1 /*
2 * Copyright (c) 2007 Oracle. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 *
32 */
33 #include <linux/pagemap.h>
34 #include <linux/slab.h>
35 #include <linux/rbtree.h>
36 #include <linux/dma-mapping.h> /* for DMA_*_DEVICE */
37
38 #include "rds.h"
39
40 /*
41 * XXX
42 * - build with sparse
43 * - should we limit the size of a mr region? let transport return failure?
44 * - should we detect duplicate keys on a socket? hmm.
45 * - an rdma is an mlock, apply rlimit?
46 */
47
48 /*
49 * get the number of pages by looking at the page indices that the start and
50 * end addresses fall in.
51 *
52 * Returns 0 if the vec is invalid. It is invalid if the number of bytes
53 * causes the address to wrap or overflows an unsigned int. This comes
54 * from being stored in the 'length' member of 'struct scatterlist'.
55 */
rds_pages_in_vec(struct rds_iovec * vec)56 static unsigned int rds_pages_in_vec(struct rds_iovec *vec)
57 {
58 if ((vec->addr + vec->bytes <= vec->addr) ||
59 (vec->bytes > (u64)UINT_MAX))
60 return 0;
61
62 return ((vec->addr + vec->bytes + PAGE_SIZE - 1) >> PAGE_SHIFT) -
63 (vec->addr >> PAGE_SHIFT);
64 }
65
rds_mr_tree_walk(struct rb_root * root,u64 key,struct rds_mr * insert)66 static struct rds_mr *rds_mr_tree_walk(struct rb_root *root, u64 key,
67 struct rds_mr *insert)
68 {
69 struct rb_node **p = &root->rb_node;
70 struct rb_node *parent = NULL;
71 struct rds_mr *mr;
72
73 while (*p) {
74 parent = *p;
75 mr = rb_entry(parent, struct rds_mr, r_rb_node);
76
77 if (key < mr->r_key)
78 p = &(*p)->rb_left;
79 else if (key > mr->r_key)
80 p = &(*p)->rb_right;
81 else
82 return mr;
83 }
84
85 if (insert) {
86 rb_link_node(&insert->r_rb_node, parent, p);
87 rb_insert_color(&insert->r_rb_node, root);
88 atomic_inc(&insert->r_refcount);
89 }
90 return NULL;
91 }
92
93 /*
94 * Destroy the transport-specific part of a MR.
95 */
rds_destroy_mr(struct rds_mr * mr)96 static void rds_destroy_mr(struct rds_mr *mr)
97 {
98 struct rds_sock *rs = mr->r_sock;
99 void *trans_private = NULL;
100 unsigned long flags;
101
102 rdsdebug("RDS: destroy mr key is %x refcnt %u\n",
103 mr->r_key, atomic_read(&mr->r_refcount));
104
105 if (test_and_set_bit(RDS_MR_DEAD, &mr->r_state))
106 return;
107
108 spin_lock_irqsave(&rs->rs_rdma_lock, flags);
109 if (!RB_EMPTY_NODE(&mr->r_rb_node))
110 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
111 trans_private = mr->r_trans_private;
112 mr->r_trans_private = NULL;
113 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
114
115 if (trans_private)
116 mr->r_trans->free_mr(trans_private, mr->r_invalidate);
117 }
118
__rds_put_mr_final(struct rds_mr * mr)119 void __rds_put_mr_final(struct rds_mr *mr)
120 {
121 rds_destroy_mr(mr);
122 kfree(mr);
123 }
124
125 /*
126 * By the time this is called we can't have any more ioctls called on
127 * the socket so we don't need to worry about racing with others.
128 */
rds_rdma_drop_keys(struct rds_sock * rs)129 void rds_rdma_drop_keys(struct rds_sock *rs)
130 {
131 struct rds_mr *mr;
132 struct rb_node *node;
133 unsigned long flags;
134
135 /* Release any MRs associated with this socket */
136 spin_lock_irqsave(&rs->rs_rdma_lock, flags);
137 while ((node = rb_first(&rs->rs_rdma_keys))) {
138 mr = container_of(node, struct rds_mr, r_rb_node);
139 if (mr->r_trans == rs->rs_transport)
140 mr->r_invalidate = 0;
141 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
142 RB_CLEAR_NODE(&mr->r_rb_node);
143 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
144 rds_destroy_mr(mr);
145 rds_mr_put(mr);
146 spin_lock_irqsave(&rs->rs_rdma_lock, flags);
147 }
148 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
149
150 if (rs->rs_transport && rs->rs_transport->flush_mrs)
151 rs->rs_transport->flush_mrs();
152 }
153
154 /*
155 * Helper function to pin user pages.
156 */
rds_pin_pages(unsigned long user_addr,unsigned int nr_pages,struct page ** pages,int write)157 static int rds_pin_pages(unsigned long user_addr, unsigned int nr_pages,
158 struct page **pages, int write)
159 {
160 int ret;
161
162 ret = get_user_pages_fast(user_addr, nr_pages, write, pages);
163
164 if (ret >= 0 && ret < nr_pages) {
165 while (ret--)
166 put_page(pages[ret]);
167 ret = -EFAULT;
168 }
169
170 return ret;
171 }
172
__rds_rdma_map(struct rds_sock * rs,struct rds_get_mr_args * args,u64 * cookie_ret,struct rds_mr ** mr_ret)173 static int __rds_rdma_map(struct rds_sock *rs, struct rds_get_mr_args *args,
174 u64 *cookie_ret, struct rds_mr **mr_ret)
175 {
176 struct rds_mr *mr = NULL, *found;
177 unsigned int nr_pages;
178 struct page **pages = NULL;
179 struct scatterlist *sg;
180 void *trans_private;
181 unsigned long flags;
182 rds_rdma_cookie_t cookie;
183 unsigned int nents;
184 long i;
185 int ret;
186
187 if (rs->rs_bound_addr == 0) {
188 ret = -ENOTCONN; /* XXX not a great errno */
189 goto out;
190 }
191
192 if (!rs->rs_transport->get_mr) {
193 ret = -EOPNOTSUPP;
194 goto out;
195 }
196
197 nr_pages = rds_pages_in_vec(&args->vec);
198 if (nr_pages == 0) {
199 ret = -EINVAL;
200 goto out;
201 }
202
203 rdsdebug("RDS: get_mr addr %llx len %llu nr_pages %u\n",
204 args->vec.addr, args->vec.bytes, nr_pages);
205
206 /* XXX clamp nr_pages to limit the size of this alloc? */
207 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
208 if (!pages) {
209 ret = -ENOMEM;
210 goto out;
211 }
212
213 mr = kzalloc(sizeof(struct rds_mr), GFP_KERNEL);
214 if (!mr) {
215 ret = -ENOMEM;
216 goto out;
217 }
218
219 atomic_set(&mr->r_refcount, 1);
220 RB_CLEAR_NODE(&mr->r_rb_node);
221 mr->r_trans = rs->rs_transport;
222 mr->r_sock = rs;
223
224 if (args->flags & RDS_RDMA_USE_ONCE)
225 mr->r_use_once = 1;
226 if (args->flags & RDS_RDMA_INVALIDATE)
227 mr->r_invalidate = 1;
228 if (args->flags & RDS_RDMA_READWRITE)
229 mr->r_write = 1;
230
231 /*
232 * Pin the pages that make up the user buffer and transfer the page
233 * pointers to the mr's sg array. We check to see if we've mapped
234 * the whole region after transferring the partial page references
235 * to the sg array so that we can have one page ref cleanup path.
236 *
237 * For now we have no flag that tells us whether the mapping is
238 * r/o or r/w. We need to assume r/w, or we'll do a lot of RDMA to
239 * the zero page.
240 */
241 ret = rds_pin_pages(args->vec.addr, nr_pages, pages, 1);
242 if (ret < 0)
243 goto out;
244
245 nents = ret;
246 sg = kcalloc(nents, sizeof(*sg), GFP_KERNEL);
247 if (!sg) {
248 ret = -ENOMEM;
249 goto out;
250 }
251 WARN_ON(!nents);
252 sg_init_table(sg, nents);
253
254 /* Stick all pages into the scatterlist */
255 for (i = 0 ; i < nents; i++)
256 sg_set_page(&sg[i], pages[i], PAGE_SIZE, 0);
257
258 rdsdebug("RDS: trans_private nents is %u\n", nents);
259
260 /* Obtain a transport specific MR. If this succeeds, the
261 * s/g list is now owned by the MR.
262 * Note that dma_map() implies that pending writes are
263 * flushed to RAM, so no dma_sync is needed here. */
264 trans_private = rs->rs_transport->get_mr(sg, nents, rs,
265 &mr->r_key);
266
267 if (IS_ERR(trans_private)) {
268 for (i = 0 ; i < nents; i++)
269 put_page(sg_page(&sg[i]));
270 kfree(sg);
271 ret = PTR_ERR(trans_private);
272 goto out;
273 }
274
275 mr->r_trans_private = trans_private;
276
277 rdsdebug("RDS: get_mr put_user key is %x cookie_addr %p\n",
278 mr->r_key, (void *)(unsigned long) args->cookie_addr);
279
280 /* The user may pass us an unaligned address, but we can only
281 * map page aligned regions. So we keep the offset, and build
282 * a 64bit cookie containing <R_Key, offset> and pass that
283 * around. */
284 cookie = rds_rdma_make_cookie(mr->r_key, args->vec.addr & ~PAGE_MASK);
285 if (cookie_ret)
286 *cookie_ret = cookie;
287
288 if (args->cookie_addr && put_user(cookie, (u64 __user *)(unsigned long) args->cookie_addr)) {
289 ret = -EFAULT;
290 goto out;
291 }
292
293 /* Inserting the new MR into the rbtree bumps its
294 * reference count. */
295 spin_lock_irqsave(&rs->rs_rdma_lock, flags);
296 found = rds_mr_tree_walk(&rs->rs_rdma_keys, mr->r_key, mr);
297 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
298
299 BUG_ON(found && found != mr);
300
301 rdsdebug("RDS: get_mr key is %x\n", mr->r_key);
302 if (mr_ret) {
303 atomic_inc(&mr->r_refcount);
304 *mr_ret = mr;
305 }
306
307 ret = 0;
308 out:
309 kfree(pages);
310 if (mr)
311 rds_mr_put(mr);
312 return ret;
313 }
314
rds_get_mr(struct rds_sock * rs,char __user * optval,int optlen)315 int rds_get_mr(struct rds_sock *rs, char __user *optval, int optlen)
316 {
317 struct rds_get_mr_args args;
318
319 if (optlen != sizeof(struct rds_get_mr_args))
320 return -EINVAL;
321
322 if (copy_from_user(&args, (struct rds_get_mr_args __user *)optval,
323 sizeof(struct rds_get_mr_args)))
324 return -EFAULT;
325
326 return __rds_rdma_map(rs, &args, NULL, NULL);
327 }
328
rds_get_mr_for_dest(struct rds_sock * rs,char __user * optval,int optlen)329 int rds_get_mr_for_dest(struct rds_sock *rs, char __user *optval, int optlen)
330 {
331 struct rds_get_mr_for_dest_args args;
332 struct rds_get_mr_args new_args;
333
334 if (optlen != sizeof(struct rds_get_mr_for_dest_args))
335 return -EINVAL;
336
337 if (copy_from_user(&args, (struct rds_get_mr_for_dest_args __user *)optval,
338 sizeof(struct rds_get_mr_for_dest_args)))
339 return -EFAULT;
340
341 /*
342 * Initially, just behave like get_mr().
343 * TODO: Implement get_mr as wrapper around this
344 * and deprecate it.
345 */
346 new_args.vec = args.vec;
347 new_args.cookie_addr = args.cookie_addr;
348 new_args.flags = args.flags;
349
350 return __rds_rdma_map(rs, &new_args, NULL, NULL);
351 }
352
353 /*
354 * Free the MR indicated by the given R_Key
355 */
rds_free_mr(struct rds_sock * rs,char __user * optval,int optlen)356 int rds_free_mr(struct rds_sock *rs, char __user *optval, int optlen)
357 {
358 struct rds_free_mr_args args;
359 struct rds_mr *mr;
360 unsigned long flags;
361
362 if (optlen != sizeof(struct rds_free_mr_args))
363 return -EINVAL;
364
365 if (copy_from_user(&args, (struct rds_free_mr_args __user *)optval,
366 sizeof(struct rds_free_mr_args)))
367 return -EFAULT;
368
369 /* Special case - a null cookie means flush all unused MRs */
370 if (args.cookie == 0) {
371 if (!rs->rs_transport || !rs->rs_transport->flush_mrs)
372 return -EINVAL;
373 rs->rs_transport->flush_mrs();
374 return 0;
375 }
376
377 /* Look up the MR given its R_key and remove it from the rbtree
378 * so nobody else finds it.
379 * This should also prevent races with rds_rdma_unuse.
380 */
381 spin_lock_irqsave(&rs->rs_rdma_lock, flags);
382 mr = rds_mr_tree_walk(&rs->rs_rdma_keys, rds_rdma_cookie_key(args.cookie), NULL);
383 if (mr) {
384 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
385 RB_CLEAR_NODE(&mr->r_rb_node);
386 if (args.flags & RDS_RDMA_INVALIDATE)
387 mr->r_invalidate = 1;
388 }
389 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
390
391 if (!mr)
392 return -EINVAL;
393
394 /*
395 * call rds_destroy_mr() ourselves so that we're sure it's done by the time
396 * we return. If we let rds_mr_put() do it it might not happen until
397 * someone else drops their ref.
398 */
399 rds_destroy_mr(mr);
400 rds_mr_put(mr);
401 return 0;
402 }
403
404 /*
405 * This is called when we receive an extension header that
406 * tells us this MR was used. It allows us to implement
407 * use_once semantics
408 */
rds_rdma_unuse(struct rds_sock * rs,u32 r_key,int force)409 void rds_rdma_unuse(struct rds_sock *rs, u32 r_key, int force)
410 {
411 struct rds_mr *mr;
412 unsigned long flags;
413 int zot_me = 0;
414
415 spin_lock_irqsave(&rs->rs_rdma_lock, flags);
416 mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL);
417 if (!mr) {
418 printk(KERN_ERR "rds: trying to unuse MR with unknown r_key %u!\n", r_key);
419 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
420 return;
421 }
422
423 if (mr->r_use_once || force) {
424 rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
425 RB_CLEAR_NODE(&mr->r_rb_node);
426 zot_me = 1;
427 }
428 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
429
430 /* May have to issue a dma_sync on this memory region.
431 * Note we could avoid this if the operation was a RDMA READ,
432 * but at this point we can't tell. */
433 if (mr->r_trans->sync_mr)
434 mr->r_trans->sync_mr(mr->r_trans_private, DMA_FROM_DEVICE);
435
436 /* If the MR was marked as invalidate, this will
437 * trigger an async flush. */
438 if (zot_me)
439 rds_destroy_mr(mr);
440 rds_mr_put(mr);
441 }
442
rds_rdma_free_op(struct rm_rdma_op * ro)443 void rds_rdma_free_op(struct rm_rdma_op *ro)
444 {
445 unsigned int i;
446
447 for (i = 0; i < ro->op_nents; i++) {
448 struct page *page = sg_page(&ro->op_sg[i]);
449
450 /* Mark page dirty if it was possibly modified, which
451 * is the case for a RDMA_READ which copies from remote
452 * to local memory */
453 if (!ro->op_write) {
454 BUG_ON(irqs_disabled());
455 set_page_dirty(page);
456 }
457 put_page(page);
458 }
459
460 kfree(ro->op_notifier);
461 ro->op_notifier = NULL;
462 ro->op_active = 0;
463 }
464
rds_atomic_free_op(struct rm_atomic_op * ao)465 void rds_atomic_free_op(struct rm_atomic_op *ao)
466 {
467 struct page *page = sg_page(ao->op_sg);
468
469 /* Mark page dirty if it was possibly modified, which
470 * is the case for a RDMA_READ which copies from remote
471 * to local memory */
472 set_page_dirty(page);
473 put_page(page);
474
475 kfree(ao->op_notifier);
476 ao->op_notifier = NULL;
477 ao->op_active = 0;
478 }
479
480
481 /*
482 * Count the number of pages needed to describe an incoming iovec array.
483 */
rds_rdma_pages(struct rds_iovec iov[],int nr_iovecs)484 static int rds_rdma_pages(struct rds_iovec iov[], int nr_iovecs)
485 {
486 int tot_pages = 0;
487 unsigned int nr_pages;
488 unsigned int i;
489
490 /* figure out the number of pages in the vector */
491 for (i = 0; i < nr_iovecs; i++) {
492 nr_pages = rds_pages_in_vec(&iov[i]);
493 if (nr_pages == 0)
494 return -EINVAL;
495
496 tot_pages += nr_pages;
497
498 /*
499 * nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1,
500 * so tot_pages cannot overflow without first going negative.
501 */
502 if (tot_pages < 0)
503 return -EINVAL;
504 }
505
506 return tot_pages;
507 }
508
rds_rdma_extra_size(struct rds_rdma_args * args)509 int rds_rdma_extra_size(struct rds_rdma_args *args)
510 {
511 struct rds_iovec vec;
512 struct rds_iovec __user *local_vec;
513 int tot_pages = 0;
514 unsigned int nr_pages;
515 unsigned int i;
516
517 local_vec = (struct rds_iovec __user *)(unsigned long) args->local_vec_addr;
518
519 /* figure out the number of pages in the vector */
520 for (i = 0; i < args->nr_local; i++) {
521 if (copy_from_user(&vec, &local_vec[i],
522 sizeof(struct rds_iovec)))
523 return -EFAULT;
524
525 nr_pages = rds_pages_in_vec(&vec);
526 if (nr_pages == 0)
527 return -EINVAL;
528
529 tot_pages += nr_pages;
530
531 /*
532 * nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1,
533 * so tot_pages cannot overflow without first going negative.
534 */
535 if (tot_pages < 0)
536 return -EINVAL;
537 }
538
539 return tot_pages * sizeof(struct scatterlist);
540 }
541
542 /*
543 * The application asks for a RDMA transfer.
544 * Extract all arguments and set up the rdma_op
545 */
rds_cmsg_rdma_args(struct rds_sock * rs,struct rds_message * rm,struct cmsghdr * cmsg)546 int rds_cmsg_rdma_args(struct rds_sock *rs, struct rds_message *rm,
547 struct cmsghdr *cmsg)
548 {
549 struct rds_rdma_args *args;
550 struct rm_rdma_op *op = &rm->rdma;
551 int nr_pages;
552 unsigned int nr_bytes;
553 struct page **pages = NULL;
554 struct rds_iovec iovstack[UIO_FASTIOV], *iovs = iovstack;
555 int iov_size;
556 unsigned int i, j;
557 int ret = 0;
558
559 if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_rdma_args))
560 || rm->rdma.op_active)
561 return -EINVAL;
562
563 args = CMSG_DATA(cmsg);
564
565 if (rs->rs_bound_addr == 0) {
566 ret = -ENOTCONN; /* XXX not a great errno */
567 goto out;
568 }
569
570 if (args->nr_local > UIO_MAXIOV) {
571 ret = -EMSGSIZE;
572 goto out;
573 }
574
575 /* Check whether to allocate the iovec area */
576 iov_size = args->nr_local * sizeof(struct rds_iovec);
577 if (args->nr_local > UIO_FASTIOV) {
578 iovs = sock_kmalloc(rds_rs_to_sk(rs), iov_size, GFP_KERNEL);
579 if (!iovs) {
580 ret = -ENOMEM;
581 goto out;
582 }
583 }
584
585 if (copy_from_user(iovs, (struct rds_iovec __user *)(unsigned long) args->local_vec_addr, iov_size)) {
586 ret = -EFAULT;
587 goto out;
588 }
589
590 nr_pages = rds_rdma_pages(iovs, args->nr_local);
591 if (nr_pages < 0) {
592 ret = -EINVAL;
593 goto out;
594 }
595
596 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
597 if (!pages) {
598 ret = -ENOMEM;
599 goto out;
600 }
601
602 op->op_write = !!(args->flags & RDS_RDMA_READWRITE);
603 op->op_fence = !!(args->flags & RDS_RDMA_FENCE);
604 op->op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME);
605 op->op_silent = !!(args->flags & RDS_RDMA_SILENT);
606 op->op_active = 1;
607 op->op_recverr = rs->rs_recverr;
608 WARN_ON(!nr_pages);
609 op->op_sg = rds_message_alloc_sgs(rm, nr_pages);
610 if (!op->op_sg) {
611 ret = -ENOMEM;
612 goto out;
613 }
614
615 if (op->op_notify || op->op_recverr) {
616 /* We allocate an uninitialized notifier here, because
617 * we don't want to do that in the completion handler. We
618 * would have to use GFP_ATOMIC there, and don't want to deal
619 * with failed allocations.
620 */
621 op->op_notifier = kmalloc(sizeof(struct rds_notifier), GFP_KERNEL);
622 if (!op->op_notifier) {
623 ret = -ENOMEM;
624 goto out;
625 }
626 op->op_notifier->n_user_token = args->user_token;
627 op->op_notifier->n_status = RDS_RDMA_SUCCESS;
628 }
629
630 /* The cookie contains the R_Key of the remote memory region, and
631 * optionally an offset into it. This is how we implement RDMA into
632 * unaligned memory.
633 * When setting up the RDMA, we need to add that offset to the
634 * destination address (which is really an offset into the MR)
635 * FIXME: We may want to move this into ib_rdma.c
636 */
637 op->op_rkey = rds_rdma_cookie_key(args->cookie);
638 op->op_remote_addr = args->remote_vec.addr + rds_rdma_cookie_offset(args->cookie);
639
640 nr_bytes = 0;
641
642 rdsdebug("RDS: rdma prepare nr_local %llu rva %llx rkey %x\n",
643 (unsigned long long)args->nr_local,
644 (unsigned long long)args->remote_vec.addr,
645 op->op_rkey);
646
647 for (i = 0; i < args->nr_local; i++) {
648 struct rds_iovec *iov = &iovs[i];
649 /* don't need to check, rds_rdma_pages() verified nr will be +nonzero */
650 unsigned int nr = rds_pages_in_vec(iov);
651
652 rs->rs_user_addr = iov->addr;
653 rs->rs_user_bytes = iov->bytes;
654
655 /* If it's a WRITE operation, we want to pin the pages for reading.
656 * If it's a READ operation, we need to pin the pages for writing.
657 */
658 ret = rds_pin_pages(iov->addr, nr, pages, !op->op_write);
659 if (ret < 0)
660 goto out;
661
662 rdsdebug("RDS: nr_bytes %u nr %u iov->bytes %llu iov->addr %llx\n",
663 nr_bytes, nr, iov->bytes, iov->addr);
664
665 nr_bytes += iov->bytes;
666
667 for (j = 0; j < nr; j++) {
668 unsigned int offset = iov->addr & ~PAGE_MASK;
669 struct scatterlist *sg;
670
671 sg = &op->op_sg[op->op_nents + j];
672 sg_set_page(sg, pages[j],
673 min_t(unsigned int, iov->bytes, PAGE_SIZE - offset),
674 offset);
675
676 rdsdebug("RDS: sg->offset %x sg->len %x iov->addr %llx iov->bytes %llu\n",
677 sg->offset, sg->length, iov->addr, iov->bytes);
678
679 iov->addr += sg->length;
680 iov->bytes -= sg->length;
681 }
682
683 op->op_nents += nr;
684 }
685
686 if (nr_bytes > args->remote_vec.bytes) {
687 rdsdebug("RDS nr_bytes %u remote_bytes %u do not match\n",
688 nr_bytes,
689 (unsigned int) args->remote_vec.bytes);
690 ret = -EINVAL;
691 goto out;
692 }
693 op->op_bytes = nr_bytes;
694
695 out:
696 if (iovs != iovstack)
697 sock_kfree_s(rds_rs_to_sk(rs), iovs, iov_size);
698 kfree(pages);
699 if (ret)
700 rds_rdma_free_op(op);
701 else
702 rds_stats_inc(s_send_rdma);
703
704 return ret;
705 }
706
707 /*
708 * The application wants us to pass an RDMA destination (aka MR)
709 * to the remote
710 */
rds_cmsg_rdma_dest(struct rds_sock * rs,struct rds_message * rm,struct cmsghdr * cmsg)711 int rds_cmsg_rdma_dest(struct rds_sock *rs, struct rds_message *rm,
712 struct cmsghdr *cmsg)
713 {
714 unsigned long flags;
715 struct rds_mr *mr;
716 u32 r_key;
717 int err = 0;
718
719 if (cmsg->cmsg_len < CMSG_LEN(sizeof(rds_rdma_cookie_t)) ||
720 rm->m_rdma_cookie != 0)
721 return -EINVAL;
722
723 memcpy(&rm->m_rdma_cookie, CMSG_DATA(cmsg), sizeof(rm->m_rdma_cookie));
724
725 /* We are reusing a previously mapped MR here. Most likely, the
726 * application has written to the buffer, so we need to explicitly
727 * flush those writes to RAM. Otherwise the HCA may not see them
728 * when doing a DMA from that buffer.
729 */
730 r_key = rds_rdma_cookie_key(rm->m_rdma_cookie);
731
732 spin_lock_irqsave(&rs->rs_rdma_lock, flags);
733 mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL);
734 if (!mr)
735 err = -EINVAL; /* invalid r_key */
736 else
737 atomic_inc(&mr->r_refcount);
738 spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
739
740 if (mr) {
741 mr->r_trans->sync_mr(mr->r_trans_private, DMA_TO_DEVICE);
742 rm->rdma.op_rdma_mr = mr;
743 }
744 return err;
745 }
746
747 /*
748 * The application passes us an address range it wants to enable RDMA
749 * to/from. We map the area, and save the <R_Key,offset> pair
750 * in rm->m_rdma_cookie. This causes it to be sent along to the peer
751 * in an extension header.
752 */
rds_cmsg_rdma_map(struct rds_sock * rs,struct rds_message * rm,struct cmsghdr * cmsg)753 int rds_cmsg_rdma_map(struct rds_sock *rs, struct rds_message *rm,
754 struct cmsghdr *cmsg)
755 {
756 if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_get_mr_args)) ||
757 rm->m_rdma_cookie != 0)
758 return -EINVAL;
759
760 return __rds_rdma_map(rs, CMSG_DATA(cmsg), &rm->m_rdma_cookie, &rm->rdma.op_rdma_mr);
761 }
762
763 /*
764 * Fill in rds_message for an atomic request.
765 */
rds_cmsg_atomic(struct rds_sock * rs,struct rds_message * rm,struct cmsghdr * cmsg)766 int rds_cmsg_atomic(struct rds_sock *rs, struct rds_message *rm,
767 struct cmsghdr *cmsg)
768 {
769 struct page *page = NULL;
770 struct rds_atomic_args *args;
771 int ret = 0;
772
773 if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_atomic_args))
774 || rm->atomic.op_active)
775 return -EINVAL;
776
777 args = CMSG_DATA(cmsg);
778
779 /* Nonmasked & masked cmsg ops converted to masked hw ops */
780 switch (cmsg->cmsg_type) {
781 case RDS_CMSG_ATOMIC_FADD:
782 rm->atomic.op_type = RDS_ATOMIC_TYPE_FADD;
783 rm->atomic.op_m_fadd.add = args->fadd.add;
784 rm->atomic.op_m_fadd.nocarry_mask = 0;
785 break;
786 case RDS_CMSG_MASKED_ATOMIC_FADD:
787 rm->atomic.op_type = RDS_ATOMIC_TYPE_FADD;
788 rm->atomic.op_m_fadd.add = args->m_fadd.add;
789 rm->atomic.op_m_fadd.nocarry_mask = args->m_fadd.nocarry_mask;
790 break;
791 case RDS_CMSG_ATOMIC_CSWP:
792 rm->atomic.op_type = RDS_ATOMIC_TYPE_CSWP;
793 rm->atomic.op_m_cswp.compare = args->cswp.compare;
794 rm->atomic.op_m_cswp.swap = args->cswp.swap;
795 rm->atomic.op_m_cswp.compare_mask = ~0;
796 rm->atomic.op_m_cswp.swap_mask = ~0;
797 break;
798 case RDS_CMSG_MASKED_ATOMIC_CSWP:
799 rm->atomic.op_type = RDS_ATOMIC_TYPE_CSWP;
800 rm->atomic.op_m_cswp.compare = args->m_cswp.compare;
801 rm->atomic.op_m_cswp.swap = args->m_cswp.swap;
802 rm->atomic.op_m_cswp.compare_mask = args->m_cswp.compare_mask;
803 rm->atomic.op_m_cswp.swap_mask = args->m_cswp.swap_mask;
804 break;
805 default:
806 BUG(); /* should never happen */
807 }
808
809 rm->atomic.op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME);
810 rm->atomic.op_silent = !!(args->flags & RDS_RDMA_SILENT);
811 rm->atomic.op_active = 1;
812 rm->atomic.op_recverr = rs->rs_recverr;
813 rm->atomic.op_sg = rds_message_alloc_sgs(rm, 1);
814 if (!rm->atomic.op_sg) {
815 ret = -ENOMEM;
816 goto err;
817 }
818
819 /* verify 8 byte-aligned */
820 if (args->local_addr & 0x7) {
821 ret = -EFAULT;
822 goto err;
823 }
824
825 ret = rds_pin_pages(args->local_addr, 1, &page, 1);
826 if (ret != 1)
827 goto err;
828 ret = 0;
829
830 sg_set_page(rm->atomic.op_sg, page, 8, offset_in_page(args->local_addr));
831
832 if (rm->atomic.op_notify || rm->atomic.op_recverr) {
833 /* We allocate an uninitialized notifier here, because
834 * we don't want to do that in the completion handler. We
835 * would have to use GFP_ATOMIC there, and don't want to deal
836 * with failed allocations.
837 */
838 rm->atomic.op_notifier = kmalloc(sizeof(*rm->atomic.op_notifier), GFP_KERNEL);
839 if (!rm->atomic.op_notifier) {
840 ret = -ENOMEM;
841 goto err;
842 }
843
844 rm->atomic.op_notifier->n_user_token = args->user_token;
845 rm->atomic.op_notifier->n_status = RDS_RDMA_SUCCESS;
846 }
847
848 rm->atomic.op_rkey = rds_rdma_cookie_key(args->cookie);
849 rm->atomic.op_remote_addr = args->remote_addr + rds_rdma_cookie_offset(args->cookie);
850
851 return ret;
852 err:
853 if (page)
854 put_page(page);
855 kfree(rm->atomic.op_notifier);
856
857 return ret;
858 }
859