1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * S390 version
4 * Copyright IBM Corp. 1999, 2000
5 * Author(s): Hartmut Penner (hp@de.ibm.com)
6 * Ulrich Weigand (weigand@de.ibm.com)
7 * Martin Schwidefsky (schwidefsky@de.ibm.com)
8 *
9 * Derived from "include/asm-i386/pgtable.h"
10 */
11
12 #ifndef _ASM_S390_PGTABLE_H
13 #define _ASM_S390_PGTABLE_H
14
15 #include <linux/sched.h>
16 #include <linux/mm_types.h>
17 #include <linux/page-flags.h>
18 #include <linux/radix-tree.h>
19 #include <linux/atomic.h>
20 #include <asm/sections.h>
21 #include <asm/bug.h>
22 #include <asm/page.h>
23 #include <asm/uv.h>
24
25 extern pgd_t swapper_pg_dir[];
26 extern void paging_init(void);
27 extern unsigned long s390_invalid_asce;
28
29 enum {
30 PG_DIRECT_MAP_4K = 0,
31 PG_DIRECT_MAP_1M,
32 PG_DIRECT_MAP_2G,
33 PG_DIRECT_MAP_MAX
34 };
35
36 extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
37
update_page_count(int level,long count)38 static inline void update_page_count(int level, long count)
39 {
40 if (IS_ENABLED(CONFIG_PROC_FS))
41 atomic_long_add(count, &direct_pages_count[level]);
42 }
43
44 struct seq_file;
45 void arch_report_meminfo(struct seq_file *m);
46
47 /*
48 * The S390 doesn't have any external MMU info: the kernel page
49 * tables contain all the necessary information.
50 */
51 #define update_mmu_cache(vma, address, ptep) do { } while (0)
52 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
53
54 /*
55 * ZERO_PAGE is a global shared page that is always zero; used
56 * for zero-mapped memory areas etc..
57 */
58
59 extern unsigned long empty_zero_page;
60 extern unsigned long zero_page_mask;
61
62 #define ZERO_PAGE(vaddr) \
63 (virt_to_page((void *)(empty_zero_page + \
64 (((unsigned long)(vaddr)) &zero_page_mask))))
65 #define __HAVE_COLOR_ZERO_PAGE
66
67 /* TODO: s390 cannot support io_remap_pfn_range... */
68
69 #define pte_ERROR(e) \
70 pr_err("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
71 #define pmd_ERROR(e) \
72 pr_err("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
73 #define pud_ERROR(e) \
74 pr_err("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e))
75 #define p4d_ERROR(e) \
76 pr_err("%s:%d: bad p4d %016lx.\n", __FILE__, __LINE__, p4d_val(e))
77 #define pgd_ERROR(e) \
78 pr_err("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
79
80 /*
81 * The vmalloc and module area will always be on the topmost area of the
82 * kernel mapping. 512GB are reserved for vmalloc by default.
83 * At the top of the vmalloc area a 2GB area is reserved where modules
84 * will reside. That makes sure that inter module branches always
85 * happen without trampolines and in addition the placement within a
86 * 2GB frame is branch prediction unit friendly.
87 */
88 extern unsigned long __bootdata_preserved(VMALLOC_START);
89 extern unsigned long __bootdata_preserved(VMALLOC_END);
90 #define VMALLOC_DEFAULT_SIZE ((512UL << 30) - MODULES_LEN)
91 extern struct page *__bootdata_preserved(vmemmap);
92 extern unsigned long __bootdata_preserved(vmemmap_size);
93
94 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
95
96 extern unsigned long __bootdata_preserved(MODULES_VADDR);
97 extern unsigned long __bootdata_preserved(MODULES_END);
98 #define MODULES_VADDR MODULES_VADDR
99 #define MODULES_END MODULES_END
100 #define MODULES_LEN (1UL << 31)
101
is_module_addr(void * addr)102 static inline int is_module_addr(void *addr)
103 {
104 BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
105 if (addr < (void *)MODULES_VADDR)
106 return 0;
107 if (addr > (void *)MODULES_END)
108 return 0;
109 return 1;
110 }
111
112 /*
113 * A 64 bit pagetable entry of S390 has following format:
114 * | PFRA |0IPC| OS |
115 * 0000000000111111111122222222223333333333444444444455555555556666
116 * 0123456789012345678901234567890123456789012345678901234567890123
117 *
118 * I Page-Invalid Bit: Page is not available for address-translation
119 * P Page-Protection Bit: Store access not possible for page
120 * C Change-bit override: HW is not required to set change bit
121 *
122 * A 64 bit segmenttable entry of S390 has following format:
123 * | P-table origin | TT
124 * 0000000000111111111122222222223333333333444444444455555555556666
125 * 0123456789012345678901234567890123456789012345678901234567890123
126 *
127 * I Segment-Invalid Bit: Segment is not available for address-translation
128 * C Common-Segment Bit: Segment is not private (PoP 3-30)
129 * P Page-Protection Bit: Store access not possible for page
130 * TT Type 00
131 *
132 * A 64 bit region table entry of S390 has following format:
133 * | S-table origin | TF TTTL
134 * 0000000000111111111122222222223333333333444444444455555555556666
135 * 0123456789012345678901234567890123456789012345678901234567890123
136 *
137 * I Segment-Invalid Bit: Segment is not available for address-translation
138 * TT Type 01
139 * TF
140 * TL Table length
141 *
142 * The 64 bit regiontable origin of S390 has following format:
143 * | region table origon | DTTL
144 * 0000000000111111111122222222223333333333444444444455555555556666
145 * 0123456789012345678901234567890123456789012345678901234567890123
146 *
147 * X Space-Switch event:
148 * G Segment-Invalid Bit:
149 * P Private-Space Bit:
150 * S Storage-Alteration:
151 * R Real space
152 * TL Table-Length:
153 *
154 * A storage key has the following format:
155 * | ACC |F|R|C|0|
156 * 0 3 4 5 6 7
157 * ACC: access key
158 * F : fetch protection bit
159 * R : referenced bit
160 * C : changed bit
161 */
162
163 /* Hardware bits in the page table entry */
164 #define _PAGE_NOEXEC 0x100 /* HW no-execute bit */
165 #define _PAGE_PROTECT 0x200 /* HW read-only bit */
166 #define _PAGE_INVALID 0x400 /* HW invalid bit */
167 #define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
168
169 /* Software bits in the page table entry */
170 #define _PAGE_PRESENT 0x001 /* SW pte present bit */
171 #define _PAGE_YOUNG 0x004 /* SW pte young bit */
172 #define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
173 #define _PAGE_READ 0x010 /* SW pte read bit */
174 #define _PAGE_WRITE 0x020 /* SW pte write bit */
175 #define _PAGE_SPECIAL 0x040 /* SW associated with special page */
176 #define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
177
178 #ifdef CONFIG_MEM_SOFT_DIRTY
179 #define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */
180 #else
181 #define _PAGE_SOFT_DIRTY 0x000
182 #endif
183
184 #define _PAGE_SWP_EXCLUSIVE _PAGE_LARGE /* SW pte exclusive swap bit */
185
186 /* Set of bits not changed in pte_modify */
187 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
188 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
189
190 /*
191 * handle_pte_fault uses pte_present and pte_none to find out the pte type
192 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
193 * distinguish present from not-present ptes. It is changed only with the page
194 * table lock held.
195 *
196 * The following table gives the different possible bit combinations for
197 * the pte hardware and software bits in the last 12 bits of a pte
198 * (. unassigned bit, x don't care, t swap type):
199 *
200 * 842100000000
201 * 000084210000
202 * 000000008421
203 * .IR.uswrdy.p
204 * empty .10.00000000
205 * swap .11..ttttt.0
206 * prot-none, clean, old .11.xx0000.1
207 * prot-none, clean, young .11.xx0001.1
208 * prot-none, dirty, old .11.xx0010.1
209 * prot-none, dirty, young .11.xx0011.1
210 * read-only, clean, old .11.xx0100.1
211 * read-only, clean, young .01.xx0101.1
212 * read-only, dirty, old .11.xx0110.1
213 * read-only, dirty, young .01.xx0111.1
214 * read-write, clean, old .11.xx1100.1
215 * read-write, clean, young .01.xx1101.1
216 * read-write, dirty, old .10.xx1110.1
217 * read-write, dirty, young .00.xx1111.1
218 * HW-bits: R read-only, I invalid
219 * SW-bits: p present, y young, d dirty, r read, w write, s special,
220 * u unused, l large
221 *
222 * pte_none is true for the bit pattern .10.00000000, pte == 0x400
223 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
224 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
225 */
226
227 /* Bits in the segment/region table address-space-control-element */
228 #define _ASCE_ORIGIN ~0xfffUL/* region/segment table origin */
229 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
230 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
231 #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
232 #define _ASCE_REAL_SPACE 0x20 /* real space control */
233 #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
234 #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
235 #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
236 #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
237 #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
238 #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
239
240 /* Bits in the region table entry */
241 #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
242 #define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
243 #define _REGION_ENTRY_NOEXEC 0x100 /* region no-execute bit */
244 #define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */
245 #define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
246 #define _REGION_ENTRY_TYPE_MASK 0x0c /* region table type mask */
247 #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
248 #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
249 #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
250 #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
251
252 #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
253 #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
254 #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
255 #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
256 #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
257 #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
258
259 #define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */
260 #define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */
261 #define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */
262 #define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */
263 #define _REGION3_ENTRY_READ 0x0002 /* SW region read bit */
264 #define _REGION3_ENTRY_WRITE 0x0001 /* SW region write bit */
265
266 #ifdef CONFIG_MEM_SOFT_DIRTY
267 #define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
268 #else
269 #define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
270 #endif
271
272 #define _REGION_ENTRY_BITS 0xfffffffffffff22fUL
273
274 /* Bits in the segment table entry */
275 #define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
276 #define _SEGMENT_ENTRY_HARDWARE_BITS 0xfffffffffffffe30UL
277 #define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE 0xfffffffffff00730UL
278 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
279 #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* page table origin */
280 #define _SEGMENT_ENTRY_PROTECT 0x200 /* segment protection bit */
281 #define _SEGMENT_ENTRY_NOEXEC 0x100 /* segment no-execute bit */
282 #define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
283 #define _SEGMENT_ENTRY_TYPE_MASK 0x0c /* segment table type mask */
284
285 #define _SEGMENT_ENTRY (0)
286 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
287
288 #define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
289 #define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
290 #define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
291 #define _SEGMENT_ENTRY_WRITE 0x0002 /* SW segment write bit */
292 #define _SEGMENT_ENTRY_READ 0x0001 /* SW segment read bit */
293
294 #ifdef CONFIG_MEM_SOFT_DIRTY
295 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
296 #else
297 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
298 #endif
299
300 #define _CRST_ENTRIES 2048 /* number of region/segment table entries */
301 #define _PAGE_ENTRIES 256 /* number of page table entries */
302
303 #define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
304 #define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
305
306 #define _REGION1_SHIFT 53
307 #define _REGION2_SHIFT 42
308 #define _REGION3_SHIFT 31
309 #define _SEGMENT_SHIFT 20
310
311 #define _REGION1_INDEX (0x7ffUL << _REGION1_SHIFT)
312 #define _REGION2_INDEX (0x7ffUL << _REGION2_SHIFT)
313 #define _REGION3_INDEX (0x7ffUL << _REGION3_SHIFT)
314 #define _SEGMENT_INDEX (0x7ffUL << _SEGMENT_SHIFT)
315 #define _PAGE_INDEX (0xffUL << _PAGE_SHIFT)
316
317 #define _REGION1_SIZE (1UL << _REGION1_SHIFT)
318 #define _REGION2_SIZE (1UL << _REGION2_SHIFT)
319 #define _REGION3_SIZE (1UL << _REGION3_SHIFT)
320 #define _SEGMENT_SIZE (1UL << _SEGMENT_SHIFT)
321
322 #define _REGION1_MASK (~(_REGION1_SIZE - 1))
323 #define _REGION2_MASK (~(_REGION2_SIZE - 1))
324 #define _REGION3_MASK (~(_REGION3_SIZE - 1))
325 #define _SEGMENT_MASK (~(_SEGMENT_SIZE - 1))
326
327 #define PMD_SHIFT _SEGMENT_SHIFT
328 #define PUD_SHIFT _REGION3_SHIFT
329 #define P4D_SHIFT _REGION2_SHIFT
330 #define PGDIR_SHIFT _REGION1_SHIFT
331
332 #define PMD_SIZE _SEGMENT_SIZE
333 #define PUD_SIZE _REGION3_SIZE
334 #define P4D_SIZE _REGION2_SIZE
335 #define PGDIR_SIZE _REGION1_SIZE
336
337 #define PMD_MASK _SEGMENT_MASK
338 #define PUD_MASK _REGION3_MASK
339 #define P4D_MASK _REGION2_MASK
340 #define PGDIR_MASK _REGION1_MASK
341
342 #define PTRS_PER_PTE _PAGE_ENTRIES
343 #define PTRS_PER_PMD _CRST_ENTRIES
344 #define PTRS_PER_PUD _CRST_ENTRIES
345 #define PTRS_PER_P4D _CRST_ENTRIES
346 #define PTRS_PER_PGD _CRST_ENTRIES
347
348 /*
349 * Segment table and region3 table entry encoding
350 * (R = read-only, I = invalid, y = young bit):
351 * dy..R...I...wr
352 * prot-none, clean, old 00..1...1...00
353 * prot-none, clean, young 01..1...1...00
354 * prot-none, dirty, old 10..1...1...00
355 * prot-none, dirty, young 11..1...1...00
356 * read-only, clean, old 00..1...1...01
357 * read-only, clean, young 01..1...0...01
358 * read-only, dirty, old 10..1...1...01
359 * read-only, dirty, young 11..1...0...01
360 * read-write, clean, old 00..1...1...11
361 * read-write, clean, young 01..1...0...11
362 * read-write, dirty, old 10..0...1...11
363 * read-write, dirty, young 11..0...0...11
364 * The segment table origin is used to distinguish empty (origin==0) from
365 * read-write, old segment table entries (origin!=0)
366 * HW-bits: R read-only, I invalid
367 * SW-bits: y young, d dirty, r read, w write
368 */
369
370 /* Page status table bits for virtualization */
371 #define PGSTE_ACC_BITS 0xf000000000000000UL
372 #define PGSTE_FP_BIT 0x0800000000000000UL
373 #define PGSTE_PCL_BIT 0x0080000000000000UL
374 #define PGSTE_HR_BIT 0x0040000000000000UL
375 #define PGSTE_HC_BIT 0x0020000000000000UL
376 #define PGSTE_GR_BIT 0x0004000000000000UL
377 #define PGSTE_GC_BIT 0x0002000000000000UL
378 #define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
379 #define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
380 #define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */
381
382 /* Guest Page State used for virtualization */
383 #define _PGSTE_GPS_ZERO 0x0000000080000000UL
384 #define _PGSTE_GPS_NODAT 0x0000000040000000UL
385 #define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
386 #define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
387 #define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
388 #define _PGSTE_GPS_USAGE_POT_VOLATILE 0x0000000002000000UL
389 #define _PGSTE_GPS_USAGE_VOLATILE _PGSTE_GPS_USAGE_MASK
390
391 /*
392 * A user page table pointer has the space-switch-event bit, the
393 * private-space-control bit and the storage-alteration-event-control
394 * bit set. A kernel page table pointer doesn't need them.
395 */
396 #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
397 _ASCE_ALT_EVENT)
398
399 /*
400 * Page protection definitions.
401 */
402 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
403 #define PAGE_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | \
404 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
405 #define PAGE_RX __pgprot(_PAGE_PRESENT | _PAGE_READ | \
406 _PAGE_INVALID | _PAGE_PROTECT)
407 #define PAGE_RW __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
408 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
409 #define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
410 _PAGE_INVALID | _PAGE_PROTECT)
411
412 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
413 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
414 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
415 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
416 #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
417 _PAGE_PROTECT | _PAGE_NOEXEC)
418 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
419 _PAGE_YOUNG | _PAGE_DIRTY)
420
421 /*
422 * On s390 the page table entry has an invalid bit and a read-only bit.
423 * Read permission implies execute permission and write permission
424 * implies read permission.
425 */
426 /*xwr*/
427
428 /*
429 * Segment entry (large page) protection definitions.
430 */
431 #define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
432 _SEGMENT_ENTRY_PROTECT)
433 #define SEGMENT_RO __pgprot(_SEGMENT_ENTRY_PROTECT | \
434 _SEGMENT_ENTRY_READ | \
435 _SEGMENT_ENTRY_NOEXEC)
436 #define SEGMENT_RX __pgprot(_SEGMENT_ENTRY_PROTECT | \
437 _SEGMENT_ENTRY_READ)
438 #define SEGMENT_RW __pgprot(_SEGMENT_ENTRY_READ | \
439 _SEGMENT_ENTRY_WRITE | \
440 _SEGMENT_ENTRY_NOEXEC)
441 #define SEGMENT_RWX __pgprot(_SEGMENT_ENTRY_READ | \
442 _SEGMENT_ENTRY_WRITE)
443 #define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \
444 _SEGMENT_ENTRY_LARGE | \
445 _SEGMENT_ENTRY_READ | \
446 _SEGMENT_ENTRY_WRITE | \
447 _SEGMENT_ENTRY_YOUNG | \
448 _SEGMENT_ENTRY_DIRTY | \
449 _SEGMENT_ENTRY_NOEXEC)
450 #define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \
451 _SEGMENT_ENTRY_LARGE | \
452 _SEGMENT_ENTRY_READ | \
453 _SEGMENT_ENTRY_YOUNG | \
454 _SEGMENT_ENTRY_PROTECT | \
455 _SEGMENT_ENTRY_NOEXEC)
456 #define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY | \
457 _SEGMENT_ENTRY_LARGE | \
458 _SEGMENT_ENTRY_READ | \
459 _SEGMENT_ENTRY_WRITE | \
460 _SEGMENT_ENTRY_YOUNG | \
461 _SEGMENT_ENTRY_DIRTY)
462
463 /*
464 * Region3 entry (large page) protection definitions.
465 */
466
467 #define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \
468 _REGION3_ENTRY_LARGE | \
469 _REGION3_ENTRY_READ | \
470 _REGION3_ENTRY_WRITE | \
471 _REGION3_ENTRY_YOUNG | \
472 _REGION3_ENTRY_DIRTY | \
473 _REGION_ENTRY_NOEXEC)
474 #define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
475 _REGION3_ENTRY_LARGE | \
476 _REGION3_ENTRY_READ | \
477 _REGION3_ENTRY_YOUNG | \
478 _REGION_ENTRY_PROTECT | \
479 _REGION_ENTRY_NOEXEC)
480
mm_p4d_folded(struct mm_struct * mm)481 static inline bool mm_p4d_folded(struct mm_struct *mm)
482 {
483 return mm->context.asce_limit <= _REGION1_SIZE;
484 }
485 #define mm_p4d_folded(mm) mm_p4d_folded(mm)
486
mm_pud_folded(struct mm_struct * mm)487 static inline bool mm_pud_folded(struct mm_struct *mm)
488 {
489 return mm->context.asce_limit <= _REGION2_SIZE;
490 }
491 #define mm_pud_folded(mm) mm_pud_folded(mm)
492
mm_pmd_folded(struct mm_struct * mm)493 static inline bool mm_pmd_folded(struct mm_struct *mm)
494 {
495 return mm->context.asce_limit <= _REGION3_SIZE;
496 }
497 #define mm_pmd_folded(mm) mm_pmd_folded(mm)
498
mm_has_pgste(struct mm_struct * mm)499 static inline int mm_has_pgste(struct mm_struct *mm)
500 {
501 #ifdef CONFIG_PGSTE
502 if (unlikely(mm->context.has_pgste))
503 return 1;
504 #endif
505 return 0;
506 }
507
mm_is_protected(struct mm_struct * mm)508 static inline int mm_is_protected(struct mm_struct *mm)
509 {
510 #ifdef CONFIG_PGSTE
511 if (unlikely(atomic_read(&mm->context.protected_count)))
512 return 1;
513 #endif
514 return 0;
515 }
516
mm_alloc_pgste(struct mm_struct * mm)517 static inline int mm_alloc_pgste(struct mm_struct *mm)
518 {
519 #ifdef CONFIG_PGSTE
520 if (unlikely(mm->context.alloc_pgste))
521 return 1;
522 #endif
523 return 0;
524 }
525
clear_pte_bit(pte_t pte,pgprot_t prot)526 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
527 {
528 return __pte(pte_val(pte) & ~pgprot_val(prot));
529 }
530
set_pte_bit(pte_t pte,pgprot_t prot)531 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
532 {
533 return __pte(pte_val(pte) | pgprot_val(prot));
534 }
535
clear_pmd_bit(pmd_t pmd,pgprot_t prot)536 static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
537 {
538 return __pmd(pmd_val(pmd) & ~pgprot_val(prot));
539 }
540
set_pmd_bit(pmd_t pmd,pgprot_t prot)541 static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
542 {
543 return __pmd(pmd_val(pmd) | pgprot_val(prot));
544 }
545
clear_pud_bit(pud_t pud,pgprot_t prot)546 static inline pud_t clear_pud_bit(pud_t pud, pgprot_t prot)
547 {
548 return __pud(pud_val(pud) & ~pgprot_val(prot));
549 }
550
set_pud_bit(pud_t pud,pgprot_t prot)551 static inline pud_t set_pud_bit(pud_t pud, pgprot_t prot)
552 {
553 return __pud(pud_val(pud) | pgprot_val(prot));
554 }
555
556 /*
557 * In the case that a guest uses storage keys
558 * faults should no longer be backed by zero pages
559 */
560 #define mm_forbids_zeropage mm_has_pgste
mm_uses_skeys(struct mm_struct * mm)561 static inline int mm_uses_skeys(struct mm_struct *mm)
562 {
563 #ifdef CONFIG_PGSTE
564 if (mm->context.uses_skeys)
565 return 1;
566 #endif
567 return 0;
568 }
569
csp(unsigned int * ptr,unsigned int old,unsigned int new)570 static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
571 {
572 union register_pair r1 = { .even = old, .odd = new, };
573 unsigned long address = (unsigned long)ptr | 1;
574
575 asm volatile(
576 " csp %[r1],%[address]"
577 : [r1] "+&d" (r1.pair), "+m" (*ptr)
578 : [address] "d" (address)
579 : "cc");
580 }
581
cspg(unsigned long * ptr,unsigned long old,unsigned long new)582 static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
583 {
584 union register_pair r1 = { .even = old, .odd = new, };
585 unsigned long address = (unsigned long)ptr | 1;
586
587 asm volatile(
588 " cspg %[r1],%[address]"
589 : [r1] "+&d" (r1.pair), "+m" (*ptr)
590 : [address] "d" (address)
591 : "cc");
592 }
593
594 #define CRDTE_DTT_PAGE 0x00UL
595 #define CRDTE_DTT_SEGMENT 0x10UL
596 #define CRDTE_DTT_REGION3 0x14UL
597 #define CRDTE_DTT_REGION2 0x18UL
598 #define CRDTE_DTT_REGION1 0x1cUL
599
crdte(unsigned long old,unsigned long new,unsigned long * table,unsigned long dtt,unsigned long address,unsigned long asce)600 static inline void crdte(unsigned long old, unsigned long new,
601 unsigned long *table, unsigned long dtt,
602 unsigned long address, unsigned long asce)
603 {
604 union register_pair r1 = { .even = old, .odd = new, };
605 union register_pair r2 = { .even = __pa(table) | dtt, .odd = address, };
606
607 asm volatile(".insn rrf,0xb98f0000,%[r1],%[r2],%[asce],0"
608 : [r1] "+&d" (r1.pair)
609 : [r2] "d" (r2.pair), [asce] "a" (asce)
610 : "memory", "cc");
611 }
612
613 /*
614 * pgd/p4d/pud/pmd/pte query functions
615 */
pgd_folded(pgd_t pgd)616 static inline int pgd_folded(pgd_t pgd)
617 {
618 return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
619 }
620
pgd_present(pgd_t pgd)621 static inline int pgd_present(pgd_t pgd)
622 {
623 if (pgd_folded(pgd))
624 return 1;
625 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
626 }
627
pgd_none(pgd_t pgd)628 static inline int pgd_none(pgd_t pgd)
629 {
630 if (pgd_folded(pgd))
631 return 0;
632 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
633 }
634
pgd_bad(pgd_t pgd)635 static inline int pgd_bad(pgd_t pgd)
636 {
637 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1)
638 return 0;
639 return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0;
640 }
641
pgd_pfn(pgd_t pgd)642 static inline unsigned long pgd_pfn(pgd_t pgd)
643 {
644 unsigned long origin_mask;
645
646 origin_mask = _REGION_ENTRY_ORIGIN;
647 return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT;
648 }
649
p4d_folded(p4d_t p4d)650 static inline int p4d_folded(p4d_t p4d)
651 {
652 return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
653 }
654
p4d_present(p4d_t p4d)655 static inline int p4d_present(p4d_t p4d)
656 {
657 if (p4d_folded(p4d))
658 return 1;
659 return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
660 }
661
p4d_none(p4d_t p4d)662 static inline int p4d_none(p4d_t p4d)
663 {
664 if (p4d_folded(p4d))
665 return 0;
666 return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
667 }
668
p4d_pfn(p4d_t p4d)669 static inline unsigned long p4d_pfn(p4d_t p4d)
670 {
671 unsigned long origin_mask;
672
673 origin_mask = _REGION_ENTRY_ORIGIN;
674 return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
675 }
676
pud_folded(pud_t pud)677 static inline int pud_folded(pud_t pud)
678 {
679 return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
680 }
681
pud_present(pud_t pud)682 static inline int pud_present(pud_t pud)
683 {
684 if (pud_folded(pud))
685 return 1;
686 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
687 }
688
pud_none(pud_t pud)689 static inline int pud_none(pud_t pud)
690 {
691 if (pud_folded(pud))
692 return 0;
693 return pud_val(pud) == _REGION3_ENTRY_EMPTY;
694 }
695
696 #define pud_leaf pud_large
pud_large(pud_t pud)697 static inline int pud_large(pud_t pud)
698 {
699 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
700 return 0;
701 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
702 }
703
704 #define pmd_leaf pmd_large
pmd_large(pmd_t pmd)705 static inline int pmd_large(pmd_t pmd)
706 {
707 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
708 }
709
pmd_bad(pmd_t pmd)710 static inline int pmd_bad(pmd_t pmd)
711 {
712 if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0 || pmd_large(pmd))
713 return 1;
714 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
715 }
716
pud_bad(pud_t pud)717 static inline int pud_bad(pud_t pud)
718 {
719 unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK;
720
721 if (type > _REGION_ENTRY_TYPE_R3 || pud_large(pud))
722 return 1;
723 if (type < _REGION_ENTRY_TYPE_R3)
724 return 0;
725 return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
726 }
727
p4d_bad(p4d_t p4d)728 static inline int p4d_bad(p4d_t p4d)
729 {
730 unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK;
731
732 if (type > _REGION_ENTRY_TYPE_R2)
733 return 1;
734 if (type < _REGION_ENTRY_TYPE_R2)
735 return 0;
736 return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
737 }
738
pmd_present(pmd_t pmd)739 static inline int pmd_present(pmd_t pmd)
740 {
741 return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
742 }
743
pmd_none(pmd_t pmd)744 static inline int pmd_none(pmd_t pmd)
745 {
746 return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
747 }
748
749 #define pmd_write pmd_write
pmd_write(pmd_t pmd)750 static inline int pmd_write(pmd_t pmd)
751 {
752 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
753 }
754
755 #define pud_write pud_write
pud_write(pud_t pud)756 static inline int pud_write(pud_t pud)
757 {
758 return (pud_val(pud) & _REGION3_ENTRY_WRITE) != 0;
759 }
760
pmd_dirty(pmd_t pmd)761 static inline int pmd_dirty(pmd_t pmd)
762 {
763 return (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
764 }
765
766 #define pmd_young pmd_young
pmd_young(pmd_t pmd)767 static inline int pmd_young(pmd_t pmd)
768 {
769 return (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
770 }
771
pte_present(pte_t pte)772 static inline int pte_present(pte_t pte)
773 {
774 /* Bit pattern: (pte & 0x001) == 0x001 */
775 return (pte_val(pte) & _PAGE_PRESENT) != 0;
776 }
777
pte_none(pte_t pte)778 static inline int pte_none(pte_t pte)
779 {
780 /* Bit pattern: pte == 0x400 */
781 return pte_val(pte) == _PAGE_INVALID;
782 }
783
pte_swap(pte_t pte)784 static inline int pte_swap(pte_t pte)
785 {
786 /* Bit pattern: (pte & 0x201) == 0x200 */
787 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
788 == _PAGE_PROTECT;
789 }
790
pte_special(pte_t pte)791 static inline int pte_special(pte_t pte)
792 {
793 return (pte_val(pte) & _PAGE_SPECIAL);
794 }
795
796 #define __HAVE_ARCH_PTE_SAME
pte_same(pte_t a,pte_t b)797 static inline int pte_same(pte_t a, pte_t b)
798 {
799 return pte_val(a) == pte_val(b);
800 }
801
802 #ifdef CONFIG_NUMA_BALANCING
pte_protnone(pte_t pte)803 static inline int pte_protnone(pte_t pte)
804 {
805 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
806 }
807
pmd_protnone(pmd_t pmd)808 static inline int pmd_protnone(pmd_t pmd)
809 {
810 /* pmd_large(pmd) implies pmd_present(pmd) */
811 return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
812 }
813 #endif
814
815 #define __HAVE_ARCH_PTE_SWP_EXCLUSIVE
pte_swp_exclusive(pte_t pte)816 static inline int pte_swp_exclusive(pte_t pte)
817 {
818 return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
819 }
820
pte_swp_mkexclusive(pte_t pte)821 static inline pte_t pte_swp_mkexclusive(pte_t pte)
822 {
823 return set_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE));
824 }
825
pte_swp_clear_exclusive(pte_t pte)826 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
827 {
828 return clear_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE));
829 }
830
pte_soft_dirty(pte_t pte)831 static inline int pte_soft_dirty(pte_t pte)
832 {
833 return pte_val(pte) & _PAGE_SOFT_DIRTY;
834 }
835 #define pte_swp_soft_dirty pte_soft_dirty
836
pte_mksoft_dirty(pte_t pte)837 static inline pte_t pte_mksoft_dirty(pte_t pte)
838 {
839 return set_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY));
840 }
841 #define pte_swp_mksoft_dirty pte_mksoft_dirty
842
pte_clear_soft_dirty(pte_t pte)843 static inline pte_t pte_clear_soft_dirty(pte_t pte)
844 {
845 return clear_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY));
846 }
847 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
848
pmd_soft_dirty(pmd_t pmd)849 static inline int pmd_soft_dirty(pmd_t pmd)
850 {
851 return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
852 }
853
pmd_mksoft_dirty(pmd_t pmd)854 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
855 {
856 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY));
857 }
858
pmd_clear_soft_dirty(pmd_t pmd)859 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
860 {
861 return clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY));
862 }
863
864 /*
865 * query functions pte_write/pte_dirty/pte_young only work if
866 * pte_present() is true. Undefined behaviour if not..
867 */
pte_write(pte_t pte)868 static inline int pte_write(pte_t pte)
869 {
870 return (pte_val(pte) & _PAGE_WRITE) != 0;
871 }
872
pte_dirty(pte_t pte)873 static inline int pte_dirty(pte_t pte)
874 {
875 return (pte_val(pte) & _PAGE_DIRTY) != 0;
876 }
877
pte_young(pte_t pte)878 static inline int pte_young(pte_t pte)
879 {
880 return (pte_val(pte) & _PAGE_YOUNG) != 0;
881 }
882
883 #define __HAVE_ARCH_PTE_UNUSED
pte_unused(pte_t pte)884 static inline int pte_unused(pte_t pte)
885 {
886 return pte_val(pte) & _PAGE_UNUSED;
887 }
888
889 /*
890 * Extract the pgprot value from the given pte while at the same time making it
891 * usable for kernel address space mappings where fault driven dirty and
892 * young/old accounting is not supported, i.e _PAGE_PROTECT and _PAGE_INVALID
893 * must not be set.
894 */
pte_pgprot(pte_t pte)895 static inline pgprot_t pte_pgprot(pte_t pte)
896 {
897 unsigned long pte_flags = pte_val(pte) & _PAGE_CHG_MASK;
898
899 if (pte_write(pte))
900 pte_flags |= pgprot_val(PAGE_KERNEL);
901 else
902 pte_flags |= pgprot_val(PAGE_KERNEL_RO);
903 pte_flags |= pte_val(pte) & mio_wb_bit_mask;
904
905 return __pgprot(pte_flags);
906 }
907
908 /*
909 * pgd/pmd/pte modification functions
910 */
911
set_pgd(pgd_t * pgdp,pgd_t pgd)912 static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
913 {
914 WRITE_ONCE(*pgdp, pgd);
915 }
916
set_p4d(p4d_t * p4dp,p4d_t p4d)917 static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
918 {
919 WRITE_ONCE(*p4dp, p4d);
920 }
921
set_pud(pud_t * pudp,pud_t pud)922 static inline void set_pud(pud_t *pudp, pud_t pud)
923 {
924 WRITE_ONCE(*pudp, pud);
925 }
926
set_pmd(pmd_t * pmdp,pmd_t pmd)927 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
928 {
929 WRITE_ONCE(*pmdp, pmd);
930 }
931
set_pte(pte_t * ptep,pte_t pte)932 static inline void set_pte(pte_t *ptep, pte_t pte)
933 {
934 WRITE_ONCE(*ptep, pte);
935 }
936
pgd_clear(pgd_t * pgd)937 static inline void pgd_clear(pgd_t *pgd)
938 {
939 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
940 set_pgd(pgd, __pgd(_REGION1_ENTRY_EMPTY));
941 }
942
p4d_clear(p4d_t * p4d)943 static inline void p4d_clear(p4d_t *p4d)
944 {
945 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
946 set_p4d(p4d, __p4d(_REGION2_ENTRY_EMPTY));
947 }
948
pud_clear(pud_t * pud)949 static inline void pud_clear(pud_t *pud)
950 {
951 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
952 set_pud(pud, __pud(_REGION3_ENTRY_EMPTY));
953 }
954
pmd_clear(pmd_t * pmdp)955 static inline void pmd_clear(pmd_t *pmdp)
956 {
957 set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
958 }
959
pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)960 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
961 {
962 set_pte(ptep, __pte(_PAGE_INVALID));
963 }
964
965 /*
966 * The following pte modification functions only work if
967 * pte_present() is true. Undefined behaviour if not..
968 */
pte_modify(pte_t pte,pgprot_t newprot)969 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
970 {
971 pte = clear_pte_bit(pte, __pgprot(~_PAGE_CHG_MASK));
972 pte = set_pte_bit(pte, newprot);
973 /*
974 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
975 * has the invalid bit set, clear it again for readable, young pages
976 */
977 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
978 pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID));
979 /*
980 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
981 * protection bit set, clear it again for writable, dirty pages
982 */
983 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
984 pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
985 return pte;
986 }
987
pte_wrprotect(pte_t pte)988 static inline pte_t pte_wrprotect(pte_t pte)
989 {
990 pte = clear_pte_bit(pte, __pgprot(_PAGE_WRITE));
991 return set_pte_bit(pte, __pgprot(_PAGE_PROTECT));
992 }
993
pte_mkwrite(pte_t pte)994 static inline pte_t pte_mkwrite(pte_t pte)
995 {
996 pte = set_pte_bit(pte, __pgprot(_PAGE_WRITE));
997 if (pte_val(pte) & _PAGE_DIRTY)
998 pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
999 return pte;
1000 }
1001
pte_mkclean(pte_t pte)1002 static inline pte_t pte_mkclean(pte_t pte)
1003 {
1004 pte = clear_pte_bit(pte, __pgprot(_PAGE_DIRTY));
1005 return set_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1006 }
1007
pte_mkdirty(pte_t pte)1008 static inline pte_t pte_mkdirty(pte_t pte)
1009 {
1010 pte = set_pte_bit(pte, __pgprot(_PAGE_DIRTY | _PAGE_SOFT_DIRTY));
1011 if (pte_val(pte) & _PAGE_WRITE)
1012 pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1013 return pte;
1014 }
1015
pte_mkold(pte_t pte)1016 static inline pte_t pte_mkold(pte_t pte)
1017 {
1018 pte = clear_pte_bit(pte, __pgprot(_PAGE_YOUNG));
1019 return set_pte_bit(pte, __pgprot(_PAGE_INVALID));
1020 }
1021
pte_mkyoung(pte_t pte)1022 static inline pte_t pte_mkyoung(pte_t pte)
1023 {
1024 pte = set_pte_bit(pte, __pgprot(_PAGE_YOUNG));
1025 if (pte_val(pte) & _PAGE_READ)
1026 pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID));
1027 return pte;
1028 }
1029
pte_mkspecial(pte_t pte)1030 static inline pte_t pte_mkspecial(pte_t pte)
1031 {
1032 return set_pte_bit(pte, __pgprot(_PAGE_SPECIAL));
1033 }
1034
1035 #ifdef CONFIG_HUGETLB_PAGE
pte_mkhuge(pte_t pte)1036 static inline pte_t pte_mkhuge(pte_t pte)
1037 {
1038 return set_pte_bit(pte, __pgprot(_PAGE_LARGE));
1039 }
1040 #endif
1041
1042 #define IPTE_GLOBAL 0
1043 #define IPTE_LOCAL 1
1044
1045 #define IPTE_NODAT 0x400
1046 #define IPTE_GUEST_ASCE 0x800
1047
__ptep_ipte(unsigned long address,pte_t * ptep,unsigned long opt,unsigned long asce,int local)1048 static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep,
1049 unsigned long opt, unsigned long asce,
1050 int local)
1051 {
1052 unsigned long pto = __pa(ptep);
1053
1054 if (__builtin_constant_p(opt) && opt == 0) {
1055 /* Invalidation + TLB flush for the pte */
1056 asm volatile(
1057 " ipte %[r1],%[r2],0,%[m4]"
1058 : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
1059 [m4] "i" (local));
1060 return;
1061 }
1062
1063 /* Invalidate ptes with options + TLB flush of the ptes */
1064 opt = opt | (asce & _ASCE_ORIGIN);
1065 asm volatile(
1066 " ipte %[r1],%[r2],%[r3],%[m4]"
1067 : [r2] "+a" (address), [r3] "+a" (opt)
1068 : [r1] "a" (pto), [m4] "i" (local) : "memory");
1069 }
1070
__ptep_ipte_range(unsigned long address,int nr,pte_t * ptep,int local)1071 static __always_inline void __ptep_ipte_range(unsigned long address, int nr,
1072 pte_t *ptep, int local)
1073 {
1074 unsigned long pto = __pa(ptep);
1075
1076 /* Invalidate a range of ptes + TLB flush of the ptes */
1077 do {
1078 asm volatile(
1079 " ipte %[r1],%[r2],%[r3],%[m4]"
1080 : [r2] "+a" (address), [r3] "+a" (nr)
1081 : [r1] "a" (pto), [m4] "i" (local) : "memory");
1082 } while (nr != 255);
1083 }
1084
1085 /*
1086 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1087 * both clear the TLB for the unmapped pte. The reason is that
1088 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1089 * to modify an active pte. The sequence is
1090 * 1) ptep_get_and_clear
1091 * 2) set_pte_at
1092 * 3) flush_tlb_range
1093 * On s390 the tlb needs to get flushed with the modification of the pte
1094 * if the pte is active. The only way how this can be implemented is to
1095 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1096 * is a nop.
1097 */
1098 pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1099 pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1100
1101 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1102 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1103 unsigned long addr, pte_t *ptep)
1104 {
1105 pte_t pte = *ptep;
1106
1107 pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1108 return pte_young(pte);
1109 }
1110
1111 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)1112 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1113 unsigned long address, pte_t *ptep)
1114 {
1115 return ptep_test_and_clear_young(vma, address, ptep);
1116 }
1117
1118 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1119 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1120 unsigned long addr, pte_t *ptep)
1121 {
1122 pte_t res;
1123
1124 res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1125 /* At this point the reference through the mapping is still present */
1126 if (mm_is_protected(mm) && pte_present(res))
1127 uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
1128 return res;
1129 }
1130
1131 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1132 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1133 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1134 pte_t *, pte_t, pte_t);
1135
1136 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
ptep_clear_flush(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1137 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1138 unsigned long addr, pte_t *ptep)
1139 {
1140 pte_t res;
1141
1142 res = ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1143 /* At this point the reference through the mapping is still present */
1144 if (mm_is_protected(vma->vm_mm) && pte_present(res))
1145 uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
1146 return res;
1147 }
1148
1149 /*
1150 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1151 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1152 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1153 * cannot be accessed while the batched unmap is running. In this case
1154 * full==1 and a simple pte_clear is enough. See tlb.h.
1155 */
1156 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
ptep_get_and_clear_full(struct mm_struct * mm,unsigned long addr,pte_t * ptep,int full)1157 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1158 unsigned long addr,
1159 pte_t *ptep, int full)
1160 {
1161 pte_t res;
1162
1163 if (full) {
1164 res = *ptep;
1165 set_pte(ptep, __pte(_PAGE_INVALID));
1166 } else {
1167 res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1168 }
1169 /* Nothing to do */
1170 if (!mm_is_protected(mm) || !pte_present(res))
1171 return res;
1172 /*
1173 * At this point the reference through the mapping is still present.
1174 * The notifier should have destroyed all protected vCPUs at this
1175 * point, so the destroy should be successful.
1176 */
1177 if (full && !uv_destroy_owned_page(pte_val(res) & PAGE_MASK))
1178 return res;
1179 /*
1180 * If something went wrong and the page could not be destroyed, or
1181 * if this is not a mm teardown, the slower export is used as
1182 * fallback instead.
1183 */
1184 uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
1185 return res;
1186 }
1187
1188 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1189 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1190 unsigned long addr, pte_t *ptep)
1191 {
1192 pte_t pte = *ptep;
1193
1194 if (pte_write(pte))
1195 ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1196 }
1197
1198 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
ptep_set_access_flags(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t entry,int dirty)1199 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1200 unsigned long addr, pte_t *ptep,
1201 pte_t entry, int dirty)
1202 {
1203 if (pte_same(*ptep, entry))
1204 return 0;
1205 ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1206 return 1;
1207 }
1208
1209 /*
1210 * Additional functions to handle KVM guest page tables
1211 */
1212 void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1213 pte_t *ptep, pte_t entry);
1214 void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1215 void ptep_notify(struct mm_struct *mm, unsigned long addr,
1216 pte_t *ptep, unsigned long bits);
1217 int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1218 pte_t *ptep, int prot, unsigned long bit);
1219 void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1220 pte_t *ptep , int reset);
1221 void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1222 int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1223 pte_t *sptep, pte_t *tptep, pte_t pte);
1224 void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1225
1226 bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address,
1227 pte_t *ptep);
1228 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1229 unsigned char key, bool nq);
1230 int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1231 unsigned char key, unsigned char *oldkey,
1232 bool nq, bool mr, bool mc);
1233 int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1234 int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1235 unsigned char *key);
1236
1237 int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1238 unsigned long bits, unsigned long value);
1239 int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1240 int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1241 unsigned long *oldpte, unsigned long *oldpgste);
1242 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr);
1243 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr);
1244 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr);
1245 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr);
1246
1247 #define pgprot_writecombine pgprot_writecombine
1248 pgprot_t pgprot_writecombine(pgprot_t prot);
1249
1250 #define pgprot_writethrough pgprot_writethrough
1251 pgprot_t pgprot_writethrough(pgprot_t prot);
1252
1253 /*
1254 * Certain architectures need to do special things when PTEs
1255 * within a page table are directly modified. Thus, the following
1256 * hook is made available.
1257 */
set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t entry)1258 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1259 pte_t *ptep, pte_t entry)
1260 {
1261 if (pte_present(entry))
1262 entry = clear_pte_bit(entry, __pgprot(_PAGE_UNUSED));
1263 if (mm_has_pgste(mm))
1264 ptep_set_pte_at(mm, addr, ptep, entry);
1265 else
1266 set_pte(ptep, entry);
1267 }
1268
1269 /*
1270 * Conversion functions: convert a page and protection to a page entry,
1271 * and a page entry and page directory to the page they refer to.
1272 */
mk_pte_phys(unsigned long physpage,pgprot_t pgprot)1273 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1274 {
1275 pte_t __pte;
1276
1277 __pte = __pte(physpage | pgprot_val(pgprot));
1278 if (!MACHINE_HAS_NX)
1279 __pte = clear_pte_bit(__pte, __pgprot(_PAGE_NOEXEC));
1280 return pte_mkyoung(__pte);
1281 }
1282
mk_pte(struct page * page,pgprot_t pgprot)1283 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1284 {
1285 unsigned long physpage = page_to_phys(page);
1286 pte_t __pte = mk_pte_phys(physpage, pgprot);
1287
1288 if (pte_write(__pte) && PageDirty(page))
1289 __pte = pte_mkdirty(__pte);
1290 return __pte;
1291 }
1292
1293 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1294 #define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1295 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1296 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1297
1298 #define p4d_deref(pud) ((unsigned long)__va(p4d_val(pud) & _REGION_ENTRY_ORIGIN))
1299 #define pgd_deref(pgd) ((unsigned long)__va(pgd_val(pgd) & _REGION_ENTRY_ORIGIN))
1300
pmd_deref(pmd_t pmd)1301 static inline unsigned long pmd_deref(pmd_t pmd)
1302 {
1303 unsigned long origin_mask;
1304
1305 origin_mask = _SEGMENT_ENTRY_ORIGIN;
1306 if (pmd_large(pmd))
1307 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
1308 return (unsigned long)__va(pmd_val(pmd) & origin_mask);
1309 }
1310
pmd_pfn(pmd_t pmd)1311 static inline unsigned long pmd_pfn(pmd_t pmd)
1312 {
1313 return __pa(pmd_deref(pmd)) >> PAGE_SHIFT;
1314 }
1315
pud_deref(pud_t pud)1316 static inline unsigned long pud_deref(pud_t pud)
1317 {
1318 unsigned long origin_mask;
1319
1320 origin_mask = _REGION_ENTRY_ORIGIN;
1321 if (pud_large(pud))
1322 origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
1323 return (unsigned long)__va(pud_val(pud) & origin_mask);
1324 }
1325
pud_pfn(pud_t pud)1326 static inline unsigned long pud_pfn(pud_t pud)
1327 {
1328 return __pa(pud_deref(pud)) >> PAGE_SHIFT;
1329 }
1330
1331 /*
1332 * The pgd_offset function *always* adds the index for the top-level
1333 * region/segment table. This is done to get a sequence like the
1334 * following to work:
1335 * pgdp = pgd_offset(current->mm, addr);
1336 * pgd = READ_ONCE(*pgdp);
1337 * p4dp = p4d_offset(&pgd, addr);
1338 * ...
1339 * The subsequent p4d_offset, pud_offset and pmd_offset functions
1340 * only add an index if they dereferenced the pointer.
1341 */
pgd_offset_raw(pgd_t * pgd,unsigned long address)1342 static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address)
1343 {
1344 unsigned long rste;
1345 unsigned int shift;
1346
1347 /* Get the first entry of the top level table */
1348 rste = pgd_val(*pgd);
1349 /* Pick up the shift from the table type of the first entry */
1350 shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20;
1351 return pgd + ((address >> shift) & (PTRS_PER_PGD - 1));
1352 }
1353
1354 #define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address)
1355
p4d_offset_lockless(pgd_t * pgdp,pgd_t pgd,unsigned long address)1356 static inline p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long address)
1357 {
1358 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1)
1359 return (p4d_t *) pgd_deref(pgd) + p4d_index(address);
1360 return (p4d_t *) pgdp;
1361 }
1362 #define p4d_offset_lockless p4d_offset_lockless
1363
p4d_offset(pgd_t * pgdp,unsigned long address)1364 static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long address)
1365 {
1366 return p4d_offset_lockless(pgdp, *pgdp, address);
1367 }
1368
pud_offset_lockless(p4d_t * p4dp,p4d_t p4d,unsigned long address)1369 static inline pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long address)
1370 {
1371 if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2)
1372 return (pud_t *) p4d_deref(p4d) + pud_index(address);
1373 return (pud_t *) p4dp;
1374 }
1375 #define pud_offset_lockless pud_offset_lockless
1376
pud_offset(p4d_t * p4dp,unsigned long address)1377 static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long address)
1378 {
1379 return pud_offset_lockless(p4dp, *p4dp, address);
1380 }
1381 #define pud_offset pud_offset
1382
pmd_offset_lockless(pud_t * pudp,pud_t pud,unsigned long address)1383 static inline pmd_t *pmd_offset_lockless(pud_t *pudp, pud_t pud, unsigned long address)
1384 {
1385 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3)
1386 return (pmd_t *) pud_deref(pud) + pmd_index(address);
1387 return (pmd_t *) pudp;
1388 }
1389 #define pmd_offset_lockless pmd_offset_lockless
1390
pmd_offset(pud_t * pudp,unsigned long address)1391 static inline pmd_t *pmd_offset(pud_t *pudp, unsigned long address)
1392 {
1393 return pmd_offset_lockless(pudp, *pudp, address);
1394 }
1395 #define pmd_offset pmd_offset
1396
pmd_page_vaddr(pmd_t pmd)1397 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
1398 {
1399 return (unsigned long) pmd_deref(pmd);
1400 }
1401
gup_fast_permitted(unsigned long start,unsigned long end)1402 static inline bool gup_fast_permitted(unsigned long start, unsigned long end)
1403 {
1404 return end <= current->mm->context.asce_limit;
1405 }
1406 #define gup_fast_permitted gup_fast_permitted
1407
1408 #define pfn_pte(pfn, pgprot) mk_pte_phys(((pfn) << PAGE_SHIFT), (pgprot))
1409 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1410 #define pte_page(x) pfn_to_page(pte_pfn(x))
1411
1412 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1413 #define pud_page(pud) pfn_to_page(pud_pfn(pud))
1414 #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
1415 #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
1416
pmd_wrprotect(pmd_t pmd)1417 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1418 {
1419 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE));
1420 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1421 }
1422
pmd_mkwrite(pmd_t pmd)1423 static inline pmd_t pmd_mkwrite(pmd_t pmd)
1424 {
1425 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE));
1426 if (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)
1427 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1428 return pmd;
1429 }
1430
pmd_mkclean(pmd_t pmd)1431 static inline pmd_t pmd_mkclean(pmd_t pmd)
1432 {
1433 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY));
1434 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1435 }
1436
pmd_mkdirty(pmd_t pmd)1437 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1438 {
1439 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_SOFT_DIRTY));
1440 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1441 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1442 return pmd;
1443 }
1444
pud_wrprotect(pud_t pud)1445 static inline pud_t pud_wrprotect(pud_t pud)
1446 {
1447 pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE));
1448 return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1449 }
1450
pud_mkwrite(pud_t pud)1451 static inline pud_t pud_mkwrite(pud_t pud)
1452 {
1453 pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE));
1454 if (pud_val(pud) & _REGION3_ENTRY_DIRTY)
1455 pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1456 return pud;
1457 }
1458
pud_mkclean(pud_t pud)1459 static inline pud_t pud_mkclean(pud_t pud)
1460 {
1461 pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY));
1462 return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1463 }
1464
pud_mkdirty(pud_t pud)1465 static inline pud_t pud_mkdirty(pud_t pud)
1466 {
1467 pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY | _REGION3_ENTRY_SOFT_DIRTY));
1468 if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1469 pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1470 return pud;
1471 }
1472
1473 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
massage_pgprot_pmd(pgprot_t pgprot)1474 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1475 {
1476 /*
1477 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1478 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1479 */
1480 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1481 return pgprot_val(SEGMENT_NONE);
1482 if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1483 return pgprot_val(SEGMENT_RO);
1484 if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1485 return pgprot_val(SEGMENT_RX);
1486 if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1487 return pgprot_val(SEGMENT_RW);
1488 return pgprot_val(SEGMENT_RWX);
1489 }
1490
pmd_mkyoung(pmd_t pmd)1491 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1492 {
1493 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1494 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1495 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1496 return pmd;
1497 }
1498
pmd_mkold(pmd_t pmd)1499 static inline pmd_t pmd_mkold(pmd_t pmd)
1500 {
1501 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1502 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1503 }
1504
pmd_modify(pmd_t pmd,pgprot_t newprot)1505 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1506 {
1507 unsigned long mask;
1508
1509 mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
1510 mask |= _SEGMENT_ENTRY_DIRTY;
1511 mask |= _SEGMENT_ENTRY_YOUNG;
1512 mask |= _SEGMENT_ENTRY_LARGE;
1513 mask |= _SEGMENT_ENTRY_SOFT_DIRTY;
1514 pmd = __pmd(pmd_val(pmd) & mask);
1515 pmd = set_pmd_bit(pmd, __pgprot(massage_pgprot_pmd(newprot)));
1516 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1517 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1518 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1519 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1520 return pmd;
1521 }
1522
mk_pmd_phys(unsigned long physpage,pgprot_t pgprot)1523 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1524 {
1525 return __pmd(physpage + massage_pgprot_pmd(pgprot));
1526 }
1527
1528 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1529
__pmdp_csp(pmd_t * pmdp)1530 static inline void __pmdp_csp(pmd_t *pmdp)
1531 {
1532 csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1533 pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1534 }
1535
1536 #define IDTE_GLOBAL 0
1537 #define IDTE_LOCAL 1
1538
1539 #define IDTE_PTOA 0x0800
1540 #define IDTE_NODAT 0x1000
1541 #define IDTE_GUEST_ASCE 0x2000
1542
__pmdp_idte(unsigned long addr,pmd_t * pmdp,unsigned long opt,unsigned long asce,int local)1543 static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1544 unsigned long opt, unsigned long asce,
1545 int local)
1546 {
1547 unsigned long sto;
1548
1549 sto = __pa(pmdp) - pmd_index(addr) * sizeof(pmd_t);
1550 if (__builtin_constant_p(opt) && opt == 0) {
1551 /* flush without guest asce */
1552 asm volatile(
1553 " idte %[r1],0,%[r2],%[m4]"
1554 : "+m" (*pmdp)
1555 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1556 [m4] "i" (local)
1557 : "cc" );
1558 } else {
1559 /* flush with guest asce */
1560 asm volatile(
1561 " idte %[r1],%[r3],%[r2],%[m4]"
1562 : "+m" (*pmdp)
1563 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1564 [r3] "a" (asce), [m4] "i" (local)
1565 : "cc" );
1566 }
1567 }
1568
__pudp_idte(unsigned long addr,pud_t * pudp,unsigned long opt,unsigned long asce,int local)1569 static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1570 unsigned long opt, unsigned long asce,
1571 int local)
1572 {
1573 unsigned long r3o;
1574
1575 r3o = __pa(pudp) - pud_index(addr) * sizeof(pud_t);
1576 r3o |= _ASCE_TYPE_REGION3;
1577 if (__builtin_constant_p(opt) && opt == 0) {
1578 /* flush without guest asce */
1579 asm volatile(
1580 " idte %[r1],0,%[r2],%[m4]"
1581 : "+m" (*pudp)
1582 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1583 [m4] "i" (local)
1584 : "cc");
1585 } else {
1586 /* flush with guest asce */
1587 asm volatile(
1588 " idte %[r1],%[r3],%[r2],%[m4]"
1589 : "+m" (*pudp)
1590 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1591 [r3] "a" (asce), [m4] "i" (local)
1592 : "cc" );
1593 }
1594 }
1595
1596 pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1597 pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1598 pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1599
1600 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1601
1602 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1603 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1604 pgtable_t pgtable);
1605
1606 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1607 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1608
1609 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,pmd_t entry,int dirty)1610 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1611 unsigned long addr, pmd_t *pmdp,
1612 pmd_t entry, int dirty)
1613 {
1614 VM_BUG_ON(addr & ~HPAGE_MASK);
1615
1616 entry = pmd_mkyoung(entry);
1617 if (dirty)
1618 entry = pmd_mkdirty(entry);
1619 if (pmd_val(*pmdp) == pmd_val(entry))
1620 return 0;
1621 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1622 return 1;
1623 }
1624
1625 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1626 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1627 unsigned long addr, pmd_t *pmdp)
1628 {
1629 pmd_t pmd = *pmdp;
1630
1631 pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1632 return pmd_young(pmd);
1633 }
1634
1635 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
pmdp_clear_flush_young(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1636 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1637 unsigned long addr, pmd_t *pmdp)
1638 {
1639 VM_BUG_ON(addr & ~HPAGE_MASK);
1640 return pmdp_test_and_clear_young(vma, addr, pmdp);
1641 }
1642
set_pmd_at(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,pmd_t entry)1643 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1644 pmd_t *pmdp, pmd_t entry)
1645 {
1646 if (!MACHINE_HAS_NX)
1647 entry = clear_pmd_bit(entry, __pgprot(_SEGMENT_ENTRY_NOEXEC));
1648 set_pmd(pmdp, entry);
1649 }
1650
pmd_mkhuge(pmd_t pmd)1651 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1652 {
1653 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_LARGE));
1654 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1655 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1656 }
1657
1658 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1659 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1660 unsigned long addr, pmd_t *pmdp)
1661 {
1662 return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1663 }
1664
1665 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
pmdp_huge_get_and_clear_full(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,int full)1666 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1667 unsigned long addr,
1668 pmd_t *pmdp, int full)
1669 {
1670 if (full) {
1671 pmd_t pmd = *pmdp;
1672 set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1673 return pmd;
1674 }
1675 return pmdp_xchg_lazy(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1676 }
1677
1678 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
pmdp_huge_clear_flush(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1679 static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1680 unsigned long addr, pmd_t *pmdp)
1681 {
1682 return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1683 }
1684
1685 #define __HAVE_ARCH_PMDP_INVALIDATE
pmdp_invalidate(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1686 static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
1687 unsigned long addr, pmd_t *pmdp)
1688 {
1689 pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1690
1691 return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1692 }
1693
1694 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1695 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1696 unsigned long addr, pmd_t *pmdp)
1697 {
1698 pmd_t pmd = *pmdp;
1699
1700 if (pmd_write(pmd))
1701 pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1702 }
1703
pmdp_collapse_flush(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)1704 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1705 unsigned long address,
1706 pmd_t *pmdp)
1707 {
1708 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1709 }
1710 #define pmdp_collapse_flush pmdp_collapse_flush
1711
1712 #define pfn_pmd(pfn, pgprot) mk_pmd_phys(((pfn) << PAGE_SHIFT), (pgprot))
1713 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1714
pmd_trans_huge(pmd_t pmd)1715 static inline int pmd_trans_huge(pmd_t pmd)
1716 {
1717 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1718 }
1719
1720 #define has_transparent_hugepage has_transparent_hugepage
has_transparent_hugepage(void)1721 static inline int has_transparent_hugepage(void)
1722 {
1723 return MACHINE_HAS_EDAT1 ? 1 : 0;
1724 }
1725 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1726
1727 /*
1728 * 64 bit swap entry format:
1729 * A page-table entry has some bits we have to treat in a special way.
1730 * Bits 54 and 63 are used to indicate the page type. Bit 53 marks the pte
1731 * as invalid.
1732 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1733 * | offset |E11XX|type |S0|
1734 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1735 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1736 *
1737 * Bits 0-51 store the offset.
1738 * Bit 52 (E) is used to remember PG_anon_exclusive.
1739 * Bits 57-61 store the type.
1740 * Bit 62 (S) is used for softdirty tracking.
1741 * Bits 55 and 56 (X) are unused.
1742 */
1743
1744 #define __SWP_OFFSET_MASK ((1UL << 52) - 1)
1745 #define __SWP_OFFSET_SHIFT 12
1746 #define __SWP_TYPE_MASK ((1UL << 5) - 1)
1747 #define __SWP_TYPE_SHIFT 2
1748
mk_swap_pte(unsigned long type,unsigned long offset)1749 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1750 {
1751 unsigned long pteval;
1752
1753 pteval = _PAGE_INVALID | _PAGE_PROTECT;
1754 pteval |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1755 pteval |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1756 return __pte(pteval);
1757 }
1758
__swp_type(swp_entry_t entry)1759 static inline unsigned long __swp_type(swp_entry_t entry)
1760 {
1761 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1762 }
1763
__swp_offset(swp_entry_t entry)1764 static inline unsigned long __swp_offset(swp_entry_t entry)
1765 {
1766 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1767 }
1768
__swp_entry(unsigned long type,unsigned long offset)1769 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1770 {
1771 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1772 }
1773
1774 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1775 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1776
1777 #define kern_addr_valid(addr) (1)
1778
1779 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1780 extern void vmem_remove_mapping(unsigned long start, unsigned long size);
1781 extern int __vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot, bool alloc);
1782 extern int vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot);
1783 extern void vmem_unmap_4k_page(unsigned long addr);
1784 extern pte_t *vmem_get_alloc_pte(unsigned long addr, bool alloc);
1785 extern int s390_enable_sie(void);
1786 extern int s390_enable_skey(void);
1787 extern void s390_reset_cmma(struct mm_struct *mm);
1788
1789 /* s390 has a private copy of get unmapped area to deal with cache synonyms */
1790 #define HAVE_ARCH_UNMAPPED_AREA
1791 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1792
1793 #define pmd_pgtable(pmd) \
1794 ((pgtable_t)__va(pmd_val(pmd) & -sizeof(pte_t)*PTRS_PER_PTE))
1795
1796 #endif /* _S390_PAGE_H */
1797