1 #ifndef _ASM_GENERIC_PGTABLE_H
2 #define _ASM_GENERIC_PGTABLE_H
3
4 #ifndef __ASSEMBLY__
5 #ifdef CONFIG_MMU
6
7 #include <linux/mm_types.h>
8 #include <linux/bug.h>
9
10 /*
11 * On almost all architectures and configurations, 0 can be used as the
12 * upper ceiling to free_pgtables(): on many architectures it has the same
13 * effect as using TASK_SIZE. However, there is one configuration which
14 * must impose a more careful limit, to avoid freeing kernel pgtables.
15 */
16 #ifndef USER_PGTABLES_CEILING
17 #define USER_PGTABLES_CEILING 0UL
18 #endif
19
20 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
21 extern int ptep_set_access_flags(struct vm_area_struct *vma,
22 unsigned long address, pte_t *ptep,
23 pte_t entry, int dirty);
24 #endif
25
26 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
27 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
28 unsigned long address, pmd_t *pmdp,
29 pmd_t entry, int dirty);
30 #endif
31
32 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)33 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
34 unsigned long address,
35 pte_t *ptep)
36 {
37 pte_t pte = *ptep;
38 int r = 1;
39 if (!pte_young(pte))
40 r = 0;
41 else
42 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
43 return r;
44 }
45 #endif
46
47 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
48 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)49 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
50 unsigned long address,
51 pmd_t *pmdp)
52 {
53 pmd_t pmd = *pmdp;
54 int r = 1;
55 if (!pmd_young(pmd))
56 r = 0;
57 else
58 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
59 return r;
60 }
61 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)62 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
63 unsigned long address,
64 pmd_t *pmdp)
65 {
66 BUG();
67 return 0;
68 }
69 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
70 #endif
71
72 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
73 int ptep_clear_flush_young(struct vm_area_struct *vma,
74 unsigned long address, pte_t *ptep);
75 #endif
76
77 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
78 int pmdp_clear_flush_young(struct vm_area_struct *vma,
79 unsigned long address, pmd_t *pmdp);
80 #endif
81
82 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long address,pte_t * ptep)83 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
84 unsigned long address,
85 pte_t *ptep)
86 {
87 pte_t pte = *ptep;
88 pte_clear(mm, address, ptep);
89 return pte;
90 }
91 #endif
92
93 #ifndef __HAVE_ARCH_PMDP_GET_AND_CLEAR
94 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmdp_get_and_clear(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)95 static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
96 unsigned long address,
97 pmd_t *pmdp)
98 {
99 pmd_t pmd = *pmdp;
100 pmd_clear(mm, address, pmdp);
101 return pmd;
102 }
103 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
104 #endif
105
106 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
ptep_get_and_clear_full(struct mm_struct * mm,unsigned long address,pte_t * ptep,int full)107 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
108 unsigned long address, pte_t *ptep,
109 int full)
110 {
111 pte_t pte;
112 pte = ptep_get_and_clear(mm, address, ptep);
113 return pte;
114 }
115 #endif
116
117 /*
118 * Some architectures may be able to avoid expensive synchronization
119 * primitives when modifications are made to PTE's which are already
120 * not present, or in the process of an address space destruction.
121 */
122 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
pte_clear_not_present_full(struct mm_struct * mm,unsigned long address,pte_t * ptep,int full)123 static inline void pte_clear_not_present_full(struct mm_struct *mm,
124 unsigned long address,
125 pte_t *ptep,
126 int full)
127 {
128 pte_clear(mm, address, ptep);
129 }
130 #endif
131
132 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
133 extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
134 unsigned long address,
135 pte_t *ptep);
136 #endif
137
138 #ifndef __HAVE_ARCH_PMDP_CLEAR_FLUSH
139 extern pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
140 unsigned long address,
141 pmd_t *pmdp);
142 #endif
143
144 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
145 struct mm_struct;
ptep_set_wrprotect(struct mm_struct * mm,unsigned long address,pte_t * ptep)146 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
147 {
148 pte_t old_pte = *ptep;
149 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
150 }
151 #endif
152
153 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
154 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)155 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
156 unsigned long address, pmd_t *pmdp)
157 {
158 pmd_t old_pmd = *pmdp;
159 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
160 }
161 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)162 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
163 unsigned long address, pmd_t *pmdp)
164 {
165 BUG();
166 }
167 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
168 #endif
169
170 #ifndef __HAVE_ARCH_PMDP_SPLITTING_FLUSH
171 extern pmd_t pmdp_splitting_flush(struct vm_area_struct *vma,
172 unsigned long address,
173 pmd_t *pmdp);
174 #endif
175
176 #ifndef __HAVE_ARCH_PTE_SAME
pte_same(pte_t pte_a,pte_t pte_b)177 static inline int pte_same(pte_t pte_a, pte_t pte_b)
178 {
179 return pte_val(pte_a) == pte_val(pte_b);
180 }
181 #endif
182
183 #ifndef __HAVE_ARCH_PMD_SAME
184 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmd_same(pmd_t pmd_a,pmd_t pmd_b)185 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
186 {
187 return pmd_val(pmd_a) == pmd_val(pmd_b);
188 }
189 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
pmd_same(pmd_t pmd_a,pmd_t pmd_b)190 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
191 {
192 BUG();
193 return 0;
194 }
195 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
196 #endif
197
198 #ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_DIRTY
199 #define page_test_and_clear_dirty(pfn, mapped) (0)
200 #endif
201
202 #ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_DIRTY
203 #define pte_maybe_dirty(pte) pte_dirty(pte)
204 #else
205 #define pte_maybe_dirty(pte) (1)
206 #endif
207
208 #ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
209 #define page_test_and_clear_young(pfn) (0)
210 #endif
211
212 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
213 #define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
214 #endif
215
216 #ifndef __HAVE_ARCH_MOVE_PTE
217 #define move_pte(pte, prot, old_addr, new_addr) (pte)
218 #endif
219
220 #ifndef flush_tlb_fix_spurious_fault
221 #define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
222 #endif
223
224 #ifndef pgprot_noncached
225 #define pgprot_noncached(prot) (prot)
226 #endif
227
228 #ifndef pgprot_writecombine
229 #define pgprot_writecombine pgprot_noncached
230 #endif
231
232 /*
233 * When walking page tables, get the address of the next boundary,
234 * or the end address of the range if that comes earlier. Although no
235 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
236 */
237
238 #define pgd_addr_end(addr, end) \
239 ({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
240 (__boundary - 1 < (end) - 1)? __boundary: (end); \
241 })
242
243 #ifndef pud_addr_end
244 #define pud_addr_end(addr, end) \
245 ({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
246 (__boundary - 1 < (end) - 1)? __boundary: (end); \
247 })
248 #endif
249
250 #ifndef pmd_addr_end
251 #define pmd_addr_end(addr, end) \
252 ({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
253 (__boundary - 1 < (end) - 1)? __boundary: (end); \
254 })
255 #endif
256
257 /*
258 * When walking page tables, we usually want to skip any p?d_none entries;
259 * and any p?d_bad entries - reporting the error before resetting to none.
260 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
261 */
262 void pgd_clear_bad(pgd_t *);
263 void pud_clear_bad(pud_t *);
264 void pmd_clear_bad(pmd_t *);
265
pgd_none_or_clear_bad(pgd_t * pgd)266 static inline int pgd_none_or_clear_bad(pgd_t *pgd)
267 {
268 if (pgd_none(*pgd))
269 return 1;
270 if (unlikely(pgd_bad(*pgd))) {
271 pgd_clear_bad(pgd);
272 return 1;
273 }
274 return 0;
275 }
276
pud_none_or_clear_bad(pud_t * pud)277 static inline int pud_none_or_clear_bad(pud_t *pud)
278 {
279 if (pud_none(*pud))
280 return 1;
281 if (unlikely(pud_bad(*pud))) {
282 pud_clear_bad(pud);
283 return 1;
284 }
285 return 0;
286 }
287
pmd_none_or_clear_bad(pmd_t * pmd)288 static inline int pmd_none_or_clear_bad(pmd_t *pmd)
289 {
290 if (pmd_none(*pmd))
291 return 1;
292 if (unlikely(pmd_bad(*pmd))) {
293 pmd_clear_bad(pmd);
294 return 1;
295 }
296 return 0;
297 }
298
__ptep_modify_prot_start(struct mm_struct * mm,unsigned long addr,pte_t * ptep)299 static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
300 unsigned long addr,
301 pte_t *ptep)
302 {
303 /*
304 * Get the current pte state, but zero it out to make it
305 * non-present, preventing the hardware from asynchronously
306 * updating it.
307 */
308 return ptep_get_and_clear(mm, addr, ptep);
309 }
310
__ptep_modify_prot_commit(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)311 static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
312 unsigned long addr,
313 pte_t *ptep, pte_t pte)
314 {
315 /*
316 * The pte is non-present, so there's no hardware state to
317 * preserve.
318 */
319 set_pte_at(mm, addr, ptep, pte);
320 }
321
322 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
323 /*
324 * Start a pte protection read-modify-write transaction, which
325 * protects against asynchronous hardware modifications to the pte.
326 * The intention is not to prevent the hardware from making pte
327 * updates, but to prevent any updates it may make from being lost.
328 *
329 * This does not protect against other software modifications of the
330 * pte; the appropriate pte lock must be held over the transation.
331 *
332 * Note that this interface is intended to be batchable, meaning that
333 * ptep_modify_prot_commit may not actually update the pte, but merely
334 * queue the update to be done at some later time. The update must be
335 * actually committed before the pte lock is released, however.
336 */
ptep_modify_prot_start(struct mm_struct * mm,unsigned long addr,pte_t * ptep)337 static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
338 unsigned long addr,
339 pte_t *ptep)
340 {
341 return __ptep_modify_prot_start(mm, addr, ptep);
342 }
343
344 /*
345 * Commit an update to a pte, leaving any hardware-controlled bits in
346 * the PTE unmodified.
347 */
ptep_modify_prot_commit(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)348 static inline void ptep_modify_prot_commit(struct mm_struct *mm,
349 unsigned long addr,
350 pte_t *ptep, pte_t pte)
351 {
352 __ptep_modify_prot_commit(mm, addr, ptep, pte);
353 }
354 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
355 #endif /* CONFIG_MMU */
356
357 /*
358 * A facility to provide lazy MMU batching. This allows PTE updates and
359 * page invalidations to be delayed until a call to leave lazy MMU mode
360 * is issued. Some architectures may benefit from doing this, and it is
361 * beneficial for both shadow and direct mode hypervisors, which may batch
362 * the PTE updates which happen during this window. Note that using this
363 * interface requires that read hazards be removed from the code. A read
364 * hazard could result in the direct mode hypervisor case, since the actual
365 * write to the page tables may not yet have taken place, so reads though
366 * a raw PTE pointer after it has been modified are not guaranteed to be
367 * up to date. This mode can only be entered and left under the protection of
368 * the page table locks for all page tables which may be modified. In the UP
369 * case, this is required so that preemption is disabled, and in the SMP case,
370 * it must synchronize the delayed page table writes properly on other CPUs.
371 */
372 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
373 #define arch_enter_lazy_mmu_mode() do {} while (0)
374 #define arch_leave_lazy_mmu_mode() do {} while (0)
375 #define arch_flush_lazy_mmu_mode() do {} while (0)
376 #endif
377
378 /*
379 * A facility to provide batching of the reload of page tables and
380 * other process state with the actual context switch code for
381 * paravirtualized guests. By convention, only one of the batched
382 * update (lazy) modes (CPU, MMU) should be active at any given time,
383 * entry should never be nested, and entry and exits should always be
384 * paired. This is for sanity of maintaining and reasoning about the
385 * kernel code. In this case, the exit (end of the context switch) is
386 * in architecture-specific code, and so doesn't need a generic
387 * definition.
388 */
389 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
390 #define arch_start_context_switch(prev) do {} while (0)
391 #endif
392
393 #ifndef __HAVE_PFNMAP_TRACKING
394 /*
395 * Interface that can be used by architecture code to keep track of
396 * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
397 *
398 * track_pfn_vma_new is called when a _new_ pfn mapping is being established
399 * for physical range indicated by pfn and size.
400 */
track_pfn_vma_new(struct vm_area_struct * vma,pgprot_t * prot,unsigned long pfn,unsigned long size)401 static inline int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t *prot,
402 unsigned long pfn, unsigned long size)
403 {
404 return 0;
405 }
406
407 /*
408 * Interface that can be used by architecture code to keep track of
409 * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
410 *
411 * track_pfn_vma_copy is called when vma that is covering the pfnmap gets
412 * copied through copy_page_range().
413 */
track_pfn_vma_copy(struct vm_area_struct * vma)414 static inline int track_pfn_vma_copy(struct vm_area_struct *vma)
415 {
416 return 0;
417 }
418
419 /*
420 * Interface that can be used by architecture code to keep track of
421 * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
422 *
423 * untrack_pfn_vma is called while unmapping a pfnmap for a region.
424 * untrack can be called for a specific region indicated by pfn and size or
425 * can be for the entire vma (in which case size can be zero).
426 */
untrack_pfn_vma(struct vm_area_struct * vma,unsigned long pfn,unsigned long size)427 static inline void untrack_pfn_vma(struct vm_area_struct *vma,
428 unsigned long pfn, unsigned long size)
429 {
430 }
431 #else
432 extern int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t *prot,
433 unsigned long pfn, unsigned long size);
434 extern int track_pfn_vma_copy(struct vm_area_struct *vma);
435 extern void untrack_pfn_vma(struct vm_area_struct *vma, unsigned long pfn,
436 unsigned long size);
437 #endif
438
439 #ifdef CONFIG_MMU
440
441 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
pmd_trans_huge(pmd_t pmd)442 static inline int pmd_trans_huge(pmd_t pmd)
443 {
444 return 0;
445 }
pmd_trans_splitting(pmd_t pmd)446 static inline int pmd_trans_splitting(pmd_t pmd)
447 {
448 return 0;
449 }
450 #ifndef __HAVE_ARCH_PMD_WRITE
pmd_write(pmd_t pmd)451 static inline int pmd_write(pmd_t pmd)
452 {
453 BUG();
454 return 0;
455 }
456 #endif /* __HAVE_ARCH_PMD_WRITE */
457 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
458
459 #ifndef pmd_read_atomic
pmd_read_atomic(pmd_t * pmdp)460 static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
461 {
462 /*
463 * Depend on compiler for an atomic pmd read. NOTE: this is
464 * only going to work, if the pmdval_t isn't larger than
465 * an unsigned long.
466 */
467 return *pmdp;
468 }
469 #endif
470
471 /*
472 * This function is meant to be used by sites walking pagetables with
473 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and
474 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
475 * into a null pmd and the transhuge page fault can convert a null pmd
476 * into an hugepmd or into a regular pmd (if the hugepage allocation
477 * fails). While holding the mmap_sem in read mode the pmd becomes
478 * stable and stops changing under us only if it's not null and not a
479 * transhuge pmd. When those races occurs and this function makes a
480 * difference vs the standard pmd_none_or_clear_bad, the result is
481 * undefined so behaving like if the pmd was none is safe (because it
482 * can return none anyway). The compiler level barrier() is critically
483 * important to compute the two checks atomically on the same pmdval.
484 *
485 * For 32bit kernels with a 64bit large pmd_t this automatically takes
486 * care of reading the pmd atomically to avoid SMP race conditions
487 * against pmd_populate() when the mmap_sem is hold for reading by the
488 * caller (a special atomic read not done by "gcc" as in the generic
489 * version above, is also needed when THP is disabled because the page
490 * fault can populate the pmd from under us).
491 */
pmd_none_or_trans_huge_or_clear_bad(pmd_t * pmd)492 static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
493 {
494 pmd_t pmdval = pmd_read_atomic(pmd);
495 /*
496 * The barrier will stabilize the pmdval in a register or on
497 * the stack so that it will stop changing under the code.
498 *
499 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
500 * pmd_read_atomic is allowed to return a not atomic pmdval
501 * (for example pointing to an hugepage that has never been
502 * mapped in the pmd). The below checks will only care about
503 * the low part of the pmd with 32bit PAE x86 anyway, with the
504 * exception of pmd_none(). So the important thing is that if
505 * the low part of the pmd is found null, the high part will
506 * be also null or the pmd_none() check below would be
507 * confused.
508 */
509 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
510 barrier();
511 #endif
512 if (pmd_none(pmdval))
513 return 1;
514 if (unlikely(pmd_bad(pmdval))) {
515 if (!pmd_trans_huge(pmdval))
516 pmd_clear_bad(pmd);
517 return 1;
518 }
519 return 0;
520 }
521
522 /*
523 * This is a noop if Transparent Hugepage Support is not built into
524 * the kernel. Otherwise it is equivalent to
525 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
526 * places that already verified the pmd is not none and they want to
527 * walk ptes while holding the mmap sem in read mode (write mode don't
528 * need this). If THP is not enabled, the pmd can't go away under the
529 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
530 * run a pmd_trans_unstable before walking the ptes after
531 * split_huge_page_pmd returns (because it may have run when the pmd
532 * become null, but then a page fault can map in a THP and not a
533 * regular page).
534 */
pmd_trans_unstable(pmd_t * pmd)535 static inline int pmd_trans_unstable(pmd_t *pmd)
536 {
537 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
538 return pmd_none_or_trans_huge_or_clear_bad(pmd);
539 #else
540 return 0;
541 #endif
542 }
543
544 #endif /* CONFIG_MMU */
545
546 #endif /* !__ASSEMBLY__ */
547
548 #endif /* _ASM_GENERIC_PGTABLE_H */
549