kfree(info.strmap);
2817 	free_copy(&info);
2818 
2819 	/* Done! */
2820 	trace_module_load(mod);
2821 	return mod;
2822 
2823  unlink:
2824 	mutex_lock(&module_mutex);
2825 	/* Unlink carefully: kallsyms could be walking list. */
2826 	list_del_rcu(&mod->list);
2827 	module_bug_cleanup(mod);
2828 
2829  ddebug:
2830 	if (!mod->taints)
2831 		dynamic_debug_remove(info.debug);
2832  unlock:
2833 	mutex_unlock(&module_mutex);
2834 	synchronize_sched();
2835 	kfree(mod->args);
2836  free_arch_cleanup:
2837 	module_arch_cleanup(mod);
2838  free_modinfo:
2839 	free_modinfo(mod);
2840  free_unload:
2841 	module_unload_free(mod);
2842  free_module:
2843 	module_deallocate(mod, &info);
2844  free_copy:
2845 	free_copy(&info);
2846 	return ERR_PTR(err);
2847 }
2848 
2849 /* Call module constructors. */
do_mod_ctors(struct module * mod)2850 static void do_mod_ctors(struct module *mod)
2851 {
2852 #ifdef CONFIG_CONSTRUCTORS
2853 	unsigned long i;
2854 
2855 	for (i = 0; i < mod->num_ctors; i++)
2856 		mod->ctors[i]();
2857 #endif
2858 }
2859 
2860 /* This is where the real work happens */
SYSCALL_DEFINE3(init_module,void __user *,umod,unsigned long,len,const char __user *,uargs)2861 SYSCALL_DEFINE3(init_module, void __user *, umod,
2862 		unsigned long, len, const char __user *, uargs)
2863 {
2864 	struct module *mod;
2865 	int ret = 0;
2866 
2867 	/* Must have permission */
2868 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
2869 		return -EPERM;
2870 
2871 	/* Do all the hard work */
2872 	mod = load_module(umod, len, uargs);
2873 	if (IS_ERR(mod))
2874 		return PTR_ERR(mod);
2875 
2876 	blocking_notifier_call_chain(&module_notify_list,
2877 			MODULE_STATE_COMING, mod);
2878 
2879 	/* Set RO and NX regions for core */
2880 	set_section_ro_nx(mod->module_core,
2881 				mod->core_text_size,
2882 				mod->core_ro_size,
2883 				mod->core_size);
2884 
2885 	/* Set RO and NX regions for init */
2886 	set_section_ro_nx(mod->module_init,
2887 				mod->init_text_size,
2888 				mod->init_ro_size,
2889 				mod->init_size);
2890 
2891 	do_mod_ctors(mod);
2892 	/* Start the module */
2893 	if (mod->init != NULL)
2894 		ret = do_one_initcall(mod->init);
2895 	if (ret < 0) {
2896 		/* Init routine failed: abort.  Try to protect us from
2897                    buggy refcounters. */
2898 		mod->state = MODULE_STATE_GOING;
2899 		synchronize_sched();
2900 		module_put(mod);
2901 		blocking_notifier_call_chain(&module_notify_list,
2902 					     MODULE_STATE_GOING, mod);
2903 		free_module(mod);
2904 		wake_up(&module_wq);
2905 		return ret;
2906 	}
2907 	if (ret > 0) {
2908 		printk(KERN_WARNING
2909 "%s: '%s'->init suspiciously returned %d, it should follow 0/-E convention\n"
2910 "%s: loading module anyway...\n",
2911 		       __func__, mod->name, ret,
2912 		       __func__);
2913 		dump_stack();
2914 	}
2915 
2916 	/* Now it's a first class citizen!  Wake up anyone waiting for it. */
2917 	mod->state = MODULE_STATE_LIVE;
2918 	wake_up(&module_wq);
2919 	blocking_notifier_call_chain(&module_notify_list,
2920 				     MODULE_STATE_LIVE, mod);
2921 
2922 	/* We need to finish all async code before the module init sequence is done */
2923 	async_synchronize_full();
2924 
2925 	mutex_lock(&module_mutex);
2926 	/* Drop initial reference. */
2927 	module_put(mod);
2928 	trim_init_extable(mod);
2929 #ifdef CONFIG_KALLSYMS
2930 	mod->num_symtab = mod->core_num_syms;
2931 	mod->symtab = mod->core_symtab;
2932 	mod->strtab = mod->core_strtab;
2933 #endif
2934 	unset_section_ro_nx(mod, mod->module_init);
2935 	module_free(mod, mod->module_init);
2936 	mod->module_init = NULL;
2937 	mod->init_size = 0;
2938 	mod->init_text_size = 0;
2939 	mutex_unlock(&module_mutex);
2940 
2941 	return 0;
2942 }
2943 
within(unsigned long addr,void * start,unsigned long size)2944 static inline int within(unsigned long addr, void *start, unsigned long size)
2945 {
2946 	return ((void *)addr >= start && (void *)addr < start + size);
2947 }
2948 
2949 #ifdef CONFIG_KALLSYMS
2950 /*
2951  * This ignores the intensely annoying "mapping symbols" found
2952  * in ARM ELF files: $a, $t and $d.
2953  */
is_arm_mapping_symbol(const char * str)2954 static inline int is_arm_mapping_symbol(const char *str)
2955 {
2956 	return str[0] == '$' && strchr("atd", str[1])
2957 	       && (str[2] == '\0' || str[2] == '.');
2958 }
2959 
get_ksymbol(struct module * mod,unsigned long addr,unsigned long * size,unsigned long * offset)2960 static const char *get_ksymbol(struct module *mod,
2961 			       unsigned long addr,
2962 			       unsigned long *size,
2963 			       unsigned long *offset)
2964 {
2965 	unsigned int i, best = 0;
2966 	unsigned long nextval;
2967 
2968 	/* At worse, next value is at end of module */
2969 	if (within_module_init(addr, mod))
2970 		nextval = (unsigned long)mod->module_init+mod->init_text_size;
2971 	else
2972 		nextval = (unsigned long)mod->module_core+mod->core_text_size;
2973 
2974 	/* Scan for closest preceding symbol, and next symbol. (ELF
2975 	   starts real symbols at 1). */
2976 	for (i = 1; i < mod->num_symtab; i++) {
2977 		if (mod->symtab[i].st_shndx == SHN_UNDEF)
2978 			continue;
2979 
2980 		/* We ignore unnamed symbols: they're uninformative
2981 		 * and inserted at a whim. */
2982 		if (mod->symtab[i].st_value <= addr
2983 		    && mod->symtab[i].st_value > mod->symtab[best].st_value
2984 		    && *(mod->strtab + mod->symtab[i].st_name) != '\0'
2985 		    && !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name))
2986 			best = i;
2987 		if (mod->symtab[i].st_value > addr
2988 		    && mod->symtab[i].st_value < nextval
2989 		    && *(mod->strtab + mod->symtab[i].st_name) != '\0'
2990 		    && !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name))
2991 			nextval = mod->symtab[i].st_value;
2992 	}
2993 
2994 	if (!best)
2995 		return NULL;
2996 
2997 	if (size)
2998 		*size = nextval - mod->symtab[best].st_value;
2999 	if (offset)
3000 		*offset = addr - mod->symtab[best].st_value;
3001 	return mod->strtab + mod->symtab[best].st_name;
3002 }
3003 
3004 /* For kallsyms to ask for address resolution.  NULL means not found.  Careful
3005  * not to lock to avoid deadlock on oopses, simply disable preemption. */
module_address_lookup(unsigned long addr,unsigned long * size,unsigned long * offset,char ** modname,char * namebuf)3006 const char *module_address_lookup(unsigned long addr,
3007 			    unsigned long *size,
3008 			    unsigned long *offset,
3009 			    char **modname,
3010 			    char *namebuf)
3011 {
3012 	struct module *mod;
3013 	const char *ret = NULL;
3014 
3015 	preempt_disable();
3016 	list_for_each_entry_rcu(mod, &modules, list) {
3017 		if (within_module_init(addr, mod) ||
3018 		    within_module_core(addr, mod)) {
3019 			if (modname)
3020 				*modname = mod->name;
3021 			ret = get_ksymbol(mod, addr, size, offset);
3022 			break;
3023 		}
3024 	}
3025 	/* Make a copy in here where it's safe */
3026 	if (ret) {
3027 		strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
3028 		ret = namebuf;
3029 	}
3030 	preempt_enable();
3031 	return ret;
3032 }
3033 
lookup_module_symbol_name(unsigned long addr,char * symname)3034 int lookup_module_symbol_name(unsigned long addr, char *symname)
3035 {
3036 	struct module *mod;
3037 
3038 	preempt_disable();
3039 	list_for_each_entry_rcu(mod, &modules, list) {
3040 		if (within_module_init(addr, mod) ||
3041 		    within_module_core(addr, mod)) {
3042 			const char *sym;
3043 
3044 			sym = get_ksymbol(mod, addr, NULL, NULL);
3045 			if (!sym)
3046 				goto out;
3047 			strlcpy(symname, sym, KSYM_NAME_LEN);
3048 			preempt_enable();
3049 			return 0;
3050 		}
3051 	}
3052 out:
3053 	preempt_enable();
3054 	return -ERANGE;
3055 }
3056 
lookup_module_symbol_attrs(unsigned long addr,unsigned long * size,unsigned long * offset,char * modname,char * name)3057 int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
3058 			unsigned long *offset, char *modname, char *name)
3059 {
3060 	struct module *mod;
3061 
3062 	preempt_disable();
3063 	list_for_each_entry_rcu(mod, &modules, list) {
3064 		if (within_module_init(addr, mod) ||
3065 		    within_module_core(addr, mod)) {
3066 			const char *sym;
3067 
3068 			sym = get_ksymbol(mod, addr, size, offset);
3069 			if (!sym)
3070 				goto out;
3071 			if (modname)
3072 				strlcpy(modname, mod->name, MODULE_NAME_LEN);
3073 			if (name)
3074 				strlcpy(name, sym, KSYM_NAME_LEN);
3075 			preempt_enable();
3076 			return 0;
3077 		}
3078 	}
3079 out:
3080 	preempt_enable();
3081 	return -ERANGE;
3082 }
3083 
module_get_kallsym(unsigned int symnum,unsigned long * value,char * type,char * name,char * module_name,int * exported)3084 int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
3085 			char *name, char *module_name, int *exported)
3086 {
3087 	struct module *mod;
3088 
3089 	preempt_disable();
3090 	list_for_each_entry_rcu(mod, &modules, list) {
3091 		if (symnum < mod->num_symtab) {
3092 			*value = mod->symtab[symnum].st_value;
3093 			*type = mod->symtab[symnum].st_info;
3094 			strlcpy(name, mod->strtab + mod->symtab[symnum].st_name,
3095 				KSYM_NAME_LEN);
3096 			strlcpy(module_name, mod->name, MODULE_NAME_LEN);
3097 			*exported = is_exported(name, *value, mod);
3098 			preempt_enable();
3099 			return 0;
3100 		}
3101 		symnum -= mod->num_symtab;
3102 	}
3103 	preempt_enable();
3104 	return -ERANGE;
3105 }
3106 
mod_find_symname(struct module * mod,const char * name)3107 static unsigned long mod_find_symname(struct module *mod, const char *name)
3108 {
3109 	unsigned int i;
3110 
3111 	for (i = 0; i < mod->num_symtab; i++)
3112 		if (strcmp(name, mod->strtab+mod->symtab[i].st_name) == 0 &&
3113 		    mod->symtab[i].st_info != 'U')
3114 			return mod->symtab[i].st_value;
3115 	return 0;
3116 }
3117 
3118 /* Look for this name: can be of form module:name. */
module_kallsyms_lookup_name(const char * name)3119 unsigned long module_kallsyms_lookup_name(const char *name)
3120 {
3121 	struct module *mod;
3122 	char *colon;
3123 	unsigned long ret = 0;
3124 
3125 	/* Don't lock: we're in enough trouble already. */
3126 	preempt_disable();
3127 	if ((colon = strchr(name, ':')) != NULL) {
3128 		*colon = '\0';
3129 		if ((mod = find_module(name)) != NULL)
3130 			ret = mod_find_symname(mod, colon+1);
3131 		*colon = ':';
3132 	} else {
3133 		list_for_each_entry_rcu(mod, &modules, list)
3134 			if ((ret = mod_find_symname(mod, name)) != 0)
3135 				break;
3136 	}
3137 	preempt_enable();
3138 	return ret;
3139 }
3140 
module_kallsyms_on_each_symbol(int (* fn)(void *,const char *,struct module *,unsigned long),void * data)3141 int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
3142 					     struct module *, unsigned long),
3143 				   void *data)
3144 {
3145 	struct module *mod;
3146 	unsigned int i;
3147 	int ret;
3148 
3149 	list_for_each_entry(mod, &modules, list) {
3150 		for (i = 0; i < mod->num_symtab; i++) {
3151 			ret = fn(data, mod->strtab + mod->symtab[i].st_name,
3152 				 mod, mod->symtab[i].st_value);
3153 			if (ret != 0)
3154 				return ret;
3155 		}
3156 	}
3157 	return 0;
3158 }
3159 #endif /* CONFIG_KALLSYMS */
3160 
module_flags(struct module * mod,char * buf)3161 static char *module_flags(struct module *mod, char *buf)
3162 {
3163 	int bx = 0;
3164 
3165 	if (mod->taints ||
3166 	    mod->state == MODULE_STATE_GOING ||
3167 	    mod->state == MODULE_STATE_COMING) {
3168 		buf[bx++] = '(';
3169 		if (mod->taints & (1 << TAINT_PROPRIETARY_MODULE))
3170 			buf[bx++] = 'P';
3171 		if (mod->taints & (1 << TAINT_FORCED_MODULE))
3172 			buf[bx++] = 'F';
3173 		if (mod->taints & (1 << TAINT_CRAP))
3174 			buf[bx++] = 'C';
3175 		/*
3176 		 * TAINT_FORCED_RMMOD: could be added.
3177 		 * TAINT_UNSAFE_SMP, TAINT_MACHINE_CHECK, TAINT_BAD_PAGE don't
3178 		 * apply to modules.
3179 		 */
3180 
3181 		/* Show a - for module-is-being-unloaded */
3182 		if (mod->state == MODULE_STATE_GOING)
3183 			buf[bx++] = '-';
3184 		/* Show a + for module-is-being-loaded */
3185 		if (mod->state == MODULE_STATE_COMING)
3186 			buf[bx++] = '+';
3187 		buf[bx++] = ')';
3188 	}
3189 	buf[bx] = '\0';
3190 
3191 	return buf;
3192 }
3193 
3194 #ifdef CONFIG_PROC_FS
3195 /* Called by the /proc file system to return a list of modules. */
m_start(struct seq_file * m,loff_t * pos)3196 static void *m_start(struct seq_file *m, loff_t *pos)
3197 {
3198 	mutex_lock(&module_mutex);
3199 	return seq_list_start(&modules, *pos);
3200 }
3201 
m_next(struct seq_file * m,void * p,loff_t * pos)3202 static void *m_next(struct seq_file *m, void *p, loff_t *pos)
3203 {
3204 	return seq_list_next(p, &modules, pos);
3205 }
3206 
m_stop(struct seq_file * m,void * p)3207 static void m_stop(struct seq_file *m, void *p)
3208 {
3209 	mutex_unlock(&module_mutex);
3210 }
3211 
m_show(struct seq_file * m,void * p)3212 static int m_show(struct seq_file *m, void *p)
3213 {
3214 	struct module *mod = list_entry(p, struct module, list);
3215 	char buf[8];
3216 
3217 	seq_printf(m, "%s %u",
3218 		   mod->name, mod->init_size + mod->core_size);
3219 	print_unload_info(m, mod);
3220 
3221 	/* Informative for users. */
3222 	seq_printf(m, " %s",
3223 		   mod->state == MODULE_STATE_GOING ? "Unloading":
3224 		   mod->state == MODULE_STATE_COMING ? "Loading":
3225 		   "Live");
3226 	/* Used by oprofile and other similar tools. */
3227 	seq_printf(m, " 0x%pK", mod->module_core);
3228 
3229 	/* Taints info */
3230 	if (mod->taints)
3231 		seq_printf(m, " %s", module_flags(mod, buf));
3232 
3233 	seq_printf(m, "\n");
3234 	return 0;
3235 }
3236 
3237 /* Format: modulename size refcount deps address
3238 
3239    Where refcount is a number or -, and deps is a comma-separated list
3240    of depends or -.
3241 */
3242 static const struct seq_operations modules_op = {
3243 	.start	= m_start,
3244 	.next	= m_next,
3245 	.stop	= m_stop,
3246 	.show	= m_show
3247 };
3248 
modules_open(struct inode * inode,struct file * file)3249 static int modules_open(struct inode *inode, struct file *file)
3250 {
3251 	return seq_open(file, &modules_op);
3252 }
3253 
3254 static const struct file_operations proc_modules_operations = {
3255 	.open		= modules_open,
3256 	.read		= seq_read,
3257 	.llseek		= seq_lseek,
3258 	.release	= seq_release,
3259 };
3260 
proc_modules_init(void)3261 static int __init proc_modules_init(void)
3262 {
3263 	proc_create("modules", 0, NULL, &proc_modules_operations);
3264 	return 0;
3265 }
3266 module_init(proc_modules_init);
3267 #endif
3268 
3269 /* Given an address, look for it in the module exception tables. */
search_module_extables(unsigned long addr)3270 const struct exception_table_entry *search_module_extables(unsigned long addr)
3271 {
3272 	const struct exception_table_entry *e = NULL;
3273 	struct module *mod;
3274 
3275 	preempt_disable();
3276 	list_for_each_entry_rcu(mod, &modules, list) {
3277 		if (mod->num_exentries == 0)
3278 			continue;
3279 
3280 		e = search_extable(mod->extable,
3281 				   mod->extable + mod->num_exentries - 1,
3282 				   addr);
3283 		if (e)
3284 			break;
3285 	}
3286 	preempt_enable();
3287 
3288 	/* Now, if we found one, we are running inside it now, hence
3289 	   we cannot unload the module, hence no refcnt needed. */
3290 	return e;
3291 }
3292 
3293 /*
3294  * is_module_address - is this address inside a module?
3295  * @addr: the address to check.
3296  *
3297  * See is_module_text_address() if you simply want to see if the address
3298  * is code (not data).
3299  */
is_module_address(unsigned long addr)3300 bool is_module_address(unsigned long addr)
3301 {
3302 	bool ret;
3303 
3304 	preempt_disable();
3305 	ret = __module_address(addr) != NULL;
3306 	preempt_enable();
3307 
3308 	return ret;
3309 }
3310 
3311 /*
3312  * __module_address - get the module which contains an address.
3313  * @addr: the address.
3314  *
3315  * Must be called with preempt disabled or module mutex held so that
3316  * module doesn't get freed during this.
3317  */
__module_address(unsigned long addr)3318 struct module *__module_address(unsigned long addr)
3319 {
3320 	struct module *mod;
3321 
3322 	if (addr < module_addr_min || addr > module_addr_max)
3323 		return NULL;
3324 
3325 	list_for_each_entry_rcu(mod, &modules, list)
3326 		if (within_module_core(addr, mod)
3327 		    || within_module_init(addr, mod))
3328 			return mod;
3329 	return NULL;
3330 }
3331 EXPORT_SYMBOL_GPL(__module_address);
3332 
3333 /*
3334  * is_module_text_address - is this address inside module code?
3335  * @addr: the address to check.
3336  *
3337  * See is_module_address() if you simply want to see if the address is
3338  * anywhere in a module.  See kernel_text_address() for testing if an
3339  * address corresponds to kernel or module code.
3340  */
is_module_text_address(unsigned long addr)3341 bool is_module_text_address(unsigned long addr)
3342 {
3343 	bool ret;
3344 
3345 	preempt_disable();
3346 	ret = __module_text_address(addr) != NULL;
3347 	preempt_enable();
3348 
3349 	return ret;
3350 }
3351 
3352 /*
3353  * __module_text_address - get the module whose code contains an address.
3354  * @addr: the address.
3355  *
3356  * Must be called with preempt disabled or module mutex held so that
3357  * module doesn't get freed during this.
3358  */
__module_text_address(unsigned long addr)3359 struct module *__module_text_address(unsigned long addr)
3360 {
3361 	struct module *mod = __module_address(addr);
3362 	if (mod) {
3363 		/* Make sure it's within the text section. */
3364 		if (!within(addr, mod->module_init, mod->init_text_size)
3365 		    && !within(addr, mod->module_core, mod->core_text_size))
3366 			mod = NULL;
3367 	}
3368 	return mod;
3369 }
3370 EXPORT_SYMBOL_GPL(__module_text_address);
3371 
3372 /* Don't grab lock, we're oopsing. */
print_modules(void)3373 void print_modules(void)
3374 {
3375 	struct module *mod;
3376 	char buf[8];
3377 
3378 	printk(KERN_DEFAULT "Modules linked in:");
3379 	/* Most callers should already have preempt disabled, but make sure */
3380 	preempt_disable();
3381 	list_for_each_entry_rcu(mod, &modules, list)
3382 		printk(" %s%s", mod->name, module_flags(mod, buf));
3383 	preempt_enable();
3384 	if (last_unloaded_module[0])
3385 		printk(" [last unloaded: %s]", last_unloaded_module);
3386 	printk("\n");
3387 }
3388 
3389 #ifdef CONFIG_MODVERSIONS
3390 /* Generate the signature for all relevant module structures here.
3391  * If these change, we don't want to try to parse the module. */
module_layout(struct module * mod,struct modversion_info * ver,struct kernel_param * kp,struct kernel_symbol * ks,struct tracepoint * const * tp)3392 void module_layout(struct module *mod,
3393 		   struct modversion_info *ver,
3394 		   struct kernel_param *kp,
3395 		   struct kernel_symbol *ks,
3396 		   struct tracepoint * const *tp)
3397 {
3398 }
3399 EXPORT_SYMBOL(module_layout);
3400 #endif
3401 
3402 #ifdef CONFIG_TRACEPOINTS
module_update_tracepoints(void)3403 void module_update_tracepoints(void)
3404 {
3405 	struct module *mod;
3406 
3407 	mutex_lock(&module_mutex);
3408 	list_for_each_entry(mod, &modules, list)
3409 		if (!mod->taints)
3410 			tracepoint_update_probe_range(mod->tracepoints_ptrs,
3411 				mod->tracepoints_ptrs + mod->num_tracepoints);
3412 	mutex_unlock(&module_mutex);
3413 }
3414 
3415 /*
3416  * Returns 0 if current not found.
3417  * Returns 1 if current found.
3418  */
module_get_iter_tracepoints(struct tracepoint_iter * iter)3419 int module_get_iter_tracepoints(struct tracepoint_iter *iter)
3420 {
3421 	struct module *iter_mod;
3422 	int found = 0;
3423 
3424 	mutex_lock(&module_mutex);
3425 	list_for_each_entry(iter_mod, &modules, list) {
3426 		if (!iter_mod->taints) {
3427 			/*
3428 			 * Sorted module list
3429 			 */
3430 			if (iter_mod < iter->module)
3431 				continue;
3432 			else if (iter_mod > iter->module)
3433 				iter->tracepoint = NULL;
3434 			found = tracepoint_get_iter_range(&iter->tracepoint,
3435 				iter_mod->tracepoints_ptrs,
3436 				iter_mod->tracepoints_ptrs
3437 					+ iter_mod->num_tracepoints);
3438 			if (found) {
3439 				iter->module = iter_mod;
3440 				break;
3441 			}
3442 		}
3443 	}
3444 	mutex_unlock(&module_mutex);
3445 	return found;
3446 }
3447 #endif
3448