1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * This file contains the 64-bit "server" PowerPC variant 4 * of the low level exception handling including exception 5 * vectors, exception return, part of the slb and stab 6 * handling and other fixed offset specific things. 7 * 8 * This file is meant to be #included from head_64.S due to 9 * position dependent assembly. 10 * 11 * Most of this originates from head_64.S and thus has the same 12 * copyright history. 13 * 14 */ 15 16#include <linux/linkage.h> 17#include <asm/hw_irq.h> 18#include <asm/exception-64s.h> 19#include <asm/ptrace.h> 20#include <asm/cpuidle.h> 21#include <asm/head-64.h> 22#include <asm/feature-fixups.h> 23#include <asm/kup.h> 24 25/* 26 * Following are fixed section helper macros. 27 * 28 * EXC_REAL_BEGIN/END - real, unrelocated exception vectors 29 * EXC_VIRT_BEGIN/END - virt (AIL), unrelocated exception vectors 30 * TRAMP_REAL_BEGIN - real, unrelocated helpers (virt may call these) 31 * TRAMP_VIRT_BEGIN - virt, unreloc helpers (in practice, real can use) 32 * EXC_COMMON - After switching to virtual, relocated mode. 33 */ 34 35#define EXC_REAL_BEGIN(name, start, size) \ 36 FIXED_SECTION_ENTRY_BEGIN_LOCATION(real_vectors, exc_real_##start##_##name, start, size) 37 38#define EXC_REAL_END(name, start, size) \ 39 FIXED_SECTION_ENTRY_END_LOCATION(real_vectors, exc_real_##start##_##name, start, size) 40 41#define EXC_VIRT_BEGIN(name, start, size) \ 42 FIXED_SECTION_ENTRY_BEGIN_LOCATION(virt_vectors, exc_virt_##start##_##name, start, size) 43 44#define EXC_VIRT_END(name, start, size) \ 45 FIXED_SECTION_ENTRY_END_LOCATION(virt_vectors, exc_virt_##start##_##name, start, size) 46 47#define EXC_COMMON_BEGIN(name) \ 48 USE_TEXT_SECTION(); \ 49 .balign IFETCH_ALIGN_BYTES; \ 50 .global name; \ 51 _ASM_NOKPROBE_SYMBOL(name); \ 52 DEFINE_FIXED_SYMBOL(name, text); \ 53name: 54 55#define TRAMP_REAL_BEGIN(name) \ 56 FIXED_SECTION_ENTRY_BEGIN(real_trampolines, name) 57 58#define TRAMP_VIRT_BEGIN(name) \ 59 FIXED_SECTION_ENTRY_BEGIN(virt_trampolines, name) 60 61#define EXC_REAL_NONE(start, size) \ 62 FIXED_SECTION_ENTRY_BEGIN_LOCATION(real_vectors, exc_real_##start##_##unused, start, size); \ 63 FIXED_SECTION_ENTRY_END_LOCATION(real_vectors, exc_real_##start##_##unused, start, size) 64 65#define EXC_VIRT_NONE(start, size) \ 66 FIXED_SECTION_ENTRY_BEGIN_LOCATION(virt_vectors, exc_virt_##start##_##unused, start, size); \ 67 FIXED_SECTION_ENTRY_END_LOCATION(virt_vectors, exc_virt_##start##_##unused, start, size) 68 69/* 70 * We're short on space and time in the exception prolog, so we can't 71 * use the normal LOAD_REG_IMMEDIATE macro to load the address of label. 72 * Instead we get the base of the kernel from paca->kernelbase and or in the low 73 * part of label. This requires that the label be within 64KB of kernelbase, and 74 * that kernelbase be 64K aligned. 75 */ 76#define LOAD_HANDLER(reg, label) \ 77 ld reg,PACAKBASE(r13); /* get high part of &label */ \ 78 ori reg,reg,FIXED_SYMBOL_ABS_ADDR(label) 79 80#define __LOAD_HANDLER(reg, label, section) \ 81 ld reg,PACAKBASE(r13); \ 82 ori reg,reg,(ABS_ADDR(label, section))@l 83 84/* 85 * Branches from unrelocated code (e.g., interrupts) to labels outside 86 * head-y require >64K offsets. 87 */ 88#define __LOAD_FAR_HANDLER(reg, label, section) \ 89 ld reg,PACAKBASE(r13); \ 90 ori reg,reg,(ABS_ADDR(label, section))@l; \ 91 addis reg,reg,(ABS_ADDR(label, section))@h 92 93/* 94 * Interrupt code generation macros 95 */ 96#define IVEC .L_IVEC_\name\() /* Interrupt vector address */ 97#define IHSRR .L_IHSRR_\name\() /* Sets SRR or HSRR registers */ 98#define IHSRR_IF_HVMODE .L_IHSRR_IF_HVMODE_\name\() /* HSRR if HV else SRR */ 99#define IAREA .L_IAREA_\name\() /* PACA save area */ 100#define IVIRT .L_IVIRT_\name\() /* Has virt mode entry point */ 101#define IISIDE .L_IISIDE_\name\() /* Uses SRR0/1 not DAR/DSISR */ 102#define ICFAR .L_ICFAR_\name\() /* Uses CFAR */ 103#define ICFAR_IF_HVMODE .L_ICFAR_IF_HVMODE_\name\() /* Uses CFAR if HV */ 104#define IDAR .L_IDAR_\name\() /* Uses DAR (or SRR0) */ 105#define IDSISR .L_IDSISR_\name\() /* Uses DSISR (or SRR1) */ 106#define IBRANCH_TO_COMMON .L_IBRANCH_TO_COMMON_\name\() /* ENTRY branch to common */ 107#define IREALMODE_COMMON .L_IREALMODE_COMMON_\name\() /* Common runs in realmode */ 108#define IMASK .L_IMASK_\name\() /* IRQ soft-mask bit */ 109#define IKVM_REAL .L_IKVM_REAL_\name\() /* Real entry tests KVM */ 110#define __IKVM_REAL(name) .L_IKVM_REAL_ ## name 111#define IKVM_VIRT .L_IKVM_VIRT_\name\() /* Virt entry tests KVM */ 112#define ISTACK .L_ISTACK_\name\() /* Set regular kernel stack */ 113#define __ISTACK(name) .L_ISTACK_ ## name 114#define IKUAP .L_IKUAP_\name\() /* Do KUAP lock */ 115#define IMSR_R12 .L_IMSR_R12_\name\() /* Assumes MSR saved to r12 */ 116 117#define INT_DEFINE_BEGIN(n) \ 118.macro int_define_ ## n name 119 120#define INT_DEFINE_END(n) \ 121.endm ; \ 122int_define_ ## n n ; \ 123do_define_int n 124 125.macro do_define_int name 126 .ifndef IVEC 127 .error "IVEC not defined" 128 .endif 129 .ifndef IHSRR 130 IHSRR=0 131 .endif 132 .ifndef IHSRR_IF_HVMODE 133 IHSRR_IF_HVMODE=0 134 .endif 135 .ifndef IAREA 136 IAREA=PACA_EXGEN 137 .endif 138 .ifndef IVIRT 139 IVIRT=1 140 .endif 141 .ifndef IISIDE 142 IISIDE=0 143 .endif 144 .ifndef ICFAR 145 ICFAR=1 146 .endif 147 .ifndef ICFAR_IF_HVMODE 148 ICFAR_IF_HVMODE=0 149 .endif 150 .ifndef IDAR 151 IDAR=0 152 .endif 153 .ifndef IDSISR 154 IDSISR=0 155 .endif 156 .ifndef IBRANCH_TO_COMMON 157 IBRANCH_TO_COMMON=1 158 .endif 159 .ifndef IREALMODE_COMMON 160 IREALMODE_COMMON=0 161 .else 162 .if ! IBRANCH_TO_COMMON 163 .error "IREALMODE_COMMON=1 but IBRANCH_TO_COMMON=0" 164 .endif 165 .endif 166 .ifndef IMASK 167 IMASK=0 168 .endif 169 .ifndef IKVM_REAL 170 IKVM_REAL=0 171 .endif 172 .ifndef IKVM_VIRT 173 IKVM_VIRT=0 174 .endif 175 .ifndef ISTACK 176 ISTACK=1 177 .endif 178 .ifndef IKUAP 179 IKUAP=1 180 .endif 181 .ifndef IMSR_R12 182 IMSR_R12=0 183 .endif 184.endm 185 186/* 187 * All interrupts which set HSRR registers, as well as SRESET and MCE and 188 * syscall when invoked with "sc 1" switch to MSR[HV]=1 (HVMODE) to be taken, 189 * so they all generally need to test whether they were taken in guest context. 190 * 191 * Note: SRESET and MCE may also be sent to the guest by the hypervisor, and be 192 * taken with MSR[HV]=0. 193 * 194 * Interrupts which set SRR registers (with the above exceptions) do not 195 * elevate to MSR[HV]=1 mode, though most can be taken when running with 196 * MSR[HV]=1 (e.g., bare metal kernel and userspace). So these interrupts do 197 * not need to test whether a guest is running because they get delivered to 198 * the guest directly, including nested HV KVM guests. 199 * 200 * The exception is PR KVM, where the guest runs with MSR[PR]=1 and the host 201 * runs with MSR[HV]=0, so the host takes all interrupts on behalf of the 202 * guest. PR KVM runs with LPCR[AIL]=0 which causes interrupts to always be 203 * delivered to the real-mode entry point, therefore such interrupts only test 204 * KVM in their real mode handlers, and only when PR KVM is possible. 205 * 206 * Interrupts that are taken in MSR[HV]=0 and escalate to MSR[HV]=1 are always 207 * delivered in real-mode when the MMU is in hash mode because the MMU 208 * registers are not set appropriately to translate host addresses. In nested 209 * radix mode these can be delivered in virt-mode as the host translations are 210 * used implicitly (see: effective LPID, effective PID). 211 */ 212 213/* 214 * If an interrupt is taken while a guest is running, it is immediately routed 215 * to KVM to handle. 216 */ 217 218.macro KVMTEST name handler 219#ifdef CONFIG_KVM_BOOK3S_64_HANDLER 220 lbz r10,HSTATE_IN_GUEST(r13) 221 cmpwi r10,0 222 /* HSRR variants have the 0x2 bit added to their trap number */ 223 .if IHSRR_IF_HVMODE 224 BEGIN_FTR_SECTION 225 li r10,(IVEC + 0x2) 226 FTR_SECTION_ELSE 227 li r10,(IVEC) 228 ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206) 229 .elseif IHSRR 230 li r10,(IVEC + 0x2) 231 .else 232 li r10,(IVEC) 233 .endif 234 bne \handler 235#endif 236.endm 237 238/* 239 * This is the BOOK3S interrupt entry code macro. 240 * 241 * This can result in one of several things happening: 242 * - Branch to the _common handler, relocated, in virtual mode. 243 * These are normal interrupts (synchronous and asynchronous) handled by 244 * the kernel. 245 * - Branch to KVM, relocated but real mode interrupts remain in real mode. 246 * These occur when HSTATE_IN_GUEST is set. The interrupt may be caused by 247 * / intended for host or guest kernel, but KVM must always be involved 248 * because the machine state is set for guest execution. 249 * - Branch to the masked handler, unrelocated. 250 * These occur when maskable asynchronous interrupts are taken with the 251 * irq_soft_mask set. 252 * - Branch to an "early" handler in real mode but relocated. 253 * This is done if early=1. MCE and HMI use these to handle errors in real 254 * mode. 255 * - Fall through and continue executing in real, unrelocated mode. 256 * This is done if early=2. 257 */ 258 259.macro GEN_BRANCH_TO_COMMON name, virt 260 .if IREALMODE_COMMON 261 LOAD_HANDLER(r10, \name\()_common) 262 mtctr r10 263 bctr 264 .else 265 .if \virt 266#ifndef CONFIG_RELOCATABLE 267 b \name\()_common_virt 268#else 269 LOAD_HANDLER(r10, \name\()_common_virt) 270 mtctr r10 271 bctr 272#endif 273 .else 274 LOAD_HANDLER(r10, \name\()_common_real) 275 mtctr r10 276 bctr 277 .endif 278 .endif 279.endm 280 281.macro GEN_INT_ENTRY name, virt, ool=0 282 SET_SCRATCH0(r13) /* save r13 */ 283 GET_PACA(r13) 284 std r9,IAREA+EX_R9(r13) /* save r9 */ 285BEGIN_FTR_SECTION 286 mfspr r9,SPRN_PPR 287END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR) 288 HMT_MEDIUM 289 std r10,IAREA+EX_R10(r13) /* save r10 */ 290 .if ICFAR 291BEGIN_FTR_SECTION 292 mfspr r10,SPRN_CFAR 293END_FTR_SECTION_IFSET(CPU_FTR_CFAR) 294 .elseif ICFAR_IF_HVMODE 295BEGIN_FTR_SECTION 296 BEGIN_FTR_SECTION_NESTED(69) 297 mfspr r10,SPRN_CFAR 298 END_FTR_SECTION_NESTED(CPU_FTR_CFAR, CPU_FTR_CFAR, 69) 299FTR_SECTION_ELSE 300 BEGIN_FTR_SECTION_NESTED(69) 301 li r10,0 302 END_FTR_SECTION_NESTED(CPU_FTR_CFAR, CPU_FTR_CFAR, 69) 303ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206) 304 .endif 305 .if \ool 306 .if !\virt 307 b tramp_real_\name 308 .pushsection .text 309 TRAMP_REAL_BEGIN(tramp_real_\name) 310 .else 311 b tramp_virt_\name 312 .pushsection .text 313 TRAMP_VIRT_BEGIN(tramp_virt_\name) 314 .endif 315 .endif 316 317BEGIN_FTR_SECTION 318 std r9,IAREA+EX_PPR(r13) 319END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR) 320 .if ICFAR || ICFAR_IF_HVMODE 321BEGIN_FTR_SECTION 322 std r10,IAREA+EX_CFAR(r13) 323END_FTR_SECTION_IFSET(CPU_FTR_CFAR) 324 .endif 325 INTERRUPT_TO_KERNEL 326 mfctr r10 327 std r10,IAREA+EX_CTR(r13) 328 mfcr r9 329 std r11,IAREA+EX_R11(r13) /* save r11 - r12 */ 330 std r12,IAREA+EX_R12(r13) 331 332 /* 333 * DAR/DSISR, SCRATCH0 must be read before setting MSR[RI], 334 * because a d-side MCE will clobber those registers so is 335 * not recoverable if they are live. 336 */ 337 GET_SCRATCH0(r10) 338 std r10,IAREA+EX_R13(r13) 339 .if IDAR && !IISIDE 340 .if IHSRR 341 mfspr r10,SPRN_HDAR 342 .else 343 mfspr r10,SPRN_DAR 344 .endif 345 std r10,IAREA+EX_DAR(r13) 346 .endif 347 .if IDSISR && !IISIDE 348 .if IHSRR 349 mfspr r10,SPRN_HDSISR 350 .else 351 mfspr r10,SPRN_DSISR 352 .endif 353 stw r10,IAREA+EX_DSISR(r13) 354 .endif 355 356 .if IHSRR_IF_HVMODE 357 BEGIN_FTR_SECTION 358 mfspr r11,SPRN_HSRR0 /* save HSRR0 */ 359 mfspr r12,SPRN_HSRR1 /* and HSRR1 */ 360 FTR_SECTION_ELSE 361 mfspr r11,SPRN_SRR0 /* save SRR0 */ 362 mfspr r12,SPRN_SRR1 /* and SRR1 */ 363 ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206) 364 .elseif IHSRR 365 mfspr r11,SPRN_HSRR0 /* save HSRR0 */ 366 mfspr r12,SPRN_HSRR1 /* and HSRR1 */ 367 .else 368 mfspr r11,SPRN_SRR0 /* save SRR0 */ 369 mfspr r12,SPRN_SRR1 /* and SRR1 */ 370 .endif 371 372 .if IBRANCH_TO_COMMON 373 GEN_BRANCH_TO_COMMON \name \virt 374 .endif 375 376 .if \ool 377 .popsection 378 .endif 379.endm 380 381/* 382 * __GEN_COMMON_ENTRY is required to receive the branch from interrupt 383 * entry, except in the case of the real-mode handlers which require 384 * __GEN_REALMODE_COMMON_ENTRY. 385 * 386 * This switches to virtual mode and sets MSR[RI]. 387 */ 388.macro __GEN_COMMON_ENTRY name 389DEFINE_FIXED_SYMBOL(\name\()_common_real, text) 390\name\()_common_real: 391 .if IKVM_REAL 392 KVMTEST \name kvm_interrupt 393 .endif 394 395 ld r10,PACAKMSR(r13) /* get MSR value for kernel */ 396 /* MSR[RI] is clear iff using SRR regs */ 397 .if IHSRR_IF_HVMODE 398 BEGIN_FTR_SECTION 399 xori r10,r10,MSR_RI 400 END_FTR_SECTION_IFCLR(CPU_FTR_HVMODE) 401 .elseif ! IHSRR 402 xori r10,r10,MSR_RI 403 .endif 404 mtmsrd r10 405 406 .if IVIRT 407 .if IKVM_VIRT 408 b 1f /* skip the virt test coming from real */ 409 .endif 410 411 .balign IFETCH_ALIGN_BYTES 412DEFINE_FIXED_SYMBOL(\name\()_common_virt, text) 413\name\()_common_virt: 414 .if IKVM_VIRT 415 KVMTEST \name kvm_interrupt 4161: 417 .endif 418 .endif /* IVIRT */ 419.endm 420 421/* 422 * Don't switch to virt mode. Used for early MCE and HMI handlers that 423 * want to run in real mode. 424 */ 425.macro __GEN_REALMODE_COMMON_ENTRY name 426DEFINE_FIXED_SYMBOL(\name\()_common_real, text) 427\name\()_common_real: 428 .if IKVM_REAL 429 KVMTEST \name kvm_interrupt 430 .endif 431.endm 432 433.macro __GEN_COMMON_BODY name 434 .if IMASK 435 .if ! ISTACK 436 .error "No support for masked interrupt to use custom stack" 437 .endif 438 439 /* If coming from user, skip soft-mask tests. */ 440 andi. r10,r12,MSR_PR 441 bne 3f 442 443 /* 444 * Kernel code running below __end_soft_masked may be 445 * implicitly soft-masked if it is within the regions 446 * in the soft mask table. 447 */ 448 LOAD_HANDLER(r10, __end_soft_masked) 449 cmpld r11,r10 450 bge+ 1f 451 452 /* SEARCH_SOFT_MASK_TABLE clobbers r9,r10,r12 */ 453 mtctr r12 454 stw r9,PACA_EXGEN+EX_CCR(r13) 455 SEARCH_SOFT_MASK_TABLE 456 cmpdi r12,0 457 mfctr r12 /* Restore r12 to SRR1 */ 458 lwz r9,PACA_EXGEN+EX_CCR(r13) 459 beq 1f /* Not in soft-mask table */ 460 li r10,IMASK 461 b 2f /* In soft-mask table, always mask */ 462 463 /* Test the soft mask state against our interrupt's bit */ 4641: lbz r10,PACAIRQSOFTMASK(r13) 4652: andi. r10,r10,IMASK 466 /* Associate vector numbers with bits in paca->irq_happened */ 467 .if IVEC == 0x500 || IVEC == 0xea0 468 li r10,PACA_IRQ_EE 469 .elseif IVEC == 0x900 470 li r10,PACA_IRQ_DEC 471 .elseif IVEC == 0xa00 || IVEC == 0xe80 472 li r10,PACA_IRQ_DBELL 473 .elseif IVEC == 0xe60 474 li r10,PACA_IRQ_HMI 475 .elseif IVEC == 0xf00 476 li r10,PACA_IRQ_PMI 477 .else 478 .abort "Bad maskable vector" 479 .endif 480 481 .if IHSRR_IF_HVMODE 482 BEGIN_FTR_SECTION 483 bne masked_Hinterrupt 484 FTR_SECTION_ELSE 485 bne masked_interrupt 486 ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206) 487 .elseif IHSRR 488 bne masked_Hinterrupt 489 .else 490 bne masked_interrupt 491 .endif 492 .endif 493 494 .if ISTACK 495 andi. r10,r12,MSR_PR /* See if coming from user */ 4963: mr r10,r1 /* Save r1 */ 497 subi r1,r1,INT_FRAME_SIZE /* alloc frame on kernel stack */ 498 beq- 100f 499 ld r1,PACAKSAVE(r13) /* kernel stack to use */ 500100: tdgei r1,-INT_FRAME_SIZE /* trap if r1 is in userspace */ 501 EMIT_BUG_ENTRY 100b,__FILE__,__LINE__,0 502 .endif 503 504 std r9,_CCR(r1) /* save CR in stackframe */ 505 std r11,_NIP(r1) /* save SRR0 in stackframe */ 506 std r12,_MSR(r1) /* save SRR1 in stackframe */ 507 std r10,0(r1) /* make stack chain pointer */ 508 std r0,GPR0(r1) /* save r0 in stackframe */ 509 std r10,GPR1(r1) /* save r1 in stackframe */ 510 SANITIZE_GPR(0) 511 512 /* Mark our [H]SRRs valid for return */ 513 li r10,1 514 .if IHSRR_IF_HVMODE 515 BEGIN_FTR_SECTION 516 stb r10,PACAHSRR_VALID(r13) 517 FTR_SECTION_ELSE 518 stb r10,PACASRR_VALID(r13) 519 ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206) 520 .elseif IHSRR 521 stb r10,PACAHSRR_VALID(r13) 522 .else 523 stb r10,PACASRR_VALID(r13) 524 .endif 525 526 .if ISTACK 527 .if IKUAP 528 kuap_save_amr_and_lock r9, r10, cr1, cr0 529 .endif 530 beq 101f /* if from kernel mode */ 531BEGIN_FTR_SECTION 532 ld r9,IAREA+EX_PPR(r13) /* Read PPR from paca */ 533 std r9,_PPR(r1) 534END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR) 535101: 536 .else 537 .if IKUAP 538 kuap_save_amr_and_lock r9, r10, cr1 539 .endif 540 .endif 541 542 /* Save original regs values from save area to stack frame. */ 543 ld r9,IAREA+EX_R9(r13) /* move r9, r10 to stackframe */ 544 ld r10,IAREA+EX_R10(r13) 545 std r9,GPR9(r1) 546 std r10,GPR10(r1) 547 ld r9,IAREA+EX_R11(r13) /* move r11 - r13 to stackframe */ 548 ld r10,IAREA+EX_R12(r13) 549 ld r11,IAREA+EX_R13(r13) 550 std r9,GPR11(r1) 551 std r10,GPR12(r1) 552 std r11,GPR13(r1) 553 .if !IMSR_R12 554 SANITIZE_GPRS(9, 12) 555 .else 556 SANITIZE_GPRS(9, 11) 557 .endif 558 559 SAVE_NVGPRS(r1) 560 SANITIZE_NVGPRS() 561 562 .if IDAR 563 .if IISIDE 564 ld r10,_NIP(r1) 565 .else 566 ld r10,IAREA+EX_DAR(r13) 567 .endif 568 std r10,_DAR(r1) 569 .endif 570 571 .if IDSISR 572 .if IISIDE 573 ld r10,_MSR(r1) 574 lis r11,DSISR_SRR1_MATCH_64S@h 575 and r10,r10,r11 576 .else 577 lwz r10,IAREA+EX_DSISR(r13) 578 .endif 579 std r10,_DSISR(r1) 580 .endif 581 582BEGIN_FTR_SECTION 583 .if ICFAR || ICFAR_IF_HVMODE 584 ld r10,IAREA+EX_CFAR(r13) 585 .else 586 li r10,0 587 .endif 588 std r10,ORIG_GPR3(r1) 589END_FTR_SECTION_IFSET(CPU_FTR_CFAR) 590 ld r10,IAREA+EX_CTR(r13) 591 std r10,_CTR(r1) 592 SAVE_GPRS(2, 8, r1) /* save r2 - r8 in stackframe */ 593 SANITIZE_GPRS(2, 8) 594 mflr r9 /* Get LR, later save to stack */ 595 LOAD_PACA_TOC() /* get kernel TOC into r2 */ 596 std r9,_LINK(r1) 597 lbz r10,PACAIRQSOFTMASK(r13) 598 mfspr r11,SPRN_XER /* save XER in stackframe */ 599 std r10,SOFTE(r1) 600 std r11,_XER(r1) 601 li r9,IVEC 602 std r9,_TRAP(r1) /* set trap number */ 603 li r10,0 604 LOAD_REG_IMMEDIATE(r11, STACK_FRAME_REGS_MARKER) 605 std r10,RESULT(r1) /* clear regs->result */ 606 std r11,STACK_INT_FRAME_MARKER(r1) /* mark the frame */ 607.endm 608 609/* 610 * On entry r13 points to the paca, r9-r13 are saved in the paca, 611 * r9 contains the saved CR, r11 and r12 contain the saved SRR0 and 612 * SRR1, and relocation is on. 613 * 614 * If stack=0, then the stack is already set in r1, and r1 is saved in r10. 615 * PPR save and CPU accounting is not done for the !stack case (XXX why not?) 616 */ 617.macro GEN_COMMON name 618 __GEN_COMMON_ENTRY \name 619 __GEN_COMMON_BODY \name 620.endm 621 622.macro SEARCH_RESTART_TABLE 623#ifdef CONFIG_RELOCATABLE 624 mr r12,r2 625 LOAD_PACA_TOC() 626 LOAD_REG_ADDR(r9, __start___restart_table) 627 LOAD_REG_ADDR(r10, __stop___restart_table) 628 mr r2,r12 629#else 630 LOAD_REG_IMMEDIATE_SYM(r9, r12, __start___restart_table) 631 LOAD_REG_IMMEDIATE_SYM(r10, r12, __stop___restart_table) 632#endif 633300: 634 cmpd r9,r10 635 beq 302f 636 ld r12,0(r9) 637 cmpld r11,r12 638 blt 301f 639 ld r12,8(r9) 640 cmpld r11,r12 641 bge 301f 642 ld r12,16(r9) 643 b 303f 644301: 645 addi r9,r9,24 646 b 300b 647302: 648 li r12,0 649303: 650.endm 651 652.macro SEARCH_SOFT_MASK_TABLE 653#ifdef CONFIG_RELOCATABLE 654 mr r12,r2 655 LOAD_PACA_TOC() 656 LOAD_REG_ADDR(r9, __start___soft_mask_table) 657 LOAD_REG_ADDR(r10, __stop___soft_mask_table) 658 mr r2,r12 659#else 660 LOAD_REG_IMMEDIATE_SYM(r9, r12, __start___soft_mask_table) 661 LOAD_REG_IMMEDIATE_SYM(r10, r12, __stop___soft_mask_table) 662#endif 663300: 664 cmpd r9,r10 665 beq 302f 666 ld r12,0(r9) 667 cmpld r11,r12 668 blt 301f 669 ld r12,8(r9) 670 cmpld r11,r12 671 bge 301f 672 li r12,1 673 b 303f 674301: 675 addi r9,r9,16 676 b 300b 677302: 678 li r12,0 679303: 680.endm 681 682/* 683 * Restore all registers including H/SRR0/1 saved in a stack frame of a 684 * standard exception. 685 */ 686.macro EXCEPTION_RESTORE_REGS hsrr=0 687 /* Move original SRR0 and SRR1 into the respective regs */ 688 ld r9,_MSR(r1) 689 li r10,0 690 .if \hsrr 691 mtspr SPRN_HSRR1,r9 692 stb r10,PACAHSRR_VALID(r13) 693 .else 694 mtspr SPRN_SRR1,r9 695 stb r10,PACASRR_VALID(r13) 696 .endif 697 ld r9,_NIP(r1) 698 .if \hsrr 699 mtspr SPRN_HSRR0,r9 700 .else 701 mtspr SPRN_SRR0,r9 702 .endif 703 ld r9,_CTR(r1) 704 mtctr r9 705 ld r9,_XER(r1) 706 mtxer r9 707 ld r9,_LINK(r1) 708 mtlr r9 709 ld r9,_CCR(r1) 710 mtcr r9 711 SANITIZE_RESTORE_NVGPRS() 712 REST_GPRS(2, 13, r1) 713 REST_GPR(0, r1) 714 /* restore original r1. */ 715 ld r1,GPR1(r1) 716.endm 717 718/* 719 * EARLY_BOOT_FIXUP - Fix real-mode interrupt with wrong endian in early boot. 720 * 721 * There's a short window during boot where although the kernel is running 722 * little endian, any exceptions will cause the CPU to switch back to big 723 * endian. For example a WARN() boils down to a trap instruction, which will 724 * cause a program check, and we end up here but with the CPU in big endian 725 * mode. The first instruction of the program check handler (in GEN_INT_ENTRY 726 * below) is an mtsprg, which when executed in the wrong endian is an lhzu with 727 * a ~3GB displacement from r3. The content of r3 is random, so that is a load 728 * from some random location, and depending on the system can easily lead to a 729 * checkstop, or an infinitely recursive page fault. 730 * 731 * So to handle that case we have a trampoline here that can detect we are in 732 * the wrong endian and flip us back to the correct endian. We can't flip 733 * MSR[LE] using mtmsr, so we have to use rfid. That requires backing up SRR0/1 734 * as well as a GPR. To do that we use SPRG0/2/3, as SPRG1 is already used for 735 * the paca. SPRG3 is user readable, but this trampoline is only active very 736 * early in boot, and SPRG3 will be reinitialised in vdso_getcpu_init() before 737 * userspace starts. 738 */ 739.macro EARLY_BOOT_FIXUP 740BEGIN_FTR_SECTION 741#ifdef CONFIG_CPU_LITTLE_ENDIAN 742 tdi 0,0,0x48 // Trap never, or in reverse endian: b . + 8 743 b 2f // Skip trampoline if endian is correct 744 .long 0xa643707d // mtsprg 0, r11 Backup r11 745 .long 0xa6027a7d // mfsrr0 r11 746 .long 0xa643727d // mtsprg 2, r11 Backup SRR0 in SPRG2 747 .long 0xa6027b7d // mfsrr1 r11 748 .long 0xa643737d // mtsprg 3, r11 Backup SRR1 in SPRG3 749 .long 0xa600607d // mfmsr r11 750 .long 0x01006b69 // xori r11, r11, 1 Invert MSR[LE] 751 .long 0xa6037b7d // mtsrr1 r11 752 /* 753 * This is 'li r11,1f' where 1f is the absolute address of that 754 * label, byteswapped into the SI field of the instruction. 755 */ 756 .long 0x00006039 | \ 757 ((ABS_ADDR(1f, real_vectors) & 0x00ff) << 24) | \ 758 ((ABS_ADDR(1f, real_vectors) & 0xff00) << 8) 759 .long 0xa6037a7d // mtsrr0 r11 760 .long 0x2400004c // rfid 7611: 762 mfsprg r11, 3 763 mtsrr1 r11 // Restore SRR1 764 mfsprg r11, 2 765 mtsrr0 r11 // Restore SRR0 766 mfsprg r11, 0 // Restore r11 7672: 768#endif 769 /* 770 * program check could hit at any time, and pseries can not block 771 * MSR[ME] in early boot. So check if there is anything useful in r13 772 * yet, and spin forever if not. 773 */ 774 mtsprg 0, r11 775 mfcr r11 776 cmpdi r13, 0 777 beq . 778 mtcr r11 779 mfsprg r11, 0 780END_FTR_SECTION(0, 1) // nop out after boot 781.endm 782 783/* 784 * There are a few constraints to be concerned with. 785 * - Real mode exceptions code/data must be located at their physical location. 786 * - Virtual mode exceptions must be mapped at their 0xc000... location. 787 * - Fixed location code must not call directly beyond the __end_interrupts 788 * area when built with CONFIG_RELOCATABLE. LOAD_HANDLER / bctr sequence 789 * must be used. 790 * - LOAD_HANDLER targets must be within first 64K of physical 0 / 791 * virtual 0xc00... 792 * - Conditional branch targets must be within +/-32K of caller. 793 * 794 * "Virtual exceptions" run with relocation on (MSR_IR=1, MSR_DR=1), and 795 * therefore don't have to run in physically located code or rfid to 796 * virtual mode kernel code. However on relocatable kernels they do have 797 * to branch to KERNELBASE offset because the rest of the kernel (outside 798 * the exception vectors) may be located elsewhere. 799 * 800 * Virtual exceptions correspond with physical, except their entry points 801 * are offset by 0xc000000000000000 and also tend to get an added 0x4000 802 * offset applied. Virtual exceptions are enabled with the Alternate 803 * Interrupt Location (AIL) bit set in the LPCR. However this does not 804 * guarantee they will be delivered virtually. Some conditions (see the ISA) 805 * cause exceptions to be delivered in real mode. 806 * 807 * The scv instructions are a special case. They get a 0x3000 offset applied. 808 * scv exceptions have unique reentrancy properties, see below. 809 * 810 * It's impossible to receive interrupts below 0x300 via AIL. 811 * 812 * KVM: None of the virtual exceptions are from the guest. Anything that 813 * escalated to HV=1 from HV=0 is delivered via real mode handlers. 814 * 815 * 816 * We layout physical memory as follows: 817 * 0x0000 - 0x00ff : Secondary processor spin code 818 * 0x0100 - 0x18ff : Real mode pSeries interrupt vectors 819 * 0x1900 - 0x2fff : Real mode trampolines 820 * 0x3000 - 0x58ff : Relon (IR=1,DR=1) mode pSeries interrupt vectors 821 * 0x5900 - 0x6fff : Relon mode trampolines 822 * 0x7000 - 0x7fff : FWNMI data area 823 * 0x8000 - .... : Common interrupt handlers, remaining early 824 * setup code, rest of kernel. 825 * 826 * We could reclaim 0x4000-0x42ff for real mode trampolines if the space 827 * is necessary. Until then it's more consistent to explicitly put VIRT_NONE 828 * vectors there. 829 */ 830OPEN_FIXED_SECTION(real_vectors, 0x0100, 0x1900) 831OPEN_FIXED_SECTION(real_trampolines, 0x1900, 0x3000) 832OPEN_FIXED_SECTION(virt_vectors, 0x3000, 0x5900) 833OPEN_FIXED_SECTION(virt_trampolines, 0x5900, 0x7000) 834 835#ifdef CONFIG_PPC_POWERNV 836 .globl start_real_trampolines 837 .globl end_real_trampolines 838 .globl start_virt_trampolines 839 .globl end_virt_trampolines 840#endif 841 842#if defined(CONFIG_PPC_PSERIES) || defined(CONFIG_PPC_POWERNV) 843/* 844 * Data area reserved for FWNMI option. 845 * This address (0x7000) is fixed by the RPA. 846 * pseries and powernv need to keep the whole page from 847 * 0x7000 to 0x8000 free for use by the firmware 848 */ 849ZERO_FIXED_SECTION(fwnmi_page, 0x7000, 0x8000) 850OPEN_TEXT_SECTION(0x8000) 851#else 852OPEN_TEXT_SECTION(0x7000) 853#endif 854 855USE_FIXED_SECTION(real_vectors) 856 857/* 858 * This is the start of the interrupt handlers for pSeries 859 * This code runs with relocation off. 860 * Code from here to __end_interrupts gets copied down to real 861 * address 0x100 when we are running a relocatable kernel. 862 * Therefore any relative branches in this section must only 863 * branch to labels in this section. 864 */ 865 .globl __start_interrupts 866__start_interrupts: 867 868/** 869 * Interrupt 0x3000 - System Call Vectored Interrupt (syscall). 870 * This is a synchronous interrupt invoked with the "scv" instruction. The 871 * system call does not alter the HV bit, so it is directed to the OS. 872 * 873 * Handling: 874 * scv instructions enter the kernel without changing EE, RI, ME, or HV. 875 * In particular, this means we can take a maskable interrupt at any point 876 * in the scv handler, which is unlike any other interrupt. This is solved 877 * by treating the instruction addresses in the handler as being soft-masked, 878 * by adding a SOFT_MASK_TABLE entry for them. 879 * 880 * AIL-0 mode scv exceptions go to 0x17000-0x17fff, but we set AIL-3 and 881 * ensure scv is never executed with relocation off, which means AIL-0 882 * should never happen. 883 * 884 * Before leaving the following inside-__end_soft_masked text, at least of the 885 * following must be true: 886 * - MSR[PR]=1 (i.e., return to userspace) 887 * - MSR_EE|MSR_RI is clear (no reentrant exceptions) 888 * - Standard kernel environment is set up (stack, paca, etc) 889 * 890 * KVM: 891 * These interrupts do not elevate HV 0->1, so HV is not involved. PR KVM 892 * ensures that FSCR[SCV] is disabled whenever it has to force AIL off. 893 * 894 * Call convention: 895 * 896 * syscall register convention is in Documentation/powerpc/syscall64-abi.rst 897 */ 898EXC_VIRT_BEGIN(system_call_vectored, 0x3000, 0x1000) 899 /* SCV 0 */ 900 mr r9,r13 901 GET_PACA(r13) 902 mflr r11 903 mfctr r12 904 li r10,IRQS_ALL_DISABLED 905 stb r10,PACAIRQSOFTMASK(r13) 906#ifdef CONFIG_RELOCATABLE 907 b system_call_vectored_tramp 908#else 909 b system_call_vectored_common 910#endif 911 nop 912 913 /* SCV 1 - 127 */ 914 .rept 127 915 mr r9,r13 916 GET_PACA(r13) 917 mflr r11 918 mfctr r12 919 li r10,IRQS_ALL_DISABLED 920 stb r10,PACAIRQSOFTMASK(r13) 921 li r0,-1 /* cause failure */ 922#ifdef CONFIG_RELOCATABLE 923 b system_call_vectored_sigill_tramp 924#else 925 b system_call_vectored_sigill 926#endif 927 .endr 928EXC_VIRT_END(system_call_vectored, 0x3000, 0x1000) 929 930// Treat scv vectors as soft-masked, see comment above. 931// Use absolute values rather than labels here, so they don't get relocated, 932// because this code runs unrelocated. 933SOFT_MASK_TABLE(0xc000000000003000, 0xc000000000004000) 934 935#ifdef CONFIG_RELOCATABLE 936TRAMP_VIRT_BEGIN(system_call_vectored_tramp) 937 __LOAD_HANDLER(r10, system_call_vectored_common, virt_trampolines) 938 mtctr r10 939 bctr 940 941TRAMP_VIRT_BEGIN(system_call_vectored_sigill_tramp) 942 __LOAD_HANDLER(r10, system_call_vectored_sigill, virt_trampolines) 943 mtctr r10 944 bctr 945#endif 946 947 948/* No virt vectors corresponding with 0x0..0x100 */ 949EXC_VIRT_NONE(0x4000, 0x100) 950 951 952/** 953 * Interrupt 0x100 - System Reset Interrupt (SRESET aka NMI). 954 * This is a non-maskable, asynchronous interrupt always taken in real-mode. 955 * It is caused by: 956 * - Wake from power-saving state, on powernv. 957 * - An NMI from another CPU, triggered by firmware or hypercall. 958 * - As crash/debug signal injected from BMC, firmware or hypervisor. 959 * 960 * Handling: 961 * Power-save wakeup is the only performance critical path, so this is 962 * determined quickly as possible first. In this case volatile registers 963 * can be discarded and SPRs like CFAR don't need to be read. 964 * 965 * If not a powersave wakeup, then it's run as a regular interrupt, however 966 * it uses its own stack and PACA save area to preserve the regular kernel 967 * environment for debugging. 968 * 969 * This interrupt is not maskable, so triggering it when MSR[RI] is clear, 970 * or SCRATCH0 is in use, etc. may cause a crash. It's also not entirely 971 * correct to switch to virtual mode to run the regular interrupt handler 972 * because it might be interrupted when the MMU is in a bad state (e.g., SLB 973 * is clear). 974 * 975 * FWNMI: 976 * PAPR specifies a "fwnmi" facility which sends the sreset to a different 977 * entry point with a different register set up. Some hypervisors will 978 * send the sreset to 0x100 in the guest if it is not fwnmi capable. 979 * 980 * KVM: 981 * Unlike most SRR interrupts, this may be taken by the host while executing 982 * in a guest, so a KVM test is required. KVM will pull the CPU out of guest 983 * mode and then raise the sreset. 984 */ 985INT_DEFINE_BEGIN(system_reset) 986 IVEC=0x100 987 IAREA=PACA_EXNMI 988 IVIRT=0 /* no virt entry point */ 989 ISTACK=0 990 IKVM_REAL=1 991INT_DEFINE_END(system_reset) 992 993EXC_REAL_BEGIN(system_reset, 0x100, 0x100) 994#ifdef CONFIG_PPC_P7_NAP 995 /* 996 * If running native on arch 2.06 or later, check if we are waking up 997 * from nap/sleep/winkle, and branch to idle handler. This tests SRR1 998 * bits 46:47. A non-0 value indicates that we are coming from a power 999 * saving state. The idle wakeup handler initially runs in real mode, 1000 * but we branch to the 0xc000... address so we can turn on relocation 1001 * with mtmsrd later, after SPRs are restored. 1002 * 1003 * Careful to minimise cost for the fast path (idle wakeup) while 1004 * also avoiding clobbering CFAR for the debug path (non-idle). 1005 * 1006 * For the idle wake case volatile registers can be clobbered, which 1007 * is why we use those initially. If it turns out to not be an idle 1008 * wake, carefully put everything back the way it was, so we can use 1009 * common exception macros to handle it. 1010 */ 1011BEGIN_FTR_SECTION 1012 SET_SCRATCH0(r13) 1013 GET_PACA(r13) 1014 std r3,PACA_EXNMI+0*8(r13) 1015 std r4,PACA_EXNMI+1*8(r13) 1016 std r5,PACA_EXNMI+2*8(r13) 1017 mfspr r3,SPRN_SRR1 1018 mfocrf r4,0x80 1019 rlwinm. r5,r3,47-31,30,31 1020 bne+ system_reset_idle_wake 1021 /* Not powersave wakeup. Restore regs for regular interrupt handler. */ 1022 mtocrf 0x80,r4 1023 ld r3,PACA_EXNMI+0*8(r13) 1024 ld r4,PACA_EXNMI+1*8(r13) 1025 ld r5,PACA_EXNMI+2*8(r13) 1026 GET_SCRATCH0(r13) 1027END_FTR_SECTION_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206) 1028#endif 1029 1030 GEN_INT_ENTRY system_reset, virt=0 1031 /* 1032 * In theory, we should not enable relocation here if it was disabled 1033 * in SRR1, because the MMU may not be configured to support it (e.g., 1034 * SLB may have been cleared). In practice, there should only be a few 1035 * small windows where that's the case, and sreset is considered to 1036 * be dangerous anyway. 1037 */ 1038EXC_REAL_END(system_reset, 0x100, 0x100) 1039EXC_VIRT_NONE(0x4100, 0x100) 1040 1041#ifdef CONFIG_PPC_P7_NAP 1042TRAMP_REAL_BEGIN(system_reset_idle_wake) 1043 /* We are waking up from idle, so may clobber any volatile register */ 1044 cmpwi cr1,r5,2 1045 bltlr cr1 /* no state loss, return to idle caller with r3=SRR1 */ 1046 __LOAD_FAR_HANDLER(r12, DOTSYM(idle_return_gpr_loss), real_trampolines) 1047 mtctr r12 1048 bctr 1049#endif 1050 1051#ifdef CONFIG_PPC_PSERIES 1052/* 1053 * Vectors for the FWNMI option. Share common code. 1054 */ 1055TRAMP_REAL_BEGIN(system_reset_fwnmi) 1056 GEN_INT_ENTRY system_reset, virt=0 1057 1058#endif /* CONFIG_PPC_PSERIES */ 1059 1060EXC_COMMON_BEGIN(system_reset_common) 1061 __GEN_COMMON_ENTRY system_reset 1062 /* 1063 * Increment paca->in_nmi. When the interrupt entry wrapper later 1064 * enable MSR_RI, then SLB or MCE will be able to recover, but a nested 1065 * NMI will notice in_nmi and not recover because of the use of the NMI 1066 * stack. in_nmi reentrancy is tested in system_reset_exception. 1067 */ 1068 lhz r10,PACA_IN_NMI(r13) 1069 addi r10,r10,1 1070 sth r10,PACA_IN_NMI(r13) 1071 1072 mr r10,r1 1073 ld r1,PACA_NMI_EMERG_SP(r13) 1074 subi r1,r1,INT_FRAME_SIZE 1075 __GEN_COMMON_BODY system_reset 1076 1077 addi r3,r1,STACK_INT_FRAME_REGS 1078 bl CFUNC(system_reset_exception) 1079 1080 /* Clear MSR_RI before setting SRR0 and SRR1. */ 1081 li r9,0 1082 mtmsrd r9,1 1083 1084 /* 1085 * MSR_RI is clear, now we can decrement paca->in_nmi. 1086 */ 1087 lhz r10,PACA_IN_NMI(r13) 1088 subi r10,r10,1 1089 sth r10,PACA_IN_NMI(r13) 1090 1091 kuap_kernel_restore r9, r10 1092 EXCEPTION_RESTORE_REGS 1093 RFI_TO_USER_OR_KERNEL 1094 1095 1096/** 1097 * Interrupt 0x200 - Machine Check Interrupt (MCE). 1098 * This is a non-maskable interrupt always taken in real-mode. It can be 1099 * synchronous or asynchronous, caused by hardware or software, and it may be 1100 * taken in a power-saving state. 1101 * 1102 * Handling: 1103 * Similarly to system reset, this uses its own stack and PACA save area, 1104 * the difference is re-entrancy is allowed on the machine check stack. 1105 * 1106 * machine_check_early is run in real mode, and carefully decodes the 1107 * machine check and tries to handle it (e.g., flush the SLB if there was an 1108 * error detected there), determines if it was recoverable and logs the 1109 * event. 1110 * 1111 * This early code does not "reconcile" irq soft-mask state like SRESET or 1112 * regular interrupts do, so irqs_disabled() among other things may not work 1113 * properly (irq disable/enable already doesn't work because irq tracing can 1114 * not work in real mode). 1115 * 1116 * Then, depending on the execution context when the interrupt is taken, there 1117 * are 3 main actions: 1118 * - Executing in kernel mode. The event is queued with irq_work, which means 1119 * it is handled when it is next safe to do so (i.e., the kernel has enabled 1120 * interrupts), which could be immediately when the interrupt returns. This 1121 * avoids nasty issues like switching to virtual mode when the MMU is in a 1122 * bad state, or when executing OPAL code. (SRESET is exposed to such issues, 1123 * but it has different priorities). Check to see if the CPU was in power 1124 * save, and return via the wake up code if it was. 1125 * 1126 * - Executing in user mode. machine_check_exception is run like a normal 1127 * interrupt handler, which processes the data generated by the early handler. 1128 * 1129 * - Executing in guest mode. The interrupt is run with its KVM test, and 1130 * branches to KVM to deal with. KVM may queue the event for the host 1131 * to report later. 1132 * 1133 * This interrupt is not maskable, so if it triggers when MSR[RI] is clear, 1134 * or SCRATCH0 is in use, it may cause a crash. 1135 * 1136 * KVM: 1137 * See SRESET. 1138 */ 1139INT_DEFINE_BEGIN(machine_check_early) 1140 IVEC=0x200 1141 IAREA=PACA_EXMC 1142 IVIRT=0 /* no virt entry point */ 1143 IREALMODE_COMMON=1 1144 ISTACK=0 1145 IDAR=1 1146 IDSISR=1 1147 IKUAP=0 /* We don't touch AMR here, we never go to virtual mode */ 1148INT_DEFINE_END(machine_check_early) 1149 1150INT_DEFINE_BEGIN(machine_check) 1151 IVEC=0x200 1152 IAREA=PACA_EXMC 1153 IVIRT=0 /* no virt entry point */ 1154 IDAR=1 1155 IDSISR=1 1156 IKVM_REAL=1 1157INT_DEFINE_END(machine_check) 1158 1159EXC_REAL_BEGIN(machine_check, 0x200, 0x100) 1160 EARLY_BOOT_FIXUP 1161 GEN_INT_ENTRY machine_check_early, virt=0 1162EXC_REAL_END(machine_check, 0x200, 0x100) 1163EXC_VIRT_NONE(0x4200, 0x100) 1164 1165#ifdef CONFIG_PPC_PSERIES 1166TRAMP_REAL_BEGIN(machine_check_fwnmi) 1167 /* See comment at machine_check exception, don't turn on RI */ 1168 GEN_INT_ENTRY machine_check_early, virt=0 1169#endif 1170 1171#define MACHINE_CHECK_HANDLER_WINDUP \ 1172 /* Clear MSR_RI before setting SRR0 and SRR1. */\ 1173 li r9,0; \ 1174 mtmsrd r9,1; /* Clear MSR_RI */ \ 1175 /* Decrement paca->in_mce now RI is clear. */ \ 1176 lhz r12,PACA_IN_MCE(r13); \ 1177 subi r12,r12,1; \ 1178 sth r12,PACA_IN_MCE(r13); \ 1179 EXCEPTION_RESTORE_REGS 1180 1181EXC_COMMON_BEGIN(machine_check_early_common) 1182 __GEN_REALMODE_COMMON_ENTRY machine_check_early 1183 1184 /* 1185 * Switch to mc_emergency stack and handle re-entrancy (we limit 1186 * the nested MCE upto level 4 to avoid stack overflow). 1187 * Save MCE registers srr1, srr0, dar and dsisr and then set ME=1 1188 * 1189 * We use paca->in_mce to check whether this is the first entry or 1190 * nested machine check. We increment paca->in_mce to track nested 1191 * machine checks. 1192 * 1193 * If this is the first entry then set stack pointer to 1194 * paca->mc_emergency_sp, otherwise r1 is already pointing to 1195 * stack frame on mc_emergency stack. 1196 * 1197 * NOTE: We are here with MSR_ME=0 (off), which means we risk a 1198 * checkstop if we get another machine check exception before we do 1199 * rfid with MSR_ME=1. 1200 * 1201 * This interrupt can wake directly from idle. If that is the case, 1202 * the machine check is handled then the idle wakeup code is called 1203 * to restore state. 1204 */ 1205 lhz r10,PACA_IN_MCE(r13) 1206 cmpwi r10,0 /* Are we in nested machine check */ 1207 cmpwi cr1,r10,MAX_MCE_DEPTH /* Are we at maximum nesting */ 1208 addi r10,r10,1 /* increment paca->in_mce */ 1209 sth r10,PACA_IN_MCE(r13) 1210 1211 mr r10,r1 /* Save r1 */ 1212 bne 1f 1213 /* First machine check entry */ 1214 ld r1,PACAMCEMERGSP(r13) /* Use MC emergency stack */ 12151: /* Limit nested MCE to level 4 to avoid stack overflow */ 1216 bgt cr1,unrecoverable_mce /* Check if we hit limit of 4 */ 1217 subi r1,r1,INT_FRAME_SIZE /* alloc stack frame */ 1218 1219 __GEN_COMMON_BODY machine_check_early 1220 1221BEGIN_FTR_SECTION 1222 bl enable_machine_check 1223END_FTR_SECTION_IFSET(CPU_FTR_HVMODE) 1224 addi r3,r1,STACK_INT_FRAME_REGS 1225BEGIN_FTR_SECTION 1226 bl CFUNC(machine_check_early_boot) 1227END_FTR_SECTION(0, 1) // nop out after boot 1228 bl CFUNC(machine_check_early) 1229 std r3,RESULT(r1) /* Save result */ 1230 ld r12,_MSR(r1) 1231 1232#ifdef CONFIG_PPC_P7_NAP 1233 /* 1234 * Check if thread was in power saving mode. We come here when any 1235 * of the following is true: 1236 * a. thread wasn't in power saving mode 1237 * b. thread was in power saving mode with no state loss, 1238 * supervisor state loss or hypervisor state loss. 1239 * 1240 * Go back to nap/sleep/winkle mode again if (b) is true. 1241 */ 1242BEGIN_FTR_SECTION 1243 rlwinm. r11,r12,47-31,30,31 1244 bne machine_check_idle_common 1245END_FTR_SECTION_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206) 1246#endif 1247 1248#ifdef CONFIG_KVM_BOOK3S_64_HANDLER 1249 /* 1250 * Check if we are coming from guest. If yes, then run the normal 1251 * exception handler which will take the 1252 * machine_check_kvm->kvm_interrupt branch to deliver the MC event 1253 * to guest. 1254 */ 1255 lbz r11,HSTATE_IN_GUEST(r13) 1256 cmpwi r11,0 /* Check if coming from guest */ 1257 bne mce_deliver /* continue if we are. */ 1258#endif 1259 1260 /* 1261 * Check if we are coming from userspace. If yes, then run the normal 1262 * exception handler which will deliver the MC event to this kernel. 1263 */ 1264 andi. r11,r12,MSR_PR /* See if coming from user. */ 1265 bne mce_deliver /* continue in V mode if we are. */ 1266 1267 /* 1268 * At this point we are coming from kernel context. 1269 * Queue up the MCE event and return from the interrupt. 1270 * But before that, check if this is an un-recoverable exception. 1271 * If yes, then stay on emergency stack and panic. 1272 */ 1273 andi. r11,r12,MSR_RI 1274 beq unrecoverable_mce 1275 1276 /* 1277 * Check if we have successfully handled/recovered from error, if not 1278 * then stay on emergency stack and panic. 1279 */ 1280 ld r3,RESULT(r1) /* Load result */ 1281 cmpdi r3,0 /* see if we handled MCE successfully */ 1282 beq unrecoverable_mce /* if !handled then panic */ 1283 1284 /* 1285 * Return from MC interrupt. 1286 * Queue up the MCE event so that we can log it later, while 1287 * returning from kernel or opal call. 1288 */ 1289 bl CFUNC(machine_check_queue_event) 1290 MACHINE_CHECK_HANDLER_WINDUP 1291 RFI_TO_KERNEL 1292 1293mce_deliver: 1294 /* 1295 * This is a host user or guest MCE. Restore all registers, then 1296 * run the "late" handler. For host user, this will run the 1297 * machine_check_exception handler in virtual mode like a normal 1298 * interrupt handler. For guest, this will trigger the KVM test 1299 * and branch to the KVM interrupt similarly to other interrupts. 1300 */ 1301BEGIN_FTR_SECTION 1302 ld r10,ORIG_GPR3(r1) 1303 mtspr SPRN_CFAR,r10 1304END_FTR_SECTION_IFSET(CPU_FTR_CFAR) 1305 MACHINE_CHECK_HANDLER_WINDUP 1306 GEN_INT_ENTRY machine_check, virt=0 1307 1308EXC_COMMON_BEGIN(machine_check_common) 1309 /* 1310 * Machine check is different because we use a different 1311 * save area: PACA_EXMC instead of PACA_EXGEN. 1312 */ 1313 GEN_COMMON machine_check 1314 addi r3,r1,STACK_INT_FRAME_REGS 1315 bl CFUNC(machine_check_exception_async) 1316 b interrupt_return_srr 1317 1318 1319#ifdef CONFIG_PPC_P7_NAP 1320/* 1321 * This is an idle wakeup. Low level machine check has already been 1322 * done. Queue the event then call the idle code to do the wake up. 1323 */ 1324EXC_COMMON_BEGIN(machine_check_idle_common) 1325 bl CFUNC(machine_check_queue_event) 1326 1327 /* 1328 * GPR-loss wakeups are relatively straightforward, because the 1329 * idle sleep code has saved all non-volatile registers on its 1330 * own stack, and r1 in PACAR1. 1331 * 1332 * For no-loss wakeups the r1 and lr registers used by the 1333 * early machine check handler have to be restored first. r2 is 1334 * the kernel TOC, so no need to restore it. 1335 * 1336 * Then decrement MCE nesting after finishing with the stack. 1337 */ 1338 ld r3,_MSR(r1) 1339 ld r4,_LINK(r1) 1340 ld r1,GPR1(r1) 1341 1342 lhz r11,PACA_IN_MCE(r13) 1343 subi r11,r11,1 1344 sth r11,PACA_IN_MCE(r13) 1345 1346 mtlr r4 1347 rlwinm r10,r3,47-31,30,31 1348 cmpwi cr1,r10,2 1349 bltlr cr1 /* no state loss, return to idle caller with r3=SRR1 */ 1350 b idle_return_gpr_loss 1351#endif 1352 1353EXC_COMMON_BEGIN(unrecoverable_mce) 1354 /* 1355 * We are going down. But there are chances that we might get hit by 1356 * another MCE during panic path and we may run into unstable state 1357 * with no way out. Hence, turn ME bit off while going down, so that 1358 * when another MCE is hit during panic path, system will checkstop 1359 * and hypervisor will get restarted cleanly by SP. 1360 */ 1361BEGIN_FTR_SECTION 1362 li r10,0 /* clear MSR_RI */ 1363 mtmsrd r10,1 1364 bl CFUNC(disable_machine_check) 1365END_FTR_SECTION_IFSET(CPU_FTR_HVMODE) 1366 ld r10,PACAKMSR(r13) 1367 li r3,MSR_ME 1368 andc r10,r10,r3 1369 mtmsrd r10 1370 1371 lhz r12,PACA_IN_MCE(r13) 1372 subi r12,r12,1 1373 sth r12,PACA_IN_MCE(r13) 1374 1375 /* 1376 * Invoke machine_check_exception to print MCE event and panic. 1377 * This is the NMI version of the handler because we are called from 1378 * the early handler which is a true NMI. 1379 */ 1380 addi r3,r1,STACK_INT_FRAME_REGS 1381 bl CFUNC(machine_check_exception) 1382 1383 /* 1384 * We will not reach here. Even if we did, there is no way out. 1385 * Call unrecoverable_exception and die. 1386 */ 1387 addi r3,r1,STACK_INT_FRAME_REGS 1388 bl CFUNC(unrecoverable_exception) 1389 b . 1390 1391 1392/** 1393 * Interrupt 0x300 - Data Storage Interrupt (DSI). 1394 * This is a synchronous interrupt generated due to a data access exception, 1395 * e.g., a load orstore which does not have a valid page table entry with 1396 * permissions. DAWR matches also fault here, as do RC updates, and minor misc 1397 * errors e.g., copy/paste, AMO, certain invalid CI accesses, etc. 1398 * 1399 * Handling: 1400 * - Hash MMU 1401 * Go to do_hash_fault, which attempts to fill the HPT from an entry in the 1402 * Linux page table. Hash faults can hit in kernel mode in a fairly 1403 * arbitrary state (e.g., interrupts disabled, locks held) when accessing 1404 * "non-bolted" regions, e.g., vmalloc space. However these should always be 1405 * backed by Linux page table entries. 1406 * 1407 * If no entry is found the Linux page fault handler is invoked (by 1408 * do_hash_fault). Linux page faults can happen in kernel mode due to user 1409 * copy operations of course. 1410 * 1411 * KVM: The KVM HDSI handler may perform a load with MSR[DR]=1 in guest 1412 * MMU context, which may cause a DSI in the host, which must go to the 1413 * KVM handler. MSR[IR] is not enabled, so the real-mode handler will 1414 * always be used regardless of AIL setting. 1415 * 1416 * - Radix MMU 1417 * The hardware loads from the Linux page table directly, so a fault goes 1418 * immediately to Linux page fault. 1419 * 1420 * Conditions like DAWR match are handled on the way in to Linux page fault. 1421 */ 1422INT_DEFINE_BEGIN(data_access) 1423 IVEC=0x300 1424 IDAR=1 1425 IDSISR=1 1426 IKVM_REAL=1 1427INT_DEFINE_END(data_access) 1428 1429EXC_REAL_BEGIN(data_access, 0x300, 0x80) 1430 GEN_INT_ENTRY data_access, virt=0 1431EXC_REAL_END(data_access, 0x300, 0x80) 1432EXC_VIRT_BEGIN(data_access, 0x4300, 0x80) 1433 GEN_INT_ENTRY data_access, virt=1 1434EXC_VIRT_END(data_access, 0x4300, 0x80) 1435EXC_COMMON_BEGIN(data_access_common) 1436 GEN_COMMON data_access 1437 ld r4,_DSISR(r1) 1438 addi r3,r1,STACK_INT_FRAME_REGS 1439 andis. r0,r4,DSISR_DABRMATCH@h 1440 bne- 1f 1441#ifdef CONFIG_PPC_64S_HASH_MMU 1442BEGIN_MMU_FTR_SECTION 1443 bl CFUNC(do_hash_fault) 1444MMU_FTR_SECTION_ELSE 1445 bl CFUNC(do_page_fault) 1446ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX) 1447#else 1448 bl CFUNC(do_page_fault) 1449#endif 1450 b interrupt_return_srr 1451 14521: bl CFUNC(do_break) 1453 /* 1454 * do_break() may have changed the NV GPRS while handling a breakpoint. 1455 * If so, we need to restore them with their updated values. 1456 */ 1457 HANDLER_RESTORE_NVGPRS() 1458 b interrupt_return_srr 1459 1460 1461/** 1462 * Interrupt 0x380 - Data Segment Interrupt (DSLB). 1463 * This is a synchronous interrupt in response to an MMU fault missing SLB 1464 * entry for HPT, or an address outside RPT translation range. 1465 * 1466 * Handling: 1467 * - HPT: 1468 * This refills the SLB, or reports an access fault similarly to a bad page 1469 * fault. When coming from user-mode, the SLB handler may access any kernel 1470 * data, though it may itself take a DSLB. When coming from kernel mode, 1471 * recursive faults must be avoided so access is restricted to the kernel 1472 * image text/data, kernel stack, and any data allocated below 1473 * ppc64_bolted_size (first segment). The kernel handler must avoid stomping 1474 * on user-handler data structures. 1475 * 1476 * KVM: Same as 0x300, DSLB must test for KVM guest. 1477 */ 1478INT_DEFINE_BEGIN(data_access_slb) 1479 IVEC=0x380 1480 IDAR=1 1481 IKVM_REAL=1 1482INT_DEFINE_END(data_access_slb) 1483 1484EXC_REAL_BEGIN(data_access_slb, 0x380, 0x80) 1485 GEN_INT_ENTRY data_access_slb, virt=0 1486EXC_REAL_END(data_access_slb, 0x380, 0x80) 1487EXC_VIRT_BEGIN(data_access_slb, 0x4380, 0x80) 1488 GEN_INT_ENTRY data_access_slb, virt=1 1489EXC_VIRT_END(data_access_slb, 0x4380, 0x80) 1490EXC_COMMON_BEGIN(data_access_slb_common) 1491 GEN_COMMON data_access_slb 1492#ifdef CONFIG_PPC_64S_HASH_MMU 1493BEGIN_MMU_FTR_SECTION 1494 /* HPT case, do SLB fault */ 1495 addi r3,r1,STACK_INT_FRAME_REGS 1496 bl CFUNC(do_slb_fault) 1497 cmpdi r3,0 1498 bne- 1f 1499 b fast_interrupt_return_srr 15001: /* Error case */ 1501MMU_FTR_SECTION_ELSE 1502 /* Radix case, access is outside page table range */ 1503 li r3,-EFAULT 1504ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX) 1505#else 1506 li r3,-EFAULT 1507#endif 1508 std r3,RESULT(r1) 1509 addi r3,r1,STACK_INT_FRAME_REGS 1510 bl CFUNC(do_bad_segment_interrupt) 1511 b interrupt_return_srr 1512 1513 1514/** 1515 * Interrupt 0x400 - Instruction Storage Interrupt (ISI). 1516 * This is a synchronous interrupt in response to an MMU fault due to an 1517 * instruction fetch. 1518 * 1519 * Handling: 1520 * Similar to DSI, though in response to fetch. The faulting address is found 1521 * in SRR0 (rather than DAR), and status in SRR1 (rather than DSISR). 1522 */ 1523INT_DEFINE_BEGIN(instruction_access) 1524 IVEC=0x400 1525 IISIDE=1 1526 IDAR=1 1527 IDSISR=1 1528#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE 1529 IKVM_REAL=1 1530#endif 1531INT_DEFINE_END(instruction_access) 1532 1533EXC_REAL_BEGIN(instruction_access, 0x400, 0x80) 1534 GEN_INT_ENTRY instruction_access, virt=0 1535EXC_REAL_END(instruction_access, 0x400, 0x80) 1536EXC_VIRT_BEGIN(instruction_access, 0x4400, 0x80) 1537 GEN_INT_ENTRY instruction_access, virt=1 1538EXC_VIRT_END(instruction_access, 0x4400, 0x80) 1539EXC_COMMON_BEGIN(instruction_access_common) 1540 GEN_COMMON instruction_access 1541 addi r3,r1,STACK_INT_FRAME_REGS 1542#ifdef CONFIG_PPC_64S_HASH_MMU 1543BEGIN_MMU_FTR_SECTION 1544 bl CFUNC(do_hash_fault) 1545MMU_FTR_SECTION_ELSE 1546 bl CFUNC(do_page_fault) 1547ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX) 1548#else 1549 bl CFUNC(do_page_fault) 1550#endif 1551 b interrupt_return_srr 1552 1553 1554/** 1555 * Interrupt 0x480 - Instruction Segment Interrupt (ISLB). 1556 * This is a synchronous interrupt in response to an MMU fault due to an 1557 * instruction fetch. 1558 * 1559 * Handling: 1560 * Similar to DSLB, though in response to fetch. The faulting address is found 1561 * in SRR0 (rather than DAR). 1562 */ 1563INT_DEFINE_BEGIN(instruction_access_slb) 1564 IVEC=0x480 1565 IISIDE=1 1566 IDAR=1 1567#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE 1568 IKVM_REAL=1 1569#endif 1570INT_DEFINE_END(instruction_access_slb) 1571 1572EXC_REAL_BEGIN(instruction_access_slb, 0x480, 0x80) 1573 GEN_INT_ENTRY instruction_access_slb, virt=0 1574EXC_REAL_END(instruction_access_slb, 0x480, 0x80) 1575EXC_VIRT_BEGIN(instruction_access_slb, 0x4480, 0x80) 1576 GEN_INT_ENTRY instruction_access_slb, virt=1 1577EXC_VIRT_END(instruction_access_slb, 0x4480, 0x80) 1578EXC_COMMON_BEGIN(instruction_access_slb_common) 1579 GEN_COMMON instruction_access_slb 1580#ifdef CONFIG_PPC_64S_HASH_MMU 1581BEGIN_MMU_FTR_SECTION 1582 /* HPT case, do SLB fault */ 1583 addi r3,r1,STACK_INT_FRAME_REGS 1584 bl CFUNC(do_slb_fault) 1585 cmpdi r3,0 1586 bne- 1f 1587 b fast_interrupt_return_srr 15881: /* Error case */ 1589MMU_FTR_SECTION_ELSE 1590 /* Radix case, access is outside page table range */ 1591 li r3,-EFAULT 1592ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX) 1593#else 1594 li r3,-EFAULT 1595#endif 1596 std r3,RESULT(r1) 1597 addi r3,r1,STACK_INT_FRAME_REGS 1598 bl CFUNC(do_bad_segment_interrupt) 1599 b interrupt_return_srr 1600 1601 1602/** 1603 * Interrupt 0x500 - External Interrupt. 1604 * This is an asynchronous maskable interrupt in response to an "external 1605 * exception" from the interrupt controller or hypervisor (e.g., device 1606 * interrupt). It is maskable in hardware by clearing MSR[EE], and 1607 * soft-maskable with IRQS_DISABLED mask (i.e., local_irq_disable()). 1608 * 1609 * When running in HV mode, Linux sets up the LPCR[LPES] bit such that 1610 * interrupts are delivered with HSRR registers, guests use SRRs, which 1611 * reqiures IHSRR_IF_HVMODE. 1612 * 1613 * On bare metal POWER9 and later, Linux sets the LPCR[HVICE] bit such that 1614 * external interrupts are delivered as Hypervisor Virtualization Interrupts 1615 * rather than External Interrupts. 1616 * 1617 * Handling: 1618 * This calls into Linux IRQ handler. NVGPRs are not saved to reduce overhead, 1619 * because registers at the time of the interrupt are not so important as it is 1620 * asynchronous. 1621 * 1622 * If soft masked, the masked handler will note the pending interrupt for 1623 * replay, and clear MSR[EE] in the interrupted context. 1624 * 1625 * CFAR is not required because this is an asynchronous interrupt that in 1626 * general won't have much bearing on the state of the CPU, with the possible 1627 * exception of crash/debug IPIs, but those are generally moving to use SRESET 1628 * IPIs. Unless this is an HV interrupt and KVM HV is possible, in which case 1629 * it may be exiting the guest and need CFAR to be saved. 1630 */ 1631INT_DEFINE_BEGIN(hardware_interrupt) 1632 IVEC=0x500 1633 IHSRR_IF_HVMODE=1 1634 IMASK=IRQS_DISABLED 1635 IKVM_REAL=1 1636 IKVM_VIRT=1 1637 ICFAR=0 1638#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE 1639 ICFAR_IF_HVMODE=1 1640#endif 1641INT_DEFINE_END(hardware_interrupt) 1642 1643EXC_REAL_BEGIN(hardware_interrupt, 0x500, 0x100) 1644 GEN_INT_ENTRY hardware_interrupt, virt=0 1645EXC_REAL_END(hardware_interrupt, 0x500, 0x100) 1646EXC_VIRT_BEGIN(hardware_interrupt, 0x4500, 0x100) 1647 GEN_INT_ENTRY hardware_interrupt, virt=1 1648EXC_VIRT_END(hardware_interrupt, 0x4500, 0x100) 1649EXC_COMMON_BEGIN(hardware_interrupt_common) 1650 GEN_COMMON hardware_interrupt 1651 addi r3,r1,STACK_INT_FRAME_REGS 1652 bl CFUNC(do_IRQ) 1653 BEGIN_FTR_SECTION 1654 b interrupt_return_hsrr 1655 FTR_SECTION_ELSE 1656 b interrupt_return_srr 1657 ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206) 1658 1659 1660/** 1661 * Interrupt 0x600 - Alignment Interrupt 1662 * This is a synchronous interrupt in response to data alignment fault. 1663 */ 1664INT_DEFINE_BEGIN(alignment) 1665 IVEC=0x600 1666 IDAR=1 1667 IDSISR=1 1668#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE 1669 IKVM_REAL=1 1670#endif 1671INT_DEFINE_END(alignment) 1672 1673EXC_REAL_BEGIN(alignment, 0x600, 0x100) 1674 GEN_INT_ENTRY alignment, virt=0 1675EXC_REAL_END(alignment, 0x600, 0x100) 1676EXC_VIRT_BEGIN(alignment, 0x4600, 0x100) 1677 GEN_INT_ENTRY alignment, virt=1 1678EXC_VIRT_END(alignment, 0x4600, 0x100) 1679EXC_COMMON_BEGIN(alignment_common) 1680 GEN_COMMON alignment 1681 addi r3,r1,STACK_INT_FRAME_REGS 1682 bl CFUNC(alignment_exception) 1683 HANDLER_RESTORE_NVGPRS() /* instruction emulation may change GPRs */ 1684 b interrupt_return_srr 1685 1686 1687/** 1688 * Interrupt 0x700 - Program Interrupt (program check). 1689 * This is a synchronous interrupt in response to various instruction faults: 1690 * traps, privilege errors, TM errors, floating point exceptions. 1691 * 1692 * Handling: 1693 * This interrupt may use the "emergency stack" in some cases when being taken 1694 * from kernel context, which complicates handling. 1695 */ 1696INT_DEFINE_BEGIN(program_check) 1697 IVEC=0x700 1698#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE 1699 IKVM_REAL=1 1700#endif 1701INT_DEFINE_END(program_check) 1702 1703EXC_REAL_BEGIN(program_check, 0x700, 0x100) 1704 EARLY_BOOT_FIXUP 1705 GEN_INT_ENTRY program_check, virt=0 1706EXC_REAL_END(program_check, 0x700, 0x100) 1707EXC_VIRT_BEGIN(program_check, 0x4700, 0x100) 1708 GEN_INT_ENTRY program_check, virt=1 1709EXC_VIRT_END(program_check, 0x4700, 0x100) 1710EXC_COMMON_BEGIN(program_check_common) 1711 __GEN_COMMON_ENTRY program_check 1712 1713 /* 1714 * It's possible to receive a TM Bad Thing type program check with 1715 * userspace register values (in particular r1), but with SRR1 reporting 1716 * that we came from the kernel. Normally that would confuse the bad 1717 * stack logic, and we would report a bad kernel stack pointer. Instead 1718 * we switch to the emergency stack if we're taking a TM Bad Thing from 1719 * the kernel. 1720 */ 1721 1722 andi. r10,r12,MSR_PR 1723 bne .Lnormal_stack /* If userspace, go normal path */ 1724 1725 andis. r10,r12,(SRR1_PROGTM)@h 1726 bne .Lemergency_stack /* If TM, emergency */ 1727 1728 cmpdi r1,-INT_FRAME_SIZE /* check if r1 is in userspace */ 1729 blt .Lnormal_stack /* normal path if not */ 1730 1731 /* Use the emergency stack */ 1732.Lemergency_stack: 1733 andi. r10,r12,MSR_PR /* Set CR0 correctly for label */ 1734 /* 3 in EXCEPTION_PROLOG_COMMON */ 1735 mr r10,r1 /* Save r1 */ 1736 ld r1,PACAEMERGSP(r13) /* Use emergency stack */ 1737 subi r1,r1,INT_FRAME_SIZE /* alloc stack frame */ 1738 __ISTACK(program_check)=0 1739 __GEN_COMMON_BODY program_check 1740 b .Ldo_program_check 1741 1742.Lnormal_stack: 1743 __ISTACK(program_check)=1 1744 __GEN_COMMON_BODY program_check 1745 1746.Ldo_program_check: 1747 addi r3,r1,STACK_INT_FRAME_REGS 1748 bl CFUNC(program_check_exception) 1749 HANDLER_RESTORE_NVGPRS() /* instruction emulation may change GPRs */ 1750 b interrupt_return_srr 1751 1752 1753/* 1754 * Interrupt 0x800 - Floating-Point Unavailable Interrupt. 1755 * This is a synchronous interrupt in response to executing an fp instruction 1756 * with MSR[FP]=0. 1757 * 1758 * Handling: 1759 * This will load FP registers and enable the FP bit if coming from userspace, 1760 * otherwise report a bad kernel use of FP. 1761 */ 1762INT_DEFINE_BEGIN(fp_unavailable) 1763 IVEC=0x800 1764#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE 1765 IKVM_REAL=1 1766#endif 1767 IMSR_R12=1 1768INT_DEFINE_END(fp_unavailable) 1769 1770EXC_REAL_BEGIN(fp_unavailable, 0x800, 0x100) 1771 GEN_INT_ENTRY fp_unavailable, virt=0 1772EXC_REAL_END(fp_unavailable, 0x800, 0x100) 1773EXC_VIRT_BEGIN(fp_unavailable, 0x4800, 0x100) 1774 GEN_INT_ENTRY fp_unavailable, virt=1 1775EXC_VIRT_END(fp_unavailable, 0x4800, 0x100) 1776EXC_COMMON_BEGIN(fp_unavailable_common) 1777 GEN_COMMON fp_unavailable 1778 bne 1f /* if from user, just load it up */ 1779 addi r3,r1,STACK_INT_FRAME_REGS 1780 bl CFUNC(kernel_fp_unavailable_exception) 17810: trap 1782 EMIT_BUG_ENTRY 0b, __FILE__, __LINE__, 0 17831: 1784#ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1785BEGIN_FTR_SECTION 1786 /* Test if 2 TM state bits are zero. If non-zero (ie. userspace was in 1787 * transaction), go do TM stuff 1788 */ 1789 rldicl. r0, r12, (64-MSR_TS_LG), (64-2) 1790 bne- 2f 1791END_FTR_SECTION_IFSET(CPU_FTR_TM) 1792#endif 1793 bl CFUNC(load_up_fpu) 1794 b fast_interrupt_return_srr 1795#ifdef CONFIG_PPC_TRANSACTIONAL_MEM 17962: /* User process was in a transaction */ 1797 addi r3,r1,STACK_INT_FRAME_REGS 1798 bl CFUNC(fp_unavailable_tm) 1799 b interrupt_return_srr 1800#endif 1801 1802 1803/** 1804 * Interrupt 0x900 - Decrementer Interrupt. 1805 * This is an asynchronous interrupt in response to a decrementer exception 1806 * (e.g., DEC has wrapped below zero). It is maskable in hardware by clearing 1807 * MSR[EE], and soft-maskable with IRQS_DISABLED mask (i.e., 1808 * local_irq_disable()). 1809 * 1810 * Handling: 1811 * This calls into Linux timer handler. NVGPRs are not saved (see 0x500). 1812 * 1813 * If soft masked, the masked handler will note the pending interrupt for 1814 * replay, and bump the decrementer to a high value, leaving MSR[EE] enabled 1815 * in the interrupted context. 1816 * If PPC_WATCHDOG is configured, the soft masked handler will actually set 1817 * things back up to run soft_nmi_interrupt as a regular interrupt handler 1818 * on the emergency stack. 1819 * 1820 * CFAR is not required because this is asynchronous (see hardware_interrupt). 1821 * A watchdog interrupt may like to have CFAR, but usually the interesting 1822 * branch is long gone by that point (e.g., infinite loop). 1823 */ 1824INT_DEFINE_BEGIN(decrementer) 1825 IVEC=0x900 1826 IMASK=IRQS_DISABLED 1827#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE 1828 IKVM_REAL=1 1829#endif 1830 ICFAR=0 1831INT_DEFINE_END(decrementer) 1832 1833EXC_REAL_BEGIN(decrementer, 0x900, 0x80) 1834 GEN_INT_ENTRY decrementer, virt=0 1835EXC_REAL_END(decrementer, 0x900, 0x80) 1836EXC_VIRT_BEGIN(decrementer, 0x4900, 0x80) 1837 GEN_INT_ENTRY decrementer, virt=1 1838EXC_VIRT_END(decrementer, 0x4900, 0x80) 1839EXC_COMMON_BEGIN(decrementer_common) 1840 GEN_COMMON decrementer 1841 addi r3,r1,STACK_INT_FRAME_REGS 1842 bl CFUNC(timer_interrupt) 1843 b interrupt_return_srr 1844 1845 1846/** 1847 * Interrupt 0x980 - Hypervisor Decrementer Interrupt. 1848 * This is an asynchronous interrupt, similar to 0x900 but for the HDEC 1849 * register. 1850 * 1851 * Handling: 1852 * Linux does not use this outside KVM where it's used to keep a host timer 1853 * while the guest is given control of DEC. It should normally be caught by 1854 * the KVM test and routed there. 1855 */ 1856INT_DEFINE_BEGIN(hdecrementer) 1857 IVEC=0x980 1858 IHSRR=1 1859 ISTACK=0 1860 IKVM_REAL=1 1861 IKVM_VIRT=1 1862INT_DEFINE_END(hdecrementer) 1863 1864EXC_REAL_BEGIN(hdecrementer, 0x980, 0x80) 1865 GEN_INT_ENTRY hdecrementer, virt=0 1866EXC_REAL_END(hdecrementer, 0x980, 0x80) 1867EXC_VIRT_BEGIN(hdecrementer, 0x4980, 0x80) 1868 GEN_INT_ENTRY hdecrementer, virt=1 1869EXC_VIRT_END(hdecrementer, 0x4980, 0x80) 1870EXC_COMMON_BEGIN(hdecrementer_common) 1871 __GEN_COMMON_ENTRY hdecrementer 1872 /* 1873 * Hypervisor decrementer interrupts not caught by the KVM test 1874 * shouldn't occur but are sometimes left pending on exit from a KVM 1875 * guest. We don't need to do anything to clear them, as they are 1876 * edge-triggered. 1877 * 1878 * Be careful to avoid touching the kernel stack. 1879 */ 1880 li r10,0 1881 stb r10,PACAHSRR_VALID(r13) 1882 ld r10,PACA_EXGEN+EX_CTR(r13) 1883 mtctr r10 1884 mtcrf 0x80,r9 1885 ld r9,PACA_EXGEN+EX_R9(r13) 1886 ld r10,PACA_EXGEN+EX_R10(r13) 1887 ld r11,PACA_EXGEN+EX_R11(r13) 1888 ld r12,PACA_EXGEN+EX_R12(r13) 1889 ld r13,PACA_EXGEN+EX_R13(r13) 1890 HRFI_TO_KERNEL 1891 1892 1893/** 1894 * Interrupt 0xa00 - Directed Privileged Doorbell Interrupt. 1895 * This is an asynchronous interrupt in response to a msgsndp doorbell. 1896 * It is maskable in hardware by clearing MSR[EE], and soft-maskable with 1897 * IRQS_DISABLED mask (i.e., local_irq_disable()). 1898 * 1899 * Handling: 1900 * Guests may use this for IPIs between threads in a core if the 1901 * hypervisor supports it. NVGPRS are not saved (see 0x500). 1902 * 1903 * If soft masked, the masked handler will note the pending interrupt for 1904 * replay, leaving MSR[EE] enabled in the interrupted context because the 1905 * doorbells are edge triggered. 1906 * 1907 * CFAR is not required, similarly to hardware_interrupt. 1908 */ 1909INT_DEFINE_BEGIN(doorbell_super) 1910 IVEC=0xa00 1911 IMASK=IRQS_DISABLED 1912#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE 1913 IKVM_REAL=1 1914#endif 1915 ICFAR=0 1916INT_DEFINE_END(doorbell_super) 1917 1918EXC_REAL_BEGIN(doorbell_super, 0xa00, 0x100) 1919 GEN_INT_ENTRY doorbell_super, virt=0 1920EXC_REAL_END(doorbell_super, 0xa00, 0x100) 1921EXC_VIRT_BEGIN(doorbell_super, 0x4a00, 0x100) 1922 GEN_INT_ENTRY doorbell_super, virt=1 1923EXC_VIRT_END(doorbell_super, 0x4a00, 0x100) 1924EXC_COMMON_BEGIN(doorbell_super_common) 1925 GEN_COMMON doorbell_super 1926 addi r3,r1,STACK_INT_FRAME_REGS 1927#ifdef CONFIG_PPC_DOORBELL 1928 bl CFUNC(doorbell_exception) 1929#else 1930 bl CFUNC(unknown_async_exception) 1931#endif 1932 b interrupt_return_srr 1933 1934 1935EXC_REAL_NONE(0xb00, 0x100) 1936EXC_VIRT_NONE(0x4b00, 0x100) 1937 1938/** 1939 * Interrupt 0xc00 - System Call Interrupt (syscall, hcall). 1940 * This is a synchronous interrupt invoked with the "sc" instruction. The 1941 * system call is invoked with "sc 0" and does not alter the HV bit, so it 1942 * is directed to the currently running OS. The hypercall is invoked with 1943 * "sc 1" and it sets HV=1, so it elevates to hypervisor. 1944 * 1945 * In HPT, sc 1 always goes to 0xc00 real mode. In RADIX, sc 1 can go to 1946 * 0x4c00 virtual mode. 1947 * 1948 * Handling: 1949 * If the KVM test fires then it was due to a hypercall and is accordingly 1950 * routed to KVM. Otherwise this executes a normal Linux system call. 1951 * 1952 * Call convention: 1953 * 1954 * syscall and hypercalls register conventions are documented in 1955 * Documentation/powerpc/syscall64-abi.rst and 1956 * Documentation/powerpc/papr_hcalls.rst respectively. 1957 * 1958 * The intersection of volatile registers that don't contain possible 1959 * inputs is: cr0, xer, ctr. We may use these as scratch regs upon entry 1960 * without saving, though xer is not a good idea to use, as hardware may 1961 * interpret some bits so it may be costly to change them. 1962 */ 1963INT_DEFINE_BEGIN(system_call) 1964 IVEC=0xc00 1965 IKVM_REAL=1 1966 IKVM_VIRT=1 1967 ICFAR=0 1968INT_DEFINE_END(system_call) 1969 1970.macro SYSTEM_CALL virt 1971#ifdef CONFIG_KVM_BOOK3S_64_HANDLER 1972 /* 1973 * There is a little bit of juggling to get syscall and hcall 1974 * working well. Save r13 in ctr to avoid using SPRG scratch 1975 * register. 1976 * 1977 * Userspace syscalls have already saved the PPR, hcalls must save 1978 * it before setting HMT_MEDIUM. 1979 */ 1980 mtctr r13 1981 GET_PACA(r13) 1982 std r10,PACA_EXGEN+EX_R10(r13) 1983 INTERRUPT_TO_KERNEL 1984 KVMTEST system_call kvm_hcall /* uses r10, branch to kvm_hcall */ 1985 mfctr r9 1986#else 1987 mr r9,r13 1988 GET_PACA(r13) 1989 INTERRUPT_TO_KERNEL 1990#endif 1991 1992#ifdef CONFIG_PPC_FAST_ENDIAN_SWITCH 1993BEGIN_FTR_SECTION 1994 cmpdi r0,0x1ebe 1995 beq- 1f 1996END_FTR_SECTION_IFSET(CPU_FTR_REAL_LE) 1997#endif 1998 1999 /* We reach here with PACA in r13, r13 in r9. */ 2000 mfspr r11,SPRN_SRR0 2001 mfspr r12,SPRN_SRR1 2002 2003 HMT_MEDIUM 2004 2005 .if ! \virt 2006 __LOAD_HANDLER(r10, system_call_common_real, real_vectors) 2007 mtctr r10 2008 bctr 2009 .else 2010#ifdef CONFIG_RELOCATABLE 2011 __LOAD_HANDLER(r10, system_call_common, virt_vectors) 2012 mtctr r10 2013 bctr 2014#else 2015 b system_call_common 2016#endif 2017 .endif 2018 2019#ifdef CONFIG_PPC_FAST_ENDIAN_SWITCH 2020 /* Fast LE/BE switch system call */ 20211: mfspr r12,SPRN_SRR1 2022 xori r12,r12,MSR_LE 2023 mtspr SPRN_SRR1,r12 2024 mr r13,r9 2025 RFI_TO_USER /* return to userspace */ 2026 b . /* prevent speculative execution */ 2027#endif 2028.endm 2029 2030EXC_REAL_BEGIN(system_call, 0xc00, 0x100) 2031 SYSTEM_CALL 0 2032EXC_REAL_END(system_call, 0xc00, 0x100) 2033EXC_VIRT_BEGIN(system_call, 0x4c00, 0x100) 2034 SYSTEM_CALL 1 2035EXC_VIRT_END(system_call, 0x4c00, 0x100) 2036 2037#ifdef CONFIG_KVM_BOOK3S_64_HANDLER 2038TRAMP_REAL_BEGIN(kvm_hcall) 2039 std r9,PACA_EXGEN+EX_R9(r13) 2040 std r11,PACA_EXGEN+EX_R11(r13) 2041 std r12,PACA_EXGEN+EX_R12(r13) 2042 mfcr r9 2043 mfctr r10 2044 std r10,PACA_EXGEN+EX_R13(r13) 2045 li r10,0 2046 std r10,PACA_EXGEN+EX_CFAR(r13) 2047 std r10,PACA_EXGEN+EX_CTR(r13) 2048 /* 2049 * Save the PPR (on systems that support it) before changing to 2050 * HMT_MEDIUM. That allows the KVM code to save that value into the 2051 * guest state (it is the guest's PPR value). 2052 */ 2053BEGIN_FTR_SECTION 2054 mfspr r10,SPRN_PPR 2055 std r10,PACA_EXGEN+EX_PPR(r13) 2056END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR) 2057 2058 HMT_MEDIUM 2059 2060#ifdef CONFIG_RELOCATABLE 2061 /* 2062 * Requires __LOAD_FAR_HANDLER beause kvmppc_hcall lives 2063 * outside the head section. 2064 */ 2065 __LOAD_FAR_HANDLER(r10, kvmppc_hcall, real_trampolines) 2066 mtctr r10 2067 bctr 2068#else 2069 b kvmppc_hcall 2070#endif 2071#endif 2072 2073/** 2074 * Interrupt 0xd00 - Trace Interrupt. 2075 * This is a synchronous interrupt in response to instruction step or 2076 * breakpoint faults. 2077 */ 2078INT_DEFINE_BEGIN(single_step) 2079 IVEC=0xd00 2080#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE 2081 IKVM_REAL=1 2082#endif 2083INT_DEFINE_END(single_step) 2084 2085EXC_REAL_BEGIN(single_step, 0xd00, 0x100) 2086 GEN_INT_ENTRY single_step, virt=0 2087EXC_REAL_END(single_step, 0xd00, 0x100) 2088EXC_VIRT_BEGIN(single_step, 0x4d00, 0x100) 2089 GEN_INT_ENTRY single_step, virt=1 2090EXC_VIRT_END(single_step, 0x4d00, 0x100) 2091EXC_COMMON_BEGIN(single_step_common) 2092 GEN_COMMON single_step 2093 addi r3,r1,STACK_INT_FRAME_REGS 2094 bl CFUNC(single_step_exception) 2095 b interrupt_return_srr 2096 2097 2098/** 2099 * Interrupt 0xe00 - Hypervisor Data Storage Interrupt (HDSI). 2100 * This is a synchronous interrupt in response to an MMU fault caused by a 2101 * guest data access. 2102 * 2103 * Handling: 2104 * This should always get routed to KVM. In radix MMU mode, this is caused 2105 * by a guest nested radix access that can't be performed due to the 2106 * partition scope page table. In hash mode, this can be caused by guests 2107 * running with translation disabled (virtual real mode) or with VPM enabled. 2108 * KVM will update the page table structures or disallow the access. 2109 */ 2110INT_DEFINE_BEGIN(h_data_storage) 2111 IVEC=0xe00 2112 IHSRR=1 2113 IDAR=1 2114 IDSISR=1 2115 IKVM_REAL=1 2116 IKVM_VIRT=1 2117INT_DEFINE_END(h_data_storage) 2118 2119EXC_REAL_BEGIN(h_data_storage, 0xe00, 0x20) 2120 GEN_INT_ENTRY h_data_storage, virt=0, ool=1 2121EXC_REAL_END(h_data_storage, 0xe00, 0x20) 2122EXC_VIRT_BEGIN(h_data_storage, 0x4e00, 0x20) 2123 GEN_INT_ENTRY h_data_storage, virt=1, ool=1 2124EXC_VIRT_END(h_data_storage, 0x4e00, 0x20) 2125EXC_COMMON_BEGIN(h_data_storage_common) 2126 GEN_COMMON h_data_storage 2127 addi r3,r1,STACK_INT_FRAME_REGS 2128BEGIN_MMU_FTR_SECTION 2129 bl CFUNC(do_bad_page_fault_segv) 2130MMU_FTR_SECTION_ELSE 2131 bl CFUNC(unknown_exception) 2132ALT_MMU_FTR_SECTION_END_IFSET(MMU_FTR_TYPE_RADIX) 2133 b interrupt_return_hsrr 2134 2135 2136/** 2137 * Interrupt 0xe20 - Hypervisor Instruction Storage Interrupt (HISI). 2138 * This is a synchronous interrupt in response to an MMU fault caused by a 2139 * guest instruction fetch, similar to HDSI. 2140 */ 2141INT_DEFINE_BEGIN(h_instr_storage) 2142 IVEC=0xe20 2143 IHSRR=1 2144 IKVM_REAL=1 2145 IKVM_VIRT=1 2146INT_DEFINE_END(h_instr_storage) 2147 2148EXC_REAL_BEGIN(h_instr_storage, 0xe20, 0x20) 2149 GEN_INT_ENTRY h_instr_storage, virt=0, ool=1 2150EXC_REAL_END(h_instr_storage, 0xe20, 0x20) 2151EXC_VIRT_BEGIN(h_instr_storage, 0x4e20, 0x20) 2152 GEN_INT_ENTRY h_instr_storage, virt=1, ool=1 2153EXC_VIRT_END(h_instr_storage, 0x4e20, 0x20) 2154EXC_COMMON_BEGIN(h_instr_storage_common) 2155 GEN_COMMON h_instr_storage 2156 addi r3,r1,STACK_INT_FRAME_REGS 2157 bl CFUNC(unknown_exception) 2158 b interrupt_return_hsrr 2159 2160 2161/** 2162 * Interrupt 0xe40 - Hypervisor Emulation Assistance Interrupt. 2163 */ 2164INT_DEFINE_BEGIN(emulation_assist) 2165 IVEC=0xe40 2166 IHSRR=1 2167 IKVM_REAL=1 2168 IKVM_VIRT=1 2169INT_DEFINE_END(emulation_assist) 2170 2171EXC_REAL_BEGIN(emulation_assist, 0xe40, 0x20) 2172 GEN_INT_ENTRY emulation_assist, virt=0, ool=1 2173EXC_REAL_END(emulation_assist, 0xe40, 0x20) 2174EXC_VIRT_BEGIN(emulation_assist, 0x4e40, 0x20) 2175 GEN_INT_ENTRY emulation_assist, virt=1, ool=1 2176EXC_VIRT_END(emulation_assist, 0x4e40, 0x20) 2177EXC_COMMON_BEGIN(emulation_assist_common) 2178 GEN_COMMON emulation_assist 2179 addi r3,r1,STACK_INT_FRAME_REGS 2180 bl CFUNC(emulation_assist_interrupt) 2181 HANDLER_RESTORE_NVGPRS() /* instruction emulation may change GPRs */ 2182 b interrupt_return_hsrr 2183 2184 2185/** 2186 * Interrupt 0xe60 - Hypervisor Maintenance Interrupt (HMI). 2187 * This is an asynchronous interrupt caused by a Hypervisor Maintenance 2188 * Exception. It is always taken in real mode but uses HSRR registers 2189 * unlike SRESET and MCE. 2190 * 2191 * It is maskable in hardware by clearing MSR[EE], and partially soft-maskable 2192 * with IRQS_DISABLED mask (i.e., local_irq_disable()). 2193 * 2194 * Handling: 2195 * This is a special case, this is handled similarly to machine checks, with an 2196 * initial real mode handler that is not soft-masked, which attempts to fix the 2197 * problem. Then a regular handler which is soft-maskable and reports the 2198 * problem. 2199 * 2200 * The emergency stack is used for the early real mode handler. 2201 * 2202 * XXX: unclear why MCE and HMI schemes could not be made common, e.g., 2203 * either use soft-masking for the MCE, or use irq_work for the HMI. 2204 * 2205 * KVM: 2206 * Unlike MCE, this calls into KVM without calling the real mode handler 2207 * first. 2208 */ 2209INT_DEFINE_BEGIN(hmi_exception_early) 2210 IVEC=0xe60 2211 IHSRR=1 2212 IREALMODE_COMMON=1 2213 ISTACK=0 2214 IKUAP=0 /* We don't touch AMR here, we never go to virtual mode */ 2215 IKVM_REAL=1 2216INT_DEFINE_END(hmi_exception_early) 2217 2218INT_DEFINE_BEGIN(hmi_exception) 2219 IVEC=0xe60 2220 IHSRR=1 2221 IMASK=IRQS_DISABLED 2222 IKVM_REAL=1 2223INT_DEFINE_END(hmi_exception) 2224 2225EXC_REAL_BEGIN(hmi_exception, 0xe60, 0x20) 2226 GEN_INT_ENTRY hmi_exception_early, virt=0, ool=1 2227EXC_REAL_END(hmi_exception, 0xe60, 0x20) 2228EXC_VIRT_NONE(0x4e60, 0x20) 2229 2230EXC_COMMON_BEGIN(hmi_exception_early_common) 2231 __GEN_REALMODE_COMMON_ENTRY hmi_exception_early 2232 2233 mr r10,r1 /* Save r1 */ 2234 ld r1,PACAEMERGSP(r13) /* Use emergency stack for realmode */ 2235 subi r1,r1,INT_FRAME_SIZE /* alloc stack frame */ 2236 2237 __GEN_COMMON_BODY hmi_exception_early 2238 2239 addi r3,r1,STACK_INT_FRAME_REGS 2240 bl CFUNC(hmi_exception_realmode) 2241 cmpdi cr0,r3,0 2242 bne 1f 2243 2244 EXCEPTION_RESTORE_REGS hsrr=1 2245 HRFI_TO_USER_OR_KERNEL 2246 22471: 2248 /* 2249 * Go to virtual mode and pull the HMI event information from 2250 * firmware. 2251 */ 2252 EXCEPTION_RESTORE_REGS hsrr=1 2253 GEN_INT_ENTRY hmi_exception, virt=0 2254 2255EXC_COMMON_BEGIN(hmi_exception_common) 2256 GEN_COMMON hmi_exception 2257 addi r3,r1,STACK_INT_FRAME_REGS 2258 bl CFUNC(handle_hmi_exception) 2259 b interrupt_return_hsrr 2260 2261 2262/** 2263 * Interrupt 0xe80 - Directed Hypervisor Doorbell Interrupt. 2264 * This is an asynchronous interrupt in response to a msgsnd doorbell. 2265 * Similar to the 0xa00 doorbell but for host rather than guest. 2266 * 2267 * CFAR is not required (similar to doorbell_interrupt), unless KVM HV 2268 * is enabled, in which case it may be a guest exit. Most PowerNV kernels 2269 * include KVM support so it would be nice if this could be dynamically 2270 * patched out if KVM was not currently running any guests. 2271 */ 2272INT_DEFINE_BEGIN(h_doorbell) 2273 IVEC=0xe80 2274 IHSRR=1 2275 IMASK=IRQS_DISABLED 2276 IKVM_REAL=1 2277 IKVM_VIRT=1 2278#ifndef CONFIG_KVM_BOOK3S_HV_POSSIBLE 2279 ICFAR=0 2280#endif 2281INT_DEFINE_END(h_doorbell) 2282 2283EXC_REAL_BEGIN(h_doorbell, 0xe80, 0x20) 2284 GEN_INT_ENTRY h_doorbell, virt=0, ool=1 2285EXC_REAL_END(h_doorbell, 0xe80, 0x20) 2286EXC_VIRT_BEGIN(h_doorbell, 0x4e80, 0x20) 2287 GEN_INT_ENTRY h_doorbell, virt=1, ool=1 2288EXC_VIRT_END(h_doorbell, 0x4e80, 0x20) 2289EXC_COMMON_BEGIN(h_doorbell_common) 2290 GEN_COMMON h_doorbell 2291 addi r3,r1,STACK_INT_FRAME_REGS 2292#ifdef CONFIG_PPC_DOORBELL 2293 bl CFUNC(doorbell_exception) 2294#else 2295 bl CFUNC(unknown_async_exception) 2296#endif 2297 b interrupt_return_hsrr 2298 2299 2300/** 2301 * Interrupt 0xea0 - Hypervisor Virtualization Interrupt. 2302 * This is an asynchronous interrupt in response to an "external exception". 2303 * Similar to 0x500 but for host only. 2304 * 2305 * Like h_doorbell, CFAR is only required for KVM HV because this can be 2306 * a guest exit. 2307 */ 2308INT_DEFINE_BEGIN(h_virt_irq) 2309 IVEC=0xea0 2310 IHSRR=1 2311 IMASK=IRQS_DISABLED 2312 IKVM_REAL=1 2313 IKVM_VIRT=1 2314#ifndef CONFIG_KVM_BOOK3S_HV_POSSIBLE 2315 ICFAR=0 2316#endif 2317INT_DEFINE_END(h_virt_irq) 2318 2319EXC_REAL_BEGIN(h_virt_irq, 0xea0, 0x20) 2320 GEN_INT_ENTRY h_virt_irq, virt=0, ool=1 2321EXC_REAL_END(h_virt_irq, 0xea0, 0x20) 2322EXC_VIRT_BEGIN(h_virt_irq, 0x4ea0, 0x20) 2323 GEN_INT_ENTRY h_virt_irq, virt=1, ool=1 2324EXC_VIRT_END(h_virt_irq, 0x4ea0, 0x20) 2325EXC_COMMON_BEGIN(h_virt_irq_common) 2326 GEN_COMMON h_virt_irq 2327 addi r3,r1,STACK_INT_FRAME_REGS 2328 bl CFUNC(do_IRQ) 2329 b interrupt_return_hsrr 2330 2331 2332EXC_REAL_NONE(0xec0, 0x20) 2333EXC_VIRT_NONE(0x4ec0, 0x20) 2334EXC_REAL_NONE(0xee0, 0x20) 2335EXC_VIRT_NONE(0x4ee0, 0x20) 2336 2337 2338/* 2339 * Interrupt 0xf00 - Performance Monitor Interrupt (PMI, PMU). 2340 * This is an asynchronous interrupt in response to a PMU exception. 2341 * It is maskable in hardware by clearing MSR[EE], and soft-maskable with 2342 * IRQS_PMI_DISABLED mask (NOTE: NOT local_irq_disable()). 2343 * 2344 * Handling: 2345 * This calls into the perf subsystem. 2346 * 2347 * Like the watchdog soft-nmi, it appears an NMI interrupt to Linux, in that it 2348 * runs under local_irq_disable. However it may be soft-masked in 2349 * powerpc-specific code. 2350 * 2351 * If soft masked, the masked handler will note the pending interrupt for 2352 * replay, and clear MSR[EE] in the interrupted context. 2353 * 2354 * CFAR is not used by perf interrupts so not required. 2355 */ 2356INT_DEFINE_BEGIN(performance_monitor) 2357 IVEC=0xf00 2358 IMASK=IRQS_PMI_DISABLED 2359#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE 2360 IKVM_REAL=1 2361#endif 2362 ICFAR=0 2363INT_DEFINE_END(performance_monitor) 2364 2365EXC_REAL_BEGIN(performance_monitor, 0xf00, 0x20) 2366 GEN_INT_ENTRY performance_monitor, virt=0, ool=1 2367EXC_REAL_END(performance_monitor, 0xf00, 0x20) 2368EXC_VIRT_BEGIN(performance_monitor, 0x4f00, 0x20) 2369 GEN_INT_ENTRY performance_monitor, virt=1, ool=1 2370EXC_VIRT_END(performance_monitor, 0x4f00, 0x20) 2371EXC_COMMON_BEGIN(performance_monitor_common) 2372 GEN_COMMON performance_monitor 2373 addi r3,r1,STACK_INT_FRAME_REGS 2374 lbz r4,PACAIRQSOFTMASK(r13) 2375 cmpdi r4,IRQS_ENABLED 2376 bne 1f 2377 bl CFUNC(performance_monitor_exception_async) 2378 b interrupt_return_srr 23791: 2380 bl CFUNC(performance_monitor_exception_nmi) 2381 /* Clear MSR_RI before setting SRR0 and SRR1. */ 2382 li r9,0 2383 mtmsrd r9,1 2384 2385 kuap_kernel_restore r9, r10 2386 2387 EXCEPTION_RESTORE_REGS hsrr=0 2388 RFI_TO_KERNEL 2389 2390/** 2391 * Interrupt 0xf20 - Vector Unavailable Interrupt. 2392 * This is a synchronous interrupt in response to 2393 * executing a vector (or altivec) instruction with MSR[VEC]=0. 2394 * Similar to FP unavailable. 2395 */ 2396INT_DEFINE_BEGIN(altivec_unavailable) 2397 IVEC=0xf20 2398#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE 2399 IKVM_REAL=1 2400#endif 2401 IMSR_R12=1 2402INT_DEFINE_END(altivec_unavailable) 2403 2404EXC_REAL_BEGIN(altivec_unavailable, 0xf20, 0x20) 2405 GEN_INT_ENTRY altivec_unavailable, virt=0, ool=1 2406EXC_REAL_END(altivec_unavailable, 0xf20, 0x20) 2407EXC_VIRT_BEGIN(altivec_unavailable, 0x4f20, 0x20) 2408 GEN_INT_ENTRY altivec_unavailable, virt=1, ool=1 2409EXC_VIRT_END(altivec_unavailable, 0x4f20, 0x20) 2410EXC_COMMON_BEGIN(altivec_unavailable_common) 2411 GEN_COMMON altivec_unavailable 2412#ifdef CONFIG_ALTIVEC 2413BEGIN_FTR_SECTION 2414 beq 1f 2415#ifdef CONFIG_PPC_TRANSACTIONAL_MEM 2416 BEGIN_FTR_SECTION_NESTED(69) 2417 /* Test if 2 TM state bits are zero. If non-zero (ie. userspace was in 2418 * transaction), go do TM stuff 2419 */ 2420 rldicl. r0, r12, (64-MSR_TS_LG), (64-2) 2421 bne- 2f 2422 END_FTR_SECTION_NESTED(CPU_FTR_TM, CPU_FTR_TM, 69) 2423#endif 2424 bl CFUNC(load_up_altivec) 2425 b fast_interrupt_return_srr 2426#ifdef CONFIG_PPC_TRANSACTIONAL_MEM 24272: /* User process was in a transaction */ 2428 addi r3,r1,STACK_INT_FRAME_REGS 2429 bl CFUNC(altivec_unavailable_tm) 2430 b interrupt_return_srr 2431#endif 24321: 2433END_FTR_SECTION_IFSET(CPU_FTR_ALTIVEC) 2434#endif 2435 addi r3,r1,STACK_INT_FRAME_REGS 2436 bl CFUNC(altivec_unavailable_exception) 2437 b interrupt_return_srr 2438 2439 2440/** 2441 * Interrupt 0xf40 - VSX Unavailable Interrupt. 2442 * This is a synchronous interrupt in response to 2443 * executing a VSX instruction with MSR[VSX]=0. 2444 * Similar to FP unavailable. 2445 */ 2446INT_DEFINE_BEGIN(vsx_unavailable) 2447 IVEC=0xf40 2448#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE 2449 IKVM_REAL=1 2450#endif 2451 IMSR_R12=1 2452INT_DEFINE_END(vsx_unavailable) 2453 2454EXC_REAL_BEGIN(vsx_unavailable, 0xf40, 0x20) 2455 GEN_INT_ENTRY vsx_unavailable, virt=0, ool=1 2456EXC_REAL_END(vsx_unavailable, 0xf40, 0x20) 2457EXC_VIRT_BEGIN(vsx_unavailable, 0x4f40, 0x20) 2458 GEN_INT_ENTRY vsx_unavailable, virt=1, ool=1 2459EXC_VIRT_END(vsx_unavailable, 0x4f40, 0x20) 2460EXC_COMMON_BEGIN(vsx_unavailable_common) 2461 GEN_COMMON vsx_unavailable 2462#ifdef CONFIG_VSX 2463BEGIN_FTR_SECTION 2464 beq 1f 2465#ifdef CONFIG_PPC_TRANSACTIONAL_MEM 2466 BEGIN_FTR_SECTION_NESTED(69) 2467 /* Test if 2 TM state bits are zero. If non-zero (ie. userspace was in 2468 * transaction), go do TM stuff 2469 */ 2470 rldicl. r0, r12, (64-MSR_TS_LG), (64-2) 2471 bne- 2f 2472 END_FTR_SECTION_NESTED(CPU_FTR_TM, CPU_FTR_TM, 69) 2473#endif 2474 b load_up_vsx 2475#ifdef CONFIG_PPC_TRANSACTIONAL_MEM 24762: /* User process was in a transaction */ 2477 addi r3,r1,STACK_INT_FRAME_REGS 2478 bl CFUNC(vsx_unavailable_tm) 2479 b interrupt_return_srr 2480#endif 24811: 2482END_FTR_SECTION_IFSET(CPU_FTR_VSX) 2483#endif 2484 addi r3,r1,STACK_INT_FRAME_REGS 2485 bl CFUNC(vsx_unavailable_exception) 2486 b interrupt_return_srr 2487 2488 2489/** 2490 * Interrupt 0xf60 - Facility Unavailable Interrupt. 2491 * This is a synchronous interrupt in response to 2492 * executing an instruction without access to the facility that can be 2493 * resolved by the OS (e.g., FSCR, MSR). 2494 * Similar to FP unavailable. 2495 */ 2496INT_DEFINE_BEGIN(facility_unavailable) 2497 IVEC=0xf60 2498#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE 2499 IKVM_REAL=1 2500#endif 2501INT_DEFINE_END(facility_unavailable) 2502 2503EXC_REAL_BEGIN(facility_unavailable, 0xf60, 0x20) 2504 GEN_INT_ENTRY facility_unavailable, virt=0, ool=1 2505EXC_REAL_END(facility_unavailable, 0xf60, 0x20) 2506EXC_VIRT_BEGIN(facility_unavailable, 0x4f60, 0x20) 2507 GEN_INT_ENTRY facility_unavailable, virt=1, ool=1 2508EXC_VIRT_END(facility_unavailable, 0x4f60, 0x20) 2509EXC_COMMON_BEGIN(facility_unavailable_common) 2510 GEN_COMMON facility_unavailable 2511 addi r3,r1,STACK_INT_FRAME_REGS 2512 bl CFUNC(facility_unavailable_exception) 2513 HANDLER_RESTORE_NVGPRS() /* instruction emulation may change GPRs */ 2514 b interrupt_return_srr 2515 2516 2517/** 2518 * Interrupt 0xf60 - Hypervisor Facility Unavailable Interrupt. 2519 * This is a synchronous interrupt in response to 2520 * executing an instruction without access to the facility that can only 2521 * be resolved in HV mode (e.g., HFSCR). 2522 * Similar to FP unavailable. 2523 */ 2524INT_DEFINE_BEGIN(h_facility_unavailable) 2525 IVEC=0xf80 2526 IHSRR=1 2527 IKVM_REAL=1 2528 IKVM_VIRT=1 2529INT_DEFINE_END(h_facility_unavailable) 2530 2531EXC_REAL_BEGIN(h_facility_unavailable, 0xf80, 0x20) 2532 GEN_INT_ENTRY h_facility_unavailable, virt=0, ool=1 2533EXC_REAL_END(h_facility_unavailable, 0xf80, 0x20) 2534EXC_VIRT_BEGIN(h_facility_unavailable, 0x4f80, 0x20) 2535 GEN_INT_ENTRY h_facility_unavailable, virt=1, ool=1 2536EXC_VIRT_END(h_facility_unavailable, 0x4f80, 0x20) 2537EXC_COMMON_BEGIN(h_facility_unavailable_common) 2538 GEN_COMMON h_facility_unavailable 2539 addi r3,r1,STACK_INT_FRAME_REGS 2540 bl CFUNC(facility_unavailable_exception) 2541 /* XXX Shouldn't be necessary in practice */ 2542 HANDLER_RESTORE_NVGPRS() 2543 b interrupt_return_hsrr 2544 2545 2546EXC_REAL_NONE(0xfa0, 0x20) 2547EXC_VIRT_NONE(0x4fa0, 0x20) 2548EXC_REAL_NONE(0xfc0, 0x20) 2549EXC_VIRT_NONE(0x4fc0, 0x20) 2550EXC_REAL_NONE(0xfe0, 0x20) 2551EXC_VIRT_NONE(0x4fe0, 0x20) 2552 2553EXC_REAL_NONE(0x1000, 0x100) 2554EXC_VIRT_NONE(0x5000, 0x100) 2555EXC_REAL_NONE(0x1100, 0x100) 2556EXC_VIRT_NONE(0x5100, 0x100) 2557 2558#ifdef CONFIG_CBE_RAS 2559INT_DEFINE_BEGIN(cbe_system_error) 2560 IVEC=0x1200 2561 IHSRR=1 2562INT_DEFINE_END(cbe_system_error) 2563 2564EXC_REAL_BEGIN(cbe_system_error, 0x1200, 0x100) 2565 GEN_INT_ENTRY cbe_system_error, virt=0 2566EXC_REAL_END(cbe_system_error, 0x1200, 0x100) 2567EXC_VIRT_NONE(0x5200, 0x100) 2568EXC_COMMON_BEGIN(cbe_system_error_common) 2569 GEN_COMMON cbe_system_error 2570 addi r3,r1,STACK_INT_FRAME_REGS 2571 bl CFUNC(cbe_system_error_exception) 2572 b interrupt_return_hsrr 2573 2574#else /* CONFIG_CBE_RAS */ 2575EXC_REAL_NONE(0x1200, 0x100) 2576EXC_VIRT_NONE(0x5200, 0x100) 2577#endif 2578 2579/** 2580 * Interrupt 0x1300 - Instruction Address Breakpoint Interrupt. 2581 * This has been removed from the ISA before 2.01, which is the earliest 2582 * 64-bit BookS ISA supported, however the G5 / 970 implements this 2583 * interrupt with a non-architected feature available through the support 2584 * processor interface. 2585 */ 2586INT_DEFINE_BEGIN(instruction_breakpoint) 2587 IVEC=0x1300 2588#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE 2589 IKVM_REAL=1 2590#endif 2591INT_DEFINE_END(instruction_breakpoint) 2592 2593EXC_REAL_BEGIN(instruction_breakpoint, 0x1300, 0x100) 2594 GEN_INT_ENTRY instruction_breakpoint, virt=0 2595EXC_REAL_END(instruction_breakpoint, 0x1300, 0x100) 2596EXC_VIRT_BEGIN(instruction_breakpoint, 0x5300, 0x100) 2597 GEN_INT_ENTRY instruction_breakpoint, virt=1 2598EXC_VIRT_END(instruction_breakpoint, 0x5300, 0x100) 2599EXC_COMMON_BEGIN(instruction_breakpoint_common) 2600 GEN_COMMON instruction_breakpoint 2601 addi r3,r1,STACK_INT_FRAME_REGS 2602 bl CFUNC(instruction_breakpoint_exception) 2603 b interrupt_return_srr 2604 2605 2606EXC_REAL_NONE(0x1400, 0x100) 2607EXC_VIRT_NONE(0x5400, 0x100) 2608 2609/** 2610 * Interrupt 0x1500 - Soft Patch Interrupt 2611 * 2612 * Handling: 2613 * This is an implementation specific interrupt which can be used for a 2614 * range of exceptions. 2615 * 2616 * This interrupt handler is unique in that it runs the denormal assist 2617 * code even for guests (and even in guest context) without going to KVM, 2618 * for speed. POWER9 does not raise denorm exceptions, so this special case 2619 * could be phased out in future to reduce special cases. 2620 */ 2621INT_DEFINE_BEGIN(denorm_exception) 2622 IVEC=0x1500 2623 IHSRR=1 2624 IBRANCH_TO_COMMON=0 2625 IKVM_REAL=1 2626INT_DEFINE_END(denorm_exception) 2627 2628EXC_REAL_BEGIN(denorm_exception, 0x1500, 0x100) 2629 GEN_INT_ENTRY denorm_exception, virt=0 2630#ifdef CONFIG_PPC_DENORMALISATION 2631 andis. r10,r12,(HSRR1_DENORM)@h /* denorm? */ 2632 bne+ denorm_assist 2633#endif 2634 GEN_BRANCH_TO_COMMON denorm_exception, virt=0 2635EXC_REAL_END(denorm_exception, 0x1500, 0x100) 2636#ifdef CONFIG_PPC_DENORMALISATION 2637EXC_VIRT_BEGIN(denorm_exception, 0x5500, 0x100) 2638 GEN_INT_ENTRY denorm_exception, virt=1 2639 andis. r10,r12,(HSRR1_DENORM)@h /* denorm? */ 2640 bne+ denorm_assist 2641 GEN_BRANCH_TO_COMMON denorm_exception, virt=1 2642EXC_VIRT_END(denorm_exception, 0x5500, 0x100) 2643#else 2644EXC_VIRT_NONE(0x5500, 0x100) 2645#endif 2646 2647#ifdef CONFIG_PPC_DENORMALISATION 2648TRAMP_REAL_BEGIN(denorm_assist) 2649BEGIN_FTR_SECTION 2650/* 2651 * To denormalise we need to move a copy of the register to itself. 2652 * For POWER6 do that here for all FP regs. 2653 */ 2654 mfmsr r10 2655 ori r10,r10,(MSR_FP|MSR_FE0|MSR_FE1) 2656 xori r10,r10,(MSR_FE0|MSR_FE1) 2657 mtmsrd r10 2658 sync 2659 2660 .Lreg=0 2661 .rept 32 2662 fmr .Lreg,.Lreg 2663 .Lreg=.Lreg+1 2664 .endr 2665 2666FTR_SECTION_ELSE 2667/* 2668 * To denormalise we need to move a copy of the register to itself. 2669 * For POWER7 do that here for the first 32 VSX registers only. 2670 */ 2671 mfmsr r10 2672 oris r10,r10,MSR_VSX@h 2673 mtmsrd r10 2674 sync 2675 2676 .Lreg=0 2677 .rept 32 2678 XVCPSGNDP(.Lreg,.Lreg,.Lreg) 2679 .Lreg=.Lreg+1 2680 .endr 2681 2682ALT_FTR_SECTION_END_IFCLR(CPU_FTR_ARCH_206) 2683 2684BEGIN_FTR_SECTION 2685 b denorm_done 2686END_FTR_SECTION_IFCLR(CPU_FTR_ARCH_207S) 2687/* 2688 * To denormalise we need to move a copy of the register to itself. 2689 * For POWER8 we need to do that for all 64 VSX registers 2690 */ 2691 .Lreg=32 2692 .rept 32 2693 XVCPSGNDP(.Lreg,.Lreg,.Lreg) 2694 .Lreg=.Lreg+1 2695 .endr 2696 2697denorm_done: 2698 mfspr r11,SPRN_HSRR0 2699 subi r11,r11,4 2700 mtspr SPRN_HSRR0,r11 2701 mtcrf 0x80,r9 2702 ld r9,PACA_EXGEN+EX_R9(r13) 2703BEGIN_FTR_SECTION 2704 ld r10,PACA_EXGEN+EX_PPR(r13) 2705 mtspr SPRN_PPR,r10 2706END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR) 2707BEGIN_FTR_SECTION 2708 ld r10,PACA_EXGEN+EX_CFAR(r13) 2709 mtspr SPRN_CFAR,r10 2710END_FTR_SECTION_IFSET(CPU_FTR_CFAR) 2711 li r10,0 2712 stb r10,PACAHSRR_VALID(r13) 2713 ld r10,PACA_EXGEN+EX_R10(r13) 2714 ld r11,PACA_EXGEN+EX_R11(r13) 2715 ld r12,PACA_EXGEN+EX_R12(r13) 2716 ld r13,PACA_EXGEN+EX_R13(r13) 2717 HRFI_TO_UNKNOWN 2718 b . 2719#endif 2720 2721EXC_COMMON_BEGIN(denorm_exception_common) 2722 GEN_COMMON denorm_exception 2723 addi r3,r1,STACK_INT_FRAME_REGS 2724 bl CFUNC(unknown_exception) 2725 b interrupt_return_hsrr 2726 2727 2728#ifdef CONFIG_CBE_RAS 2729INT_DEFINE_BEGIN(cbe_maintenance) 2730 IVEC=0x1600 2731 IHSRR=1 2732INT_DEFINE_END(cbe_maintenance) 2733 2734EXC_REAL_BEGIN(cbe_maintenance, 0x1600, 0x100) 2735 GEN_INT_ENTRY cbe_maintenance, virt=0 2736EXC_REAL_END(cbe_maintenance, 0x1600, 0x100) 2737EXC_VIRT_NONE(0x5600, 0x100) 2738EXC_COMMON_BEGIN(cbe_maintenance_common) 2739 GEN_COMMON cbe_maintenance 2740 addi r3,r1,STACK_INT_FRAME_REGS 2741 bl CFUNC(cbe_maintenance_exception) 2742 b interrupt_return_hsrr 2743 2744#else /* CONFIG_CBE_RAS */ 2745EXC_REAL_NONE(0x1600, 0x100) 2746EXC_VIRT_NONE(0x5600, 0x100) 2747#endif 2748 2749 2750INT_DEFINE_BEGIN(altivec_assist) 2751 IVEC=0x1700 2752#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE 2753 IKVM_REAL=1 2754#endif 2755INT_DEFINE_END(altivec_assist) 2756 2757EXC_REAL_BEGIN(altivec_assist, 0x1700, 0x100) 2758 GEN_INT_ENTRY altivec_assist, virt=0 2759EXC_REAL_END(altivec_assist, 0x1700, 0x100) 2760EXC_VIRT_BEGIN(altivec_assist, 0x5700, 0x100) 2761 GEN_INT_ENTRY altivec_assist, virt=1 2762EXC_VIRT_END(altivec_assist, 0x5700, 0x100) 2763EXC_COMMON_BEGIN(altivec_assist_common) 2764 GEN_COMMON altivec_assist 2765 addi r3,r1,STACK_INT_FRAME_REGS 2766#ifdef CONFIG_ALTIVEC 2767 bl CFUNC(altivec_assist_exception) 2768 HANDLER_RESTORE_NVGPRS() /* instruction emulation may change GPRs */ 2769#else 2770 bl CFUNC(unknown_exception) 2771#endif 2772 b interrupt_return_srr 2773 2774 2775#ifdef CONFIG_CBE_RAS 2776INT_DEFINE_BEGIN(cbe_thermal) 2777 IVEC=0x1800 2778 IHSRR=1 2779INT_DEFINE_END(cbe_thermal) 2780 2781EXC_REAL_BEGIN(cbe_thermal, 0x1800, 0x100) 2782 GEN_INT_ENTRY cbe_thermal, virt=0 2783EXC_REAL_END(cbe_thermal, 0x1800, 0x100) 2784EXC_VIRT_NONE(0x5800, 0x100) 2785EXC_COMMON_BEGIN(cbe_thermal_common) 2786 GEN_COMMON cbe_thermal 2787 addi r3,r1,STACK_INT_FRAME_REGS 2788 bl CFUNC(cbe_thermal_exception) 2789 b interrupt_return_hsrr 2790 2791#else /* CONFIG_CBE_RAS */ 2792EXC_REAL_NONE(0x1800, 0x100) 2793EXC_VIRT_NONE(0x5800, 0x100) 2794#endif 2795 2796 2797#ifdef CONFIG_PPC_WATCHDOG 2798 2799INT_DEFINE_BEGIN(soft_nmi) 2800 IVEC=0x900 2801 ISTACK=0 2802 ICFAR=0 2803INT_DEFINE_END(soft_nmi) 2804 2805/* 2806 * Branch to soft_nmi_interrupt using the emergency stack. The emergency 2807 * stack is one that is usable by maskable interrupts so long as MSR_EE 2808 * remains off. It is used for recovery when something has corrupted the 2809 * normal kernel stack, for example. The "soft NMI" must not use the process 2810 * stack because we want irq disabled sections to avoid touching the stack 2811 * at all (other than PMU interrupts), so use the emergency stack for this, 2812 * and run it entirely with interrupts hard disabled. 2813 */ 2814EXC_COMMON_BEGIN(soft_nmi_common) 2815 mr r10,r1 2816 ld r1,PACAEMERGSP(r13) 2817 subi r1,r1,INT_FRAME_SIZE 2818 __GEN_COMMON_BODY soft_nmi 2819 2820 addi r3,r1,STACK_INT_FRAME_REGS 2821 bl CFUNC(soft_nmi_interrupt) 2822 2823 /* Clear MSR_RI before setting SRR0 and SRR1. */ 2824 li r9,0 2825 mtmsrd r9,1 2826 2827 kuap_kernel_restore r9, r10 2828 2829 EXCEPTION_RESTORE_REGS hsrr=0 2830 RFI_TO_KERNEL 2831 2832#endif /* CONFIG_PPC_WATCHDOG */ 2833 2834/* 2835 * An interrupt came in while soft-disabled. We set paca->irq_happened, then: 2836 * - If it was a decrementer interrupt, we bump the dec to max and return. 2837 * - If it was a doorbell we return immediately since doorbells are edge 2838 * triggered and won't automatically refire. 2839 * - If it was a HMI we return immediately since we handled it in realmode 2840 * and it won't refire. 2841 * - Else it is one of PACA_IRQ_MUST_HARD_MASK, so hard disable and return. 2842 * This is called with r10 containing the value to OR to the paca field. 2843 */ 2844.macro MASKED_INTERRUPT hsrr=0 2845 .if \hsrr 2846masked_Hinterrupt: 2847 .else 2848masked_interrupt: 2849 .endif 2850 stw r9,PACA_EXGEN+EX_CCR(r13) 2851#ifdef CONFIG_PPC_IRQ_SOFT_MASK_DEBUG 2852 /* 2853 * Ensure there was no previous MUST_HARD_MASK interrupt or 2854 * HARD_DIS setting. If this does fire, the interrupt is still 2855 * masked and MSR[EE] will be cleared on return, so no need to 2856 * panic, but somebody probably enabled MSR[EE] under 2857 * PACA_IRQ_HARD_DIS, mtmsr(mfmsr() | MSR_x) being a common 2858 * cause. 2859 */ 2860 lbz r9,PACAIRQHAPPENED(r13) 2861 andi. r9,r9,(PACA_IRQ_MUST_HARD_MASK|PACA_IRQ_HARD_DIS) 28620: tdnei r9,0 2863 EMIT_WARN_ENTRY 0b,__FILE__,__LINE__,(BUGFLAG_WARNING | BUGFLAG_ONCE) 2864#endif 2865 lbz r9,PACAIRQHAPPENED(r13) 2866 or r9,r9,r10 2867 stb r9,PACAIRQHAPPENED(r13) 2868 2869 .if ! \hsrr 2870 cmpwi r10,PACA_IRQ_DEC 2871 bne 1f 2872 LOAD_REG_IMMEDIATE(r9, 0x7fffffff) 2873 mtspr SPRN_DEC,r9 2874#ifdef CONFIG_PPC_WATCHDOG 2875 lwz r9,PACA_EXGEN+EX_CCR(r13) 2876 b soft_nmi_common 2877#else 2878 b 2f 2879#endif 2880 .endif 2881 28821: andi. r10,r10,PACA_IRQ_MUST_HARD_MASK 2883 beq 2f 2884 xori r12,r12,MSR_EE /* clear MSR_EE */ 2885 .if \hsrr 2886 mtspr SPRN_HSRR1,r12 2887 .else 2888 mtspr SPRN_SRR1,r12 2889 .endif 2890 ori r9,r9,PACA_IRQ_HARD_DIS 2891 stb r9,PACAIRQHAPPENED(r13) 28922: /* done */ 2893 li r9,0 2894 .if \hsrr 2895 stb r9,PACAHSRR_VALID(r13) 2896 .else 2897 stb r9,PACASRR_VALID(r13) 2898 .endif 2899 2900 SEARCH_RESTART_TABLE 2901 cmpdi r12,0 2902 beq 3f 2903 .if \hsrr 2904 mtspr SPRN_HSRR0,r12 2905 .else 2906 mtspr SPRN_SRR0,r12 2907 .endif 29083: 2909 2910 ld r9,PACA_EXGEN+EX_CTR(r13) 2911 mtctr r9 2912 lwz r9,PACA_EXGEN+EX_CCR(r13) 2913 mtcrf 0x80,r9 2914 std r1,PACAR1(r13) 2915 ld r9,PACA_EXGEN+EX_R9(r13) 2916 ld r10,PACA_EXGEN+EX_R10(r13) 2917 ld r11,PACA_EXGEN+EX_R11(r13) 2918 ld r12,PACA_EXGEN+EX_R12(r13) 2919 ld r13,PACA_EXGEN+EX_R13(r13) 2920 /* May return to masked low address where r13 is not set up */ 2921 .if \hsrr 2922 HRFI_TO_KERNEL 2923 .else 2924 RFI_TO_KERNEL 2925 .endif 2926 b . 2927.endm 2928 2929TRAMP_REAL_BEGIN(stf_barrier_fallback) 2930 std r9,PACA_EXRFI+EX_R9(r13) 2931 std r10,PACA_EXRFI+EX_R10(r13) 2932 sync 2933 ld r9,PACA_EXRFI+EX_R9(r13) 2934 ld r10,PACA_EXRFI+EX_R10(r13) 2935 ori 31,31,0 2936 .rept 14 2937 b 1f 29381: 2939 .endr 2940 blr 2941 2942/* Clobbers r10, r11, ctr */ 2943.macro L1D_DISPLACEMENT_FLUSH 2944 ld r10,PACA_RFI_FLUSH_FALLBACK_AREA(r13) 2945 ld r11,PACA_L1D_FLUSH_SIZE(r13) 2946 srdi r11,r11,(7 + 3) /* 128 byte lines, unrolled 8x */ 2947 mtctr r11 2948 DCBT_BOOK3S_STOP_ALL_STREAM_IDS(r11) /* Stop prefetch streams */ 2949 2950 /* order ld/st prior to dcbt stop all streams with flushing */ 2951 sync 2952 2953 /* 2954 * The load addresses are at staggered offsets within cachelines, 2955 * which suits some pipelines better (on others it should not 2956 * hurt). 2957 */ 29581: 2959 ld r11,(0x80 + 8)*0(r10) 2960 ld r11,(0x80 + 8)*1(r10) 2961 ld r11,(0x80 + 8)*2(r10) 2962 ld r11,(0x80 + 8)*3(r10) 2963 ld r11,(0x80 + 8)*4(r10) 2964 ld r11,(0x80 + 8)*5(r10) 2965 ld r11,(0x80 + 8)*6(r10) 2966 ld r11,(0x80 + 8)*7(r10) 2967 addi r10,r10,0x80*8 2968 bdnz 1b 2969.endm 2970 2971TRAMP_REAL_BEGIN(entry_flush_fallback) 2972 std r9,PACA_EXRFI+EX_R9(r13) 2973 std r10,PACA_EXRFI+EX_R10(r13) 2974 std r11,PACA_EXRFI+EX_R11(r13) 2975 mfctr r9 2976 L1D_DISPLACEMENT_FLUSH 2977 mtctr r9 2978 ld r9,PACA_EXRFI+EX_R9(r13) 2979 ld r10,PACA_EXRFI+EX_R10(r13) 2980 ld r11,PACA_EXRFI+EX_R11(r13) 2981 blr 2982 2983/* 2984 * The SCV entry flush happens with interrupts enabled, so it must disable 2985 * to prevent EXRFI being clobbered by NMIs (e.g., soft_nmi_common). r10 2986 * (containing LR) does not need to be preserved here because scv entry 2987 * puts 0 in the pt_regs, CTR can be clobbered for the same reason. 2988 */ 2989TRAMP_REAL_BEGIN(scv_entry_flush_fallback) 2990 li r10,0 2991 mtmsrd r10,1 2992 lbz r10,PACAIRQHAPPENED(r13) 2993 ori r10,r10,PACA_IRQ_HARD_DIS 2994 stb r10,PACAIRQHAPPENED(r13) 2995 std r11,PACA_EXRFI+EX_R11(r13) 2996 L1D_DISPLACEMENT_FLUSH 2997 ld r11,PACA_EXRFI+EX_R11(r13) 2998 li r10,MSR_RI 2999 mtmsrd r10,1 3000 blr 3001 3002TRAMP_REAL_BEGIN(rfi_flush_fallback) 3003 SET_SCRATCH0(r13); 3004 GET_PACA(r13); 3005 std r1,PACA_EXRFI+EX_R12(r13) 3006 ld r1,PACAKSAVE(r13) 3007 std r9,PACA_EXRFI+EX_R9(r13) 3008 std r10,PACA_EXRFI+EX_R10(r13) 3009 std r11,PACA_EXRFI+EX_R11(r13) 3010 mfctr r9 3011 L1D_DISPLACEMENT_FLUSH 3012 mtctr r9 3013 ld r9,PACA_EXRFI+EX_R9(r13) 3014 ld r10,PACA_EXRFI+EX_R10(r13) 3015 ld r11,PACA_EXRFI+EX_R11(r13) 3016 ld r1,PACA_EXRFI+EX_R12(r13) 3017 GET_SCRATCH0(r13); 3018 rfid 3019 3020TRAMP_REAL_BEGIN(hrfi_flush_fallback) 3021 SET_SCRATCH0(r13); 3022 GET_PACA(r13); 3023 std r1,PACA_EXRFI+EX_R12(r13) 3024 ld r1,PACAKSAVE(r13) 3025 std r9,PACA_EXRFI+EX_R9(r13) 3026 std r10,PACA_EXRFI+EX_R10(r13) 3027 std r11,PACA_EXRFI+EX_R11(r13) 3028 mfctr r9 3029 L1D_DISPLACEMENT_FLUSH 3030 mtctr r9 3031 ld r9,PACA_EXRFI+EX_R9(r13) 3032 ld r10,PACA_EXRFI+EX_R10(r13) 3033 ld r11,PACA_EXRFI+EX_R11(r13) 3034 ld r1,PACA_EXRFI+EX_R12(r13) 3035 GET_SCRATCH0(r13); 3036 hrfid 3037 3038TRAMP_REAL_BEGIN(rfscv_flush_fallback) 3039 /* system call volatile */ 3040 mr r7,r13 3041 GET_PACA(r13); 3042 mr r8,r1 3043 ld r1,PACAKSAVE(r13) 3044 mfctr r9 3045 ld r10,PACA_RFI_FLUSH_FALLBACK_AREA(r13) 3046 ld r11,PACA_L1D_FLUSH_SIZE(r13) 3047 srdi r11,r11,(7 + 3) /* 128 byte lines, unrolled 8x */ 3048 mtctr r11 3049 DCBT_BOOK3S_STOP_ALL_STREAM_IDS(r11) /* Stop prefetch streams */ 3050 3051 /* order ld/st prior to dcbt stop all streams with flushing */ 3052 sync 3053 3054 /* 3055 * The load adresses are at staggered offsets within cachelines, 3056 * which suits some pipelines better (on others it should not 3057 * hurt). 3058 */ 30591: 3060 ld r11,(0x80 + 8)*0(r10) 3061 ld r11,(0x80 + 8)*1(r10) 3062 ld r11,(0x80 + 8)*2(r10) 3063 ld r11,(0x80 + 8)*3(r10) 3064 ld r11,(0x80 + 8)*4(r10) 3065 ld r11,(0x80 + 8)*5(r10) 3066 ld r11,(0x80 + 8)*6(r10) 3067 ld r11,(0x80 + 8)*7(r10) 3068 addi r10,r10,0x80*8 3069 bdnz 1b 3070 3071 mtctr r9 3072 li r9,0 3073 li r10,0 3074 li r11,0 3075 mr r1,r8 3076 mr r13,r7 3077 RFSCV 3078 3079USE_TEXT_SECTION() 3080 3081#ifdef CONFIG_KVM_BOOK3S_64_HANDLER 3082kvm_interrupt: 3083 /* 3084 * The conditional branch in KVMTEST can't reach all the way, 3085 * make a stub. 3086 */ 3087 b kvmppc_interrupt 3088#endif 3089 3090_GLOBAL(do_uaccess_flush) 3091 UACCESS_FLUSH_FIXUP_SECTION 3092 nop 3093 nop 3094 nop 3095 blr 3096 L1D_DISPLACEMENT_FLUSH 3097 blr 3098_ASM_NOKPROBE_SYMBOL(do_uaccess_flush) 3099EXPORT_SYMBOL(do_uaccess_flush) 3100 3101 3102MASKED_INTERRUPT 3103MASKED_INTERRUPT hsrr=1 3104 3105USE_FIXED_SECTION(virt_trampolines) 3106 /* 3107 * All code below __end_soft_masked is treated as soft-masked. If 3108 * any code runs here with MSR[EE]=1, it must then cope with pending 3109 * soft interrupt being raised (i.e., by ensuring it is replayed). 3110 * 3111 * The __end_interrupts marker must be past the out-of-line (OOL) 3112 * handlers, so that they are copied to real address 0x100 when running 3113 * a relocatable kernel. This ensures they can be reached from the short 3114 * trampoline handlers (like 0x4f00, 0x4f20, etc.) which branch 3115 * directly, without using LOAD_HANDLER(). 3116 */ 3117 .align 7 3118 .globl __end_interrupts 3119__end_interrupts: 3120DEFINE_FIXED_SYMBOL(__end_interrupts, virt_trampolines) 3121 3122CLOSE_FIXED_SECTION(real_vectors); 3123CLOSE_FIXED_SECTION(real_trampolines); 3124CLOSE_FIXED_SECTION(virt_vectors); 3125CLOSE_FIXED_SECTION(virt_trampolines); 3126 3127USE_TEXT_SECTION() 3128 3129/* MSR[RI] should be clear because this uses SRR[01] */ 3130_GLOBAL(enable_machine_check) 3131 mflr r0 3132 bcl 20,31,$+4 31330: mflr r3 3134 addi r3,r3,(1f - 0b) 3135 mtspr SPRN_SRR0,r3 3136 mfmsr r3 3137 ori r3,r3,MSR_ME 3138 mtspr SPRN_SRR1,r3 3139 RFI_TO_KERNEL 31401: mtlr r0 3141 blr 3142 3143/* MSR[RI] should be clear because this uses SRR[01] */ 3144SYM_FUNC_START_LOCAL(disable_machine_check) 3145 mflr r0 3146 bcl 20,31,$+4 31470: mflr r3 3148 addi r3,r3,(1f - 0b) 3149 mtspr SPRN_SRR0,r3 3150 mfmsr r3 3151 li r4,MSR_ME 3152 andc r3,r3,r4 3153 mtspr SPRN_SRR1,r3 3154 RFI_TO_KERNEL 31551: mtlr r0 3156 blr 3157SYM_FUNC_END(disable_machine_check) 3158