1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _KERNEL_STATS_H
3 #define _KERNEL_STATS_H
4 
5 #ifdef CONFIG_SCHEDSTATS
6 
7 extern struct static_key_false sched_schedstats;
8 
9 /*
10  * Expects runqueue lock to be held for atomicity of update
11  */
12 static inline void
rq_sched_info_arrive(struct rq * rq,unsigned long long delta)13 rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
14 {
15 	if (rq) {
16 		rq->rq_sched_info.run_delay += delta;
17 		rq->rq_sched_info.pcount++;
18 	}
19 }
20 
21 /*
22  * Expects runqueue lock to be held for atomicity of update
23  */
24 static inline void
rq_sched_info_depart(struct rq * rq,unsigned long long delta)25 rq_sched_info_depart(struct rq *rq, unsigned long long delta)
26 {
27 	if (rq)
28 		rq->rq_cpu_time += delta;
29 }
30 
31 static inline void
rq_sched_info_dequeue(struct rq * rq,unsigned long long delta)32 rq_sched_info_dequeue(struct rq *rq, unsigned long long delta)
33 {
34 	if (rq)
35 		rq->rq_sched_info.run_delay += delta;
36 }
37 #define   schedstat_enabled()		static_branch_unlikely(&sched_schedstats)
38 #define __schedstat_inc(var)		do { var++; } while (0)
39 #define   schedstat_inc(var)		do { if (schedstat_enabled()) { var++; } } while (0)
40 #define __schedstat_add(var, amt)	do { var += (amt); } while (0)
41 #define   schedstat_add(var, amt)	do { if (schedstat_enabled()) { var += (amt); } } while (0)
42 #define __schedstat_set(var, val)	do { var = (val); } while (0)
43 #define   schedstat_set(var, val)	do { if (schedstat_enabled()) { var = (val); } } while (0)
44 #define   schedstat_val(var)		(var)
45 #define   schedstat_val_or_zero(var)	((schedstat_enabled()) ? (var) : 0)
46 
47 void __update_stats_wait_start(struct rq *rq, struct task_struct *p,
48 			       struct sched_statistics *stats);
49 
50 void __update_stats_wait_end(struct rq *rq, struct task_struct *p,
51 			     struct sched_statistics *stats);
52 void __update_stats_enqueue_sleeper(struct rq *rq, struct task_struct *p,
53 				    struct sched_statistics *stats);
54 
55 static inline void
check_schedstat_required(void)56 check_schedstat_required(void)
57 {
58 	if (schedstat_enabled())
59 		return;
60 
61 	/* Force schedstat enabled if a dependent tracepoint is active */
62 	if (trace_sched_stat_wait_enabled()    ||
63 	    trace_sched_stat_sleep_enabled()   ||
64 	    trace_sched_stat_iowait_enabled()  ||
65 	    trace_sched_stat_blocked_enabled() ||
66 	    trace_sched_stat_runtime_enabled())
67 		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, stat_blocked and stat_runtime require the kernel parameter schedstats=enable or kernel.sched_schedstats=1\n");
68 }
69 
70 #else /* !CONFIG_SCHEDSTATS: */
71 
rq_sched_info_arrive(struct rq * rq,unsigned long long delta)72 static inline void rq_sched_info_arrive  (struct rq *rq, unsigned long long delta) { }
rq_sched_info_dequeue(struct rq * rq,unsigned long long delta)73 static inline void rq_sched_info_dequeue(struct rq *rq, unsigned long long delta) { }
rq_sched_info_depart(struct rq * rq,unsigned long long delta)74 static inline void rq_sched_info_depart  (struct rq *rq, unsigned long long delta) { }
75 # define   schedstat_enabled()		0
76 # define __schedstat_inc(var)		do { } while (0)
77 # define   schedstat_inc(var)		do { } while (0)
78 # define __schedstat_add(var, amt)	do { } while (0)
79 # define   schedstat_add(var, amt)	do { } while (0)
80 # define __schedstat_set(var, val)	do { } while (0)
81 # define   schedstat_set(var, val)	do { } while (0)
82 # define   schedstat_val(var)		0
83 # define   schedstat_val_or_zero(var)	0
84 
85 # define __update_stats_wait_start(rq, p, stats)       do { } while (0)
86 # define __update_stats_wait_end(rq, p, stats)         do { } while (0)
87 # define __update_stats_enqueue_sleeper(rq, p, stats)  do { } while (0)
88 # define check_schedstat_required()                    do { } while (0)
89 
90 #endif /* CONFIG_SCHEDSTATS */
91 
92 #ifdef CONFIG_FAIR_GROUP_SCHED
93 struct sched_entity_stats {
94 	struct sched_entity     se;
95 	struct sched_statistics stats;
96 } __no_randomize_layout;
97 #endif
98 
99 static inline struct sched_statistics *
__schedstats_from_se(struct sched_entity * se)100 __schedstats_from_se(struct sched_entity *se)
101 {
102 #ifdef CONFIG_FAIR_GROUP_SCHED
103 	if (!entity_is_task(se))
104 		return &container_of(se, struct sched_entity_stats, se)->stats;
105 #endif
106 	return &task_of(se)->stats;
107 }
108 
109 #ifdef CONFIG_PSI
110 void psi_task_change(struct task_struct *task, int clear, int set);
111 void psi_task_switch(struct task_struct *prev, struct task_struct *next,
112 		     bool sleep);
113 void psi_account_irqtime(struct task_struct *task, u32 delta);
114 
115 /*
116  * PSI tracks state that persists across sleeps, such as iowaits and
117  * memory stalls. As a result, it has to distinguish between sleeps,
118  * where a task's runnable state changes, and requeues, where a task
119  * and its state are being moved between CPUs and runqueues.
120  */
psi_enqueue(struct task_struct * p,bool wakeup)121 static inline void psi_enqueue(struct task_struct *p, bool wakeup)
122 {
123 	int clear = 0, set = TSK_RUNNING;
124 
125 	if (static_branch_likely(&psi_disabled))
126 		return;
127 
128 	if (p->in_memstall)
129 		set |= TSK_MEMSTALL_RUNNING;
130 
131 	if (!wakeup || p->sched_psi_wake_requeue) {
132 		if (p->in_memstall)
133 			set |= TSK_MEMSTALL;
134 		if (p->sched_psi_wake_requeue)
135 			p->sched_psi_wake_requeue = 0;
136 	} else {
137 		if (p->in_iowait)
138 			clear |= TSK_IOWAIT;
139 	}
140 
141 	psi_task_change(p, clear, set);
142 }
143 
psi_dequeue(struct task_struct * p,bool sleep)144 static inline void psi_dequeue(struct task_struct *p, bool sleep)
145 {
146 	int clear = TSK_RUNNING;
147 
148 	if (static_branch_likely(&psi_disabled))
149 		return;
150 
151 	/*
152 	 * A voluntary sleep is a dequeue followed by a task switch. To
153 	 * avoid walking all ancestors twice, psi_task_switch() handles
154 	 * TSK_RUNNING and TSK_IOWAIT for us when it moves TSK_ONCPU.
155 	 * Do nothing here.
156 	 */
157 	if (sleep)
158 		return;
159 
160 	if (p->in_memstall)
161 		clear |= (TSK_MEMSTALL | TSK_MEMSTALL_RUNNING);
162 
163 	psi_task_change(p, clear, 0);
164 }
165 
psi_ttwu_dequeue(struct task_struct * p)166 static inline void psi_ttwu_dequeue(struct task_struct *p)
167 {
168 	if (static_branch_likely(&psi_disabled))
169 		return;
170 	/*
171 	 * Is the task being migrated during a wakeup? Make sure to
172 	 * deregister its sleep-persistent psi states from the old
173 	 * queue, and let psi_enqueue() know it has to requeue.
174 	 */
175 	if (unlikely(p->in_iowait || p->in_memstall)) {
176 		struct rq_flags rf;
177 		struct rq *rq;
178 		int clear = 0;
179 
180 		if (p->in_iowait)
181 			clear |= TSK_IOWAIT;
182 		if (p->in_memstall)
183 			clear |= TSK_MEMSTALL;
184 
185 		rq = __task_rq_lock(p, &rf);
186 		psi_task_change(p, clear, 0);
187 		p->sched_psi_wake_requeue = 1;
188 		__task_rq_unlock(rq, &rf);
189 	}
190 }
191 
psi_sched_switch(struct task_struct * prev,struct task_struct * next,bool sleep)192 static inline void psi_sched_switch(struct task_struct *prev,
193 				    struct task_struct *next,
194 				    bool sleep)
195 {
196 	if (static_branch_likely(&psi_disabled))
197 		return;
198 
199 	psi_task_switch(prev, next, sleep);
200 }
201 
202 #else /* CONFIG_PSI */
psi_enqueue(struct task_struct * p,bool wakeup)203 static inline void psi_enqueue(struct task_struct *p, bool wakeup) {}
psi_dequeue(struct task_struct * p,bool sleep)204 static inline void psi_dequeue(struct task_struct *p, bool sleep) {}
psi_ttwu_dequeue(struct task_struct * p)205 static inline void psi_ttwu_dequeue(struct task_struct *p) {}
psi_sched_switch(struct task_struct * prev,struct task_struct * next,bool sleep)206 static inline void psi_sched_switch(struct task_struct *prev,
207 				    struct task_struct *next,
208 				    bool sleep) {}
psi_account_irqtime(struct task_struct * task,u32 delta)209 static inline void psi_account_irqtime(struct task_struct *task, u32 delta) {}
210 #endif /* CONFIG_PSI */
211 
212 #ifdef CONFIG_SCHED_INFO
213 /*
214  * We are interested in knowing how long it was from the *first* time a
215  * task was queued to the time that it finally hit a CPU, we call this routine
216  * from dequeue_task() to account for possible rq->clock skew across CPUs. The
217  * delta taken on each CPU would annul the skew.
218  */
sched_info_dequeue(struct rq * rq,struct task_struct * t)219 static inline void sched_info_dequeue(struct rq *rq, struct task_struct *t)
220 {
221 	unsigned long long delta = 0;
222 
223 	if (!t->sched_info.last_queued)
224 		return;
225 
226 	delta = rq_clock(rq) - t->sched_info.last_queued;
227 	t->sched_info.last_queued = 0;
228 	t->sched_info.run_delay += delta;
229 
230 	rq_sched_info_dequeue(rq, delta);
231 }
232 
233 /*
234  * Called when a task finally hits the CPU.  We can now calculate how
235  * long it was waiting to run.  We also note when it began so that we
236  * can keep stats on how long its timeslice is.
237  */
sched_info_arrive(struct rq * rq,struct task_struct * t)238 static void sched_info_arrive(struct rq *rq, struct task_struct *t)
239 {
240 	unsigned long long now, delta = 0;
241 
242 	if (!t->sched_info.last_queued)
243 		return;
244 
245 	now = rq_clock(rq);
246 	delta = now - t->sched_info.last_queued;
247 	t->sched_info.last_queued = 0;
248 	t->sched_info.run_delay += delta;
249 	t->sched_info.last_arrival = now;
250 	t->sched_info.pcount++;
251 
252 	rq_sched_info_arrive(rq, delta);
253 }
254 
255 /*
256  * This function is only called from enqueue_task(), but also only updates
257  * the timestamp if it is already not set.  It's assumed that
258  * sched_info_dequeue() will clear that stamp when appropriate.
259  */
sched_info_enqueue(struct rq * rq,struct task_struct * t)260 static inline void sched_info_enqueue(struct rq *rq, struct task_struct *t)
261 {
262 	if (!t->sched_info.last_queued)
263 		t->sched_info.last_queued = rq_clock(rq);
264 }
265 
266 /*
267  * Called when a process ceases being the active-running process involuntarily
268  * due, typically, to expiring its time slice (this may also be called when
269  * switching to the idle task).  Now we can calculate how long we ran.
270  * Also, if the process is still in the TASK_RUNNING state, call
271  * sched_info_enqueue() to mark that it has now again started waiting on
272  * the runqueue.
273  */
sched_info_depart(struct rq * rq,struct task_struct * t)274 static inline void sched_info_depart(struct rq *rq, struct task_struct *t)
275 {
276 	unsigned long long delta = rq_clock(rq) - t->sched_info.last_arrival;
277 
278 	rq_sched_info_depart(rq, delta);
279 
280 	if (task_is_running(t))
281 		sched_info_enqueue(rq, t);
282 }
283 
284 /*
285  * Called when tasks are switched involuntarily due, typically, to expiring
286  * their time slice.  (This may also be called when switching to or from
287  * the idle task.)  We are only called when prev != next.
288  */
289 static inline void
sched_info_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next)290 sched_info_switch(struct rq *rq, struct task_struct *prev, struct task_struct *next)
291 {
292 	/*
293 	 * prev now departs the CPU.  It's not interesting to record
294 	 * stats about how efficient we were at scheduling the idle
295 	 * process, however.
296 	 */
297 	if (prev != rq->idle)
298 		sched_info_depart(rq, prev);
299 
300 	if (next != rq->idle)
301 		sched_info_arrive(rq, next);
302 }
303 
304 #else /* !CONFIG_SCHED_INFO: */
305 # define sched_info_enqueue(rq, t)	do { } while (0)
306 # define sched_info_dequeue(rq, t)	do { } while (0)
307 # define sched_info_switch(rq, t, next)	do { } while (0)
308 #endif /* CONFIG_SCHED_INFO */
309 
310 #endif /* _KERNEL_STATS_H */
311