1 /* getifaddrs -- get names and addresses of all network interfaces
2 Copyright (C) 2003-2022 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4
5 The GNU C Library is free software; you can redistribute it and/or
6 modify it under the terms of the GNU Lesser General Public
7 License as published by the Free Software Foundation; either
8 version 2.1 of the License, or (at your option) any later version.
9
10 The GNU C Library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Lesser General Public License for more details.
14
15 You should have received a copy of the GNU Lesser General Public
16 License along with the GNU C Library; if not, see
17 <https://www.gnu.org/licenses/>. */
18
19 #include <alloca.h>
20 #include <assert.h>
21 #include <errno.h>
22 #include <ifaddrs.h>
23 #include <net/if.h>
24 #include <netinet/in.h>
25 #include <netpacket/packet.h>
26 #include <stdbool.h>
27 #include <stdint.h>
28 #include <stdlib.h>
29 #include <string.h>
30 #include <sys/ioctl.h>
31 #include <sys/socket.h>
32 #include <sysdep.h>
33 #include <time.h>
34 #include <unistd.h>
35
36 #include "netlinkaccess.h"
37
38
39 /* There is a problem with this type. The address length for
40 Infiniband sockets is much longer than the 8 bytes allocated in the
41 sockaddr_ll definition. Hence we use here a special
42 definition. */
43 struct sockaddr_ll_max
44 {
45 unsigned short int sll_family;
46 unsigned short int sll_protocol;
47 int sll_ifindex;
48 unsigned short int sll_hatype;
49 unsigned char sll_pkttype;
50 unsigned char sll_halen;
51 unsigned char sll_addr[24];
52 };
53
54
55 /* struct to hold the data for one ifaddrs entry, so we can allocate
56 everything at once. */
57 struct ifaddrs_storage
58 {
59 struct ifaddrs ifa;
60 union
61 {
62 /* Save space for the biggest of the four used sockaddr types and
63 avoid a lot of casts. */
64 struct sockaddr sa;
65 struct sockaddr_ll_max sl;
66 struct sockaddr_in s4;
67 struct sockaddr_in6 s6;
68 } addr, netmask, broadaddr;
69 char name[IF_NAMESIZE + 1];
70 };
71
72
73 void
__netlink_free_handle(struct netlink_handle * h)74 __netlink_free_handle (struct netlink_handle *h)
75 {
76 struct netlink_res *ptr;
77 int saved_errno = errno;
78
79 ptr = h->nlm_list;
80 while (ptr != NULL)
81 {
82 struct netlink_res *tmpptr;
83
84 tmpptr = ptr->next;
85 free (ptr);
86 ptr = tmpptr;
87 }
88
89 __set_errno (saved_errno);
90 }
91
92
93 static int
__netlink_sendreq(struct netlink_handle * h,int type)94 __netlink_sendreq (struct netlink_handle *h, int type)
95 {
96 struct req
97 {
98 struct nlmsghdr nlh;
99 struct rtgenmsg g;
100 char pad[0];
101 } req;
102 struct sockaddr_nl nladdr;
103
104 if (h->seq == 0)
105 h->seq = time_now ();
106
107 req.nlh.nlmsg_len = sizeof (req);
108 req.nlh.nlmsg_type = type;
109 req.nlh.nlmsg_flags = NLM_F_ROOT | NLM_F_MATCH | NLM_F_REQUEST;
110 req.nlh.nlmsg_pid = 0;
111 req.nlh.nlmsg_seq = h->seq;
112 req.g.rtgen_family = AF_UNSPEC;
113 if (sizeof (req) != offsetof (struct req, pad))
114 memset (req.pad, '\0', sizeof (req) - offsetof (struct req, pad));
115
116 memset (&nladdr, '\0', sizeof (nladdr));
117 nladdr.nl_family = AF_NETLINK;
118
119 return TEMP_FAILURE_RETRY (__sendto (h->fd, (void *) &req, sizeof (req), 0,
120 (struct sockaddr *) &nladdr,
121 sizeof (nladdr)));
122 }
123
124
125 int
__netlink_request(struct netlink_handle * h,int type)126 __netlink_request (struct netlink_handle *h, int type)
127 {
128 struct netlink_res *nlm_next;
129 struct sockaddr_nl nladdr;
130 struct nlmsghdr *nlmh;
131 ssize_t read_len;
132 bool done = false;
133
134 #ifdef PAGE_SIZE
135 /* Help the compiler optimize out the malloc call if PAGE_SIZE
136 is constant and smaller or equal to PTHREAD_STACK_MIN/4. */
137 const size_t buf_size = PAGE_SIZE;
138 #else
139 const size_t buf_size = __getpagesize ();
140 #endif
141 bool use_malloc = false;
142 char *buf;
143
144 if (__libc_use_alloca (buf_size))
145 buf = alloca (buf_size);
146 else
147 {
148 buf = malloc (buf_size);
149 if (buf != NULL)
150 use_malloc = true;
151 else
152 goto out_fail;
153 }
154
155 struct iovec iov = { buf, buf_size };
156
157 if (__netlink_sendreq (h, type) < 0)
158 goto out_fail;
159
160 while (! done)
161 {
162 struct msghdr msg =
163 {
164 .msg_name = (void *) &nladdr,
165 .msg_namelen = sizeof (nladdr),
166 .msg_iov = &iov,
167 .msg_iovlen = 1,
168 .msg_control = NULL,
169 .msg_controllen = 0,
170 .msg_flags = 0
171 };
172
173 read_len = TEMP_FAILURE_RETRY (__recvmsg (h->fd, &msg, 0));
174 __netlink_assert_response (h->fd, read_len);
175 if (read_len < 0)
176 goto out_fail;
177
178 if (nladdr.nl_pid != 0)
179 continue;
180
181 if (__glibc_unlikely (msg.msg_flags & MSG_TRUNC))
182 goto out_fail;
183
184 size_t count = 0;
185 size_t remaining_len = read_len;
186 for (nlmh = (struct nlmsghdr *) buf;
187 NLMSG_OK (nlmh, remaining_len);
188 nlmh = (struct nlmsghdr *) NLMSG_NEXT (nlmh, remaining_len))
189 {
190 if ((pid_t) nlmh->nlmsg_pid != h->pid
191 || nlmh->nlmsg_seq != h->seq)
192 continue;
193
194 ++count;
195 if (nlmh->nlmsg_type == NLMSG_DONE)
196 {
197 /* We found the end, leave the loop. */
198 done = true;
199 break;
200 }
201 if (nlmh->nlmsg_type == NLMSG_ERROR)
202 {
203 struct nlmsgerr *nlerr = (struct nlmsgerr *) NLMSG_DATA (nlmh);
204 if (nlmh->nlmsg_len < NLMSG_LENGTH (sizeof (struct nlmsgerr)))
205 errno = EIO;
206 else
207 errno = -nlerr->error;
208 goto out_fail;
209 }
210 }
211
212 /* If there was nothing with the expected nlmsg_pid and nlmsg_seq,
213 there is no point to record it. */
214 if (count == 0)
215 continue;
216
217 nlm_next = (struct netlink_res *) malloc (sizeof (struct netlink_res)
218 + read_len);
219 if (nlm_next == NULL)
220 goto out_fail;
221 nlm_next->next = NULL;
222 nlm_next->nlh = memcpy (nlm_next + 1, buf, read_len);
223 nlm_next->size = read_len;
224 nlm_next->seq = h->seq;
225 if (h->nlm_list == NULL)
226 h->nlm_list = nlm_next;
227 else
228 h->end_ptr->next = nlm_next;
229 h->end_ptr = nlm_next;
230 }
231
232 if (use_malloc)
233 free (buf);
234 return 0;
235
236 out_fail:
237 if (use_malloc)
238 free (buf);
239 return -1;
240 }
241
242
243 void
__netlink_close(struct netlink_handle * h)244 __netlink_close (struct netlink_handle *h)
245 {
246 /* Don't modify errno. */
247 INTERNAL_SYSCALL_CALL (close, h->fd);
248 }
249
250
251 /* Open a NETLINK socket. */
252 int
__netlink_open(struct netlink_handle * h)253 __netlink_open (struct netlink_handle *h)
254 {
255 struct sockaddr_nl nladdr;
256
257 h->fd = __socket (PF_NETLINK, SOCK_RAW | SOCK_CLOEXEC, NETLINK_ROUTE);
258 if (h->fd < 0)
259 goto out;
260
261 memset (&nladdr, '\0', sizeof (nladdr));
262 nladdr.nl_family = AF_NETLINK;
263 if (__bind (h->fd, (struct sockaddr *) &nladdr, sizeof (nladdr)) < 0)
264 {
265 close_and_out:
266 __netlink_close (h);
267 out:
268 return -1;
269 }
270 /* Determine the ID the kernel assigned for this netlink connection.
271 It is not necessarily the PID if there is more than one socket
272 open. */
273 socklen_t addr_len = sizeof (nladdr);
274 if (__getsockname (h->fd, (struct sockaddr *) &nladdr, &addr_len) < 0)
275 goto close_and_out;
276 h->pid = nladdr.nl_pid;
277 return 0;
278 }
279
280
281 /* We know the number of RTM_NEWLINK entries, so we reserve the first
282 # of entries for this type. All RTM_NEWADDR entries have an index
283 pointer to the RTM_NEWLINK entry. To find the entry, create
284 a table to map kernel index entries to our index numbers.
285 Since we get at first all RTM_NEWLINK entries, it can never happen
286 that a RTM_NEWADDR index is not known to this map. */
287 static int
map_newlink(int index,struct ifaddrs_storage * ifas,int * map,int max)288 map_newlink (int index, struct ifaddrs_storage *ifas, int *map, int max)
289 {
290 int i;
291
292 for (i = 0; i < max; i++)
293 {
294 if (map[i] == -1)
295 {
296 map[i] = index;
297 if (i > 0)
298 ifas[i - 1].ifa.ifa_next = &ifas[i].ifa;
299 return i;
300 }
301 else if (map[i] == index)
302 return i;
303 }
304
305 /* This means interfaces changed between the reading of the
306 RTM_GETLINK and RTM_GETADDR information. We have to repeat
307 everything. */
308 return -1;
309 }
310
311
312 /* Create a linked list of `struct ifaddrs' structures, one for each
313 network interface on the host machine. If successful, store the
314 list in *IFAP and return 0. On errors, return -1 and set `errno'. */
315 static int
getifaddrs_internal(struct ifaddrs ** ifap)316 getifaddrs_internal (struct ifaddrs **ifap)
317 {
318 struct netlink_handle nh = { 0, 0, 0, NULL, NULL };
319 struct netlink_res *nlp;
320 struct ifaddrs_storage *ifas;
321 unsigned int i, newlink, newaddr, newaddr_idx;
322 int *map_newlink_data;
323 size_t ifa_data_size = 0; /* Size to allocate for all ifa_data. */
324 char *ifa_data_ptr; /* Pointer to the unused part of memory for
325 ifa_data. */
326 int result = 0;
327
328 *ifap = NULL;
329
330 if (__netlink_open (&nh) < 0)
331 return -1;
332
333 /* Tell the kernel that we wish to get a list of all
334 active interfaces, collect all data for every interface. */
335 if (__netlink_request (&nh, RTM_GETLINK) < 0)
336 {
337 result = -1;
338 goto exit_free;
339 }
340
341 /* Now ask the kernel for all addresses which are assigned
342 to an interface and collect all data for every interface.
343 Since we store the addresses after the interfaces in the
344 list, we will later always find the interface before the
345 corresponding addresses. */
346 ++nh.seq;
347 if (__netlink_request (&nh, RTM_GETADDR) < 0)
348 {
349 result = -1;
350 goto exit_free;
351 }
352
353 /* Count all RTM_NEWLINK and RTM_NEWADDR entries to allocate
354 enough memory. */
355 newlink = newaddr = 0;
356 for (nlp = nh.nlm_list; nlp; nlp = nlp->next)
357 {
358 struct nlmsghdr *nlh;
359 size_t size = nlp->size;
360
361 if (nlp->nlh == NULL)
362 continue;
363
364 /* Walk through all entries we got from the kernel and look, which
365 message type they contain. */
366 for (nlh = nlp->nlh; NLMSG_OK (nlh, size); nlh = NLMSG_NEXT (nlh, size))
367 {
368 /* Check if the message is what we want. */
369 if ((pid_t) nlh->nlmsg_pid != nh.pid || nlh->nlmsg_seq != nlp->seq)
370 continue;
371
372 /* If the dump got interrupted, we can't rely on the results
373 so try again. */
374 if (nlh->nlmsg_flags & NLM_F_DUMP_INTR)
375 {
376 result = -EAGAIN;
377 goto exit_free;
378 }
379
380 if (nlh->nlmsg_type == NLMSG_DONE)
381 break; /* ok */
382
383 if (nlh->nlmsg_type == RTM_NEWLINK)
384 {
385 /* A RTM_NEWLINK message can have IFLA_STATS data. We need to
386 know the size before creating the list to allocate enough
387 memory. */
388 struct ifinfomsg *ifim = (struct ifinfomsg *) NLMSG_DATA (nlh);
389 struct rtattr *rta = IFLA_RTA (ifim);
390 size_t rtasize = IFLA_PAYLOAD (nlh);
391
392 while (RTA_OK (rta, rtasize))
393 {
394 size_t rta_payload = RTA_PAYLOAD (rta);
395
396 if (rta->rta_type == IFLA_STATS)
397 {
398 ifa_data_size += rta_payload;
399 break;
400 }
401 else
402 rta = RTA_NEXT (rta, rtasize);
403 }
404 ++newlink;
405 }
406 else if (nlh->nlmsg_type == RTM_NEWADDR)
407 ++newaddr;
408 }
409 }
410
411 /* Return if no interface is up. */
412 if ((newlink + newaddr) == 0)
413 goto exit_free;
414
415 /* Allocate memory for all entries we have and initialize next
416 pointer. */
417 ifas = (struct ifaddrs_storage *) calloc (1,
418 (newlink + newaddr)
419 * sizeof (struct ifaddrs_storage)
420 + ifa_data_size);
421 if (ifas == NULL)
422 {
423 result = -1;
424 goto exit_free;
425 }
426
427 /* Table for mapping kernel index to entry in our list. */
428 map_newlink_data = alloca (newlink * sizeof (int));
429 memset (map_newlink_data, '\xff', newlink * sizeof (int));
430
431 ifa_data_ptr = (char *) &ifas[newlink + newaddr];
432 newaddr_idx = 0; /* Counter for newaddr index. */
433
434 /* Walk through the list of data we got from the kernel. */
435 for (nlp = nh.nlm_list; nlp; nlp = nlp->next)
436 {
437 struct nlmsghdr *nlh;
438 size_t size = nlp->size;
439
440 if (nlp->nlh == NULL)
441 continue;
442
443 /* Walk through one message and look at the type: If it is our
444 message, we need RTM_NEWLINK/RTM_NEWADDR and stop if we reach
445 the end or we find the end marker (in this case we ignore the
446 following data. */
447 for (nlh = nlp->nlh; NLMSG_OK (nlh, size); nlh = NLMSG_NEXT (nlh, size))
448 {
449 int ifa_index = 0;
450
451 /* Check if the message is the one we want */
452 if ((pid_t) nlh->nlmsg_pid != nh.pid || nlh->nlmsg_seq != nlp->seq)
453 continue;
454
455 if (nlh->nlmsg_type == NLMSG_DONE)
456 break; /* ok */
457
458 if (nlh->nlmsg_type == RTM_NEWLINK)
459 {
460 /* We found a new interface. Now extract everything from the
461 interface data we got and need. */
462 struct ifinfomsg *ifim = (struct ifinfomsg *) NLMSG_DATA (nlh);
463 struct rtattr *rta = IFLA_RTA (ifim);
464 size_t rtasize = IFLA_PAYLOAD (nlh);
465
466 /* Interfaces are stored in the first "newlink" entries
467 of our list, starting in the order as we got from the
468 kernel. */
469 ifa_index = map_newlink (ifim->ifi_index - 1, ifas,
470 map_newlink_data, newlink);
471 if (__glibc_unlikely (ifa_index == -1))
472 {
473 try_again:
474 result = -EAGAIN;
475 free (ifas);
476 goto exit_free;
477 }
478 ifas[ifa_index].ifa.ifa_flags = ifim->ifi_flags;
479
480 while (RTA_OK (rta, rtasize))
481 {
482 char *rta_data = RTA_DATA (rta);
483 size_t rta_payload = RTA_PAYLOAD (rta);
484
485 switch (rta->rta_type)
486 {
487 case IFLA_ADDRESS:
488 if (rta_payload <= sizeof (ifas[ifa_index].addr))
489 {
490 ifas[ifa_index].addr.sl.sll_family = AF_PACKET;
491 memcpy (ifas[ifa_index].addr.sl.sll_addr,
492 (char *) rta_data, rta_payload);
493 ifas[ifa_index].addr.sl.sll_halen = rta_payload;
494 ifas[ifa_index].addr.sl.sll_ifindex
495 = ifim->ifi_index;
496 ifas[ifa_index].addr.sl.sll_hatype = ifim->ifi_type;
497
498 ifas[ifa_index].ifa.ifa_addr
499 = &ifas[ifa_index].addr.sa;
500 }
501 break;
502
503 case IFLA_BROADCAST:
504 if (rta_payload <= sizeof (ifas[ifa_index].broadaddr))
505 {
506 ifas[ifa_index].broadaddr.sl.sll_family = AF_PACKET;
507 memcpy (ifas[ifa_index].broadaddr.sl.sll_addr,
508 (char *) rta_data, rta_payload);
509 ifas[ifa_index].broadaddr.sl.sll_halen = rta_payload;
510 ifas[ifa_index].broadaddr.sl.sll_ifindex
511 = ifim->ifi_index;
512 ifas[ifa_index].broadaddr.sl.sll_hatype
513 = ifim->ifi_type;
514
515 ifas[ifa_index].ifa.ifa_broadaddr
516 = &ifas[ifa_index].broadaddr.sa;
517 }
518 break;
519
520 case IFLA_IFNAME: /* Name of Interface */
521 if ((rta_payload + 1) <= sizeof (ifas[ifa_index].name))
522 {
523 ifas[ifa_index].ifa.ifa_name = ifas[ifa_index].name;
524 *(char *) __mempcpy (ifas[ifa_index].name, rta_data,
525 rta_payload) = '\0';
526 }
527 break;
528
529 case IFLA_STATS: /* Statistics of Interface */
530 ifas[ifa_index].ifa.ifa_data = ifa_data_ptr;
531 ifa_data_ptr += rta_payload;
532 memcpy (ifas[ifa_index].ifa.ifa_data, rta_data,
533 rta_payload);
534 break;
535
536 case IFLA_UNSPEC:
537 break;
538 case IFLA_MTU:
539 break;
540 case IFLA_LINK:
541 break;
542 case IFLA_QDISC:
543 break;
544 default:
545 break;
546 }
547
548 rta = RTA_NEXT (rta, rtasize);
549 }
550 }
551 else if (nlh->nlmsg_type == RTM_NEWADDR)
552 {
553 struct ifaddrmsg *ifam = (struct ifaddrmsg *) NLMSG_DATA (nlh);
554 struct rtattr *rta = IFA_RTA (ifam);
555 size_t rtasize = IFA_PAYLOAD (nlh);
556
557 /* New Addresses are stored in the order we got them from
558 the kernel after the interfaces. Theoretically it is possible
559 that we have holes in the interface part of the list,
560 but we always have already the interface for this address. */
561 ifa_index = newlink + newaddr_idx;
562 int idx = map_newlink (ifam->ifa_index - 1, ifas,
563 map_newlink_data, newlink);
564 if (__glibc_unlikely (idx == -1))
565 goto try_again;
566 ifas[ifa_index].ifa.ifa_flags = ifas[idx].ifa.ifa_flags;
567 if (ifa_index > 0)
568 ifas[ifa_index - 1].ifa.ifa_next = &ifas[ifa_index].ifa;
569 ++newaddr_idx;
570
571 while (RTA_OK (rta, rtasize))
572 {
573 char *rta_data = RTA_DATA (rta);
574 size_t rta_payload = RTA_PAYLOAD (rta);
575
576 switch (rta->rta_type)
577 {
578 case IFA_ADDRESS:
579 {
580 struct sockaddr *sa;
581
582 if (ifas[ifa_index].ifa.ifa_addr != NULL)
583 {
584 /* In a point-to-poing network IFA_ADDRESS
585 contains the destination address, local
586 address is supplied in IFA_LOCAL attribute.
587 destination address and broadcast address
588 are stored in an union, so it doesn't matter
589 which name we use. */
590 ifas[ifa_index].ifa.ifa_broadaddr
591 = &ifas[ifa_index].broadaddr.sa;
592 sa = &ifas[ifa_index].broadaddr.sa;
593 }
594 else
595 {
596 ifas[ifa_index].ifa.ifa_addr
597 = &ifas[ifa_index].addr.sa;
598 sa = &ifas[ifa_index].addr.sa;
599 }
600
601 sa->sa_family = ifam->ifa_family;
602
603 switch (ifam->ifa_family)
604 {
605 case AF_INET:
606 /* Size must match that of an address for IPv4. */
607 if (rta_payload == 4)
608 memcpy (&((struct sockaddr_in *) sa)->sin_addr,
609 rta_data, rta_payload);
610 break;
611
612 case AF_INET6:
613 /* Size must match that of an address for IPv6. */
614 if (rta_payload == 16)
615 {
616 memcpy (&((struct sockaddr_in6 *) sa)->sin6_addr,
617 rta_data, rta_payload);
618 if (IN6_IS_ADDR_LINKLOCAL (rta_data)
619 || IN6_IS_ADDR_MC_LINKLOCAL (rta_data))
620 ((struct sockaddr_in6 *) sa)->sin6_scope_id
621 = ifam->ifa_index;
622 }
623 break;
624
625 default:
626 if (rta_payload <= sizeof (ifas[ifa_index].addr))
627 memcpy (sa->sa_data, rta_data, rta_payload);
628 break;
629 }
630 }
631 break;
632
633 case IFA_LOCAL:
634 if (ifas[ifa_index].ifa.ifa_addr != NULL)
635 {
636 /* If ifa_addr is set and we get IFA_LOCAL,
637 assume we have a point-to-point network.
638 Move address to correct field. */
639 ifas[ifa_index].broadaddr = ifas[ifa_index].addr;
640 ifas[ifa_index].ifa.ifa_broadaddr
641 = &ifas[ifa_index].broadaddr.sa;
642 memset (&ifas[ifa_index].addr, '\0',
643 sizeof (ifas[ifa_index].addr));
644 }
645
646 ifas[ifa_index].ifa.ifa_addr = &ifas[ifa_index].addr.sa;
647 ifas[ifa_index].ifa.ifa_addr->sa_family
648 = ifam->ifa_family;
649
650 switch (ifam->ifa_family)
651 {
652 case AF_INET:
653 /* Size must match that of an address for IPv4. */
654 if (rta_payload == 4)
655 memcpy (&ifas[ifa_index].addr.s4.sin_addr,
656 rta_data, rta_payload);
657 break;
658
659 case AF_INET6:
660 /* Size must match that of an address for IPv6. */
661 if (rta_payload == 16)
662 {
663 memcpy (&ifas[ifa_index].addr.s6.sin6_addr,
664 rta_data, rta_payload);
665 if (IN6_IS_ADDR_LINKLOCAL (rta_data)
666 || IN6_IS_ADDR_MC_LINKLOCAL (rta_data))
667 ifas[ifa_index].addr.s6.sin6_scope_id =
668 ifam->ifa_index;
669 }
670 break;
671
672 default:
673 if (rta_payload <= sizeof (ifas[ifa_index].addr))
674 memcpy (ifas[ifa_index].addr.sa.sa_data,
675 rta_data, rta_payload);
676 break;
677 }
678 break;
679
680 case IFA_BROADCAST:
681 /* We get IFA_BROADCAST, so IFA_LOCAL was too much. */
682 if (ifas[ifa_index].ifa.ifa_broadaddr != NULL)
683 memset (&ifas[ifa_index].broadaddr, '\0',
684 sizeof (ifas[ifa_index].broadaddr));
685
686 ifas[ifa_index].ifa.ifa_broadaddr
687 = &ifas[ifa_index].broadaddr.sa;
688 ifas[ifa_index].ifa.ifa_broadaddr->sa_family
689 = ifam->ifa_family;
690
691 switch (ifam->ifa_family)
692 {
693 case AF_INET:
694 /* Size must match that of an address for IPv4. */
695 if (rta_payload == 4)
696 memcpy (&ifas[ifa_index].broadaddr.s4.sin_addr,
697 rta_data, rta_payload);
698 break;
699
700 case AF_INET6:
701 /* Size must match that of an address for IPv6. */
702 if (rta_payload == 16)
703 {
704 memcpy (&ifas[ifa_index].broadaddr.s6.sin6_addr,
705 rta_data, rta_payload);
706 if (IN6_IS_ADDR_LINKLOCAL (rta_data)
707 || IN6_IS_ADDR_MC_LINKLOCAL (rta_data))
708 ifas[ifa_index].broadaddr.s6.sin6_scope_id
709 = ifam->ifa_index;
710 }
711 break;
712
713 default:
714 if (rta_payload <= sizeof (ifas[ifa_index].addr))
715 memcpy (&ifas[ifa_index].broadaddr.sa.sa_data,
716 rta_data, rta_payload);
717 break;
718 }
719 break;
720
721 case IFA_LABEL:
722 if (rta_payload + 1 <= sizeof (ifas[ifa_index].name))
723 {
724 ifas[ifa_index].ifa.ifa_name = ifas[ifa_index].name;
725 *(char *) __mempcpy (ifas[ifa_index].name, rta_data,
726 rta_payload) = '\0';
727 }
728 else
729 abort ();
730 break;
731
732 case IFA_UNSPEC:
733 break;
734 case IFA_CACHEINFO:
735 break;
736 default:
737 break;
738 }
739
740 rta = RTA_NEXT (rta, rtasize);
741 }
742
743 /* If we didn't get the interface name with the
744 address, use the name from the interface entry. */
745 if (ifas[ifa_index].ifa.ifa_name == NULL)
746 {
747 int idx = map_newlink (ifam->ifa_index - 1, ifas,
748 map_newlink_data, newlink);
749 if (__glibc_unlikely (idx == -1))
750 goto try_again;
751 ifas[ifa_index].ifa.ifa_name = ifas[idx].ifa.ifa_name;
752 }
753
754 /* Calculate the netmask. */
755 if (ifas[ifa_index].ifa.ifa_addr
756 && ifas[ifa_index].ifa.ifa_addr->sa_family != AF_UNSPEC
757 && ifas[ifa_index].ifa.ifa_addr->sa_family != AF_PACKET)
758 {
759 uint32_t max_prefixlen = 0;
760 char *cp = NULL;
761
762 ifas[ifa_index].ifa.ifa_netmask
763 = &ifas[ifa_index].netmask.sa;
764
765 switch (ifas[ifa_index].ifa.ifa_addr->sa_family)
766 {
767 case AF_INET:
768 cp = (char *) &ifas[ifa_index].netmask.s4.sin_addr;
769 max_prefixlen = 32;
770 break;
771
772 case AF_INET6:
773 cp = (char *) &ifas[ifa_index].netmask.s6.sin6_addr;
774 max_prefixlen = 128;
775 break;
776 }
777
778 ifas[ifa_index].ifa.ifa_netmask->sa_family
779 = ifas[ifa_index].ifa.ifa_addr->sa_family;
780
781 if (cp != NULL)
782 {
783 unsigned int preflen;
784
785 if (ifam->ifa_prefixlen > max_prefixlen)
786 preflen = max_prefixlen;
787 else
788 preflen = ifam->ifa_prefixlen;
789
790 for (i = 0; i < preflen / 8; i++)
791 *cp++ = 0xff;
792 if (preflen % 8)
793 *cp = 0xff << (8 - preflen % 8);
794 }
795 }
796 }
797 }
798 }
799
800 assert (ifa_data_ptr <= (char *) &ifas[newlink + newaddr] + ifa_data_size);
801
802 if (newaddr_idx > 0)
803 {
804 for (i = 0; i < newlink; ++i)
805 if (map_newlink_data[i] == -1)
806 {
807 /* We have fewer links then we anticipated. Adjust the
808 forward pointer to the first address entry. */
809 ifas[i - 1].ifa.ifa_next = &ifas[newlink].ifa;
810 }
811
812 if (i == 0 && newlink > 0)
813 /* No valid link, but we allocated memory. We have to
814 populate the first entry. */
815 memmove (ifas, &ifas[newlink], sizeof (struct ifaddrs_storage));
816 }
817
818 *ifap = &ifas[0].ifa;
819
820 exit_free:
821 __netlink_free_handle (&nh);
822 __netlink_close (&nh);
823
824 return result;
825 }
826
827
828 /* Create a linked list of `struct ifaddrs' structures, one for each
829 network interface on the host machine. If successful, store the
830 list in *IFAP and return 0. On errors, return -1 and set `errno'. */
831 int
__getifaddrs(struct ifaddrs ** ifap)832 __getifaddrs (struct ifaddrs **ifap)
833 {
834 int res;
835
836 do
837 res = getifaddrs_internal (ifap);
838 while (res == -EAGAIN);
839
840 return res;
841 }
weak_alias(__getifaddrs,getifaddrs)842 weak_alias (__getifaddrs, getifaddrs)
843 libc_hidden_def (__getifaddrs)
844 libc_hidden_weak (getifaddrs)
845
846
847 void
848 __freeifaddrs (struct ifaddrs *ifa)
849 {
850 free (ifa);
851 }
852 weak_alias (__freeifaddrs, freeifaddrs)
853 libc_hidden_def (__freeifaddrs)
854 libc_hidden_weak (freeifaddrs)
855