1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/sched/mm.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <linux/part_stat.h>
27 #include <crypto/hash.h>
28 
29 #include <linux/fscrypt.h>
30 #include <linux/fsverity.h>
31 
32 struct pagevec;
33 
34 #ifdef CONFIG_F2FS_CHECK_FS
35 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
36 #else
37 #define f2fs_bug_on(sbi, condition)					\
38 	do {								\
39 		if (WARN_ON(condition))					\
40 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
41 	} while (0)
42 #endif
43 
44 enum {
45 	FAULT_KMALLOC,
46 	FAULT_KVMALLOC,
47 	FAULT_PAGE_ALLOC,
48 	FAULT_PAGE_GET,
49 	FAULT_ALLOC_BIO,	/* it's obsolete due to bio_alloc() will never fail */
50 	FAULT_ALLOC_NID,
51 	FAULT_ORPHAN,
52 	FAULT_BLOCK,
53 	FAULT_DIR_DEPTH,
54 	FAULT_EVICT_INODE,
55 	FAULT_TRUNCATE,
56 	FAULT_READ_IO,
57 	FAULT_CHECKPOINT,
58 	FAULT_DISCARD,
59 	FAULT_WRITE_IO,
60 	FAULT_SLAB_ALLOC,
61 	FAULT_DQUOT_INIT,
62 	FAULT_LOCK_OP,
63 	FAULT_MAX,
64 };
65 
66 #ifdef CONFIG_F2FS_FAULT_INJECTION
67 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
68 
69 struct f2fs_fault_info {
70 	atomic_t inject_ops;
71 	unsigned int inject_rate;
72 	unsigned int inject_type;
73 };
74 
75 extern const char *f2fs_fault_name[FAULT_MAX];
76 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
77 #endif
78 
79 /*
80  * For mount options
81  */
82 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
83 #define F2FS_MOUNT_DISCARD		0x00000004
84 #define F2FS_MOUNT_NOHEAP		0x00000008
85 #define F2FS_MOUNT_XATTR_USER		0x00000010
86 #define F2FS_MOUNT_POSIX_ACL		0x00000020
87 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
88 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
89 #define F2FS_MOUNT_INLINE_DATA		0x00000100
90 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
91 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
92 #define F2FS_MOUNT_NOBARRIER		0x00000800
93 #define F2FS_MOUNT_FASTBOOT		0x00001000
94 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
95 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
96 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
97 #define F2FS_MOUNT_USRQUOTA		0x00080000
98 #define F2FS_MOUNT_GRPQUOTA		0x00100000
99 #define F2FS_MOUNT_PRJQUOTA		0x00200000
100 #define F2FS_MOUNT_QUOTA		0x00400000
101 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
102 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
103 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
104 #define F2FS_MOUNT_NORECOVERY		0x04000000
105 #define F2FS_MOUNT_ATGC			0x08000000
106 #define F2FS_MOUNT_MERGE_CHECKPOINT	0x10000000
107 #define	F2FS_MOUNT_GC_MERGE		0x20000000
108 #define F2FS_MOUNT_COMPRESS_CACHE	0x40000000
109 
110 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
111 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
112 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
113 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
114 
115 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
116 		typecheck(unsigned long long, b) &&			\
117 		((long long)((a) - (b)) > 0))
118 
119 typedef u32 block_t;	/*
120 			 * should not change u32, since it is the on-disk block
121 			 * address format, __le32.
122 			 */
123 typedef u32 nid_t;
124 
125 #define COMPRESS_EXT_NUM		16
126 
127 /*
128  * An implementation of an rwsem that is explicitly unfair to readers. This
129  * prevents priority inversion when a low-priority reader acquires the read lock
130  * while sleeping on the write lock but the write lock is needed by
131  * higher-priority clients.
132  */
133 
134 struct f2fs_rwsem {
135         struct rw_semaphore internal_rwsem;
136 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
137         wait_queue_head_t read_waiters;
138 #endif
139 };
140 
141 struct f2fs_mount_info {
142 	unsigned int opt;
143 	int write_io_size_bits;		/* Write IO size bits */
144 	block_t root_reserved_blocks;	/* root reserved blocks */
145 	kuid_t s_resuid;		/* reserved blocks for uid */
146 	kgid_t s_resgid;		/* reserved blocks for gid */
147 	int active_logs;		/* # of active logs */
148 	int inline_xattr_size;		/* inline xattr size */
149 #ifdef CONFIG_F2FS_FAULT_INJECTION
150 	struct f2fs_fault_info fault_info;	/* For fault injection */
151 #endif
152 #ifdef CONFIG_QUOTA
153 	/* Names of quota files with journalled quota */
154 	char *s_qf_names[MAXQUOTAS];
155 	int s_jquota_fmt;			/* Format of quota to use */
156 #endif
157 	/* For which write hints are passed down to block layer */
158 	int alloc_mode;			/* segment allocation policy */
159 	int fsync_mode;			/* fsync policy */
160 	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
161 	int bggc_mode;			/* bggc mode: off, on or sync */
162 	int discard_unit;		/*
163 					 * discard command's offset/size should
164 					 * be aligned to this unit: block,
165 					 * segment or section
166 					 */
167 	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
168 	block_t unusable_cap_perc;	/* percentage for cap */
169 	block_t unusable_cap;		/* Amount of space allowed to be
170 					 * unusable when disabling checkpoint
171 					 */
172 
173 	/* For compression */
174 	unsigned char compress_algorithm;	/* algorithm type */
175 	unsigned char compress_log_size;	/* cluster log size */
176 	unsigned char compress_level;		/* compress level */
177 	bool compress_chksum;			/* compressed data chksum */
178 	unsigned char compress_ext_cnt;		/* extension count */
179 	unsigned char nocompress_ext_cnt;		/* nocompress extension count */
180 	int compress_mode;			/* compression mode */
181 	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
182 	unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
183 };
184 
185 #define F2FS_FEATURE_ENCRYPT		0x0001
186 #define F2FS_FEATURE_BLKZONED		0x0002
187 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
188 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
189 #define F2FS_FEATURE_PRJQUOTA		0x0010
190 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
191 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
192 #define F2FS_FEATURE_QUOTA_INO		0x0080
193 #define F2FS_FEATURE_INODE_CRTIME	0x0100
194 #define F2FS_FEATURE_LOST_FOUND		0x0200
195 #define F2FS_FEATURE_VERITY		0x0400
196 #define F2FS_FEATURE_SB_CHKSUM		0x0800
197 #define F2FS_FEATURE_CASEFOLD		0x1000
198 #define F2FS_FEATURE_COMPRESSION	0x2000
199 #define F2FS_FEATURE_RO			0x4000
200 
201 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
202 	((raw_super->feature & cpu_to_le32(mask)) != 0)
203 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
204 #define F2FS_SET_FEATURE(sbi, mask)					\
205 	(sbi->raw_super->feature |= cpu_to_le32(mask))
206 #define F2FS_CLEAR_FEATURE(sbi, mask)					\
207 	(sbi->raw_super->feature &= ~cpu_to_le32(mask))
208 
209 /*
210  * Default values for user and/or group using reserved blocks
211  */
212 #define	F2FS_DEF_RESUID		0
213 #define	F2FS_DEF_RESGID		0
214 
215 /*
216  * For checkpoint manager
217  */
218 enum {
219 	NAT_BITMAP,
220 	SIT_BITMAP
221 };
222 
223 #define	CP_UMOUNT	0x00000001
224 #define	CP_FASTBOOT	0x00000002
225 #define	CP_SYNC		0x00000004
226 #define	CP_RECOVERY	0x00000008
227 #define	CP_DISCARD	0x00000010
228 #define CP_TRIMMED	0x00000020
229 #define CP_PAUSE	0x00000040
230 #define CP_RESIZE 	0x00000080
231 
232 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
233 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
234 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
235 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
236 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
237 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
238 #define DEF_CP_INTERVAL			60	/* 60 secs */
239 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
240 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
241 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
242 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
243 
244 struct cp_control {
245 	int reason;
246 	__u64 trim_start;
247 	__u64 trim_end;
248 	__u64 trim_minlen;
249 };
250 
251 /*
252  * indicate meta/data type
253  */
254 enum {
255 	META_CP,
256 	META_NAT,
257 	META_SIT,
258 	META_SSA,
259 	META_MAX,
260 	META_POR,
261 	DATA_GENERIC,		/* check range only */
262 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
263 	DATA_GENERIC_ENHANCE_READ,	/*
264 					 * strong check on range and segment
265 					 * bitmap but no warning due to race
266 					 * condition of read on truncated area
267 					 * by extent_cache
268 					 */
269 	META_GENERIC,
270 };
271 
272 /* for the list of ino */
273 enum {
274 	ORPHAN_INO,		/* for orphan ino list */
275 	APPEND_INO,		/* for append ino list */
276 	UPDATE_INO,		/* for update ino list */
277 	TRANS_DIR_INO,		/* for trasactions dir ino list */
278 	FLUSH_INO,		/* for multiple device flushing */
279 	MAX_INO_ENTRY,		/* max. list */
280 };
281 
282 struct ino_entry {
283 	struct list_head list;		/* list head */
284 	nid_t ino;			/* inode number */
285 	unsigned int dirty_device;	/* dirty device bitmap */
286 };
287 
288 /* for the list of inodes to be GCed */
289 struct inode_entry {
290 	struct list_head list;	/* list head */
291 	struct inode *inode;	/* vfs inode pointer */
292 };
293 
294 struct fsync_node_entry {
295 	struct list_head list;	/* list head */
296 	struct page *page;	/* warm node page pointer */
297 	unsigned int seq_id;	/* sequence id */
298 };
299 
300 struct ckpt_req {
301 	struct completion wait;		/* completion for checkpoint done */
302 	struct llist_node llnode;	/* llist_node to be linked in wait queue */
303 	int ret;			/* return code of checkpoint */
304 	ktime_t queue_time;		/* request queued time */
305 };
306 
307 struct ckpt_req_control {
308 	struct task_struct *f2fs_issue_ckpt;	/* checkpoint task */
309 	int ckpt_thread_ioprio;			/* checkpoint merge thread ioprio */
310 	wait_queue_head_t ckpt_wait_queue;	/* waiting queue for wake-up */
311 	atomic_t issued_ckpt;		/* # of actually issued ckpts */
312 	atomic_t total_ckpt;		/* # of total ckpts */
313 	atomic_t queued_ckpt;		/* # of queued ckpts */
314 	struct llist_head issue_list;	/* list for command issue */
315 	spinlock_t stat_lock;		/* lock for below checkpoint time stats */
316 	unsigned int cur_time;		/* cur wait time in msec for currently issued checkpoint */
317 	unsigned int peak_time;		/* peak wait time in msec until now */
318 };
319 
320 /* for the bitmap indicate blocks to be discarded */
321 struct discard_entry {
322 	struct list_head list;	/* list head */
323 	block_t start_blkaddr;	/* start blockaddr of current segment */
324 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
325 };
326 
327 /* default discard granularity of inner discard thread, unit: block count */
328 #define DEFAULT_DISCARD_GRANULARITY		16
329 
330 /* max discard pend list number */
331 #define MAX_PLIST_NUM		512
332 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
333 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
334 
335 enum {
336 	D_PREP,			/* initial */
337 	D_PARTIAL,		/* partially submitted */
338 	D_SUBMIT,		/* all submitted */
339 	D_DONE,			/* finished */
340 };
341 
342 struct discard_info {
343 	block_t lstart;			/* logical start address */
344 	block_t len;			/* length */
345 	block_t start;			/* actual start address in dev */
346 };
347 
348 struct discard_cmd {
349 	struct rb_node rb_node;		/* rb node located in rb-tree */
350 	union {
351 		struct {
352 			block_t lstart;	/* logical start address */
353 			block_t len;	/* length */
354 			block_t start;	/* actual start address in dev */
355 		};
356 		struct discard_info di;	/* discard info */
357 
358 	};
359 	struct list_head list;		/* command list */
360 	struct completion wait;		/* compleation */
361 	struct block_device *bdev;	/* bdev */
362 	unsigned short ref;		/* reference count */
363 	unsigned char state;		/* state */
364 	unsigned char queued;		/* queued discard */
365 	int error;			/* bio error */
366 	spinlock_t lock;		/* for state/bio_ref updating */
367 	unsigned short bio_ref;		/* bio reference count */
368 };
369 
370 enum {
371 	DPOLICY_BG,
372 	DPOLICY_FORCE,
373 	DPOLICY_FSTRIM,
374 	DPOLICY_UMOUNT,
375 	MAX_DPOLICY,
376 };
377 
378 struct discard_policy {
379 	int type;			/* type of discard */
380 	unsigned int min_interval;	/* used for candidates exist */
381 	unsigned int mid_interval;	/* used for device busy */
382 	unsigned int max_interval;	/* used for candidates not exist */
383 	unsigned int max_requests;	/* # of discards issued per round */
384 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
385 	bool io_aware;			/* issue discard in idle time */
386 	bool sync;			/* submit discard with REQ_SYNC flag */
387 	bool ordered;			/* issue discard by lba order */
388 	bool timeout;			/* discard timeout for put_super */
389 	unsigned int granularity;	/* discard granularity */
390 };
391 
392 struct discard_cmd_control {
393 	struct task_struct *f2fs_issue_discard;	/* discard thread */
394 	struct list_head entry_list;		/* 4KB discard entry list */
395 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
396 	struct list_head wait_list;		/* store on-flushing entries */
397 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
398 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
399 	unsigned int discard_wake;		/* to wake up discard thread */
400 	struct mutex cmd_lock;
401 	unsigned int nr_discards;		/* # of discards in the list */
402 	unsigned int max_discards;		/* max. discards to be issued */
403 	unsigned int max_discard_request;	/* max. discard request per round */
404 	unsigned int min_discard_issue_time;	/* min. interval between discard issue */
405 	unsigned int mid_discard_issue_time;	/* mid. interval between discard issue */
406 	unsigned int max_discard_issue_time;	/* max. interval between discard issue */
407 	unsigned int discard_granularity;	/* discard granularity */
408 	unsigned int undiscard_blks;		/* # of undiscard blocks */
409 	unsigned int next_pos;			/* next discard position */
410 	atomic_t issued_discard;		/* # of issued discard */
411 	atomic_t queued_discard;		/* # of queued discard */
412 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
413 	struct rb_root_cached root;		/* root of discard rb-tree */
414 	bool rbtree_check;			/* config for consistence check */
415 };
416 
417 /* for the list of fsync inodes, used only during recovery */
418 struct fsync_inode_entry {
419 	struct list_head list;	/* list head */
420 	struct inode *inode;	/* vfs inode pointer */
421 	block_t blkaddr;	/* block address locating the last fsync */
422 	block_t last_dentry;	/* block address locating the last dentry */
423 };
424 
425 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
426 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
427 
428 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
429 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
430 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
431 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
432 
433 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
434 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
435 
update_nats_in_cursum(struct f2fs_journal * journal,int i)436 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
437 {
438 	int before = nats_in_cursum(journal);
439 
440 	journal->n_nats = cpu_to_le16(before + i);
441 	return before;
442 }
443 
update_sits_in_cursum(struct f2fs_journal * journal,int i)444 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
445 {
446 	int before = sits_in_cursum(journal);
447 
448 	journal->n_sits = cpu_to_le16(before + i);
449 	return before;
450 }
451 
__has_cursum_space(struct f2fs_journal * journal,int size,int type)452 static inline bool __has_cursum_space(struct f2fs_journal *journal,
453 							int size, int type)
454 {
455 	if (type == NAT_JOURNAL)
456 		return size <= MAX_NAT_JENTRIES(journal);
457 	return size <= MAX_SIT_JENTRIES(journal);
458 }
459 
460 /* for inline stuff */
461 #define DEF_INLINE_RESERVED_SIZE	1
462 static inline int get_extra_isize(struct inode *inode);
463 static inline int get_inline_xattr_addrs(struct inode *inode);
464 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
465 				(CUR_ADDRS_PER_INODE(inode) -		\
466 				get_inline_xattr_addrs(inode) -	\
467 				DEF_INLINE_RESERVED_SIZE))
468 
469 /* for inline dir */
470 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
471 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
472 				BITS_PER_BYTE + 1))
473 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
474 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
475 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
476 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
477 				NR_INLINE_DENTRY(inode) + \
478 				INLINE_DENTRY_BITMAP_SIZE(inode)))
479 
480 /*
481  * For INODE and NODE manager
482  */
483 /* for directory operations */
484 
485 struct f2fs_filename {
486 	/*
487 	 * The filename the user specified.  This is NULL for some
488 	 * filesystem-internal operations, e.g. converting an inline directory
489 	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
490 	 */
491 	const struct qstr *usr_fname;
492 
493 	/*
494 	 * The on-disk filename.  For encrypted directories, this is encrypted.
495 	 * This may be NULL for lookups in an encrypted dir without the key.
496 	 */
497 	struct fscrypt_str disk_name;
498 
499 	/* The dirhash of this filename */
500 	f2fs_hash_t hash;
501 
502 #ifdef CONFIG_FS_ENCRYPTION
503 	/*
504 	 * For lookups in encrypted directories: either the buffer backing
505 	 * disk_name, or a buffer that holds the decoded no-key name.
506 	 */
507 	struct fscrypt_str crypto_buf;
508 #endif
509 #if IS_ENABLED(CONFIG_UNICODE)
510 	/*
511 	 * For casefolded directories: the casefolded name, but it's left NULL
512 	 * if the original name is not valid Unicode, if the original name is
513 	 * "." or "..", if the directory is both casefolded and encrypted and
514 	 * its encryption key is unavailable, or if the filesystem is doing an
515 	 * internal operation where usr_fname is also NULL.  In all these cases
516 	 * we fall back to treating the name as an opaque byte sequence.
517 	 */
518 	struct fscrypt_str cf_name;
519 #endif
520 };
521 
522 struct f2fs_dentry_ptr {
523 	struct inode *inode;
524 	void *bitmap;
525 	struct f2fs_dir_entry *dentry;
526 	__u8 (*filename)[F2FS_SLOT_LEN];
527 	int max;
528 	int nr_bitmap;
529 };
530 
make_dentry_ptr_block(struct inode * inode,struct f2fs_dentry_ptr * d,struct f2fs_dentry_block * t)531 static inline void make_dentry_ptr_block(struct inode *inode,
532 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
533 {
534 	d->inode = inode;
535 	d->max = NR_DENTRY_IN_BLOCK;
536 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
537 	d->bitmap = t->dentry_bitmap;
538 	d->dentry = t->dentry;
539 	d->filename = t->filename;
540 }
541 
make_dentry_ptr_inline(struct inode * inode,struct f2fs_dentry_ptr * d,void * t)542 static inline void make_dentry_ptr_inline(struct inode *inode,
543 					struct f2fs_dentry_ptr *d, void *t)
544 {
545 	int entry_cnt = NR_INLINE_DENTRY(inode);
546 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
547 	int reserved_size = INLINE_RESERVED_SIZE(inode);
548 
549 	d->inode = inode;
550 	d->max = entry_cnt;
551 	d->nr_bitmap = bitmap_size;
552 	d->bitmap = t;
553 	d->dentry = t + bitmap_size + reserved_size;
554 	d->filename = t + bitmap_size + reserved_size +
555 					SIZE_OF_DIR_ENTRY * entry_cnt;
556 }
557 
558 /*
559  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
560  * as its node offset to distinguish from index node blocks.
561  * But some bits are used to mark the node block.
562  */
563 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
564 				>> OFFSET_BIT_SHIFT)
565 enum {
566 	ALLOC_NODE,			/* allocate a new node page if needed */
567 	LOOKUP_NODE,			/* look up a node without readahead */
568 	LOOKUP_NODE_RA,			/*
569 					 * look up a node with readahead called
570 					 * by get_data_block.
571 					 */
572 };
573 
574 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO or flush count */
575 
576 /* congestion wait timeout value, default: 20ms */
577 #define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
578 
579 /* maximum retry quota flush count */
580 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
581 
582 /* maximum retry of EIO'ed page */
583 #define MAX_RETRY_PAGE_EIO			100
584 
585 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
586 
587 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
588 
589 /* dirty segments threshold for triggering CP */
590 #define DEFAULT_DIRTY_THRESHOLD		4
591 
592 /* for in-memory extent cache entry */
593 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
594 
595 /* number of extent info in extent cache we try to shrink */
596 #define EXTENT_CACHE_SHRINK_NUMBER	128
597 
598 #define RECOVERY_MAX_RA_BLOCKS		BIO_MAX_VECS
599 #define RECOVERY_MIN_RA_BLOCKS		1
600 
601 struct rb_entry {
602 	struct rb_node rb_node;		/* rb node located in rb-tree */
603 	union {
604 		struct {
605 			unsigned int ofs;	/* start offset of the entry */
606 			unsigned int len;	/* length of the entry */
607 		};
608 		unsigned long long key;		/* 64-bits key */
609 	} __packed;
610 };
611 
612 struct extent_info {
613 	unsigned int fofs;		/* start offset in a file */
614 	unsigned int len;		/* length of the extent */
615 	u32 blk;			/* start block address of the extent */
616 #ifdef CONFIG_F2FS_FS_COMPRESSION
617 	unsigned int c_len;		/* physical extent length of compressed blocks */
618 #endif
619 };
620 
621 struct extent_node {
622 	struct rb_node rb_node;		/* rb node located in rb-tree */
623 	struct extent_info ei;		/* extent info */
624 	struct list_head list;		/* node in global extent list of sbi */
625 	struct extent_tree *et;		/* extent tree pointer */
626 };
627 
628 struct extent_tree {
629 	nid_t ino;			/* inode number */
630 	struct rb_root_cached root;	/* root of extent info rb-tree */
631 	struct extent_node *cached_en;	/* recently accessed extent node */
632 	struct extent_info largest;	/* largested extent info */
633 	struct list_head list;		/* to be used by sbi->zombie_list */
634 	rwlock_t lock;			/* protect extent info rb-tree */
635 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
636 	bool largest_updated;		/* largest extent updated */
637 };
638 
639 /*
640  * This structure is taken from ext4_map_blocks.
641  *
642  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
643  */
644 #define F2FS_MAP_NEW		(1 << BH_New)
645 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
646 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
647 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
648 				F2FS_MAP_UNWRITTEN)
649 
650 struct f2fs_map_blocks {
651 	struct block_device *m_bdev;	/* for multi-device dio */
652 	block_t m_pblk;
653 	block_t m_lblk;
654 	unsigned int m_len;
655 	unsigned int m_flags;
656 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
657 	pgoff_t *m_next_extent;		/* point to next possible extent */
658 	int m_seg_type;
659 	bool m_may_create;		/* indicate it is from write path */
660 	bool m_multidev_dio;		/* indicate it allows multi-device dio */
661 };
662 
663 /* for flag in get_data_block */
664 enum {
665 	F2FS_GET_BLOCK_DEFAULT,
666 	F2FS_GET_BLOCK_FIEMAP,
667 	F2FS_GET_BLOCK_BMAP,
668 	F2FS_GET_BLOCK_DIO,
669 	F2FS_GET_BLOCK_PRE_DIO,
670 	F2FS_GET_BLOCK_PRE_AIO,
671 	F2FS_GET_BLOCK_PRECACHE,
672 };
673 
674 /*
675  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
676  */
677 #define FADVISE_COLD_BIT	0x01
678 #define FADVISE_LOST_PINO_BIT	0x02
679 #define FADVISE_ENCRYPT_BIT	0x04
680 #define FADVISE_ENC_NAME_BIT	0x08
681 #define FADVISE_KEEP_SIZE_BIT	0x10
682 #define FADVISE_HOT_BIT		0x20
683 #define FADVISE_VERITY_BIT	0x40
684 #define FADVISE_TRUNC_BIT	0x80
685 
686 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
687 
688 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
689 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
690 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
691 
692 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
693 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
694 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
695 
696 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
697 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
698 
699 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
700 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
701 
702 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
703 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
704 
705 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
706 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
707 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
708 
709 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
710 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
711 
712 #define file_should_truncate(inode)	is_file(inode, FADVISE_TRUNC_BIT)
713 #define file_need_truncate(inode)	set_file(inode, FADVISE_TRUNC_BIT)
714 #define file_dont_truncate(inode)	clear_file(inode, FADVISE_TRUNC_BIT)
715 
716 #define DEF_DIR_LEVEL		0
717 
718 enum {
719 	GC_FAILURE_PIN,
720 	MAX_GC_FAILURE
721 };
722 
723 /* used for f2fs_inode_info->flags */
724 enum {
725 	FI_NEW_INODE,		/* indicate newly allocated inode */
726 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
727 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
728 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
729 	FI_INC_LINK,		/* need to increment i_nlink */
730 	FI_ACL_MODE,		/* indicate acl mode */
731 	FI_NO_ALLOC,		/* should not allocate any blocks */
732 	FI_FREE_NID,		/* free allocated nide */
733 	FI_NO_EXTENT,		/* not to use the extent cache */
734 	FI_INLINE_XATTR,	/* used for inline xattr */
735 	FI_INLINE_DATA,		/* used for inline data*/
736 	FI_INLINE_DENTRY,	/* used for inline dentry */
737 	FI_APPEND_WRITE,	/* inode has appended data */
738 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
739 	FI_NEED_IPU,		/* used for ipu per file */
740 	FI_ATOMIC_FILE,		/* indicate atomic file */
741 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
742 	FI_DROP_CACHE,		/* drop dirty page cache */
743 	FI_DATA_EXIST,		/* indicate data exists */
744 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
745 	FI_SKIP_WRITES,		/* should skip data page writeback */
746 	FI_OPU_WRITE,		/* used for opu per file */
747 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
748 	FI_PREALLOCATED_ALL,	/* all blocks for write were preallocated */
749 	FI_HOT_DATA,		/* indicate file is hot */
750 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
751 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
752 	FI_PIN_FILE,		/* indicate file should not be gced */
753 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
754 	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
755 	FI_COMPRESS_CORRUPT,	/* indicate compressed cluster is corrupted */
756 	FI_MMAP_FILE,		/* indicate file was mmapped */
757 	FI_ENABLE_COMPRESS,	/* enable compression in "user" compression mode */
758 	FI_COMPRESS_RELEASED,	/* compressed blocks were released */
759 	FI_ALIGNED_WRITE,	/* enable aligned write */
760 	FI_COW_FILE,		/* indicate COW file */
761 	FI_MAX,			/* max flag, never be used */
762 };
763 
764 struct f2fs_inode_info {
765 	struct inode vfs_inode;		/* serve a vfs inode */
766 	unsigned long i_flags;		/* keep an inode flags for ioctl */
767 	unsigned char i_advise;		/* use to give file attribute hints */
768 	unsigned char i_dir_level;	/* use for dentry level for large dir */
769 	unsigned int i_current_depth;	/* only for directory depth */
770 	/* for gc failure statistic */
771 	unsigned int i_gc_failures[MAX_GC_FAILURE];
772 	unsigned int i_pino;		/* parent inode number */
773 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
774 
775 	/* Use below internally in f2fs*/
776 	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
777 	struct f2fs_rwsem i_sem;	/* protect fi info */
778 	atomic_t dirty_pages;		/* # of dirty pages */
779 	f2fs_hash_t chash;		/* hash value of given file name */
780 	unsigned int clevel;		/* maximum level of given file name */
781 	struct task_struct *task;	/* lookup and create consistency */
782 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
783 	nid_t i_xattr_nid;		/* node id that contains xattrs */
784 	loff_t	last_disk_size;		/* lastly written file size */
785 	spinlock_t i_size_lock;		/* protect last_disk_size */
786 
787 #ifdef CONFIG_QUOTA
788 	struct dquot *i_dquot[MAXQUOTAS];
789 
790 	/* quota space reservation, managed internally by quota code */
791 	qsize_t i_reserved_quota;
792 #endif
793 	struct list_head dirty_list;	/* dirty list for dirs and files */
794 	struct list_head gdirty_list;	/* linked in global dirty list */
795 	struct task_struct *atomic_write_task;	/* store atomic write task */
796 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
797 	struct inode *cow_inode;	/* copy-on-write inode for atomic write */
798 
799 	/* avoid racing between foreground op and gc */
800 	struct f2fs_rwsem i_gc_rwsem[2];
801 	struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */
802 
803 	int i_extra_isize;		/* size of extra space located in i_addr */
804 	kprojid_t i_projid;		/* id for project quota */
805 	int i_inline_xattr_size;	/* inline xattr size */
806 	struct timespec64 i_crtime;	/* inode creation time */
807 	struct timespec64 i_disk_time[4];/* inode disk times */
808 
809 	/* for file compress */
810 	atomic_t i_compr_blocks;		/* # of compressed blocks */
811 	unsigned char i_compress_algorithm;	/* algorithm type */
812 	unsigned char i_log_cluster_size;	/* log of cluster size */
813 	unsigned char i_compress_level;		/* compress level (lz4hc,zstd) */
814 	unsigned short i_compress_flag;		/* compress flag */
815 	unsigned int i_cluster_size;		/* cluster size */
816 };
817 
get_extent_info(struct extent_info * ext,struct f2fs_extent * i_ext)818 static inline void get_extent_info(struct extent_info *ext,
819 					struct f2fs_extent *i_ext)
820 {
821 	ext->fofs = le32_to_cpu(i_ext->fofs);
822 	ext->blk = le32_to_cpu(i_ext->blk);
823 	ext->len = le32_to_cpu(i_ext->len);
824 }
825 
set_raw_extent(struct extent_info * ext,struct f2fs_extent * i_ext)826 static inline void set_raw_extent(struct extent_info *ext,
827 					struct f2fs_extent *i_ext)
828 {
829 	i_ext->fofs = cpu_to_le32(ext->fofs);
830 	i_ext->blk = cpu_to_le32(ext->blk);
831 	i_ext->len = cpu_to_le32(ext->len);
832 }
833 
set_extent_info(struct extent_info * ei,unsigned int fofs,u32 blk,unsigned int len)834 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
835 						u32 blk, unsigned int len)
836 {
837 	ei->fofs = fofs;
838 	ei->blk = blk;
839 	ei->len = len;
840 #ifdef CONFIG_F2FS_FS_COMPRESSION
841 	ei->c_len = 0;
842 #endif
843 }
844 
__is_discard_mergeable(struct discard_info * back,struct discard_info * front,unsigned int max_len)845 static inline bool __is_discard_mergeable(struct discard_info *back,
846 			struct discard_info *front, unsigned int max_len)
847 {
848 	return (back->lstart + back->len == front->lstart) &&
849 		(back->len + front->len <= max_len);
850 }
851 
__is_discard_back_mergeable(struct discard_info * cur,struct discard_info * back,unsigned int max_len)852 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
853 			struct discard_info *back, unsigned int max_len)
854 {
855 	return __is_discard_mergeable(back, cur, max_len);
856 }
857 
__is_discard_front_mergeable(struct discard_info * cur,struct discard_info * front,unsigned int max_len)858 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
859 			struct discard_info *front, unsigned int max_len)
860 {
861 	return __is_discard_mergeable(cur, front, max_len);
862 }
863 
__is_extent_mergeable(struct extent_info * back,struct extent_info * front)864 static inline bool __is_extent_mergeable(struct extent_info *back,
865 						struct extent_info *front)
866 {
867 #ifdef CONFIG_F2FS_FS_COMPRESSION
868 	if (back->c_len && back->len != back->c_len)
869 		return false;
870 	if (front->c_len && front->len != front->c_len)
871 		return false;
872 #endif
873 	return (back->fofs + back->len == front->fofs &&
874 			back->blk + back->len == front->blk);
875 }
876 
__is_back_mergeable(struct extent_info * cur,struct extent_info * back)877 static inline bool __is_back_mergeable(struct extent_info *cur,
878 						struct extent_info *back)
879 {
880 	return __is_extent_mergeable(back, cur);
881 }
882 
__is_front_mergeable(struct extent_info * cur,struct extent_info * front)883 static inline bool __is_front_mergeable(struct extent_info *cur,
884 						struct extent_info *front)
885 {
886 	return __is_extent_mergeable(cur, front);
887 }
888 
889 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
__try_update_largest_extent(struct extent_tree * et,struct extent_node * en)890 static inline void __try_update_largest_extent(struct extent_tree *et,
891 						struct extent_node *en)
892 {
893 	if (en->ei.len > et->largest.len) {
894 		et->largest = en->ei;
895 		et->largest_updated = true;
896 	}
897 }
898 
899 /*
900  * For free nid management
901  */
902 enum nid_state {
903 	FREE_NID,		/* newly added to free nid list */
904 	PREALLOC_NID,		/* it is preallocated */
905 	MAX_NID_STATE,
906 };
907 
908 enum nat_state {
909 	TOTAL_NAT,
910 	DIRTY_NAT,
911 	RECLAIMABLE_NAT,
912 	MAX_NAT_STATE,
913 };
914 
915 struct f2fs_nm_info {
916 	block_t nat_blkaddr;		/* base disk address of NAT */
917 	nid_t max_nid;			/* maximum possible node ids */
918 	nid_t available_nids;		/* # of available node ids */
919 	nid_t next_scan_nid;		/* the next nid to be scanned */
920 	nid_t max_rf_node_blocks;	/* max # of nodes for recovery */
921 	unsigned int ram_thresh;	/* control the memory footprint */
922 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
923 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
924 
925 	/* NAT cache management */
926 	struct radix_tree_root nat_root;/* root of the nat entry cache */
927 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
928 	struct f2fs_rwsem nat_tree_lock;	/* protect nat entry tree */
929 	struct list_head nat_entries;	/* cached nat entry list (clean) */
930 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
931 	unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
932 	unsigned int nat_blocks;	/* # of nat blocks */
933 
934 	/* free node ids management */
935 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
936 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
937 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
938 	spinlock_t nid_list_lock;	/* protect nid lists ops */
939 	struct mutex build_lock;	/* lock for build free nids */
940 	unsigned char **free_nid_bitmap;
941 	unsigned char *nat_block_bitmap;
942 	unsigned short *free_nid_count;	/* free nid count of NAT block */
943 
944 	/* for checkpoint */
945 	char *nat_bitmap;		/* NAT bitmap pointer */
946 
947 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
948 	unsigned char *nat_bits;	/* NAT bits blocks */
949 	unsigned char *full_nat_bits;	/* full NAT pages */
950 	unsigned char *empty_nat_bits;	/* empty NAT pages */
951 #ifdef CONFIG_F2FS_CHECK_FS
952 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
953 #endif
954 	int bitmap_size;		/* bitmap size */
955 };
956 
957 /*
958  * this structure is used as one of function parameters.
959  * all the information are dedicated to a given direct node block determined
960  * by the data offset in a file.
961  */
962 struct dnode_of_data {
963 	struct inode *inode;		/* vfs inode pointer */
964 	struct page *inode_page;	/* its inode page, NULL is possible */
965 	struct page *node_page;		/* cached direct node page */
966 	nid_t nid;			/* node id of the direct node block */
967 	unsigned int ofs_in_node;	/* data offset in the node page */
968 	bool inode_page_locked;		/* inode page is locked or not */
969 	bool node_changed;		/* is node block changed */
970 	char cur_level;			/* level of hole node page */
971 	char max_level;			/* level of current page located */
972 	block_t	data_blkaddr;		/* block address of the node block */
973 };
974 
set_new_dnode(struct dnode_of_data * dn,struct inode * inode,struct page * ipage,struct page * npage,nid_t nid)975 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
976 		struct page *ipage, struct page *npage, nid_t nid)
977 {
978 	memset(dn, 0, sizeof(*dn));
979 	dn->inode = inode;
980 	dn->inode_page = ipage;
981 	dn->node_page = npage;
982 	dn->nid = nid;
983 }
984 
985 /*
986  * For SIT manager
987  *
988  * By default, there are 6 active log areas across the whole main area.
989  * When considering hot and cold data separation to reduce cleaning overhead,
990  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
991  * respectively.
992  * In the current design, you should not change the numbers intentionally.
993  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
994  * logs individually according to the underlying devices. (default: 6)
995  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
996  * data and 8 for node logs.
997  */
998 #define	NR_CURSEG_DATA_TYPE	(3)
999 #define NR_CURSEG_NODE_TYPE	(3)
1000 #define NR_CURSEG_INMEM_TYPE	(2)
1001 #define NR_CURSEG_RO_TYPE	(2)
1002 #define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
1003 #define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
1004 
1005 enum {
1006 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
1007 	CURSEG_WARM_DATA,	/* data blocks */
1008 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
1009 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
1010 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
1011 	CURSEG_COLD_NODE,	/* indirect node blocks */
1012 	NR_PERSISTENT_LOG,	/* number of persistent log */
1013 	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
1014 				/* pinned file that needs consecutive block address */
1015 	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
1016 	NO_CHECK_TYPE,		/* number of persistent & inmem log */
1017 };
1018 
1019 struct flush_cmd {
1020 	struct completion wait;
1021 	struct llist_node llnode;
1022 	nid_t ino;
1023 	int ret;
1024 };
1025 
1026 struct flush_cmd_control {
1027 	struct task_struct *f2fs_issue_flush;	/* flush thread */
1028 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
1029 	atomic_t issued_flush;			/* # of issued flushes */
1030 	atomic_t queued_flush;			/* # of queued flushes */
1031 	struct llist_head issue_list;		/* list for command issue */
1032 	struct llist_node *dispatch_list;	/* list for command dispatch */
1033 };
1034 
1035 struct f2fs_sm_info {
1036 	struct sit_info *sit_info;		/* whole segment information */
1037 	struct free_segmap_info *free_info;	/* free segment information */
1038 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
1039 	struct curseg_info *curseg_array;	/* active segment information */
1040 
1041 	struct f2fs_rwsem curseg_lock;	/* for preventing curseg change */
1042 
1043 	block_t seg0_blkaddr;		/* block address of 0'th segment */
1044 	block_t main_blkaddr;		/* start block address of main area */
1045 	block_t ssa_blkaddr;		/* start block address of SSA area */
1046 
1047 	unsigned int segment_count;	/* total # of segments */
1048 	unsigned int main_segments;	/* # of segments in main area */
1049 	unsigned int reserved_segments;	/* # of reserved segments */
1050 	unsigned int additional_reserved_segments;/* reserved segs for IO align feature */
1051 	unsigned int ovp_segments;	/* # of overprovision segments */
1052 
1053 	/* a threshold to reclaim prefree segments */
1054 	unsigned int rec_prefree_segments;
1055 
1056 	/* for batched trimming */
1057 	unsigned int trim_sections;		/* # of sections to trim */
1058 
1059 	struct list_head sit_entry_set;	/* sit entry set list */
1060 
1061 	unsigned int ipu_policy;	/* in-place-update policy */
1062 	unsigned int min_ipu_util;	/* in-place-update threshold */
1063 	unsigned int min_fsync_blocks;	/* threshold for fsync */
1064 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
1065 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
1066 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
1067 
1068 	/* for flush command control */
1069 	struct flush_cmd_control *fcc_info;
1070 
1071 	/* for discard command control */
1072 	struct discard_cmd_control *dcc_info;
1073 };
1074 
1075 /*
1076  * For superblock
1077  */
1078 /*
1079  * COUNT_TYPE for monitoring
1080  *
1081  * f2fs monitors the number of several block types such as on-writeback,
1082  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1083  */
1084 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1085 enum count_type {
1086 	F2FS_DIRTY_DENTS,
1087 	F2FS_DIRTY_DATA,
1088 	F2FS_DIRTY_QDATA,
1089 	F2FS_DIRTY_NODES,
1090 	F2FS_DIRTY_META,
1091 	F2FS_DIRTY_IMETA,
1092 	F2FS_WB_CP_DATA,
1093 	F2FS_WB_DATA,
1094 	F2FS_RD_DATA,
1095 	F2FS_RD_NODE,
1096 	F2FS_RD_META,
1097 	F2FS_DIO_WRITE,
1098 	F2FS_DIO_READ,
1099 	NR_COUNT_TYPE,
1100 };
1101 
1102 /*
1103  * The below are the page types of bios used in submit_bio().
1104  * The available types are:
1105  * DATA			User data pages. It operates as async mode.
1106  * NODE			Node pages. It operates as async mode.
1107  * META			FS metadata pages such as SIT, NAT, CP.
1108  * NR_PAGE_TYPE		The number of page types.
1109  * META_FLUSH		Make sure the previous pages are written
1110  *			with waiting the bio's completion
1111  * ...			Only can be used with META.
1112  */
1113 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1114 enum page_type {
1115 	DATA = 0,
1116 	NODE = 1,	/* should not change this */
1117 	META,
1118 	NR_PAGE_TYPE,
1119 	META_FLUSH,
1120 	IPU,		/* the below types are used by tracepoints only. */
1121 	OPU,
1122 };
1123 
1124 enum temp_type {
1125 	HOT = 0,	/* must be zero for meta bio */
1126 	WARM,
1127 	COLD,
1128 	NR_TEMP_TYPE,
1129 };
1130 
1131 enum need_lock_type {
1132 	LOCK_REQ = 0,
1133 	LOCK_DONE,
1134 	LOCK_RETRY,
1135 };
1136 
1137 enum cp_reason_type {
1138 	CP_NO_NEEDED,
1139 	CP_NON_REGULAR,
1140 	CP_COMPRESSED,
1141 	CP_HARDLINK,
1142 	CP_SB_NEED_CP,
1143 	CP_WRONG_PINO,
1144 	CP_NO_SPC_ROLL,
1145 	CP_NODE_NEED_CP,
1146 	CP_FASTBOOT_MODE,
1147 	CP_SPEC_LOG_NUM,
1148 	CP_RECOVER_DIR,
1149 };
1150 
1151 enum iostat_type {
1152 	/* WRITE IO */
1153 	APP_DIRECT_IO,			/* app direct write IOs */
1154 	APP_BUFFERED_IO,		/* app buffered write IOs */
1155 	APP_WRITE_IO,			/* app write IOs */
1156 	APP_MAPPED_IO,			/* app mapped IOs */
1157 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1158 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1159 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1160 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1161 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1162 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1163 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1164 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1165 
1166 	/* READ IO */
1167 	APP_DIRECT_READ_IO,		/* app direct read IOs */
1168 	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1169 	APP_READ_IO,			/* app read IOs */
1170 	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1171 	FS_DATA_READ_IO,		/* data read IOs */
1172 	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1173 	FS_CDATA_READ_IO,		/* compressed data read IOs */
1174 	FS_NODE_READ_IO,		/* node read IOs */
1175 	FS_META_READ_IO,		/* meta read IOs */
1176 
1177 	/* other */
1178 	FS_DISCARD,			/* discard */
1179 	NR_IO_TYPE,
1180 };
1181 
1182 struct f2fs_io_info {
1183 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1184 	nid_t ino;		/* inode number */
1185 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1186 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1187 	int op;			/* contains REQ_OP_ */
1188 	int op_flags;		/* req_flag_bits */
1189 	block_t new_blkaddr;	/* new block address to be written */
1190 	block_t old_blkaddr;	/* old block address before Cow */
1191 	struct page *page;	/* page to be written */
1192 	struct page *encrypted_page;	/* encrypted page */
1193 	struct page *compressed_page;	/* compressed page */
1194 	struct list_head list;		/* serialize IOs */
1195 	bool submitted;		/* indicate IO submission */
1196 	int need_lock;		/* indicate we need to lock cp_rwsem */
1197 	bool in_list;		/* indicate fio is in io_list */
1198 	bool is_por;		/* indicate IO is from recovery or not */
1199 	bool retry;		/* need to reallocate block address */
1200 	int compr_blocks;	/* # of compressed block addresses */
1201 	bool encrypted;		/* indicate file is encrypted */
1202 	enum iostat_type io_type;	/* io type */
1203 	struct writeback_control *io_wbc; /* writeback control */
1204 	struct bio **bio;		/* bio for ipu */
1205 	sector_t *last_block;		/* last block number in bio */
1206 	unsigned char version;		/* version of the node */
1207 };
1208 
1209 struct bio_entry {
1210 	struct bio *bio;
1211 	struct list_head list;
1212 };
1213 
1214 #define is_read_io(rw) ((rw) == READ)
1215 struct f2fs_bio_info {
1216 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1217 	struct bio *bio;		/* bios to merge */
1218 	sector_t last_block_in_bio;	/* last block number */
1219 	struct f2fs_io_info fio;	/* store buffered io info. */
1220 	struct f2fs_rwsem io_rwsem;	/* blocking op for bio */
1221 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1222 	struct list_head io_list;	/* track fios */
1223 	struct list_head bio_list;	/* bio entry list head */
1224 	struct f2fs_rwsem bio_list_lock;	/* lock to protect bio entry list */
1225 };
1226 
1227 #define FDEV(i)				(sbi->devs[i])
1228 #define RDEV(i)				(raw_super->devs[i])
1229 struct f2fs_dev_info {
1230 	struct block_device *bdev;
1231 	char path[MAX_PATH_LEN];
1232 	unsigned int total_segments;
1233 	block_t start_blk;
1234 	block_t end_blk;
1235 #ifdef CONFIG_BLK_DEV_ZONED
1236 	unsigned int nr_blkz;		/* Total number of zones */
1237 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1238 	block_t *zone_capacity_blocks;  /* Array of zone capacity in blks */
1239 #endif
1240 };
1241 
1242 enum inode_type {
1243 	DIR_INODE,			/* for dirty dir inode */
1244 	FILE_INODE,			/* for dirty regular/symlink inode */
1245 	DIRTY_META,			/* for all dirtied inode metadata */
1246 	ATOMIC_FILE,			/* for all atomic files */
1247 	NR_INODE_TYPE,
1248 };
1249 
1250 /* for inner inode cache management */
1251 struct inode_management {
1252 	struct radix_tree_root ino_root;	/* ino entry array */
1253 	spinlock_t ino_lock;			/* for ino entry lock */
1254 	struct list_head ino_list;		/* inode list head */
1255 	unsigned long ino_num;			/* number of entries */
1256 };
1257 
1258 /* for GC_AT */
1259 struct atgc_management {
1260 	bool atgc_enabled;			/* ATGC is enabled or not */
1261 	struct rb_root_cached root;		/* root of victim rb-tree */
1262 	struct list_head victim_list;		/* linked with all victim entries */
1263 	unsigned int victim_count;		/* victim count in rb-tree */
1264 	unsigned int candidate_ratio;		/* candidate ratio */
1265 	unsigned int max_candidate_count;	/* max candidate count */
1266 	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1267 	unsigned long long age_threshold;	/* age threshold */
1268 };
1269 
1270 struct f2fs_gc_control {
1271 	unsigned int victim_segno;	/* target victim segment number */
1272 	int init_gc_type;		/* FG_GC or BG_GC */
1273 	bool no_bg_gc;			/* check the space and stop bg_gc */
1274 	bool should_migrate_blocks;	/* should migrate blocks */
1275 	bool err_gc_skipped;		/* return EAGAIN if GC skipped */
1276 	unsigned int nr_free_secs;	/* # of free sections to do GC */
1277 };
1278 
1279 /* For s_flag in struct f2fs_sb_info */
1280 enum {
1281 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1282 	SBI_IS_CLOSE,				/* specify unmounting */
1283 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1284 	SBI_POR_DOING,				/* recovery is doing or not */
1285 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1286 	SBI_NEED_CP,				/* need to checkpoint */
1287 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1288 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1289 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1290 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1291 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1292 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1293 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1294 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1295 	SBI_IS_FREEZING,			/* freezefs is in process */
1296 };
1297 
1298 enum {
1299 	CP_TIME,
1300 	REQ_TIME,
1301 	DISCARD_TIME,
1302 	GC_TIME,
1303 	DISABLE_TIME,
1304 	UMOUNT_DISCARD_TIMEOUT,
1305 	MAX_TIME,
1306 };
1307 
1308 enum {
1309 	GC_NORMAL,
1310 	GC_IDLE_CB,
1311 	GC_IDLE_GREEDY,
1312 	GC_IDLE_AT,
1313 	GC_URGENT_HIGH,
1314 	GC_URGENT_LOW,
1315 	GC_URGENT_MID,
1316 	MAX_GC_MODE,
1317 };
1318 
1319 enum {
1320 	BGGC_MODE_ON,		/* background gc is on */
1321 	BGGC_MODE_OFF,		/* background gc is off */
1322 	BGGC_MODE_SYNC,		/*
1323 				 * background gc is on, migrating blocks
1324 				 * like foreground gc
1325 				 */
1326 };
1327 
1328 enum {
1329 	FS_MODE_ADAPTIVE,		/* use both lfs/ssr allocation */
1330 	FS_MODE_LFS,			/* use lfs allocation only */
1331 	FS_MODE_FRAGMENT_SEG,		/* segment fragmentation mode */
1332 	FS_MODE_FRAGMENT_BLK,		/* block fragmentation mode */
1333 };
1334 
1335 enum {
1336 	ALLOC_MODE_DEFAULT,	/* stay default */
1337 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1338 };
1339 
1340 enum fsync_mode {
1341 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1342 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1343 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1344 };
1345 
1346 enum {
1347 	COMPR_MODE_FS,		/*
1348 				 * automatically compress compression
1349 				 * enabled files
1350 				 */
1351 	COMPR_MODE_USER,	/*
1352 				 * automatical compression is disabled.
1353 				 * user can control the file compression
1354 				 * using ioctls
1355 				 */
1356 };
1357 
1358 enum {
1359 	DISCARD_UNIT_BLOCK,	/* basic discard unit is block */
1360 	DISCARD_UNIT_SEGMENT,	/* basic discard unit is segment */
1361 	DISCARD_UNIT_SECTION,	/* basic discard unit is section */
1362 };
1363 
1364 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1365 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1366 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1367 
1368 /*
1369  * Layout of f2fs page.private:
1370  *
1371  * Layout A: lowest bit should be 1
1372  * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1373  * bit 0	PAGE_PRIVATE_NOT_POINTER
1374  * bit 1	PAGE_PRIVATE_ATOMIC_WRITE
1375  * bit 2	PAGE_PRIVATE_DUMMY_WRITE
1376  * bit 3	PAGE_PRIVATE_ONGOING_MIGRATION
1377  * bit 4	PAGE_PRIVATE_INLINE_INODE
1378  * bit 5	PAGE_PRIVATE_REF_RESOURCE
1379  * bit 6-	f2fs private data
1380  *
1381  * Layout B: lowest bit should be 0
1382  * page.private is a wrapped pointer.
1383  */
1384 enum {
1385 	PAGE_PRIVATE_NOT_POINTER,		/* private contains non-pointer data */
1386 	PAGE_PRIVATE_ATOMIC_WRITE,		/* data page from atomic write path */
1387 	PAGE_PRIVATE_DUMMY_WRITE,		/* data page for padding aligned IO */
1388 	PAGE_PRIVATE_ONGOING_MIGRATION,		/* data page which is on-going migrating */
1389 	PAGE_PRIVATE_INLINE_INODE,		/* inode page contains inline data */
1390 	PAGE_PRIVATE_REF_RESOURCE,		/* dirty page has referenced resources */
1391 	PAGE_PRIVATE_MAX
1392 };
1393 
1394 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
1395 static inline bool page_private_##name(struct page *page) \
1396 { \
1397 	return PagePrivate(page) && \
1398 		test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
1399 		test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1400 }
1401 
1402 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
1403 static inline void set_page_private_##name(struct page *page) \
1404 { \
1405 	if (!PagePrivate(page)) { \
1406 		get_page(page); \
1407 		SetPagePrivate(page); \
1408 		set_page_private(page, 0); \
1409 	} \
1410 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
1411 	set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1412 }
1413 
1414 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
1415 static inline void clear_page_private_##name(struct page *page) \
1416 { \
1417 	clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1418 	if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) { \
1419 		set_page_private(page, 0); \
1420 		if (PagePrivate(page)) { \
1421 			ClearPagePrivate(page); \
1422 			put_page(page); \
1423 		}\
1424 	} \
1425 }
1426 
1427 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
1428 PAGE_PRIVATE_GET_FUNC(reference, REF_RESOURCE);
1429 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
1430 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
1431 PAGE_PRIVATE_GET_FUNC(atomic, ATOMIC_WRITE);
1432 PAGE_PRIVATE_GET_FUNC(dummy, DUMMY_WRITE);
1433 
1434 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
1435 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
1436 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
1437 PAGE_PRIVATE_SET_FUNC(atomic, ATOMIC_WRITE);
1438 PAGE_PRIVATE_SET_FUNC(dummy, DUMMY_WRITE);
1439 
1440 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
1441 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
1442 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
1443 PAGE_PRIVATE_CLEAR_FUNC(atomic, ATOMIC_WRITE);
1444 PAGE_PRIVATE_CLEAR_FUNC(dummy, DUMMY_WRITE);
1445 
get_page_private_data(struct page * page)1446 static inline unsigned long get_page_private_data(struct page *page)
1447 {
1448 	unsigned long data = page_private(page);
1449 
1450 	if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
1451 		return 0;
1452 	return data >> PAGE_PRIVATE_MAX;
1453 }
1454 
set_page_private_data(struct page * page,unsigned long data)1455 static inline void set_page_private_data(struct page *page, unsigned long data)
1456 {
1457 	if (!PagePrivate(page)) {
1458 		get_page(page);
1459 		SetPagePrivate(page);
1460 		set_page_private(page, 0);
1461 	}
1462 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
1463 	page_private(page) |= data << PAGE_PRIVATE_MAX;
1464 }
1465 
clear_page_private_data(struct page * page)1466 static inline void clear_page_private_data(struct page *page)
1467 {
1468 	page_private(page) &= (1 << PAGE_PRIVATE_MAX) - 1;
1469 	if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) {
1470 		set_page_private(page, 0);
1471 		if (PagePrivate(page)) {
1472 			ClearPagePrivate(page);
1473 			put_page(page);
1474 		}
1475 	}
1476 }
1477 
1478 /* For compression */
1479 enum compress_algorithm_type {
1480 	COMPRESS_LZO,
1481 	COMPRESS_LZ4,
1482 	COMPRESS_ZSTD,
1483 	COMPRESS_LZORLE,
1484 	COMPRESS_MAX,
1485 };
1486 
1487 enum compress_flag {
1488 	COMPRESS_CHKSUM,
1489 	COMPRESS_MAX_FLAG,
1490 };
1491 
1492 #define	COMPRESS_WATERMARK			20
1493 #define	COMPRESS_PERCENT			20
1494 
1495 #define COMPRESS_DATA_RESERVED_SIZE		4
1496 struct compress_data {
1497 	__le32 clen;			/* compressed data size */
1498 	__le32 chksum;			/* compressed data chksum */
1499 	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1500 	u8 cdata[];			/* compressed data */
1501 };
1502 
1503 #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1504 
1505 #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1506 
1507 #define	COMPRESS_LEVEL_OFFSET	8
1508 
1509 /* compress context */
1510 struct compress_ctx {
1511 	struct inode *inode;		/* inode the context belong to */
1512 	pgoff_t cluster_idx;		/* cluster index number */
1513 	unsigned int cluster_size;	/* page count in cluster */
1514 	unsigned int log_cluster_size;	/* log of cluster size */
1515 	struct page **rpages;		/* pages store raw data in cluster */
1516 	unsigned int nr_rpages;		/* total page number in rpages */
1517 	struct page **cpages;		/* pages store compressed data in cluster */
1518 	unsigned int nr_cpages;		/* total page number in cpages */
1519 	unsigned int valid_nr_cpages;	/* valid page number in cpages */
1520 	void *rbuf;			/* virtual mapped address on rpages */
1521 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1522 	size_t rlen;			/* valid data length in rbuf */
1523 	size_t clen;			/* valid data length in cbuf */
1524 	void *private;			/* payload buffer for specified compression algorithm */
1525 	void *private2;			/* extra payload buffer */
1526 };
1527 
1528 /* compress context for write IO path */
1529 struct compress_io_ctx {
1530 	u32 magic;			/* magic number to indicate page is compressed */
1531 	struct inode *inode;		/* inode the context belong to */
1532 	struct page **rpages;		/* pages store raw data in cluster */
1533 	unsigned int nr_rpages;		/* total page number in rpages */
1534 	atomic_t pending_pages;		/* in-flight compressed page count */
1535 };
1536 
1537 /* Context for decompressing one cluster on the read IO path */
1538 struct decompress_io_ctx {
1539 	u32 magic;			/* magic number to indicate page is compressed */
1540 	struct inode *inode;		/* inode the context belong to */
1541 	pgoff_t cluster_idx;		/* cluster index number */
1542 	unsigned int cluster_size;	/* page count in cluster */
1543 	unsigned int log_cluster_size;	/* log of cluster size */
1544 	struct page **rpages;		/* pages store raw data in cluster */
1545 	unsigned int nr_rpages;		/* total page number in rpages */
1546 	struct page **cpages;		/* pages store compressed data in cluster */
1547 	unsigned int nr_cpages;		/* total page number in cpages */
1548 	struct page **tpages;		/* temp pages to pad holes in cluster */
1549 	void *rbuf;			/* virtual mapped address on rpages */
1550 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1551 	size_t rlen;			/* valid data length in rbuf */
1552 	size_t clen;			/* valid data length in cbuf */
1553 
1554 	/*
1555 	 * The number of compressed pages remaining to be read in this cluster.
1556 	 * This is initially nr_cpages.  It is decremented by 1 each time a page
1557 	 * has been read (or failed to be read).  When it reaches 0, the cluster
1558 	 * is decompressed (or an error is reported).
1559 	 *
1560 	 * If an error occurs before all the pages have been submitted for I/O,
1561 	 * then this will never reach 0.  In this case the I/O submitter is
1562 	 * responsible for calling f2fs_decompress_end_io() instead.
1563 	 */
1564 	atomic_t remaining_pages;
1565 
1566 	/*
1567 	 * Number of references to this decompress_io_ctx.
1568 	 *
1569 	 * One reference is held for I/O completion.  This reference is dropped
1570 	 * after the pagecache pages are updated and unlocked -- either after
1571 	 * decompression (and verity if enabled), or after an error.
1572 	 *
1573 	 * In addition, each compressed page holds a reference while it is in a
1574 	 * bio.  These references are necessary prevent compressed pages from
1575 	 * being freed while they are still in a bio.
1576 	 */
1577 	refcount_t refcnt;
1578 
1579 	bool failed;			/* IO error occurred before decompression? */
1580 	bool need_verity;		/* need fs-verity verification after decompression? */
1581 	void *private;			/* payload buffer for specified decompression algorithm */
1582 	void *private2;			/* extra payload buffer */
1583 	struct work_struct verity_work;	/* work to verify the decompressed pages */
1584 };
1585 
1586 #define NULL_CLUSTER			((unsigned int)(~0))
1587 #define MIN_COMPRESS_LOG_SIZE		2
1588 #define MAX_COMPRESS_LOG_SIZE		8
1589 #define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1590 
1591 struct f2fs_sb_info {
1592 	struct super_block *sb;			/* pointer to VFS super block */
1593 	struct proc_dir_entry *s_proc;		/* proc entry */
1594 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1595 	struct f2fs_rwsem sb_lock;		/* lock for raw super block */
1596 	int valid_super_block;			/* valid super block no */
1597 	unsigned long s_flag;				/* flags for sbi */
1598 	struct mutex writepages;		/* mutex for writepages() */
1599 
1600 #ifdef CONFIG_BLK_DEV_ZONED
1601 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1602 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1603 #endif
1604 
1605 	/* for node-related operations */
1606 	struct f2fs_nm_info *nm_info;		/* node manager */
1607 	struct inode *node_inode;		/* cache node blocks */
1608 
1609 	/* for segment-related operations */
1610 	struct f2fs_sm_info *sm_info;		/* segment manager */
1611 
1612 	/* for bio operations */
1613 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1614 	/* keep migration IO order for LFS mode */
1615 	struct f2fs_rwsem io_order_lock;
1616 	mempool_t *write_io_dummy;		/* Dummy pages */
1617 	pgoff_t page_eio_ofs[NR_PAGE_TYPE];	/* EIO page offset */
1618 	int page_eio_cnt[NR_PAGE_TYPE];		/* EIO count */
1619 
1620 	/* for checkpoint */
1621 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1622 	int cur_cp_pack;			/* remain current cp pack */
1623 	spinlock_t cp_lock;			/* for flag in ckpt */
1624 	struct inode *meta_inode;		/* cache meta blocks */
1625 	struct f2fs_rwsem cp_global_sem;	/* checkpoint procedure lock */
1626 	struct f2fs_rwsem cp_rwsem;		/* blocking FS operations */
1627 	struct f2fs_rwsem node_write;		/* locking node writes */
1628 	struct f2fs_rwsem node_change;	/* locking node change */
1629 	wait_queue_head_t cp_wait;
1630 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1631 	long interval_time[MAX_TIME];		/* to store thresholds */
1632 	struct ckpt_req_control cprc_info;	/* for checkpoint request control */
1633 
1634 	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1635 
1636 	spinlock_t fsync_node_lock;		/* for node entry lock */
1637 	struct list_head fsync_node_list;	/* node list head */
1638 	unsigned int fsync_seg_id;		/* sequence id */
1639 	unsigned int fsync_node_num;		/* number of node entries */
1640 
1641 	/* for orphan inode, use 0'th array */
1642 	unsigned int max_orphans;		/* max orphan inodes */
1643 
1644 	/* for inode management */
1645 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1646 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1647 	struct mutex flush_lock;		/* for flush exclusion */
1648 
1649 	/* for extent tree cache */
1650 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1651 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1652 	struct list_head extent_list;		/* lru list for shrinker */
1653 	spinlock_t extent_lock;			/* locking extent lru list */
1654 	atomic_t total_ext_tree;		/* extent tree count */
1655 	struct list_head zombie_list;		/* extent zombie tree list */
1656 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1657 	atomic_t total_ext_node;		/* extent info count */
1658 
1659 	/* basic filesystem units */
1660 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1661 	unsigned int log_blocksize;		/* log2 block size */
1662 	unsigned int blocksize;			/* block size */
1663 	unsigned int root_ino_num;		/* root inode number*/
1664 	unsigned int node_ino_num;		/* node inode number*/
1665 	unsigned int meta_ino_num;		/* meta inode number*/
1666 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1667 	unsigned int blocks_per_seg;		/* blocks per segment */
1668 	unsigned int segs_per_sec;		/* segments per section */
1669 	unsigned int secs_per_zone;		/* sections per zone */
1670 	unsigned int total_sections;		/* total section count */
1671 	unsigned int total_node_count;		/* total node block count */
1672 	unsigned int total_valid_node_count;	/* valid node block count */
1673 	int dir_level;				/* directory level */
1674 	int readdir_ra;				/* readahead inode in readdir */
1675 	u64 max_io_bytes;			/* max io bytes to merge IOs */
1676 
1677 	block_t user_block_count;		/* # of user blocks */
1678 	block_t total_valid_block_count;	/* # of valid blocks */
1679 	block_t discard_blks;			/* discard command candidats */
1680 	block_t last_valid_block_count;		/* for recovery */
1681 	block_t reserved_blocks;		/* configurable reserved blocks */
1682 	block_t current_reserved_blocks;	/* current reserved blocks */
1683 
1684 	/* Additional tracking for no checkpoint mode */
1685 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1686 
1687 	unsigned int nquota_files;		/* # of quota sysfile */
1688 	struct f2fs_rwsem quota_sem;		/* blocking cp for flags */
1689 
1690 	/* # of pages, see count_type */
1691 	atomic_t nr_pages[NR_COUNT_TYPE];
1692 	/* # of allocated blocks */
1693 	struct percpu_counter alloc_valid_block_count;
1694 	/* # of node block writes as roll forward recovery */
1695 	struct percpu_counter rf_node_block_count;
1696 
1697 	/* writeback control */
1698 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1699 
1700 	/* valid inode count */
1701 	struct percpu_counter total_valid_inode_count;
1702 
1703 	struct f2fs_mount_info mount_opt;	/* mount options */
1704 
1705 	/* for cleaning operations */
1706 	struct f2fs_rwsem gc_lock;		/*
1707 						 * semaphore for GC, avoid
1708 						 * race between GC and GC or CP
1709 						 */
1710 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1711 	struct atgc_management am;		/* atgc management */
1712 	unsigned int cur_victim_sec;		/* current victim section num */
1713 	unsigned int gc_mode;			/* current GC state */
1714 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1715 	spinlock_t gc_urgent_high_lock;
1716 	bool gc_urgent_high_limited;		/* indicates having limited trial count */
1717 	unsigned int gc_urgent_high_remaining;	/* remaining trial count for GC_URGENT_HIGH */
1718 
1719 	/* for skip statistic */
1720 	unsigned int atomic_files;		/* # of opened atomic file */
1721 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1722 
1723 	/* threshold for gc trials on pinned files */
1724 	u64 gc_pin_file_threshold;
1725 	struct f2fs_rwsem pin_sem;
1726 
1727 	/* maximum # of trials to find a victim segment for SSR and GC */
1728 	unsigned int max_victim_search;
1729 	/* migration granularity of garbage collection, unit: segment */
1730 	unsigned int migration_granularity;
1731 
1732 	/*
1733 	 * for stat information.
1734 	 * one is for the LFS mode, and the other is for the SSR mode.
1735 	 */
1736 #ifdef CONFIG_F2FS_STAT_FS
1737 	struct f2fs_stat_info *stat_info;	/* FS status information */
1738 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1739 	unsigned int segment_count[2];		/* # of allocated segments */
1740 	unsigned int block_count[2];		/* # of allocated blocks */
1741 	atomic_t inplace_count;		/* # of inplace update */
1742 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1743 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1744 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1745 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1746 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1747 	atomic_t inline_inode;			/* # of inline_data inodes */
1748 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1749 	atomic_t compr_inode;			/* # of compressed inodes */
1750 	atomic64_t compr_blocks;		/* # of compressed blocks */
1751 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1752 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1753 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1754 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1755 #endif
1756 	spinlock_t stat_lock;			/* lock for stat operations */
1757 
1758 	/* to attach REQ_META|REQ_FUA flags */
1759 	unsigned int data_io_flag;
1760 	unsigned int node_io_flag;
1761 
1762 	/* For sysfs support */
1763 	struct kobject s_kobj;			/* /sys/fs/f2fs/<devname> */
1764 	struct completion s_kobj_unregister;
1765 
1766 	struct kobject s_stat_kobj;		/* /sys/fs/f2fs/<devname>/stat */
1767 	struct completion s_stat_kobj_unregister;
1768 
1769 	struct kobject s_feature_list_kobj;		/* /sys/fs/f2fs/<devname>/feature_list */
1770 	struct completion s_feature_list_kobj_unregister;
1771 
1772 	/* For shrinker support */
1773 	struct list_head s_list;
1774 	struct mutex umount_mutex;
1775 	unsigned int shrinker_run_no;
1776 
1777 	/* For multi devices */
1778 	int s_ndevs;				/* number of devices */
1779 	struct f2fs_dev_info *devs;		/* for device list */
1780 	unsigned int dirty_device;		/* for checkpoint data flush */
1781 	spinlock_t dev_lock;			/* protect dirty_device */
1782 	bool aligned_blksize;			/* all devices has the same logical blksize */
1783 
1784 	/* For write statistics */
1785 	u64 sectors_written_start;
1786 	u64 kbytes_written;
1787 
1788 	/* Reference to checksum algorithm driver via cryptoapi */
1789 	struct crypto_shash *s_chksum_driver;
1790 
1791 	/* Precomputed FS UUID checksum for seeding other checksums */
1792 	__u32 s_chksum_seed;
1793 
1794 	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1795 
1796 	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1797 	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1798 
1799 	/* For reclaimed segs statistics per each GC mode */
1800 	unsigned int gc_segment_mode;		/* GC state for reclaimed segments */
1801 	unsigned int gc_reclaimed_segs[MAX_GC_MODE];	/* Reclaimed segs for each mode */
1802 
1803 	unsigned long seq_file_ra_mul;		/* multiplier for ra_pages of seq. files in fadvise */
1804 
1805 	int max_fragment_chunk;			/* max chunk size for block fragmentation mode */
1806 	int max_fragment_hole;			/* max hole size for block fragmentation mode */
1807 
1808 #ifdef CONFIG_F2FS_FS_COMPRESSION
1809 	struct kmem_cache *page_array_slab;	/* page array entry */
1810 	unsigned int page_array_slab_size;	/* default page array slab size */
1811 
1812 	/* For runtime compression statistics */
1813 	u64 compr_written_block;
1814 	u64 compr_saved_block;
1815 	u32 compr_new_inode;
1816 
1817 	/* For compressed block cache */
1818 	struct inode *compress_inode;		/* cache compressed blocks */
1819 	unsigned int compress_percent;		/* cache page percentage */
1820 	unsigned int compress_watermark;	/* cache page watermark */
1821 	atomic_t compress_page_hit;		/* cache hit count */
1822 #endif
1823 
1824 #ifdef CONFIG_F2FS_IOSTAT
1825 	/* For app/fs IO statistics */
1826 	spinlock_t iostat_lock;
1827 	unsigned long long rw_iostat[NR_IO_TYPE];
1828 	unsigned long long prev_rw_iostat[NR_IO_TYPE];
1829 	bool iostat_enable;
1830 	unsigned long iostat_next_period;
1831 	unsigned int iostat_period_ms;
1832 
1833 	/* For io latency related statistics info in one iostat period */
1834 	spinlock_t iostat_lat_lock;
1835 	struct iostat_lat_info *iostat_io_lat;
1836 #endif
1837 };
1838 
1839 #ifdef CONFIG_F2FS_FAULT_INJECTION
1840 #define f2fs_show_injection_info(sbi, type)					\
1841 	printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n",	\
1842 		KERN_INFO, sbi->sb->s_id,				\
1843 		f2fs_fault_name[type],					\
1844 		__func__, __builtin_return_address(0))
time_to_inject(struct f2fs_sb_info * sbi,int type)1845 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1846 {
1847 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1848 
1849 	if (!ffi->inject_rate)
1850 		return false;
1851 
1852 	if (!IS_FAULT_SET(ffi, type))
1853 		return false;
1854 
1855 	atomic_inc(&ffi->inject_ops);
1856 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1857 		atomic_set(&ffi->inject_ops, 0);
1858 		return true;
1859 	}
1860 	return false;
1861 }
1862 #else
1863 #define f2fs_show_injection_info(sbi, type) do { } while (0)
time_to_inject(struct f2fs_sb_info * sbi,int type)1864 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1865 {
1866 	return false;
1867 }
1868 #endif
1869 
1870 /*
1871  * Test if the mounted volume is a multi-device volume.
1872  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1873  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1874  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1875  */
f2fs_is_multi_device(struct f2fs_sb_info * sbi)1876 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1877 {
1878 	return sbi->s_ndevs > 1;
1879 }
1880 
f2fs_update_time(struct f2fs_sb_info * sbi,int type)1881 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1882 {
1883 	unsigned long now = jiffies;
1884 
1885 	sbi->last_time[type] = now;
1886 
1887 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1888 	if (type == REQ_TIME) {
1889 		sbi->last_time[DISCARD_TIME] = now;
1890 		sbi->last_time[GC_TIME] = now;
1891 	}
1892 }
1893 
f2fs_time_over(struct f2fs_sb_info * sbi,int type)1894 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1895 {
1896 	unsigned long interval = sbi->interval_time[type] * HZ;
1897 
1898 	return time_after(jiffies, sbi->last_time[type] + interval);
1899 }
1900 
f2fs_time_to_wait(struct f2fs_sb_info * sbi,int type)1901 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1902 						int type)
1903 {
1904 	unsigned long interval = sbi->interval_time[type] * HZ;
1905 	unsigned int wait_ms = 0;
1906 	long delta;
1907 
1908 	delta = (sbi->last_time[type] + interval) - jiffies;
1909 	if (delta > 0)
1910 		wait_ms = jiffies_to_msecs(delta);
1911 
1912 	return wait_ms;
1913 }
1914 
1915 /*
1916  * Inline functions
1917  */
__f2fs_crc32(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1918 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1919 			      const void *address, unsigned int length)
1920 {
1921 	struct {
1922 		struct shash_desc shash;
1923 		char ctx[4];
1924 	} desc;
1925 	int err;
1926 
1927 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1928 
1929 	desc.shash.tfm = sbi->s_chksum_driver;
1930 	*(u32 *)desc.ctx = crc;
1931 
1932 	err = crypto_shash_update(&desc.shash, address, length);
1933 	BUG_ON(err);
1934 
1935 	return *(u32 *)desc.ctx;
1936 }
1937 
f2fs_crc32(struct f2fs_sb_info * sbi,const void * address,unsigned int length)1938 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1939 			   unsigned int length)
1940 {
1941 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1942 }
1943 
f2fs_crc_valid(struct f2fs_sb_info * sbi,__u32 blk_crc,void * buf,size_t buf_size)1944 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1945 				  void *buf, size_t buf_size)
1946 {
1947 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1948 }
1949 
f2fs_chksum(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1950 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1951 			      const void *address, unsigned int length)
1952 {
1953 	return __f2fs_crc32(sbi, crc, address, length);
1954 }
1955 
F2FS_I(struct inode * inode)1956 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1957 {
1958 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1959 }
1960 
F2FS_SB(struct super_block * sb)1961 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1962 {
1963 	return sb->s_fs_info;
1964 }
1965 
F2FS_I_SB(struct inode * inode)1966 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1967 {
1968 	return F2FS_SB(inode->i_sb);
1969 }
1970 
F2FS_M_SB(struct address_space * mapping)1971 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1972 {
1973 	return F2FS_I_SB(mapping->host);
1974 }
1975 
F2FS_P_SB(struct page * page)1976 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1977 {
1978 	return F2FS_M_SB(page_file_mapping(page));
1979 }
1980 
F2FS_RAW_SUPER(struct f2fs_sb_info * sbi)1981 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1982 {
1983 	return (struct f2fs_super_block *)(sbi->raw_super);
1984 }
1985 
F2FS_CKPT(struct f2fs_sb_info * sbi)1986 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1987 {
1988 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1989 }
1990 
F2FS_NODE(struct page * page)1991 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1992 {
1993 	return (struct f2fs_node *)page_address(page);
1994 }
1995 
F2FS_INODE(struct page * page)1996 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1997 {
1998 	return &((struct f2fs_node *)page_address(page))->i;
1999 }
2000 
NM_I(struct f2fs_sb_info * sbi)2001 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
2002 {
2003 	return (struct f2fs_nm_info *)(sbi->nm_info);
2004 }
2005 
SM_I(struct f2fs_sb_info * sbi)2006 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
2007 {
2008 	return (struct f2fs_sm_info *)(sbi->sm_info);
2009 }
2010 
SIT_I(struct f2fs_sb_info * sbi)2011 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
2012 {
2013 	return (struct sit_info *)(SM_I(sbi)->sit_info);
2014 }
2015 
FREE_I(struct f2fs_sb_info * sbi)2016 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
2017 {
2018 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
2019 }
2020 
DIRTY_I(struct f2fs_sb_info * sbi)2021 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
2022 {
2023 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
2024 }
2025 
META_MAPPING(struct f2fs_sb_info * sbi)2026 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
2027 {
2028 	return sbi->meta_inode->i_mapping;
2029 }
2030 
NODE_MAPPING(struct f2fs_sb_info * sbi)2031 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
2032 {
2033 	return sbi->node_inode->i_mapping;
2034 }
2035 
is_sbi_flag_set(struct f2fs_sb_info * sbi,unsigned int type)2036 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
2037 {
2038 	return test_bit(type, &sbi->s_flag);
2039 }
2040 
set_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)2041 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2042 {
2043 	set_bit(type, &sbi->s_flag);
2044 }
2045 
clear_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)2046 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2047 {
2048 	clear_bit(type, &sbi->s_flag);
2049 }
2050 
cur_cp_version(struct f2fs_checkpoint * cp)2051 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2052 {
2053 	return le64_to_cpu(cp->checkpoint_ver);
2054 }
2055 
f2fs_qf_ino(struct super_block * sb,int type)2056 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2057 {
2058 	if (type < F2FS_MAX_QUOTAS)
2059 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2060 	return 0;
2061 }
2062 
cur_cp_crc(struct f2fs_checkpoint * cp)2063 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2064 {
2065 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2066 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2067 }
2068 
__is_set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2069 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2070 {
2071 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2072 
2073 	return ckpt_flags & f;
2074 }
2075 
is_set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2076 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2077 {
2078 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2079 }
2080 
__set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2081 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2082 {
2083 	unsigned int ckpt_flags;
2084 
2085 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2086 	ckpt_flags |= f;
2087 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2088 }
2089 
set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2090 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2091 {
2092 	unsigned long flags;
2093 
2094 	spin_lock_irqsave(&sbi->cp_lock, flags);
2095 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
2096 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2097 }
2098 
__clear_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2099 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2100 {
2101 	unsigned int ckpt_flags;
2102 
2103 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2104 	ckpt_flags &= (~f);
2105 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2106 }
2107 
clear_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2108 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2109 {
2110 	unsigned long flags;
2111 
2112 	spin_lock_irqsave(&sbi->cp_lock, flags);
2113 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
2114 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2115 }
2116 
2117 #define init_f2fs_rwsem(sem)					\
2118 do {								\
2119 	static struct lock_class_key __key;			\
2120 								\
2121 	__init_f2fs_rwsem((sem), #sem, &__key);			\
2122 } while (0)
2123 
__init_f2fs_rwsem(struct f2fs_rwsem * sem,const char * sem_name,struct lock_class_key * key)2124 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem,
2125 		const char *sem_name, struct lock_class_key *key)
2126 {
2127 	__init_rwsem(&sem->internal_rwsem, sem_name, key);
2128 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2129 	init_waitqueue_head(&sem->read_waiters);
2130 #endif
2131 }
2132 
f2fs_rwsem_is_locked(struct f2fs_rwsem * sem)2133 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem)
2134 {
2135 	return rwsem_is_locked(&sem->internal_rwsem);
2136 }
2137 
f2fs_rwsem_is_contended(struct f2fs_rwsem * sem)2138 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem)
2139 {
2140 	return rwsem_is_contended(&sem->internal_rwsem);
2141 }
2142 
f2fs_down_read(struct f2fs_rwsem * sem)2143 static inline void f2fs_down_read(struct f2fs_rwsem *sem)
2144 {
2145 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2146 	wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem));
2147 #else
2148 	down_read(&sem->internal_rwsem);
2149 #endif
2150 }
2151 
f2fs_down_read_trylock(struct f2fs_rwsem * sem)2152 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem)
2153 {
2154 	return down_read_trylock(&sem->internal_rwsem);
2155 }
2156 
2157 #ifdef CONFIG_DEBUG_LOCK_ALLOC
f2fs_down_read_nested(struct f2fs_rwsem * sem,int subclass)2158 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass)
2159 {
2160 	down_read_nested(&sem->internal_rwsem, subclass);
2161 }
2162 #else
2163 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem)
2164 #endif
2165 
f2fs_up_read(struct f2fs_rwsem * sem)2166 static inline void f2fs_up_read(struct f2fs_rwsem *sem)
2167 {
2168 	up_read(&sem->internal_rwsem);
2169 }
2170 
f2fs_down_write(struct f2fs_rwsem * sem)2171 static inline void f2fs_down_write(struct f2fs_rwsem *sem)
2172 {
2173 	down_write(&sem->internal_rwsem);
2174 }
2175 
f2fs_down_write_trylock(struct f2fs_rwsem * sem)2176 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem)
2177 {
2178 	return down_write_trylock(&sem->internal_rwsem);
2179 }
2180 
f2fs_up_write(struct f2fs_rwsem * sem)2181 static inline void f2fs_up_write(struct f2fs_rwsem *sem)
2182 {
2183 	up_write(&sem->internal_rwsem);
2184 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2185 	wake_up_all(&sem->read_waiters);
2186 #endif
2187 }
2188 
f2fs_lock_op(struct f2fs_sb_info * sbi)2189 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2190 {
2191 	f2fs_down_read(&sbi->cp_rwsem);
2192 }
2193 
f2fs_trylock_op(struct f2fs_sb_info * sbi)2194 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2195 {
2196 	if (time_to_inject(sbi, FAULT_LOCK_OP)) {
2197 		f2fs_show_injection_info(sbi, FAULT_LOCK_OP);
2198 		return 0;
2199 	}
2200 	return f2fs_down_read_trylock(&sbi->cp_rwsem);
2201 }
2202 
f2fs_unlock_op(struct f2fs_sb_info * sbi)2203 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2204 {
2205 	f2fs_up_read(&sbi->cp_rwsem);
2206 }
2207 
f2fs_lock_all(struct f2fs_sb_info * sbi)2208 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2209 {
2210 	f2fs_down_write(&sbi->cp_rwsem);
2211 }
2212 
f2fs_unlock_all(struct f2fs_sb_info * sbi)2213 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2214 {
2215 	f2fs_up_write(&sbi->cp_rwsem);
2216 }
2217 
__get_cp_reason(struct f2fs_sb_info * sbi)2218 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2219 {
2220 	int reason = CP_SYNC;
2221 
2222 	if (test_opt(sbi, FASTBOOT))
2223 		reason = CP_FASTBOOT;
2224 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2225 		reason = CP_UMOUNT;
2226 	return reason;
2227 }
2228 
__remain_node_summaries(int reason)2229 static inline bool __remain_node_summaries(int reason)
2230 {
2231 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
2232 }
2233 
__exist_node_summaries(struct f2fs_sb_info * sbi)2234 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2235 {
2236 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2237 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2238 }
2239 
2240 /*
2241  * Check whether the inode has blocks or not
2242  */
F2FS_HAS_BLOCKS(struct inode * inode)2243 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2244 {
2245 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2246 
2247 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2248 }
2249 
f2fs_has_xattr_block(unsigned int ofs)2250 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2251 {
2252 	return ofs == XATTR_NODE_OFFSET;
2253 }
2254 
__allow_reserved_blocks(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)2255 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2256 					struct inode *inode, bool cap)
2257 {
2258 	if (!inode)
2259 		return true;
2260 	if (!test_opt(sbi, RESERVE_ROOT))
2261 		return false;
2262 	if (IS_NOQUOTA(inode))
2263 		return true;
2264 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2265 		return true;
2266 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2267 					in_group_p(F2FS_OPTION(sbi).s_resgid))
2268 		return true;
2269 	if (cap && capable(CAP_SYS_RESOURCE))
2270 		return true;
2271 	return false;
2272 }
2273 
2274 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
inc_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,blkcnt_t * count)2275 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2276 				 struct inode *inode, blkcnt_t *count)
2277 {
2278 	blkcnt_t diff = 0, release = 0;
2279 	block_t avail_user_block_count;
2280 	int ret;
2281 
2282 	ret = dquot_reserve_block(inode, *count);
2283 	if (ret)
2284 		return ret;
2285 
2286 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2287 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2288 		release = *count;
2289 		goto release_quota;
2290 	}
2291 
2292 	/*
2293 	 * let's increase this in prior to actual block count change in order
2294 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2295 	 */
2296 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2297 
2298 	spin_lock(&sbi->stat_lock);
2299 	sbi->total_valid_block_count += (block_t)(*count);
2300 	avail_user_block_count = sbi->user_block_count -
2301 					sbi->current_reserved_blocks;
2302 
2303 	if (!__allow_reserved_blocks(sbi, inode, true))
2304 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2305 
2306 	if (F2FS_IO_ALIGNED(sbi))
2307 		avail_user_block_count -= sbi->blocks_per_seg *
2308 				SM_I(sbi)->additional_reserved_segments;
2309 
2310 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2311 		if (avail_user_block_count > sbi->unusable_block_count)
2312 			avail_user_block_count -= sbi->unusable_block_count;
2313 		else
2314 			avail_user_block_count = 0;
2315 	}
2316 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2317 		diff = sbi->total_valid_block_count - avail_user_block_count;
2318 		if (diff > *count)
2319 			diff = *count;
2320 		*count -= diff;
2321 		release = diff;
2322 		sbi->total_valid_block_count -= diff;
2323 		if (!*count) {
2324 			spin_unlock(&sbi->stat_lock);
2325 			goto enospc;
2326 		}
2327 	}
2328 	spin_unlock(&sbi->stat_lock);
2329 
2330 	if (unlikely(release)) {
2331 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2332 		dquot_release_reservation_block(inode, release);
2333 	}
2334 	f2fs_i_blocks_write(inode, *count, true, true);
2335 	return 0;
2336 
2337 enospc:
2338 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2339 release_quota:
2340 	dquot_release_reservation_block(inode, release);
2341 	return -ENOSPC;
2342 }
2343 
2344 __printf(2, 3)
2345 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2346 
2347 #define f2fs_err(sbi, fmt, ...)						\
2348 	f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2349 #define f2fs_warn(sbi, fmt, ...)					\
2350 	f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2351 #define f2fs_notice(sbi, fmt, ...)					\
2352 	f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2353 #define f2fs_info(sbi, fmt, ...)					\
2354 	f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2355 #define f2fs_debug(sbi, fmt, ...)					\
2356 	f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2357 
dec_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,block_t count)2358 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2359 						struct inode *inode,
2360 						block_t count)
2361 {
2362 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2363 
2364 	spin_lock(&sbi->stat_lock);
2365 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2366 	sbi->total_valid_block_count -= (block_t)count;
2367 	if (sbi->reserved_blocks &&
2368 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2369 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2370 					sbi->current_reserved_blocks + count);
2371 	spin_unlock(&sbi->stat_lock);
2372 	if (unlikely(inode->i_blocks < sectors)) {
2373 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2374 			  inode->i_ino,
2375 			  (unsigned long long)inode->i_blocks,
2376 			  (unsigned long long)sectors);
2377 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2378 		return;
2379 	}
2380 	f2fs_i_blocks_write(inode, count, false, true);
2381 }
2382 
inc_page_count(struct f2fs_sb_info * sbi,int count_type)2383 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2384 {
2385 	atomic_inc(&sbi->nr_pages[count_type]);
2386 
2387 	if (count_type == F2FS_DIRTY_DENTS ||
2388 			count_type == F2FS_DIRTY_NODES ||
2389 			count_type == F2FS_DIRTY_META ||
2390 			count_type == F2FS_DIRTY_QDATA ||
2391 			count_type == F2FS_DIRTY_IMETA)
2392 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2393 }
2394 
inode_inc_dirty_pages(struct inode * inode)2395 static inline void inode_inc_dirty_pages(struct inode *inode)
2396 {
2397 	atomic_inc(&F2FS_I(inode)->dirty_pages);
2398 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2399 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2400 	if (IS_NOQUOTA(inode))
2401 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2402 }
2403 
dec_page_count(struct f2fs_sb_info * sbi,int count_type)2404 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2405 {
2406 	atomic_dec(&sbi->nr_pages[count_type]);
2407 }
2408 
inode_dec_dirty_pages(struct inode * inode)2409 static inline void inode_dec_dirty_pages(struct inode *inode)
2410 {
2411 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2412 			!S_ISLNK(inode->i_mode))
2413 		return;
2414 
2415 	atomic_dec(&F2FS_I(inode)->dirty_pages);
2416 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2417 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2418 	if (IS_NOQUOTA(inode))
2419 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2420 }
2421 
get_pages(struct f2fs_sb_info * sbi,int count_type)2422 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2423 {
2424 	return atomic_read(&sbi->nr_pages[count_type]);
2425 }
2426 
get_dirty_pages(struct inode * inode)2427 static inline int get_dirty_pages(struct inode *inode)
2428 {
2429 	return atomic_read(&F2FS_I(inode)->dirty_pages);
2430 }
2431 
get_blocktype_secs(struct f2fs_sb_info * sbi,int block_type)2432 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2433 {
2434 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2435 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2436 						sbi->log_blocks_per_seg;
2437 
2438 	return segs / sbi->segs_per_sec;
2439 }
2440 
valid_user_blocks(struct f2fs_sb_info * sbi)2441 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2442 {
2443 	return sbi->total_valid_block_count;
2444 }
2445 
discard_blocks(struct f2fs_sb_info * sbi)2446 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2447 {
2448 	return sbi->discard_blks;
2449 }
2450 
__bitmap_size(struct f2fs_sb_info * sbi,int flag)2451 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2452 {
2453 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2454 
2455 	/* return NAT or SIT bitmap */
2456 	if (flag == NAT_BITMAP)
2457 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2458 	else if (flag == SIT_BITMAP)
2459 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2460 
2461 	return 0;
2462 }
2463 
__cp_payload(struct f2fs_sb_info * sbi)2464 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2465 {
2466 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2467 }
2468 
__bitmap_ptr(struct f2fs_sb_info * sbi,int flag)2469 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2470 {
2471 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2472 	void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2473 	int offset;
2474 
2475 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2476 		offset = (flag == SIT_BITMAP) ?
2477 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2478 		/*
2479 		 * if large_nat_bitmap feature is enabled, leave checksum
2480 		 * protection for all nat/sit bitmaps.
2481 		 */
2482 		return tmp_ptr + offset + sizeof(__le32);
2483 	}
2484 
2485 	if (__cp_payload(sbi) > 0) {
2486 		if (flag == NAT_BITMAP)
2487 			return &ckpt->sit_nat_version_bitmap;
2488 		else
2489 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2490 	} else {
2491 		offset = (flag == NAT_BITMAP) ?
2492 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2493 		return tmp_ptr + offset;
2494 	}
2495 }
2496 
__start_cp_addr(struct f2fs_sb_info * sbi)2497 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2498 {
2499 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2500 
2501 	if (sbi->cur_cp_pack == 2)
2502 		start_addr += sbi->blocks_per_seg;
2503 	return start_addr;
2504 }
2505 
__start_cp_next_addr(struct f2fs_sb_info * sbi)2506 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2507 {
2508 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2509 
2510 	if (sbi->cur_cp_pack == 1)
2511 		start_addr += sbi->blocks_per_seg;
2512 	return start_addr;
2513 }
2514 
__set_cp_next_pack(struct f2fs_sb_info * sbi)2515 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2516 {
2517 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2518 }
2519 
__start_sum_addr(struct f2fs_sb_info * sbi)2520 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2521 {
2522 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2523 }
2524 
inc_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2525 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2526 					struct inode *inode, bool is_inode)
2527 {
2528 	block_t	valid_block_count;
2529 	unsigned int valid_node_count, user_block_count;
2530 	int err;
2531 
2532 	if (is_inode) {
2533 		if (inode) {
2534 			err = dquot_alloc_inode(inode);
2535 			if (err)
2536 				return err;
2537 		}
2538 	} else {
2539 		err = dquot_reserve_block(inode, 1);
2540 		if (err)
2541 			return err;
2542 	}
2543 
2544 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2545 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2546 		goto enospc;
2547 	}
2548 
2549 	spin_lock(&sbi->stat_lock);
2550 
2551 	valid_block_count = sbi->total_valid_block_count +
2552 					sbi->current_reserved_blocks + 1;
2553 
2554 	if (!__allow_reserved_blocks(sbi, inode, false))
2555 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2556 
2557 	if (F2FS_IO_ALIGNED(sbi))
2558 		valid_block_count += sbi->blocks_per_seg *
2559 				SM_I(sbi)->additional_reserved_segments;
2560 
2561 	user_block_count = sbi->user_block_count;
2562 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2563 		user_block_count -= sbi->unusable_block_count;
2564 
2565 	if (unlikely(valid_block_count > user_block_count)) {
2566 		spin_unlock(&sbi->stat_lock);
2567 		goto enospc;
2568 	}
2569 
2570 	valid_node_count = sbi->total_valid_node_count + 1;
2571 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2572 		spin_unlock(&sbi->stat_lock);
2573 		goto enospc;
2574 	}
2575 
2576 	sbi->total_valid_node_count++;
2577 	sbi->total_valid_block_count++;
2578 	spin_unlock(&sbi->stat_lock);
2579 
2580 	if (inode) {
2581 		if (is_inode)
2582 			f2fs_mark_inode_dirty_sync(inode, true);
2583 		else
2584 			f2fs_i_blocks_write(inode, 1, true, true);
2585 	}
2586 
2587 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2588 	return 0;
2589 
2590 enospc:
2591 	if (is_inode) {
2592 		if (inode)
2593 			dquot_free_inode(inode);
2594 	} else {
2595 		dquot_release_reservation_block(inode, 1);
2596 	}
2597 	return -ENOSPC;
2598 }
2599 
dec_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2600 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2601 					struct inode *inode, bool is_inode)
2602 {
2603 	spin_lock(&sbi->stat_lock);
2604 
2605 	if (unlikely(!sbi->total_valid_block_count ||
2606 			!sbi->total_valid_node_count)) {
2607 		f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
2608 			  sbi->total_valid_block_count,
2609 			  sbi->total_valid_node_count);
2610 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2611 	} else {
2612 		sbi->total_valid_block_count--;
2613 		sbi->total_valid_node_count--;
2614 	}
2615 
2616 	if (sbi->reserved_blocks &&
2617 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2618 		sbi->current_reserved_blocks++;
2619 
2620 	spin_unlock(&sbi->stat_lock);
2621 
2622 	if (is_inode) {
2623 		dquot_free_inode(inode);
2624 	} else {
2625 		if (unlikely(inode->i_blocks == 0)) {
2626 			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2627 				  inode->i_ino,
2628 				  (unsigned long long)inode->i_blocks);
2629 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2630 			return;
2631 		}
2632 		f2fs_i_blocks_write(inode, 1, false, true);
2633 	}
2634 }
2635 
valid_node_count(struct f2fs_sb_info * sbi)2636 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2637 {
2638 	return sbi->total_valid_node_count;
2639 }
2640 
inc_valid_inode_count(struct f2fs_sb_info * sbi)2641 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2642 {
2643 	percpu_counter_inc(&sbi->total_valid_inode_count);
2644 }
2645 
dec_valid_inode_count(struct f2fs_sb_info * sbi)2646 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2647 {
2648 	percpu_counter_dec(&sbi->total_valid_inode_count);
2649 }
2650 
valid_inode_count(struct f2fs_sb_info * sbi)2651 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2652 {
2653 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2654 }
2655 
f2fs_grab_cache_page(struct address_space * mapping,pgoff_t index,bool for_write)2656 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2657 						pgoff_t index, bool for_write)
2658 {
2659 	struct page *page;
2660 	unsigned int flags;
2661 
2662 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2663 		if (!for_write)
2664 			page = find_get_page_flags(mapping, index,
2665 							FGP_LOCK | FGP_ACCESSED);
2666 		else
2667 			page = find_lock_page(mapping, index);
2668 		if (page)
2669 			return page;
2670 
2671 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2672 			f2fs_show_injection_info(F2FS_M_SB(mapping),
2673 							FAULT_PAGE_ALLOC);
2674 			return NULL;
2675 		}
2676 	}
2677 
2678 	if (!for_write)
2679 		return grab_cache_page(mapping, index);
2680 
2681 	flags = memalloc_nofs_save();
2682 	page = grab_cache_page_write_begin(mapping, index);
2683 	memalloc_nofs_restore(flags);
2684 
2685 	return page;
2686 }
2687 
f2fs_pagecache_get_page(struct address_space * mapping,pgoff_t index,int fgp_flags,gfp_t gfp_mask)2688 static inline struct page *f2fs_pagecache_get_page(
2689 				struct address_space *mapping, pgoff_t index,
2690 				int fgp_flags, gfp_t gfp_mask)
2691 {
2692 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2693 		f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2694 		return NULL;
2695 	}
2696 
2697 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2698 }
2699 
f2fs_copy_page(struct page * src,struct page * dst)2700 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2701 {
2702 	char *src_kaddr = kmap(src);
2703 	char *dst_kaddr = kmap(dst);
2704 
2705 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2706 	kunmap(dst);
2707 	kunmap(src);
2708 }
2709 
f2fs_put_page(struct page * page,int unlock)2710 static inline void f2fs_put_page(struct page *page, int unlock)
2711 {
2712 	if (!page)
2713 		return;
2714 
2715 	if (unlock) {
2716 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2717 		unlock_page(page);
2718 	}
2719 	put_page(page);
2720 }
2721 
f2fs_put_dnode(struct dnode_of_data * dn)2722 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2723 {
2724 	if (dn->node_page)
2725 		f2fs_put_page(dn->node_page, 1);
2726 	if (dn->inode_page && dn->node_page != dn->inode_page)
2727 		f2fs_put_page(dn->inode_page, 0);
2728 	dn->node_page = NULL;
2729 	dn->inode_page = NULL;
2730 }
2731 
f2fs_kmem_cache_create(const char * name,size_t size)2732 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2733 					size_t size)
2734 {
2735 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2736 }
2737 
f2fs_kmem_cache_alloc_nofail(struct kmem_cache * cachep,gfp_t flags)2738 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
2739 						gfp_t flags)
2740 {
2741 	void *entry;
2742 
2743 	entry = kmem_cache_alloc(cachep, flags);
2744 	if (!entry)
2745 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2746 	return entry;
2747 }
2748 
f2fs_kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags,bool nofail,struct f2fs_sb_info * sbi)2749 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2750 			gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
2751 {
2752 	if (nofail)
2753 		return f2fs_kmem_cache_alloc_nofail(cachep, flags);
2754 
2755 	if (time_to_inject(sbi, FAULT_SLAB_ALLOC)) {
2756 		f2fs_show_injection_info(sbi, FAULT_SLAB_ALLOC);
2757 		return NULL;
2758 	}
2759 
2760 	return kmem_cache_alloc(cachep, flags);
2761 }
2762 
is_inflight_io(struct f2fs_sb_info * sbi,int type)2763 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2764 {
2765 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2766 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2767 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2768 		get_pages(sbi, F2FS_DIO_READ) ||
2769 		get_pages(sbi, F2FS_DIO_WRITE))
2770 		return true;
2771 
2772 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2773 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2774 		return true;
2775 
2776 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2777 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2778 		return true;
2779 	return false;
2780 }
2781 
is_idle(struct f2fs_sb_info * sbi,int type)2782 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2783 {
2784 	if (sbi->gc_mode == GC_URGENT_HIGH)
2785 		return true;
2786 
2787 	if (is_inflight_io(sbi, type))
2788 		return false;
2789 
2790 	if (sbi->gc_mode == GC_URGENT_MID)
2791 		return true;
2792 
2793 	if (sbi->gc_mode == GC_URGENT_LOW &&
2794 			(type == DISCARD_TIME || type == GC_TIME))
2795 		return true;
2796 
2797 	return f2fs_time_over(sbi, type);
2798 }
2799 
f2fs_radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * item)2800 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2801 				unsigned long index, void *item)
2802 {
2803 	while (radix_tree_insert(root, index, item))
2804 		cond_resched();
2805 }
2806 
2807 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2808 
IS_INODE(struct page * page)2809 static inline bool IS_INODE(struct page *page)
2810 {
2811 	struct f2fs_node *p = F2FS_NODE(page);
2812 
2813 	return RAW_IS_INODE(p);
2814 }
2815 
offset_in_addr(struct f2fs_inode * i)2816 static inline int offset_in_addr(struct f2fs_inode *i)
2817 {
2818 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2819 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2820 }
2821 
blkaddr_in_node(struct f2fs_node * node)2822 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2823 {
2824 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2825 }
2826 
2827 static inline int f2fs_has_extra_attr(struct inode *inode);
data_blkaddr(struct inode * inode,struct page * node_page,unsigned int offset)2828 static inline block_t data_blkaddr(struct inode *inode,
2829 			struct page *node_page, unsigned int offset)
2830 {
2831 	struct f2fs_node *raw_node;
2832 	__le32 *addr_array;
2833 	int base = 0;
2834 	bool is_inode = IS_INODE(node_page);
2835 
2836 	raw_node = F2FS_NODE(node_page);
2837 
2838 	if (is_inode) {
2839 		if (!inode)
2840 			/* from GC path only */
2841 			base = offset_in_addr(&raw_node->i);
2842 		else if (f2fs_has_extra_attr(inode))
2843 			base = get_extra_isize(inode);
2844 	}
2845 
2846 	addr_array = blkaddr_in_node(raw_node);
2847 	return le32_to_cpu(addr_array[base + offset]);
2848 }
2849 
f2fs_data_blkaddr(struct dnode_of_data * dn)2850 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2851 {
2852 	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2853 }
2854 
f2fs_test_bit(unsigned int nr,char * addr)2855 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2856 {
2857 	int mask;
2858 
2859 	addr += (nr >> 3);
2860 	mask = 1 << (7 - (nr & 0x07));
2861 	return mask & *addr;
2862 }
2863 
f2fs_set_bit(unsigned int nr,char * addr)2864 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2865 {
2866 	int mask;
2867 
2868 	addr += (nr >> 3);
2869 	mask = 1 << (7 - (nr & 0x07));
2870 	*addr |= mask;
2871 }
2872 
f2fs_clear_bit(unsigned int nr,char * addr)2873 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2874 {
2875 	int mask;
2876 
2877 	addr += (nr >> 3);
2878 	mask = 1 << (7 - (nr & 0x07));
2879 	*addr &= ~mask;
2880 }
2881 
f2fs_test_and_set_bit(unsigned int nr,char * addr)2882 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2883 {
2884 	int mask;
2885 	int ret;
2886 
2887 	addr += (nr >> 3);
2888 	mask = 1 << (7 - (nr & 0x07));
2889 	ret = mask & *addr;
2890 	*addr |= mask;
2891 	return ret;
2892 }
2893 
f2fs_test_and_clear_bit(unsigned int nr,char * addr)2894 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2895 {
2896 	int mask;
2897 	int ret;
2898 
2899 	addr += (nr >> 3);
2900 	mask = 1 << (7 - (nr & 0x07));
2901 	ret = mask & *addr;
2902 	*addr &= ~mask;
2903 	return ret;
2904 }
2905 
f2fs_change_bit(unsigned int nr,char * addr)2906 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2907 {
2908 	int mask;
2909 
2910 	addr += (nr >> 3);
2911 	mask = 1 << (7 - (nr & 0x07));
2912 	*addr ^= mask;
2913 }
2914 
2915 /*
2916  * On-disk inode flags (f2fs_inode::i_flags)
2917  */
2918 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2919 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2920 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2921 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2922 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2923 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2924 #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2925 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2926 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2927 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2928 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2929 
2930 /* Flags that should be inherited by new inodes from their parent. */
2931 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2932 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2933 			   F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL)
2934 
2935 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2936 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2937 				F2FS_CASEFOLD_FL))
2938 
2939 /* Flags that are appropriate for non-directories/regular files. */
2940 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2941 
f2fs_mask_flags(umode_t mode,__u32 flags)2942 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2943 {
2944 	if (S_ISDIR(mode))
2945 		return flags;
2946 	else if (S_ISREG(mode))
2947 		return flags & F2FS_REG_FLMASK;
2948 	else
2949 		return flags & F2FS_OTHER_FLMASK;
2950 }
2951 
__mark_inode_dirty_flag(struct inode * inode,int flag,bool set)2952 static inline void __mark_inode_dirty_flag(struct inode *inode,
2953 						int flag, bool set)
2954 {
2955 	switch (flag) {
2956 	case FI_INLINE_XATTR:
2957 	case FI_INLINE_DATA:
2958 	case FI_INLINE_DENTRY:
2959 	case FI_NEW_INODE:
2960 		if (set)
2961 			return;
2962 		fallthrough;
2963 	case FI_DATA_EXIST:
2964 	case FI_INLINE_DOTS:
2965 	case FI_PIN_FILE:
2966 	case FI_COMPRESS_RELEASED:
2967 		f2fs_mark_inode_dirty_sync(inode, true);
2968 	}
2969 }
2970 
set_inode_flag(struct inode * inode,int flag)2971 static inline void set_inode_flag(struct inode *inode, int flag)
2972 {
2973 	set_bit(flag, F2FS_I(inode)->flags);
2974 	__mark_inode_dirty_flag(inode, flag, true);
2975 }
2976 
is_inode_flag_set(struct inode * inode,int flag)2977 static inline int is_inode_flag_set(struct inode *inode, int flag)
2978 {
2979 	return test_bit(flag, F2FS_I(inode)->flags);
2980 }
2981 
clear_inode_flag(struct inode * inode,int flag)2982 static inline void clear_inode_flag(struct inode *inode, int flag)
2983 {
2984 	clear_bit(flag, F2FS_I(inode)->flags);
2985 	__mark_inode_dirty_flag(inode, flag, false);
2986 }
2987 
f2fs_verity_in_progress(struct inode * inode)2988 static inline bool f2fs_verity_in_progress(struct inode *inode)
2989 {
2990 	return IS_ENABLED(CONFIG_FS_VERITY) &&
2991 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
2992 }
2993 
set_acl_inode(struct inode * inode,umode_t mode)2994 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2995 {
2996 	F2FS_I(inode)->i_acl_mode = mode;
2997 	set_inode_flag(inode, FI_ACL_MODE);
2998 	f2fs_mark_inode_dirty_sync(inode, false);
2999 }
3000 
f2fs_i_links_write(struct inode * inode,bool inc)3001 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
3002 {
3003 	if (inc)
3004 		inc_nlink(inode);
3005 	else
3006 		drop_nlink(inode);
3007 	f2fs_mark_inode_dirty_sync(inode, true);
3008 }
3009 
f2fs_i_blocks_write(struct inode * inode,block_t diff,bool add,bool claim)3010 static inline void f2fs_i_blocks_write(struct inode *inode,
3011 					block_t diff, bool add, bool claim)
3012 {
3013 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3014 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3015 
3016 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
3017 	if (add) {
3018 		if (claim)
3019 			dquot_claim_block(inode, diff);
3020 		else
3021 			dquot_alloc_block_nofail(inode, diff);
3022 	} else {
3023 		dquot_free_block(inode, diff);
3024 	}
3025 
3026 	f2fs_mark_inode_dirty_sync(inode, true);
3027 	if (clean || recover)
3028 		set_inode_flag(inode, FI_AUTO_RECOVER);
3029 }
3030 
f2fs_i_size_write(struct inode * inode,loff_t i_size)3031 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
3032 {
3033 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3034 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3035 
3036 	if (i_size_read(inode) == i_size)
3037 		return;
3038 
3039 	i_size_write(inode, i_size);
3040 	f2fs_mark_inode_dirty_sync(inode, true);
3041 	if (clean || recover)
3042 		set_inode_flag(inode, FI_AUTO_RECOVER);
3043 }
3044 
f2fs_i_depth_write(struct inode * inode,unsigned int depth)3045 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
3046 {
3047 	F2FS_I(inode)->i_current_depth = depth;
3048 	f2fs_mark_inode_dirty_sync(inode, true);
3049 }
3050 
f2fs_i_gc_failures_write(struct inode * inode,unsigned int count)3051 static inline void f2fs_i_gc_failures_write(struct inode *inode,
3052 					unsigned int count)
3053 {
3054 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
3055 	f2fs_mark_inode_dirty_sync(inode, true);
3056 }
3057 
f2fs_i_xnid_write(struct inode * inode,nid_t xnid)3058 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
3059 {
3060 	F2FS_I(inode)->i_xattr_nid = xnid;
3061 	f2fs_mark_inode_dirty_sync(inode, true);
3062 }
3063 
f2fs_i_pino_write(struct inode * inode,nid_t pino)3064 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
3065 {
3066 	F2FS_I(inode)->i_pino = pino;
3067 	f2fs_mark_inode_dirty_sync(inode, true);
3068 }
3069 
get_inline_info(struct inode * inode,struct f2fs_inode * ri)3070 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
3071 {
3072 	struct f2fs_inode_info *fi = F2FS_I(inode);
3073 
3074 	if (ri->i_inline & F2FS_INLINE_XATTR)
3075 		set_bit(FI_INLINE_XATTR, fi->flags);
3076 	if (ri->i_inline & F2FS_INLINE_DATA)
3077 		set_bit(FI_INLINE_DATA, fi->flags);
3078 	if (ri->i_inline & F2FS_INLINE_DENTRY)
3079 		set_bit(FI_INLINE_DENTRY, fi->flags);
3080 	if (ri->i_inline & F2FS_DATA_EXIST)
3081 		set_bit(FI_DATA_EXIST, fi->flags);
3082 	if (ri->i_inline & F2FS_INLINE_DOTS)
3083 		set_bit(FI_INLINE_DOTS, fi->flags);
3084 	if (ri->i_inline & F2FS_EXTRA_ATTR)
3085 		set_bit(FI_EXTRA_ATTR, fi->flags);
3086 	if (ri->i_inline & F2FS_PIN_FILE)
3087 		set_bit(FI_PIN_FILE, fi->flags);
3088 	if (ri->i_inline & F2FS_COMPRESS_RELEASED)
3089 		set_bit(FI_COMPRESS_RELEASED, fi->flags);
3090 }
3091 
set_raw_inline(struct inode * inode,struct f2fs_inode * ri)3092 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
3093 {
3094 	ri->i_inline = 0;
3095 
3096 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
3097 		ri->i_inline |= F2FS_INLINE_XATTR;
3098 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
3099 		ri->i_inline |= F2FS_INLINE_DATA;
3100 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
3101 		ri->i_inline |= F2FS_INLINE_DENTRY;
3102 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
3103 		ri->i_inline |= F2FS_DATA_EXIST;
3104 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
3105 		ri->i_inline |= F2FS_INLINE_DOTS;
3106 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
3107 		ri->i_inline |= F2FS_EXTRA_ATTR;
3108 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3109 		ri->i_inline |= F2FS_PIN_FILE;
3110 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
3111 		ri->i_inline |= F2FS_COMPRESS_RELEASED;
3112 }
3113 
f2fs_has_extra_attr(struct inode * inode)3114 static inline int f2fs_has_extra_attr(struct inode *inode)
3115 {
3116 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
3117 }
3118 
f2fs_has_inline_xattr(struct inode * inode)3119 static inline int f2fs_has_inline_xattr(struct inode *inode)
3120 {
3121 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
3122 }
3123 
f2fs_compressed_file(struct inode * inode)3124 static inline int f2fs_compressed_file(struct inode *inode)
3125 {
3126 	return S_ISREG(inode->i_mode) &&
3127 		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3128 }
3129 
f2fs_need_compress_data(struct inode * inode)3130 static inline bool f2fs_need_compress_data(struct inode *inode)
3131 {
3132 	int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3133 
3134 	if (!f2fs_compressed_file(inode))
3135 		return false;
3136 
3137 	if (compress_mode == COMPR_MODE_FS)
3138 		return true;
3139 	else if (compress_mode == COMPR_MODE_USER &&
3140 			is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3141 		return true;
3142 
3143 	return false;
3144 }
3145 
addrs_per_inode(struct inode * inode)3146 static inline unsigned int addrs_per_inode(struct inode *inode)
3147 {
3148 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
3149 				get_inline_xattr_addrs(inode);
3150 
3151 	if (!f2fs_compressed_file(inode))
3152 		return addrs;
3153 	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3154 }
3155 
addrs_per_block(struct inode * inode)3156 static inline unsigned int addrs_per_block(struct inode *inode)
3157 {
3158 	if (!f2fs_compressed_file(inode))
3159 		return DEF_ADDRS_PER_BLOCK;
3160 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
3161 }
3162 
inline_xattr_addr(struct inode * inode,struct page * page)3163 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
3164 {
3165 	struct f2fs_inode *ri = F2FS_INODE(page);
3166 
3167 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3168 					get_inline_xattr_addrs(inode)]);
3169 }
3170 
inline_xattr_size(struct inode * inode)3171 static inline int inline_xattr_size(struct inode *inode)
3172 {
3173 	if (f2fs_has_inline_xattr(inode))
3174 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
3175 	return 0;
3176 }
3177 
3178 /*
3179  * Notice: check inline_data flag without inode page lock is unsafe.
3180  * It could change at any time by f2fs_convert_inline_page().
3181  */
f2fs_has_inline_data(struct inode * inode)3182 static inline int f2fs_has_inline_data(struct inode *inode)
3183 {
3184 	return is_inode_flag_set(inode, FI_INLINE_DATA);
3185 }
3186 
f2fs_exist_data(struct inode * inode)3187 static inline int f2fs_exist_data(struct inode *inode)
3188 {
3189 	return is_inode_flag_set(inode, FI_DATA_EXIST);
3190 }
3191 
f2fs_has_inline_dots(struct inode * inode)3192 static inline int f2fs_has_inline_dots(struct inode *inode)
3193 {
3194 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
3195 }
3196 
f2fs_is_mmap_file(struct inode * inode)3197 static inline int f2fs_is_mmap_file(struct inode *inode)
3198 {
3199 	return is_inode_flag_set(inode, FI_MMAP_FILE);
3200 }
3201 
f2fs_is_pinned_file(struct inode * inode)3202 static inline bool f2fs_is_pinned_file(struct inode *inode)
3203 {
3204 	return is_inode_flag_set(inode, FI_PIN_FILE);
3205 }
3206 
f2fs_is_atomic_file(struct inode * inode)3207 static inline bool f2fs_is_atomic_file(struct inode *inode)
3208 {
3209 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3210 }
3211 
f2fs_is_cow_file(struct inode * inode)3212 static inline bool f2fs_is_cow_file(struct inode *inode)
3213 {
3214 	return is_inode_flag_set(inode, FI_COW_FILE);
3215 }
3216 
f2fs_is_first_block_written(struct inode * inode)3217 static inline bool f2fs_is_first_block_written(struct inode *inode)
3218 {
3219 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
3220 }
3221 
f2fs_is_drop_cache(struct inode * inode)3222 static inline bool f2fs_is_drop_cache(struct inode *inode)
3223 {
3224 	return is_inode_flag_set(inode, FI_DROP_CACHE);
3225 }
3226 
inline_data_addr(struct inode * inode,struct page * page)3227 static inline void *inline_data_addr(struct inode *inode, struct page *page)
3228 {
3229 	struct f2fs_inode *ri = F2FS_INODE(page);
3230 	int extra_size = get_extra_isize(inode);
3231 
3232 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
3233 }
3234 
f2fs_has_inline_dentry(struct inode * inode)3235 static inline int f2fs_has_inline_dentry(struct inode *inode)
3236 {
3237 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3238 }
3239 
is_file(struct inode * inode,int type)3240 static inline int is_file(struct inode *inode, int type)
3241 {
3242 	return F2FS_I(inode)->i_advise & type;
3243 }
3244 
set_file(struct inode * inode,int type)3245 static inline void set_file(struct inode *inode, int type)
3246 {
3247 	if (is_file(inode, type))
3248 		return;
3249 	F2FS_I(inode)->i_advise |= type;
3250 	f2fs_mark_inode_dirty_sync(inode, true);
3251 }
3252 
clear_file(struct inode * inode,int type)3253 static inline void clear_file(struct inode *inode, int type)
3254 {
3255 	if (!is_file(inode, type))
3256 		return;
3257 	F2FS_I(inode)->i_advise &= ~type;
3258 	f2fs_mark_inode_dirty_sync(inode, true);
3259 }
3260 
f2fs_is_time_consistent(struct inode * inode)3261 static inline bool f2fs_is_time_consistent(struct inode *inode)
3262 {
3263 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
3264 		return false;
3265 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
3266 		return false;
3267 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
3268 		return false;
3269 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
3270 						&F2FS_I(inode)->i_crtime))
3271 		return false;
3272 	return true;
3273 }
3274 
f2fs_skip_inode_update(struct inode * inode,int dsync)3275 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3276 {
3277 	bool ret;
3278 
3279 	if (dsync) {
3280 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3281 
3282 		spin_lock(&sbi->inode_lock[DIRTY_META]);
3283 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
3284 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
3285 		return ret;
3286 	}
3287 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3288 			file_keep_isize(inode) ||
3289 			i_size_read(inode) & ~PAGE_MASK)
3290 		return false;
3291 
3292 	if (!f2fs_is_time_consistent(inode))
3293 		return false;
3294 
3295 	spin_lock(&F2FS_I(inode)->i_size_lock);
3296 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3297 	spin_unlock(&F2FS_I(inode)->i_size_lock);
3298 
3299 	return ret;
3300 }
3301 
f2fs_readonly(struct super_block * sb)3302 static inline bool f2fs_readonly(struct super_block *sb)
3303 {
3304 	return sb_rdonly(sb);
3305 }
3306 
f2fs_cp_error(struct f2fs_sb_info * sbi)3307 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3308 {
3309 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3310 }
3311 
is_dot_dotdot(const u8 * name,size_t len)3312 static inline bool is_dot_dotdot(const u8 *name, size_t len)
3313 {
3314 	if (len == 1 && name[0] == '.')
3315 		return true;
3316 
3317 	if (len == 2 && name[0] == '.' && name[1] == '.')
3318 		return true;
3319 
3320 	return false;
3321 }
3322 
f2fs_kmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3323 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3324 					size_t size, gfp_t flags)
3325 {
3326 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
3327 		f2fs_show_injection_info(sbi, FAULT_KMALLOC);
3328 		return NULL;
3329 	}
3330 
3331 	return kmalloc(size, flags);
3332 }
3333 
f2fs_kzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3334 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3335 					size_t size, gfp_t flags)
3336 {
3337 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3338 }
3339 
f2fs_kvmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3340 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3341 					size_t size, gfp_t flags)
3342 {
3343 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
3344 		f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
3345 		return NULL;
3346 	}
3347 
3348 	return kvmalloc(size, flags);
3349 }
3350 
f2fs_kvzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3351 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3352 					size_t size, gfp_t flags)
3353 {
3354 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3355 }
3356 
get_extra_isize(struct inode * inode)3357 static inline int get_extra_isize(struct inode *inode)
3358 {
3359 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3360 }
3361 
get_inline_xattr_addrs(struct inode * inode)3362 static inline int get_inline_xattr_addrs(struct inode *inode)
3363 {
3364 	return F2FS_I(inode)->i_inline_xattr_size;
3365 }
3366 
3367 #define f2fs_get_inode_mode(i) \
3368 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3369 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3370 
3371 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3372 	(offsetof(struct f2fs_inode, i_extra_end) -	\
3373 	offsetof(struct f2fs_inode, i_extra_isize))	\
3374 
3375 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3376 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3377 		((offsetof(typeof(*(f2fs_inode)), field) +	\
3378 		sizeof((f2fs_inode)->field))			\
3379 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3380 
3381 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
3382 
3383 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3384 
3385 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3386 					block_t blkaddr, int type);
verify_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)3387 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3388 					block_t blkaddr, int type)
3389 {
3390 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3391 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3392 			 blkaddr, type);
3393 		f2fs_bug_on(sbi, 1);
3394 	}
3395 }
3396 
__is_valid_data_blkaddr(block_t blkaddr)3397 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3398 {
3399 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3400 			blkaddr == COMPRESS_ADDR)
3401 		return false;
3402 	return true;
3403 }
3404 
3405 /*
3406  * file.c
3407  */
3408 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3409 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3410 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3411 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3412 int f2fs_truncate(struct inode *inode);
3413 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path,
3414 		 struct kstat *stat, u32 request_mask, unsigned int flags);
3415 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
3416 		 struct iattr *attr);
3417 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3418 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3419 int f2fs_precache_extents(struct inode *inode);
3420 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3421 int f2fs_fileattr_set(struct user_namespace *mnt_userns,
3422 		      struct dentry *dentry, struct fileattr *fa);
3423 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3424 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3425 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3426 int f2fs_pin_file_control(struct inode *inode, bool inc);
3427 
3428 /*
3429  * inode.c
3430  */
3431 void f2fs_set_inode_flags(struct inode *inode);
3432 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3433 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3434 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3435 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3436 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3437 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3438 void f2fs_update_inode_page(struct inode *inode);
3439 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3440 void f2fs_evict_inode(struct inode *inode);
3441 void f2fs_handle_failed_inode(struct inode *inode);
3442 
3443 /*
3444  * namei.c
3445  */
3446 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3447 							bool hot, bool set);
3448 struct dentry *f2fs_get_parent(struct dentry *child);
3449 int f2fs_get_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
3450 		     struct inode **new_inode);
3451 
3452 /*
3453  * dir.c
3454  */
3455 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3456 int f2fs_init_casefolded_name(const struct inode *dir,
3457 			      struct f2fs_filename *fname);
3458 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3459 			int lookup, struct f2fs_filename *fname);
3460 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3461 			struct f2fs_filename *fname);
3462 void f2fs_free_filename(struct f2fs_filename *fname);
3463 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3464 			const struct f2fs_filename *fname, int *max_slots);
3465 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3466 			unsigned int start_pos, struct fscrypt_str *fstr);
3467 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3468 			struct f2fs_dentry_ptr *d);
3469 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3470 			const struct f2fs_filename *fname, struct page *dpage);
3471 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3472 			unsigned int current_depth);
3473 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3474 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3475 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3476 					 const struct f2fs_filename *fname,
3477 					 struct page **res_page);
3478 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3479 			const struct qstr *child, struct page **res_page);
3480 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3481 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3482 			struct page **page);
3483 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3484 			struct page *page, struct inode *inode);
3485 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3486 			  const struct f2fs_filename *fname);
3487 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3488 			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3489 			unsigned int bit_pos);
3490 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3491 			struct inode *inode, nid_t ino, umode_t mode);
3492 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3493 			struct inode *inode, nid_t ino, umode_t mode);
3494 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3495 			struct inode *inode, nid_t ino, umode_t mode);
3496 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3497 			struct inode *dir, struct inode *inode);
3498 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3499 bool f2fs_empty_dir(struct inode *dir);
3500 
f2fs_add_link(struct dentry * dentry,struct inode * inode)3501 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3502 {
3503 	if (fscrypt_is_nokey_name(dentry))
3504 		return -ENOKEY;
3505 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3506 				inode, inode->i_ino, inode->i_mode);
3507 }
3508 
3509 /*
3510  * super.c
3511  */
3512 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3513 void f2fs_inode_synced(struct inode *inode);
3514 int f2fs_dquot_initialize(struct inode *inode);
3515 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3516 int f2fs_quota_sync(struct super_block *sb, int type);
3517 loff_t max_file_blocks(struct inode *inode);
3518 void f2fs_quota_off_umount(struct super_block *sb);
3519 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3520 int f2fs_sync_fs(struct super_block *sb, int sync);
3521 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3522 
3523 /*
3524  * hash.c
3525  */
3526 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3527 
3528 /*
3529  * node.c
3530  */
3531 struct node_info;
3532 
3533 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3534 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3535 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3536 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3537 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3538 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3539 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3540 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3541 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3542 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3543 				struct node_info *ni, bool checkpoint_context);
3544 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3545 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3546 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3547 int f2fs_truncate_xattr_node(struct inode *inode);
3548 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3549 					unsigned int seq_id);
3550 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi);
3551 int f2fs_remove_inode_page(struct inode *inode);
3552 struct page *f2fs_new_inode_page(struct inode *inode);
3553 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3554 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3555 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3556 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3557 int f2fs_move_node_page(struct page *node_page, int gc_type);
3558 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3559 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3560 			struct writeback_control *wbc, bool atomic,
3561 			unsigned int *seq_id);
3562 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3563 			struct writeback_control *wbc,
3564 			bool do_balance, enum iostat_type io_type);
3565 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3566 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3567 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3568 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3569 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3570 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3571 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3572 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3573 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3574 			unsigned int segno, struct f2fs_summary_block *sum);
3575 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi);
3576 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3577 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3578 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3579 int __init f2fs_create_node_manager_caches(void);
3580 void f2fs_destroy_node_manager_caches(void);
3581 
3582 /*
3583  * segment.c
3584  */
3585 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3586 int f2fs_commit_atomic_write(struct inode *inode);
3587 void f2fs_abort_atomic_write(struct inode *inode, bool clean);
3588 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3589 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3590 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3591 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3592 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3593 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3594 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3595 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3596 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3597 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3598 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3599 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3600 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3601 					struct cp_control *cpc);
3602 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3603 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3604 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3605 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3606 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3607 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3608 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3609 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3610 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3611 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3612 			unsigned int *newseg, bool new_sec, int dir);
3613 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3614 					unsigned int start, unsigned int end);
3615 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3616 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3617 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3618 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3619 					struct cp_control *cpc);
3620 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3621 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3622 					block_t blk_addr);
3623 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3624 						enum iostat_type io_type);
3625 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3626 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3627 			struct f2fs_io_info *fio);
3628 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3629 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3630 			block_t old_blkaddr, block_t new_blkaddr,
3631 			bool recover_curseg, bool recover_newaddr,
3632 			bool from_gc);
3633 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3634 			block_t old_addr, block_t new_addr,
3635 			unsigned char version, bool recover_curseg,
3636 			bool recover_newaddr);
3637 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3638 			block_t old_blkaddr, block_t *new_blkaddr,
3639 			struct f2fs_summary *sum, int type,
3640 			struct f2fs_io_info *fio);
3641 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3642 					block_t blkaddr, unsigned int blkcnt);
3643 void f2fs_wait_on_page_writeback(struct page *page,
3644 			enum page_type type, bool ordered, bool locked);
3645 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3646 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3647 								block_t len);
3648 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3649 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3650 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3651 			unsigned int val, int alloc);
3652 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3653 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3654 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3655 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3656 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3657 int __init f2fs_create_segment_manager_caches(void);
3658 void f2fs_destroy_segment_manager_caches(void);
3659 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3660 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3661 			unsigned int segno);
3662 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3663 			unsigned int segno);
3664 
3665 #define DEF_FRAGMENT_SIZE	4
3666 #define MIN_FRAGMENT_SIZE	1
3667 #define MAX_FRAGMENT_SIZE	512
3668 
f2fs_need_rand_seg(struct f2fs_sb_info * sbi)3669 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
3670 {
3671 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
3672 		F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
3673 }
3674 
3675 /*
3676  * checkpoint.c
3677  */
3678 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3679 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3680 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3681 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3682 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3683 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3684 					block_t blkaddr, int type);
3685 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3686 			int type, bool sync);
3687 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
3688 							unsigned int ra_blocks);
3689 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3690 			long nr_to_write, enum iostat_type io_type);
3691 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3692 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3693 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3694 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3695 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3696 					unsigned int devidx, int type);
3697 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3698 					unsigned int devidx, int type);
3699 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3700 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3701 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3702 void f2fs_add_orphan_inode(struct inode *inode);
3703 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3704 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3705 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3706 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio);
3707 void f2fs_remove_dirty_inode(struct inode *inode);
3708 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3709 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3710 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3711 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3712 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3713 int __init f2fs_create_checkpoint_caches(void);
3714 void f2fs_destroy_checkpoint_caches(void);
3715 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3716 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3717 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3718 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3719 
3720 /*
3721  * data.c
3722  */
3723 int __init f2fs_init_bioset(void);
3724 void f2fs_destroy_bioset(void);
3725 int f2fs_init_bio_entry_cache(void);
3726 void f2fs_destroy_bio_entry_cache(void);
3727 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3728 				struct bio *bio, enum page_type type);
3729 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi);
3730 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3731 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3732 				struct inode *inode, struct page *page,
3733 				nid_t ino, enum page_type type);
3734 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3735 					struct bio **bio, struct page *page);
3736 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3737 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3738 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3739 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3740 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3741 		block_t blk_addr, sector_t *sector);
3742 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3743 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3744 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3745 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3746 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3747 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3748 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3749 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3750 			int op_flags, bool for_write);
3751 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3752 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3753 			bool for_write);
3754 struct page *f2fs_get_new_data_page(struct inode *inode,
3755 			struct page *ipage, pgoff_t index, bool new_i_size);
3756 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3757 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3758 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3759 			int create, int flag);
3760 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3761 			u64 start, u64 len);
3762 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3763 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3764 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3765 int f2fs_write_single_data_page(struct page *page, int *submitted,
3766 				struct bio **bio, sector_t *last_block,
3767 				struct writeback_control *wbc,
3768 				enum iostat_type io_type,
3769 				int compr_blocks, bool allow_balance);
3770 void f2fs_write_failed(struct inode *inode, loff_t to);
3771 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length);
3772 bool f2fs_release_folio(struct folio *folio, gfp_t wait);
3773 #ifdef CONFIG_MIGRATION
3774 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3775 			struct page *page, enum migrate_mode mode);
3776 #endif
3777 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3778 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3779 int f2fs_init_post_read_processing(void);
3780 void f2fs_destroy_post_read_processing(void);
3781 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3782 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3783 extern const struct iomap_ops f2fs_iomap_ops;
3784 
3785 /*
3786  * gc.c
3787  */
3788 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3789 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3790 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3791 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control);
3792 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3793 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3794 int __init f2fs_create_garbage_collection_cache(void);
3795 void f2fs_destroy_garbage_collection_cache(void);
3796 
3797 /*
3798  * recovery.c
3799  */
3800 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3801 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3802 int __init f2fs_create_recovery_cache(void);
3803 void f2fs_destroy_recovery_cache(void);
3804 
3805 /*
3806  * debug.c
3807  */
3808 #ifdef CONFIG_F2FS_STAT_FS
3809 struct f2fs_stat_info {
3810 	struct list_head stat_list;
3811 	struct f2fs_sb_info *sbi;
3812 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3813 	int main_area_segs, main_area_sections, main_area_zones;
3814 	unsigned long long hit_largest, hit_cached, hit_rbtree;
3815 	unsigned long long hit_total, total_ext;
3816 	int ext_tree, zombie_tree, ext_node;
3817 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3818 	int ndirty_data, ndirty_qdata;
3819 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3820 	int nats, dirty_nats, sits, dirty_sits;
3821 	int free_nids, avail_nids, alloc_nids;
3822 	int total_count, utilization;
3823 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3824 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3825 	int nr_dio_read, nr_dio_write;
3826 	unsigned int io_skip_bggc, other_skip_bggc;
3827 	int nr_flushing, nr_flushed, flush_list_empty;
3828 	int nr_discarding, nr_discarded;
3829 	int nr_discard_cmd;
3830 	unsigned int undiscard_blks;
3831 	int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3832 	unsigned int cur_ckpt_time, peak_ckpt_time;
3833 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3834 	int compr_inode;
3835 	unsigned long long compr_blocks;
3836 	int aw_cnt, max_aw_cnt;
3837 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3838 	unsigned int bimodal, avg_vblocks;
3839 	int util_free, util_valid, util_invalid;
3840 	int rsvd_segs, overp_segs;
3841 	int dirty_count, node_pages, meta_pages, compress_pages;
3842 	int compress_page_hit;
3843 	int prefree_count, call_count, cp_count, bg_cp_count;
3844 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3845 	int bg_node_segs, bg_data_segs;
3846 	int tot_blks, data_blks, node_blks;
3847 	int bg_data_blks, bg_node_blks;
3848 	int curseg[NR_CURSEG_TYPE];
3849 	int cursec[NR_CURSEG_TYPE];
3850 	int curzone[NR_CURSEG_TYPE];
3851 	unsigned int dirty_seg[NR_CURSEG_TYPE];
3852 	unsigned int full_seg[NR_CURSEG_TYPE];
3853 	unsigned int valid_blks[NR_CURSEG_TYPE];
3854 
3855 	unsigned int meta_count[META_MAX];
3856 	unsigned int segment_count[2];
3857 	unsigned int block_count[2];
3858 	unsigned int inplace_count;
3859 	unsigned long long base_mem, cache_mem, page_mem;
3860 };
3861 
F2FS_STAT(struct f2fs_sb_info * sbi)3862 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3863 {
3864 	return (struct f2fs_stat_info *)sbi->stat_info;
3865 }
3866 
3867 #define stat_inc_cp_count(si)		((si)->cp_count++)
3868 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3869 #define stat_inc_call_count(si)		((si)->call_count++)
3870 #define stat_inc_bggc_count(si)		((si)->bg_gc++)
3871 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3872 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3873 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3874 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3875 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3876 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3877 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3878 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3879 #define stat_inc_inline_xattr(inode)					\
3880 	do {								\
3881 		if (f2fs_has_inline_xattr(inode))			\
3882 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3883 	} while (0)
3884 #define stat_dec_inline_xattr(inode)					\
3885 	do {								\
3886 		if (f2fs_has_inline_xattr(inode))			\
3887 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3888 	} while (0)
3889 #define stat_inc_inline_inode(inode)					\
3890 	do {								\
3891 		if (f2fs_has_inline_data(inode))			\
3892 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3893 	} while (0)
3894 #define stat_dec_inline_inode(inode)					\
3895 	do {								\
3896 		if (f2fs_has_inline_data(inode))			\
3897 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3898 	} while (0)
3899 #define stat_inc_inline_dir(inode)					\
3900 	do {								\
3901 		if (f2fs_has_inline_dentry(inode))			\
3902 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3903 	} while (0)
3904 #define stat_dec_inline_dir(inode)					\
3905 	do {								\
3906 		if (f2fs_has_inline_dentry(inode))			\
3907 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3908 	} while (0)
3909 #define stat_inc_compr_inode(inode)					\
3910 	do {								\
3911 		if (f2fs_compressed_file(inode))			\
3912 			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
3913 	} while (0)
3914 #define stat_dec_compr_inode(inode)					\
3915 	do {								\
3916 		if (f2fs_compressed_file(inode))			\
3917 			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
3918 	} while (0)
3919 #define stat_add_compr_blocks(inode, blocks)				\
3920 		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3921 #define stat_sub_compr_blocks(inode, blocks)				\
3922 		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3923 #define stat_inc_meta_count(sbi, blkaddr)				\
3924 	do {								\
3925 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3926 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3927 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3928 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3929 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3930 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3931 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3932 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3933 	} while (0)
3934 #define stat_inc_seg_type(sbi, curseg)					\
3935 		((sbi)->segment_count[(curseg)->alloc_type]++)
3936 #define stat_inc_block_count(sbi, curseg)				\
3937 		((sbi)->block_count[(curseg)->alloc_type]++)
3938 #define stat_inc_inplace_blocks(sbi)					\
3939 		(atomic_inc(&(sbi)->inplace_count))
3940 #define stat_update_max_atomic_write(inode)				\
3941 	do {								\
3942 		int cur = F2FS_I_SB(inode)->atomic_files;	\
3943 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3944 		if (cur > max)						\
3945 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3946 	} while (0)
3947 #define stat_inc_seg_count(sbi, type, gc_type)				\
3948 	do {								\
3949 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3950 		si->tot_segs++;						\
3951 		if ((type) == SUM_TYPE_DATA) {				\
3952 			si->data_segs++;				\
3953 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3954 		} else {						\
3955 			si->node_segs++;				\
3956 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3957 		}							\
3958 	} while (0)
3959 
3960 #define stat_inc_tot_blk_count(si, blks)				\
3961 	((si)->tot_blks += (blks))
3962 
3963 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3964 	do {								\
3965 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3966 		stat_inc_tot_blk_count(si, blks);			\
3967 		si->data_blks += (blks);				\
3968 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3969 	} while (0)
3970 
3971 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3972 	do {								\
3973 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3974 		stat_inc_tot_blk_count(si, blks);			\
3975 		si->node_blks += (blks);				\
3976 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3977 	} while (0)
3978 
3979 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3980 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3981 void __init f2fs_create_root_stats(void);
3982 void f2fs_destroy_root_stats(void);
3983 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
3984 #else
3985 #define stat_inc_cp_count(si)				do { } while (0)
3986 #define stat_inc_bg_cp_count(si)			do { } while (0)
3987 #define stat_inc_call_count(si)				do { } while (0)
3988 #define stat_inc_bggc_count(si)				do { } while (0)
3989 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
3990 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
3991 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3992 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3993 #define stat_inc_total_hit(sbi)				do { } while (0)
3994 #define stat_inc_rbtree_node_hit(sbi)			do { } while (0)
3995 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
3996 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
3997 #define stat_inc_inline_xattr(inode)			do { } while (0)
3998 #define stat_dec_inline_xattr(inode)			do { } while (0)
3999 #define stat_inc_inline_inode(inode)			do { } while (0)
4000 #define stat_dec_inline_inode(inode)			do { } while (0)
4001 #define stat_inc_inline_dir(inode)			do { } while (0)
4002 #define stat_dec_inline_dir(inode)			do { } while (0)
4003 #define stat_inc_compr_inode(inode)			do { } while (0)
4004 #define stat_dec_compr_inode(inode)			do { } while (0)
4005 #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
4006 #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
4007 #define stat_update_max_atomic_write(inode)		do { } while (0)
4008 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
4009 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
4010 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
4011 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
4012 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
4013 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
4014 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
4015 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
4016 
f2fs_build_stats(struct f2fs_sb_info * sbi)4017 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_stats(struct f2fs_sb_info * sbi)4018 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
f2fs_create_root_stats(void)4019 static inline void __init f2fs_create_root_stats(void) { }
f2fs_destroy_root_stats(void)4020 static inline void f2fs_destroy_root_stats(void) { }
f2fs_update_sit_info(struct f2fs_sb_info * sbi)4021 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
4022 #endif
4023 
4024 extern const struct file_operations f2fs_dir_operations;
4025 extern const struct file_operations f2fs_file_operations;
4026 extern const struct inode_operations f2fs_file_inode_operations;
4027 extern const struct address_space_operations f2fs_dblock_aops;
4028 extern const struct address_space_operations f2fs_node_aops;
4029 extern const struct address_space_operations f2fs_meta_aops;
4030 extern const struct inode_operations f2fs_dir_inode_operations;
4031 extern const struct inode_operations f2fs_symlink_inode_operations;
4032 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
4033 extern const struct inode_operations f2fs_special_inode_operations;
4034 extern struct kmem_cache *f2fs_inode_entry_slab;
4035 
4036 /*
4037  * inline.c
4038  */
4039 bool f2fs_may_inline_data(struct inode *inode);
4040 bool f2fs_sanity_check_inline_data(struct inode *inode);
4041 bool f2fs_may_inline_dentry(struct inode *inode);
4042 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
4043 void f2fs_truncate_inline_inode(struct inode *inode,
4044 						struct page *ipage, u64 from);
4045 int f2fs_read_inline_data(struct inode *inode, struct page *page);
4046 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
4047 int f2fs_convert_inline_inode(struct inode *inode);
4048 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
4049 int f2fs_write_inline_data(struct inode *inode, struct page *page);
4050 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
4051 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
4052 					const struct f2fs_filename *fname,
4053 					struct page **res_page);
4054 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
4055 			struct page *ipage);
4056 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
4057 			struct inode *inode, nid_t ino, umode_t mode);
4058 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
4059 				struct page *page, struct inode *dir,
4060 				struct inode *inode);
4061 bool f2fs_empty_inline_dir(struct inode *dir);
4062 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
4063 			struct fscrypt_str *fstr);
4064 int f2fs_inline_data_fiemap(struct inode *inode,
4065 			struct fiemap_extent_info *fieinfo,
4066 			__u64 start, __u64 len);
4067 
4068 /*
4069  * shrinker.c
4070  */
4071 unsigned long f2fs_shrink_count(struct shrinker *shrink,
4072 			struct shrink_control *sc);
4073 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
4074 			struct shrink_control *sc);
4075 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
4076 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
4077 
4078 /*
4079  * extent_cache.c
4080  */
4081 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
4082 				struct rb_entry *cached_re, unsigned int ofs);
4083 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
4084 				struct rb_root_cached *root,
4085 				struct rb_node **parent,
4086 				unsigned long long key, bool *left_most);
4087 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
4088 				struct rb_root_cached *root,
4089 				struct rb_node **parent,
4090 				unsigned int ofs, bool *leftmost);
4091 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
4092 		struct rb_entry *cached_re, unsigned int ofs,
4093 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
4094 		struct rb_node ***insert_p, struct rb_node **insert_parent,
4095 		bool force, bool *leftmost);
4096 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
4097 				struct rb_root_cached *root, bool check_key);
4098 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
4099 void f2fs_init_extent_tree(struct inode *inode, struct page *ipage);
4100 void f2fs_drop_extent_tree(struct inode *inode);
4101 unsigned int f2fs_destroy_extent_node(struct inode *inode);
4102 void f2fs_destroy_extent_tree(struct inode *inode);
4103 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
4104 			struct extent_info *ei);
4105 void f2fs_update_extent_cache(struct dnode_of_data *dn);
4106 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
4107 			pgoff_t fofs, block_t blkaddr, unsigned int len);
4108 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
4109 int __init f2fs_create_extent_cache(void);
4110 void f2fs_destroy_extent_cache(void);
4111 
4112 /*
4113  * sysfs.c
4114  */
4115 #define MIN_RA_MUL	2
4116 #define MAX_RA_MUL	256
4117 
4118 int __init f2fs_init_sysfs(void);
4119 void f2fs_exit_sysfs(void);
4120 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4121 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4122 
4123 /* verity.c */
4124 extern const struct fsverity_operations f2fs_verityops;
4125 
4126 /*
4127  * crypto support
4128  */
f2fs_encrypted_file(struct inode * inode)4129 static inline bool f2fs_encrypted_file(struct inode *inode)
4130 {
4131 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4132 }
4133 
f2fs_set_encrypted_inode(struct inode * inode)4134 static inline void f2fs_set_encrypted_inode(struct inode *inode)
4135 {
4136 #ifdef CONFIG_FS_ENCRYPTION
4137 	file_set_encrypt(inode);
4138 	f2fs_set_inode_flags(inode);
4139 #endif
4140 }
4141 
4142 /*
4143  * Returns true if the reads of the inode's data need to undergo some
4144  * postprocessing step, like decryption or authenticity verification.
4145  */
f2fs_post_read_required(struct inode * inode)4146 static inline bool f2fs_post_read_required(struct inode *inode)
4147 {
4148 	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4149 		f2fs_compressed_file(inode);
4150 }
4151 
4152 /*
4153  * compress.c
4154  */
4155 #ifdef CONFIG_F2FS_FS_COMPRESSION
4156 bool f2fs_is_compressed_page(struct page *page);
4157 struct page *f2fs_compress_control_page(struct page *page);
4158 int f2fs_prepare_compress_overwrite(struct inode *inode,
4159 			struct page **pagep, pgoff_t index, void **fsdata);
4160 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4161 					pgoff_t index, unsigned copied);
4162 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4163 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4164 bool f2fs_is_compress_backend_ready(struct inode *inode);
4165 int f2fs_init_compress_mempool(void);
4166 void f2fs_destroy_compress_mempool(void);
4167 void f2fs_decompress_cluster(struct decompress_io_ctx *dic);
4168 void f2fs_end_read_compressed_page(struct page *page, bool failed,
4169 							block_t blkaddr);
4170 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4171 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4172 bool f2fs_all_cluster_page_loaded(struct compress_ctx *cc, struct pagevec *pvec,
4173 				int index, int nr_pages);
4174 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4175 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
4176 int f2fs_write_multi_pages(struct compress_ctx *cc,
4177 						int *submitted,
4178 						struct writeback_control *wbc,
4179 						enum iostat_type io_type);
4180 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4181 void f2fs_update_extent_tree_range_compressed(struct inode *inode,
4182 				pgoff_t fofs, block_t blkaddr, unsigned int llen,
4183 				unsigned int c_len);
4184 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4185 				unsigned nr_pages, sector_t *last_block_in_bio,
4186 				bool is_readahead, bool for_write);
4187 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4188 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed);
4189 void f2fs_put_page_dic(struct page *page);
4190 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn);
4191 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4192 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4193 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4194 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4195 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4196 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4197 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4198 int __init f2fs_init_compress_cache(void);
4199 void f2fs_destroy_compress_cache(void);
4200 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4201 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
4202 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4203 						nid_t ino, block_t blkaddr);
4204 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4205 								block_t blkaddr);
4206 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4207 #define inc_compr_inode_stat(inode)					\
4208 	do {								\
4209 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4210 		sbi->compr_new_inode++;					\
4211 	} while (0)
4212 #define add_compr_block_stat(inode, blocks)				\
4213 	do {								\
4214 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4215 		int diff = F2FS_I(inode)->i_cluster_size - blocks;	\
4216 		sbi->compr_written_block += blocks;			\
4217 		sbi->compr_saved_block += diff;				\
4218 	} while (0)
4219 #else
f2fs_is_compressed_page(struct page * page)4220 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
f2fs_is_compress_backend_ready(struct inode * inode)4221 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4222 {
4223 	if (!f2fs_compressed_file(inode))
4224 		return true;
4225 	/* not support compression */
4226 	return false;
4227 }
f2fs_compress_control_page(struct page * page)4228 static inline struct page *f2fs_compress_control_page(struct page *page)
4229 {
4230 	WARN_ON_ONCE(1);
4231 	return ERR_PTR(-EINVAL);
4232 }
f2fs_init_compress_mempool(void)4233 static inline int f2fs_init_compress_mempool(void) { return 0; }
f2fs_destroy_compress_mempool(void)4234 static inline void f2fs_destroy_compress_mempool(void) { }
f2fs_decompress_cluster(struct decompress_io_ctx * dic)4235 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic) { }
f2fs_end_read_compressed_page(struct page * page,bool failed,block_t blkaddr)4236 static inline void f2fs_end_read_compressed_page(struct page *page,
4237 						bool failed, block_t blkaddr)
4238 {
4239 	WARN_ON_ONCE(1);
4240 }
f2fs_put_page_dic(struct page * page)4241 static inline void f2fs_put_page_dic(struct page *page)
4242 {
4243 	WARN_ON_ONCE(1);
4244 }
f2fs_cluster_blocks_are_contiguous(struct dnode_of_data * dn)4245 static inline unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn) { return 0; }
f2fs_sanity_check_cluster(struct dnode_of_data * dn)4246 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
f2fs_init_compress_inode(struct f2fs_sb_info * sbi)4247 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_compress_inode(struct f2fs_sb_info * sbi)4248 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
f2fs_init_page_array_cache(struct f2fs_sb_info * sbi)4249 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_page_array_cache(struct f2fs_sb_info * sbi)4250 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
f2fs_init_compress_cache(void)4251 static inline int __init f2fs_init_compress_cache(void) { return 0; }
f2fs_destroy_compress_cache(void)4252 static inline void f2fs_destroy_compress_cache(void) { }
f2fs_invalidate_compress_page(struct f2fs_sb_info * sbi,block_t blkaddr)4253 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
4254 				block_t blkaddr) { }
f2fs_cache_compressed_page(struct f2fs_sb_info * sbi,struct page * page,nid_t ino,block_t blkaddr)4255 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4256 				struct page *page, nid_t ino, block_t blkaddr) { }
f2fs_load_compressed_page(struct f2fs_sb_info * sbi,struct page * page,block_t blkaddr)4257 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4258 				struct page *page, block_t blkaddr) { return false; }
f2fs_invalidate_compress_pages(struct f2fs_sb_info * sbi,nid_t ino)4259 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4260 							nid_t ino) { }
4261 #define inc_compr_inode_stat(inode)		do { } while (0)
f2fs_update_extent_tree_range_compressed(struct inode * inode,pgoff_t fofs,block_t blkaddr,unsigned int llen,unsigned int c_len)4262 static inline void f2fs_update_extent_tree_range_compressed(struct inode *inode,
4263 				pgoff_t fofs, block_t blkaddr, unsigned int llen,
4264 				unsigned int c_len) { }
4265 #endif
4266 
set_compress_context(struct inode * inode)4267 static inline void set_compress_context(struct inode *inode)
4268 {
4269 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4270 
4271 	F2FS_I(inode)->i_compress_algorithm =
4272 			F2FS_OPTION(sbi).compress_algorithm;
4273 	F2FS_I(inode)->i_log_cluster_size =
4274 			F2FS_OPTION(sbi).compress_log_size;
4275 	F2FS_I(inode)->i_compress_flag =
4276 			F2FS_OPTION(sbi).compress_chksum ?
4277 				1 << COMPRESS_CHKSUM : 0;
4278 	F2FS_I(inode)->i_cluster_size =
4279 			1 << F2FS_I(inode)->i_log_cluster_size;
4280 	if ((F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 ||
4281 		F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) &&
4282 			F2FS_OPTION(sbi).compress_level)
4283 		F2FS_I(inode)->i_compress_flag |=
4284 				F2FS_OPTION(sbi).compress_level <<
4285 				COMPRESS_LEVEL_OFFSET;
4286 	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
4287 	set_inode_flag(inode, FI_COMPRESSED_FILE);
4288 	stat_inc_compr_inode(inode);
4289 	inc_compr_inode_stat(inode);
4290 	f2fs_mark_inode_dirty_sync(inode, true);
4291 }
4292 
f2fs_disable_compressed_file(struct inode * inode)4293 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4294 {
4295 	struct f2fs_inode_info *fi = F2FS_I(inode);
4296 
4297 	if (!f2fs_compressed_file(inode))
4298 		return true;
4299 	if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))
4300 		return false;
4301 
4302 	fi->i_flags &= ~F2FS_COMPR_FL;
4303 	stat_dec_compr_inode(inode);
4304 	clear_inode_flag(inode, FI_COMPRESSED_FILE);
4305 	f2fs_mark_inode_dirty_sync(inode, true);
4306 	return true;
4307 }
4308 
4309 #define F2FS_FEATURE_FUNCS(name, flagname) \
4310 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4311 { \
4312 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4313 }
4314 
4315 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4316 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4317 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4318 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4319 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4320 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4321 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4322 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4323 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4324 F2FS_FEATURE_FUNCS(verity, VERITY);
4325 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4326 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4327 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4328 F2FS_FEATURE_FUNCS(readonly, RO);
4329 
f2fs_may_extent_tree(struct inode * inode)4330 static inline bool f2fs_may_extent_tree(struct inode *inode)
4331 {
4332 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4333 
4334 	if (!test_opt(sbi, EXTENT_CACHE) ||
4335 			is_inode_flag_set(inode, FI_NO_EXTENT) ||
4336 			(is_inode_flag_set(inode, FI_COMPRESSED_FILE) &&
4337 			 !f2fs_sb_has_readonly(sbi)))
4338 		return false;
4339 
4340 	/*
4341 	 * for recovered files during mount do not create extents
4342 	 * if shrinker is not registered.
4343 	 */
4344 	if (list_empty(&sbi->s_list))
4345 		return false;
4346 
4347 	return S_ISREG(inode->i_mode);
4348 }
4349 
4350 #ifdef CONFIG_BLK_DEV_ZONED
f2fs_blkz_is_seq(struct f2fs_sb_info * sbi,int devi,block_t blkaddr)4351 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4352 				    block_t blkaddr)
4353 {
4354 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
4355 
4356 	return test_bit(zno, FDEV(devi).blkz_seq);
4357 }
4358 #endif
4359 
f2fs_hw_should_discard(struct f2fs_sb_info * sbi)4360 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4361 {
4362 	return f2fs_sb_has_blkzoned(sbi);
4363 }
4364 
f2fs_bdev_support_discard(struct block_device * bdev)4365 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4366 {
4367 	return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev);
4368 }
4369 
f2fs_hw_support_discard(struct f2fs_sb_info * sbi)4370 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4371 {
4372 	int i;
4373 
4374 	if (!f2fs_is_multi_device(sbi))
4375 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4376 
4377 	for (i = 0; i < sbi->s_ndevs; i++)
4378 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
4379 			return true;
4380 	return false;
4381 }
4382 
f2fs_realtime_discard_enable(struct f2fs_sb_info * sbi)4383 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4384 {
4385 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4386 					f2fs_hw_should_discard(sbi);
4387 }
4388 
f2fs_hw_is_readonly(struct f2fs_sb_info * sbi)4389 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4390 {
4391 	int i;
4392 
4393 	if (!f2fs_is_multi_device(sbi))
4394 		return bdev_read_only(sbi->sb->s_bdev);
4395 
4396 	for (i = 0; i < sbi->s_ndevs; i++)
4397 		if (bdev_read_only(FDEV(i).bdev))
4398 			return true;
4399 	return false;
4400 }
4401 
f2fs_lfs_mode(struct f2fs_sb_info * sbi)4402 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4403 {
4404 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4405 }
4406 
f2fs_may_compress(struct inode * inode)4407 static inline bool f2fs_may_compress(struct inode *inode)
4408 {
4409 	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4410 		f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode))
4411 		return false;
4412 	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4413 }
4414 
f2fs_i_compr_blocks_update(struct inode * inode,u64 blocks,bool add)4415 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4416 						u64 blocks, bool add)
4417 {
4418 	struct f2fs_inode_info *fi = F2FS_I(inode);
4419 	int diff = fi->i_cluster_size - blocks;
4420 
4421 	/* don't update i_compr_blocks if saved blocks were released */
4422 	if (!add && !atomic_read(&fi->i_compr_blocks))
4423 		return;
4424 
4425 	if (add) {
4426 		atomic_add(diff, &fi->i_compr_blocks);
4427 		stat_add_compr_blocks(inode, diff);
4428 	} else {
4429 		atomic_sub(diff, &fi->i_compr_blocks);
4430 		stat_sub_compr_blocks(inode, diff);
4431 	}
4432 	f2fs_mark_inode_dirty_sync(inode, true);
4433 }
4434 
block_unaligned_IO(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4435 static inline int block_unaligned_IO(struct inode *inode,
4436 				struct kiocb *iocb, struct iov_iter *iter)
4437 {
4438 	unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
4439 	unsigned int blocksize_mask = (1 << i_blkbits) - 1;
4440 	loff_t offset = iocb->ki_pos;
4441 	unsigned long align = offset | iov_iter_alignment(iter);
4442 
4443 	return align & blocksize_mask;
4444 }
4445 
f2fs_allow_multi_device_dio(struct f2fs_sb_info * sbi,int flag)4446 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
4447 								int flag)
4448 {
4449 	if (!f2fs_is_multi_device(sbi))
4450 		return false;
4451 	if (flag != F2FS_GET_BLOCK_DIO)
4452 		return false;
4453 	return sbi->aligned_blksize;
4454 }
4455 
f2fs_force_buffered_io(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4456 static inline bool f2fs_force_buffered_io(struct inode *inode,
4457 				struct kiocb *iocb, struct iov_iter *iter)
4458 {
4459 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4460 	int rw = iov_iter_rw(iter);
4461 
4462 	if (!fscrypt_dio_supported(iocb, iter))
4463 		return true;
4464 	if (fsverity_active(inode))
4465 		return true;
4466 	if (f2fs_compressed_file(inode))
4467 		return true;
4468 
4469 	/* disallow direct IO if any of devices has unaligned blksize */
4470 	if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize)
4471 		return true;
4472 	/*
4473 	 * for blkzoned device, fallback direct IO to buffered IO, so
4474 	 * all IOs can be serialized by log-structured write.
4475 	 */
4476 	if (f2fs_sb_has_blkzoned(sbi))
4477 		return true;
4478 	if (f2fs_lfs_mode(sbi) && (rw == WRITE)) {
4479 		if (block_unaligned_IO(inode, iocb, iter))
4480 			return true;
4481 		if (F2FS_IO_ALIGNED(sbi))
4482 			return true;
4483 	}
4484 	if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED))
4485 		return true;
4486 
4487 	return false;
4488 }
4489 
f2fs_need_verity(const struct inode * inode,pgoff_t idx)4490 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4491 {
4492 	return fsverity_active(inode) &&
4493 	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4494 }
4495 
4496 #ifdef CONFIG_F2FS_FAULT_INJECTION
4497 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4498 							unsigned int type);
4499 #else
4500 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
4501 #endif
4502 
is_journalled_quota(struct f2fs_sb_info * sbi)4503 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4504 {
4505 #ifdef CONFIG_QUOTA
4506 	if (f2fs_sb_has_quota_ino(sbi))
4507 		return true;
4508 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4509 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4510 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4511 		return true;
4512 #endif
4513 	return false;
4514 }
4515 
f2fs_block_unit_discard(struct f2fs_sb_info * sbi)4516 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4517 {
4518 	return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4519 }
4520 
f2fs_io_schedule_timeout(long timeout)4521 static inline void f2fs_io_schedule_timeout(long timeout)
4522 {
4523 	set_current_state(TASK_UNINTERRUPTIBLE);
4524 	io_schedule_timeout(timeout);
4525 }
4526 
f2fs_handle_page_eio(struct f2fs_sb_info * sbi,pgoff_t ofs,enum page_type type)4527 static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi, pgoff_t ofs,
4528 					enum page_type type)
4529 {
4530 	if (unlikely(f2fs_cp_error(sbi)))
4531 		return;
4532 
4533 	if (ofs == sbi->page_eio_ofs[type]) {
4534 		if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO)
4535 			set_ckpt_flags(sbi, CP_ERROR_FLAG);
4536 	} else {
4537 		sbi->page_eio_ofs[type] = ofs;
4538 		sbi->page_eio_cnt[type] = 0;
4539 	}
4540 }
4541 
4542 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4543 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4544 
4545 #endif /* _LINUX_F2FS_H */
4546