1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
7  *		Florian La Roche, <rzsfl@rz.uni-sb.de>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/hrtimer.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/netdev_features.h>
33 #include <linux/sched.h>
34 #include <linux/sched/clock.h>
35 #include <net/flow_dissector.h>
36 #include <linux/splice.h>
37 #include <linux/in6.h>
38 #include <linux/if_packet.h>
39 #include <linux/llist.h>
40 #include <net/flow.h>
41 #include <net/page_pool.h>
42 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
43 #include <linux/netfilter/nf_conntrack_common.h>
44 #endif
45 #include <net/net_debug.h>
46 
47 /**
48  * DOC: skb checksums
49  *
50  * The interface for checksum offload between the stack and networking drivers
51  * is as follows...
52  *
53  * IP checksum related features
54  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
55  *
56  * Drivers advertise checksum offload capabilities in the features of a device.
57  * From the stack's point of view these are capabilities offered by the driver.
58  * A driver typically only advertises features that it is capable of offloading
59  * to its device.
60  *
61  * .. flat-table:: Checksum related device features
62  *   :widths: 1 10
63  *
64  *   * - %NETIF_F_HW_CSUM
65  *     - The driver (or its device) is able to compute one
66  *	 IP (one's complement) checksum for any combination
67  *	 of protocols or protocol layering. The checksum is
68  *	 computed and set in a packet per the CHECKSUM_PARTIAL
69  *	 interface (see below).
70  *
71  *   * - %NETIF_F_IP_CSUM
72  *     - Driver (device) is only able to checksum plain
73  *	 TCP or UDP packets over IPv4. These are specifically
74  *	 unencapsulated packets of the form IPv4|TCP or
75  *	 IPv4|UDP where the Protocol field in the IPv4 header
76  *	 is TCP or UDP. The IPv4 header may contain IP options.
77  *	 This feature cannot be set in features for a device
78  *	 with NETIF_F_HW_CSUM also set. This feature is being
79  *	 DEPRECATED (see below).
80  *
81  *   * - %NETIF_F_IPV6_CSUM
82  *     - Driver (device) is only able to checksum plain
83  *	 TCP or UDP packets over IPv6. These are specifically
84  *	 unencapsulated packets of the form IPv6|TCP or
85  *	 IPv6|UDP where the Next Header field in the IPv6
86  *	 header is either TCP or UDP. IPv6 extension headers
87  *	 are not supported with this feature. This feature
88  *	 cannot be set in features for a device with
89  *	 NETIF_F_HW_CSUM also set. This feature is being
90  *	 DEPRECATED (see below).
91  *
92  *   * - %NETIF_F_RXCSUM
93  *     - Driver (device) performs receive checksum offload.
94  *	 This flag is only used to disable the RX checksum
95  *	 feature for a device. The stack will accept receive
96  *	 checksum indication in packets received on a device
97  *	 regardless of whether NETIF_F_RXCSUM is set.
98  *
99  * Checksumming of received packets by device
100  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
101  *
102  * Indication of checksum verification is set in &sk_buff.ip_summed.
103  * Possible values are:
104  *
105  * - %CHECKSUM_NONE
106  *
107  *   Device did not checksum this packet e.g. due to lack of capabilities.
108  *   The packet contains full (though not verified) checksum in packet but
109  *   not in skb->csum. Thus, skb->csum is undefined in this case.
110  *
111  * - %CHECKSUM_UNNECESSARY
112  *
113  *   The hardware you're dealing with doesn't calculate the full checksum
114  *   (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums
115  *   for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY
116  *   if their checksums are okay. &sk_buff.csum is still undefined in this case
117  *   though. A driver or device must never modify the checksum field in the
118  *   packet even if checksum is verified.
119  *
120  *   %CHECKSUM_UNNECESSARY is applicable to following protocols:
121  *
122  *     - TCP: IPv6 and IPv4.
123  *     - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
124  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
125  *       may perform further validation in this case.
126  *     - GRE: only if the checksum is present in the header.
127  *     - SCTP: indicates the CRC in SCTP header has been validated.
128  *     - FCOE: indicates the CRC in FC frame has been validated.
129  *
130  *   &sk_buff.csum_level indicates the number of consecutive checksums found in
131  *   the packet minus one that have been verified as %CHECKSUM_UNNECESSARY.
132  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
133  *   and a device is able to verify the checksums for UDP (possibly zero),
134  *   GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to
135  *   two. If the device were only able to verify the UDP checksum and not
136  *   GRE, either because it doesn't support GRE checksum or because GRE
137  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
138  *   not considered in this case).
139  *
140  * - %CHECKSUM_COMPLETE
141  *
142  *   This is the most generic way. The device supplied checksum of the _whole_
143  *   packet as seen by netif_rx() and fills in &sk_buff.csum. This means the
144  *   hardware doesn't need to parse L3/L4 headers to implement this.
145  *
146  *   Notes:
147  *
148  *   - Even if device supports only some protocols, but is able to produce
149  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
150  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
151  *
152  * - %CHECKSUM_PARTIAL
153  *
154  *   A checksum is set up to be offloaded to a device as described in the
155  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
156  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
157  *   on the same host, or it may be set in the input path in GRO or remote
158  *   checksum offload. For the purposes of checksum verification, the checksum
159  *   referred to by skb->csum_start + skb->csum_offset and any preceding
160  *   checksums in the packet are considered verified. Any checksums in the
161  *   packet that are after the checksum being offloaded are not considered to
162  *   be verified.
163  *
164  * Checksumming on transmit for non-GSO
165  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
166  *
167  * The stack requests checksum offload in the &sk_buff.ip_summed for a packet.
168  * Values are:
169  *
170  * - %CHECKSUM_PARTIAL
171  *
172  *   The driver is required to checksum the packet as seen by hard_start_xmit()
173  *   from &sk_buff.csum_start up to the end, and to record/write the checksum at
174  *   offset &sk_buff.csum_start + &sk_buff.csum_offset.
175  *   A driver may verify that the
176  *   csum_start and csum_offset values are valid values given the length and
177  *   offset of the packet, but it should not attempt to validate that the
178  *   checksum refers to a legitimate transport layer checksum -- it is the
179  *   purview of the stack to validate that csum_start and csum_offset are set
180  *   correctly.
181  *
182  *   When the stack requests checksum offload for a packet, the driver MUST
183  *   ensure that the checksum is set correctly. A driver can either offload the
184  *   checksum calculation to the device, or call skb_checksum_help (in the case
185  *   that the device does not support offload for a particular checksum).
186  *
187  *   %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of
188  *   %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate
189  *   checksum offload capability.
190  *   skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based
191  *   on network device checksumming capabilities: if a packet does not match
192  *   them, skb_checksum_help() or skb_crc32c_help() (depending on the value of
193  *   &sk_buff.csum_not_inet, see :ref:`crc`)
194  *   is called to resolve the checksum.
195  *
196  * - %CHECKSUM_NONE
197  *
198  *   The skb was already checksummed by the protocol, or a checksum is not
199  *   required.
200  *
201  * - %CHECKSUM_UNNECESSARY
202  *
203  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
204  *   output.
205  *
206  * - %CHECKSUM_COMPLETE
207  *
208  *   Not used in checksum output. If a driver observes a packet with this value
209  *   set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set.
210  *
211  * .. _crc:
212  *
213  * Non-IP checksum (CRC) offloads
214  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
215  *
216  * .. flat-table::
217  *   :widths: 1 10
218  *
219  *   * - %NETIF_F_SCTP_CRC
220  *     - This feature indicates that a device is capable of
221  *	 offloading the SCTP CRC in a packet. To perform this offload the stack
222  *	 will set csum_start and csum_offset accordingly, set ip_summed to
223  *	 %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication
224  *	 in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c.
225  *	 A driver that supports both IP checksum offload and SCTP CRC32c offload
226  *	 must verify which offload is configured for a packet by testing the
227  *	 value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to
228  *	 resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
229  *
230  *   * - %NETIF_F_FCOE_CRC
231  *     - This feature indicates that a device is capable of offloading the FCOE
232  *	 CRC in a packet. To perform this offload the stack will set ip_summed
233  *	 to %CHECKSUM_PARTIAL and set csum_start and csum_offset
234  *	 accordingly. Note that there is no indication in the skbuff that the
235  *	 %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
236  *	 both IP checksum offload and FCOE CRC offload must verify which offload
237  *	 is configured for a packet, presumably by inspecting packet headers.
238  *
239  * Checksumming on output with GSO
240  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
241  *
242  * In the case of a GSO packet (skb_is_gso() is true), checksum offload
243  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
244  * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as
245  * part of the GSO operation is implied. If a checksum is being offloaded
246  * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and
247  * csum_offset are set to refer to the outermost checksum being offloaded
248  * (two offloaded checksums are possible with UDP encapsulation).
249  */
250 
251 /* Don't change this without changing skb_csum_unnecessary! */
252 #define CHECKSUM_NONE		0
253 #define CHECKSUM_UNNECESSARY	1
254 #define CHECKSUM_COMPLETE	2
255 #define CHECKSUM_PARTIAL	3
256 
257 /* Maximum value in skb->csum_level */
258 #define SKB_MAX_CSUM_LEVEL	3
259 
260 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
261 #define SKB_WITH_OVERHEAD(X)	\
262 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
263 #define SKB_MAX_ORDER(X, ORDER) \
264 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
265 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
266 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
267 
268 /* return minimum truesize of one skb containing X bytes of data */
269 #define SKB_TRUESIZE(X) ((X) +						\
270 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
271 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
272 
273 struct ahash_request;
274 struct net_device;
275 struct scatterlist;
276 struct pipe_inode_info;
277 struct iov_iter;
278 struct napi_struct;
279 struct bpf_prog;
280 union bpf_attr;
281 struct skb_ext;
282 
283 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
284 struct nf_bridge_info {
285 	enum {
286 		BRNF_PROTO_UNCHANGED,
287 		BRNF_PROTO_8021Q,
288 		BRNF_PROTO_PPPOE
289 	} orig_proto:8;
290 	u8			pkt_otherhost:1;
291 	u8			in_prerouting:1;
292 	u8			bridged_dnat:1;
293 	__u16			frag_max_size;
294 	struct net_device	*physindev;
295 
296 	/* always valid & non-NULL from FORWARD on, for physdev match */
297 	struct net_device	*physoutdev;
298 	union {
299 		/* prerouting: detect dnat in orig/reply direction */
300 		__be32          ipv4_daddr;
301 		struct in6_addr ipv6_daddr;
302 
303 		/* after prerouting + nat detected: store original source
304 		 * mac since neigh resolution overwrites it, only used while
305 		 * skb is out in neigh layer.
306 		 */
307 		char neigh_header[8];
308 	};
309 };
310 #endif
311 
312 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
313 /* Chain in tc_skb_ext will be used to share the tc chain with
314  * ovs recirc_id. It will be set to the current chain by tc
315  * and read by ovs to recirc_id.
316  */
317 struct tc_skb_ext {
318 	__u32 chain;
319 	__u16 mru;
320 	__u16 zone;
321 	u8 post_ct:1;
322 	u8 post_ct_snat:1;
323 	u8 post_ct_dnat:1;
324 };
325 #endif
326 
327 struct sk_buff_head {
328 	/* These two members must be first to match sk_buff. */
329 	struct_group_tagged(sk_buff_list, list,
330 		struct sk_buff	*next;
331 		struct sk_buff	*prev;
332 	);
333 
334 	__u32		qlen;
335 	spinlock_t	lock;
336 };
337 
338 struct sk_buff;
339 
340 /* The reason of skb drop, which is used in kfree_skb_reason().
341  * en...maybe they should be splited by group?
342  *
343  * Each item here should also be in 'TRACE_SKB_DROP_REASON', which is
344  * used to translate the reason to string.
345  */
346 enum skb_drop_reason {
347 	SKB_NOT_DROPPED_YET = 0,
348 	SKB_DROP_REASON_NOT_SPECIFIED,	/* drop reason is not specified */
349 	SKB_DROP_REASON_NO_SOCKET,	/* socket not found */
350 	SKB_DROP_REASON_PKT_TOO_SMALL,	/* packet size is too small */
351 	SKB_DROP_REASON_TCP_CSUM,	/* TCP checksum error */
352 	SKB_DROP_REASON_SOCKET_FILTER,	/* dropped by socket filter */
353 	SKB_DROP_REASON_UDP_CSUM,	/* UDP checksum error */
354 	SKB_DROP_REASON_NETFILTER_DROP,	/* dropped by netfilter */
355 	SKB_DROP_REASON_OTHERHOST,	/* packet don't belong to current
356 					 * host (interface is in promisc
357 					 * mode)
358 					 */
359 	SKB_DROP_REASON_IP_CSUM,	/* IP checksum error */
360 	SKB_DROP_REASON_IP_INHDR,	/* there is something wrong with
361 					 * IP header (see
362 					 * IPSTATS_MIB_INHDRERRORS)
363 					 */
364 	SKB_DROP_REASON_IP_RPFILTER,	/* IP rpfilter validate failed.
365 					 * see the document for rp_filter
366 					 * in ip-sysctl.rst for more
367 					 * information
368 					 */
369 	SKB_DROP_REASON_UNICAST_IN_L2_MULTICAST, /* destination address of L2
370 						  * is multicast, but L3 is
371 						  * unicast.
372 						  */
373 	SKB_DROP_REASON_XFRM_POLICY,	/* xfrm policy check failed */
374 	SKB_DROP_REASON_IP_NOPROTO,	/* no support for IP protocol */
375 	SKB_DROP_REASON_SOCKET_RCVBUFF,	/* socket receive buff is full */
376 	SKB_DROP_REASON_PROTO_MEM,	/* proto memory limition, such as
377 					 * udp packet drop out of
378 					 * udp_memory_allocated.
379 					 */
380 	SKB_DROP_REASON_TCP_MD5NOTFOUND,	/* no MD5 hash and one
381 						 * expected, corresponding
382 						 * to LINUX_MIB_TCPMD5NOTFOUND
383 						 */
384 	SKB_DROP_REASON_TCP_MD5UNEXPECTED,	/* MD5 hash and we're not
385 						 * expecting one, corresponding
386 						 * to LINUX_MIB_TCPMD5UNEXPECTED
387 						 */
388 	SKB_DROP_REASON_TCP_MD5FAILURE,	/* MD5 hash and its wrong,
389 					 * corresponding to
390 					 * LINUX_MIB_TCPMD5FAILURE
391 					 */
392 	SKB_DROP_REASON_SOCKET_BACKLOG,	/* failed to add skb to socket
393 					 * backlog (see
394 					 * LINUX_MIB_TCPBACKLOGDROP)
395 					 */
396 	SKB_DROP_REASON_TCP_FLAGS,	/* TCP flags invalid */
397 	SKB_DROP_REASON_TCP_ZEROWINDOW,	/* TCP receive window size is zero,
398 					 * see LINUX_MIB_TCPZEROWINDOWDROP
399 					 */
400 	SKB_DROP_REASON_TCP_OLD_DATA,	/* the TCP data reveived is already
401 					 * received before (spurious retrans
402 					 * may happened), see
403 					 * LINUX_MIB_DELAYEDACKLOST
404 					 */
405 	SKB_DROP_REASON_TCP_OVERWINDOW,	/* the TCP data is out of window,
406 					 * the seq of the first byte exceed
407 					 * the right edges of receive
408 					 * window
409 					 */
410 	SKB_DROP_REASON_TCP_OFOMERGE,	/* the data of skb is already in
411 					 * the ofo queue, corresponding to
412 					 * LINUX_MIB_TCPOFOMERGE
413 					 */
414 	SKB_DROP_REASON_TCP_RFC7323_PAWS, /* PAWS check, corresponding to
415 					   * LINUX_MIB_PAWSESTABREJECTED
416 					   */
417 	SKB_DROP_REASON_TCP_INVALID_SEQUENCE, /* Not acceptable SEQ field */
418 	SKB_DROP_REASON_TCP_RESET,	/* Invalid RST packet */
419 	SKB_DROP_REASON_TCP_INVALID_SYN, /* Incoming packet has unexpected SYN flag */
420 	SKB_DROP_REASON_TCP_CLOSE,	/* TCP socket in CLOSE state */
421 	SKB_DROP_REASON_TCP_FASTOPEN,	/* dropped by FASTOPEN request socket */
422 	SKB_DROP_REASON_TCP_OLD_ACK,	/* TCP ACK is old, but in window */
423 	SKB_DROP_REASON_TCP_TOO_OLD_ACK, /* TCP ACK is too old */
424 	SKB_DROP_REASON_TCP_ACK_UNSENT_DATA, /* TCP ACK for data we haven't sent yet */
425 	SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE, /* pruned from TCP OFO queue */
426 	SKB_DROP_REASON_TCP_OFO_DROP,	/* data already in receive queue */
427 	SKB_DROP_REASON_IP_OUTNOROUTES,	/* route lookup failed */
428 	SKB_DROP_REASON_BPF_CGROUP_EGRESS,	/* dropped by
429 						 * BPF_PROG_TYPE_CGROUP_SKB
430 						 * eBPF program
431 						 */
432 	SKB_DROP_REASON_IPV6DISABLED,	/* IPv6 is disabled on the device */
433 	SKB_DROP_REASON_NEIGH_CREATEFAIL,	/* failed to create neigh
434 						 * entry
435 						 */
436 	SKB_DROP_REASON_NEIGH_FAILED,	/* neigh entry in failed state */
437 	SKB_DROP_REASON_NEIGH_QUEUEFULL,	/* arp_queue for neigh
438 						 * entry is full
439 						 */
440 	SKB_DROP_REASON_NEIGH_DEAD,	/* neigh entry is dead */
441 	SKB_DROP_REASON_TC_EGRESS,	/* dropped in TC egress HOOK */
442 	SKB_DROP_REASON_QDISC_DROP,	/* dropped by qdisc when packet
443 					 * outputting (failed to enqueue to
444 					 * current qdisc)
445 					 */
446 	SKB_DROP_REASON_CPU_BACKLOG,	/* failed to enqueue the skb to
447 					 * the per CPU backlog queue. This
448 					 * can be caused by backlog queue
449 					 * full (see netdev_max_backlog in
450 					 * net.rst) or RPS flow limit
451 					 */
452 	SKB_DROP_REASON_XDP,		/* dropped by XDP in input path */
453 	SKB_DROP_REASON_TC_INGRESS,	/* dropped in TC ingress HOOK */
454 	SKB_DROP_REASON_UNHANDLED_PROTO,	/* protocol not implemented
455 						 * or not supported
456 						 */
457 	SKB_DROP_REASON_SKB_CSUM,	/* sk_buff checksum computation
458 					 * error
459 					 */
460 	SKB_DROP_REASON_SKB_GSO_SEG,	/* gso segmentation error */
461 	SKB_DROP_REASON_SKB_UCOPY_FAULT,	/* failed to copy data from
462 						 * user space, e.g., via
463 						 * zerocopy_sg_from_iter()
464 						 * or skb_orphan_frags_rx()
465 						 */
466 	SKB_DROP_REASON_DEV_HDR,	/* device driver specific
467 					 * header/metadata is invalid
468 					 */
469 	/* the device is not ready to xmit/recv due to any of its data
470 	 * structure that is not up/ready/initialized, e.g., the IFF_UP is
471 	 * not set, or driver specific tun->tfiles[txq] is not initialized
472 	 */
473 	SKB_DROP_REASON_DEV_READY,
474 	SKB_DROP_REASON_FULL_RING,	/* ring buffer is full */
475 	SKB_DROP_REASON_NOMEM,		/* error due to OOM */
476 	SKB_DROP_REASON_HDR_TRUNC,      /* failed to trunc/extract the header
477 					 * from networking data, e.g., failed
478 					 * to pull the protocol header from
479 					 * frags via pskb_may_pull()
480 					 */
481 	SKB_DROP_REASON_TAP_FILTER,     /* dropped by (ebpf) filter directly
482 					 * attached to tun/tap, e.g., via
483 					 * TUNSETFILTEREBPF
484 					 */
485 	SKB_DROP_REASON_TAP_TXFILTER,	/* dropped by tx filter implemented
486 					 * at tun/tap, e.g., check_filter()
487 					 */
488 	SKB_DROP_REASON_ICMP_CSUM,	/* ICMP checksum error */
489 	SKB_DROP_REASON_INVALID_PROTO,	/* the packet doesn't follow RFC
490 					 * 2211, such as a broadcasts
491 					 * ICMP_TIMESTAMP
492 					 */
493 	SKB_DROP_REASON_IP_INADDRERRORS,	/* host unreachable, corresponding
494 						 * to IPSTATS_MIB_INADDRERRORS
495 						 */
496 	SKB_DROP_REASON_IP_INNOROUTES,	/* network unreachable, corresponding
497 					 * to IPSTATS_MIB_INADDRERRORS
498 					 */
499 	SKB_DROP_REASON_PKT_TOO_BIG,	/* packet size is too big (maybe exceed
500 					 * the MTU)
501 					 */
502 	SKB_DROP_REASON_MAX,
503 };
504 
505 #define SKB_DR_INIT(name, reason)				\
506 	enum skb_drop_reason name = SKB_DROP_REASON_##reason
507 #define SKB_DR(name)						\
508 	SKB_DR_INIT(name, NOT_SPECIFIED)
509 #define SKB_DR_SET(name, reason)				\
510 	(name = SKB_DROP_REASON_##reason)
511 #define SKB_DR_OR(name, reason)					\
512 	do {							\
513 		if (name == SKB_DROP_REASON_NOT_SPECIFIED ||	\
514 		    name == SKB_NOT_DROPPED_YET)		\
515 			SKB_DR_SET(name, reason);		\
516 	} while (0)
517 
518 /* To allow 64K frame to be packed as single skb without frag_list we
519  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
520  * buffers which do not start on a page boundary.
521  *
522  * Since GRO uses frags we allocate at least 16 regardless of page
523  * size.
524  */
525 #if (65536/PAGE_SIZE + 1) < 16
526 #define MAX_SKB_FRAGS 16UL
527 #else
528 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
529 #endif
530 extern int sysctl_max_skb_frags;
531 
532 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
533  * segment using its current segmentation instead.
534  */
535 #define GSO_BY_FRAGS	0xFFFF
536 
537 typedef struct bio_vec skb_frag_t;
538 
539 /**
540  * skb_frag_size() - Returns the size of a skb fragment
541  * @frag: skb fragment
542  */
skb_frag_size(const skb_frag_t * frag)543 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
544 {
545 	return frag->bv_len;
546 }
547 
548 /**
549  * skb_frag_size_set() - Sets the size of a skb fragment
550  * @frag: skb fragment
551  * @size: size of fragment
552  */
skb_frag_size_set(skb_frag_t * frag,unsigned int size)553 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
554 {
555 	frag->bv_len = size;
556 }
557 
558 /**
559  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
560  * @frag: skb fragment
561  * @delta: value to add
562  */
skb_frag_size_add(skb_frag_t * frag,int delta)563 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
564 {
565 	frag->bv_len += delta;
566 }
567 
568 /**
569  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
570  * @frag: skb fragment
571  * @delta: value to subtract
572  */
skb_frag_size_sub(skb_frag_t * frag,int delta)573 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
574 {
575 	frag->bv_len -= delta;
576 }
577 
578 /**
579  * skb_frag_must_loop - Test if %p is a high memory page
580  * @p: fragment's page
581  */
skb_frag_must_loop(struct page * p)582 static inline bool skb_frag_must_loop(struct page *p)
583 {
584 #if defined(CONFIG_HIGHMEM)
585 	if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
586 		return true;
587 #endif
588 	return false;
589 }
590 
591 /**
592  *	skb_frag_foreach_page - loop over pages in a fragment
593  *
594  *	@f:		skb frag to operate on
595  *	@f_off:		offset from start of f->bv_page
596  *	@f_len:		length from f_off to loop over
597  *	@p:		(temp var) current page
598  *	@p_off:		(temp var) offset from start of current page,
599  *	                           non-zero only on first page.
600  *	@p_len:		(temp var) length in current page,
601  *				   < PAGE_SIZE only on first and last page.
602  *	@copied:	(temp var) length so far, excluding current p_len.
603  *
604  *	A fragment can hold a compound page, in which case per-page
605  *	operations, notably kmap_atomic, must be called for each
606  *	regular page.
607  */
608 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
609 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
610 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
611 	     p_len = skb_frag_must_loop(p) ?				\
612 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
613 	     copied = 0;						\
614 	     copied < f_len;						\
615 	     copied += p_len, p++, p_off = 0,				\
616 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
617 
618 #define HAVE_HW_TIME_STAMP
619 
620 /**
621  * struct skb_shared_hwtstamps - hardware time stamps
622  * @hwtstamp:		hardware time stamp transformed into duration
623  *			since arbitrary point in time
624  * @netdev_data:	address/cookie of network device driver used as
625  *			reference to actual hardware time stamp
626  *
627  * Software time stamps generated by ktime_get_real() are stored in
628  * skb->tstamp.
629  *
630  * hwtstamps can only be compared against other hwtstamps from
631  * the same device.
632  *
633  * This structure is attached to packets as part of the
634  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
635  */
636 struct skb_shared_hwtstamps {
637 	union {
638 		ktime_t	hwtstamp;
639 		void *netdev_data;
640 	};
641 };
642 
643 /* Definitions for tx_flags in struct skb_shared_info */
644 enum {
645 	/* generate hardware time stamp */
646 	SKBTX_HW_TSTAMP = 1 << 0,
647 
648 	/* generate software time stamp when queueing packet to NIC */
649 	SKBTX_SW_TSTAMP = 1 << 1,
650 
651 	/* device driver is going to provide hardware time stamp */
652 	SKBTX_IN_PROGRESS = 1 << 2,
653 
654 	/* generate hardware time stamp based on cycles if supported */
655 	SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3,
656 
657 	/* generate wifi status information (where possible) */
658 	SKBTX_WIFI_STATUS = 1 << 4,
659 
660 	/* determine hardware time stamp based on time or cycles */
661 	SKBTX_HW_TSTAMP_NETDEV = 1 << 5,
662 
663 	/* generate software time stamp when entering packet scheduling */
664 	SKBTX_SCHED_TSTAMP = 1 << 6,
665 };
666 
667 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
668 				 SKBTX_SCHED_TSTAMP)
669 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | \
670 				 SKBTX_HW_TSTAMP_USE_CYCLES | \
671 				 SKBTX_ANY_SW_TSTAMP)
672 
673 /* Definitions for flags in struct skb_shared_info */
674 enum {
675 	/* use zcopy routines */
676 	SKBFL_ZEROCOPY_ENABLE = BIT(0),
677 
678 	/* This indicates at least one fragment might be overwritten
679 	 * (as in vmsplice(), sendfile() ...)
680 	 * If we need to compute a TX checksum, we'll need to copy
681 	 * all frags to avoid possible bad checksum
682 	 */
683 	SKBFL_SHARED_FRAG = BIT(1),
684 
685 	/* segment contains only zerocopy data and should not be
686 	 * charged to the kernel memory.
687 	 */
688 	SKBFL_PURE_ZEROCOPY = BIT(2),
689 };
690 
691 #define SKBFL_ZEROCOPY_FRAG	(SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
692 #define SKBFL_ALL_ZEROCOPY	(SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY)
693 
694 /*
695  * The callback notifies userspace to release buffers when skb DMA is done in
696  * lower device, the skb last reference should be 0 when calling this.
697  * The zerocopy_success argument is true if zero copy transmit occurred,
698  * false on data copy or out of memory error caused by data copy attempt.
699  * The ctx field is used to track device context.
700  * The desc field is used to track userspace buffer index.
701  */
702 struct ubuf_info {
703 	void (*callback)(struct sk_buff *, struct ubuf_info *,
704 			 bool zerocopy_success);
705 	union {
706 		struct {
707 			unsigned long desc;
708 			void *ctx;
709 		};
710 		struct {
711 			u32 id;
712 			u16 len;
713 			u16 zerocopy:1;
714 			u32 bytelen;
715 		};
716 	};
717 	refcount_t refcnt;
718 	u8 flags;
719 
720 	struct mmpin {
721 		struct user_struct *user;
722 		unsigned int num_pg;
723 	} mmp;
724 };
725 
726 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
727 
728 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
729 void mm_unaccount_pinned_pages(struct mmpin *mmp);
730 
731 /* This data is invariant across clones and lives at
732  * the end of the header data, ie. at skb->end.
733  */
734 struct skb_shared_info {
735 	__u8		flags;
736 	__u8		meta_len;
737 	__u8		nr_frags;
738 	__u8		tx_flags;
739 	unsigned short	gso_size;
740 	/* Warning: this field is not always filled in (UFO)! */
741 	unsigned short	gso_segs;
742 	struct sk_buff	*frag_list;
743 	struct skb_shared_hwtstamps hwtstamps;
744 	unsigned int	gso_type;
745 	u32		tskey;
746 
747 	/*
748 	 * Warning : all fields before dataref are cleared in __alloc_skb()
749 	 */
750 	atomic_t	dataref;
751 	unsigned int	xdp_frags_size;
752 
753 	/* Intermediate layers must ensure that destructor_arg
754 	 * remains valid until skb destructor */
755 	void *		destructor_arg;
756 
757 	/* must be last field, see pskb_expand_head() */
758 	skb_frag_t	frags[MAX_SKB_FRAGS];
759 };
760 
761 /**
762  * DOC: dataref and headerless skbs
763  *
764  * Transport layers send out clones of payload skbs they hold for
765  * retransmissions. To allow lower layers of the stack to prepend their headers
766  * we split &skb_shared_info.dataref into two halves.
767  * The lower 16 bits count the overall number of references.
768  * The higher 16 bits indicate how many of the references are payload-only.
769  * skb_header_cloned() checks if skb is allowed to add / write the headers.
770  *
771  * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr
772  * (via __skb_header_release()). Any clone created from marked skb will get
773  * &sk_buff.hdr_len populated with the available headroom.
774  * If there's the only clone in existence it's able to modify the headroom
775  * at will. The sequence of calls inside the transport layer is::
776  *
777  *  <alloc skb>
778  *  skb_reserve()
779  *  __skb_header_release()
780  *  skb_clone()
781  *  // send the clone down the stack
782  *
783  * This is not a very generic construct and it depends on the transport layers
784  * doing the right thing. In practice there's usually only one payload-only skb.
785  * Having multiple payload-only skbs with different lengths of hdr_len is not
786  * possible. The payload-only skbs should never leave their owner.
787  */
788 #define SKB_DATAREF_SHIFT 16
789 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
790 
791 
792 enum {
793 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
794 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
795 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
796 };
797 
798 enum {
799 	SKB_GSO_TCPV4 = 1 << 0,
800 
801 	/* This indicates the skb is from an untrusted source. */
802 	SKB_GSO_DODGY = 1 << 1,
803 
804 	/* This indicates the tcp segment has CWR set. */
805 	SKB_GSO_TCP_ECN = 1 << 2,
806 
807 	SKB_GSO_TCP_FIXEDID = 1 << 3,
808 
809 	SKB_GSO_TCPV6 = 1 << 4,
810 
811 	SKB_GSO_FCOE = 1 << 5,
812 
813 	SKB_GSO_GRE = 1 << 6,
814 
815 	SKB_GSO_GRE_CSUM = 1 << 7,
816 
817 	SKB_GSO_IPXIP4 = 1 << 8,
818 
819 	SKB_GSO_IPXIP6 = 1 << 9,
820 
821 	SKB_GSO_UDP_TUNNEL = 1 << 10,
822 
823 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
824 
825 	SKB_GSO_PARTIAL = 1 << 12,
826 
827 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
828 
829 	SKB_GSO_SCTP = 1 << 14,
830 
831 	SKB_GSO_ESP = 1 << 15,
832 
833 	SKB_GSO_UDP = 1 << 16,
834 
835 	SKB_GSO_UDP_L4 = 1 << 17,
836 
837 	SKB_GSO_FRAGLIST = 1 << 18,
838 };
839 
840 #if BITS_PER_LONG > 32
841 #define NET_SKBUFF_DATA_USES_OFFSET 1
842 #endif
843 
844 #ifdef NET_SKBUFF_DATA_USES_OFFSET
845 typedef unsigned int sk_buff_data_t;
846 #else
847 typedef unsigned char *sk_buff_data_t;
848 #endif
849 
850 /**
851  * DOC: Basic sk_buff geometry
852  *
853  * struct sk_buff itself is a metadata structure and does not hold any packet
854  * data. All the data is held in associated buffers.
855  *
856  * &sk_buff.head points to the main "head" buffer. The head buffer is divided
857  * into two parts:
858  *
859  *  - data buffer, containing headers and sometimes payload;
860  *    this is the part of the skb operated on by the common helpers
861  *    such as skb_put() or skb_pull();
862  *  - shared info (struct skb_shared_info) which holds an array of pointers
863  *    to read-only data in the (page, offset, length) format.
864  *
865  * Optionally &skb_shared_info.frag_list may point to another skb.
866  *
867  * Basic diagram may look like this::
868  *
869  *                                  ---------------
870  *                                 | sk_buff       |
871  *                                  ---------------
872  *     ,---------------------------  + head
873  *    /          ,-----------------  + data
874  *   /          /      ,-----------  + tail
875  *  |          |      |            , + end
876  *  |          |      |           |
877  *  v          v      v           v
878  *   -----------------------------------------------
879  *  | headroom | data |  tailroom | skb_shared_info |
880  *   -----------------------------------------------
881  *                                 + [page frag]
882  *                                 + [page frag]
883  *                                 + [page frag]
884  *                                 + [page frag]       ---------
885  *                                 + frag_list    --> | sk_buff |
886  *                                                     ---------
887  *
888  */
889 
890 /**
891  *	struct sk_buff - socket buffer
892  *	@next: Next buffer in list
893  *	@prev: Previous buffer in list
894  *	@tstamp: Time we arrived/left
895  *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
896  *		for retransmit timer
897  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
898  *	@list: queue head
899  *	@ll_node: anchor in an llist (eg socket defer_list)
900  *	@sk: Socket we are owned by
901  *	@ip_defrag_offset: (aka @sk) alternate use of @sk, used in
902  *		fragmentation management
903  *	@dev: Device we arrived on/are leaving by
904  *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
905  *	@cb: Control buffer. Free for use by every layer. Put private vars here
906  *	@_skb_refdst: destination entry (with norefcount bit)
907  *	@sp: the security path, used for xfrm
908  *	@len: Length of actual data
909  *	@data_len: Data length
910  *	@mac_len: Length of link layer header
911  *	@hdr_len: writable header length of cloned skb
912  *	@csum: Checksum (must include start/offset pair)
913  *	@csum_start: Offset from skb->head where checksumming should start
914  *	@csum_offset: Offset from csum_start where checksum should be stored
915  *	@priority: Packet queueing priority
916  *	@ignore_df: allow local fragmentation
917  *	@cloned: Head may be cloned (check refcnt to be sure)
918  *	@ip_summed: Driver fed us an IP checksum
919  *	@nohdr: Payload reference only, must not modify header
920  *	@pkt_type: Packet class
921  *	@fclone: skbuff clone status
922  *	@ipvs_property: skbuff is owned by ipvs
923  *	@inner_protocol_type: whether the inner protocol is
924  *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
925  *	@remcsum_offload: remote checksum offload is enabled
926  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
927  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
928  *	@tc_skip_classify: do not classify packet. set by IFB device
929  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
930  *	@redirected: packet was redirected by packet classifier
931  *	@from_ingress: packet was redirected from the ingress path
932  *	@nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
933  *	@peeked: this packet has been seen already, so stats have been
934  *		done for it, don't do them again
935  *	@nf_trace: netfilter packet trace flag
936  *	@protocol: Packet protocol from driver
937  *	@destructor: Destruct function
938  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
939  *	@_sk_redir: socket redirection information for skmsg
940  *	@_nfct: Associated connection, if any (with nfctinfo bits)
941  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
942  *	@skb_iif: ifindex of device we arrived on
943  *	@tc_index: Traffic control index
944  *	@hash: the packet hash
945  *	@queue_mapping: Queue mapping for multiqueue devices
946  *	@head_frag: skb was allocated from page fragments,
947  *		not allocated by kmalloc() or vmalloc().
948  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
949  *	@pp_recycle: mark the packet for recycling instead of freeing (implies
950  *		page_pool support on driver)
951  *	@active_extensions: active extensions (skb_ext_id types)
952  *	@ndisc_nodetype: router type (from link layer)
953  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
954  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
955  *		ports.
956  *	@sw_hash: indicates hash was computed in software stack
957  *	@wifi_acked_valid: wifi_acked was set
958  *	@wifi_acked: whether frame was acked on wifi or not
959  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
960  *	@encapsulation: indicates the inner headers in the skbuff are valid
961  *	@encap_hdr_csum: software checksum is needed
962  *	@csum_valid: checksum is already valid
963  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
964  *	@csum_complete_sw: checksum was completed by software
965  *	@csum_level: indicates the number of consecutive checksums found in
966  *		the packet minus one that have been verified as
967  *		CHECKSUM_UNNECESSARY (max 3)
968  *	@dst_pending_confirm: need to confirm neighbour
969  *	@decrypted: Decrypted SKB
970  *	@slow_gro: state present at GRO time, slower prepare step required
971  *	@mono_delivery_time: When set, skb->tstamp has the
972  *		delivery_time in mono clock base (i.e. EDT).  Otherwise, the
973  *		skb->tstamp has the (rcv) timestamp at ingress and
974  *		delivery_time at egress.
975  *	@napi_id: id of the NAPI struct this skb came from
976  *	@sender_cpu: (aka @napi_id) source CPU in XPS
977  *	@alloc_cpu: CPU which did the skb allocation.
978  *	@secmark: security marking
979  *	@mark: Generic packet mark
980  *	@reserved_tailroom: (aka @mark) number of bytes of free space available
981  *		at the tail of an sk_buff
982  *	@vlan_present: VLAN tag is present
983  *	@vlan_proto: vlan encapsulation protocol
984  *	@vlan_tci: vlan tag control information
985  *	@inner_protocol: Protocol (encapsulation)
986  *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
987  *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
988  *	@inner_transport_header: Inner transport layer header (encapsulation)
989  *	@inner_network_header: Network layer header (encapsulation)
990  *	@inner_mac_header: Link layer header (encapsulation)
991  *	@transport_header: Transport layer header
992  *	@network_header: Network layer header
993  *	@mac_header: Link layer header
994  *	@kcov_handle: KCOV remote handle for remote coverage collection
995  *	@tail: Tail pointer
996  *	@end: End pointer
997  *	@head: Head of buffer
998  *	@data: Data head pointer
999  *	@truesize: Buffer size
1000  *	@users: User count - see {datagram,tcp}.c
1001  *	@extensions: allocated extensions, valid if active_extensions is nonzero
1002  */
1003 
1004 struct sk_buff {
1005 	union {
1006 		struct {
1007 			/* These two members must be first to match sk_buff_head. */
1008 			struct sk_buff		*next;
1009 			struct sk_buff		*prev;
1010 
1011 			union {
1012 				struct net_device	*dev;
1013 				/* Some protocols might use this space to store information,
1014 				 * while device pointer would be NULL.
1015 				 * UDP receive path is one user.
1016 				 */
1017 				unsigned long		dev_scratch;
1018 			};
1019 		};
1020 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
1021 		struct list_head	list;
1022 		struct llist_node	ll_node;
1023 	};
1024 
1025 	union {
1026 		struct sock		*sk;
1027 		int			ip_defrag_offset;
1028 	};
1029 
1030 	union {
1031 		ktime_t		tstamp;
1032 		u64		skb_mstamp_ns; /* earliest departure time */
1033 	};
1034 	/*
1035 	 * This is the control buffer. It is free to use for every
1036 	 * layer. Please put your private variables there. If you
1037 	 * want to keep them across layers you have to do a skb_clone()
1038 	 * first. This is owned by whoever has the skb queued ATM.
1039 	 */
1040 	char			cb[48] __aligned(8);
1041 
1042 	union {
1043 		struct {
1044 			unsigned long	_skb_refdst;
1045 			void		(*destructor)(struct sk_buff *skb);
1046 		};
1047 		struct list_head	tcp_tsorted_anchor;
1048 #ifdef CONFIG_NET_SOCK_MSG
1049 		unsigned long		_sk_redir;
1050 #endif
1051 	};
1052 
1053 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1054 	unsigned long		 _nfct;
1055 #endif
1056 	unsigned int		len,
1057 				data_len;
1058 	__u16			mac_len,
1059 				hdr_len;
1060 
1061 	/* Following fields are _not_ copied in __copy_skb_header()
1062 	 * Note that queue_mapping is here mostly to fill a hole.
1063 	 */
1064 	__u16			queue_mapping;
1065 
1066 /* if you move cloned around you also must adapt those constants */
1067 #ifdef __BIG_ENDIAN_BITFIELD
1068 #define CLONED_MASK	(1 << 7)
1069 #else
1070 #define CLONED_MASK	1
1071 #endif
1072 #define CLONED_OFFSET		offsetof(struct sk_buff, __cloned_offset)
1073 
1074 	/* private: */
1075 	__u8			__cloned_offset[0];
1076 	/* public: */
1077 	__u8			cloned:1,
1078 				nohdr:1,
1079 				fclone:2,
1080 				peeked:1,
1081 				head_frag:1,
1082 				pfmemalloc:1,
1083 				pp_recycle:1; /* page_pool recycle indicator */
1084 #ifdef CONFIG_SKB_EXTENSIONS
1085 	__u8			active_extensions;
1086 #endif
1087 
1088 	/* Fields enclosed in headers group are copied
1089 	 * using a single memcpy() in __copy_skb_header()
1090 	 */
1091 	struct_group(headers,
1092 
1093 	/* private: */
1094 	__u8			__pkt_type_offset[0];
1095 	/* public: */
1096 	__u8			pkt_type:3; /* see PKT_TYPE_MAX */
1097 	__u8			ignore_df:1;
1098 	__u8			nf_trace:1;
1099 	__u8			ip_summed:2;
1100 	__u8			ooo_okay:1;
1101 
1102 	__u8			l4_hash:1;
1103 	__u8			sw_hash:1;
1104 	__u8			wifi_acked_valid:1;
1105 	__u8			wifi_acked:1;
1106 	__u8			no_fcs:1;
1107 	/* Indicates the inner headers are valid in the skbuff. */
1108 	__u8			encapsulation:1;
1109 	__u8			encap_hdr_csum:1;
1110 	__u8			csum_valid:1;
1111 
1112 	/* private: */
1113 	__u8			__pkt_vlan_present_offset[0];
1114 	/* public: */
1115 	__u8			vlan_present:1;	/* See PKT_VLAN_PRESENT_BIT */
1116 	__u8			csum_complete_sw:1;
1117 	__u8			csum_level:2;
1118 	__u8			dst_pending_confirm:1;
1119 	__u8			mono_delivery_time:1;	/* See SKB_MONO_DELIVERY_TIME_MASK */
1120 #ifdef CONFIG_NET_CLS_ACT
1121 	__u8			tc_skip_classify:1;
1122 	__u8			tc_at_ingress:1;	/* See TC_AT_INGRESS_MASK */
1123 #endif
1124 #ifdef CONFIG_IPV6_NDISC_NODETYPE
1125 	__u8			ndisc_nodetype:2;
1126 #endif
1127 
1128 	__u8			ipvs_property:1;
1129 	__u8			inner_protocol_type:1;
1130 	__u8			remcsum_offload:1;
1131 #ifdef CONFIG_NET_SWITCHDEV
1132 	__u8			offload_fwd_mark:1;
1133 	__u8			offload_l3_fwd_mark:1;
1134 #endif
1135 	__u8			redirected:1;
1136 #ifdef CONFIG_NET_REDIRECT
1137 	__u8			from_ingress:1;
1138 #endif
1139 #ifdef CONFIG_NETFILTER_SKIP_EGRESS
1140 	__u8			nf_skip_egress:1;
1141 #endif
1142 #ifdef CONFIG_TLS_DEVICE
1143 	__u8			decrypted:1;
1144 #endif
1145 	__u8			slow_gro:1;
1146 	__u8			csum_not_inet:1;
1147 
1148 #ifdef CONFIG_NET_SCHED
1149 	__u16			tc_index;	/* traffic control index */
1150 #endif
1151 
1152 	union {
1153 		__wsum		csum;
1154 		struct {
1155 			__u16	csum_start;
1156 			__u16	csum_offset;
1157 		};
1158 	};
1159 	__u32			priority;
1160 	int			skb_iif;
1161 	__u32			hash;
1162 	__be16			vlan_proto;
1163 	__u16			vlan_tci;
1164 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
1165 	union {
1166 		unsigned int	napi_id;
1167 		unsigned int	sender_cpu;
1168 	};
1169 #endif
1170 	u16			alloc_cpu;
1171 #ifdef CONFIG_NETWORK_SECMARK
1172 	__u32		secmark;
1173 #endif
1174 
1175 	union {
1176 		__u32		mark;
1177 		__u32		reserved_tailroom;
1178 	};
1179 
1180 	union {
1181 		__be16		inner_protocol;
1182 		__u8		inner_ipproto;
1183 	};
1184 
1185 	__u16			inner_transport_header;
1186 	__u16			inner_network_header;
1187 	__u16			inner_mac_header;
1188 
1189 	__be16			protocol;
1190 	__u16			transport_header;
1191 	__u16			network_header;
1192 	__u16			mac_header;
1193 
1194 #ifdef CONFIG_KCOV
1195 	u64			kcov_handle;
1196 #endif
1197 
1198 	); /* end headers group */
1199 
1200 	/* These elements must be at the end, see alloc_skb() for details.  */
1201 	sk_buff_data_t		tail;
1202 	sk_buff_data_t		end;
1203 	unsigned char		*head,
1204 				*data;
1205 	unsigned int		truesize;
1206 	refcount_t		users;
1207 
1208 #ifdef CONFIG_SKB_EXTENSIONS
1209 	/* only useable after checking ->active_extensions != 0 */
1210 	struct skb_ext		*extensions;
1211 #endif
1212 };
1213 
1214 /* if you move pkt_type around you also must adapt those constants */
1215 #ifdef __BIG_ENDIAN_BITFIELD
1216 #define PKT_TYPE_MAX	(7 << 5)
1217 #else
1218 #define PKT_TYPE_MAX	7
1219 #endif
1220 #define PKT_TYPE_OFFSET		offsetof(struct sk_buff, __pkt_type_offset)
1221 
1222 /* if you move pkt_vlan_present, tc_at_ingress, or mono_delivery_time
1223  * around, you also must adapt these constants.
1224  */
1225 #ifdef __BIG_ENDIAN_BITFIELD
1226 #define PKT_VLAN_PRESENT_BIT	7
1227 #define TC_AT_INGRESS_MASK		(1 << 0)
1228 #define SKB_MONO_DELIVERY_TIME_MASK	(1 << 2)
1229 #else
1230 #define PKT_VLAN_PRESENT_BIT	0
1231 #define TC_AT_INGRESS_MASK		(1 << 7)
1232 #define SKB_MONO_DELIVERY_TIME_MASK	(1 << 5)
1233 #endif
1234 #define PKT_VLAN_PRESENT_OFFSET	offsetof(struct sk_buff, __pkt_vlan_present_offset)
1235 
1236 #ifdef __KERNEL__
1237 /*
1238  *	Handling routines are only of interest to the kernel
1239  */
1240 
1241 #define SKB_ALLOC_FCLONE	0x01
1242 #define SKB_ALLOC_RX		0x02
1243 #define SKB_ALLOC_NAPI		0x04
1244 
1245 /**
1246  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1247  * @skb: buffer
1248  */
skb_pfmemalloc(const struct sk_buff * skb)1249 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1250 {
1251 	return unlikely(skb->pfmemalloc);
1252 }
1253 
1254 /*
1255  * skb might have a dst pointer attached, refcounted or not.
1256  * _skb_refdst low order bit is set if refcount was _not_ taken
1257  */
1258 #define SKB_DST_NOREF	1UL
1259 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
1260 
1261 /**
1262  * skb_dst - returns skb dst_entry
1263  * @skb: buffer
1264  *
1265  * Returns skb dst_entry, regardless of reference taken or not.
1266  */
skb_dst(const struct sk_buff * skb)1267 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1268 {
1269 	/* If refdst was not refcounted, check we still are in a
1270 	 * rcu_read_lock section
1271 	 */
1272 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1273 		!rcu_read_lock_held() &&
1274 		!rcu_read_lock_bh_held());
1275 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1276 }
1277 
1278 /**
1279  * skb_dst_set - sets skb dst
1280  * @skb: buffer
1281  * @dst: dst entry
1282  *
1283  * Sets skb dst, assuming a reference was taken on dst and should
1284  * be released by skb_dst_drop()
1285  */
skb_dst_set(struct sk_buff * skb,struct dst_entry * dst)1286 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1287 {
1288 	skb->slow_gro |= !!dst;
1289 	skb->_skb_refdst = (unsigned long)dst;
1290 }
1291 
1292 /**
1293  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1294  * @skb: buffer
1295  * @dst: dst entry
1296  *
1297  * Sets skb dst, assuming a reference was not taken on dst.
1298  * If dst entry is cached, we do not take reference and dst_release
1299  * will be avoided by refdst_drop. If dst entry is not cached, we take
1300  * reference, so that last dst_release can destroy the dst immediately.
1301  */
skb_dst_set_noref(struct sk_buff * skb,struct dst_entry * dst)1302 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1303 {
1304 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1305 	skb->slow_gro |= !!dst;
1306 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1307 }
1308 
1309 /**
1310  * skb_dst_is_noref - Test if skb dst isn't refcounted
1311  * @skb: buffer
1312  */
skb_dst_is_noref(const struct sk_buff * skb)1313 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1314 {
1315 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1316 }
1317 
1318 /**
1319  * skb_rtable - Returns the skb &rtable
1320  * @skb: buffer
1321  */
skb_rtable(const struct sk_buff * skb)1322 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1323 {
1324 	return (struct rtable *)skb_dst(skb);
1325 }
1326 
1327 /* For mangling skb->pkt_type from user space side from applications
1328  * such as nft, tc, etc, we only allow a conservative subset of
1329  * possible pkt_types to be set.
1330 */
skb_pkt_type_ok(u32 ptype)1331 static inline bool skb_pkt_type_ok(u32 ptype)
1332 {
1333 	return ptype <= PACKET_OTHERHOST;
1334 }
1335 
1336 /**
1337  * skb_napi_id - Returns the skb's NAPI id
1338  * @skb: buffer
1339  */
skb_napi_id(const struct sk_buff * skb)1340 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1341 {
1342 #ifdef CONFIG_NET_RX_BUSY_POLL
1343 	return skb->napi_id;
1344 #else
1345 	return 0;
1346 #endif
1347 }
1348 
1349 /**
1350  * skb_unref - decrement the skb's reference count
1351  * @skb: buffer
1352  *
1353  * Returns true if we can free the skb.
1354  */
skb_unref(struct sk_buff * skb)1355 static inline bool skb_unref(struct sk_buff *skb)
1356 {
1357 	if (unlikely(!skb))
1358 		return false;
1359 	if (likely(refcount_read(&skb->users) == 1))
1360 		smp_rmb();
1361 	else if (likely(!refcount_dec_and_test(&skb->users)))
1362 		return false;
1363 
1364 	return true;
1365 }
1366 
1367 void kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason);
1368 
1369 /**
1370  *	kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1371  *	@skb: buffer to free
1372  */
kfree_skb(struct sk_buff * skb)1373 static inline void kfree_skb(struct sk_buff *skb)
1374 {
1375 	kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1376 }
1377 
1378 void skb_release_head_state(struct sk_buff *skb);
1379 void kfree_skb_list_reason(struct sk_buff *segs,
1380 			   enum skb_drop_reason reason);
1381 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1382 void skb_tx_error(struct sk_buff *skb);
1383 
kfree_skb_list(struct sk_buff * segs)1384 static inline void kfree_skb_list(struct sk_buff *segs)
1385 {
1386 	kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
1387 }
1388 
1389 #ifdef CONFIG_TRACEPOINTS
1390 void consume_skb(struct sk_buff *skb);
1391 #else
consume_skb(struct sk_buff * skb)1392 static inline void consume_skb(struct sk_buff *skb)
1393 {
1394 	return kfree_skb(skb);
1395 }
1396 #endif
1397 
1398 void __consume_stateless_skb(struct sk_buff *skb);
1399 void  __kfree_skb(struct sk_buff *skb);
1400 extern struct kmem_cache *skbuff_head_cache;
1401 
1402 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1403 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1404 		      bool *fragstolen, int *delta_truesize);
1405 
1406 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1407 			    int node);
1408 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1409 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1410 struct sk_buff *build_skb_around(struct sk_buff *skb,
1411 				 void *data, unsigned int frag_size);
1412 void skb_attempt_defer_free(struct sk_buff *skb);
1413 
1414 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1415 
1416 /**
1417  * alloc_skb - allocate a network buffer
1418  * @size: size to allocate
1419  * @priority: allocation mask
1420  *
1421  * This function is a convenient wrapper around __alloc_skb().
1422  */
alloc_skb(unsigned int size,gfp_t priority)1423 static inline struct sk_buff *alloc_skb(unsigned int size,
1424 					gfp_t priority)
1425 {
1426 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1427 }
1428 
1429 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1430 				     unsigned long data_len,
1431 				     int max_page_order,
1432 				     int *errcode,
1433 				     gfp_t gfp_mask);
1434 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1435 
1436 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1437 struct sk_buff_fclones {
1438 	struct sk_buff	skb1;
1439 
1440 	struct sk_buff	skb2;
1441 
1442 	refcount_t	fclone_ref;
1443 };
1444 
1445 /**
1446  *	skb_fclone_busy - check if fclone is busy
1447  *	@sk: socket
1448  *	@skb: buffer
1449  *
1450  * Returns true if skb is a fast clone, and its clone is not freed.
1451  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1452  * so we also check that this didnt happen.
1453  */
skb_fclone_busy(const struct sock * sk,const struct sk_buff * skb)1454 static inline bool skb_fclone_busy(const struct sock *sk,
1455 				   const struct sk_buff *skb)
1456 {
1457 	const struct sk_buff_fclones *fclones;
1458 
1459 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1460 
1461 	return skb->fclone == SKB_FCLONE_ORIG &&
1462 	       refcount_read(&fclones->fclone_ref) > 1 &&
1463 	       READ_ONCE(fclones->skb2.sk) == sk;
1464 }
1465 
1466 /**
1467  * alloc_skb_fclone - allocate a network buffer from fclone cache
1468  * @size: size to allocate
1469  * @priority: allocation mask
1470  *
1471  * This function is a convenient wrapper around __alloc_skb().
1472  */
alloc_skb_fclone(unsigned int size,gfp_t priority)1473 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1474 					       gfp_t priority)
1475 {
1476 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1477 }
1478 
1479 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1480 void skb_headers_offset_update(struct sk_buff *skb, int off);
1481 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1482 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1483 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1484 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1485 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1486 				   gfp_t gfp_mask, bool fclone);
__pskb_copy(struct sk_buff * skb,int headroom,gfp_t gfp_mask)1487 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1488 					  gfp_t gfp_mask)
1489 {
1490 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1491 }
1492 
1493 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1494 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1495 				     unsigned int headroom);
1496 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1497 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1498 				int newtailroom, gfp_t priority);
1499 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1500 				     int offset, int len);
1501 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1502 			      int offset, int len);
1503 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1504 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1505 
1506 /**
1507  *	skb_pad			-	zero pad the tail of an skb
1508  *	@skb: buffer to pad
1509  *	@pad: space to pad
1510  *
1511  *	Ensure that a buffer is followed by a padding area that is zero
1512  *	filled. Used by network drivers which may DMA or transfer data
1513  *	beyond the buffer end onto the wire.
1514  *
1515  *	May return error in out of memory cases. The skb is freed on error.
1516  */
skb_pad(struct sk_buff * skb,int pad)1517 static inline int skb_pad(struct sk_buff *skb, int pad)
1518 {
1519 	return __skb_pad(skb, pad, true);
1520 }
1521 #define dev_kfree_skb(a)	consume_skb(a)
1522 
1523 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1524 			 int offset, size_t size);
1525 
1526 struct skb_seq_state {
1527 	__u32		lower_offset;
1528 	__u32		upper_offset;
1529 	__u32		frag_idx;
1530 	__u32		stepped_offset;
1531 	struct sk_buff	*root_skb;
1532 	struct sk_buff	*cur_skb;
1533 	__u8		*frag_data;
1534 	__u32		frag_off;
1535 };
1536 
1537 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1538 			  unsigned int to, struct skb_seq_state *st);
1539 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1540 			  struct skb_seq_state *st);
1541 void skb_abort_seq_read(struct skb_seq_state *st);
1542 
1543 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1544 			   unsigned int to, struct ts_config *config);
1545 
1546 /*
1547  * Packet hash types specify the type of hash in skb_set_hash.
1548  *
1549  * Hash types refer to the protocol layer addresses which are used to
1550  * construct a packet's hash. The hashes are used to differentiate or identify
1551  * flows of the protocol layer for the hash type. Hash types are either
1552  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1553  *
1554  * Properties of hashes:
1555  *
1556  * 1) Two packets in different flows have different hash values
1557  * 2) Two packets in the same flow should have the same hash value
1558  *
1559  * A hash at a higher layer is considered to be more specific. A driver should
1560  * set the most specific hash possible.
1561  *
1562  * A driver cannot indicate a more specific hash than the layer at which a hash
1563  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1564  *
1565  * A driver may indicate a hash level which is less specific than the
1566  * actual layer the hash was computed on. For instance, a hash computed
1567  * at L4 may be considered an L3 hash. This should only be done if the
1568  * driver can't unambiguously determine that the HW computed the hash at
1569  * the higher layer. Note that the "should" in the second property above
1570  * permits this.
1571  */
1572 enum pkt_hash_types {
1573 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1574 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1575 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1576 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1577 };
1578 
skb_clear_hash(struct sk_buff * skb)1579 static inline void skb_clear_hash(struct sk_buff *skb)
1580 {
1581 	skb->hash = 0;
1582 	skb->sw_hash = 0;
1583 	skb->l4_hash = 0;
1584 }
1585 
skb_clear_hash_if_not_l4(struct sk_buff * skb)1586 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1587 {
1588 	if (!skb->l4_hash)
1589 		skb_clear_hash(skb);
1590 }
1591 
1592 static inline void
__skb_set_hash(struct sk_buff * skb,__u32 hash,bool is_sw,bool is_l4)1593 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1594 {
1595 	skb->l4_hash = is_l4;
1596 	skb->sw_hash = is_sw;
1597 	skb->hash = hash;
1598 }
1599 
1600 static inline void
skb_set_hash(struct sk_buff * skb,__u32 hash,enum pkt_hash_types type)1601 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1602 {
1603 	/* Used by drivers to set hash from HW */
1604 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1605 }
1606 
1607 static inline void
__skb_set_sw_hash(struct sk_buff * skb,__u32 hash,bool is_l4)1608 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1609 {
1610 	__skb_set_hash(skb, hash, true, is_l4);
1611 }
1612 
1613 void __skb_get_hash(struct sk_buff *skb);
1614 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1615 u32 skb_get_poff(const struct sk_buff *skb);
1616 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1617 		   const struct flow_keys_basic *keys, int hlen);
1618 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1619 			    const void *data, int hlen_proto);
1620 
skb_flow_get_ports(const struct sk_buff * skb,int thoff,u8 ip_proto)1621 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1622 					int thoff, u8 ip_proto)
1623 {
1624 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1625 }
1626 
1627 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1628 			     const struct flow_dissector_key *key,
1629 			     unsigned int key_count);
1630 
1631 struct bpf_flow_dissector;
1632 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1633 		      __be16 proto, int nhoff, int hlen, unsigned int flags);
1634 
1635 bool __skb_flow_dissect(const struct net *net,
1636 			const struct sk_buff *skb,
1637 			struct flow_dissector *flow_dissector,
1638 			void *target_container, const void *data,
1639 			__be16 proto, int nhoff, int hlen, unsigned int flags);
1640 
skb_flow_dissect(const struct sk_buff * skb,struct flow_dissector * flow_dissector,void * target_container,unsigned int flags)1641 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1642 				    struct flow_dissector *flow_dissector,
1643 				    void *target_container, unsigned int flags)
1644 {
1645 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1646 				  target_container, NULL, 0, 0, 0, flags);
1647 }
1648 
skb_flow_dissect_flow_keys(const struct sk_buff * skb,struct flow_keys * flow,unsigned int flags)1649 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1650 					      struct flow_keys *flow,
1651 					      unsigned int flags)
1652 {
1653 	memset(flow, 0, sizeof(*flow));
1654 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1655 				  flow, NULL, 0, 0, 0, flags);
1656 }
1657 
1658 static inline bool
skb_flow_dissect_flow_keys_basic(const struct net * net,const struct sk_buff * skb,struct flow_keys_basic * flow,const void * data,__be16 proto,int nhoff,int hlen,unsigned int flags)1659 skb_flow_dissect_flow_keys_basic(const struct net *net,
1660 				 const struct sk_buff *skb,
1661 				 struct flow_keys_basic *flow,
1662 				 const void *data, __be16 proto,
1663 				 int nhoff, int hlen, unsigned int flags)
1664 {
1665 	memset(flow, 0, sizeof(*flow));
1666 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1667 				  data, proto, nhoff, hlen, flags);
1668 }
1669 
1670 void skb_flow_dissect_meta(const struct sk_buff *skb,
1671 			   struct flow_dissector *flow_dissector,
1672 			   void *target_container);
1673 
1674 /* Gets a skb connection tracking info, ctinfo map should be a
1675  * map of mapsize to translate enum ip_conntrack_info states
1676  * to user states.
1677  */
1678 void
1679 skb_flow_dissect_ct(const struct sk_buff *skb,
1680 		    struct flow_dissector *flow_dissector,
1681 		    void *target_container,
1682 		    u16 *ctinfo_map, size_t mapsize,
1683 		    bool post_ct, u16 zone);
1684 void
1685 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1686 			     struct flow_dissector *flow_dissector,
1687 			     void *target_container);
1688 
1689 void skb_flow_dissect_hash(const struct sk_buff *skb,
1690 			   struct flow_dissector *flow_dissector,
1691 			   void *target_container);
1692 
skb_get_hash(struct sk_buff * skb)1693 static inline __u32 skb_get_hash(struct sk_buff *skb)
1694 {
1695 	if (!skb->l4_hash && !skb->sw_hash)
1696 		__skb_get_hash(skb);
1697 
1698 	return skb->hash;
1699 }
1700 
skb_get_hash_flowi6(struct sk_buff * skb,const struct flowi6 * fl6)1701 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1702 {
1703 	if (!skb->l4_hash && !skb->sw_hash) {
1704 		struct flow_keys keys;
1705 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1706 
1707 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1708 	}
1709 
1710 	return skb->hash;
1711 }
1712 
1713 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1714 			   const siphash_key_t *perturb);
1715 
skb_get_hash_raw(const struct sk_buff * skb)1716 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1717 {
1718 	return skb->hash;
1719 }
1720 
skb_copy_hash(struct sk_buff * to,const struct sk_buff * from)1721 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1722 {
1723 	to->hash = from->hash;
1724 	to->sw_hash = from->sw_hash;
1725 	to->l4_hash = from->l4_hash;
1726 };
1727 
skb_copy_decrypted(struct sk_buff * to,const struct sk_buff * from)1728 static inline void skb_copy_decrypted(struct sk_buff *to,
1729 				      const struct sk_buff *from)
1730 {
1731 #ifdef CONFIG_TLS_DEVICE
1732 	to->decrypted = from->decrypted;
1733 #endif
1734 }
1735 
1736 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_end_pointer(const struct sk_buff * skb)1737 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1738 {
1739 	return skb->head + skb->end;
1740 }
1741 
skb_end_offset(const struct sk_buff * skb)1742 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1743 {
1744 	return skb->end;
1745 }
1746 
skb_set_end_offset(struct sk_buff * skb,unsigned int offset)1747 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1748 {
1749 	skb->end = offset;
1750 }
1751 #else
skb_end_pointer(const struct sk_buff * skb)1752 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1753 {
1754 	return skb->end;
1755 }
1756 
skb_end_offset(const struct sk_buff * skb)1757 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1758 {
1759 	return skb->end - skb->head;
1760 }
1761 
skb_set_end_offset(struct sk_buff * skb,unsigned int offset)1762 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1763 {
1764 	skb->end = skb->head + offset;
1765 }
1766 #endif
1767 
1768 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1769 				       struct ubuf_info *uarg);
1770 
1771 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
1772 
1773 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1774 			   bool success);
1775 
1776 int __zerocopy_sg_from_iter(struct sock *sk, struct sk_buff *skb,
1777 			    struct iov_iter *from, size_t length);
1778 
skb_zerocopy_iter_dgram(struct sk_buff * skb,struct msghdr * msg,int len)1779 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb,
1780 					  struct msghdr *msg, int len)
1781 {
1782 	return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1783 }
1784 
1785 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1786 			     struct msghdr *msg, int len,
1787 			     struct ubuf_info *uarg);
1788 
1789 /* Internal */
1790 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1791 
skb_hwtstamps(struct sk_buff * skb)1792 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1793 {
1794 	return &skb_shinfo(skb)->hwtstamps;
1795 }
1796 
skb_zcopy(struct sk_buff * skb)1797 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1798 {
1799 	bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1800 
1801 	return is_zcopy ? skb_uarg(skb) : NULL;
1802 }
1803 
skb_zcopy_pure(const struct sk_buff * skb)1804 static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1805 {
1806 	return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1807 }
1808 
skb_pure_zcopy_same(const struct sk_buff * skb1,const struct sk_buff * skb2)1809 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1810 				       const struct sk_buff *skb2)
1811 {
1812 	return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1813 }
1814 
net_zcopy_get(struct ubuf_info * uarg)1815 static inline void net_zcopy_get(struct ubuf_info *uarg)
1816 {
1817 	refcount_inc(&uarg->refcnt);
1818 }
1819 
skb_zcopy_init(struct sk_buff * skb,struct ubuf_info * uarg)1820 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1821 {
1822 	skb_shinfo(skb)->destructor_arg = uarg;
1823 	skb_shinfo(skb)->flags |= uarg->flags;
1824 }
1825 
skb_zcopy_set(struct sk_buff * skb,struct ubuf_info * uarg,bool * have_ref)1826 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1827 				 bool *have_ref)
1828 {
1829 	if (skb && uarg && !skb_zcopy(skb)) {
1830 		if (unlikely(have_ref && *have_ref))
1831 			*have_ref = false;
1832 		else
1833 			net_zcopy_get(uarg);
1834 		skb_zcopy_init(skb, uarg);
1835 	}
1836 }
1837 
skb_zcopy_set_nouarg(struct sk_buff * skb,void * val)1838 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1839 {
1840 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1841 	skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1842 }
1843 
skb_zcopy_is_nouarg(struct sk_buff * skb)1844 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1845 {
1846 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1847 }
1848 
skb_zcopy_get_nouarg(struct sk_buff * skb)1849 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1850 {
1851 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1852 }
1853 
net_zcopy_put(struct ubuf_info * uarg)1854 static inline void net_zcopy_put(struct ubuf_info *uarg)
1855 {
1856 	if (uarg)
1857 		uarg->callback(NULL, uarg, true);
1858 }
1859 
net_zcopy_put_abort(struct ubuf_info * uarg,bool have_uref)1860 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1861 {
1862 	if (uarg) {
1863 		if (uarg->callback == msg_zerocopy_callback)
1864 			msg_zerocopy_put_abort(uarg, have_uref);
1865 		else if (have_uref)
1866 			net_zcopy_put(uarg);
1867 	}
1868 }
1869 
1870 /* Release a reference on a zerocopy structure */
skb_zcopy_clear(struct sk_buff * skb,bool zerocopy_success)1871 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1872 {
1873 	struct ubuf_info *uarg = skb_zcopy(skb);
1874 
1875 	if (uarg) {
1876 		if (!skb_zcopy_is_nouarg(skb))
1877 			uarg->callback(skb, uarg, zerocopy_success);
1878 
1879 		skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1880 	}
1881 }
1882 
skb_mark_not_on_list(struct sk_buff * skb)1883 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1884 {
1885 	skb->next = NULL;
1886 }
1887 
1888 /* Iterate through singly-linked GSO fragments of an skb. */
1889 #define skb_list_walk_safe(first, skb, next_skb)                               \
1890 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1891 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1892 
skb_list_del_init(struct sk_buff * skb)1893 static inline void skb_list_del_init(struct sk_buff *skb)
1894 {
1895 	__list_del_entry(&skb->list);
1896 	skb_mark_not_on_list(skb);
1897 }
1898 
1899 /**
1900  *	skb_queue_empty - check if a queue is empty
1901  *	@list: queue head
1902  *
1903  *	Returns true if the queue is empty, false otherwise.
1904  */
skb_queue_empty(const struct sk_buff_head * list)1905 static inline int skb_queue_empty(const struct sk_buff_head *list)
1906 {
1907 	return list->next == (const struct sk_buff *) list;
1908 }
1909 
1910 /**
1911  *	skb_queue_empty_lockless - check if a queue is empty
1912  *	@list: queue head
1913  *
1914  *	Returns true if the queue is empty, false otherwise.
1915  *	This variant can be used in lockless contexts.
1916  */
skb_queue_empty_lockless(const struct sk_buff_head * list)1917 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1918 {
1919 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1920 }
1921 
1922 
1923 /**
1924  *	skb_queue_is_last - check if skb is the last entry in the queue
1925  *	@list: queue head
1926  *	@skb: buffer
1927  *
1928  *	Returns true if @skb is the last buffer on the list.
1929  */
skb_queue_is_last(const struct sk_buff_head * list,const struct sk_buff * skb)1930 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1931 				     const struct sk_buff *skb)
1932 {
1933 	return skb->next == (const struct sk_buff *) list;
1934 }
1935 
1936 /**
1937  *	skb_queue_is_first - check if skb is the first entry in the queue
1938  *	@list: queue head
1939  *	@skb: buffer
1940  *
1941  *	Returns true if @skb is the first buffer on the list.
1942  */
skb_queue_is_first(const struct sk_buff_head * list,const struct sk_buff * skb)1943 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1944 				      const struct sk_buff *skb)
1945 {
1946 	return skb->prev == (const struct sk_buff *) list;
1947 }
1948 
1949 /**
1950  *	skb_queue_next - return the next packet in the queue
1951  *	@list: queue head
1952  *	@skb: current buffer
1953  *
1954  *	Return the next packet in @list after @skb.  It is only valid to
1955  *	call this if skb_queue_is_last() evaluates to false.
1956  */
skb_queue_next(const struct sk_buff_head * list,const struct sk_buff * skb)1957 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1958 					     const struct sk_buff *skb)
1959 {
1960 	/* This BUG_ON may seem severe, but if we just return then we
1961 	 * are going to dereference garbage.
1962 	 */
1963 	BUG_ON(skb_queue_is_last(list, skb));
1964 	return skb->next;
1965 }
1966 
1967 /**
1968  *	skb_queue_prev - return the prev packet in the queue
1969  *	@list: queue head
1970  *	@skb: current buffer
1971  *
1972  *	Return the prev packet in @list before @skb.  It is only valid to
1973  *	call this if skb_queue_is_first() evaluates to false.
1974  */
skb_queue_prev(const struct sk_buff_head * list,const struct sk_buff * skb)1975 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1976 					     const struct sk_buff *skb)
1977 {
1978 	/* This BUG_ON may seem severe, but if we just return then we
1979 	 * are going to dereference garbage.
1980 	 */
1981 	BUG_ON(skb_queue_is_first(list, skb));
1982 	return skb->prev;
1983 }
1984 
1985 /**
1986  *	skb_get - reference buffer
1987  *	@skb: buffer to reference
1988  *
1989  *	Makes another reference to a socket buffer and returns a pointer
1990  *	to the buffer.
1991  */
skb_get(struct sk_buff * skb)1992 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1993 {
1994 	refcount_inc(&skb->users);
1995 	return skb;
1996 }
1997 
1998 /*
1999  * If users == 1, we are the only owner and can avoid redundant atomic changes.
2000  */
2001 
2002 /**
2003  *	skb_cloned - is the buffer a clone
2004  *	@skb: buffer to check
2005  *
2006  *	Returns true if the buffer was generated with skb_clone() and is
2007  *	one of multiple shared copies of the buffer. Cloned buffers are
2008  *	shared data so must not be written to under normal circumstances.
2009  */
skb_cloned(const struct sk_buff * skb)2010 static inline int skb_cloned(const struct sk_buff *skb)
2011 {
2012 	return skb->cloned &&
2013 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
2014 }
2015 
skb_unclone(struct sk_buff * skb,gfp_t pri)2016 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
2017 {
2018 	might_sleep_if(gfpflags_allow_blocking(pri));
2019 
2020 	if (skb_cloned(skb))
2021 		return pskb_expand_head(skb, 0, 0, pri);
2022 
2023 	return 0;
2024 }
2025 
2026 /* This variant of skb_unclone() makes sure skb->truesize
2027  * and skb_end_offset() are not changed, whenever a new skb->head is needed.
2028  *
2029  * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
2030  * when various debugging features are in place.
2031  */
2032 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
skb_unclone_keeptruesize(struct sk_buff * skb,gfp_t pri)2033 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2034 {
2035 	might_sleep_if(gfpflags_allow_blocking(pri));
2036 
2037 	if (skb_cloned(skb))
2038 		return __skb_unclone_keeptruesize(skb, pri);
2039 	return 0;
2040 }
2041 
2042 /**
2043  *	skb_header_cloned - is the header a clone
2044  *	@skb: buffer to check
2045  *
2046  *	Returns true if modifying the header part of the buffer requires
2047  *	the data to be copied.
2048  */
skb_header_cloned(const struct sk_buff * skb)2049 static inline int skb_header_cloned(const struct sk_buff *skb)
2050 {
2051 	int dataref;
2052 
2053 	if (!skb->cloned)
2054 		return 0;
2055 
2056 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
2057 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
2058 	return dataref != 1;
2059 }
2060 
skb_header_unclone(struct sk_buff * skb,gfp_t pri)2061 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
2062 {
2063 	might_sleep_if(gfpflags_allow_blocking(pri));
2064 
2065 	if (skb_header_cloned(skb))
2066 		return pskb_expand_head(skb, 0, 0, pri);
2067 
2068 	return 0;
2069 }
2070 
2071 /**
2072  * __skb_header_release() - allow clones to use the headroom
2073  * @skb: buffer to operate on
2074  *
2075  * See "DOC: dataref and headerless skbs".
2076  */
__skb_header_release(struct sk_buff * skb)2077 static inline void __skb_header_release(struct sk_buff *skb)
2078 {
2079 	skb->nohdr = 1;
2080 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
2081 }
2082 
2083 
2084 /**
2085  *	skb_shared - is the buffer shared
2086  *	@skb: buffer to check
2087  *
2088  *	Returns true if more than one person has a reference to this
2089  *	buffer.
2090  */
skb_shared(const struct sk_buff * skb)2091 static inline int skb_shared(const struct sk_buff *skb)
2092 {
2093 	return refcount_read(&skb->users) != 1;
2094 }
2095 
2096 /**
2097  *	skb_share_check - check if buffer is shared and if so clone it
2098  *	@skb: buffer to check
2099  *	@pri: priority for memory allocation
2100  *
2101  *	If the buffer is shared the buffer is cloned and the old copy
2102  *	drops a reference. A new clone with a single reference is returned.
2103  *	If the buffer is not shared the original buffer is returned. When
2104  *	being called from interrupt status or with spinlocks held pri must
2105  *	be GFP_ATOMIC.
2106  *
2107  *	NULL is returned on a memory allocation failure.
2108  */
skb_share_check(struct sk_buff * skb,gfp_t pri)2109 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
2110 {
2111 	might_sleep_if(gfpflags_allow_blocking(pri));
2112 	if (skb_shared(skb)) {
2113 		struct sk_buff *nskb = skb_clone(skb, pri);
2114 
2115 		if (likely(nskb))
2116 			consume_skb(skb);
2117 		else
2118 			kfree_skb(skb);
2119 		skb = nskb;
2120 	}
2121 	return skb;
2122 }
2123 
2124 /*
2125  *	Copy shared buffers into a new sk_buff. We effectively do COW on
2126  *	packets to handle cases where we have a local reader and forward
2127  *	and a couple of other messy ones. The normal one is tcpdumping
2128  *	a packet thats being forwarded.
2129  */
2130 
2131 /**
2132  *	skb_unshare - make a copy of a shared buffer
2133  *	@skb: buffer to check
2134  *	@pri: priority for memory allocation
2135  *
2136  *	If the socket buffer is a clone then this function creates a new
2137  *	copy of the data, drops a reference count on the old copy and returns
2138  *	the new copy with the reference count at 1. If the buffer is not a clone
2139  *	the original buffer is returned. When called with a spinlock held or
2140  *	from interrupt state @pri must be %GFP_ATOMIC
2141  *
2142  *	%NULL is returned on a memory allocation failure.
2143  */
skb_unshare(struct sk_buff * skb,gfp_t pri)2144 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
2145 					  gfp_t pri)
2146 {
2147 	might_sleep_if(gfpflags_allow_blocking(pri));
2148 	if (skb_cloned(skb)) {
2149 		struct sk_buff *nskb = skb_copy(skb, pri);
2150 
2151 		/* Free our shared copy */
2152 		if (likely(nskb))
2153 			consume_skb(skb);
2154 		else
2155 			kfree_skb(skb);
2156 		skb = nskb;
2157 	}
2158 	return skb;
2159 }
2160 
2161 /**
2162  *	skb_peek - peek at the head of an &sk_buff_head
2163  *	@list_: list to peek at
2164  *
2165  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2166  *	be careful with this one. A peek leaves the buffer on the
2167  *	list and someone else may run off with it. You must hold
2168  *	the appropriate locks or have a private queue to do this.
2169  *
2170  *	Returns %NULL for an empty list or a pointer to the head element.
2171  *	The reference count is not incremented and the reference is therefore
2172  *	volatile. Use with caution.
2173  */
skb_peek(const struct sk_buff_head * list_)2174 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
2175 {
2176 	struct sk_buff *skb = list_->next;
2177 
2178 	if (skb == (struct sk_buff *)list_)
2179 		skb = NULL;
2180 	return skb;
2181 }
2182 
2183 /**
2184  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
2185  *	@list_: list to peek at
2186  *
2187  *	Like skb_peek(), but the caller knows that the list is not empty.
2188  */
__skb_peek(const struct sk_buff_head * list_)2189 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
2190 {
2191 	return list_->next;
2192 }
2193 
2194 /**
2195  *	skb_peek_next - peek skb following the given one from a queue
2196  *	@skb: skb to start from
2197  *	@list_: list to peek at
2198  *
2199  *	Returns %NULL when the end of the list is met or a pointer to the
2200  *	next element. The reference count is not incremented and the
2201  *	reference is therefore volatile. Use with caution.
2202  */
skb_peek_next(struct sk_buff * skb,const struct sk_buff_head * list_)2203 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
2204 		const struct sk_buff_head *list_)
2205 {
2206 	struct sk_buff *next = skb->next;
2207 
2208 	if (next == (struct sk_buff *)list_)
2209 		next = NULL;
2210 	return next;
2211 }
2212 
2213 /**
2214  *	skb_peek_tail - peek at the tail of an &sk_buff_head
2215  *	@list_: list to peek at
2216  *
2217  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2218  *	be careful with this one. A peek leaves the buffer on the
2219  *	list and someone else may run off with it. You must hold
2220  *	the appropriate locks or have a private queue to do this.
2221  *
2222  *	Returns %NULL for an empty list or a pointer to the tail element.
2223  *	The reference count is not incremented and the reference is therefore
2224  *	volatile. Use with caution.
2225  */
skb_peek_tail(const struct sk_buff_head * list_)2226 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
2227 {
2228 	struct sk_buff *skb = READ_ONCE(list_->prev);
2229 
2230 	if (skb == (struct sk_buff *)list_)
2231 		skb = NULL;
2232 	return skb;
2233 
2234 }
2235 
2236 /**
2237  *	skb_queue_len	- get queue length
2238  *	@list_: list to measure
2239  *
2240  *	Return the length of an &sk_buff queue.
2241  */
skb_queue_len(const struct sk_buff_head * list_)2242 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2243 {
2244 	return list_->qlen;
2245 }
2246 
2247 /**
2248  *	skb_queue_len_lockless	- get queue length
2249  *	@list_: list to measure
2250  *
2251  *	Return the length of an &sk_buff queue.
2252  *	This variant can be used in lockless contexts.
2253  */
skb_queue_len_lockless(const struct sk_buff_head * list_)2254 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2255 {
2256 	return READ_ONCE(list_->qlen);
2257 }
2258 
2259 /**
2260  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2261  *	@list: queue to initialize
2262  *
2263  *	This initializes only the list and queue length aspects of
2264  *	an sk_buff_head object.  This allows to initialize the list
2265  *	aspects of an sk_buff_head without reinitializing things like
2266  *	the spinlock.  It can also be used for on-stack sk_buff_head
2267  *	objects where the spinlock is known to not be used.
2268  */
__skb_queue_head_init(struct sk_buff_head * list)2269 static inline void __skb_queue_head_init(struct sk_buff_head *list)
2270 {
2271 	list->prev = list->next = (struct sk_buff *)list;
2272 	list->qlen = 0;
2273 }
2274 
2275 /*
2276  * This function creates a split out lock class for each invocation;
2277  * this is needed for now since a whole lot of users of the skb-queue
2278  * infrastructure in drivers have different locking usage (in hardirq)
2279  * than the networking core (in softirq only). In the long run either the
2280  * network layer or drivers should need annotation to consolidate the
2281  * main types of usage into 3 classes.
2282  */
skb_queue_head_init(struct sk_buff_head * list)2283 static inline void skb_queue_head_init(struct sk_buff_head *list)
2284 {
2285 	spin_lock_init(&list->lock);
2286 	__skb_queue_head_init(list);
2287 }
2288 
skb_queue_head_init_class(struct sk_buff_head * list,struct lock_class_key * class)2289 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2290 		struct lock_class_key *class)
2291 {
2292 	skb_queue_head_init(list);
2293 	lockdep_set_class(&list->lock, class);
2294 }
2295 
2296 /*
2297  *	Insert an sk_buff on a list.
2298  *
2299  *	The "__skb_xxxx()" functions are the non-atomic ones that
2300  *	can only be called with interrupts disabled.
2301  */
__skb_insert(struct sk_buff * newsk,struct sk_buff * prev,struct sk_buff * next,struct sk_buff_head * list)2302 static inline void __skb_insert(struct sk_buff *newsk,
2303 				struct sk_buff *prev, struct sk_buff *next,
2304 				struct sk_buff_head *list)
2305 {
2306 	/* See skb_queue_empty_lockless() and skb_peek_tail()
2307 	 * for the opposite READ_ONCE()
2308 	 */
2309 	WRITE_ONCE(newsk->next, next);
2310 	WRITE_ONCE(newsk->prev, prev);
2311 	WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2312 	WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2313 	WRITE_ONCE(list->qlen, list->qlen + 1);
2314 }
2315 
__skb_queue_splice(const struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * next)2316 static inline void __skb_queue_splice(const struct sk_buff_head *list,
2317 				      struct sk_buff *prev,
2318 				      struct sk_buff *next)
2319 {
2320 	struct sk_buff *first = list->next;
2321 	struct sk_buff *last = list->prev;
2322 
2323 	WRITE_ONCE(first->prev, prev);
2324 	WRITE_ONCE(prev->next, first);
2325 
2326 	WRITE_ONCE(last->next, next);
2327 	WRITE_ONCE(next->prev, last);
2328 }
2329 
2330 /**
2331  *	skb_queue_splice - join two skb lists, this is designed for stacks
2332  *	@list: the new list to add
2333  *	@head: the place to add it in the first list
2334  */
skb_queue_splice(const struct sk_buff_head * list,struct sk_buff_head * head)2335 static inline void skb_queue_splice(const struct sk_buff_head *list,
2336 				    struct sk_buff_head *head)
2337 {
2338 	if (!skb_queue_empty(list)) {
2339 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2340 		head->qlen += list->qlen;
2341 	}
2342 }
2343 
2344 /**
2345  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2346  *	@list: the new list to add
2347  *	@head: the place to add it in the first list
2348  *
2349  *	The list at @list is reinitialised
2350  */
skb_queue_splice_init(struct sk_buff_head * list,struct sk_buff_head * head)2351 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2352 					 struct sk_buff_head *head)
2353 {
2354 	if (!skb_queue_empty(list)) {
2355 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2356 		head->qlen += list->qlen;
2357 		__skb_queue_head_init(list);
2358 	}
2359 }
2360 
2361 /**
2362  *	skb_queue_splice_tail - join two skb lists, each list being a queue
2363  *	@list: the new list to add
2364  *	@head: the place to add it in the first list
2365  */
skb_queue_splice_tail(const struct sk_buff_head * list,struct sk_buff_head * head)2366 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2367 					 struct sk_buff_head *head)
2368 {
2369 	if (!skb_queue_empty(list)) {
2370 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2371 		head->qlen += list->qlen;
2372 	}
2373 }
2374 
2375 /**
2376  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2377  *	@list: the new list to add
2378  *	@head: the place to add it in the first list
2379  *
2380  *	Each of the lists is a queue.
2381  *	The list at @list is reinitialised
2382  */
skb_queue_splice_tail_init(struct sk_buff_head * list,struct sk_buff_head * head)2383 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2384 					      struct sk_buff_head *head)
2385 {
2386 	if (!skb_queue_empty(list)) {
2387 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2388 		head->qlen += list->qlen;
2389 		__skb_queue_head_init(list);
2390 	}
2391 }
2392 
2393 /**
2394  *	__skb_queue_after - queue a buffer at the list head
2395  *	@list: list to use
2396  *	@prev: place after this buffer
2397  *	@newsk: buffer to queue
2398  *
2399  *	Queue a buffer int the middle of a list. This function takes no locks
2400  *	and you must therefore hold required locks before calling it.
2401  *
2402  *	A buffer cannot be placed on two lists at the same time.
2403  */
__skb_queue_after(struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * newsk)2404 static inline void __skb_queue_after(struct sk_buff_head *list,
2405 				     struct sk_buff *prev,
2406 				     struct sk_buff *newsk)
2407 {
2408 	__skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2409 }
2410 
2411 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2412 		struct sk_buff_head *list);
2413 
__skb_queue_before(struct sk_buff_head * list,struct sk_buff * next,struct sk_buff * newsk)2414 static inline void __skb_queue_before(struct sk_buff_head *list,
2415 				      struct sk_buff *next,
2416 				      struct sk_buff *newsk)
2417 {
2418 	__skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2419 }
2420 
2421 /**
2422  *	__skb_queue_head - queue a buffer at the list head
2423  *	@list: list to use
2424  *	@newsk: buffer to queue
2425  *
2426  *	Queue a buffer at the start of a list. This function takes no locks
2427  *	and you must therefore hold required locks before calling it.
2428  *
2429  *	A buffer cannot be placed on two lists at the same time.
2430  */
__skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)2431 static inline void __skb_queue_head(struct sk_buff_head *list,
2432 				    struct sk_buff *newsk)
2433 {
2434 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2435 }
2436 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2437 
2438 /**
2439  *	__skb_queue_tail - queue a buffer at the list tail
2440  *	@list: list to use
2441  *	@newsk: buffer to queue
2442  *
2443  *	Queue a buffer at the end of a list. This function takes no locks
2444  *	and you must therefore hold required locks before calling it.
2445  *
2446  *	A buffer cannot be placed on two lists at the same time.
2447  */
__skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)2448 static inline void __skb_queue_tail(struct sk_buff_head *list,
2449 				   struct sk_buff *newsk)
2450 {
2451 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2452 }
2453 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2454 
2455 /*
2456  * remove sk_buff from list. _Must_ be called atomically, and with
2457  * the list known..
2458  */
2459 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
__skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)2460 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2461 {
2462 	struct sk_buff *next, *prev;
2463 
2464 	WRITE_ONCE(list->qlen, list->qlen - 1);
2465 	next	   = skb->next;
2466 	prev	   = skb->prev;
2467 	skb->next  = skb->prev = NULL;
2468 	WRITE_ONCE(next->prev, prev);
2469 	WRITE_ONCE(prev->next, next);
2470 }
2471 
2472 /**
2473  *	__skb_dequeue - remove from the head of the queue
2474  *	@list: list to dequeue from
2475  *
2476  *	Remove the head of the list. This function does not take any locks
2477  *	so must be used with appropriate locks held only. The head item is
2478  *	returned or %NULL if the list is empty.
2479  */
__skb_dequeue(struct sk_buff_head * list)2480 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2481 {
2482 	struct sk_buff *skb = skb_peek(list);
2483 	if (skb)
2484 		__skb_unlink(skb, list);
2485 	return skb;
2486 }
2487 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2488 
2489 /**
2490  *	__skb_dequeue_tail - remove from the tail of the queue
2491  *	@list: list to dequeue from
2492  *
2493  *	Remove the tail of the list. This function does not take any locks
2494  *	so must be used with appropriate locks held only. The tail item is
2495  *	returned or %NULL if the list is empty.
2496  */
__skb_dequeue_tail(struct sk_buff_head * list)2497 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2498 {
2499 	struct sk_buff *skb = skb_peek_tail(list);
2500 	if (skb)
2501 		__skb_unlink(skb, list);
2502 	return skb;
2503 }
2504 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2505 
2506 
skb_is_nonlinear(const struct sk_buff * skb)2507 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2508 {
2509 	return skb->data_len;
2510 }
2511 
skb_headlen(const struct sk_buff * skb)2512 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2513 {
2514 	return skb->len - skb->data_len;
2515 }
2516 
__skb_pagelen(const struct sk_buff * skb)2517 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2518 {
2519 	unsigned int i, len = 0;
2520 
2521 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2522 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2523 	return len;
2524 }
2525 
skb_pagelen(const struct sk_buff * skb)2526 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2527 {
2528 	return skb_headlen(skb) + __skb_pagelen(skb);
2529 }
2530 
__skb_fill_page_desc_noacc(struct skb_shared_info * shinfo,int i,struct page * page,int off,int size)2531 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo,
2532 					      int i, struct page *page,
2533 					      int off, int size)
2534 {
2535 	skb_frag_t *frag = &shinfo->frags[i];
2536 
2537 	/*
2538 	 * Propagate page pfmemalloc to the skb if we can. The problem is
2539 	 * that not all callers have unique ownership of the page but rely
2540 	 * on page_is_pfmemalloc doing the right thing(tm).
2541 	 */
2542 	frag->bv_page		  = page;
2543 	frag->bv_offset		  = off;
2544 	skb_frag_size_set(frag, size);
2545 }
2546 
2547 /**
2548  * __skb_fill_page_desc - initialise a paged fragment in an skb
2549  * @skb: buffer containing fragment to be initialised
2550  * @i: paged fragment index to initialise
2551  * @page: the page to use for this fragment
2552  * @off: the offset to the data with @page
2553  * @size: the length of the data
2554  *
2555  * Initialises the @i'th fragment of @skb to point to &size bytes at
2556  * offset @off within @page.
2557  *
2558  * Does not take any additional reference on the fragment.
2559  */
__skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)2560 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2561 					struct page *page, int off, int size)
2562 {
2563 	__skb_fill_page_desc_noacc(skb_shinfo(skb), i, page, off, size);
2564 	page = compound_head(page);
2565 	if (page_is_pfmemalloc(page))
2566 		skb->pfmemalloc	= true;
2567 }
2568 
2569 /**
2570  * skb_fill_page_desc - initialise a paged fragment in an skb
2571  * @skb: buffer containing fragment to be initialised
2572  * @i: paged fragment index to initialise
2573  * @page: the page to use for this fragment
2574  * @off: the offset to the data with @page
2575  * @size: the length of the data
2576  *
2577  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2578  * @skb to point to @size bytes at offset @off within @page. In
2579  * addition updates @skb such that @i is the last fragment.
2580  *
2581  * Does not take any additional reference on the fragment.
2582  */
skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)2583 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2584 				      struct page *page, int off, int size)
2585 {
2586 	__skb_fill_page_desc(skb, i, page, off, size);
2587 	skb_shinfo(skb)->nr_frags = i + 1;
2588 }
2589 
2590 /**
2591  * skb_fill_page_desc_noacc - initialise a paged fragment in an skb
2592  * @skb: buffer containing fragment to be initialised
2593  * @i: paged fragment index to initialise
2594  * @page: the page to use for this fragment
2595  * @off: the offset to the data with @page
2596  * @size: the length of the data
2597  *
2598  * Variant of skb_fill_page_desc() which does not deal with
2599  * pfmemalloc, if page is not owned by us.
2600  */
skb_fill_page_desc_noacc(struct sk_buff * skb,int i,struct page * page,int off,int size)2601 static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i,
2602 					    struct page *page, int off,
2603 					    int size)
2604 {
2605 	struct skb_shared_info *shinfo = skb_shinfo(skb);
2606 
2607 	__skb_fill_page_desc_noacc(shinfo, i, page, off, size);
2608 	shinfo->nr_frags = i + 1;
2609 }
2610 
2611 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2612 		     int size, unsigned int truesize);
2613 
2614 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2615 			  unsigned int truesize);
2616 
2617 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2618 
2619 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_tail_pointer(const struct sk_buff * skb)2620 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2621 {
2622 	return skb->head + skb->tail;
2623 }
2624 
skb_reset_tail_pointer(struct sk_buff * skb)2625 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2626 {
2627 	skb->tail = skb->data - skb->head;
2628 }
2629 
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2630 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2631 {
2632 	skb_reset_tail_pointer(skb);
2633 	skb->tail += offset;
2634 }
2635 
2636 #else /* NET_SKBUFF_DATA_USES_OFFSET */
skb_tail_pointer(const struct sk_buff * skb)2637 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2638 {
2639 	return skb->tail;
2640 }
2641 
skb_reset_tail_pointer(struct sk_buff * skb)2642 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2643 {
2644 	skb->tail = skb->data;
2645 }
2646 
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2647 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2648 {
2649 	skb->tail = skb->data + offset;
2650 }
2651 
2652 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2653 
skb_assert_len(struct sk_buff * skb)2654 static inline void skb_assert_len(struct sk_buff *skb)
2655 {
2656 #ifdef CONFIG_DEBUG_NET
2657 	if (WARN_ONCE(!skb->len, "%s\n", __func__))
2658 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2659 #endif /* CONFIG_DEBUG_NET */
2660 }
2661 
2662 /*
2663  *	Add data to an sk_buff
2664  */
2665 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2666 void *skb_put(struct sk_buff *skb, unsigned int len);
__skb_put(struct sk_buff * skb,unsigned int len)2667 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2668 {
2669 	void *tmp = skb_tail_pointer(skb);
2670 	SKB_LINEAR_ASSERT(skb);
2671 	skb->tail += len;
2672 	skb->len  += len;
2673 	return tmp;
2674 }
2675 
__skb_put_zero(struct sk_buff * skb,unsigned int len)2676 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2677 {
2678 	void *tmp = __skb_put(skb, len);
2679 
2680 	memset(tmp, 0, len);
2681 	return tmp;
2682 }
2683 
__skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2684 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2685 				   unsigned int len)
2686 {
2687 	void *tmp = __skb_put(skb, len);
2688 
2689 	memcpy(tmp, data, len);
2690 	return tmp;
2691 }
2692 
__skb_put_u8(struct sk_buff * skb,u8 val)2693 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2694 {
2695 	*(u8 *)__skb_put(skb, 1) = val;
2696 }
2697 
skb_put_zero(struct sk_buff * skb,unsigned int len)2698 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2699 {
2700 	void *tmp = skb_put(skb, len);
2701 
2702 	memset(tmp, 0, len);
2703 
2704 	return tmp;
2705 }
2706 
skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2707 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2708 				 unsigned int len)
2709 {
2710 	void *tmp = skb_put(skb, len);
2711 
2712 	memcpy(tmp, data, len);
2713 
2714 	return tmp;
2715 }
2716 
skb_put_u8(struct sk_buff * skb,u8 val)2717 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2718 {
2719 	*(u8 *)skb_put(skb, 1) = val;
2720 }
2721 
2722 void *skb_push(struct sk_buff *skb, unsigned int len);
__skb_push(struct sk_buff * skb,unsigned int len)2723 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2724 {
2725 	skb->data -= len;
2726 	skb->len  += len;
2727 	return skb->data;
2728 }
2729 
2730 void *skb_pull(struct sk_buff *skb, unsigned int len);
__skb_pull(struct sk_buff * skb,unsigned int len)2731 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2732 {
2733 	skb->len -= len;
2734 	if (unlikely(skb->len < skb->data_len)) {
2735 #if defined(CONFIG_DEBUG_NET)
2736 		skb->len += len;
2737 		pr_err("__skb_pull(len=%u)\n", len);
2738 		skb_dump(KERN_ERR, skb, false);
2739 #endif
2740 		BUG();
2741 	}
2742 	return skb->data += len;
2743 }
2744 
skb_pull_inline(struct sk_buff * skb,unsigned int len)2745 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2746 {
2747 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2748 }
2749 
2750 void *skb_pull_data(struct sk_buff *skb, size_t len);
2751 
2752 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2753 
__pskb_pull(struct sk_buff * skb,unsigned int len)2754 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2755 {
2756 	if (len > skb_headlen(skb) &&
2757 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2758 		return NULL;
2759 	skb->len -= len;
2760 	return skb->data += len;
2761 }
2762 
pskb_pull(struct sk_buff * skb,unsigned int len)2763 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2764 {
2765 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2766 }
2767 
pskb_may_pull(struct sk_buff * skb,unsigned int len)2768 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2769 {
2770 	if (likely(len <= skb_headlen(skb)))
2771 		return true;
2772 	if (unlikely(len > skb->len))
2773 		return false;
2774 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2775 }
2776 
2777 void skb_condense(struct sk_buff *skb);
2778 
2779 /**
2780  *	skb_headroom - bytes at buffer head
2781  *	@skb: buffer to check
2782  *
2783  *	Return the number of bytes of free space at the head of an &sk_buff.
2784  */
skb_headroom(const struct sk_buff * skb)2785 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2786 {
2787 	return skb->data - skb->head;
2788 }
2789 
2790 /**
2791  *	skb_tailroom - bytes at buffer end
2792  *	@skb: buffer to check
2793  *
2794  *	Return the number of bytes of free space at the tail of an sk_buff
2795  */
skb_tailroom(const struct sk_buff * skb)2796 static inline int skb_tailroom(const struct sk_buff *skb)
2797 {
2798 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2799 }
2800 
2801 /**
2802  *	skb_availroom - bytes at buffer end
2803  *	@skb: buffer to check
2804  *
2805  *	Return the number of bytes of free space at the tail of an sk_buff
2806  *	allocated by sk_stream_alloc()
2807  */
skb_availroom(const struct sk_buff * skb)2808 static inline int skb_availroom(const struct sk_buff *skb)
2809 {
2810 	if (skb_is_nonlinear(skb))
2811 		return 0;
2812 
2813 	return skb->end - skb->tail - skb->reserved_tailroom;
2814 }
2815 
2816 /**
2817  *	skb_reserve - adjust headroom
2818  *	@skb: buffer to alter
2819  *	@len: bytes to move
2820  *
2821  *	Increase the headroom of an empty &sk_buff by reducing the tail
2822  *	room. This is only allowed for an empty buffer.
2823  */
skb_reserve(struct sk_buff * skb,int len)2824 static inline void skb_reserve(struct sk_buff *skb, int len)
2825 {
2826 	skb->data += len;
2827 	skb->tail += len;
2828 }
2829 
2830 /**
2831  *	skb_tailroom_reserve - adjust reserved_tailroom
2832  *	@skb: buffer to alter
2833  *	@mtu: maximum amount of headlen permitted
2834  *	@needed_tailroom: minimum amount of reserved_tailroom
2835  *
2836  *	Set reserved_tailroom so that headlen can be as large as possible but
2837  *	not larger than mtu and tailroom cannot be smaller than
2838  *	needed_tailroom.
2839  *	The required headroom should already have been reserved before using
2840  *	this function.
2841  */
skb_tailroom_reserve(struct sk_buff * skb,unsigned int mtu,unsigned int needed_tailroom)2842 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2843 					unsigned int needed_tailroom)
2844 {
2845 	SKB_LINEAR_ASSERT(skb);
2846 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2847 		/* use at most mtu */
2848 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2849 	else
2850 		/* use up to all available space */
2851 		skb->reserved_tailroom = needed_tailroom;
2852 }
2853 
2854 #define ENCAP_TYPE_ETHER	0
2855 #define ENCAP_TYPE_IPPROTO	1
2856 
skb_set_inner_protocol(struct sk_buff * skb,__be16 protocol)2857 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2858 					  __be16 protocol)
2859 {
2860 	skb->inner_protocol = protocol;
2861 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2862 }
2863 
skb_set_inner_ipproto(struct sk_buff * skb,__u8 ipproto)2864 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2865 					 __u8 ipproto)
2866 {
2867 	skb->inner_ipproto = ipproto;
2868 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2869 }
2870 
skb_reset_inner_headers(struct sk_buff * skb)2871 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2872 {
2873 	skb->inner_mac_header = skb->mac_header;
2874 	skb->inner_network_header = skb->network_header;
2875 	skb->inner_transport_header = skb->transport_header;
2876 }
2877 
skb_reset_mac_len(struct sk_buff * skb)2878 static inline void skb_reset_mac_len(struct sk_buff *skb)
2879 {
2880 	skb->mac_len = skb->network_header - skb->mac_header;
2881 }
2882 
skb_inner_transport_header(const struct sk_buff * skb)2883 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2884 							*skb)
2885 {
2886 	return skb->head + skb->inner_transport_header;
2887 }
2888 
skb_inner_transport_offset(const struct sk_buff * skb)2889 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2890 {
2891 	return skb_inner_transport_header(skb) - skb->data;
2892 }
2893 
skb_reset_inner_transport_header(struct sk_buff * skb)2894 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2895 {
2896 	skb->inner_transport_header = skb->data - skb->head;
2897 }
2898 
skb_set_inner_transport_header(struct sk_buff * skb,const int offset)2899 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2900 						   const int offset)
2901 {
2902 	skb_reset_inner_transport_header(skb);
2903 	skb->inner_transport_header += offset;
2904 }
2905 
skb_inner_network_header(const struct sk_buff * skb)2906 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2907 {
2908 	return skb->head + skb->inner_network_header;
2909 }
2910 
skb_reset_inner_network_header(struct sk_buff * skb)2911 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2912 {
2913 	skb->inner_network_header = skb->data - skb->head;
2914 }
2915 
skb_set_inner_network_header(struct sk_buff * skb,const int offset)2916 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2917 						const int offset)
2918 {
2919 	skb_reset_inner_network_header(skb);
2920 	skb->inner_network_header += offset;
2921 }
2922 
skb_inner_mac_header(const struct sk_buff * skb)2923 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2924 {
2925 	return skb->head + skb->inner_mac_header;
2926 }
2927 
skb_reset_inner_mac_header(struct sk_buff * skb)2928 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2929 {
2930 	skb->inner_mac_header = skb->data - skb->head;
2931 }
2932 
skb_set_inner_mac_header(struct sk_buff * skb,const int offset)2933 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2934 					    const int offset)
2935 {
2936 	skb_reset_inner_mac_header(skb);
2937 	skb->inner_mac_header += offset;
2938 }
skb_transport_header_was_set(const struct sk_buff * skb)2939 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2940 {
2941 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2942 }
2943 
skb_transport_header(const struct sk_buff * skb)2944 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2945 {
2946 	DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
2947 	return skb->head + skb->transport_header;
2948 }
2949 
skb_reset_transport_header(struct sk_buff * skb)2950 static inline void skb_reset_transport_header(struct sk_buff *skb)
2951 {
2952 	skb->transport_header = skb->data - skb->head;
2953 }
2954 
skb_set_transport_header(struct sk_buff * skb,const int offset)2955 static inline void skb_set_transport_header(struct sk_buff *skb,
2956 					    const int offset)
2957 {
2958 	skb_reset_transport_header(skb);
2959 	skb->transport_header += offset;
2960 }
2961 
skb_network_header(const struct sk_buff * skb)2962 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2963 {
2964 	return skb->head + skb->network_header;
2965 }
2966 
skb_reset_network_header(struct sk_buff * skb)2967 static inline void skb_reset_network_header(struct sk_buff *skb)
2968 {
2969 	skb->network_header = skb->data - skb->head;
2970 }
2971 
skb_set_network_header(struct sk_buff * skb,const int offset)2972 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2973 {
2974 	skb_reset_network_header(skb);
2975 	skb->network_header += offset;
2976 }
2977 
skb_mac_header(const struct sk_buff * skb)2978 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2979 {
2980 	return skb->head + skb->mac_header;
2981 }
2982 
skb_mac_offset(const struct sk_buff * skb)2983 static inline int skb_mac_offset(const struct sk_buff *skb)
2984 {
2985 	return skb_mac_header(skb) - skb->data;
2986 }
2987 
skb_mac_header_len(const struct sk_buff * skb)2988 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2989 {
2990 	return skb->network_header - skb->mac_header;
2991 }
2992 
skb_mac_header_was_set(const struct sk_buff * skb)2993 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2994 {
2995 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2996 }
2997 
skb_unset_mac_header(struct sk_buff * skb)2998 static inline void skb_unset_mac_header(struct sk_buff *skb)
2999 {
3000 	skb->mac_header = (typeof(skb->mac_header))~0U;
3001 }
3002 
skb_reset_mac_header(struct sk_buff * skb)3003 static inline void skb_reset_mac_header(struct sk_buff *skb)
3004 {
3005 	skb->mac_header = skb->data - skb->head;
3006 }
3007 
skb_set_mac_header(struct sk_buff * skb,const int offset)3008 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
3009 {
3010 	skb_reset_mac_header(skb);
3011 	skb->mac_header += offset;
3012 }
3013 
skb_pop_mac_header(struct sk_buff * skb)3014 static inline void skb_pop_mac_header(struct sk_buff *skb)
3015 {
3016 	skb->mac_header = skb->network_header;
3017 }
3018 
skb_probe_transport_header(struct sk_buff * skb)3019 static inline void skb_probe_transport_header(struct sk_buff *skb)
3020 {
3021 	struct flow_keys_basic keys;
3022 
3023 	if (skb_transport_header_was_set(skb))
3024 		return;
3025 
3026 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
3027 					     NULL, 0, 0, 0, 0))
3028 		skb_set_transport_header(skb, keys.control.thoff);
3029 }
3030 
skb_mac_header_rebuild(struct sk_buff * skb)3031 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
3032 {
3033 	if (skb_mac_header_was_set(skb)) {
3034 		const unsigned char *old_mac = skb_mac_header(skb);
3035 
3036 		skb_set_mac_header(skb, -skb->mac_len);
3037 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
3038 	}
3039 }
3040 
skb_checksum_start_offset(const struct sk_buff * skb)3041 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
3042 {
3043 	return skb->csum_start - skb_headroom(skb);
3044 }
3045 
skb_checksum_start(const struct sk_buff * skb)3046 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
3047 {
3048 	return skb->head + skb->csum_start;
3049 }
3050 
skb_transport_offset(const struct sk_buff * skb)3051 static inline int skb_transport_offset(const struct sk_buff *skb)
3052 {
3053 	return skb_transport_header(skb) - skb->data;
3054 }
3055 
skb_network_header_len(const struct sk_buff * skb)3056 static inline u32 skb_network_header_len(const struct sk_buff *skb)
3057 {
3058 	return skb->transport_header - skb->network_header;
3059 }
3060 
skb_inner_network_header_len(const struct sk_buff * skb)3061 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
3062 {
3063 	return skb->inner_transport_header - skb->inner_network_header;
3064 }
3065 
skb_network_offset(const struct sk_buff * skb)3066 static inline int skb_network_offset(const struct sk_buff *skb)
3067 {
3068 	return skb_network_header(skb) - skb->data;
3069 }
3070 
skb_inner_network_offset(const struct sk_buff * skb)3071 static inline int skb_inner_network_offset(const struct sk_buff *skb)
3072 {
3073 	return skb_inner_network_header(skb) - skb->data;
3074 }
3075 
pskb_network_may_pull(struct sk_buff * skb,unsigned int len)3076 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
3077 {
3078 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
3079 }
3080 
3081 /*
3082  * CPUs often take a performance hit when accessing unaligned memory
3083  * locations. The actual performance hit varies, it can be small if the
3084  * hardware handles it or large if we have to take an exception and fix it
3085  * in software.
3086  *
3087  * Since an ethernet header is 14 bytes network drivers often end up with
3088  * the IP header at an unaligned offset. The IP header can be aligned by
3089  * shifting the start of the packet by 2 bytes. Drivers should do this
3090  * with:
3091  *
3092  * skb_reserve(skb, NET_IP_ALIGN);
3093  *
3094  * The downside to this alignment of the IP header is that the DMA is now
3095  * unaligned. On some architectures the cost of an unaligned DMA is high
3096  * and this cost outweighs the gains made by aligning the IP header.
3097  *
3098  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
3099  * to be overridden.
3100  */
3101 #ifndef NET_IP_ALIGN
3102 #define NET_IP_ALIGN	2
3103 #endif
3104 
3105 /*
3106  * The networking layer reserves some headroom in skb data (via
3107  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
3108  * the header has to grow. In the default case, if the header has to grow
3109  * 32 bytes or less we avoid the reallocation.
3110  *
3111  * Unfortunately this headroom changes the DMA alignment of the resulting
3112  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
3113  * on some architectures. An architecture can override this value,
3114  * perhaps setting it to a cacheline in size (since that will maintain
3115  * cacheline alignment of the DMA). It must be a power of 2.
3116  *
3117  * Various parts of the networking layer expect at least 32 bytes of
3118  * headroom, you should not reduce this.
3119  *
3120  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
3121  * to reduce average number of cache lines per packet.
3122  * get_rps_cpu() for example only access one 64 bytes aligned block :
3123  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
3124  */
3125 #ifndef NET_SKB_PAD
3126 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
3127 #endif
3128 
3129 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
3130 
__skb_set_length(struct sk_buff * skb,unsigned int len)3131 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
3132 {
3133 	if (WARN_ON(skb_is_nonlinear(skb)))
3134 		return;
3135 	skb->len = len;
3136 	skb_set_tail_pointer(skb, len);
3137 }
3138 
__skb_trim(struct sk_buff * skb,unsigned int len)3139 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
3140 {
3141 	__skb_set_length(skb, len);
3142 }
3143 
3144 void skb_trim(struct sk_buff *skb, unsigned int len);
3145 
__pskb_trim(struct sk_buff * skb,unsigned int len)3146 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
3147 {
3148 	if (skb->data_len)
3149 		return ___pskb_trim(skb, len);
3150 	__skb_trim(skb, len);
3151 	return 0;
3152 }
3153 
pskb_trim(struct sk_buff * skb,unsigned int len)3154 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
3155 {
3156 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
3157 }
3158 
3159 /**
3160  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
3161  *	@skb: buffer to alter
3162  *	@len: new length
3163  *
3164  *	This is identical to pskb_trim except that the caller knows that
3165  *	the skb is not cloned so we should never get an error due to out-
3166  *	of-memory.
3167  */
pskb_trim_unique(struct sk_buff * skb,unsigned int len)3168 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
3169 {
3170 	int err = pskb_trim(skb, len);
3171 	BUG_ON(err);
3172 }
3173 
__skb_grow(struct sk_buff * skb,unsigned int len)3174 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
3175 {
3176 	unsigned int diff = len - skb->len;
3177 
3178 	if (skb_tailroom(skb) < diff) {
3179 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
3180 					   GFP_ATOMIC);
3181 		if (ret)
3182 			return ret;
3183 	}
3184 	__skb_set_length(skb, len);
3185 	return 0;
3186 }
3187 
3188 /**
3189  *	skb_orphan - orphan a buffer
3190  *	@skb: buffer to orphan
3191  *
3192  *	If a buffer currently has an owner then we call the owner's
3193  *	destructor function and make the @skb unowned. The buffer continues
3194  *	to exist but is no longer charged to its former owner.
3195  */
skb_orphan(struct sk_buff * skb)3196 static inline void skb_orphan(struct sk_buff *skb)
3197 {
3198 	if (skb->destructor) {
3199 		skb->destructor(skb);
3200 		skb->destructor = NULL;
3201 		skb->sk		= NULL;
3202 	} else {
3203 		BUG_ON(skb->sk);
3204 	}
3205 }
3206 
3207 /**
3208  *	skb_orphan_frags - orphan the frags contained in a buffer
3209  *	@skb: buffer to orphan frags from
3210  *	@gfp_mask: allocation mask for replacement pages
3211  *
3212  *	For each frag in the SKB which needs a destructor (i.e. has an
3213  *	owner) create a copy of that frag and release the original
3214  *	page by calling the destructor.
3215  */
skb_orphan_frags(struct sk_buff * skb,gfp_t gfp_mask)3216 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
3217 {
3218 	if (likely(!skb_zcopy(skb)))
3219 		return 0;
3220 	if (!skb_zcopy_is_nouarg(skb) &&
3221 	    skb_uarg(skb)->callback == msg_zerocopy_callback)
3222 		return 0;
3223 	return skb_copy_ubufs(skb, gfp_mask);
3224 }
3225 
3226 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
skb_orphan_frags_rx(struct sk_buff * skb,gfp_t gfp_mask)3227 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
3228 {
3229 	if (likely(!skb_zcopy(skb)))
3230 		return 0;
3231 	return skb_copy_ubufs(skb, gfp_mask);
3232 }
3233 
3234 /**
3235  *	__skb_queue_purge - empty a list
3236  *	@list: list to empty
3237  *
3238  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3239  *	the list and one reference dropped. This function does not take the
3240  *	list lock and the caller must hold the relevant locks to use it.
3241  */
__skb_queue_purge(struct sk_buff_head * list)3242 static inline void __skb_queue_purge(struct sk_buff_head *list)
3243 {
3244 	struct sk_buff *skb;
3245 	while ((skb = __skb_dequeue(list)) != NULL)
3246 		kfree_skb(skb);
3247 }
3248 void skb_queue_purge(struct sk_buff_head *list);
3249 
3250 unsigned int skb_rbtree_purge(struct rb_root *root);
3251 
3252 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3253 
3254 /**
3255  * netdev_alloc_frag - allocate a page fragment
3256  * @fragsz: fragment size
3257  *
3258  * Allocates a frag from a page for receive buffer.
3259  * Uses GFP_ATOMIC allocations.
3260  */
netdev_alloc_frag(unsigned int fragsz)3261 static inline void *netdev_alloc_frag(unsigned int fragsz)
3262 {
3263 	return __netdev_alloc_frag_align(fragsz, ~0u);
3264 }
3265 
netdev_alloc_frag_align(unsigned int fragsz,unsigned int align)3266 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3267 					    unsigned int align)
3268 {
3269 	WARN_ON_ONCE(!is_power_of_2(align));
3270 	return __netdev_alloc_frag_align(fragsz, -align);
3271 }
3272 
3273 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3274 				   gfp_t gfp_mask);
3275 
3276 /**
3277  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
3278  *	@dev: network device to receive on
3279  *	@length: length to allocate
3280  *
3281  *	Allocate a new &sk_buff and assign it a usage count of one. The
3282  *	buffer has unspecified headroom built in. Users should allocate
3283  *	the headroom they think they need without accounting for the
3284  *	built in space. The built in space is used for optimisations.
3285  *
3286  *	%NULL is returned if there is no free memory. Although this function
3287  *	allocates memory it can be called from an interrupt.
3288  */
netdev_alloc_skb(struct net_device * dev,unsigned int length)3289 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3290 					       unsigned int length)
3291 {
3292 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3293 }
3294 
3295 /* legacy helper around __netdev_alloc_skb() */
__dev_alloc_skb(unsigned int length,gfp_t gfp_mask)3296 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3297 					      gfp_t gfp_mask)
3298 {
3299 	return __netdev_alloc_skb(NULL, length, gfp_mask);
3300 }
3301 
3302 /* legacy helper around netdev_alloc_skb() */
dev_alloc_skb(unsigned int length)3303 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3304 {
3305 	return netdev_alloc_skb(NULL, length);
3306 }
3307 
3308 
__netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length,gfp_t gfp)3309 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3310 		unsigned int length, gfp_t gfp)
3311 {
3312 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3313 
3314 	if (NET_IP_ALIGN && skb)
3315 		skb_reserve(skb, NET_IP_ALIGN);
3316 	return skb;
3317 }
3318 
netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length)3319 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3320 		unsigned int length)
3321 {
3322 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3323 }
3324 
skb_free_frag(void * addr)3325 static inline void skb_free_frag(void *addr)
3326 {
3327 	page_frag_free(addr);
3328 }
3329 
3330 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3331 
napi_alloc_frag(unsigned int fragsz)3332 static inline void *napi_alloc_frag(unsigned int fragsz)
3333 {
3334 	return __napi_alloc_frag_align(fragsz, ~0u);
3335 }
3336 
napi_alloc_frag_align(unsigned int fragsz,unsigned int align)3337 static inline void *napi_alloc_frag_align(unsigned int fragsz,
3338 					  unsigned int align)
3339 {
3340 	WARN_ON_ONCE(!is_power_of_2(align));
3341 	return __napi_alloc_frag_align(fragsz, -align);
3342 }
3343 
3344 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
3345 				 unsigned int length, gfp_t gfp_mask);
napi_alloc_skb(struct napi_struct * napi,unsigned int length)3346 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
3347 					     unsigned int length)
3348 {
3349 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
3350 }
3351 void napi_consume_skb(struct sk_buff *skb, int budget);
3352 
3353 void napi_skb_free_stolen_head(struct sk_buff *skb);
3354 void __kfree_skb_defer(struct sk_buff *skb);
3355 
3356 /**
3357  * __dev_alloc_pages - allocate page for network Rx
3358  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3359  * @order: size of the allocation
3360  *
3361  * Allocate a new page.
3362  *
3363  * %NULL is returned if there is no free memory.
3364 */
__dev_alloc_pages(gfp_t gfp_mask,unsigned int order)3365 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
3366 					     unsigned int order)
3367 {
3368 	/* This piece of code contains several assumptions.
3369 	 * 1.  This is for device Rx, therefor a cold page is preferred.
3370 	 * 2.  The expectation is the user wants a compound page.
3371 	 * 3.  If requesting a order 0 page it will not be compound
3372 	 *     due to the check to see if order has a value in prep_new_page
3373 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3374 	 *     code in gfp_to_alloc_flags that should be enforcing this.
3375 	 */
3376 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3377 
3378 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
3379 }
3380 
dev_alloc_pages(unsigned int order)3381 static inline struct page *dev_alloc_pages(unsigned int order)
3382 {
3383 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
3384 }
3385 
3386 /**
3387  * __dev_alloc_page - allocate a page for network Rx
3388  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3389  *
3390  * Allocate a new page.
3391  *
3392  * %NULL is returned if there is no free memory.
3393  */
__dev_alloc_page(gfp_t gfp_mask)3394 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
3395 {
3396 	return __dev_alloc_pages(gfp_mask, 0);
3397 }
3398 
dev_alloc_page(void)3399 static inline struct page *dev_alloc_page(void)
3400 {
3401 	return dev_alloc_pages(0);
3402 }
3403 
3404 /**
3405  * dev_page_is_reusable - check whether a page can be reused for network Rx
3406  * @page: the page to test
3407  *
3408  * A page shouldn't be considered for reusing/recycling if it was allocated
3409  * under memory pressure or at a distant memory node.
3410  *
3411  * Returns false if this page should be returned to page allocator, true
3412  * otherwise.
3413  */
dev_page_is_reusable(const struct page * page)3414 static inline bool dev_page_is_reusable(const struct page *page)
3415 {
3416 	return likely(page_to_nid(page) == numa_mem_id() &&
3417 		      !page_is_pfmemalloc(page));
3418 }
3419 
3420 /**
3421  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3422  *	@page: The page that was allocated from skb_alloc_page
3423  *	@skb: The skb that may need pfmemalloc set
3424  */
skb_propagate_pfmemalloc(const struct page * page,struct sk_buff * skb)3425 static inline void skb_propagate_pfmemalloc(const struct page *page,
3426 					    struct sk_buff *skb)
3427 {
3428 	if (page_is_pfmemalloc(page))
3429 		skb->pfmemalloc = true;
3430 }
3431 
3432 /**
3433  * skb_frag_off() - Returns the offset of a skb fragment
3434  * @frag: the paged fragment
3435  */
skb_frag_off(const skb_frag_t * frag)3436 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3437 {
3438 	return frag->bv_offset;
3439 }
3440 
3441 /**
3442  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3443  * @frag: skb fragment
3444  * @delta: value to add
3445  */
skb_frag_off_add(skb_frag_t * frag,int delta)3446 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3447 {
3448 	frag->bv_offset += delta;
3449 }
3450 
3451 /**
3452  * skb_frag_off_set() - Sets the offset of a skb fragment
3453  * @frag: skb fragment
3454  * @offset: offset of fragment
3455  */
skb_frag_off_set(skb_frag_t * frag,unsigned int offset)3456 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3457 {
3458 	frag->bv_offset = offset;
3459 }
3460 
3461 /**
3462  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3463  * @fragto: skb fragment where offset is set
3464  * @fragfrom: skb fragment offset is copied from
3465  */
skb_frag_off_copy(skb_frag_t * fragto,const skb_frag_t * fragfrom)3466 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3467 				     const skb_frag_t *fragfrom)
3468 {
3469 	fragto->bv_offset = fragfrom->bv_offset;
3470 }
3471 
3472 /**
3473  * skb_frag_page - retrieve the page referred to by a paged fragment
3474  * @frag: the paged fragment
3475  *
3476  * Returns the &struct page associated with @frag.
3477  */
skb_frag_page(const skb_frag_t * frag)3478 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3479 {
3480 	return frag->bv_page;
3481 }
3482 
3483 /**
3484  * __skb_frag_ref - take an addition reference on a paged fragment.
3485  * @frag: the paged fragment
3486  *
3487  * Takes an additional reference on the paged fragment @frag.
3488  */
__skb_frag_ref(skb_frag_t * frag)3489 static inline void __skb_frag_ref(skb_frag_t *frag)
3490 {
3491 	get_page(skb_frag_page(frag));
3492 }
3493 
3494 /**
3495  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3496  * @skb: the buffer
3497  * @f: the fragment offset.
3498  *
3499  * Takes an additional reference on the @f'th paged fragment of @skb.
3500  */
skb_frag_ref(struct sk_buff * skb,int f)3501 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3502 {
3503 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3504 }
3505 
3506 /**
3507  * __skb_frag_unref - release a reference on a paged fragment.
3508  * @frag: the paged fragment
3509  * @recycle: recycle the page if allocated via page_pool
3510  *
3511  * Releases a reference on the paged fragment @frag
3512  * or recycles the page via the page_pool API.
3513  */
__skb_frag_unref(skb_frag_t * frag,bool recycle)3514 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle)
3515 {
3516 	struct page *page = skb_frag_page(frag);
3517 
3518 #ifdef CONFIG_PAGE_POOL
3519 	if (recycle && page_pool_return_skb_page(page))
3520 		return;
3521 #endif
3522 	put_page(page);
3523 }
3524 
3525 /**
3526  * skb_frag_unref - release a reference on a paged fragment of an skb.
3527  * @skb: the buffer
3528  * @f: the fragment offset
3529  *
3530  * Releases a reference on the @f'th paged fragment of @skb.
3531  */
skb_frag_unref(struct sk_buff * skb,int f)3532 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3533 {
3534 	__skb_frag_unref(&skb_shinfo(skb)->frags[f], skb->pp_recycle);
3535 }
3536 
3537 /**
3538  * skb_frag_address - gets the address of the data contained in a paged fragment
3539  * @frag: the paged fragment buffer
3540  *
3541  * Returns the address of the data within @frag. The page must already
3542  * be mapped.
3543  */
skb_frag_address(const skb_frag_t * frag)3544 static inline void *skb_frag_address(const skb_frag_t *frag)
3545 {
3546 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3547 }
3548 
3549 /**
3550  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3551  * @frag: the paged fragment buffer
3552  *
3553  * Returns the address of the data within @frag. Checks that the page
3554  * is mapped and returns %NULL otherwise.
3555  */
skb_frag_address_safe(const skb_frag_t * frag)3556 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3557 {
3558 	void *ptr = page_address(skb_frag_page(frag));
3559 	if (unlikely(!ptr))
3560 		return NULL;
3561 
3562 	return ptr + skb_frag_off(frag);
3563 }
3564 
3565 /**
3566  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3567  * @fragto: skb fragment where page is set
3568  * @fragfrom: skb fragment page is copied from
3569  */
skb_frag_page_copy(skb_frag_t * fragto,const skb_frag_t * fragfrom)3570 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3571 				      const skb_frag_t *fragfrom)
3572 {
3573 	fragto->bv_page = fragfrom->bv_page;
3574 }
3575 
3576 /**
3577  * __skb_frag_set_page - sets the page contained in a paged fragment
3578  * @frag: the paged fragment
3579  * @page: the page to set
3580  *
3581  * Sets the fragment @frag to contain @page.
3582  */
__skb_frag_set_page(skb_frag_t * frag,struct page * page)3583 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3584 {
3585 	frag->bv_page = page;
3586 }
3587 
3588 /**
3589  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3590  * @skb: the buffer
3591  * @f: the fragment offset
3592  * @page: the page to set
3593  *
3594  * Sets the @f'th fragment of @skb to contain @page.
3595  */
skb_frag_set_page(struct sk_buff * skb,int f,struct page * page)3596 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3597 				     struct page *page)
3598 {
3599 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3600 }
3601 
3602 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3603 
3604 /**
3605  * skb_frag_dma_map - maps a paged fragment via the DMA API
3606  * @dev: the device to map the fragment to
3607  * @frag: the paged fragment to map
3608  * @offset: the offset within the fragment (starting at the
3609  *          fragment's own offset)
3610  * @size: the number of bytes to map
3611  * @dir: the direction of the mapping (``PCI_DMA_*``)
3612  *
3613  * Maps the page associated with @frag to @device.
3614  */
skb_frag_dma_map(struct device * dev,const skb_frag_t * frag,size_t offset,size_t size,enum dma_data_direction dir)3615 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3616 					  const skb_frag_t *frag,
3617 					  size_t offset, size_t size,
3618 					  enum dma_data_direction dir)
3619 {
3620 	return dma_map_page(dev, skb_frag_page(frag),
3621 			    skb_frag_off(frag) + offset, size, dir);
3622 }
3623 
pskb_copy(struct sk_buff * skb,gfp_t gfp_mask)3624 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3625 					gfp_t gfp_mask)
3626 {
3627 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3628 }
3629 
3630 
pskb_copy_for_clone(struct sk_buff * skb,gfp_t gfp_mask)3631 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3632 						  gfp_t gfp_mask)
3633 {
3634 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3635 }
3636 
3637 
3638 /**
3639  *	skb_clone_writable - is the header of a clone writable
3640  *	@skb: buffer to check
3641  *	@len: length up to which to write
3642  *
3643  *	Returns true if modifying the header part of the cloned buffer
3644  *	does not requires the data to be copied.
3645  */
skb_clone_writable(const struct sk_buff * skb,unsigned int len)3646 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3647 {
3648 	return !skb_header_cloned(skb) &&
3649 	       skb_headroom(skb) + len <= skb->hdr_len;
3650 }
3651 
skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)3652 static inline int skb_try_make_writable(struct sk_buff *skb,
3653 					unsigned int write_len)
3654 {
3655 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3656 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3657 }
3658 
__skb_cow(struct sk_buff * skb,unsigned int headroom,int cloned)3659 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3660 			    int cloned)
3661 {
3662 	int delta = 0;
3663 
3664 	if (headroom > skb_headroom(skb))
3665 		delta = headroom - skb_headroom(skb);
3666 
3667 	if (delta || cloned)
3668 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3669 					GFP_ATOMIC);
3670 	return 0;
3671 }
3672 
3673 /**
3674  *	skb_cow - copy header of skb when it is required
3675  *	@skb: buffer to cow
3676  *	@headroom: needed headroom
3677  *
3678  *	If the skb passed lacks sufficient headroom or its data part
3679  *	is shared, data is reallocated. If reallocation fails, an error
3680  *	is returned and original skb is not changed.
3681  *
3682  *	The result is skb with writable area skb->head...skb->tail
3683  *	and at least @headroom of space at head.
3684  */
skb_cow(struct sk_buff * skb,unsigned int headroom)3685 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3686 {
3687 	return __skb_cow(skb, headroom, skb_cloned(skb));
3688 }
3689 
3690 /**
3691  *	skb_cow_head - skb_cow but only making the head writable
3692  *	@skb: buffer to cow
3693  *	@headroom: needed headroom
3694  *
3695  *	This function is identical to skb_cow except that we replace the
3696  *	skb_cloned check by skb_header_cloned.  It should be used when
3697  *	you only need to push on some header and do not need to modify
3698  *	the data.
3699  */
skb_cow_head(struct sk_buff * skb,unsigned int headroom)3700 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3701 {
3702 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3703 }
3704 
3705 /**
3706  *	skb_padto	- pad an skbuff up to a minimal size
3707  *	@skb: buffer to pad
3708  *	@len: minimal length
3709  *
3710  *	Pads up a buffer to ensure the trailing bytes exist and are
3711  *	blanked. If the buffer already contains sufficient data it
3712  *	is untouched. Otherwise it is extended. Returns zero on
3713  *	success. The skb is freed on error.
3714  */
skb_padto(struct sk_buff * skb,unsigned int len)3715 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3716 {
3717 	unsigned int size = skb->len;
3718 	if (likely(size >= len))
3719 		return 0;
3720 	return skb_pad(skb, len - size);
3721 }
3722 
3723 /**
3724  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3725  *	@skb: buffer to pad
3726  *	@len: minimal length
3727  *	@free_on_error: free buffer on error
3728  *
3729  *	Pads up a buffer to ensure the trailing bytes exist and are
3730  *	blanked. If the buffer already contains sufficient data it
3731  *	is untouched. Otherwise it is extended. Returns zero on
3732  *	success. The skb is freed on error if @free_on_error is true.
3733  */
__skb_put_padto(struct sk_buff * skb,unsigned int len,bool free_on_error)3734 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3735 					       unsigned int len,
3736 					       bool free_on_error)
3737 {
3738 	unsigned int size = skb->len;
3739 
3740 	if (unlikely(size < len)) {
3741 		len -= size;
3742 		if (__skb_pad(skb, len, free_on_error))
3743 			return -ENOMEM;
3744 		__skb_put(skb, len);
3745 	}
3746 	return 0;
3747 }
3748 
3749 /**
3750  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3751  *	@skb: buffer to pad
3752  *	@len: minimal length
3753  *
3754  *	Pads up a buffer to ensure the trailing bytes exist and are
3755  *	blanked. If the buffer already contains sufficient data it
3756  *	is untouched. Otherwise it is extended. Returns zero on
3757  *	success. The skb is freed on error.
3758  */
skb_put_padto(struct sk_buff * skb,unsigned int len)3759 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3760 {
3761 	return __skb_put_padto(skb, len, true);
3762 }
3763 
skb_add_data(struct sk_buff * skb,struct iov_iter * from,int copy)3764 static inline int skb_add_data(struct sk_buff *skb,
3765 			       struct iov_iter *from, int copy)
3766 {
3767 	const int off = skb->len;
3768 
3769 	if (skb->ip_summed == CHECKSUM_NONE) {
3770 		__wsum csum = 0;
3771 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3772 					         &csum, from)) {
3773 			skb->csum = csum_block_add(skb->csum, csum, off);
3774 			return 0;
3775 		}
3776 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3777 		return 0;
3778 
3779 	__skb_trim(skb, off);
3780 	return -EFAULT;
3781 }
3782 
skb_can_coalesce(struct sk_buff * skb,int i,const struct page * page,int off)3783 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3784 				    const struct page *page, int off)
3785 {
3786 	if (skb_zcopy(skb))
3787 		return false;
3788 	if (i) {
3789 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3790 
3791 		return page == skb_frag_page(frag) &&
3792 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3793 	}
3794 	return false;
3795 }
3796 
__skb_linearize(struct sk_buff * skb)3797 static inline int __skb_linearize(struct sk_buff *skb)
3798 {
3799 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3800 }
3801 
3802 /**
3803  *	skb_linearize - convert paged skb to linear one
3804  *	@skb: buffer to linarize
3805  *
3806  *	If there is no free memory -ENOMEM is returned, otherwise zero
3807  *	is returned and the old skb data released.
3808  */
skb_linearize(struct sk_buff * skb)3809 static inline int skb_linearize(struct sk_buff *skb)
3810 {
3811 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3812 }
3813 
3814 /**
3815  * skb_has_shared_frag - can any frag be overwritten
3816  * @skb: buffer to test
3817  *
3818  * Return true if the skb has at least one frag that might be modified
3819  * by an external entity (as in vmsplice()/sendfile())
3820  */
skb_has_shared_frag(const struct sk_buff * skb)3821 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3822 {
3823 	return skb_is_nonlinear(skb) &&
3824 	       skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3825 }
3826 
3827 /**
3828  *	skb_linearize_cow - make sure skb is linear and writable
3829  *	@skb: buffer to process
3830  *
3831  *	If there is no free memory -ENOMEM is returned, otherwise zero
3832  *	is returned and the old skb data released.
3833  */
skb_linearize_cow(struct sk_buff * skb)3834 static inline int skb_linearize_cow(struct sk_buff *skb)
3835 {
3836 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3837 	       __skb_linearize(skb) : 0;
3838 }
3839 
3840 static __always_inline void
__skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3841 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3842 		     unsigned int off)
3843 {
3844 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3845 		skb->csum = csum_block_sub(skb->csum,
3846 					   csum_partial(start, len, 0), off);
3847 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3848 		 skb_checksum_start_offset(skb) < 0)
3849 		skb->ip_summed = CHECKSUM_NONE;
3850 }
3851 
3852 /**
3853  *	skb_postpull_rcsum - update checksum for received skb after pull
3854  *	@skb: buffer to update
3855  *	@start: start of data before pull
3856  *	@len: length of data pulled
3857  *
3858  *	After doing a pull on a received packet, you need to call this to
3859  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3860  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3861  */
skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3862 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3863 				      const void *start, unsigned int len)
3864 {
3865 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3866 		skb->csum = wsum_negate(csum_partial(start, len,
3867 						     wsum_negate(skb->csum)));
3868 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3869 		 skb_checksum_start_offset(skb) < 0)
3870 		skb->ip_summed = CHECKSUM_NONE;
3871 }
3872 
3873 static __always_inline void
__skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3874 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3875 		     unsigned int off)
3876 {
3877 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3878 		skb->csum = csum_block_add(skb->csum,
3879 					   csum_partial(start, len, 0), off);
3880 }
3881 
3882 /**
3883  *	skb_postpush_rcsum - update checksum for received skb after push
3884  *	@skb: buffer to update
3885  *	@start: start of data after push
3886  *	@len: length of data pushed
3887  *
3888  *	After doing a push on a received packet, you need to call this to
3889  *	update the CHECKSUM_COMPLETE checksum.
3890  */
skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3891 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3892 				      const void *start, unsigned int len)
3893 {
3894 	__skb_postpush_rcsum(skb, start, len, 0);
3895 }
3896 
3897 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3898 
3899 /**
3900  *	skb_push_rcsum - push skb and update receive checksum
3901  *	@skb: buffer to update
3902  *	@len: length of data pulled
3903  *
3904  *	This function performs an skb_push on the packet and updates
3905  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3906  *	receive path processing instead of skb_push unless you know
3907  *	that the checksum difference is zero (e.g., a valid IP header)
3908  *	or you are setting ip_summed to CHECKSUM_NONE.
3909  */
skb_push_rcsum(struct sk_buff * skb,unsigned int len)3910 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3911 {
3912 	skb_push(skb, len);
3913 	skb_postpush_rcsum(skb, skb->data, len);
3914 	return skb->data;
3915 }
3916 
3917 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3918 /**
3919  *	pskb_trim_rcsum - trim received skb and update checksum
3920  *	@skb: buffer to trim
3921  *	@len: new length
3922  *
3923  *	This is exactly the same as pskb_trim except that it ensures the
3924  *	checksum of received packets are still valid after the operation.
3925  *	It can change skb pointers.
3926  */
3927 
pskb_trim_rcsum(struct sk_buff * skb,unsigned int len)3928 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3929 {
3930 	if (likely(len >= skb->len))
3931 		return 0;
3932 	return pskb_trim_rcsum_slow(skb, len);
3933 }
3934 
__skb_trim_rcsum(struct sk_buff * skb,unsigned int len)3935 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3936 {
3937 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3938 		skb->ip_summed = CHECKSUM_NONE;
3939 	__skb_trim(skb, len);
3940 	return 0;
3941 }
3942 
__skb_grow_rcsum(struct sk_buff * skb,unsigned int len)3943 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3944 {
3945 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3946 		skb->ip_summed = CHECKSUM_NONE;
3947 	return __skb_grow(skb, len);
3948 }
3949 
3950 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3951 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3952 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3953 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3954 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3955 
3956 #define skb_queue_walk(queue, skb) \
3957 		for (skb = (queue)->next;					\
3958 		     skb != (struct sk_buff *)(queue);				\
3959 		     skb = skb->next)
3960 
3961 #define skb_queue_walk_safe(queue, skb, tmp)					\
3962 		for (skb = (queue)->next, tmp = skb->next;			\
3963 		     skb != (struct sk_buff *)(queue);				\
3964 		     skb = tmp, tmp = skb->next)
3965 
3966 #define skb_queue_walk_from(queue, skb)						\
3967 		for (; skb != (struct sk_buff *)(queue);			\
3968 		     skb = skb->next)
3969 
3970 #define skb_rbtree_walk(skb, root)						\
3971 		for (skb = skb_rb_first(root); skb != NULL;			\
3972 		     skb = skb_rb_next(skb))
3973 
3974 #define skb_rbtree_walk_from(skb)						\
3975 		for (; skb != NULL;						\
3976 		     skb = skb_rb_next(skb))
3977 
3978 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3979 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3980 		     skb = tmp)
3981 
3982 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3983 		for (tmp = skb->next;						\
3984 		     skb != (struct sk_buff *)(queue);				\
3985 		     skb = tmp, tmp = skb->next)
3986 
3987 #define skb_queue_reverse_walk(queue, skb) \
3988 		for (skb = (queue)->prev;					\
3989 		     skb != (struct sk_buff *)(queue);				\
3990 		     skb = skb->prev)
3991 
3992 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3993 		for (skb = (queue)->prev, tmp = skb->prev;			\
3994 		     skb != (struct sk_buff *)(queue);				\
3995 		     skb = tmp, tmp = skb->prev)
3996 
3997 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3998 		for (tmp = skb->prev;						\
3999 		     skb != (struct sk_buff *)(queue);				\
4000 		     skb = tmp, tmp = skb->prev)
4001 
skb_has_frag_list(const struct sk_buff * skb)4002 static inline bool skb_has_frag_list(const struct sk_buff *skb)
4003 {
4004 	return skb_shinfo(skb)->frag_list != NULL;
4005 }
4006 
skb_frag_list_init(struct sk_buff * skb)4007 static inline void skb_frag_list_init(struct sk_buff *skb)
4008 {
4009 	skb_shinfo(skb)->frag_list = NULL;
4010 }
4011 
4012 #define skb_walk_frags(skb, iter)	\
4013 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
4014 
4015 
4016 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
4017 				int *err, long *timeo_p,
4018 				const struct sk_buff *skb);
4019 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
4020 					  struct sk_buff_head *queue,
4021 					  unsigned int flags,
4022 					  int *off, int *err,
4023 					  struct sk_buff **last);
4024 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
4025 					struct sk_buff_head *queue,
4026 					unsigned int flags, int *off, int *err,
4027 					struct sk_buff **last);
4028 struct sk_buff *__skb_recv_datagram(struct sock *sk,
4029 				    struct sk_buff_head *sk_queue,
4030 				    unsigned int flags, int *off, int *err);
4031 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err);
4032 __poll_t datagram_poll(struct file *file, struct socket *sock,
4033 			   struct poll_table_struct *wait);
4034 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
4035 			   struct iov_iter *to, int size);
skb_copy_datagram_msg(const struct sk_buff * from,int offset,struct msghdr * msg,int size)4036 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
4037 					struct msghdr *msg, int size)
4038 {
4039 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
4040 }
4041 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
4042 				   struct msghdr *msg);
4043 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
4044 			   struct iov_iter *to, int len,
4045 			   struct ahash_request *hash);
4046 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
4047 				 struct iov_iter *from, int len);
4048 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
4049 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
4050 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
skb_free_datagram_locked(struct sock * sk,struct sk_buff * skb)4051 static inline void skb_free_datagram_locked(struct sock *sk,
4052 					    struct sk_buff *skb)
4053 {
4054 	__skb_free_datagram_locked(sk, skb, 0);
4055 }
4056 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
4057 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
4058 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
4059 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
4060 			      int len);
4061 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
4062 		    struct pipe_inode_info *pipe, unsigned int len,
4063 		    unsigned int flags);
4064 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
4065 			 int len);
4066 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
4067 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
4068 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
4069 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
4070 		 int len, int hlen);
4071 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
4072 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
4073 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
4074 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
4075 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
4076 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
4077 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
4078 				 unsigned int offset);
4079 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
4080 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len);
4081 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
4082 int skb_vlan_pop(struct sk_buff *skb);
4083 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
4084 int skb_eth_pop(struct sk_buff *skb);
4085 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
4086 		 const unsigned char *src);
4087 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
4088 		  int mac_len, bool ethernet);
4089 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
4090 		 bool ethernet);
4091 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
4092 int skb_mpls_dec_ttl(struct sk_buff *skb);
4093 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
4094 			     gfp_t gfp);
4095 
memcpy_from_msg(void * data,struct msghdr * msg,int len)4096 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
4097 {
4098 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
4099 }
4100 
memcpy_to_msg(struct msghdr * msg,void * data,int len)4101 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
4102 {
4103 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
4104 }
4105 
4106 struct skb_checksum_ops {
4107 	__wsum (*update)(const void *mem, int len, __wsum wsum);
4108 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
4109 };
4110 
4111 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
4112 
4113 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
4114 		      __wsum csum, const struct skb_checksum_ops *ops);
4115 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
4116 		    __wsum csum);
4117 
4118 static inline void * __must_check
__skb_header_pointer(const struct sk_buff * skb,int offset,int len,const void * data,int hlen,void * buffer)4119 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
4120 		     const void *data, int hlen, void *buffer)
4121 {
4122 	if (likely(hlen - offset >= len))
4123 		return (void *)data + offset;
4124 
4125 	if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
4126 		return NULL;
4127 
4128 	return buffer;
4129 }
4130 
4131 static inline void * __must_check
skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * buffer)4132 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
4133 {
4134 	return __skb_header_pointer(skb, offset, len, skb->data,
4135 				    skb_headlen(skb), buffer);
4136 }
4137 
4138 /**
4139  *	skb_needs_linearize - check if we need to linearize a given skb
4140  *			      depending on the given device features.
4141  *	@skb: socket buffer to check
4142  *	@features: net device features
4143  *
4144  *	Returns true if either:
4145  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
4146  *	2. skb is fragmented and the device does not support SG.
4147  */
skb_needs_linearize(struct sk_buff * skb,netdev_features_t features)4148 static inline bool skb_needs_linearize(struct sk_buff *skb,
4149 				       netdev_features_t features)
4150 {
4151 	return skb_is_nonlinear(skb) &&
4152 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
4153 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
4154 }
4155 
skb_copy_from_linear_data(const struct sk_buff * skb,void * to,const unsigned int len)4156 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
4157 					     void *to,
4158 					     const unsigned int len)
4159 {
4160 	memcpy(to, skb->data, len);
4161 }
4162 
skb_copy_from_linear_data_offset(const struct sk_buff * skb,const int offset,void * to,const unsigned int len)4163 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
4164 						    const int offset, void *to,
4165 						    const unsigned int len)
4166 {
4167 	memcpy(to, skb->data + offset, len);
4168 }
4169 
skb_copy_to_linear_data(struct sk_buff * skb,const void * from,const unsigned int len)4170 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
4171 					   const void *from,
4172 					   const unsigned int len)
4173 {
4174 	memcpy(skb->data, from, len);
4175 }
4176 
skb_copy_to_linear_data_offset(struct sk_buff * skb,const int offset,const void * from,const unsigned int len)4177 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
4178 						  const int offset,
4179 						  const void *from,
4180 						  const unsigned int len)
4181 {
4182 	memcpy(skb->data + offset, from, len);
4183 }
4184 
4185 void skb_init(void);
4186 
skb_get_ktime(const struct sk_buff * skb)4187 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
4188 {
4189 	return skb->tstamp;
4190 }
4191 
4192 /**
4193  *	skb_get_timestamp - get timestamp from a skb
4194  *	@skb: skb to get stamp from
4195  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
4196  *
4197  *	Timestamps are stored in the skb as offsets to a base timestamp.
4198  *	This function converts the offset back to a struct timeval and stores
4199  *	it in stamp.
4200  */
skb_get_timestamp(const struct sk_buff * skb,struct __kernel_old_timeval * stamp)4201 static inline void skb_get_timestamp(const struct sk_buff *skb,
4202 				     struct __kernel_old_timeval *stamp)
4203 {
4204 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
4205 }
4206 
skb_get_new_timestamp(const struct sk_buff * skb,struct __kernel_sock_timeval * stamp)4207 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
4208 					 struct __kernel_sock_timeval *stamp)
4209 {
4210 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4211 
4212 	stamp->tv_sec = ts.tv_sec;
4213 	stamp->tv_usec = ts.tv_nsec / 1000;
4214 }
4215 
skb_get_timestampns(const struct sk_buff * skb,struct __kernel_old_timespec * stamp)4216 static inline void skb_get_timestampns(const struct sk_buff *skb,
4217 				       struct __kernel_old_timespec *stamp)
4218 {
4219 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4220 
4221 	stamp->tv_sec = ts.tv_sec;
4222 	stamp->tv_nsec = ts.tv_nsec;
4223 }
4224 
skb_get_new_timestampns(const struct sk_buff * skb,struct __kernel_timespec * stamp)4225 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
4226 					   struct __kernel_timespec *stamp)
4227 {
4228 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4229 
4230 	stamp->tv_sec = ts.tv_sec;
4231 	stamp->tv_nsec = ts.tv_nsec;
4232 }
4233 
__net_timestamp(struct sk_buff * skb)4234 static inline void __net_timestamp(struct sk_buff *skb)
4235 {
4236 	skb->tstamp = ktime_get_real();
4237 	skb->mono_delivery_time = 0;
4238 }
4239 
net_timedelta(ktime_t t)4240 static inline ktime_t net_timedelta(ktime_t t)
4241 {
4242 	return ktime_sub(ktime_get_real(), t);
4243 }
4244 
skb_set_delivery_time(struct sk_buff * skb,ktime_t kt,bool mono)4245 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
4246 					 bool mono)
4247 {
4248 	skb->tstamp = kt;
4249 	skb->mono_delivery_time = kt && mono;
4250 }
4251 
4252 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
4253 
4254 /* It is used in the ingress path to clear the delivery_time.
4255  * If needed, set the skb->tstamp to the (rcv) timestamp.
4256  */
skb_clear_delivery_time(struct sk_buff * skb)4257 static inline void skb_clear_delivery_time(struct sk_buff *skb)
4258 {
4259 	if (skb->mono_delivery_time) {
4260 		skb->mono_delivery_time = 0;
4261 		if (static_branch_unlikely(&netstamp_needed_key))
4262 			skb->tstamp = ktime_get_real();
4263 		else
4264 			skb->tstamp = 0;
4265 	}
4266 }
4267 
skb_clear_tstamp(struct sk_buff * skb)4268 static inline void skb_clear_tstamp(struct sk_buff *skb)
4269 {
4270 	if (skb->mono_delivery_time)
4271 		return;
4272 
4273 	skb->tstamp = 0;
4274 }
4275 
skb_tstamp(const struct sk_buff * skb)4276 static inline ktime_t skb_tstamp(const struct sk_buff *skb)
4277 {
4278 	if (skb->mono_delivery_time)
4279 		return 0;
4280 
4281 	return skb->tstamp;
4282 }
4283 
skb_tstamp_cond(const struct sk_buff * skb,bool cond)4284 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
4285 {
4286 	if (!skb->mono_delivery_time && skb->tstamp)
4287 		return skb->tstamp;
4288 
4289 	if (static_branch_unlikely(&netstamp_needed_key) || cond)
4290 		return ktime_get_real();
4291 
4292 	return 0;
4293 }
4294 
skb_metadata_len(const struct sk_buff * skb)4295 static inline u8 skb_metadata_len(const struct sk_buff *skb)
4296 {
4297 	return skb_shinfo(skb)->meta_len;
4298 }
4299 
skb_metadata_end(const struct sk_buff * skb)4300 static inline void *skb_metadata_end(const struct sk_buff *skb)
4301 {
4302 	return skb_mac_header(skb);
4303 }
4304 
__skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b,u8 meta_len)4305 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
4306 					  const struct sk_buff *skb_b,
4307 					  u8 meta_len)
4308 {
4309 	const void *a = skb_metadata_end(skb_a);
4310 	const void *b = skb_metadata_end(skb_b);
4311 	/* Using more efficient varaiant than plain call to memcmp(). */
4312 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
4313 	u64 diffs = 0;
4314 
4315 	switch (meta_len) {
4316 #define __it(x, op) (x -= sizeof(u##op))
4317 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4318 	case 32: diffs |= __it_diff(a, b, 64);
4319 		fallthrough;
4320 	case 24: diffs |= __it_diff(a, b, 64);
4321 		fallthrough;
4322 	case 16: diffs |= __it_diff(a, b, 64);
4323 		fallthrough;
4324 	case  8: diffs |= __it_diff(a, b, 64);
4325 		break;
4326 	case 28: diffs |= __it_diff(a, b, 64);
4327 		fallthrough;
4328 	case 20: diffs |= __it_diff(a, b, 64);
4329 		fallthrough;
4330 	case 12: diffs |= __it_diff(a, b, 64);
4331 		fallthrough;
4332 	case  4: diffs |= __it_diff(a, b, 32);
4333 		break;
4334 	}
4335 	return diffs;
4336 #else
4337 	return memcmp(a - meta_len, b - meta_len, meta_len);
4338 #endif
4339 }
4340 
skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b)4341 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4342 					const struct sk_buff *skb_b)
4343 {
4344 	u8 len_a = skb_metadata_len(skb_a);
4345 	u8 len_b = skb_metadata_len(skb_b);
4346 
4347 	if (!(len_a | len_b))
4348 		return false;
4349 
4350 	return len_a != len_b ?
4351 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
4352 }
4353 
skb_metadata_set(struct sk_buff * skb,u8 meta_len)4354 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4355 {
4356 	skb_shinfo(skb)->meta_len = meta_len;
4357 }
4358 
skb_metadata_clear(struct sk_buff * skb)4359 static inline void skb_metadata_clear(struct sk_buff *skb)
4360 {
4361 	skb_metadata_set(skb, 0);
4362 }
4363 
4364 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4365 
4366 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4367 
4368 void skb_clone_tx_timestamp(struct sk_buff *skb);
4369 bool skb_defer_rx_timestamp(struct sk_buff *skb);
4370 
4371 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4372 
skb_clone_tx_timestamp(struct sk_buff * skb)4373 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4374 {
4375 }
4376 
skb_defer_rx_timestamp(struct sk_buff * skb)4377 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4378 {
4379 	return false;
4380 }
4381 
4382 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4383 
4384 /**
4385  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4386  *
4387  * PHY drivers may accept clones of transmitted packets for
4388  * timestamping via their phy_driver.txtstamp method. These drivers
4389  * must call this function to return the skb back to the stack with a
4390  * timestamp.
4391  *
4392  * @skb: clone of the original outgoing packet
4393  * @hwtstamps: hardware time stamps
4394  *
4395  */
4396 void skb_complete_tx_timestamp(struct sk_buff *skb,
4397 			       struct skb_shared_hwtstamps *hwtstamps);
4398 
4399 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4400 		     struct skb_shared_hwtstamps *hwtstamps,
4401 		     struct sock *sk, int tstype);
4402 
4403 /**
4404  * skb_tstamp_tx - queue clone of skb with send time stamps
4405  * @orig_skb:	the original outgoing packet
4406  * @hwtstamps:	hardware time stamps, may be NULL if not available
4407  *
4408  * If the skb has a socket associated, then this function clones the
4409  * skb (thus sharing the actual data and optional structures), stores
4410  * the optional hardware time stamping information (if non NULL) or
4411  * generates a software time stamp (otherwise), then queues the clone
4412  * to the error queue of the socket.  Errors are silently ignored.
4413  */
4414 void skb_tstamp_tx(struct sk_buff *orig_skb,
4415 		   struct skb_shared_hwtstamps *hwtstamps);
4416 
4417 /**
4418  * skb_tx_timestamp() - Driver hook for transmit timestamping
4419  *
4420  * Ethernet MAC Drivers should call this function in their hard_xmit()
4421  * function immediately before giving the sk_buff to the MAC hardware.
4422  *
4423  * Specifically, one should make absolutely sure that this function is
4424  * called before TX completion of this packet can trigger.  Otherwise
4425  * the packet could potentially already be freed.
4426  *
4427  * @skb: A socket buffer.
4428  */
skb_tx_timestamp(struct sk_buff * skb)4429 static inline void skb_tx_timestamp(struct sk_buff *skb)
4430 {
4431 	skb_clone_tx_timestamp(skb);
4432 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4433 		skb_tstamp_tx(skb, NULL);
4434 }
4435 
4436 /**
4437  * skb_complete_wifi_ack - deliver skb with wifi status
4438  *
4439  * @skb: the original outgoing packet
4440  * @acked: ack status
4441  *
4442  */
4443 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4444 
4445 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4446 __sum16 __skb_checksum_complete(struct sk_buff *skb);
4447 
skb_csum_unnecessary(const struct sk_buff * skb)4448 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4449 {
4450 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4451 		skb->csum_valid ||
4452 		(skb->ip_summed == CHECKSUM_PARTIAL &&
4453 		 skb_checksum_start_offset(skb) >= 0));
4454 }
4455 
4456 /**
4457  *	skb_checksum_complete - Calculate checksum of an entire packet
4458  *	@skb: packet to process
4459  *
4460  *	This function calculates the checksum over the entire packet plus
4461  *	the value of skb->csum.  The latter can be used to supply the
4462  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
4463  *	checksum.
4464  *
4465  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
4466  *	this function can be used to verify that checksum on received
4467  *	packets.  In that case the function should return zero if the
4468  *	checksum is correct.  In particular, this function will return zero
4469  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4470  *	hardware has already verified the correctness of the checksum.
4471  */
skb_checksum_complete(struct sk_buff * skb)4472 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4473 {
4474 	return skb_csum_unnecessary(skb) ?
4475 	       0 : __skb_checksum_complete(skb);
4476 }
4477 
__skb_decr_checksum_unnecessary(struct sk_buff * skb)4478 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4479 {
4480 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4481 		if (skb->csum_level == 0)
4482 			skb->ip_summed = CHECKSUM_NONE;
4483 		else
4484 			skb->csum_level--;
4485 	}
4486 }
4487 
__skb_incr_checksum_unnecessary(struct sk_buff * skb)4488 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4489 {
4490 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4491 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4492 			skb->csum_level++;
4493 	} else if (skb->ip_summed == CHECKSUM_NONE) {
4494 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4495 		skb->csum_level = 0;
4496 	}
4497 }
4498 
__skb_reset_checksum_unnecessary(struct sk_buff * skb)4499 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4500 {
4501 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4502 		skb->ip_summed = CHECKSUM_NONE;
4503 		skb->csum_level = 0;
4504 	}
4505 }
4506 
4507 /* Check if we need to perform checksum complete validation.
4508  *
4509  * Returns true if checksum complete is needed, false otherwise
4510  * (either checksum is unnecessary or zero checksum is allowed).
4511  */
__skb_checksum_validate_needed(struct sk_buff * skb,bool zero_okay,__sum16 check)4512 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4513 						  bool zero_okay,
4514 						  __sum16 check)
4515 {
4516 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4517 		skb->csum_valid = 1;
4518 		__skb_decr_checksum_unnecessary(skb);
4519 		return false;
4520 	}
4521 
4522 	return true;
4523 }
4524 
4525 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4526  * in checksum_init.
4527  */
4528 #define CHECKSUM_BREAK 76
4529 
4530 /* Unset checksum-complete
4531  *
4532  * Unset checksum complete can be done when packet is being modified
4533  * (uncompressed for instance) and checksum-complete value is
4534  * invalidated.
4535  */
skb_checksum_complete_unset(struct sk_buff * skb)4536 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4537 {
4538 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4539 		skb->ip_summed = CHECKSUM_NONE;
4540 }
4541 
4542 /* Validate (init) checksum based on checksum complete.
4543  *
4544  * Return values:
4545  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4546  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4547  *	checksum is stored in skb->csum for use in __skb_checksum_complete
4548  *   non-zero: value of invalid checksum
4549  *
4550  */
__skb_checksum_validate_complete(struct sk_buff * skb,bool complete,__wsum psum)4551 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4552 						       bool complete,
4553 						       __wsum psum)
4554 {
4555 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
4556 		if (!csum_fold(csum_add(psum, skb->csum))) {
4557 			skb->csum_valid = 1;
4558 			return 0;
4559 		}
4560 	}
4561 
4562 	skb->csum = psum;
4563 
4564 	if (complete || skb->len <= CHECKSUM_BREAK) {
4565 		__sum16 csum;
4566 
4567 		csum = __skb_checksum_complete(skb);
4568 		skb->csum_valid = !csum;
4569 		return csum;
4570 	}
4571 
4572 	return 0;
4573 }
4574 
null_compute_pseudo(struct sk_buff * skb,int proto)4575 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4576 {
4577 	return 0;
4578 }
4579 
4580 /* Perform checksum validate (init). Note that this is a macro since we only
4581  * want to calculate the pseudo header which is an input function if necessary.
4582  * First we try to validate without any computation (checksum unnecessary) and
4583  * then calculate based on checksum complete calling the function to compute
4584  * pseudo header.
4585  *
4586  * Return values:
4587  *   0: checksum is validated or try to in skb_checksum_complete
4588  *   non-zero: value of invalid checksum
4589  */
4590 #define __skb_checksum_validate(skb, proto, complete,			\
4591 				zero_okay, check, compute_pseudo)	\
4592 ({									\
4593 	__sum16 __ret = 0;						\
4594 	skb->csum_valid = 0;						\
4595 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4596 		__ret = __skb_checksum_validate_complete(skb,		\
4597 				complete, compute_pseudo(skb, proto));	\
4598 	__ret;								\
4599 })
4600 
4601 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4602 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4603 
4604 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4605 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4606 
4607 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4608 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4609 
4610 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4611 					 compute_pseudo)		\
4612 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4613 
4614 #define skb_checksum_simple_validate(skb)				\
4615 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4616 
__skb_checksum_convert_check(struct sk_buff * skb)4617 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4618 {
4619 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4620 }
4621 
__skb_checksum_convert(struct sk_buff * skb,__wsum pseudo)4622 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4623 {
4624 	skb->csum = ~pseudo;
4625 	skb->ip_summed = CHECKSUM_COMPLETE;
4626 }
4627 
4628 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4629 do {									\
4630 	if (__skb_checksum_convert_check(skb))				\
4631 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4632 } while (0)
4633 
skb_remcsum_adjust_partial(struct sk_buff * skb,void * ptr,u16 start,u16 offset)4634 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4635 					      u16 start, u16 offset)
4636 {
4637 	skb->ip_summed = CHECKSUM_PARTIAL;
4638 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4639 	skb->csum_offset = offset - start;
4640 }
4641 
4642 /* Update skbuf and packet to reflect the remote checksum offload operation.
4643  * When called, ptr indicates the starting point for skb->csum when
4644  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4645  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4646  */
skb_remcsum_process(struct sk_buff * skb,void * ptr,int start,int offset,bool nopartial)4647 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4648 				       int start, int offset, bool nopartial)
4649 {
4650 	__wsum delta;
4651 
4652 	if (!nopartial) {
4653 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4654 		return;
4655 	}
4656 
4657 	if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4658 		__skb_checksum_complete(skb);
4659 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4660 	}
4661 
4662 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4663 
4664 	/* Adjust skb->csum since we changed the packet */
4665 	skb->csum = csum_add(skb->csum, delta);
4666 }
4667 
skb_nfct(const struct sk_buff * skb)4668 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4669 {
4670 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4671 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4672 #else
4673 	return NULL;
4674 #endif
4675 }
4676 
skb_get_nfct(const struct sk_buff * skb)4677 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4678 {
4679 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4680 	return skb->_nfct;
4681 #else
4682 	return 0UL;
4683 #endif
4684 }
4685 
skb_set_nfct(struct sk_buff * skb,unsigned long nfct)4686 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4687 {
4688 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4689 	skb->slow_gro |= !!nfct;
4690 	skb->_nfct = nfct;
4691 #endif
4692 }
4693 
4694 #ifdef CONFIG_SKB_EXTENSIONS
4695 enum skb_ext_id {
4696 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4697 	SKB_EXT_BRIDGE_NF,
4698 #endif
4699 #ifdef CONFIG_XFRM
4700 	SKB_EXT_SEC_PATH,
4701 #endif
4702 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4703 	TC_SKB_EXT,
4704 #endif
4705 #if IS_ENABLED(CONFIG_MPTCP)
4706 	SKB_EXT_MPTCP,
4707 #endif
4708 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4709 	SKB_EXT_MCTP,
4710 #endif
4711 	SKB_EXT_NUM, /* must be last */
4712 };
4713 
4714 /**
4715  *	struct skb_ext - sk_buff extensions
4716  *	@refcnt: 1 on allocation, deallocated on 0
4717  *	@offset: offset to add to @data to obtain extension address
4718  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4719  *	@data: start of extension data, variable sized
4720  *
4721  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4722  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4723  */
4724 struct skb_ext {
4725 	refcount_t refcnt;
4726 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4727 	u8 chunks;		/* same */
4728 	char data[] __aligned(8);
4729 };
4730 
4731 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4732 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4733 		    struct skb_ext *ext);
4734 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4735 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4736 void __skb_ext_put(struct skb_ext *ext);
4737 
skb_ext_put(struct sk_buff * skb)4738 static inline void skb_ext_put(struct sk_buff *skb)
4739 {
4740 	if (skb->active_extensions)
4741 		__skb_ext_put(skb->extensions);
4742 }
4743 
__skb_ext_copy(struct sk_buff * dst,const struct sk_buff * src)4744 static inline void __skb_ext_copy(struct sk_buff *dst,
4745 				  const struct sk_buff *src)
4746 {
4747 	dst->active_extensions = src->active_extensions;
4748 
4749 	if (src->active_extensions) {
4750 		struct skb_ext *ext = src->extensions;
4751 
4752 		refcount_inc(&ext->refcnt);
4753 		dst->extensions = ext;
4754 	}
4755 }
4756 
skb_ext_copy(struct sk_buff * dst,const struct sk_buff * src)4757 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4758 {
4759 	skb_ext_put(dst);
4760 	__skb_ext_copy(dst, src);
4761 }
4762 
__skb_ext_exist(const struct skb_ext * ext,enum skb_ext_id i)4763 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4764 {
4765 	return !!ext->offset[i];
4766 }
4767 
skb_ext_exist(const struct sk_buff * skb,enum skb_ext_id id)4768 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4769 {
4770 	return skb->active_extensions & (1 << id);
4771 }
4772 
skb_ext_del(struct sk_buff * skb,enum skb_ext_id id)4773 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4774 {
4775 	if (skb_ext_exist(skb, id))
4776 		__skb_ext_del(skb, id);
4777 }
4778 
skb_ext_find(const struct sk_buff * skb,enum skb_ext_id id)4779 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4780 {
4781 	if (skb_ext_exist(skb, id)) {
4782 		struct skb_ext *ext = skb->extensions;
4783 
4784 		return (void *)ext + (ext->offset[id] << 3);
4785 	}
4786 
4787 	return NULL;
4788 }
4789 
skb_ext_reset(struct sk_buff * skb)4790 static inline void skb_ext_reset(struct sk_buff *skb)
4791 {
4792 	if (unlikely(skb->active_extensions)) {
4793 		__skb_ext_put(skb->extensions);
4794 		skb->active_extensions = 0;
4795 	}
4796 }
4797 
skb_has_extensions(struct sk_buff * skb)4798 static inline bool skb_has_extensions(struct sk_buff *skb)
4799 {
4800 	return unlikely(skb->active_extensions);
4801 }
4802 #else
skb_ext_put(struct sk_buff * skb)4803 static inline void skb_ext_put(struct sk_buff *skb) {}
skb_ext_reset(struct sk_buff * skb)4804 static inline void skb_ext_reset(struct sk_buff *skb) {}
skb_ext_del(struct sk_buff * skb,int unused)4805 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
__skb_ext_copy(struct sk_buff * d,const struct sk_buff * s)4806 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
skb_ext_copy(struct sk_buff * dst,const struct sk_buff * s)4807 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
skb_has_extensions(struct sk_buff * skb)4808 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4809 #endif /* CONFIG_SKB_EXTENSIONS */
4810 
nf_reset_ct(struct sk_buff * skb)4811 static inline void nf_reset_ct(struct sk_buff *skb)
4812 {
4813 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4814 	nf_conntrack_put(skb_nfct(skb));
4815 	skb->_nfct = 0;
4816 #endif
4817 }
4818 
nf_reset_trace(struct sk_buff * skb)4819 static inline void nf_reset_trace(struct sk_buff *skb)
4820 {
4821 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4822 	skb->nf_trace = 0;
4823 #endif
4824 }
4825 
ipvs_reset(struct sk_buff * skb)4826 static inline void ipvs_reset(struct sk_buff *skb)
4827 {
4828 #if IS_ENABLED(CONFIG_IP_VS)
4829 	skb->ipvs_property = 0;
4830 #endif
4831 }
4832 
4833 /* Note: This doesn't put any conntrack info in dst. */
__nf_copy(struct sk_buff * dst,const struct sk_buff * src,bool copy)4834 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4835 			     bool copy)
4836 {
4837 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4838 	dst->_nfct = src->_nfct;
4839 	nf_conntrack_get(skb_nfct(src));
4840 #endif
4841 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4842 	if (copy)
4843 		dst->nf_trace = src->nf_trace;
4844 #endif
4845 }
4846 
nf_copy(struct sk_buff * dst,const struct sk_buff * src)4847 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4848 {
4849 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4850 	nf_conntrack_put(skb_nfct(dst));
4851 #endif
4852 	dst->slow_gro = src->slow_gro;
4853 	__nf_copy(dst, src, true);
4854 }
4855 
4856 #ifdef CONFIG_NETWORK_SECMARK
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)4857 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4858 {
4859 	to->secmark = from->secmark;
4860 }
4861 
skb_init_secmark(struct sk_buff * skb)4862 static inline void skb_init_secmark(struct sk_buff *skb)
4863 {
4864 	skb->secmark = 0;
4865 }
4866 #else
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)4867 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4868 { }
4869 
skb_init_secmark(struct sk_buff * skb)4870 static inline void skb_init_secmark(struct sk_buff *skb)
4871 { }
4872 #endif
4873 
secpath_exists(const struct sk_buff * skb)4874 static inline int secpath_exists(const struct sk_buff *skb)
4875 {
4876 #ifdef CONFIG_XFRM
4877 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4878 #else
4879 	return 0;
4880 #endif
4881 }
4882 
skb_irq_freeable(const struct sk_buff * skb)4883 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4884 {
4885 	return !skb->destructor &&
4886 		!secpath_exists(skb) &&
4887 		!skb_nfct(skb) &&
4888 		!skb->_skb_refdst &&
4889 		!skb_has_frag_list(skb);
4890 }
4891 
skb_set_queue_mapping(struct sk_buff * skb,u16 queue_mapping)4892 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4893 {
4894 	skb->queue_mapping = queue_mapping;
4895 }
4896 
skb_get_queue_mapping(const struct sk_buff * skb)4897 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4898 {
4899 	return skb->queue_mapping;
4900 }
4901 
skb_copy_queue_mapping(struct sk_buff * to,const struct sk_buff * from)4902 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4903 {
4904 	to->queue_mapping = from->queue_mapping;
4905 }
4906 
skb_record_rx_queue(struct sk_buff * skb,u16 rx_queue)4907 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4908 {
4909 	skb->queue_mapping = rx_queue + 1;
4910 }
4911 
skb_get_rx_queue(const struct sk_buff * skb)4912 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4913 {
4914 	return skb->queue_mapping - 1;
4915 }
4916 
skb_rx_queue_recorded(const struct sk_buff * skb)4917 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4918 {
4919 	return skb->queue_mapping != 0;
4920 }
4921 
skb_set_dst_pending_confirm(struct sk_buff * skb,u32 val)4922 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4923 {
4924 	skb->dst_pending_confirm = val;
4925 }
4926 
skb_get_dst_pending_confirm(const struct sk_buff * skb)4927 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4928 {
4929 	return skb->dst_pending_confirm != 0;
4930 }
4931 
skb_sec_path(const struct sk_buff * skb)4932 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4933 {
4934 #ifdef CONFIG_XFRM
4935 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4936 #else
4937 	return NULL;
4938 #endif
4939 }
4940 
4941 /* Keeps track of mac header offset relative to skb->head.
4942  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4943  * For non-tunnel skb it points to skb_mac_header() and for
4944  * tunnel skb it points to outer mac header.
4945  * Keeps track of level of encapsulation of network headers.
4946  */
4947 struct skb_gso_cb {
4948 	union {
4949 		int	mac_offset;
4950 		int	data_offset;
4951 	};
4952 	int	encap_level;
4953 	__wsum	csum;
4954 	__u16	csum_start;
4955 };
4956 #define SKB_GSO_CB_OFFSET	32
4957 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4958 
skb_tnl_header_len(const struct sk_buff * inner_skb)4959 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4960 {
4961 	return (skb_mac_header(inner_skb) - inner_skb->head) -
4962 		SKB_GSO_CB(inner_skb)->mac_offset;
4963 }
4964 
gso_pskb_expand_head(struct sk_buff * skb,int extra)4965 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4966 {
4967 	int new_headroom, headroom;
4968 	int ret;
4969 
4970 	headroom = skb_headroom(skb);
4971 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4972 	if (ret)
4973 		return ret;
4974 
4975 	new_headroom = skb_headroom(skb);
4976 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4977 	return 0;
4978 }
4979 
gso_reset_checksum(struct sk_buff * skb,__wsum res)4980 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4981 {
4982 	/* Do not update partial checksums if remote checksum is enabled. */
4983 	if (skb->remcsum_offload)
4984 		return;
4985 
4986 	SKB_GSO_CB(skb)->csum = res;
4987 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4988 }
4989 
4990 /* Compute the checksum for a gso segment. First compute the checksum value
4991  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4992  * then add in skb->csum (checksum from csum_start to end of packet).
4993  * skb->csum and csum_start are then updated to reflect the checksum of the
4994  * resultant packet starting from the transport header-- the resultant checksum
4995  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4996  * header.
4997  */
gso_make_checksum(struct sk_buff * skb,__wsum res)4998 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4999 {
5000 	unsigned char *csum_start = skb_transport_header(skb);
5001 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
5002 	__wsum partial = SKB_GSO_CB(skb)->csum;
5003 
5004 	SKB_GSO_CB(skb)->csum = res;
5005 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
5006 
5007 	return csum_fold(csum_partial(csum_start, plen, partial));
5008 }
5009 
skb_is_gso(const struct sk_buff * skb)5010 static inline bool skb_is_gso(const struct sk_buff *skb)
5011 {
5012 	return skb_shinfo(skb)->gso_size;
5013 }
5014 
5015 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_v6(const struct sk_buff * skb)5016 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
5017 {
5018 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
5019 }
5020 
5021 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_sctp(const struct sk_buff * skb)5022 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
5023 {
5024 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
5025 }
5026 
5027 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_tcp(const struct sk_buff * skb)5028 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
5029 {
5030 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
5031 }
5032 
skb_gso_reset(struct sk_buff * skb)5033 static inline void skb_gso_reset(struct sk_buff *skb)
5034 {
5035 	skb_shinfo(skb)->gso_size = 0;
5036 	skb_shinfo(skb)->gso_segs = 0;
5037 	skb_shinfo(skb)->gso_type = 0;
5038 }
5039 
skb_increase_gso_size(struct skb_shared_info * shinfo,u16 increment)5040 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
5041 					 u16 increment)
5042 {
5043 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
5044 		return;
5045 	shinfo->gso_size += increment;
5046 }
5047 
skb_decrease_gso_size(struct skb_shared_info * shinfo,u16 decrement)5048 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
5049 					 u16 decrement)
5050 {
5051 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
5052 		return;
5053 	shinfo->gso_size -= decrement;
5054 }
5055 
5056 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
5057 
skb_warn_if_lro(const struct sk_buff * skb)5058 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
5059 {
5060 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
5061 	 * wanted then gso_type will be set. */
5062 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5063 
5064 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
5065 	    unlikely(shinfo->gso_type == 0)) {
5066 		__skb_warn_lro_forwarding(skb);
5067 		return true;
5068 	}
5069 	return false;
5070 }
5071 
skb_forward_csum(struct sk_buff * skb)5072 static inline void skb_forward_csum(struct sk_buff *skb)
5073 {
5074 	/* Unfortunately we don't support this one.  Any brave souls? */
5075 	if (skb->ip_summed == CHECKSUM_COMPLETE)
5076 		skb->ip_summed = CHECKSUM_NONE;
5077 }
5078 
5079 /**
5080  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
5081  * @skb: skb to check
5082  *
5083  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
5084  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
5085  * use this helper, to document places where we make this assertion.
5086  */
skb_checksum_none_assert(const struct sk_buff * skb)5087 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
5088 {
5089 	DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE);
5090 }
5091 
5092 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
5093 
5094 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
5095 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5096 				     unsigned int transport_len,
5097 				     __sum16(*skb_chkf)(struct sk_buff *skb));
5098 
5099 /**
5100  * skb_head_is_locked - Determine if the skb->head is locked down
5101  * @skb: skb to check
5102  *
5103  * The head on skbs build around a head frag can be removed if they are
5104  * not cloned.  This function returns true if the skb head is locked down
5105  * due to either being allocated via kmalloc, or by being a clone with
5106  * multiple references to the head.
5107  */
skb_head_is_locked(const struct sk_buff * skb)5108 static inline bool skb_head_is_locked(const struct sk_buff *skb)
5109 {
5110 	return !skb->head_frag || skb_cloned(skb);
5111 }
5112 
5113 /* Local Checksum Offload.
5114  * Compute outer checksum based on the assumption that the
5115  * inner checksum will be offloaded later.
5116  * See Documentation/networking/checksum-offloads.rst for
5117  * explanation of how this works.
5118  * Fill in outer checksum adjustment (e.g. with sum of outer
5119  * pseudo-header) before calling.
5120  * Also ensure that inner checksum is in linear data area.
5121  */
lco_csum(struct sk_buff * skb)5122 static inline __wsum lco_csum(struct sk_buff *skb)
5123 {
5124 	unsigned char *csum_start = skb_checksum_start(skb);
5125 	unsigned char *l4_hdr = skb_transport_header(skb);
5126 	__wsum partial;
5127 
5128 	/* Start with complement of inner checksum adjustment */
5129 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
5130 						    skb->csum_offset));
5131 
5132 	/* Add in checksum of our headers (incl. outer checksum
5133 	 * adjustment filled in by caller) and return result.
5134 	 */
5135 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
5136 }
5137 
skb_is_redirected(const struct sk_buff * skb)5138 static inline bool skb_is_redirected(const struct sk_buff *skb)
5139 {
5140 	return skb->redirected;
5141 }
5142 
skb_set_redirected(struct sk_buff * skb,bool from_ingress)5143 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
5144 {
5145 	skb->redirected = 1;
5146 #ifdef CONFIG_NET_REDIRECT
5147 	skb->from_ingress = from_ingress;
5148 	if (skb->from_ingress)
5149 		skb_clear_tstamp(skb);
5150 #endif
5151 }
5152 
skb_reset_redirect(struct sk_buff * skb)5153 static inline void skb_reset_redirect(struct sk_buff *skb)
5154 {
5155 	skb->redirected = 0;
5156 }
5157 
skb_csum_is_sctp(struct sk_buff * skb)5158 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
5159 {
5160 	return skb->csum_not_inet;
5161 }
5162 
skb_set_kcov_handle(struct sk_buff * skb,const u64 kcov_handle)5163 static inline void skb_set_kcov_handle(struct sk_buff *skb,
5164 				       const u64 kcov_handle)
5165 {
5166 #ifdef CONFIG_KCOV
5167 	skb->kcov_handle = kcov_handle;
5168 #endif
5169 }
5170 
skb_get_kcov_handle(struct sk_buff * skb)5171 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
5172 {
5173 #ifdef CONFIG_KCOV
5174 	return skb->kcov_handle;
5175 #else
5176 	return 0;
5177 #endif
5178 }
5179 
5180 #ifdef CONFIG_PAGE_POOL
skb_mark_for_recycle(struct sk_buff * skb)5181 static inline void skb_mark_for_recycle(struct sk_buff *skb)
5182 {
5183 	skb->pp_recycle = 1;
5184 }
5185 #endif
5186 
skb_pp_recycle(struct sk_buff * skb,void * data)5187 static inline bool skb_pp_recycle(struct sk_buff *skb, void *data)
5188 {
5189 	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
5190 		return false;
5191 	return page_pool_return_skb_page(virt_to_page(data));
5192 }
5193 
5194 #endif	/* __KERNEL__ */
5195 #endif	/* _LINUX_SKBUFF_H */
5196