1 /*
2 	kmod, the new module loader (replaces kerneld)
3 	Kirk Petersen
4 
5 	Reorganized not to be a daemon by Adam Richter, with guidance
6 	from Greg Zornetzer.
7 
8 	Modified to avoid chroot and file sharing problems.
9 	Mikael Pettersson
10 
11 	Limit the concurrent number of kmod modprobes to catch loops from
12 	"modprobe needs a service that is in a module".
13 	Keith Owens <kaos@ocs.com.au> December 1999
14 
15 	Unblock all signals when we exec a usermode process.
16 	Shuu Yamaguchi <shuu@wondernetworkresources.com> December 2000
17 
18 	call_usermodehelper wait flag, and remove exec_usermodehelper.
19 	Rusty Russell <rusty@rustcorp.com.au>  Jan 2003
20 */
21 #include <linux/module.h>
22 #include <linux/sched.h>
23 #include <linux/syscalls.h>
24 #include <linux/unistd.h>
25 #include <linux/kmod.h>
26 #include <linux/slab.h>
27 #include <linux/completion.h>
28 #include <linux/cred.h>
29 #include <linux/file.h>
30 #include <linux/fdtable.h>
31 #include <linux/workqueue.h>
32 #include <linux/security.h>
33 #include <linux/mount.h>
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/resource.h>
37 #include <linux/notifier.h>
38 #include <linux/suspend.h>
39 #include <linux/rwsem.h>
40 #include <asm/uaccess.h>
41 
42 #include <trace/events/module.h>
43 
44 extern int max_threads;
45 
46 static struct workqueue_struct *khelper_wq;
47 
48 #define CAP_BSET	(void *)1
49 #define CAP_PI		(void *)2
50 
51 static kernel_cap_t usermodehelper_bset = CAP_FULL_SET;
52 static kernel_cap_t usermodehelper_inheritable = CAP_FULL_SET;
53 static DEFINE_SPINLOCK(umh_sysctl_lock);
54 static DECLARE_RWSEM(umhelper_sem);
55 
56 #ifdef CONFIG_MODULES
57 
58 /*
59 	modprobe_path is set via /proc/sys.
60 */
61 char modprobe_path[KMOD_PATH_LEN] = "/sbin/modprobe";
62 
free_modprobe_argv(struct subprocess_info * info)63 static void free_modprobe_argv(struct subprocess_info *info)
64 {
65 	kfree(info->argv[3]); /* check call_modprobe() */
66 	kfree(info->argv);
67 }
68 
call_modprobe(char * module_name,int wait)69 static int call_modprobe(char *module_name, int wait)
70 {
71 	static char *envp[] = {
72 		"HOME=/",
73 		"TERM=linux",
74 		"PATH=/sbin:/usr/sbin:/bin:/usr/bin",
75 		NULL
76 	};
77 
78 	char **argv = kmalloc(sizeof(char *[5]), GFP_KERNEL);
79 	if (!argv)
80 		goto out;
81 
82 	module_name = kstrdup(module_name, GFP_KERNEL);
83 	if (!module_name)
84 		goto free_argv;
85 
86 	argv[0] = modprobe_path;
87 	argv[1] = "-q";
88 	argv[2] = "--";
89 	argv[3] = module_name;	/* check free_modprobe_argv() */
90 	argv[4] = NULL;
91 
92 	return call_usermodehelper_fns(modprobe_path, argv, envp,
93 		wait | UMH_KILLABLE, NULL, free_modprobe_argv, NULL);
94 free_argv:
95 	kfree(argv);
96 out:
97 	return -ENOMEM;
98 }
99 
100 /**
101  * __request_module - try to load a kernel module
102  * @wait: wait (or not) for the operation to complete
103  * @fmt: printf style format string for the name of the module
104  * @...: arguments as specified in the format string
105  *
106  * Load a module using the user mode module loader. The function returns
107  * zero on success or a negative errno code on failure. Note that a
108  * successful module load does not mean the module did not then unload
109  * and exit on an error of its own. Callers must check that the service
110  * they requested is now available not blindly invoke it.
111  *
112  * If module auto-loading support is disabled then this function
113  * becomes a no-operation.
114  */
__request_module(bool wait,const char * fmt,...)115 int __request_module(bool wait, const char *fmt, ...)
116 {
117 	va_list args;
118 	char module_name[MODULE_NAME_LEN];
119 	unsigned int max_modprobes;
120 	int ret;
121 	static atomic_t kmod_concurrent = ATOMIC_INIT(0);
122 #define MAX_KMOD_CONCURRENT 50	/* Completely arbitrary value - KAO */
123 	static int kmod_loop_msg;
124 
125 	va_start(args, fmt);
126 	ret = vsnprintf(module_name, MODULE_NAME_LEN, fmt, args);
127 	va_end(args);
128 	if (ret >= MODULE_NAME_LEN)
129 		return -ENAMETOOLONG;
130 
131 	ret = security_kernel_module_request(module_name);
132 	if (ret)
133 		return ret;
134 
135 	/* If modprobe needs a service that is in a module, we get a recursive
136 	 * loop.  Limit the number of running kmod threads to max_threads/2 or
137 	 * MAX_KMOD_CONCURRENT, whichever is the smaller.  A cleaner method
138 	 * would be to run the parents of this process, counting how many times
139 	 * kmod was invoked.  That would mean accessing the internals of the
140 	 * process tables to get the command line, proc_pid_cmdline is static
141 	 * and it is not worth changing the proc code just to handle this case.
142 	 * KAO.
143 	 *
144 	 * "trace the ppid" is simple, but will fail if someone's
145 	 * parent exits.  I think this is as good as it gets. --RR
146 	 */
147 	max_modprobes = min(max_threads/2, MAX_KMOD_CONCURRENT);
148 	atomic_inc(&kmod_concurrent);
149 	if (atomic_read(&kmod_concurrent) > max_modprobes) {
150 		/* We may be blaming an innocent here, but unlikely */
151 		if (kmod_loop_msg < 5) {
152 			printk(KERN_ERR
153 			       "request_module: runaway loop modprobe %s\n",
154 			       module_name);
155 			kmod_loop_msg++;
156 		}
157 		atomic_dec(&kmod_concurrent);
158 		return -ENOMEM;
159 	}
160 
161 	trace_module_request(module_name, wait, _RET_IP_);
162 
163 	ret = call_modprobe(module_name, wait ? UMH_WAIT_PROC : UMH_WAIT_EXEC);
164 
165 	atomic_dec(&kmod_concurrent);
166 	return ret;
167 }
168 EXPORT_SYMBOL(__request_module);
169 #endif /* CONFIG_MODULES */
170 
171 /*
172  * This is the task which runs the usermode application
173  */
____call_usermodehelper(void * data)174 static int ____call_usermodehelper(void *data)
175 {
176 	struct subprocess_info *sub_info = data;
177 	struct cred *new;
178 	int retval;
179 
180 	spin_lock_irq(&current->sighand->siglock);
181 	flush_signal_handlers(current, 1);
182 	spin_unlock_irq(&current->sighand->siglock);
183 
184 	/* We can run anywhere, unlike our parent keventd(). */
185 	set_cpus_allowed_ptr(current, cpu_all_mask);
186 
187 	/*
188 	 * Our parent is keventd, which runs with elevated scheduling priority.
189 	 * Avoid propagating that into the userspace child.
190 	 */
191 	set_user_nice(current, 0);
192 
193 	retval = -ENOMEM;
194 	new = prepare_kernel_cred(current);
195 	if (!new)
196 		goto fail;
197 
198 	spin_lock(&umh_sysctl_lock);
199 	new->cap_bset = cap_intersect(usermodehelper_bset, new->cap_bset);
200 	new->cap_inheritable = cap_intersect(usermodehelper_inheritable,
201 					     new->cap_inheritable);
202 	spin_unlock(&umh_sysctl_lock);
203 
204 	if (sub_info->init) {
205 		retval = sub_info->init(sub_info, new);
206 		if (retval) {
207 			abort_creds(new);
208 			goto fail;
209 		}
210 	}
211 
212 	commit_creds(new);
213 
214 	retval = kernel_execve(sub_info->path,
215 			       (const char *const *)sub_info->argv,
216 			       (const char *const *)sub_info->envp);
217 
218 	/* Exec failed? */
219 fail:
220 	sub_info->retval = retval;
221 	return 0;
222 }
223 
call_usermodehelper_freeinfo(struct subprocess_info * info)224 void call_usermodehelper_freeinfo(struct subprocess_info *info)
225 {
226 	if (info->cleanup)
227 		(*info->cleanup)(info);
228 	kfree(info);
229 }
230 EXPORT_SYMBOL(call_usermodehelper_freeinfo);
231 
umh_complete(struct subprocess_info * sub_info)232 static void umh_complete(struct subprocess_info *sub_info)
233 {
234 	struct completion *comp = xchg(&sub_info->complete, NULL);
235 	/*
236 	 * See call_usermodehelper_exec(). If xchg() returns NULL
237 	 * we own sub_info, the UMH_KILLABLE caller has gone away.
238 	 */
239 	if (comp)
240 		complete(comp);
241 	else
242 		call_usermodehelper_freeinfo(sub_info);
243 }
244 
245 /* Keventd can't block, but this (a child) can. */
wait_for_helper(void * data)246 static int wait_for_helper(void *data)
247 {
248 	struct subprocess_info *sub_info = data;
249 	pid_t pid;
250 
251 	/* If SIGCLD is ignored sys_wait4 won't populate the status. */
252 	spin_lock_irq(&current->sighand->siglock);
253 	current->sighand->action[SIGCHLD-1].sa.sa_handler = SIG_DFL;
254 	spin_unlock_irq(&current->sighand->siglock);
255 
256 	pid = kernel_thread(____call_usermodehelper, sub_info, SIGCHLD);
257 	if (pid < 0) {
258 		sub_info->retval = pid;
259 	} else {
260 		int ret = -ECHILD;
261 		/*
262 		 * Normally it is bogus to call wait4() from in-kernel because
263 		 * wait4() wants to write the exit code to a userspace address.
264 		 * But wait_for_helper() always runs as keventd, and put_user()
265 		 * to a kernel address works OK for kernel threads, due to their
266 		 * having an mm_segment_t which spans the entire address space.
267 		 *
268 		 * Thus the __user pointer cast is valid here.
269 		 */
270 		sys_wait4(pid, (int __user *)&ret, 0, NULL);
271 
272 		/*
273 		 * If ret is 0, either ____call_usermodehelper failed and the
274 		 * real error code is already in sub_info->retval or
275 		 * sub_info->retval is 0 anyway, so don't mess with it then.
276 		 */
277 		if (ret)
278 			sub_info->retval = ret;
279 	}
280 
281 	umh_complete(sub_info);
282 	return 0;
283 }
284 
285 /* This is run by khelper thread  */
__call_usermodehelper(struct work_struct * work)286 static void __call_usermodehelper(struct work_struct *work)
287 {
288 	struct subprocess_info *sub_info =
289 		container_of(work, struct subprocess_info, work);
290 	int wait = sub_info->wait & ~UMH_KILLABLE;
291 	pid_t pid;
292 
293 	/* CLONE_VFORK: wait until the usermode helper has execve'd
294 	 * successfully We need the data structures to stay around
295 	 * until that is done.  */
296 	if (wait == UMH_WAIT_PROC)
297 		pid = kernel_thread(wait_for_helper, sub_info,
298 				    CLONE_FS | CLONE_FILES | SIGCHLD);
299 	else
300 		pid = kernel_thread(____call_usermodehelper, sub_info,
301 				    CLONE_VFORK | SIGCHLD);
302 
303 	switch (wait) {
304 	case UMH_NO_WAIT:
305 		call_usermodehelper_freeinfo(sub_info);
306 		break;
307 
308 	case UMH_WAIT_PROC:
309 		if (pid > 0)
310 			break;
311 		/* FALLTHROUGH */
312 	case UMH_WAIT_EXEC:
313 		if (pid < 0)
314 			sub_info->retval = pid;
315 		umh_complete(sub_info);
316 	}
317 }
318 
319 /*
320  * If set, call_usermodehelper_exec() will exit immediately returning -EBUSY
321  * (used for preventing user land processes from being created after the user
322  * land has been frozen during a system-wide hibernation or suspend operation).
323  * Should always be manipulated under umhelper_sem acquired for write.
324  */
325 static enum umh_disable_depth usermodehelper_disabled = UMH_DISABLED;
326 
327 /* Number of helpers running */
328 static atomic_t running_helpers = ATOMIC_INIT(0);
329 
330 /*
331  * Wait queue head used by usermodehelper_disable() to wait for all running
332  * helpers to finish.
333  */
334 static DECLARE_WAIT_QUEUE_HEAD(running_helpers_waitq);
335 
336 /*
337  * Used by usermodehelper_read_lock_wait() to wait for usermodehelper_disabled
338  * to become 'false'.
339  */
340 static DECLARE_WAIT_QUEUE_HEAD(usermodehelper_disabled_waitq);
341 
342 /*
343  * Time to wait for running_helpers to become zero before the setting of
344  * usermodehelper_disabled in usermodehelper_disable() fails
345  */
346 #define RUNNING_HELPERS_TIMEOUT	(5 * HZ)
347 
usermodehelper_read_trylock(void)348 int usermodehelper_read_trylock(void)
349 {
350 	DEFINE_WAIT(wait);
351 	int ret = 0;
352 
353 	down_read(&umhelper_sem);
354 	for (;;) {
355 		prepare_to_wait(&usermodehelper_disabled_waitq, &wait,
356 				TASK_INTERRUPTIBLE);
357 		if (!usermodehelper_disabled)
358 			break;
359 
360 		if (usermodehelper_disabled == UMH_DISABLED)
361 			ret = -EAGAIN;
362 
363 		up_read(&umhelper_sem);
364 
365 		if (ret)
366 			break;
367 
368 		schedule();
369 		try_to_freeze();
370 
371 		down_read(&umhelper_sem);
372 	}
373 	finish_wait(&usermodehelper_disabled_waitq, &wait);
374 	return ret;
375 }
376 EXPORT_SYMBOL_GPL(usermodehelper_read_trylock);
377 
usermodehelper_read_lock_wait(long timeout)378 long usermodehelper_read_lock_wait(long timeout)
379 {
380 	DEFINE_WAIT(wait);
381 
382 	if (timeout < 0)
383 		return -EINVAL;
384 
385 	down_read(&umhelper_sem);
386 	for (;;) {
387 		prepare_to_wait(&usermodehelper_disabled_waitq, &wait,
388 				TASK_UNINTERRUPTIBLE);
389 		if (!usermodehelper_disabled)
390 			break;
391 
392 		up_read(&umhelper_sem);
393 
394 		timeout = schedule_timeout(timeout);
395 		if (!timeout)
396 			break;
397 
398 		down_read(&umhelper_sem);
399 	}
400 	finish_wait(&usermodehelper_disabled_waitq, &wait);
401 	return timeout;
402 }
403 EXPORT_SYMBOL_GPL(usermodehelper_read_lock_wait);
404 
usermodehelper_read_unlock(void)405 void usermodehelper_read_unlock(void)
406 {
407 	up_read(&umhelper_sem);
408 }
409 EXPORT_SYMBOL_GPL(usermodehelper_read_unlock);
410 
411 /**
412  * __usermodehelper_set_disable_depth - Modify usermodehelper_disabled.
413  * depth: New value to assign to usermodehelper_disabled.
414  *
415  * Change the value of usermodehelper_disabled (under umhelper_sem locked for
416  * writing) and wakeup tasks waiting for it to change.
417  */
__usermodehelper_set_disable_depth(enum umh_disable_depth depth)418 void __usermodehelper_set_disable_depth(enum umh_disable_depth depth)
419 {
420 	down_write(&umhelper_sem);
421 	usermodehelper_disabled = depth;
422 	wake_up(&usermodehelper_disabled_waitq);
423 	up_write(&umhelper_sem);
424 }
425 
426 /**
427  * __usermodehelper_disable - Prevent new helpers from being started.
428  * @depth: New value to assign to usermodehelper_disabled.
429  *
430  * Set usermodehelper_disabled to @depth and wait for running helpers to exit.
431  */
__usermodehelper_disable(enum umh_disable_depth depth)432 int __usermodehelper_disable(enum umh_disable_depth depth)
433 {
434 	long retval;
435 
436 	if (!depth)
437 		return -EINVAL;
438 
439 	down_write(&umhelper_sem);
440 	usermodehelper_disabled = depth;
441 	up_write(&umhelper_sem);
442 
443 	/*
444 	 * From now on call_usermodehelper_exec() won't start any new
445 	 * helpers, so it is sufficient if running_helpers turns out to
446 	 * be zero at one point (it may be increased later, but that
447 	 * doesn't matter).
448 	 */
449 	retval = wait_event_timeout(running_helpers_waitq,
450 					atomic_read(&running_helpers) == 0,
451 					RUNNING_HELPERS_TIMEOUT);
452 	if (retval)
453 		return 0;
454 
455 	__usermodehelper_set_disable_depth(UMH_ENABLED);
456 	return -EAGAIN;
457 }
458 
helper_lock(void)459 static void helper_lock(void)
460 {
461 	atomic_inc(&running_helpers);
462 	smp_mb__after_atomic_inc();
463 }
464 
helper_unlock(void)465 static void helper_unlock(void)
466 {
467 	if (atomic_dec_and_test(&running_helpers))
468 		wake_up(&running_helpers_waitq);
469 }
470 
471 /**
472  * call_usermodehelper_setup - prepare to call a usermode helper
473  * @path: path to usermode executable
474  * @argv: arg vector for process
475  * @envp: environment for process
476  * @gfp_mask: gfp mask for memory allocation
477  *
478  * Returns either %NULL on allocation failure, or a subprocess_info
479  * structure.  This should be passed to call_usermodehelper_exec to
480  * exec the process and free the structure.
481  */
call_usermodehelper_setup(char * path,char ** argv,char ** envp,gfp_t gfp_mask)482 struct subprocess_info *call_usermodehelper_setup(char *path, char **argv,
483 						  char **envp, gfp_t gfp_mask)
484 {
485 	struct subprocess_info *sub_info;
486 	sub_info = kzalloc(sizeof(struct subprocess_info), gfp_mask);
487 	if (!sub_info)
488 		goto out;
489 
490 	INIT_WORK(&sub_info->work, __call_usermodehelper);
491 	sub_info->path = path;
492 	sub_info->argv = argv;
493 	sub_info->envp = envp;
494   out:
495 	return sub_info;
496 }
497 EXPORT_SYMBOL(call_usermodehelper_setup);
498 
499 /**
500  * call_usermodehelper_setfns - set a cleanup/init function
501  * @info: a subprocess_info returned by call_usermodehelper_setup
502  * @cleanup: a cleanup function
503  * @init: an init function
504  * @data: arbitrary context sensitive data
505  *
506  * The init function is used to customize the helper process prior to
507  * exec.  A non-zero return code causes the process to error out, exit,
508  * and return the failure to the calling process
509  *
510  * The cleanup function is just before ethe subprocess_info is about to
511  * be freed.  This can be used for freeing the argv and envp.  The
512  * Function must be runnable in either a process context or the
513  * context in which call_usermodehelper_exec is called.
514  */
call_usermodehelper_setfns(struct subprocess_info * info,int (* init)(struct subprocess_info * info,struct cred * new),void (* cleanup)(struct subprocess_info * info),void * data)515 void call_usermodehelper_setfns(struct subprocess_info *info,
516 		    int (*init)(struct subprocess_info *info, struct cred *new),
517 		    void (*cleanup)(struct subprocess_info *info),
518 		    void *data)
519 {
520 	info->cleanup = cleanup;
521 	info->init = init;
522 	info->data = data;
523 }
524 EXPORT_SYMBOL(call_usermodehelper_setfns);
525 
526 /**
527  * call_usermodehelper_exec - start a usermode application
528  * @sub_info: information about the subprocessa
529  * @wait: wait for the application to finish and return status.
530  *        when -1 don't wait at all, but you get no useful error back when
531  *        the program couldn't be exec'ed. This makes it safe to call
532  *        from interrupt context.
533  *
534  * Runs a user-space application.  The application is started
535  * asynchronously if wait is not set, and runs as a child of keventd.
536  * (ie. it runs with full root capabilities).
537  */
call_usermodehelper_exec(struct subprocess_info * sub_info,int wait)538 int call_usermodehelper_exec(struct subprocess_info *sub_info, int wait)
539 {
540 	DECLARE_COMPLETION_ONSTACK(done);
541 	int retval = 0;
542 
543 	helper_lock();
544 	if (!sub_info->path) {
545 		retval = -EINVAL;
546 		goto out;
547 	}
548 
549 	if (sub_info->path[0] == '\0')
550 		goto out;
551 
552 	if (!khelper_wq || usermodehelper_disabled) {
553 		retval = -EBUSY;
554 		goto out;
555 	}
556 
557 	sub_info->complete = &done;
558 	sub_info->wait = wait;
559 
560 	queue_work(khelper_wq, &sub_info->work);
561 	if (wait == UMH_NO_WAIT)	/* task has freed sub_info */
562 		goto unlock;
563 
564 	if (wait & UMH_KILLABLE) {
565 		retval = wait_for_completion_killable(&done);
566 		if (!retval)
567 			goto wait_done;
568 
569 		/* umh_complete() will see NULL and free sub_info */
570 		if (xchg(&sub_info->complete, NULL))
571 			goto unlock;
572 		/* fallthrough, umh_complete() was already called */
573 	}
574 
575 	wait_for_completion(&done);
576 wait_done:
577 	retval = sub_info->retval;
578 out:
579 	call_usermodehelper_freeinfo(sub_info);
580 unlock:
581 	helper_unlock();
582 	return retval;
583 }
584 EXPORT_SYMBOL(call_usermodehelper_exec);
585 
proc_cap_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)586 static int proc_cap_handler(struct ctl_table *table, int write,
587 			 void __user *buffer, size_t *lenp, loff_t *ppos)
588 {
589 	struct ctl_table t;
590 	unsigned long cap_array[_KERNEL_CAPABILITY_U32S];
591 	kernel_cap_t new_cap;
592 	int err, i;
593 
594 	if (write && (!capable(CAP_SETPCAP) ||
595 		      !capable(CAP_SYS_MODULE)))
596 		return -EPERM;
597 
598 	/*
599 	 * convert from the global kernel_cap_t to the ulong array to print to
600 	 * userspace if this is a read.
601 	 */
602 	spin_lock(&umh_sysctl_lock);
603 	for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++)  {
604 		if (table->data == CAP_BSET)
605 			cap_array[i] = usermodehelper_bset.cap[i];
606 		else if (table->data == CAP_PI)
607 			cap_array[i] = usermodehelper_inheritable.cap[i];
608 		else
609 			BUG();
610 	}
611 	spin_unlock(&umh_sysctl_lock);
612 
613 	t = *table;
614 	t.data = &cap_array;
615 
616 	/*
617 	 * actually read or write and array of ulongs from userspace.  Remember
618 	 * these are least significant 32 bits first
619 	 */
620 	err = proc_doulongvec_minmax(&t, write, buffer, lenp, ppos);
621 	if (err < 0)
622 		return err;
623 
624 	/*
625 	 * convert from the sysctl array of ulongs to the kernel_cap_t
626 	 * internal representation
627 	 */
628 	for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++)
629 		new_cap.cap[i] = cap_array[i];
630 
631 	/*
632 	 * Drop everything not in the new_cap (but don't add things)
633 	 */
634 	spin_lock(&umh_sysctl_lock);
635 	if (write) {
636 		if (table->data == CAP_BSET)
637 			usermodehelper_bset = cap_intersect(usermodehelper_bset, new_cap);
638 		if (table->data == CAP_PI)
639 			usermodehelper_inheritable = cap_intersect(usermodehelper_inheritable, new_cap);
640 	}
641 	spin_unlock(&umh_sysctl_lock);
642 
643 	return 0;
644 }
645 
646 struct ctl_table usermodehelper_table[] = {
647 	{
648 		.procname	= "bset",
649 		.data		= CAP_BSET,
650 		.maxlen		= _KERNEL_CAPABILITY_U32S * sizeof(unsigned long),
651 		.mode		= 0600,
652 		.proc_handler	= proc_cap_handler,
653 	},
654 	{
655 		.procname	= "inheritable",
656 		.data		= CAP_PI,
657 		.maxlen		= _KERNEL_CAPABILITY_U32S * sizeof(unsigned long),
658 		.mode		= 0600,
659 		.proc_handler	= proc_cap_handler,
660 	},
661 	{ }
662 };
663 
usermodehelper_init(void)664 void __init usermodehelper_init(void)
665 {
666 	khelper_wq = create_singlethread_workqueue("khelper");
667 	BUG_ON(!khelper_wq);
668 }
669