1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic helpers for smp ipi calls
4 *
5 * (C) Jens Axboe <jens.axboe@oracle.com> 2008
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/irq_work.h>
11 #include <linux/rcupdate.h>
12 #include <linux/rculist.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/percpu.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/gfp.h>
19 #include <linux/smp.h>
20 #include <linux/cpu.h>
21 #include <linux/sched.h>
22 #include <linux/sched/idle.h>
23 #include <linux/hypervisor.h>
24 #include <linux/sched/clock.h>
25 #include <linux/nmi.h>
26 #include <linux/sched/debug.h>
27 #include <linux/jump_label.h>
28
29 #include "smpboot.h"
30 #include "sched/smp.h"
31
32 #define CSD_TYPE(_csd) ((_csd)->node.u_flags & CSD_FLAG_TYPE_MASK)
33
34 #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
35 union cfd_seq_cnt {
36 u64 val;
37 struct {
38 u64 src:16;
39 u64 dst:16;
40 #define CFD_SEQ_NOCPU 0xffff
41 u64 type:4;
42 #define CFD_SEQ_QUEUE 0
43 #define CFD_SEQ_IPI 1
44 #define CFD_SEQ_NOIPI 2
45 #define CFD_SEQ_PING 3
46 #define CFD_SEQ_PINGED 4
47 #define CFD_SEQ_HANDLE 5
48 #define CFD_SEQ_DEQUEUE 6
49 #define CFD_SEQ_IDLE 7
50 #define CFD_SEQ_GOTIPI 8
51 #define CFD_SEQ_HDLEND 9
52 u64 cnt:28;
53 } u;
54 };
55
56 static char *seq_type[] = {
57 [CFD_SEQ_QUEUE] = "queue",
58 [CFD_SEQ_IPI] = "ipi",
59 [CFD_SEQ_NOIPI] = "noipi",
60 [CFD_SEQ_PING] = "ping",
61 [CFD_SEQ_PINGED] = "pinged",
62 [CFD_SEQ_HANDLE] = "handle",
63 [CFD_SEQ_DEQUEUE] = "dequeue (src CPU 0 == empty)",
64 [CFD_SEQ_IDLE] = "idle",
65 [CFD_SEQ_GOTIPI] = "gotipi",
66 [CFD_SEQ_HDLEND] = "hdlend (src CPU 0 == early)",
67 };
68
69 struct cfd_seq_local {
70 u64 ping;
71 u64 pinged;
72 u64 handle;
73 u64 dequeue;
74 u64 idle;
75 u64 gotipi;
76 u64 hdlend;
77 };
78 #endif
79
80 struct cfd_percpu {
81 call_single_data_t csd;
82 #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
83 u64 seq_queue;
84 u64 seq_ipi;
85 u64 seq_noipi;
86 #endif
87 };
88
89 struct call_function_data {
90 struct cfd_percpu __percpu *pcpu;
91 cpumask_var_t cpumask;
92 cpumask_var_t cpumask_ipi;
93 };
94
95 static DEFINE_PER_CPU_ALIGNED(struct call_function_data, cfd_data);
96
97 static DEFINE_PER_CPU_SHARED_ALIGNED(struct llist_head, call_single_queue);
98
99 static void __flush_smp_call_function_queue(bool warn_cpu_offline);
100
smpcfd_prepare_cpu(unsigned int cpu)101 int smpcfd_prepare_cpu(unsigned int cpu)
102 {
103 struct call_function_data *cfd = &per_cpu(cfd_data, cpu);
104
105 if (!zalloc_cpumask_var_node(&cfd->cpumask, GFP_KERNEL,
106 cpu_to_node(cpu)))
107 return -ENOMEM;
108 if (!zalloc_cpumask_var_node(&cfd->cpumask_ipi, GFP_KERNEL,
109 cpu_to_node(cpu))) {
110 free_cpumask_var(cfd->cpumask);
111 return -ENOMEM;
112 }
113 cfd->pcpu = alloc_percpu(struct cfd_percpu);
114 if (!cfd->pcpu) {
115 free_cpumask_var(cfd->cpumask);
116 free_cpumask_var(cfd->cpumask_ipi);
117 return -ENOMEM;
118 }
119
120 return 0;
121 }
122
smpcfd_dead_cpu(unsigned int cpu)123 int smpcfd_dead_cpu(unsigned int cpu)
124 {
125 struct call_function_data *cfd = &per_cpu(cfd_data, cpu);
126
127 free_cpumask_var(cfd->cpumask);
128 free_cpumask_var(cfd->cpumask_ipi);
129 free_percpu(cfd->pcpu);
130 return 0;
131 }
132
smpcfd_dying_cpu(unsigned int cpu)133 int smpcfd_dying_cpu(unsigned int cpu)
134 {
135 /*
136 * The IPIs for the smp-call-function callbacks queued by other
137 * CPUs might arrive late, either due to hardware latencies or
138 * because this CPU disabled interrupts (inside stop-machine)
139 * before the IPIs were sent. So flush out any pending callbacks
140 * explicitly (without waiting for the IPIs to arrive), to
141 * ensure that the outgoing CPU doesn't go offline with work
142 * still pending.
143 */
144 __flush_smp_call_function_queue(false);
145 irq_work_run();
146 return 0;
147 }
148
call_function_init(void)149 void __init call_function_init(void)
150 {
151 int i;
152
153 for_each_possible_cpu(i)
154 init_llist_head(&per_cpu(call_single_queue, i));
155
156 smpcfd_prepare_cpu(smp_processor_id());
157 }
158
159 #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
160
161 static DEFINE_STATIC_KEY_FALSE(csdlock_debug_enabled);
162 static DEFINE_STATIC_KEY_FALSE(csdlock_debug_extended);
163
csdlock_debug(char * str)164 static int __init csdlock_debug(char *str)
165 {
166 unsigned int val = 0;
167
168 if (str && !strcmp(str, "ext")) {
169 val = 1;
170 static_branch_enable(&csdlock_debug_extended);
171 } else
172 get_option(&str, &val);
173
174 if (val)
175 static_branch_enable(&csdlock_debug_enabled);
176
177 return 1;
178 }
179 __setup("csdlock_debug=", csdlock_debug);
180
181 static DEFINE_PER_CPU(call_single_data_t *, cur_csd);
182 static DEFINE_PER_CPU(smp_call_func_t, cur_csd_func);
183 static DEFINE_PER_CPU(void *, cur_csd_info);
184 static DEFINE_PER_CPU(struct cfd_seq_local, cfd_seq_local);
185
186 static ulong csd_lock_timeout = 5000; /* CSD lock timeout in milliseconds. */
187 module_param(csd_lock_timeout, ulong, 0444);
188
189 static atomic_t csd_bug_count = ATOMIC_INIT(0);
190 static u64 cfd_seq;
191
192 #define CFD_SEQ(s, d, t, c) \
193 (union cfd_seq_cnt){ .u.src = s, .u.dst = d, .u.type = t, .u.cnt = c }
194
cfd_seq_inc(unsigned int src,unsigned int dst,unsigned int type)195 static u64 cfd_seq_inc(unsigned int src, unsigned int dst, unsigned int type)
196 {
197 union cfd_seq_cnt new, old;
198
199 new = CFD_SEQ(src, dst, type, 0);
200
201 do {
202 old.val = READ_ONCE(cfd_seq);
203 new.u.cnt = old.u.cnt + 1;
204 } while (cmpxchg(&cfd_seq, old.val, new.val) != old.val);
205
206 return old.val;
207 }
208
209 #define cfd_seq_store(var, src, dst, type) \
210 do { \
211 if (static_branch_unlikely(&csdlock_debug_extended)) \
212 var = cfd_seq_inc(src, dst, type); \
213 } while (0)
214
215 /* Record current CSD work for current CPU, NULL to erase. */
__csd_lock_record(struct __call_single_data * csd)216 static void __csd_lock_record(struct __call_single_data *csd)
217 {
218 if (!csd) {
219 smp_mb(); /* NULL cur_csd after unlock. */
220 __this_cpu_write(cur_csd, NULL);
221 return;
222 }
223 __this_cpu_write(cur_csd_func, csd->func);
224 __this_cpu_write(cur_csd_info, csd->info);
225 smp_wmb(); /* func and info before csd. */
226 __this_cpu_write(cur_csd, csd);
227 smp_mb(); /* Update cur_csd before function call. */
228 /* Or before unlock, as the case may be. */
229 }
230
csd_lock_record(struct __call_single_data * csd)231 static __always_inline void csd_lock_record(struct __call_single_data *csd)
232 {
233 if (static_branch_unlikely(&csdlock_debug_enabled))
234 __csd_lock_record(csd);
235 }
236
csd_lock_wait_getcpu(struct __call_single_data * csd)237 static int csd_lock_wait_getcpu(struct __call_single_data *csd)
238 {
239 unsigned int csd_type;
240
241 csd_type = CSD_TYPE(csd);
242 if (csd_type == CSD_TYPE_ASYNC || csd_type == CSD_TYPE_SYNC)
243 return csd->node.dst; /* Other CSD_TYPE_ values might not have ->dst. */
244 return -1;
245 }
246
cfd_seq_data_add(u64 val,unsigned int src,unsigned int dst,unsigned int type,union cfd_seq_cnt * data,unsigned int * n_data,unsigned int now)247 static void cfd_seq_data_add(u64 val, unsigned int src, unsigned int dst,
248 unsigned int type, union cfd_seq_cnt *data,
249 unsigned int *n_data, unsigned int now)
250 {
251 union cfd_seq_cnt new[2];
252 unsigned int i, j, k;
253
254 new[0].val = val;
255 new[1] = CFD_SEQ(src, dst, type, new[0].u.cnt + 1);
256
257 for (i = 0; i < 2; i++) {
258 if (new[i].u.cnt <= now)
259 new[i].u.cnt |= 0x80000000U;
260 for (j = 0; j < *n_data; j++) {
261 if (new[i].u.cnt == data[j].u.cnt) {
262 /* Direct read value trumps generated one. */
263 if (i == 0)
264 data[j].val = new[i].val;
265 break;
266 }
267 if (new[i].u.cnt < data[j].u.cnt) {
268 for (k = *n_data; k > j; k--)
269 data[k].val = data[k - 1].val;
270 data[j].val = new[i].val;
271 (*n_data)++;
272 break;
273 }
274 }
275 if (j == *n_data) {
276 data[j].val = new[i].val;
277 (*n_data)++;
278 }
279 }
280 }
281
csd_lock_get_type(unsigned int type)282 static const char *csd_lock_get_type(unsigned int type)
283 {
284 return (type >= ARRAY_SIZE(seq_type)) ? "?" : seq_type[type];
285 }
286
csd_lock_print_extended(struct __call_single_data * csd,int cpu)287 static void csd_lock_print_extended(struct __call_single_data *csd, int cpu)
288 {
289 struct cfd_seq_local *seq = &per_cpu(cfd_seq_local, cpu);
290 unsigned int srccpu = csd->node.src;
291 struct call_function_data *cfd = per_cpu_ptr(&cfd_data, srccpu);
292 struct cfd_percpu *pcpu = per_cpu_ptr(cfd->pcpu, cpu);
293 unsigned int now;
294 union cfd_seq_cnt data[2 * ARRAY_SIZE(seq_type)];
295 unsigned int n_data = 0, i;
296
297 data[0].val = READ_ONCE(cfd_seq);
298 now = data[0].u.cnt;
299
300 cfd_seq_data_add(pcpu->seq_queue, srccpu, cpu, CFD_SEQ_QUEUE, data, &n_data, now);
301 cfd_seq_data_add(pcpu->seq_ipi, srccpu, cpu, CFD_SEQ_IPI, data, &n_data, now);
302 cfd_seq_data_add(pcpu->seq_noipi, srccpu, cpu, CFD_SEQ_NOIPI, data, &n_data, now);
303
304 cfd_seq_data_add(per_cpu(cfd_seq_local.ping, srccpu), srccpu, CFD_SEQ_NOCPU, CFD_SEQ_PING, data, &n_data, now);
305 cfd_seq_data_add(per_cpu(cfd_seq_local.pinged, srccpu), srccpu, CFD_SEQ_NOCPU, CFD_SEQ_PINGED, data, &n_data, now);
306
307 cfd_seq_data_add(seq->idle, CFD_SEQ_NOCPU, cpu, CFD_SEQ_IDLE, data, &n_data, now);
308 cfd_seq_data_add(seq->gotipi, CFD_SEQ_NOCPU, cpu, CFD_SEQ_GOTIPI, data, &n_data, now);
309 cfd_seq_data_add(seq->handle, CFD_SEQ_NOCPU, cpu, CFD_SEQ_HANDLE, data, &n_data, now);
310 cfd_seq_data_add(seq->dequeue, CFD_SEQ_NOCPU, cpu, CFD_SEQ_DEQUEUE, data, &n_data, now);
311 cfd_seq_data_add(seq->hdlend, CFD_SEQ_NOCPU, cpu, CFD_SEQ_HDLEND, data, &n_data, now);
312
313 for (i = 0; i < n_data; i++) {
314 pr_alert("\tcsd: cnt(%07x): %04x->%04x %s\n",
315 data[i].u.cnt & ~0x80000000U, data[i].u.src,
316 data[i].u.dst, csd_lock_get_type(data[i].u.type));
317 }
318 pr_alert("\tcsd: cnt now: %07x\n", now);
319 }
320
321 /*
322 * Complain if too much time spent waiting. Note that only
323 * the CSD_TYPE_SYNC/ASYNC types provide the destination CPU,
324 * so waiting on other types gets much less information.
325 */
csd_lock_wait_toolong(struct __call_single_data * csd,u64 ts0,u64 * ts1,int * bug_id)326 static bool csd_lock_wait_toolong(struct __call_single_data *csd, u64 ts0, u64 *ts1, int *bug_id)
327 {
328 int cpu = -1;
329 int cpux;
330 bool firsttime;
331 u64 ts2, ts_delta;
332 call_single_data_t *cpu_cur_csd;
333 unsigned int flags = READ_ONCE(csd->node.u_flags);
334 unsigned long long csd_lock_timeout_ns = csd_lock_timeout * NSEC_PER_MSEC;
335
336 if (!(flags & CSD_FLAG_LOCK)) {
337 if (!unlikely(*bug_id))
338 return true;
339 cpu = csd_lock_wait_getcpu(csd);
340 pr_alert("csd: CSD lock (#%d) got unstuck on CPU#%02d, CPU#%02d released the lock.\n",
341 *bug_id, raw_smp_processor_id(), cpu);
342 return true;
343 }
344
345 ts2 = sched_clock();
346 ts_delta = ts2 - *ts1;
347 if (likely(ts_delta <= csd_lock_timeout_ns || csd_lock_timeout_ns == 0))
348 return false;
349
350 firsttime = !*bug_id;
351 if (firsttime)
352 *bug_id = atomic_inc_return(&csd_bug_count);
353 cpu = csd_lock_wait_getcpu(csd);
354 if (WARN_ONCE(cpu < 0 || cpu >= nr_cpu_ids, "%s: cpu = %d\n", __func__, cpu))
355 cpux = 0;
356 else
357 cpux = cpu;
358 cpu_cur_csd = smp_load_acquire(&per_cpu(cur_csd, cpux)); /* Before func and info. */
359 pr_alert("csd: %s non-responsive CSD lock (#%d) on CPU#%d, waiting %llu ns for CPU#%02d %pS(%ps).\n",
360 firsttime ? "Detected" : "Continued", *bug_id, raw_smp_processor_id(), ts2 - ts0,
361 cpu, csd->func, csd->info);
362 if (cpu_cur_csd && csd != cpu_cur_csd) {
363 pr_alert("\tcsd: CSD lock (#%d) handling prior %pS(%ps) request.\n",
364 *bug_id, READ_ONCE(per_cpu(cur_csd_func, cpux)),
365 READ_ONCE(per_cpu(cur_csd_info, cpux)));
366 } else {
367 pr_alert("\tcsd: CSD lock (#%d) %s.\n",
368 *bug_id, !cpu_cur_csd ? "unresponsive" : "handling this request");
369 }
370 if (cpu >= 0) {
371 if (static_branch_unlikely(&csdlock_debug_extended))
372 csd_lock_print_extended(csd, cpu);
373 if (!trigger_single_cpu_backtrace(cpu))
374 dump_cpu_task(cpu);
375 if (!cpu_cur_csd) {
376 pr_alert("csd: Re-sending CSD lock (#%d) IPI from CPU#%02d to CPU#%02d\n", *bug_id, raw_smp_processor_id(), cpu);
377 arch_send_call_function_single_ipi(cpu);
378 }
379 }
380 dump_stack();
381 *ts1 = ts2;
382
383 return false;
384 }
385
386 /*
387 * csd_lock/csd_unlock used to serialize access to per-cpu csd resources
388 *
389 * For non-synchronous ipi calls the csd can still be in use by the
390 * previous function call. For multi-cpu calls its even more interesting
391 * as we'll have to ensure no other cpu is observing our csd.
392 */
__csd_lock_wait(struct __call_single_data * csd)393 static void __csd_lock_wait(struct __call_single_data *csd)
394 {
395 int bug_id = 0;
396 u64 ts0, ts1;
397
398 ts1 = ts0 = sched_clock();
399 for (;;) {
400 if (csd_lock_wait_toolong(csd, ts0, &ts1, &bug_id))
401 break;
402 cpu_relax();
403 }
404 smp_acquire__after_ctrl_dep();
405 }
406
csd_lock_wait(struct __call_single_data * csd)407 static __always_inline void csd_lock_wait(struct __call_single_data *csd)
408 {
409 if (static_branch_unlikely(&csdlock_debug_enabled)) {
410 __csd_lock_wait(csd);
411 return;
412 }
413
414 smp_cond_load_acquire(&csd->node.u_flags, !(VAL & CSD_FLAG_LOCK));
415 }
416
__smp_call_single_queue_debug(int cpu,struct llist_node * node)417 static void __smp_call_single_queue_debug(int cpu, struct llist_node *node)
418 {
419 unsigned int this_cpu = smp_processor_id();
420 struct cfd_seq_local *seq = this_cpu_ptr(&cfd_seq_local);
421 struct call_function_data *cfd = this_cpu_ptr(&cfd_data);
422 struct cfd_percpu *pcpu = per_cpu_ptr(cfd->pcpu, cpu);
423
424 cfd_seq_store(pcpu->seq_queue, this_cpu, cpu, CFD_SEQ_QUEUE);
425 if (llist_add(node, &per_cpu(call_single_queue, cpu))) {
426 cfd_seq_store(pcpu->seq_ipi, this_cpu, cpu, CFD_SEQ_IPI);
427 cfd_seq_store(seq->ping, this_cpu, cpu, CFD_SEQ_PING);
428 send_call_function_single_ipi(cpu);
429 cfd_seq_store(seq->pinged, this_cpu, cpu, CFD_SEQ_PINGED);
430 } else {
431 cfd_seq_store(pcpu->seq_noipi, this_cpu, cpu, CFD_SEQ_NOIPI);
432 }
433 }
434 #else
435 #define cfd_seq_store(var, src, dst, type)
436
csd_lock_record(struct __call_single_data * csd)437 static void csd_lock_record(struct __call_single_data *csd)
438 {
439 }
440
csd_lock_wait(struct __call_single_data * csd)441 static __always_inline void csd_lock_wait(struct __call_single_data *csd)
442 {
443 smp_cond_load_acquire(&csd->node.u_flags, !(VAL & CSD_FLAG_LOCK));
444 }
445 #endif
446
csd_lock(struct __call_single_data * csd)447 static __always_inline void csd_lock(struct __call_single_data *csd)
448 {
449 csd_lock_wait(csd);
450 csd->node.u_flags |= CSD_FLAG_LOCK;
451
452 /*
453 * prevent CPU from reordering the above assignment
454 * to ->flags with any subsequent assignments to other
455 * fields of the specified call_single_data_t structure:
456 */
457 smp_wmb();
458 }
459
csd_unlock(struct __call_single_data * csd)460 static __always_inline void csd_unlock(struct __call_single_data *csd)
461 {
462 WARN_ON(!(csd->node.u_flags & CSD_FLAG_LOCK));
463
464 /*
465 * ensure we're all done before releasing data:
466 */
467 smp_store_release(&csd->node.u_flags, 0);
468 }
469
470 static DEFINE_PER_CPU_SHARED_ALIGNED(call_single_data_t, csd_data);
471
__smp_call_single_queue(int cpu,struct llist_node * node)472 void __smp_call_single_queue(int cpu, struct llist_node *node)
473 {
474 #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
475 if (static_branch_unlikely(&csdlock_debug_extended)) {
476 unsigned int type;
477
478 type = CSD_TYPE(container_of(node, call_single_data_t,
479 node.llist));
480 if (type == CSD_TYPE_SYNC || type == CSD_TYPE_ASYNC) {
481 __smp_call_single_queue_debug(cpu, node);
482 return;
483 }
484 }
485 #endif
486
487 /*
488 * The list addition should be visible before sending the IPI
489 * handler locks the list to pull the entry off it because of
490 * normal cache coherency rules implied by spinlocks.
491 *
492 * If IPIs can go out of order to the cache coherency protocol
493 * in an architecture, sufficient synchronisation should be added
494 * to arch code to make it appear to obey cache coherency WRT
495 * locking and barrier primitives. Generic code isn't really
496 * equipped to do the right thing...
497 */
498 if (llist_add(node, &per_cpu(call_single_queue, cpu)))
499 send_call_function_single_ipi(cpu);
500 }
501
502 /*
503 * Insert a previously allocated call_single_data_t element
504 * for execution on the given CPU. data must already have
505 * ->func, ->info, and ->flags set.
506 */
generic_exec_single(int cpu,struct __call_single_data * csd)507 static int generic_exec_single(int cpu, struct __call_single_data *csd)
508 {
509 if (cpu == smp_processor_id()) {
510 smp_call_func_t func = csd->func;
511 void *info = csd->info;
512 unsigned long flags;
513
514 /*
515 * We can unlock early even for the synchronous on-stack case,
516 * since we're doing this from the same CPU..
517 */
518 csd_lock_record(csd);
519 csd_unlock(csd);
520 local_irq_save(flags);
521 func(info);
522 csd_lock_record(NULL);
523 local_irq_restore(flags);
524 return 0;
525 }
526
527 if ((unsigned)cpu >= nr_cpu_ids || !cpu_online(cpu)) {
528 csd_unlock(csd);
529 return -ENXIO;
530 }
531
532 __smp_call_single_queue(cpu, &csd->node.llist);
533
534 return 0;
535 }
536
537 /**
538 * generic_smp_call_function_single_interrupt - Execute SMP IPI callbacks
539 *
540 * Invoked by arch to handle an IPI for call function single.
541 * Must be called with interrupts disabled.
542 */
generic_smp_call_function_single_interrupt(void)543 void generic_smp_call_function_single_interrupt(void)
544 {
545 cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->gotipi, CFD_SEQ_NOCPU,
546 smp_processor_id(), CFD_SEQ_GOTIPI);
547 __flush_smp_call_function_queue(true);
548 }
549
550 /**
551 * __flush_smp_call_function_queue - Flush pending smp-call-function callbacks
552 *
553 * @warn_cpu_offline: If set to 'true', warn if callbacks were queued on an
554 * offline CPU. Skip this check if set to 'false'.
555 *
556 * Flush any pending smp-call-function callbacks queued on this CPU. This is
557 * invoked by the generic IPI handler, as well as by a CPU about to go offline,
558 * to ensure that all pending IPI callbacks are run before it goes completely
559 * offline.
560 *
561 * Loop through the call_single_queue and run all the queued callbacks.
562 * Must be called with interrupts disabled.
563 */
__flush_smp_call_function_queue(bool warn_cpu_offline)564 static void __flush_smp_call_function_queue(bool warn_cpu_offline)
565 {
566 call_single_data_t *csd, *csd_next;
567 struct llist_node *entry, *prev;
568 struct llist_head *head;
569 static bool warned;
570
571 lockdep_assert_irqs_disabled();
572
573 head = this_cpu_ptr(&call_single_queue);
574 cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->handle, CFD_SEQ_NOCPU,
575 smp_processor_id(), CFD_SEQ_HANDLE);
576 entry = llist_del_all(head);
577 cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->dequeue,
578 /* Special meaning of source cpu: 0 == queue empty */
579 entry ? CFD_SEQ_NOCPU : 0,
580 smp_processor_id(), CFD_SEQ_DEQUEUE);
581 entry = llist_reverse_order(entry);
582
583 /* There shouldn't be any pending callbacks on an offline CPU. */
584 if (unlikely(warn_cpu_offline && !cpu_online(smp_processor_id()) &&
585 !warned && entry != NULL)) {
586 warned = true;
587 WARN(1, "IPI on offline CPU %d\n", smp_processor_id());
588
589 /*
590 * We don't have to use the _safe() variant here
591 * because we are not invoking the IPI handlers yet.
592 */
593 llist_for_each_entry(csd, entry, node.llist) {
594 switch (CSD_TYPE(csd)) {
595 case CSD_TYPE_ASYNC:
596 case CSD_TYPE_SYNC:
597 case CSD_TYPE_IRQ_WORK:
598 pr_warn("IPI callback %pS sent to offline CPU\n",
599 csd->func);
600 break;
601
602 case CSD_TYPE_TTWU:
603 pr_warn("IPI task-wakeup sent to offline CPU\n");
604 break;
605
606 default:
607 pr_warn("IPI callback, unknown type %d, sent to offline CPU\n",
608 CSD_TYPE(csd));
609 break;
610 }
611 }
612 }
613
614 /*
615 * First; run all SYNC callbacks, people are waiting for us.
616 */
617 prev = NULL;
618 llist_for_each_entry_safe(csd, csd_next, entry, node.llist) {
619 /* Do we wait until *after* callback? */
620 if (CSD_TYPE(csd) == CSD_TYPE_SYNC) {
621 smp_call_func_t func = csd->func;
622 void *info = csd->info;
623
624 if (prev) {
625 prev->next = &csd_next->node.llist;
626 } else {
627 entry = &csd_next->node.llist;
628 }
629
630 csd_lock_record(csd);
631 func(info);
632 csd_unlock(csd);
633 csd_lock_record(NULL);
634 } else {
635 prev = &csd->node.llist;
636 }
637 }
638
639 if (!entry) {
640 cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->hdlend,
641 0, smp_processor_id(),
642 CFD_SEQ_HDLEND);
643 return;
644 }
645
646 /*
647 * Second; run all !SYNC callbacks.
648 */
649 prev = NULL;
650 llist_for_each_entry_safe(csd, csd_next, entry, node.llist) {
651 int type = CSD_TYPE(csd);
652
653 if (type != CSD_TYPE_TTWU) {
654 if (prev) {
655 prev->next = &csd_next->node.llist;
656 } else {
657 entry = &csd_next->node.llist;
658 }
659
660 if (type == CSD_TYPE_ASYNC) {
661 smp_call_func_t func = csd->func;
662 void *info = csd->info;
663
664 csd_lock_record(csd);
665 csd_unlock(csd);
666 func(info);
667 csd_lock_record(NULL);
668 } else if (type == CSD_TYPE_IRQ_WORK) {
669 irq_work_single(csd);
670 }
671
672 } else {
673 prev = &csd->node.llist;
674 }
675 }
676
677 /*
678 * Third; only CSD_TYPE_TTWU is left, issue those.
679 */
680 if (entry)
681 sched_ttwu_pending(entry);
682
683 cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->hdlend, CFD_SEQ_NOCPU,
684 smp_processor_id(), CFD_SEQ_HDLEND);
685 }
686
687
688 /**
689 * flush_smp_call_function_queue - Flush pending smp-call-function callbacks
690 * from task context (idle, migration thread)
691 *
692 * When TIF_POLLING_NRFLAG is supported and a CPU is in idle and has it
693 * set, then remote CPUs can avoid sending IPIs and wake the idle CPU by
694 * setting TIF_NEED_RESCHED. The idle task on the woken up CPU has to
695 * handle queued SMP function calls before scheduling.
696 *
697 * The migration thread has to ensure that an eventually pending wakeup has
698 * been handled before it migrates a task.
699 */
flush_smp_call_function_queue(void)700 void flush_smp_call_function_queue(void)
701 {
702 unsigned int was_pending;
703 unsigned long flags;
704
705 if (llist_empty(this_cpu_ptr(&call_single_queue)))
706 return;
707
708 cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->idle, CFD_SEQ_NOCPU,
709 smp_processor_id(), CFD_SEQ_IDLE);
710 local_irq_save(flags);
711 /* Get the already pending soft interrupts for RT enabled kernels */
712 was_pending = local_softirq_pending();
713 __flush_smp_call_function_queue(true);
714 if (local_softirq_pending())
715 do_softirq_post_smp_call_flush(was_pending);
716
717 local_irq_restore(flags);
718 }
719
720 /*
721 * smp_call_function_single - Run a function on a specific CPU
722 * @func: The function to run. This must be fast and non-blocking.
723 * @info: An arbitrary pointer to pass to the function.
724 * @wait: If true, wait until function has completed on other CPUs.
725 *
726 * Returns 0 on success, else a negative status code.
727 */
smp_call_function_single(int cpu,smp_call_func_t func,void * info,int wait)728 int smp_call_function_single(int cpu, smp_call_func_t func, void *info,
729 int wait)
730 {
731 call_single_data_t *csd;
732 call_single_data_t csd_stack = {
733 .node = { .u_flags = CSD_FLAG_LOCK | CSD_TYPE_SYNC, },
734 };
735 int this_cpu;
736 int err;
737
738 /*
739 * prevent preemption and reschedule on another processor,
740 * as well as CPU removal
741 */
742 this_cpu = get_cpu();
743
744 /*
745 * Can deadlock when called with interrupts disabled.
746 * We allow cpu's that are not yet online though, as no one else can
747 * send smp call function interrupt to this cpu and as such deadlocks
748 * can't happen.
749 */
750 WARN_ON_ONCE(cpu_online(this_cpu) && irqs_disabled()
751 && !oops_in_progress);
752
753 /*
754 * When @wait we can deadlock when we interrupt between llist_add() and
755 * arch_send_call_function_ipi*(); when !@wait we can deadlock due to
756 * csd_lock() on because the interrupt context uses the same csd
757 * storage.
758 */
759 WARN_ON_ONCE(!in_task());
760
761 csd = &csd_stack;
762 if (!wait) {
763 csd = this_cpu_ptr(&csd_data);
764 csd_lock(csd);
765 }
766
767 csd->func = func;
768 csd->info = info;
769 #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
770 csd->node.src = smp_processor_id();
771 csd->node.dst = cpu;
772 #endif
773
774 err = generic_exec_single(cpu, csd);
775
776 if (wait)
777 csd_lock_wait(csd);
778
779 put_cpu();
780
781 return err;
782 }
783 EXPORT_SYMBOL(smp_call_function_single);
784
785 /**
786 * smp_call_function_single_async() - Run an asynchronous function on a
787 * specific CPU.
788 * @cpu: The CPU to run on.
789 * @csd: Pre-allocated and setup data structure
790 *
791 * Like smp_call_function_single(), but the call is asynchonous and
792 * can thus be done from contexts with disabled interrupts.
793 *
794 * The caller passes his own pre-allocated data structure
795 * (ie: embedded in an object) and is responsible for synchronizing it
796 * such that the IPIs performed on the @csd are strictly serialized.
797 *
798 * If the function is called with one csd which has not yet been
799 * processed by previous call to smp_call_function_single_async(), the
800 * function will return immediately with -EBUSY showing that the csd
801 * object is still in progress.
802 *
803 * NOTE: Be careful, there is unfortunately no current debugging facility to
804 * validate the correctness of this serialization.
805 *
806 * Return: %0 on success or negative errno value on error
807 */
smp_call_function_single_async(int cpu,struct __call_single_data * csd)808 int smp_call_function_single_async(int cpu, struct __call_single_data *csd)
809 {
810 int err = 0;
811
812 preempt_disable();
813
814 if (csd->node.u_flags & CSD_FLAG_LOCK) {
815 err = -EBUSY;
816 goto out;
817 }
818
819 csd->node.u_flags = CSD_FLAG_LOCK;
820 smp_wmb();
821
822 err = generic_exec_single(cpu, csd);
823
824 out:
825 preempt_enable();
826
827 return err;
828 }
829 EXPORT_SYMBOL_GPL(smp_call_function_single_async);
830
831 /*
832 * smp_call_function_any - Run a function on any of the given cpus
833 * @mask: The mask of cpus it can run on.
834 * @func: The function to run. This must be fast and non-blocking.
835 * @info: An arbitrary pointer to pass to the function.
836 * @wait: If true, wait until function has completed.
837 *
838 * Returns 0 on success, else a negative status code (if no cpus were online).
839 *
840 * Selection preference:
841 * 1) current cpu if in @mask
842 * 2) any cpu of current node if in @mask
843 * 3) any other online cpu in @mask
844 */
smp_call_function_any(const struct cpumask * mask,smp_call_func_t func,void * info,int wait)845 int smp_call_function_any(const struct cpumask *mask,
846 smp_call_func_t func, void *info, int wait)
847 {
848 unsigned int cpu;
849 const struct cpumask *nodemask;
850 int ret;
851
852 /* Try for same CPU (cheapest) */
853 cpu = get_cpu();
854 if (cpumask_test_cpu(cpu, mask))
855 goto call;
856
857 /* Try for same node. */
858 nodemask = cpumask_of_node(cpu_to_node(cpu));
859 for (cpu = cpumask_first_and(nodemask, mask); cpu < nr_cpu_ids;
860 cpu = cpumask_next_and(cpu, nodemask, mask)) {
861 if (cpu_online(cpu))
862 goto call;
863 }
864
865 /* Any online will do: smp_call_function_single handles nr_cpu_ids. */
866 cpu = cpumask_any_and(mask, cpu_online_mask);
867 call:
868 ret = smp_call_function_single(cpu, func, info, wait);
869 put_cpu();
870 return ret;
871 }
872 EXPORT_SYMBOL_GPL(smp_call_function_any);
873
874 /*
875 * Flags to be used as scf_flags argument of smp_call_function_many_cond().
876 *
877 * %SCF_WAIT: Wait until function execution is completed
878 * %SCF_RUN_LOCAL: Run also locally if local cpu is set in cpumask
879 */
880 #define SCF_WAIT (1U << 0)
881 #define SCF_RUN_LOCAL (1U << 1)
882
smp_call_function_many_cond(const struct cpumask * mask,smp_call_func_t func,void * info,unsigned int scf_flags,smp_cond_func_t cond_func)883 static void smp_call_function_many_cond(const struct cpumask *mask,
884 smp_call_func_t func, void *info,
885 unsigned int scf_flags,
886 smp_cond_func_t cond_func)
887 {
888 int cpu, last_cpu, this_cpu = smp_processor_id();
889 struct call_function_data *cfd;
890 bool wait = scf_flags & SCF_WAIT;
891 bool run_remote = false;
892 bool run_local = false;
893 int nr_cpus = 0;
894
895 lockdep_assert_preemption_disabled();
896
897 /*
898 * Can deadlock when called with interrupts disabled.
899 * We allow cpu's that are not yet online though, as no one else can
900 * send smp call function interrupt to this cpu and as such deadlocks
901 * can't happen.
902 */
903 if (cpu_online(this_cpu) && !oops_in_progress &&
904 !early_boot_irqs_disabled)
905 lockdep_assert_irqs_enabled();
906
907 /*
908 * When @wait we can deadlock when we interrupt between llist_add() and
909 * arch_send_call_function_ipi*(); when !@wait we can deadlock due to
910 * csd_lock() on because the interrupt context uses the same csd
911 * storage.
912 */
913 WARN_ON_ONCE(!in_task());
914
915 /* Check if we need local execution. */
916 if ((scf_flags & SCF_RUN_LOCAL) && cpumask_test_cpu(this_cpu, mask))
917 run_local = true;
918
919 /* Check if we need remote execution, i.e., any CPU excluding this one. */
920 cpu = cpumask_first_and(mask, cpu_online_mask);
921 if (cpu == this_cpu)
922 cpu = cpumask_next_and(cpu, mask, cpu_online_mask);
923 if (cpu < nr_cpu_ids)
924 run_remote = true;
925
926 if (run_remote) {
927 cfd = this_cpu_ptr(&cfd_data);
928 cpumask_and(cfd->cpumask, mask, cpu_online_mask);
929 __cpumask_clear_cpu(this_cpu, cfd->cpumask);
930
931 cpumask_clear(cfd->cpumask_ipi);
932 for_each_cpu(cpu, cfd->cpumask) {
933 struct cfd_percpu *pcpu = per_cpu_ptr(cfd->pcpu, cpu);
934 call_single_data_t *csd = &pcpu->csd;
935
936 if (cond_func && !cond_func(cpu, info))
937 continue;
938
939 csd_lock(csd);
940 if (wait)
941 csd->node.u_flags |= CSD_TYPE_SYNC;
942 csd->func = func;
943 csd->info = info;
944 #ifdef CONFIG_CSD_LOCK_WAIT_DEBUG
945 csd->node.src = smp_processor_id();
946 csd->node.dst = cpu;
947 #endif
948 cfd_seq_store(pcpu->seq_queue, this_cpu, cpu, CFD_SEQ_QUEUE);
949 if (llist_add(&csd->node.llist, &per_cpu(call_single_queue, cpu))) {
950 __cpumask_set_cpu(cpu, cfd->cpumask_ipi);
951 nr_cpus++;
952 last_cpu = cpu;
953
954 cfd_seq_store(pcpu->seq_ipi, this_cpu, cpu, CFD_SEQ_IPI);
955 } else {
956 cfd_seq_store(pcpu->seq_noipi, this_cpu, cpu, CFD_SEQ_NOIPI);
957 }
958 }
959
960 cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->ping, this_cpu, CFD_SEQ_NOCPU, CFD_SEQ_PING);
961
962 /*
963 * Choose the most efficient way to send an IPI. Note that the
964 * number of CPUs might be zero due to concurrent changes to the
965 * provided mask.
966 */
967 if (nr_cpus == 1)
968 send_call_function_single_ipi(last_cpu);
969 else if (likely(nr_cpus > 1))
970 arch_send_call_function_ipi_mask(cfd->cpumask_ipi);
971
972 cfd_seq_store(this_cpu_ptr(&cfd_seq_local)->pinged, this_cpu, CFD_SEQ_NOCPU, CFD_SEQ_PINGED);
973 }
974
975 if (run_local && (!cond_func || cond_func(this_cpu, info))) {
976 unsigned long flags;
977
978 local_irq_save(flags);
979 func(info);
980 local_irq_restore(flags);
981 }
982
983 if (run_remote && wait) {
984 for_each_cpu(cpu, cfd->cpumask) {
985 call_single_data_t *csd;
986
987 csd = &per_cpu_ptr(cfd->pcpu, cpu)->csd;
988 csd_lock_wait(csd);
989 }
990 }
991 }
992
993 /**
994 * smp_call_function_many(): Run a function on a set of CPUs.
995 * @mask: The set of cpus to run on (only runs on online subset).
996 * @func: The function to run. This must be fast and non-blocking.
997 * @info: An arbitrary pointer to pass to the function.
998 * @wait: Bitmask that controls the operation. If %SCF_WAIT is set, wait
999 * (atomically) until function has completed on other CPUs. If
1000 * %SCF_RUN_LOCAL is set, the function will also be run locally
1001 * if the local CPU is set in the @cpumask.
1002 *
1003 * If @wait is true, then returns once @func has returned.
1004 *
1005 * You must not call this function with disabled interrupts or from a
1006 * hardware interrupt handler or from a bottom half handler. Preemption
1007 * must be disabled when calling this function.
1008 */
smp_call_function_many(const struct cpumask * mask,smp_call_func_t func,void * info,bool wait)1009 void smp_call_function_many(const struct cpumask *mask,
1010 smp_call_func_t func, void *info, bool wait)
1011 {
1012 smp_call_function_many_cond(mask, func, info, wait * SCF_WAIT, NULL);
1013 }
1014 EXPORT_SYMBOL(smp_call_function_many);
1015
1016 /**
1017 * smp_call_function(): Run a function on all other CPUs.
1018 * @func: The function to run. This must be fast and non-blocking.
1019 * @info: An arbitrary pointer to pass to the function.
1020 * @wait: If true, wait (atomically) until function has completed
1021 * on other CPUs.
1022 *
1023 * Returns 0.
1024 *
1025 * If @wait is true, then returns once @func has returned; otherwise
1026 * it returns just before the target cpu calls @func.
1027 *
1028 * You must not call this function with disabled interrupts or from a
1029 * hardware interrupt handler or from a bottom half handler.
1030 */
smp_call_function(smp_call_func_t func,void * info,int wait)1031 void smp_call_function(smp_call_func_t func, void *info, int wait)
1032 {
1033 preempt_disable();
1034 smp_call_function_many(cpu_online_mask, func, info, wait);
1035 preempt_enable();
1036 }
1037 EXPORT_SYMBOL(smp_call_function);
1038
1039 /* Setup configured maximum number of CPUs to activate */
1040 unsigned int setup_max_cpus = NR_CPUS;
1041 EXPORT_SYMBOL(setup_max_cpus);
1042
1043
1044 /*
1045 * Setup routine for controlling SMP activation
1046 *
1047 * Command-line option of "nosmp" or "maxcpus=0" will disable SMP
1048 * activation entirely (the MPS table probe still happens, though).
1049 *
1050 * Command-line option of "maxcpus=<NUM>", where <NUM> is an integer
1051 * greater than 0, limits the maximum number of CPUs activated in
1052 * SMP mode to <NUM>.
1053 */
1054
arch_disable_smp_support(void)1055 void __weak arch_disable_smp_support(void) { }
1056
nosmp(char * str)1057 static int __init nosmp(char *str)
1058 {
1059 setup_max_cpus = 0;
1060 arch_disable_smp_support();
1061
1062 return 0;
1063 }
1064
1065 early_param("nosmp", nosmp);
1066
1067 /* this is hard limit */
nrcpus(char * str)1068 static int __init nrcpus(char *str)
1069 {
1070 int nr_cpus;
1071
1072 if (get_option(&str, &nr_cpus) && nr_cpus > 0 && nr_cpus < nr_cpu_ids)
1073 nr_cpu_ids = nr_cpus;
1074
1075 return 0;
1076 }
1077
1078 early_param("nr_cpus", nrcpus);
1079
maxcpus(char * str)1080 static int __init maxcpus(char *str)
1081 {
1082 get_option(&str, &setup_max_cpus);
1083 if (setup_max_cpus == 0)
1084 arch_disable_smp_support();
1085
1086 return 0;
1087 }
1088
1089 early_param("maxcpus", maxcpus);
1090
1091 /* Setup number of possible processor ids */
1092 unsigned int nr_cpu_ids __read_mostly = NR_CPUS;
1093 EXPORT_SYMBOL(nr_cpu_ids);
1094
1095 /* An arch may set nr_cpu_ids earlier if needed, so this would be redundant */
setup_nr_cpu_ids(void)1096 void __init setup_nr_cpu_ids(void)
1097 {
1098 nr_cpu_ids = find_last_bit(cpumask_bits(cpu_possible_mask),NR_CPUS) + 1;
1099 }
1100
1101 /* Called by boot processor to activate the rest. */
smp_init(void)1102 void __init smp_init(void)
1103 {
1104 int num_nodes, num_cpus;
1105
1106 idle_threads_init();
1107 cpuhp_threads_init();
1108
1109 pr_info("Bringing up secondary CPUs ...\n");
1110
1111 bringup_nonboot_cpus(setup_max_cpus);
1112
1113 num_nodes = num_online_nodes();
1114 num_cpus = num_online_cpus();
1115 pr_info("Brought up %d node%s, %d CPU%s\n",
1116 num_nodes, (num_nodes > 1 ? "s" : ""),
1117 num_cpus, (num_cpus > 1 ? "s" : ""));
1118
1119 /* Any cleanup work */
1120 smp_cpus_done(setup_max_cpus);
1121 }
1122
1123 /*
1124 * on_each_cpu_cond(): Call a function on each processor for which
1125 * the supplied function cond_func returns true, optionally waiting
1126 * for all the required CPUs to finish. This may include the local
1127 * processor.
1128 * @cond_func: A callback function that is passed a cpu id and
1129 * the info parameter. The function is called
1130 * with preemption disabled. The function should
1131 * return a blooean value indicating whether to IPI
1132 * the specified CPU.
1133 * @func: The function to run on all applicable CPUs.
1134 * This must be fast and non-blocking.
1135 * @info: An arbitrary pointer to pass to both functions.
1136 * @wait: If true, wait (atomically) until function has
1137 * completed on other CPUs.
1138 *
1139 * Preemption is disabled to protect against CPUs going offline but not online.
1140 * CPUs going online during the call will not be seen or sent an IPI.
1141 *
1142 * You must not call this function with disabled interrupts or
1143 * from a hardware interrupt handler or from a bottom half handler.
1144 */
on_each_cpu_cond_mask(smp_cond_func_t cond_func,smp_call_func_t func,void * info,bool wait,const struct cpumask * mask)1145 void on_each_cpu_cond_mask(smp_cond_func_t cond_func, smp_call_func_t func,
1146 void *info, bool wait, const struct cpumask *mask)
1147 {
1148 unsigned int scf_flags = SCF_RUN_LOCAL;
1149
1150 if (wait)
1151 scf_flags |= SCF_WAIT;
1152
1153 preempt_disable();
1154 smp_call_function_many_cond(mask, func, info, scf_flags, cond_func);
1155 preempt_enable();
1156 }
1157 EXPORT_SYMBOL(on_each_cpu_cond_mask);
1158
do_nothing(void * unused)1159 static void do_nothing(void *unused)
1160 {
1161 }
1162
1163 /**
1164 * kick_all_cpus_sync - Force all cpus out of idle
1165 *
1166 * Used to synchronize the update of pm_idle function pointer. It's
1167 * called after the pointer is updated and returns after the dummy
1168 * callback function has been executed on all cpus. The execution of
1169 * the function can only happen on the remote cpus after they have
1170 * left the idle function which had been called via pm_idle function
1171 * pointer. So it's guaranteed that nothing uses the previous pointer
1172 * anymore.
1173 */
kick_all_cpus_sync(void)1174 void kick_all_cpus_sync(void)
1175 {
1176 /* Make sure the change is visible before we kick the cpus */
1177 smp_mb();
1178 smp_call_function(do_nothing, NULL, 1);
1179 }
1180 EXPORT_SYMBOL_GPL(kick_all_cpus_sync);
1181
1182 /**
1183 * wake_up_all_idle_cpus - break all cpus out of idle
1184 * wake_up_all_idle_cpus try to break all cpus which is in idle state even
1185 * including idle polling cpus, for non-idle cpus, we will do nothing
1186 * for them.
1187 */
wake_up_all_idle_cpus(void)1188 void wake_up_all_idle_cpus(void)
1189 {
1190 int cpu;
1191
1192 for_each_possible_cpu(cpu) {
1193 preempt_disable();
1194 if (cpu != smp_processor_id() && cpu_online(cpu))
1195 wake_up_if_idle(cpu);
1196 preempt_enable();
1197 }
1198 }
1199 EXPORT_SYMBOL_GPL(wake_up_all_idle_cpus);
1200
1201 /**
1202 * struct smp_call_on_cpu_struct - Call a function on a specific CPU
1203 * @work: &work_struct
1204 * @done: &completion to signal
1205 * @func: function to call
1206 * @data: function's data argument
1207 * @ret: return value from @func
1208 * @cpu: target CPU (%-1 for any CPU)
1209 *
1210 * Used to call a function on a specific cpu and wait for it to return.
1211 * Optionally make sure the call is done on a specified physical cpu via vcpu
1212 * pinning in order to support virtualized environments.
1213 */
1214 struct smp_call_on_cpu_struct {
1215 struct work_struct work;
1216 struct completion done;
1217 int (*func)(void *);
1218 void *data;
1219 int ret;
1220 int cpu;
1221 };
1222
smp_call_on_cpu_callback(struct work_struct * work)1223 static void smp_call_on_cpu_callback(struct work_struct *work)
1224 {
1225 struct smp_call_on_cpu_struct *sscs;
1226
1227 sscs = container_of(work, struct smp_call_on_cpu_struct, work);
1228 if (sscs->cpu >= 0)
1229 hypervisor_pin_vcpu(sscs->cpu);
1230 sscs->ret = sscs->func(sscs->data);
1231 if (sscs->cpu >= 0)
1232 hypervisor_pin_vcpu(-1);
1233
1234 complete(&sscs->done);
1235 }
1236
smp_call_on_cpu(unsigned int cpu,int (* func)(void *),void * par,bool phys)1237 int smp_call_on_cpu(unsigned int cpu, int (*func)(void *), void *par, bool phys)
1238 {
1239 struct smp_call_on_cpu_struct sscs = {
1240 .done = COMPLETION_INITIALIZER_ONSTACK(sscs.done),
1241 .func = func,
1242 .data = par,
1243 .cpu = phys ? cpu : -1,
1244 };
1245
1246 INIT_WORK_ONSTACK(&sscs.work, smp_call_on_cpu_callback);
1247
1248 if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1249 return -ENXIO;
1250
1251 queue_work_on(cpu, system_wq, &sscs.work);
1252 wait_for_completion(&sscs.done);
1253
1254 return sscs.ret;
1255 }
1256 EXPORT_SYMBOL_GPL(smp_call_on_cpu);
1257