1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26 */
27
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
53 #include <linux/fs.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/memremap.h>
57 #include <linux/mm_inline.h>
58 #include <linux/swap_cgroup.h>
59 #include <linux/cpu.h>
60 #include <linux/oom.h>
61 #include <linux/lockdep.h>
62 #include <linux/file.h>
63 #include <linux/resume_user_mode.h>
64 #include <linux/psi.h>
65 #include <linux/seq_buf.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70 #include "swap.h"
71
72 #include <linux/uaccess.h>
73
74 #include <trace/events/vmscan.h>
75
76 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
77 EXPORT_SYMBOL(memory_cgrp_subsys);
78
79 struct mem_cgroup *root_mem_cgroup __read_mostly;
80
81 /* Active memory cgroup to use from an interrupt context */
82 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
83 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
84
85 /* Socket memory accounting disabled? */
86 static bool cgroup_memory_nosocket __ro_after_init;
87
88 /* Kernel memory accounting disabled? */
89 static bool cgroup_memory_nokmem __ro_after_init;
90
91 #ifdef CONFIG_CGROUP_WRITEBACK
92 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
93 #endif
94
95 /* Whether legacy memory+swap accounting is active */
do_memsw_account(void)96 static bool do_memsw_account(void)
97 {
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys);
99 }
100
101 #define THRESHOLDS_EVENTS_TARGET 128
102 #define SOFTLIMIT_EVENTS_TARGET 1024
103
104 /*
105 * Cgroups above their limits are maintained in a RB-Tree, independent of
106 * their hierarchy representation
107 */
108
109 struct mem_cgroup_tree_per_node {
110 struct rb_root rb_root;
111 struct rb_node *rb_rightmost;
112 spinlock_t lock;
113 };
114
115 struct mem_cgroup_tree {
116 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
117 };
118
119 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
120
121 /* for OOM */
122 struct mem_cgroup_eventfd_list {
123 struct list_head list;
124 struct eventfd_ctx *eventfd;
125 };
126
127 /*
128 * cgroup_event represents events which userspace want to receive.
129 */
130 struct mem_cgroup_event {
131 /*
132 * memcg which the event belongs to.
133 */
134 struct mem_cgroup *memcg;
135 /*
136 * eventfd to signal userspace about the event.
137 */
138 struct eventfd_ctx *eventfd;
139 /*
140 * Each of these stored in a list by the cgroup.
141 */
142 struct list_head list;
143 /*
144 * register_event() callback will be used to add new userspace
145 * waiter for changes related to this event. Use eventfd_signal()
146 * on eventfd to send notification to userspace.
147 */
148 int (*register_event)(struct mem_cgroup *memcg,
149 struct eventfd_ctx *eventfd, const char *args);
150 /*
151 * unregister_event() callback will be called when userspace closes
152 * the eventfd or on cgroup removing. This callback must be set,
153 * if you want provide notification functionality.
154 */
155 void (*unregister_event)(struct mem_cgroup *memcg,
156 struct eventfd_ctx *eventfd);
157 /*
158 * All fields below needed to unregister event when
159 * userspace closes eventfd.
160 */
161 poll_table pt;
162 wait_queue_head_t *wqh;
163 wait_queue_entry_t wait;
164 struct work_struct remove;
165 };
166
167 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
168 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
169
170 /* Stuffs for move charges at task migration. */
171 /*
172 * Types of charges to be moved.
173 */
174 #define MOVE_ANON 0x1U
175 #define MOVE_FILE 0x2U
176 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
177
178 /* "mc" and its members are protected by cgroup_mutex */
179 static struct move_charge_struct {
180 spinlock_t lock; /* for from, to */
181 struct mm_struct *mm;
182 struct mem_cgroup *from;
183 struct mem_cgroup *to;
184 unsigned long flags;
185 unsigned long precharge;
186 unsigned long moved_charge;
187 unsigned long moved_swap;
188 struct task_struct *moving_task; /* a task moving charges */
189 wait_queue_head_t waitq; /* a waitq for other context */
190 } mc = {
191 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
192 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
193 };
194
195 /*
196 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
197 * limit reclaim to prevent infinite loops, if they ever occur.
198 */
199 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
200 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
201
202 /* for encoding cft->private value on file */
203 enum res_type {
204 _MEM,
205 _MEMSWAP,
206 _KMEM,
207 _TCP,
208 };
209
210 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
211 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
212 #define MEMFILE_ATTR(val) ((val) & 0xffff)
213
214 /*
215 * Iteration constructs for visiting all cgroups (under a tree). If
216 * loops are exited prematurely (break), mem_cgroup_iter_break() must
217 * be used for reference counting.
218 */
219 #define for_each_mem_cgroup_tree(iter, root) \
220 for (iter = mem_cgroup_iter(root, NULL, NULL); \
221 iter != NULL; \
222 iter = mem_cgroup_iter(root, iter, NULL))
223
224 #define for_each_mem_cgroup(iter) \
225 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
226 iter != NULL; \
227 iter = mem_cgroup_iter(NULL, iter, NULL))
228
task_is_dying(void)229 static inline bool task_is_dying(void)
230 {
231 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
232 (current->flags & PF_EXITING);
233 }
234
235 /* Some nice accessors for the vmpressure. */
memcg_to_vmpressure(struct mem_cgroup * memcg)236 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
237 {
238 if (!memcg)
239 memcg = root_mem_cgroup;
240 return &memcg->vmpressure;
241 }
242
vmpressure_to_memcg(struct vmpressure * vmpr)243 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
244 {
245 return container_of(vmpr, struct mem_cgroup, vmpressure);
246 }
247
248 #ifdef CONFIG_MEMCG_KMEM
249 static DEFINE_SPINLOCK(objcg_lock);
250
mem_cgroup_kmem_disabled(void)251 bool mem_cgroup_kmem_disabled(void)
252 {
253 return cgroup_memory_nokmem;
254 }
255
256 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
257 unsigned int nr_pages);
258
obj_cgroup_release(struct percpu_ref * ref)259 static void obj_cgroup_release(struct percpu_ref *ref)
260 {
261 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
262 unsigned int nr_bytes;
263 unsigned int nr_pages;
264 unsigned long flags;
265
266 /*
267 * At this point all allocated objects are freed, and
268 * objcg->nr_charged_bytes can't have an arbitrary byte value.
269 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
270 *
271 * The following sequence can lead to it:
272 * 1) CPU0: objcg == stock->cached_objcg
273 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
274 * PAGE_SIZE bytes are charged
275 * 3) CPU1: a process from another memcg is allocating something,
276 * the stock if flushed,
277 * objcg->nr_charged_bytes = PAGE_SIZE - 92
278 * 5) CPU0: we do release this object,
279 * 92 bytes are added to stock->nr_bytes
280 * 6) CPU0: stock is flushed,
281 * 92 bytes are added to objcg->nr_charged_bytes
282 *
283 * In the result, nr_charged_bytes == PAGE_SIZE.
284 * This page will be uncharged in obj_cgroup_release().
285 */
286 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
287 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
288 nr_pages = nr_bytes >> PAGE_SHIFT;
289
290 if (nr_pages)
291 obj_cgroup_uncharge_pages(objcg, nr_pages);
292
293 spin_lock_irqsave(&objcg_lock, flags);
294 list_del(&objcg->list);
295 spin_unlock_irqrestore(&objcg_lock, flags);
296
297 percpu_ref_exit(ref);
298 kfree_rcu(objcg, rcu);
299 }
300
obj_cgroup_alloc(void)301 static struct obj_cgroup *obj_cgroup_alloc(void)
302 {
303 struct obj_cgroup *objcg;
304 int ret;
305
306 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
307 if (!objcg)
308 return NULL;
309
310 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
311 GFP_KERNEL);
312 if (ret) {
313 kfree(objcg);
314 return NULL;
315 }
316 INIT_LIST_HEAD(&objcg->list);
317 return objcg;
318 }
319
memcg_reparent_objcgs(struct mem_cgroup * memcg,struct mem_cgroup * parent)320 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
321 struct mem_cgroup *parent)
322 {
323 struct obj_cgroup *objcg, *iter;
324
325 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
326
327 spin_lock_irq(&objcg_lock);
328
329 /* 1) Ready to reparent active objcg. */
330 list_add(&objcg->list, &memcg->objcg_list);
331 /* 2) Reparent active objcg and already reparented objcgs to parent. */
332 list_for_each_entry(iter, &memcg->objcg_list, list)
333 WRITE_ONCE(iter->memcg, parent);
334 /* 3) Move already reparented objcgs to the parent's list */
335 list_splice(&memcg->objcg_list, &parent->objcg_list);
336
337 spin_unlock_irq(&objcg_lock);
338
339 percpu_ref_kill(&objcg->refcnt);
340 }
341
342 /*
343 * A lot of the calls to the cache allocation functions are expected to be
344 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
345 * conditional to this static branch, we'll have to allow modules that does
346 * kmem_cache_alloc and the such to see this symbol as well
347 */
348 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
349 EXPORT_SYMBOL(memcg_kmem_enabled_key);
350 #endif
351
352 /**
353 * mem_cgroup_css_from_page - css of the memcg associated with a page
354 * @page: page of interest
355 *
356 * If memcg is bound to the default hierarchy, css of the memcg associated
357 * with @page is returned. The returned css remains associated with @page
358 * until it is released.
359 *
360 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
361 * is returned.
362 */
mem_cgroup_css_from_page(struct page * page)363 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
364 {
365 struct mem_cgroup *memcg;
366
367 memcg = page_memcg(page);
368
369 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
370 memcg = root_mem_cgroup;
371
372 return &memcg->css;
373 }
374
375 /**
376 * page_cgroup_ino - return inode number of the memcg a page is charged to
377 * @page: the page
378 *
379 * Look up the closest online ancestor of the memory cgroup @page is charged to
380 * and return its inode number or 0 if @page is not charged to any cgroup. It
381 * is safe to call this function without holding a reference to @page.
382 *
383 * Note, this function is inherently racy, because there is nothing to prevent
384 * the cgroup inode from getting torn down and potentially reallocated a moment
385 * after page_cgroup_ino() returns, so it only should be used by callers that
386 * do not care (such as procfs interfaces).
387 */
page_cgroup_ino(struct page * page)388 ino_t page_cgroup_ino(struct page *page)
389 {
390 struct mem_cgroup *memcg;
391 unsigned long ino = 0;
392
393 rcu_read_lock();
394 memcg = page_memcg_check(page);
395
396 while (memcg && !(memcg->css.flags & CSS_ONLINE))
397 memcg = parent_mem_cgroup(memcg);
398 if (memcg)
399 ino = cgroup_ino(memcg->css.cgroup);
400 rcu_read_unlock();
401 return ino;
402 }
403
__mem_cgroup_insert_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz,unsigned long new_usage_in_excess)404 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
405 struct mem_cgroup_tree_per_node *mctz,
406 unsigned long new_usage_in_excess)
407 {
408 struct rb_node **p = &mctz->rb_root.rb_node;
409 struct rb_node *parent = NULL;
410 struct mem_cgroup_per_node *mz_node;
411 bool rightmost = true;
412
413 if (mz->on_tree)
414 return;
415
416 mz->usage_in_excess = new_usage_in_excess;
417 if (!mz->usage_in_excess)
418 return;
419 while (*p) {
420 parent = *p;
421 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
422 tree_node);
423 if (mz->usage_in_excess < mz_node->usage_in_excess) {
424 p = &(*p)->rb_left;
425 rightmost = false;
426 } else {
427 p = &(*p)->rb_right;
428 }
429 }
430
431 if (rightmost)
432 mctz->rb_rightmost = &mz->tree_node;
433
434 rb_link_node(&mz->tree_node, parent, p);
435 rb_insert_color(&mz->tree_node, &mctz->rb_root);
436 mz->on_tree = true;
437 }
438
__mem_cgroup_remove_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz)439 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
440 struct mem_cgroup_tree_per_node *mctz)
441 {
442 if (!mz->on_tree)
443 return;
444
445 if (&mz->tree_node == mctz->rb_rightmost)
446 mctz->rb_rightmost = rb_prev(&mz->tree_node);
447
448 rb_erase(&mz->tree_node, &mctz->rb_root);
449 mz->on_tree = false;
450 }
451
mem_cgroup_remove_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz)452 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
453 struct mem_cgroup_tree_per_node *mctz)
454 {
455 unsigned long flags;
456
457 spin_lock_irqsave(&mctz->lock, flags);
458 __mem_cgroup_remove_exceeded(mz, mctz);
459 spin_unlock_irqrestore(&mctz->lock, flags);
460 }
461
soft_limit_excess(struct mem_cgroup * memcg)462 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
463 {
464 unsigned long nr_pages = page_counter_read(&memcg->memory);
465 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
466 unsigned long excess = 0;
467
468 if (nr_pages > soft_limit)
469 excess = nr_pages - soft_limit;
470
471 return excess;
472 }
473
mem_cgroup_update_tree(struct mem_cgroup * memcg,int nid)474 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
475 {
476 unsigned long excess;
477 struct mem_cgroup_per_node *mz;
478 struct mem_cgroup_tree_per_node *mctz;
479
480 mctz = soft_limit_tree.rb_tree_per_node[nid];
481 if (!mctz)
482 return;
483 /*
484 * Necessary to update all ancestors when hierarchy is used.
485 * because their event counter is not touched.
486 */
487 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
488 mz = memcg->nodeinfo[nid];
489 excess = soft_limit_excess(memcg);
490 /*
491 * We have to update the tree if mz is on RB-tree or
492 * mem is over its softlimit.
493 */
494 if (excess || mz->on_tree) {
495 unsigned long flags;
496
497 spin_lock_irqsave(&mctz->lock, flags);
498 /* if on-tree, remove it */
499 if (mz->on_tree)
500 __mem_cgroup_remove_exceeded(mz, mctz);
501 /*
502 * Insert again. mz->usage_in_excess will be updated.
503 * If excess is 0, no tree ops.
504 */
505 __mem_cgroup_insert_exceeded(mz, mctz, excess);
506 spin_unlock_irqrestore(&mctz->lock, flags);
507 }
508 }
509 }
510
mem_cgroup_remove_from_trees(struct mem_cgroup * memcg)511 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
512 {
513 struct mem_cgroup_tree_per_node *mctz;
514 struct mem_cgroup_per_node *mz;
515 int nid;
516
517 for_each_node(nid) {
518 mz = memcg->nodeinfo[nid];
519 mctz = soft_limit_tree.rb_tree_per_node[nid];
520 if (mctz)
521 mem_cgroup_remove_exceeded(mz, mctz);
522 }
523 }
524
525 static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node * mctz)526 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
527 {
528 struct mem_cgroup_per_node *mz;
529
530 retry:
531 mz = NULL;
532 if (!mctz->rb_rightmost)
533 goto done; /* Nothing to reclaim from */
534
535 mz = rb_entry(mctz->rb_rightmost,
536 struct mem_cgroup_per_node, tree_node);
537 /*
538 * Remove the node now but someone else can add it back,
539 * we will to add it back at the end of reclaim to its correct
540 * position in the tree.
541 */
542 __mem_cgroup_remove_exceeded(mz, mctz);
543 if (!soft_limit_excess(mz->memcg) ||
544 !css_tryget(&mz->memcg->css))
545 goto retry;
546 done:
547 return mz;
548 }
549
550 static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node * mctz)551 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
552 {
553 struct mem_cgroup_per_node *mz;
554
555 spin_lock_irq(&mctz->lock);
556 mz = __mem_cgroup_largest_soft_limit_node(mctz);
557 spin_unlock_irq(&mctz->lock);
558 return mz;
559 }
560
561 /*
562 * memcg and lruvec stats flushing
563 *
564 * Many codepaths leading to stats update or read are performance sensitive and
565 * adding stats flushing in such codepaths is not desirable. So, to optimize the
566 * flushing the kernel does:
567 *
568 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
569 * rstat update tree grow unbounded.
570 *
571 * 2) Flush the stats synchronously on reader side only when there are more than
572 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
573 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
574 * only for 2 seconds due to (1).
575 */
576 static void flush_memcg_stats_dwork(struct work_struct *w);
577 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
578 static DEFINE_SPINLOCK(stats_flush_lock);
579 static DEFINE_PER_CPU(unsigned int, stats_updates);
580 static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
581 static u64 flush_next_time;
582
583 #define FLUSH_TIME (2UL*HZ)
584
585 /*
586 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
587 * not rely on this as part of an acquired spinlock_t lock. These functions are
588 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
589 * is sufficient.
590 */
memcg_stats_lock(void)591 static void memcg_stats_lock(void)
592 {
593 preempt_disable_nested();
594 VM_WARN_ON_IRQS_ENABLED();
595 }
596
__memcg_stats_lock(void)597 static void __memcg_stats_lock(void)
598 {
599 preempt_disable_nested();
600 }
601
memcg_stats_unlock(void)602 static void memcg_stats_unlock(void)
603 {
604 preempt_enable_nested();
605 }
606
memcg_rstat_updated(struct mem_cgroup * memcg,int val)607 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
608 {
609 unsigned int x;
610
611 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
612
613 x = __this_cpu_add_return(stats_updates, abs(val));
614 if (x > MEMCG_CHARGE_BATCH) {
615 /*
616 * If stats_flush_threshold exceeds the threshold
617 * (>num_online_cpus()), cgroup stats update will be triggered
618 * in __mem_cgroup_flush_stats(). Increasing this var further
619 * is redundant and simply adds overhead in atomic update.
620 */
621 if (atomic_read(&stats_flush_threshold) <= num_online_cpus())
622 atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
623 __this_cpu_write(stats_updates, 0);
624 }
625 }
626
__mem_cgroup_flush_stats(void)627 static void __mem_cgroup_flush_stats(void)
628 {
629 unsigned long flag;
630
631 if (!spin_trylock_irqsave(&stats_flush_lock, flag))
632 return;
633
634 flush_next_time = jiffies_64 + 2*FLUSH_TIME;
635 cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup);
636 atomic_set(&stats_flush_threshold, 0);
637 spin_unlock_irqrestore(&stats_flush_lock, flag);
638 }
639
mem_cgroup_flush_stats(void)640 void mem_cgroup_flush_stats(void)
641 {
642 if (atomic_read(&stats_flush_threshold) > num_online_cpus())
643 __mem_cgroup_flush_stats();
644 }
645
mem_cgroup_flush_stats_delayed(void)646 void mem_cgroup_flush_stats_delayed(void)
647 {
648 if (time_after64(jiffies_64, flush_next_time))
649 mem_cgroup_flush_stats();
650 }
651
flush_memcg_stats_dwork(struct work_struct * w)652 static void flush_memcg_stats_dwork(struct work_struct *w)
653 {
654 __mem_cgroup_flush_stats();
655 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
656 }
657
658 /* Subset of vm_event_item to report for memcg event stats */
659 static const unsigned int memcg_vm_event_stat[] = {
660 PGPGIN,
661 PGPGOUT,
662 PGSCAN_KSWAPD,
663 PGSCAN_DIRECT,
664 PGSTEAL_KSWAPD,
665 PGSTEAL_DIRECT,
666 PGFAULT,
667 PGMAJFAULT,
668 PGREFILL,
669 PGACTIVATE,
670 PGDEACTIVATE,
671 PGLAZYFREE,
672 PGLAZYFREED,
673 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
674 ZSWPIN,
675 ZSWPOUT,
676 #endif
677 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
678 THP_FAULT_ALLOC,
679 THP_COLLAPSE_ALLOC,
680 #endif
681 };
682
683 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
684 static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
685
init_memcg_events(void)686 static void init_memcg_events(void)
687 {
688 int i;
689
690 for (i = 0; i < NR_MEMCG_EVENTS; ++i)
691 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1;
692 }
693
memcg_events_index(enum vm_event_item idx)694 static inline int memcg_events_index(enum vm_event_item idx)
695 {
696 return mem_cgroup_events_index[idx] - 1;
697 }
698
699 struct memcg_vmstats_percpu {
700 /* Local (CPU and cgroup) page state & events */
701 long state[MEMCG_NR_STAT];
702 unsigned long events[NR_MEMCG_EVENTS];
703
704 /* Delta calculation for lockless upward propagation */
705 long state_prev[MEMCG_NR_STAT];
706 unsigned long events_prev[NR_MEMCG_EVENTS];
707
708 /* Cgroup1: threshold notifications & softlimit tree updates */
709 unsigned long nr_page_events;
710 unsigned long targets[MEM_CGROUP_NTARGETS];
711 };
712
713 struct memcg_vmstats {
714 /* Aggregated (CPU and subtree) page state & events */
715 long state[MEMCG_NR_STAT];
716 unsigned long events[NR_MEMCG_EVENTS];
717
718 /* Pending child counts during tree propagation */
719 long state_pending[MEMCG_NR_STAT];
720 unsigned long events_pending[NR_MEMCG_EVENTS];
721 };
722
memcg_page_state(struct mem_cgroup * memcg,int idx)723 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
724 {
725 long x = READ_ONCE(memcg->vmstats->state[idx]);
726 #ifdef CONFIG_SMP
727 if (x < 0)
728 x = 0;
729 #endif
730 return x;
731 }
732
733 /**
734 * __mod_memcg_state - update cgroup memory statistics
735 * @memcg: the memory cgroup
736 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
737 * @val: delta to add to the counter, can be negative
738 */
__mod_memcg_state(struct mem_cgroup * memcg,int idx,int val)739 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
740 {
741 if (mem_cgroup_disabled())
742 return;
743
744 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
745 memcg_rstat_updated(memcg, val);
746 }
747
748 /* idx can be of type enum memcg_stat_item or node_stat_item. */
memcg_page_state_local(struct mem_cgroup * memcg,int idx)749 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
750 {
751 long x = 0;
752 int cpu;
753
754 for_each_possible_cpu(cpu)
755 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
756 #ifdef CONFIG_SMP
757 if (x < 0)
758 x = 0;
759 #endif
760 return x;
761 }
762
__mod_memcg_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)763 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
764 int val)
765 {
766 struct mem_cgroup_per_node *pn;
767 struct mem_cgroup *memcg;
768
769 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
770 memcg = pn->memcg;
771
772 /*
773 * The caller from rmap relay on disabled preemption becase they never
774 * update their counter from in-interrupt context. For these two
775 * counters we check that the update is never performed from an
776 * interrupt context while other caller need to have disabled interrupt.
777 */
778 __memcg_stats_lock();
779 if (IS_ENABLED(CONFIG_DEBUG_VM)) {
780 switch (idx) {
781 case NR_ANON_MAPPED:
782 case NR_FILE_MAPPED:
783 case NR_ANON_THPS:
784 case NR_SHMEM_PMDMAPPED:
785 case NR_FILE_PMDMAPPED:
786 WARN_ON_ONCE(!in_task());
787 break;
788 default:
789 VM_WARN_ON_IRQS_ENABLED();
790 }
791 }
792
793 /* Update memcg */
794 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
795
796 /* Update lruvec */
797 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
798
799 memcg_rstat_updated(memcg, val);
800 memcg_stats_unlock();
801 }
802
803 /**
804 * __mod_lruvec_state - update lruvec memory statistics
805 * @lruvec: the lruvec
806 * @idx: the stat item
807 * @val: delta to add to the counter, can be negative
808 *
809 * The lruvec is the intersection of the NUMA node and a cgroup. This
810 * function updates the all three counters that are affected by a
811 * change of state at this level: per-node, per-cgroup, per-lruvec.
812 */
__mod_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)813 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
814 int val)
815 {
816 /* Update node */
817 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
818
819 /* Update memcg and lruvec */
820 if (!mem_cgroup_disabled())
821 __mod_memcg_lruvec_state(lruvec, idx, val);
822 }
823
__mod_lruvec_page_state(struct page * page,enum node_stat_item idx,int val)824 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
825 int val)
826 {
827 struct page *head = compound_head(page); /* rmap on tail pages */
828 struct mem_cgroup *memcg;
829 pg_data_t *pgdat = page_pgdat(page);
830 struct lruvec *lruvec;
831
832 rcu_read_lock();
833 memcg = page_memcg(head);
834 /* Untracked pages have no memcg, no lruvec. Update only the node */
835 if (!memcg) {
836 rcu_read_unlock();
837 __mod_node_page_state(pgdat, idx, val);
838 return;
839 }
840
841 lruvec = mem_cgroup_lruvec(memcg, pgdat);
842 __mod_lruvec_state(lruvec, idx, val);
843 rcu_read_unlock();
844 }
845 EXPORT_SYMBOL(__mod_lruvec_page_state);
846
__mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)847 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
848 {
849 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
850 struct mem_cgroup *memcg;
851 struct lruvec *lruvec;
852
853 rcu_read_lock();
854 memcg = mem_cgroup_from_slab_obj(p);
855
856 /*
857 * Untracked pages have no memcg, no lruvec. Update only the
858 * node. If we reparent the slab objects to the root memcg,
859 * when we free the slab object, we need to update the per-memcg
860 * vmstats to keep it correct for the root memcg.
861 */
862 if (!memcg) {
863 __mod_node_page_state(pgdat, idx, val);
864 } else {
865 lruvec = mem_cgroup_lruvec(memcg, pgdat);
866 __mod_lruvec_state(lruvec, idx, val);
867 }
868 rcu_read_unlock();
869 }
870
871 /**
872 * __count_memcg_events - account VM events in a cgroup
873 * @memcg: the memory cgroup
874 * @idx: the event item
875 * @count: the number of events that occurred
876 */
__count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)877 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
878 unsigned long count)
879 {
880 int index = memcg_events_index(idx);
881
882 if (mem_cgroup_disabled() || index < 0)
883 return;
884
885 memcg_stats_lock();
886 __this_cpu_add(memcg->vmstats_percpu->events[index], count);
887 memcg_rstat_updated(memcg, count);
888 memcg_stats_unlock();
889 }
890
memcg_events(struct mem_cgroup * memcg,int event)891 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
892 {
893 int index = memcg_events_index(event);
894
895 if (index < 0)
896 return 0;
897 return READ_ONCE(memcg->vmstats->events[index]);
898 }
899
memcg_events_local(struct mem_cgroup * memcg,int event)900 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
901 {
902 long x = 0;
903 int cpu;
904 int index = memcg_events_index(event);
905
906 if (index < 0)
907 return 0;
908
909 for_each_possible_cpu(cpu)
910 x += per_cpu(memcg->vmstats_percpu->events[index], cpu);
911 return x;
912 }
913
mem_cgroup_charge_statistics(struct mem_cgroup * memcg,int nr_pages)914 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
915 int nr_pages)
916 {
917 /* pagein of a big page is an event. So, ignore page size */
918 if (nr_pages > 0)
919 __count_memcg_events(memcg, PGPGIN, 1);
920 else {
921 __count_memcg_events(memcg, PGPGOUT, 1);
922 nr_pages = -nr_pages; /* for event */
923 }
924
925 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
926 }
927
mem_cgroup_event_ratelimit(struct mem_cgroup * memcg,enum mem_cgroup_events_target target)928 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
929 enum mem_cgroup_events_target target)
930 {
931 unsigned long val, next;
932
933 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
934 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
935 /* from time_after() in jiffies.h */
936 if ((long)(next - val) < 0) {
937 switch (target) {
938 case MEM_CGROUP_TARGET_THRESH:
939 next = val + THRESHOLDS_EVENTS_TARGET;
940 break;
941 case MEM_CGROUP_TARGET_SOFTLIMIT:
942 next = val + SOFTLIMIT_EVENTS_TARGET;
943 break;
944 default:
945 break;
946 }
947 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
948 return true;
949 }
950 return false;
951 }
952
953 /*
954 * Check events in order.
955 *
956 */
memcg_check_events(struct mem_cgroup * memcg,int nid)957 static void memcg_check_events(struct mem_cgroup *memcg, int nid)
958 {
959 if (IS_ENABLED(CONFIG_PREEMPT_RT))
960 return;
961
962 /* threshold event is triggered in finer grain than soft limit */
963 if (unlikely(mem_cgroup_event_ratelimit(memcg,
964 MEM_CGROUP_TARGET_THRESH))) {
965 bool do_softlimit;
966
967 do_softlimit = mem_cgroup_event_ratelimit(memcg,
968 MEM_CGROUP_TARGET_SOFTLIMIT);
969 mem_cgroup_threshold(memcg);
970 if (unlikely(do_softlimit))
971 mem_cgroup_update_tree(memcg, nid);
972 }
973 }
974
mem_cgroup_from_task(struct task_struct * p)975 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
976 {
977 /*
978 * mm_update_next_owner() may clear mm->owner to NULL
979 * if it races with swapoff, page migration, etc.
980 * So this can be called with p == NULL.
981 */
982 if (unlikely(!p))
983 return NULL;
984
985 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
986 }
987 EXPORT_SYMBOL(mem_cgroup_from_task);
988
active_memcg(void)989 static __always_inline struct mem_cgroup *active_memcg(void)
990 {
991 if (!in_task())
992 return this_cpu_read(int_active_memcg);
993 else
994 return current->active_memcg;
995 }
996
997 /**
998 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
999 * @mm: mm from which memcg should be extracted. It can be NULL.
1000 *
1001 * Obtain a reference on mm->memcg and returns it if successful. If mm
1002 * is NULL, then the memcg is chosen as follows:
1003 * 1) The active memcg, if set.
1004 * 2) current->mm->memcg, if available
1005 * 3) root memcg
1006 * If mem_cgroup is disabled, NULL is returned.
1007 */
get_mem_cgroup_from_mm(struct mm_struct * mm)1008 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1009 {
1010 struct mem_cgroup *memcg;
1011
1012 if (mem_cgroup_disabled())
1013 return NULL;
1014
1015 /*
1016 * Page cache insertions can happen without an
1017 * actual mm context, e.g. during disk probing
1018 * on boot, loopback IO, acct() writes etc.
1019 *
1020 * No need to css_get on root memcg as the reference
1021 * counting is disabled on the root level in the
1022 * cgroup core. See CSS_NO_REF.
1023 */
1024 if (unlikely(!mm)) {
1025 memcg = active_memcg();
1026 if (unlikely(memcg)) {
1027 /* remote memcg must hold a ref */
1028 css_get(&memcg->css);
1029 return memcg;
1030 }
1031 mm = current->mm;
1032 if (unlikely(!mm))
1033 return root_mem_cgroup;
1034 }
1035
1036 rcu_read_lock();
1037 do {
1038 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1039 if (unlikely(!memcg))
1040 memcg = root_mem_cgroup;
1041 } while (!css_tryget(&memcg->css));
1042 rcu_read_unlock();
1043 return memcg;
1044 }
1045 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1046
memcg_kmem_bypass(void)1047 static __always_inline bool memcg_kmem_bypass(void)
1048 {
1049 /* Allow remote memcg charging from any context. */
1050 if (unlikely(active_memcg()))
1051 return false;
1052
1053 /* Memcg to charge can't be determined. */
1054 if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
1055 return true;
1056
1057 return false;
1058 }
1059
1060 /**
1061 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1062 * @root: hierarchy root
1063 * @prev: previously returned memcg, NULL on first invocation
1064 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1065 *
1066 * Returns references to children of the hierarchy below @root, or
1067 * @root itself, or %NULL after a full round-trip.
1068 *
1069 * Caller must pass the return value in @prev on subsequent
1070 * invocations for reference counting, or use mem_cgroup_iter_break()
1071 * to cancel a hierarchy walk before the round-trip is complete.
1072 *
1073 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1074 * in the hierarchy among all concurrent reclaimers operating on the
1075 * same node.
1076 */
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)1077 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1078 struct mem_cgroup *prev,
1079 struct mem_cgroup_reclaim_cookie *reclaim)
1080 {
1081 struct mem_cgroup_reclaim_iter *iter;
1082 struct cgroup_subsys_state *css = NULL;
1083 struct mem_cgroup *memcg = NULL;
1084 struct mem_cgroup *pos = NULL;
1085
1086 if (mem_cgroup_disabled())
1087 return NULL;
1088
1089 if (!root)
1090 root = root_mem_cgroup;
1091
1092 rcu_read_lock();
1093
1094 if (reclaim) {
1095 struct mem_cgroup_per_node *mz;
1096
1097 mz = root->nodeinfo[reclaim->pgdat->node_id];
1098 iter = &mz->iter;
1099
1100 /*
1101 * On start, join the current reclaim iteration cycle.
1102 * Exit when a concurrent walker completes it.
1103 */
1104 if (!prev)
1105 reclaim->generation = iter->generation;
1106 else if (reclaim->generation != iter->generation)
1107 goto out_unlock;
1108
1109 while (1) {
1110 pos = READ_ONCE(iter->position);
1111 if (!pos || css_tryget(&pos->css))
1112 break;
1113 /*
1114 * css reference reached zero, so iter->position will
1115 * be cleared by ->css_released. However, we should not
1116 * rely on this happening soon, because ->css_released
1117 * is called from a work queue, and by busy-waiting we
1118 * might block it. So we clear iter->position right
1119 * away.
1120 */
1121 (void)cmpxchg(&iter->position, pos, NULL);
1122 }
1123 } else if (prev) {
1124 pos = prev;
1125 }
1126
1127 if (pos)
1128 css = &pos->css;
1129
1130 for (;;) {
1131 css = css_next_descendant_pre(css, &root->css);
1132 if (!css) {
1133 /*
1134 * Reclaimers share the hierarchy walk, and a
1135 * new one might jump in right at the end of
1136 * the hierarchy - make sure they see at least
1137 * one group and restart from the beginning.
1138 */
1139 if (!prev)
1140 continue;
1141 break;
1142 }
1143
1144 /*
1145 * Verify the css and acquire a reference. The root
1146 * is provided by the caller, so we know it's alive
1147 * and kicking, and don't take an extra reference.
1148 */
1149 if (css == &root->css || css_tryget(css)) {
1150 memcg = mem_cgroup_from_css(css);
1151 break;
1152 }
1153 }
1154
1155 if (reclaim) {
1156 /*
1157 * The position could have already been updated by a competing
1158 * thread, so check that the value hasn't changed since we read
1159 * it to avoid reclaiming from the same cgroup twice.
1160 */
1161 (void)cmpxchg(&iter->position, pos, memcg);
1162
1163 if (pos)
1164 css_put(&pos->css);
1165
1166 if (!memcg)
1167 iter->generation++;
1168 }
1169
1170 out_unlock:
1171 rcu_read_unlock();
1172 if (prev && prev != root)
1173 css_put(&prev->css);
1174
1175 return memcg;
1176 }
1177
1178 /**
1179 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1180 * @root: hierarchy root
1181 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1182 */
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)1183 void mem_cgroup_iter_break(struct mem_cgroup *root,
1184 struct mem_cgroup *prev)
1185 {
1186 if (!root)
1187 root = root_mem_cgroup;
1188 if (prev && prev != root)
1189 css_put(&prev->css);
1190 }
1191
__invalidate_reclaim_iterators(struct mem_cgroup * from,struct mem_cgroup * dead_memcg)1192 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1193 struct mem_cgroup *dead_memcg)
1194 {
1195 struct mem_cgroup_reclaim_iter *iter;
1196 struct mem_cgroup_per_node *mz;
1197 int nid;
1198
1199 for_each_node(nid) {
1200 mz = from->nodeinfo[nid];
1201 iter = &mz->iter;
1202 cmpxchg(&iter->position, dead_memcg, NULL);
1203 }
1204 }
1205
invalidate_reclaim_iterators(struct mem_cgroup * dead_memcg)1206 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1207 {
1208 struct mem_cgroup *memcg = dead_memcg;
1209 struct mem_cgroup *last;
1210
1211 do {
1212 __invalidate_reclaim_iterators(memcg, dead_memcg);
1213 last = memcg;
1214 } while ((memcg = parent_mem_cgroup(memcg)));
1215
1216 /*
1217 * When cgroup1 non-hierarchy mode is used,
1218 * parent_mem_cgroup() does not walk all the way up to the
1219 * cgroup root (root_mem_cgroup). So we have to handle
1220 * dead_memcg from cgroup root separately.
1221 */
1222 if (last != root_mem_cgroup)
1223 __invalidate_reclaim_iterators(root_mem_cgroup,
1224 dead_memcg);
1225 }
1226
1227 /**
1228 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1229 * @memcg: hierarchy root
1230 * @fn: function to call for each task
1231 * @arg: argument passed to @fn
1232 *
1233 * This function iterates over tasks attached to @memcg or to any of its
1234 * descendants and calls @fn for each task. If @fn returns a non-zero
1235 * value, the function breaks the iteration loop and returns the value.
1236 * Otherwise, it will iterate over all tasks and return 0.
1237 *
1238 * This function must not be called for the root memory cgroup.
1239 */
mem_cgroup_scan_tasks(struct mem_cgroup * memcg,int (* fn)(struct task_struct *,void *),void * arg)1240 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1241 int (*fn)(struct task_struct *, void *), void *arg)
1242 {
1243 struct mem_cgroup *iter;
1244 int ret = 0;
1245
1246 BUG_ON(memcg == root_mem_cgroup);
1247
1248 for_each_mem_cgroup_tree(iter, memcg) {
1249 struct css_task_iter it;
1250 struct task_struct *task;
1251
1252 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1253 while (!ret && (task = css_task_iter_next(&it)))
1254 ret = fn(task, arg);
1255 css_task_iter_end(&it);
1256 if (ret) {
1257 mem_cgroup_iter_break(memcg, iter);
1258 break;
1259 }
1260 }
1261 return ret;
1262 }
1263
1264 #ifdef CONFIG_DEBUG_VM
lruvec_memcg_debug(struct lruvec * lruvec,struct folio * folio)1265 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1266 {
1267 struct mem_cgroup *memcg;
1268
1269 if (mem_cgroup_disabled())
1270 return;
1271
1272 memcg = folio_memcg(folio);
1273
1274 if (!memcg)
1275 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != root_mem_cgroup, folio);
1276 else
1277 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1278 }
1279 #endif
1280
1281 /**
1282 * folio_lruvec_lock - Lock the lruvec for a folio.
1283 * @folio: Pointer to the folio.
1284 *
1285 * These functions are safe to use under any of the following conditions:
1286 * - folio locked
1287 * - folio_test_lru false
1288 * - folio_memcg_lock()
1289 * - folio frozen (refcount of 0)
1290 *
1291 * Return: The lruvec this folio is on with its lock held.
1292 */
folio_lruvec_lock(struct folio * folio)1293 struct lruvec *folio_lruvec_lock(struct folio *folio)
1294 {
1295 struct lruvec *lruvec = folio_lruvec(folio);
1296
1297 spin_lock(&lruvec->lru_lock);
1298 lruvec_memcg_debug(lruvec, folio);
1299
1300 return lruvec;
1301 }
1302
1303 /**
1304 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1305 * @folio: Pointer to the folio.
1306 *
1307 * These functions are safe to use under any of the following conditions:
1308 * - folio locked
1309 * - folio_test_lru false
1310 * - folio_memcg_lock()
1311 * - folio frozen (refcount of 0)
1312 *
1313 * Return: The lruvec this folio is on with its lock held and interrupts
1314 * disabled.
1315 */
folio_lruvec_lock_irq(struct folio * folio)1316 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1317 {
1318 struct lruvec *lruvec = folio_lruvec(folio);
1319
1320 spin_lock_irq(&lruvec->lru_lock);
1321 lruvec_memcg_debug(lruvec, folio);
1322
1323 return lruvec;
1324 }
1325
1326 /**
1327 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1328 * @folio: Pointer to the folio.
1329 * @flags: Pointer to irqsave flags.
1330 *
1331 * These functions are safe to use under any of the following conditions:
1332 * - folio locked
1333 * - folio_test_lru false
1334 * - folio_memcg_lock()
1335 * - folio frozen (refcount of 0)
1336 *
1337 * Return: The lruvec this folio is on with its lock held and interrupts
1338 * disabled.
1339 */
folio_lruvec_lock_irqsave(struct folio * folio,unsigned long * flags)1340 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1341 unsigned long *flags)
1342 {
1343 struct lruvec *lruvec = folio_lruvec(folio);
1344
1345 spin_lock_irqsave(&lruvec->lru_lock, *flags);
1346 lruvec_memcg_debug(lruvec, folio);
1347
1348 return lruvec;
1349 }
1350
1351 /**
1352 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1353 * @lruvec: mem_cgroup per zone lru vector
1354 * @lru: index of lru list the page is sitting on
1355 * @zid: zone id of the accounted pages
1356 * @nr_pages: positive when adding or negative when removing
1357 *
1358 * This function must be called under lru_lock, just before a page is added
1359 * to or just after a page is removed from an lru list.
1360 */
mem_cgroup_update_lru_size(struct lruvec * lruvec,enum lru_list lru,int zid,int nr_pages)1361 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1362 int zid, int nr_pages)
1363 {
1364 struct mem_cgroup_per_node *mz;
1365 unsigned long *lru_size;
1366 long size;
1367
1368 if (mem_cgroup_disabled())
1369 return;
1370
1371 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1372 lru_size = &mz->lru_zone_size[zid][lru];
1373
1374 if (nr_pages < 0)
1375 *lru_size += nr_pages;
1376
1377 size = *lru_size;
1378 if (WARN_ONCE(size < 0,
1379 "%s(%p, %d, %d): lru_size %ld\n",
1380 __func__, lruvec, lru, nr_pages, size)) {
1381 VM_BUG_ON(1);
1382 *lru_size = 0;
1383 }
1384
1385 if (nr_pages > 0)
1386 *lru_size += nr_pages;
1387 }
1388
1389 /**
1390 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1391 * @memcg: the memory cgroup
1392 *
1393 * Returns the maximum amount of memory @mem can be charged with, in
1394 * pages.
1395 */
mem_cgroup_margin(struct mem_cgroup * memcg)1396 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1397 {
1398 unsigned long margin = 0;
1399 unsigned long count;
1400 unsigned long limit;
1401
1402 count = page_counter_read(&memcg->memory);
1403 limit = READ_ONCE(memcg->memory.max);
1404 if (count < limit)
1405 margin = limit - count;
1406
1407 if (do_memsw_account()) {
1408 count = page_counter_read(&memcg->memsw);
1409 limit = READ_ONCE(memcg->memsw.max);
1410 if (count < limit)
1411 margin = min(margin, limit - count);
1412 else
1413 margin = 0;
1414 }
1415
1416 return margin;
1417 }
1418
1419 /*
1420 * A routine for checking "mem" is under move_account() or not.
1421 *
1422 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1423 * moving cgroups. This is for waiting at high-memory pressure
1424 * caused by "move".
1425 */
mem_cgroup_under_move(struct mem_cgroup * memcg)1426 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1427 {
1428 struct mem_cgroup *from;
1429 struct mem_cgroup *to;
1430 bool ret = false;
1431 /*
1432 * Unlike task_move routines, we access mc.to, mc.from not under
1433 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1434 */
1435 spin_lock(&mc.lock);
1436 from = mc.from;
1437 to = mc.to;
1438 if (!from)
1439 goto unlock;
1440
1441 ret = mem_cgroup_is_descendant(from, memcg) ||
1442 mem_cgroup_is_descendant(to, memcg);
1443 unlock:
1444 spin_unlock(&mc.lock);
1445 return ret;
1446 }
1447
mem_cgroup_wait_acct_move(struct mem_cgroup * memcg)1448 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1449 {
1450 if (mc.moving_task && current != mc.moving_task) {
1451 if (mem_cgroup_under_move(memcg)) {
1452 DEFINE_WAIT(wait);
1453 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1454 /* moving charge context might have finished. */
1455 if (mc.moving_task)
1456 schedule();
1457 finish_wait(&mc.waitq, &wait);
1458 return true;
1459 }
1460 }
1461 return false;
1462 }
1463
1464 struct memory_stat {
1465 const char *name;
1466 unsigned int idx;
1467 };
1468
1469 static const struct memory_stat memory_stats[] = {
1470 { "anon", NR_ANON_MAPPED },
1471 { "file", NR_FILE_PAGES },
1472 { "kernel", MEMCG_KMEM },
1473 { "kernel_stack", NR_KERNEL_STACK_KB },
1474 { "pagetables", NR_PAGETABLE },
1475 { "sec_pagetables", NR_SECONDARY_PAGETABLE },
1476 { "percpu", MEMCG_PERCPU_B },
1477 { "sock", MEMCG_SOCK },
1478 { "vmalloc", MEMCG_VMALLOC },
1479 { "shmem", NR_SHMEM },
1480 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1481 { "zswap", MEMCG_ZSWAP_B },
1482 { "zswapped", MEMCG_ZSWAPPED },
1483 #endif
1484 { "file_mapped", NR_FILE_MAPPED },
1485 { "file_dirty", NR_FILE_DIRTY },
1486 { "file_writeback", NR_WRITEBACK },
1487 #ifdef CONFIG_SWAP
1488 { "swapcached", NR_SWAPCACHE },
1489 #endif
1490 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1491 { "anon_thp", NR_ANON_THPS },
1492 { "file_thp", NR_FILE_THPS },
1493 { "shmem_thp", NR_SHMEM_THPS },
1494 #endif
1495 { "inactive_anon", NR_INACTIVE_ANON },
1496 { "active_anon", NR_ACTIVE_ANON },
1497 { "inactive_file", NR_INACTIVE_FILE },
1498 { "active_file", NR_ACTIVE_FILE },
1499 { "unevictable", NR_UNEVICTABLE },
1500 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1501 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
1502
1503 /* The memory events */
1504 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1505 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1506 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1507 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1508 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1509 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1510 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
1511 };
1512
1513 /* Translate stat items to the correct unit for memory.stat output */
memcg_page_state_unit(int item)1514 static int memcg_page_state_unit(int item)
1515 {
1516 switch (item) {
1517 case MEMCG_PERCPU_B:
1518 case MEMCG_ZSWAP_B:
1519 case NR_SLAB_RECLAIMABLE_B:
1520 case NR_SLAB_UNRECLAIMABLE_B:
1521 case WORKINGSET_REFAULT_ANON:
1522 case WORKINGSET_REFAULT_FILE:
1523 case WORKINGSET_ACTIVATE_ANON:
1524 case WORKINGSET_ACTIVATE_FILE:
1525 case WORKINGSET_RESTORE_ANON:
1526 case WORKINGSET_RESTORE_FILE:
1527 case WORKINGSET_NODERECLAIM:
1528 return 1;
1529 case NR_KERNEL_STACK_KB:
1530 return SZ_1K;
1531 default:
1532 return PAGE_SIZE;
1533 }
1534 }
1535
memcg_page_state_output(struct mem_cgroup * memcg,int item)1536 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1537 int item)
1538 {
1539 return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1540 }
1541
memory_stat_format(struct mem_cgroup * memcg,char * buf,int bufsize)1542 static void memory_stat_format(struct mem_cgroup *memcg, char *buf, int bufsize)
1543 {
1544 struct seq_buf s;
1545 int i;
1546
1547 seq_buf_init(&s, buf, bufsize);
1548
1549 /*
1550 * Provide statistics on the state of the memory subsystem as
1551 * well as cumulative event counters that show past behavior.
1552 *
1553 * This list is ordered following a combination of these gradients:
1554 * 1) generic big picture -> specifics and details
1555 * 2) reflecting userspace activity -> reflecting kernel heuristics
1556 *
1557 * Current memory state:
1558 */
1559 mem_cgroup_flush_stats();
1560
1561 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1562 u64 size;
1563
1564 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1565 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1566
1567 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1568 size += memcg_page_state_output(memcg,
1569 NR_SLAB_RECLAIMABLE_B);
1570 seq_buf_printf(&s, "slab %llu\n", size);
1571 }
1572 }
1573
1574 /* Accumulated memory events */
1575 seq_buf_printf(&s, "pgscan %lu\n",
1576 memcg_events(memcg, PGSCAN_KSWAPD) +
1577 memcg_events(memcg, PGSCAN_DIRECT));
1578 seq_buf_printf(&s, "pgsteal %lu\n",
1579 memcg_events(memcg, PGSTEAL_KSWAPD) +
1580 memcg_events(memcg, PGSTEAL_DIRECT));
1581
1582 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1583 if (memcg_vm_event_stat[i] == PGPGIN ||
1584 memcg_vm_event_stat[i] == PGPGOUT)
1585 continue;
1586
1587 seq_buf_printf(&s, "%s %lu\n",
1588 vm_event_name(memcg_vm_event_stat[i]),
1589 memcg_events(memcg, memcg_vm_event_stat[i]));
1590 }
1591
1592 /* The above should easily fit into one page */
1593 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1594 }
1595
1596 #define K(x) ((x) << (PAGE_SHIFT-10))
1597 /**
1598 * mem_cgroup_print_oom_context: Print OOM information relevant to
1599 * memory controller.
1600 * @memcg: The memory cgroup that went over limit
1601 * @p: Task that is going to be killed
1602 *
1603 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1604 * enabled
1605 */
mem_cgroup_print_oom_context(struct mem_cgroup * memcg,struct task_struct * p)1606 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1607 {
1608 rcu_read_lock();
1609
1610 if (memcg) {
1611 pr_cont(",oom_memcg=");
1612 pr_cont_cgroup_path(memcg->css.cgroup);
1613 } else
1614 pr_cont(",global_oom");
1615 if (p) {
1616 pr_cont(",task_memcg=");
1617 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1618 }
1619 rcu_read_unlock();
1620 }
1621
1622 /**
1623 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1624 * memory controller.
1625 * @memcg: The memory cgroup that went over limit
1626 */
mem_cgroup_print_oom_meminfo(struct mem_cgroup * memcg)1627 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1628 {
1629 /* Use static buffer, for the caller is holding oom_lock. */
1630 static char buf[PAGE_SIZE];
1631
1632 lockdep_assert_held(&oom_lock);
1633
1634 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1635 K((u64)page_counter_read(&memcg->memory)),
1636 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1637 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1638 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1639 K((u64)page_counter_read(&memcg->swap)),
1640 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1641 else {
1642 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1643 K((u64)page_counter_read(&memcg->memsw)),
1644 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1645 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1646 K((u64)page_counter_read(&memcg->kmem)),
1647 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1648 }
1649
1650 pr_info("Memory cgroup stats for ");
1651 pr_cont_cgroup_path(memcg->css.cgroup);
1652 pr_cont(":");
1653 memory_stat_format(memcg, buf, sizeof(buf));
1654 pr_info("%s", buf);
1655 }
1656
1657 /*
1658 * Return the memory (and swap, if configured) limit for a memcg.
1659 */
mem_cgroup_get_max(struct mem_cgroup * memcg)1660 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1661 {
1662 unsigned long max = READ_ONCE(memcg->memory.max);
1663
1664 if (do_memsw_account()) {
1665 if (mem_cgroup_swappiness(memcg)) {
1666 /* Calculate swap excess capacity from memsw limit */
1667 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1668
1669 max += min(swap, (unsigned long)total_swap_pages);
1670 }
1671 } else {
1672 if (mem_cgroup_swappiness(memcg))
1673 max += min(READ_ONCE(memcg->swap.max),
1674 (unsigned long)total_swap_pages);
1675 }
1676 return max;
1677 }
1678
mem_cgroup_size(struct mem_cgroup * memcg)1679 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1680 {
1681 return page_counter_read(&memcg->memory);
1682 }
1683
mem_cgroup_out_of_memory(struct mem_cgroup * memcg,gfp_t gfp_mask,int order)1684 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1685 int order)
1686 {
1687 struct oom_control oc = {
1688 .zonelist = NULL,
1689 .nodemask = NULL,
1690 .memcg = memcg,
1691 .gfp_mask = gfp_mask,
1692 .order = order,
1693 };
1694 bool ret = true;
1695
1696 if (mutex_lock_killable(&oom_lock))
1697 return true;
1698
1699 if (mem_cgroup_margin(memcg) >= (1 << order))
1700 goto unlock;
1701
1702 /*
1703 * A few threads which were not waiting at mutex_lock_killable() can
1704 * fail to bail out. Therefore, check again after holding oom_lock.
1705 */
1706 ret = task_is_dying() || out_of_memory(&oc);
1707
1708 unlock:
1709 mutex_unlock(&oom_lock);
1710 return ret;
1711 }
1712
mem_cgroup_soft_reclaim(struct mem_cgroup * root_memcg,pg_data_t * pgdat,gfp_t gfp_mask,unsigned long * total_scanned)1713 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1714 pg_data_t *pgdat,
1715 gfp_t gfp_mask,
1716 unsigned long *total_scanned)
1717 {
1718 struct mem_cgroup *victim = NULL;
1719 int total = 0;
1720 int loop = 0;
1721 unsigned long excess;
1722 unsigned long nr_scanned;
1723 struct mem_cgroup_reclaim_cookie reclaim = {
1724 .pgdat = pgdat,
1725 };
1726
1727 excess = soft_limit_excess(root_memcg);
1728
1729 while (1) {
1730 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1731 if (!victim) {
1732 loop++;
1733 if (loop >= 2) {
1734 /*
1735 * If we have not been able to reclaim
1736 * anything, it might because there are
1737 * no reclaimable pages under this hierarchy
1738 */
1739 if (!total)
1740 break;
1741 /*
1742 * We want to do more targeted reclaim.
1743 * excess >> 2 is not to excessive so as to
1744 * reclaim too much, nor too less that we keep
1745 * coming back to reclaim from this cgroup
1746 */
1747 if (total >= (excess >> 2) ||
1748 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1749 break;
1750 }
1751 continue;
1752 }
1753 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1754 pgdat, &nr_scanned);
1755 *total_scanned += nr_scanned;
1756 if (!soft_limit_excess(root_memcg))
1757 break;
1758 }
1759 mem_cgroup_iter_break(root_memcg, victim);
1760 return total;
1761 }
1762
1763 #ifdef CONFIG_LOCKDEP
1764 static struct lockdep_map memcg_oom_lock_dep_map = {
1765 .name = "memcg_oom_lock",
1766 };
1767 #endif
1768
1769 static DEFINE_SPINLOCK(memcg_oom_lock);
1770
1771 /*
1772 * Check OOM-Killer is already running under our hierarchy.
1773 * If someone is running, return false.
1774 */
mem_cgroup_oom_trylock(struct mem_cgroup * memcg)1775 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1776 {
1777 struct mem_cgroup *iter, *failed = NULL;
1778
1779 spin_lock(&memcg_oom_lock);
1780
1781 for_each_mem_cgroup_tree(iter, memcg) {
1782 if (iter->oom_lock) {
1783 /*
1784 * this subtree of our hierarchy is already locked
1785 * so we cannot give a lock.
1786 */
1787 failed = iter;
1788 mem_cgroup_iter_break(memcg, iter);
1789 break;
1790 } else
1791 iter->oom_lock = true;
1792 }
1793
1794 if (failed) {
1795 /*
1796 * OK, we failed to lock the whole subtree so we have
1797 * to clean up what we set up to the failing subtree
1798 */
1799 for_each_mem_cgroup_tree(iter, memcg) {
1800 if (iter == failed) {
1801 mem_cgroup_iter_break(memcg, iter);
1802 break;
1803 }
1804 iter->oom_lock = false;
1805 }
1806 } else
1807 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1808
1809 spin_unlock(&memcg_oom_lock);
1810
1811 return !failed;
1812 }
1813
mem_cgroup_oom_unlock(struct mem_cgroup * memcg)1814 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1815 {
1816 struct mem_cgroup *iter;
1817
1818 spin_lock(&memcg_oom_lock);
1819 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1820 for_each_mem_cgroup_tree(iter, memcg)
1821 iter->oom_lock = false;
1822 spin_unlock(&memcg_oom_lock);
1823 }
1824
mem_cgroup_mark_under_oom(struct mem_cgroup * memcg)1825 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1826 {
1827 struct mem_cgroup *iter;
1828
1829 spin_lock(&memcg_oom_lock);
1830 for_each_mem_cgroup_tree(iter, memcg)
1831 iter->under_oom++;
1832 spin_unlock(&memcg_oom_lock);
1833 }
1834
mem_cgroup_unmark_under_oom(struct mem_cgroup * memcg)1835 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1836 {
1837 struct mem_cgroup *iter;
1838
1839 /*
1840 * Be careful about under_oom underflows because a child memcg
1841 * could have been added after mem_cgroup_mark_under_oom.
1842 */
1843 spin_lock(&memcg_oom_lock);
1844 for_each_mem_cgroup_tree(iter, memcg)
1845 if (iter->under_oom > 0)
1846 iter->under_oom--;
1847 spin_unlock(&memcg_oom_lock);
1848 }
1849
1850 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1851
1852 struct oom_wait_info {
1853 struct mem_cgroup *memcg;
1854 wait_queue_entry_t wait;
1855 };
1856
memcg_oom_wake_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * arg)1857 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1858 unsigned mode, int sync, void *arg)
1859 {
1860 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1861 struct mem_cgroup *oom_wait_memcg;
1862 struct oom_wait_info *oom_wait_info;
1863
1864 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1865 oom_wait_memcg = oom_wait_info->memcg;
1866
1867 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1868 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1869 return 0;
1870 return autoremove_wake_function(wait, mode, sync, arg);
1871 }
1872
memcg_oom_recover(struct mem_cgroup * memcg)1873 static void memcg_oom_recover(struct mem_cgroup *memcg)
1874 {
1875 /*
1876 * For the following lockless ->under_oom test, the only required
1877 * guarantee is that it must see the state asserted by an OOM when
1878 * this function is called as a result of userland actions
1879 * triggered by the notification of the OOM. This is trivially
1880 * achieved by invoking mem_cgroup_mark_under_oom() before
1881 * triggering notification.
1882 */
1883 if (memcg && memcg->under_oom)
1884 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1885 }
1886
1887 /*
1888 * Returns true if successfully killed one or more processes. Though in some
1889 * corner cases it can return true even without killing any process.
1890 */
mem_cgroup_oom(struct mem_cgroup * memcg,gfp_t mask,int order)1891 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1892 {
1893 bool locked, ret;
1894
1895 if (order > PAGE_ALLOC_COSTLY_ORDER)
1896 return false;
1897
1898 memcg_memory_event(memcg, MEMCG_OOM);
1899
1900 /*
1901 * We are in the middle of the charge context here, so we
1902 * don't want to block when potentially sitting on a callstack
1903 * that holds all kinds of filesystem and mm locks.
1904 *
1905 * cgroup1 allows disabling the OOM killer and waiting for outside
1906 * handling until the charge can succeed; remember the context and put
1907 * the task to sleep at the end of the page fault when all locks are
1908 * released.
1909 *
1910 * On the other hand, in-kernel OOM killer allows for an async victim
1911 * memory reclaim (oom_reaper) and that means that we are not solely
1912 * relying on the oom victim to make a forward progress and we can
1913 * invoke the oom killer here.
1914 *
1915 * Please note that mem_cgroup_out_of_memory might fail to find a
1916 * victim and then we have to bail out from the charge path.
1917 */
1918 if (memcg->oom_kill_disable) {
1919 if (current->in_user_fault) {
1920 css_get(&memcg->css);
1921 current->memcg_in_oom = memcg;
1922 current->memcg_oom_gfp_mask = mask;
1923 current->memcg_oom_order = order;
1924 }
1925 return false;
1926 }
1927
1928 mem_cgroup_mark_under_oom(memcg);
1929
1930 locked = mem_cgroup_oom_trylock(memcg);
1931
1932 if (locked)
1933 mem_cgroup_oom_notify(memcg);
1934
1935 mem_cgroup_unmark_under_oom(memcg);
1936 ret = mem_cgroup_out_of_memory(memcg, mask, order);
1937
1938 if (locked)
1939 mem_cgroup_oom_unlock(memcg);
1940
1941 return ret;
1942 }
1943
1944 /**
1945 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1946 * @handle: actually kill/wait or just clean up the OOM state
1947 *
1948 * This has to be called at the end of a page fault if the memcg OOM
1949 * handler was enabled.
1950 *
1951 * Memcg supports userspace OOM handling where failed allocations must
1952 * sleep on a waitqueue until the userspace task resolves the
1953 * situation. Sleeping directly in the charge context with all kinds
1954 * of locks held is not a good idea, instead we remember an OOM state
1955 * in the task and mem_cgroup_oom_synchronize() has to be called at
1956 * the end of the page fault to complete the OOM handling.
1957 *
1958 * Returns %true if an ongoing memcg OOM situation was detected and
1959 * completed, %false otherwise.
1960 */
mem_cgroup_oom_synchronize(bool handle)1961 bool mem_cgroup_oom_synchronize(bool handle)
1962 {
1963 struct mem_cgroup *memcg = current->memcg_in_oom;
1964 struct oom_wait_info owait;
1965 bool locked;
1966
1967 /* OOM is global, do not handle */
1968 if (!memcg)
1969 return false;
1970
1971 if (!handle)
1972 goto cleanup;
1973
1974 owait.memcg = memcg;
1975 owait.wait.flags = 0;
1976 owait.wait.func = memcg_oom_wake_function;
1977 owait.wait.private = current;
1978 INIT_LIST_HEAD(&owait.wait.entry);
1979
1980 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1981 mem_cgroup_mark_under_oom(memcg);
1982
1983 locked = mem_cgroup_oom_trylock(memcg);
1984
1985 if (locked)
1986 mem_cgroup_oom_notify(memcg);
1987
1988 if (locked && !memcg->oom_kill_disable) {
1989 mem_cgroup_unmark_under_oom(memcg);
1990 finish_wait(&memcg_oom_waitq, &owait.wait);
1991 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1992 current->memcg_oom_order);
1993 } else {
1994 schedule();
1995 mem_cgroup_unmark_under_oom(memcg);
1996 finish_wait(&memcg_oom_waitq, &owait.wait);
1997 }
1998
1999 if (locked) {
2000 mem_cgroup_oom_unlock(memcg);
2001 /*
2002 * There is no guarantee that an OOM-lock contender
2003 * sees the wakeups triggered by the OOM kill
2004 * uncharges. Wake any sleepers explicitly.
2005 */
2006 memcg_oom_recover(memcg);
2007 }
2008 cleanup:
2009 current->memcg_in_oom = NULL;
2010 css_put(&memcg->css);
2011 return true;
2012 }
2013
2014 /**
2015 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2016 * @victim: task to be killed by the OOM killer
2017 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2018 *
2019 * Returns a pointer to a memory cgroup, which has to be cleaned up
2020 * by killing all belonging OOM-killable tasks.
2021 *
2022 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2023 */
mem_cgroup_get_oom_group(struct task_struct * victim,struct mem_cgroup * oom_domain)2024 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2025 struct mem_cgroup *oom_domain)
2026 {
2027 struct mem_cgroup *oom_group = NULL;
2028 struct mem_cgroup *memcg;
2029
2030 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2031 return NULL;
2032
2033 if (!oom_domain)
2034 oom_domain = root_mem_cgroup;
2035
2036 rcu_read_lock();
2037
2038 memcg = mem_cgroup_from_task(victim);
2039 if (memcg == root_mem_cgroup)
2040 goto out;
2041
2042 /*
2043 * If the victim task has been asynchronously moved to a different
2044 * memory cgroup, we might end up killing tasks outside oom_domain.
2045 * In this case it's better to ignore memory.group.oom.
2046 */
2047 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2048 goto out;
2049
2050 /*
2051 * Traverse the memory cgroup hierarchy from the victim task's
2052 * cgroup up to the OOMing cgroup (or root) to find the
2053 * highest-level memory cgroup with oom.group set.
2054 */
2055 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2056 if (memcg->oom_group)
2057 oom_group = memcg;
2058
2059 if (memcg == oom_domain)
2060 break;
2061 }
2062
2063 if (oom_group)
2064 css_get(&oom_group->css);
2065 out:
2066 rcu_read_unlock();
2067
2068 return oom_group;
2069 }
2070
mem_cgroup_print_oom_group(struct mem_cgroup * memcg)2071 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2072 {
2073 pr_info("Tasks in ");
2074 pr_cont_cgroup_path(memcg->css.cgroup);
2075 pr_cont(" are going to be killed due to memory.oom.group set\n");
2076 }
2077
2078 /**
2079 * folio_memcg_lock - Bind a folio to its memcg.
2080 * @folio: The folio.
2081 *
2082 * This function prevents unlocked LRU folios from being moved to
2083 * another cgroup.
2084 *
2085 * It ensures lifetime of the bound memcg. The caller is responsible
2086 * for the lifetime of the folio.
2087 */
folio_memcg_lock(struct folio * folio)2088 void folio_memcg_lock(struct folio *folio)
2089 {
2090 struct mem_cgroup *memcg;
2091 unsigned long flags;
2092
2093 /*
2094 * The RCU lock is held throughout the transaction. The fast
2095 * path can get away without acquiring the memcg->move_lock
2096 * because page moving starts with an RCU grace period.
2097 */
2098 rcu_read_lock();
2099
2100 if (mem_cgroup_disabled())
2101 return;
2102 again:
2103 memcg = folio_memcg(folio);
2104 if (unlikely(!memcg))
2105 return;
2106
2107 #ifdef CONFIG_PROVE_LOCKING
2108 local_irq_save(flags);
2109 might_lock(&memcg->move_lock);
2110 local_irq_restore(flags);
2111 #endif
2112
2113 if (atomic_read(&memcg->moving_account) <= 0)
2114 return;
2115
2116 spin_lock_irqsave(&memcg->move_lock, flags);
2117 if (memcg != folio_memcg(folio)) {
2118 spin_unlock_irqrestore(&memcg->move_lock, flags);
2119 goto again;
2120 }
2121
2122 /*
2123 * When charge migration first begins, we can have multiple
2124 * critical sections holding the fast-path RCU lock and one
2125 * holding the slowpath move_lock. Track the task who has the
2126 * move_lock for unlock_page_memcg().
2127 */
2128 memcg->move_lock_task = current;
2129 memcg->move_lock_flags = flags;
2130 }
2131
lock_page_memcg(struct page * page)2132 void lock_page_memcg(struct page *page)
2133 {
2134 folio_memcg_lock(page_folio(page));
2135 }
2136
__folio_memcg_unlock(struct mem_cgroup * memcg)2137 static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2138 {
2139 if (memcg && memcg->move_lock_task == current) {
2140 unsigned long flags = memcg->move_lock_flags;
2141
2142 memcg->move_lock_task = NULL;
2143 memcg->move_lock_flags = 0;
2144
2145 spin_unlock_irqrestore(&memcg->move_lock, flags);
2146 }
2147
2148 rcu_read_unlock();
2149 }
2150
2151 /**
2152 * folio_memcg_unlock - Release the binding between a folio and its memcg.
2153 * @folio: The folio.
2154 *
2155 * This releases the binding created by folio_memcg_lock(). This does
2156 * not change the accounting of this folio to its memcg, but it does
2157 * permit others to change it.
2158 */
folio_memcg_unlock(struct folio * folio)2159 void folio_memcg_unlock(struct folio *folio)
2160 {
2161 __folio_memcg_unlock(folio_memcg(folio));
2162 }
2163
unlock_page_memcg(struct page * page)2164 void unlock_page_memcg(struct page *page)
2165 {
2166 folio_memcg_unlock(page_folio(page));
2167 }
2168
2169 struct memcg_stock_pcp {
2170 local_lock_t stock_lock;
2171 struct mem_cgroup *cached; /* this never be root cgroup */
2172 unsigned int nr_pages;
2173
2174 #ifdef CONFIG_MEMCG_KMEM
2175 struct obj_cgroup *cached_objcg;
2176 struct pglist_data *cached_pgdat;
2177 unsigned int nr_bytes;
2178 int nr_slab_reclaimable_b;
2179 int nr_slab_unreclaimable_b;
2180 #endif
2181
2182 struct work_struct work;
2183 unsigned long flags;
2184 #define FLUSHING_CACHED_CHARGE 0
2185 };
2186 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2187 .stock_lock = INIT_LOCAL_LOCK(stock_lock),
2188 };
2189 static DEFINE_MUTEX(percpu_charge_mutex);
2190
2191 #ifdef CONFIG_MEMCG_KMEM
2192 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
2193 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2194 struct mem_cgroup *root_memcg);
2195 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
2196
2197 #else
drain_obj_stock(struct memcg_stock_pcp * stock)2198 static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2199 {
2200 return NULL;
2201 }
obj_stock_flush_required(struct memcg_stock_pcp * stock,struct mem_cgroup * root_memcg)2202 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2203 struct mem_cgroup *root_memcg)
2204 {
2205 return false;
2206 }
memcg_account_kmem(struct mem_cgroup * memcg,int nr_pages)2207 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2208 {
2209 }
2210 #endif
2211
2212 /**
2213 * consume_stock: Try to consume stocked charge on this cpu.
2214 * @memcg: memcg to consume from.
2215 * @nr_pages: how many pages to charge.
2216 *
2217 * The charges will only happen if @memcg matches the current cpu's memcg
2218 * stock, and at least @nr_pages are available in that stock. Failure to
2219 * service an allocation will refill the stock.
2220 *
2221 * returns true if successful, false otherwise.
2222 */
consume_stock(struct mem_cgroup * memcg,unsigned int nr_pages)2223 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2224 {
2225 struct memcg_stock_pcp *stock;
2226 unsigned long flags;
2227 bool ret = false;
2228
2229 if (nr_pages > MEMCG_CHARGE_BATCH)
2230 return ret;
2231
2232 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2233
2234 stock = this_cpu_ptr(&memcg_stock);
2235 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2236 stock->nr_pages -= nr_pages;
2237 ret = true;
2238 }
2239
2240 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2241
2242 return ret;
2243 }
2244
2245 /*
2246 * Returns stocks cached in percpu and reset cached information.
2247 */
drain_stock(struct memcg_stock_pcp * stock)2248 static void drain_stock(struct memcg_stock_pcp *stock)
2249 {
2250 struct mem_cgroup *old = stock->cached;
2251
2252 if (!old)
2253 return;
2254
2255 if (stock->nr_pages) {
2256 page_counter_uncharge(&old->memory, stock->nr_pages);
2257 if (do_memsw_account())
2258 page_counter_uncharge(&old->memsw, stock->nr_pages);
2259 stock->nr_pages = 0;
2260 }
2261
2262 css_put(&old->css);
2263 stock->cached = NULL;
2264 }
2265
drain_local_stock(struct work_struct * dummy)2266 static void drain_local_stock(struct work_struct *dummy)
2267 {
2268 struct memcg_stock_pcp *stock;
2269 struct obj_cgroup *old = NULL;
2270 unsigned long flags;
2271
2272 /*
2273 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2274 * drain_stock races is that we always operate on local CPU stock
2275 * here with IRQ disabled
2276 */
2277 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2278
2279 stock = this_cpu_ptr(&memcg_stock);
2280 old = drain_obj_stock(stock);
2281 drain_stock(stock);
2282 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2283
2284 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2285 if (old)
2286 obj_cgroup_put(old);
2287 }
2288
2289 /*
2290 * Cache charges(val) to local per_cpu area.
2291 * This will be consumed by consume_stock() function, later.
2292 */
__refill_stock(struct mem_cgroup * memcg,unsigned int nr_pages)2293 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2294 {
2295 struct memcg_stock_pcp *stock;
2296
2297 stock = this_cpu_ptr(&memcg_stock);
2298 if (stock->cached != memcg) { /* reset if necessary */
2299 drain_stock(stock);
2300 css_get(&memcg->css);
2301 stock->cached = memcg;
2302 }
2303 stock->nr_pages += nr_pages;
2304
2305 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2306 drain_stock(stock);
2307 }
2308
refill_stock(struct mem_cgroup * memcg,unsigned int nr_pages)2309 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2310 {
2311 unsigned long flags;
2312
2313 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2314 __refill_stock(memcg, nr_pages);
2315 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2316 }
2317
2318 /*
2319 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2320 * of the hierarchy under it.
2321 */
drain_all_stock(struct mem_cgroup * root_memcg)2322 static void drain_all_stock(struct mem_cgroup *root_memcg)
2323 {
2324 int cpu, curcpu;
2325
2326 /* If someone's already draining, avoid adding running more workers. */
2327 if (!mutex_trylock(&percpu_charge_mutex))
2328 return;
2329 /*
2330 * Notify other cpus that system-wide "drain" is running
2331 * We do not care about races with the cpu hotplug because cpu down
2332 * as well as workers from this path always operate on the local
2333 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2334 */
2335 migrate_disable();
2336 curcpu = smp_processor_id();
2337 for_each_online_cpu(cpu) {
2338 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2339 struct mem_cgroup *memcg;
2340 bool flush = false;
2341
2342 rcu_read_lock();
2343 memcg = stock->cached;
2344 if (memcg && stock->nr_pages &&
2345 mem_cgroup_is_descendant(memcg, root_memcg))
2346 flush = true;
2347 else if (obj_stock_flush_required(stock, root_memcg))
2348 flush = true;
2349 rcu_read_unlock();
2350
2351 if (flush &&
2352 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2353 if (cpu == curcpu)
2354 drain_local_stock(&stock->work);
2355 else
2356 schedule_work_on(cpu, &stock->work);
2357 }
2358 }
2359 migrate_enable();
2360 mutex_unlock(&percpu_charge_mutex);
2361 }
2362
memcg_hotplug_cpu_dead(unsigned int cpu)2363 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2364 {
2365 struct memcg_stock_pcp *stock;
2366
2367 stock = &per_cpu(memcg_stock, cpu);
2368 drain_stock(stock);
2369
2370 return 0;
2371 }
2372
reclaim_high(struct mem_cgroup * memcg,unsigned int nr_pages,gfp_t gfp_mask)2373 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2374 unsigned int nr_pages,
2375 gfp_t gfp_mask)
2376 {
2377 unsigned long nr_reclaimed = 0;
2378
2379 do {
2380 unsigned long pflags;
2381
2382 if (page_counter_read(&memcg->memory) <=
2383 READ_ONCE(memcg->memory.high))
2384 continue;
2385
2386 memcg_memory_event(memcg, MEMCG_HIGH);
2387
2388 psi_memstall_enter(&pflags);
2389 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2390 gfp_mask,
2391 MEMCG_RECLAIM_MAY_SWAP);
2392 psi_memstall_leave(&pflags);
2393 } while ((memcg = parent_mem_cgroup(memcg)) &&
2394 !mem_cgroup_is_root(memcg));
2395
2396 return nr_reclaimed;
2397 }
2398
high_work_func(struct work_struct * work)2399 static void high_work_func(struct work_struct *work)
2400 {
2401 struct mem_cgroup *memcg;
2402
2403 memcg = container_of(work, struct mem_cgroup, high_work);
2404 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2405 }
2406
2407 /*
2408 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2409 * enough to still cause a significant slowdown in most cases, while still
2410 * allowing diagnostics and tracing to proceed without becoming stuck.
2411 */
2412 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2413
2414 /*
2415 * When calculating the delay, we use these either side of the exponentiation to
2416 * maintain precision and scale to a reasonable number of jiffies (see the table
2417 * below.
2418 *
2419 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2420 * overage ratio to a delay.
2421 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2422 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2423 * to produce a reasonable delay curve.
2424 *
2425 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2426 * reasonable delay curve compared to precision-adjusted overage, not
2427 * penalising heavily at first, but still making sure that growth beyond the
2428 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2429 * example, with a high of 100 megabytes:
2430 *
2431 * +-------+------------------------+
2432 * | usage | time to allocate in ms |
2433 * +-------+------------------------+
2434 * | 100M | 0 |
2435 * | 101M | 6 |
2436 * | 102M | 25 |
2437 * | 103M | 57 |
2438 * | 104M | 102 |
2439 * | 105M | 159 |
2440 * | 106M | 230 |
2441 * | 107M | 313 |
2442 * | 108M | 409 |
2443 * | 109M | 518 |
2444 * | 110M | 639 |
2445 * | 111M | 774 |
2446 * | 112M | 921 |
2447 * | 113M | 1081 |
2448 * | 114M | 1254 |
2449 * | 115M | 1439 |
2450 * | 116M | 1638 |
2451 * | 117M | 1849 |
2452 * | 118M | 2000 |
2453 * | 119M | 2000 |
2454 * | 120M | 2000 |
2455 * +-------+------------------------+
2456 */
2457 #define MEMCG_DELAY_PRECISION_SHIFT 20
2458 #define MEMCG_DELAY_SCALING_SHIFT 14
2459
calculate_overage(unsigned long usage,unsigned long high)2460 static u64 calculate_overage(unsigned long usage, unsigned long high)
2461 {
2462 u64 overage;
2463
2464 if (usage <= high)
2465 return 0;
2466
2467 /*
2468 * Prevent division by 0 in overage calculation by acting as if
2469 * it was a threshold of 1 page
2470 */
2471 high = max(high, 1UL);
2472
2473 overage = usage - high;
2474 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2475 return div64_u64(overage, high);
2476 }
2477
mem_find_max_overage(struct mem_cgroup * memcg)2478 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2479 {
2480 u64 overage, max_overage = 0;
2481
2482 do {
2483 overage = calculate_overage(page_counter_read(&memcg->memory),
2484 READ_ONCE(memcg->memory.high));
2485 max_overage = max(overage, max_overage);
2486 } while ((memcg = parent_mem_cgroup(memcg)) &&
2487 !mem_cgroup_is_root(memcg));
2488
2489 return max_overage;
2490 }
2491
swap_find_max_overage(struct mem_cgroup * memcg)2492 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2493 {
2494 u64 overage, max_overage = 0;
2495
2496 do {
2497 overage = calculate_overage(page_counter_read(&memcg->swap),
2498 READ_ONCE(memcg->swap.high));
2499 if (overage)
2500 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2501 max_overage = max(overage, max_overage);
2502 } while ((memcg = parent_mem_cgroup(memcg)) &&
2503 !mem_cgroup_is_root(memcg));
2504
2505 return max_overage;
2506 }
2507
2508 /*
2509 * Get the number of jiffies that we should penalise a mischievous cgroup which
2510 * is exceeding its memory.high by checking both it and its ancestors.
2511 */
calculate_high_delay(struct mem_cgroup * memcg,unsigned int nr_pages,u64 max_overage)2512 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2513 unsigned int nr_pages,
2514 u64 max_overage)
2515 {
2516 unsigned long penalty_jiffies;
2517
2518 if (!max_overage)
2519 return 0;
2520
2521 /*
2522 * We use overage compared to memory.high to calculate the number of
2523 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2524 * fairly lenient on small overages, and increasingly harsh when the
2525 * memcg in question makes it clear that it has no intention of stopping
2526 * its crazy behaviour, so we exponentially increase the delay based on
2527 * overage amount.
2528 */
2529 penalty_jiffies = max_overage * max_overage * HZ;
2530 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2531 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2532
2533 /*
2534 * Factor in the task's own contribution to the overage, such that four
2535 * N-sized allocations are throttled approximately the same as one
2536 * 4N-sized allocation.
2537 *
2538 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2539 * larger the current charge patch is than that.
2540 */
2541 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2542 }
2543
2544 /*
2545 * Scheduled by try_charge() to be executed from the userland return path
2546 * and reclaims memory over the high limit.
2547 */
mem_cgroup_handle_over_high(void)2548 void mem_cgroup_handle_over_high(void)
2549 {
2550 unsigned long penalty_jiffies;
2551 unsigned long pflags;
2552 unsigned long nr_reclaimed;
2553 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2554 int nr_retries = MAX_RECLAIM_RETRIES;
2555 struct mem_cgroup *memcg;
2556 bool in_retry = false;
2557
2558 if (likely(!nr_pages))
2559 return;
2560
2561 memcg = get_mem_cgroup_from_mm(current->mm);
2562 current->memcg_nr_pages_over_high = 0;
2563
2564 retry_reclaim:
2565 /*
2566 * The allocating task should reclaim at least the batch size, but for
2567 * subsequent retries we only want to do what's necessary to prevent oom
2568 * or breaching resource isolation.
2569 *
2570 * This is distinct from memory.max or page allocator behaviour because
2571 * memory.high is currently batched, whereas memory.max and the page
2572 * allocator run every time an allocation is made.
2573 */
2574 nr_reclaimed = reclaim_high(memcg,
2575 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2576 GFP_KERNEL);
2577
2578 /*
2579 * memory.high is breached and reclaim is unable to keep up. Throttle
2580 * allocators proactively to slow down excessive growth.
2581 */
2582 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2583 mem_find_max_overage(memcg));
2584
2585 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2586 swap_find_max_overage(memcg));
2587
2588 /*
2589 * Clamp the max delay per usermode return so as to still keep the
2590 * application moving forwards and also permit diagnostics, albeit
2591 * extremely slowly.
2592 */
2593 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2594
2595 /*
2596 * Don't sleep if the amount of jiffies this memcg owes us is so low
2597 * that it's not even worth doing, in an attempt to be nice to those who
2598 * go only a small amount over their memory.high value and maybe haven't
2599 * been aggressively reclaimed enough yet.
2600 */
2601 if (penalty_jiffies <= HZ / 100)
2602 goto out;
2603
2604 /*
2605 * If reclaim is making forward progress but we're still over
2606 * memory.high, we want to encourage that rather than doing allocator
2607 * throttling.
2608 */
2609 if (nr_reclaimed || nr_retries--) {
2610 in_retry = true;
2611 goto retry_reclaim;
2612 }
2613
2614 /*
2615 * If we exit early, we're guaranteed to die (since
2616 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2617 * need to account for any ill-begotten jiffies to pay them off later.
2618 */
2619 psi_memstall_enter(&pflags);
2620 schedule_timeout_killable(penalty_jiffies);
2621 psi_memstall_leave(&pflags);
2622
2623 out:
2624 css_put(&memcg->css);
2625 }
2626
try_charge_memcg(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned int nr_pages)2627 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2628 unsigned int nr_pages)
2629 {
2630 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2631 int nr_retries = MAX_RECLAIM_RETRIES;
2632 struct mem_cgroup *mem_over_limit;
2633 struct page_counter *counter;
2634 unsigned long nr_reclaimed;
2635 bool passed_oom = false;
2636 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2637 bool drained = false;
2638 bool raised_max_event = false;
2639 unsigned long pflags;
2640
2641 retry:
2642 if (consume_stock(memcg, nr_pages))
2643 return 0;
2644
2645 if (!do_memsw_account() ||
2646 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2647 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2648 goto done_restock;
2649 if (do_memsw_account())
2650 page_counter_uncharge(&memcg->memsw, batch);
2651 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2652 } else {
2653 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2654 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2655 }
2656
2657 if (batch > nr_pages) {
2658 batch = nr_pages;
2659 goto retry;
2660 }
2661
2662 /*
2663 * Prevent unbounded recursion when reclaim operations need to
2664 * allocate memory. This might exceed the limits temporarily,
2665 * but we prefer facilitating memory reclaim and getting back
2666 * under the limit over triggering OOM kills in these cases.
2667 */
2668 if (unlikely(current->flags & PF_MEMALLOC))
2669 goto force;
2670
2671 if (unlikely(task_in_memcg_oom(current)))
2672 goto nomem;
2673
2674 if (!gfpflags_allow_blocking(gfp_mask))
2675 goto nomem;
2676
2677 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2678 raised_max_event = true;
2679
2680 psi_memstall_enter(&pflags);
2681 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2682 gfp_mask, reclaim_options);
2683 psi_memstall_leave(&pflags);
2684
2685 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2686 goto retry;
2687
2688 if (!drained) {
2689 drain_all_stock(mem_over_limit);
2690 drained = true;
2691 goto retry;
2692 }
2693
2694 if (gfp_mask & __GFP_NORETRY)
2695 goto nomem;
2696 /*
2697 * Even though the limit is exceeded at this point, reclaim
2698 * may have been able to free some pages. Retry the charge
2699 * before killing the task.
2700 *
2701 * Only for regular pages, though: huge pages are rather
2702 * unlikely to succeed so close to the limit, and we fall back
2703 * to regular pages anyway in case of failure.
2704 */
2705 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2706 goto retry;
2707 /*
2708 * At task move, charge accounts can be doubly counted. So, it's
2709 * better to wait until the end of task_move if something is going on.
2710 */
2711 if (mem_cgroup_wait_acct_move(mem_over_limit))
2712 goto retry;
2713
2714 if (nr_retries--)
2715 goto retry;
2716
2717 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2718 goto nomem;
2719
2720 /* Avoid endless loop for tasks bypassed by the oom killer */
2721 if (passed_oom && task_is_dying())
2722 goto nomem;
2723
2724 /*
2725 * keep retrying as long as the memcg oom killer is able to make
2726 * a forward progress or bypass the charge if the oom killer
2727 * couldn't make any progress.
2728 */
2729 if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2730 get_order(nr_pages * PAGE_SIZE))) {
2731 passed_oom = true;
2732 nr_retries = MAX_RECLAIM_RETRIES;
2733 goto retry;
2734 }
2735 nomem:
2736 /*
2737 * Memcg doesn't have a dedicated reserve for atomic
2738 * allocations. But like the global atomic pool, we need to
2739 * put the burden of reclaim on regular allocation requests
2740 * and let these go through as privileged allocations.
2741 */
2742 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2743 return -ENOMEM;
2744 force:
2745 /*
2746 * If the allocation has to be enforced, don't forget to raise
2747 * a MEMCG_MAX event.
2748 */
2749 if (!raised_max_event)
2750 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2751
2752 /*
2753 * The allocation either can't fail or will lead to more memory
2754 * being freed very soon. Allow memory usage go over the limit
2755 * temporarily by force charging it.
2756 */
2757 page_counter_charge(&memcg->memory, nr_pages);
2758 if (do_memsw_account())
2759 page_counter_charge(&memcg->memsw, nr_pages);
2760
2761 return 0;
2762
2763 done_restock:
2764 if (batch > nr_pages)
2765 refill_stock(memcg, batch - nr_pages);
2766
2767 /*
2768 * If the hierarchy is above the normal consumption range, schedule
2769 * reclaim on returning to userland. We can perform reclaim here
2770 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2771 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2772 * not recorded as it most likely matches current's and won't
2773 * change in the meantime. As high limit is checked again before
2774 * reclaim, the cost of mismatch is negligible.
2775 */
2776 do {
2777 bool mem_high, swap_high;
2778
2779 mem_high = page_counter_read(&memcg->memory) >
2780 READ_ONCE(memcg->memory.high);
2781 swap_high = page_counter_read(&memcg->swap) >
2782 READ_ONCE(memcg->swap.high);
2783
2784 /* Don't bother a random interrupted task */
2785 if (!in_task()) {
2786 if (mem_high) {
2787 schedule_work(&memcg->high_work);
2788 break;
2789 }
2790 continue;
2791 }
2792
2793 if (mem_high || swap_high) {
2794 /*
2795 * The allocating tasks in this cgroup will need to do
2796 * reclaim or be throttled to prevent further growth
2797 * of the memory or swap footprints.
2798 *
2799 * Target some best-effort fairness between the tasks,
2800 * and distribute reclaim work and delay penalties
2801 * based on how much each task is actually allocating.
2802 */
2803 current->memcg_nr_pages_over_high += batch;
2804 set_notify_resume(current);
2805 break;
2806 }
2807 } while ((memcg = parent_mem_cgroup(memcg)));
2808
2809 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2810 !(current->flags & PF_MEMALLOC) &&
2811 gfpflags_allow_blocking(gfp_mask)) {
2812 mem_cgroup_handle_over_high();
2813 }
2814 return 0;
2815 }
2816
try_charge(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned int nr_pages)2817 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2818 unsigned int nr_pages)
2819 {
2820 if (mem_cgroup_is_root(memcg))
2821 return 0;
2822
2823 return try_charge_memcg(memcg, gfp_mask, nr_pages);
2824 }
2825
cancel_charge(struct mem_cgroup * memcg,unsigned int nr_pages)2826 static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2827 {
2828 if (mem_cgroup_is_root(memcg))
2829 return;
2830
2831 page_counter_uncharge(&memcg->memory, nr_pages);
2832 if (do_memsw_account())
2833 page_counter_uncharge(&memcg->memsw, nr_pages);
2834 }
2835
commit_charge(struct folio * folio,struct mem_cgroup * memcg)2836 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2837 {
2838 VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2839 /*
2840 * Any of the following ensures page's memcg stability:
2841 *
2842 * - the page lock
2843 * - LRU isolation
2844 * - lock_page_memcg()
2845 * - exclusive reference
2846 * - mem_cgroup_trylock_pages()
2847 */
2848 folio->memcg_data = (unsigned long)memcg;
2849 }
2850
2851 #ifdef CONFIG_MEMCG_KMEM
2852 /*
2853 * The allocated objcg pointers array is not accounted directly.
2854 * Moreover, it should not come from DMA buffer and is not readily
2855 * reclaimable. So those GFP bits should be masked off.
2856 */
2857 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2858
2859 /*
2860 * mod_objcg_mlstate() may be called with irq enabled, so
2861 * mod_memcg_lruvec_state() should be used.
2862 */
mod_objcg_mlstate(struct obj_cgroup * objcg,struct pglist_data * pgdat,enum node_stat_item idx,int nr)2863 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2864 struct pglist_data *pgdat,
2865 enum node_stat_item idx, int nr)
2866 {
2867 struct mem_cgroup *memcg;
2868 struct lruvec *lruvec;
2869
2870 rcu_read_lock();
2871 memcg = obj_cgroup_memcg(objcg);
2872 lruvec = mem_cgroup_lruvec(memcg, pgdat);
2873 mod_memcg_lruvec_state(lruvec, idx, nr);
2874 rcu_read_unlock();
2875 }
2876
memcg_alloc_slab_cgroups(struct slab * slab,struct kmem_cache * s,gfp_t gfp,bool new_slab)2877 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2878 gfp_t gfp, bool new_slab)
2879 {
2880 unsigned int objects = objs_per_slab(s, slab);
2881 unsigned long memcg_data;
2882 void *vec;
2883
2884 gfp &= ~OBJCGS_CLEAR_MASK;
2885 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2886 slab_nid(slab));
2887 if (!vec)
2888 return -ENOMEM;
2889
2890 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2891 if (new_slab) {
2892 /*
2893 * If the slab is brand new and nobody can yet access its
2894 * memcg_data, no synchronization is required and memcg_data can
2895 * be simply assigned.
2896 */
2897 slab->memcg_data = memcg_data;
2898 } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2899 /*
2900 * If the slab is already in use, somebody can allocate and
2901 * assign obj_cgroups in parallel. In this case the existing
2902 * objcg vector should be reused.
2903 */
2904 kfree(vec);
2905 return 0;
2906 }
2907
2908 kmemleak_not_leak(vec);
2909 return 0;
2910 }
2911
2912 static __always_inline
mem_cgroup_from_obj_folio(struct folio * folio,void * p)2913 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
2914 {
2915 /*
2916 * Slab objects are accounted individually, not per-page.
2917 * Memcg membership data for each individual object is saved in
2918 * slab->memcg_data.
2919 */
2920 if (folio_test_slab(folio)) {
2921 struct obj_cgroup **objcgs;
2922 struct slab *slab;
2923 unsigned int off;
2924
2925 slab = folio_slab(folio);
2926 objcgs = slab_objcgs(slab);
2927 if (!objcgs)
2928 return NULL;
2929
2930 off = obj_to_index(slab->slab_cache, slab, p);
2931 if (objcgs[off])
2932 return obj_cgroup_memcg(objcgs[off]);
2933
2934 return NULL;
2935 }
2936
2937 /*
2938 * page_memcg_check() is used here, because in theory we can encounter
2939 * a folio where the slab flag has been cleared already, but
2940 * slab->memcg_data has not been freed yet
2941 * page_memcg_check(page) will guarantee that a proper memory
2942 * cgroup pointer or NULL will be returned.
2943 */
2944 return page_memcg_check(folio_page(folio, 0));
2945 }
2946
2947 /*
2948 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2949 *
2950 * A passed kernel object can be a slab object, vmalloc object or a generic
2951 * kernel page, so different mechanisms for getting the memory cgroup pointer
2952 * should be used.
2953 *
2954 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2955 * can not know for sure how the kernel object is implemented.
2956 * mem_cgroup_from_obj() can be safely used in such cases.
2957 *
2958 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2959 * cgroup_mutex, etc.
2960 */
mem_cgroup_from_obj(void * p)2961 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2962 {
2963 struct folio *folio;
2964
2965 if (mem_cgroup_disabled())
2966 return NULL;
2967
2968 if (unlikely(is_vmalloc_addr(p)))
2969 folio = page_folio(vmalloc_to_page(p));
2970 else
2971 folio = virt_to_folio(p);
2972
2973 return mem_cgroup_from_obj_folio(folio, p);
2974 }
2975
2976 /*
2977 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2978 * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
2979 * allocated using vmalloc().
2980 *
2981 * A passed kernel object must be a slab object or a generic kernel page.
2982 *
2983 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2984 * cgroup_mutex, etc.
2985 */
mem_cgroup_from_slab_obj(void * p)2986 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
2987 {
2988 if (mem_cgroup_disabled())
2989 return NULL;
2990
2991 return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
2992 }
2993
__get_obj_cgroup_from_memcg(struct mem_cgroup * memcg)2994 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
2995 {
2996 struct obj_cgroup *objcg = NULL;
2997
2998 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2999 objcg = rcu_dereference(memcg->objcg);
3000 if (objcg && obj_cgroup_tryget(objcg))
3001 break;
3002 objcg = NULL;
3003 }
3004 return objcg;
3005 }
3006
get_obj_cgroup_from_current(void)3007 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
3008 {
3009 struct obj_cgroup *objcg = NULL;
3010 struct mem_cgroup *memcg;
3011
3012 if (memcg_kmem_bypass())
3013 return NULL;
3014
3015 rcu_read_lock();
3016 if (unlikely(active_memcg()))
3017 memcg = active_memcg();
3018 else
3019 memcg = mem_cgroup_from_task(current);
3020 objcg = __get_obj_cgroup_from_memcg(memcg);
3021 rcu_read_unlock();
3022 return objcg;
3023 }
3024
get_obj_cgroup_from_page(struct page * page)3025 struct obj_cgroup *get_obj_cgroup_from_page(struct page *page)
3026 {
3027 struct obj_cgroup *objcg;
3028
3029 if (!memcg_kmem_enabled())
3030 return NULL;
3031
3032 if (PageMemcgKmem(page)) {
3033 objcg = __folio_objcg(page_folio(page));
3034 obj_cgroup_get(objcg);
3035 } else {
3036 struct mem_cgroup *memcg;
3037
3038 rcu_read_lock();
3039 memcg = __folio_memcg(page_folio(page));
3040 if (memcg)
3041 objcg = __get_obj_cgroup_from_memcg(memcg);
3042 else
3043 objcg = NULL;
3044 rcu_read_unlock();
3045 }
3046 return objcg;
3047 }
3048
memcg_account_kmem(struct mem_cgroup * memcg,int nr_pages)3049 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
3050 {
3051 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
3052 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
3053 if (nr_pages > 0)
3054 page_counter_charge(&memcg->kmem, nr_pages);
3055 else
3056 page_counter_uncharge(&memcg->kmem, -nr_pages);
3057 }
3058 }
3059
3060
3061 /*
3062 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3063 * @objcg: object cgroup to uncharge
3064 * @nr_pages: number of pages to uncharge
3065 */
obj_cgroup_uncharge_pages(struct obj_cgroup * objcg,unsigned int nr_pages)3066 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3067 unsigned int nr_pages)
3068 {
3069 struct mem_cgroup *memcg;
3070
3071 memcg = get_mem_cgroup_from_objcg(objcg);
3072
3073 memcg_account_kmem(memcg, -nr_pages);
3074 refill_stock(memcg, nr_pages);
3075
3076 css_put(&memcg->css);
3077 }
3078
3079 /*
3080 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3081 * @objcg: object cgroup to charge
3082 * @gfp: reclaim mode
3083 * @nr_pages: number of pages to charge
3084 *
3085 * Returns 0 on success, an error code on failure.
3086 */
obj_cgroup_charge_pages(struct obj_cgroup * objcg,gfp_t gfp,unsigned int nr_pages)3087 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3088 unsigned int nr_pages)
3089 {
3090 struct mem_cgroup *memcg;
3091 int ret;
3092
3093 memcg = get_mem_cgroup_from_objcg(objcg);
3094
3095 ret = try_charge_memcg(memcg, gfp, nr_pages);
3096 if (ret)
3097 goto out;
3098
3099 memcg_account_kmem(memcg, nr_pages);
3100 out:
3101 css_put(&memcg->css);
3102
3103 return ret;
3104 }
3105
3106 /**
3107 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3108 * @page: page to charge
3109 * @gfp: reclaim mode
3110 * @order: allocation order
3111 *
3112 * Returns 0 on success, an error code on failure.
3113 */
__memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)3114 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3115 {
3116 struct obj_cgroup *objcg;
3117 int ret = 0;
3118
3119 objcg = get_obj_cgroup_from_current();
3120 if (objcg) {
3121 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3122 if (!ret) {
3123 page->memcg_data = (unsigned long)objcg |
3124 MEMCG_DATA_KMEM;
3125 return 0;
3126 }
3127 obj_cgroup_put(objcg);
3128 }
3129 return ret;
3130 }
3131
3132 /**
3133 * __memcg_kmem_uncharge_page: uncharge a kmem page
3134 * @page: page to uncharge
3135 * @order: allocation order
3136 */
__memcg_kmem_uncharge_page(struct page * page,int order)3137 void __memcg_kmem_uncharge_page(struct page *page, int order)
3138 {
3139 struct folio *folio = page_folio(page);
3140 struct obj_cgroup *objcg;
3141 unsigned int nr_pages = 1 << order;
3142
3143 if (!folio_memcg_kmem(folio))
3144 return;
3145
3146 objcg = __folio_objcg(folio);
3147 obj_cgroup_uncharge_pages(objcg, nr_pages);
3148 folio->memcg_data = 0;
3149 obj_cgroup_put(objcg);
3150 }
3151
mod_objcg_state(struct obj_cgroup * objcg,struct pglist_data * pgdat,enum node_stat_item idx,int nr)3152 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3153 enum node_stat_item idx, int nr)
3154 {
3155 struct memcg_stock_pcp *stock;
3156 struct obj_cgroup *old = NULL;
3157 unsigned long flags;
3158 int *bytes;
3159
3160 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3161 stock = this_cpu_ptr(&memcg_stock);
3162
3163 /*
3164 * Save vmstat data in stock and skip vmstat array update unless
3165 * accumulating over a page of vmstat data or when pgdat or idx
3166 * changes.
3167 */
3168 if (stock->cached_objcg != objcg) {
3169 old = drain_obj_stock(stock);
3170 obj_cgroup_get(objcg);
3171 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3172 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3173 stock->cached_objcg = objcg;
3174 stock->cached_pgdat = pgdat;
3175 } else if (stock->cached_pgdat != pgdat) {
3176 /* Flush the existing cached vmstat data */
3177 struct pglist_data *oldpg = stock->cached_pgdat;
3178
3179 if (stock->nr_slab_reclaimable_b) {
3180 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3181 stock->nr_slab_reclaimable_b);
3182 stock->nr_slab_reclaimable_b = 0;
3183 }
3184 if (stock->nr_slab_unreclaimable_b) {
3185 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3186 stock->nr_slab_unreclaimable_b);
3187 stock->nr_slab_unreclaimable_b = 0;
3188 }
3189 stock->cached_pgdat = pgdat;
3190 }
3191
3192 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3193 : &stock->nr_slab_unreclaimable_b;
3194 /*
3195 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3196 * cached locally at least once before pushing it out.
3197 */
3198 if (!*bytes) {
3199 *bytes = nr;
3200 nr = 0;
3201 } else {
3202 *bytes += nr;
3203 if (abs(*bytes) > PAGE_SIZE) {
3204 nr = *bytes;
3205 *bytes = 0;
3206 } else {
3207 nr = 0;
3208 }
3209 }
3210 if (nr)
3211 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3212
3213 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3214 if (old)
3215 obj_cgroup_put(old);
3216 }
3217
consume_obj_stock(struct obj_cgroup * objcg,unsigned int nr_bytes)3218 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3219 {
3220 struct memcg_stock_pcp *stock;
3221 unsigned long flags;
3222 bool ret = false;
3223
3224 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3225
3226 stock = this_cpu_ptr(&memcg_stock);
3227 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3228 stock->nr_bytes -= nr_bytes;
3229 ret = true;
3230 }
3231
3232 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3233
3234 return ret;
3235 }
3236
drain_obj_stock(struct memcg_stock_pcp * stock)3237 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
3238 {
3239 struct obj_cgroup *old = stock->cached_objcg;
3240
3241 if (!old)
3242 return NULL;
3243
3244 if (stock->nr_bytes) {
3245 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3246 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3247
3248 if (nr_pages) {
3249 struct mem_cgroup *memcg;
3250
3251 memcg = get_mem_cgroup_from_objcg(old);
3252
3253 memcg_account_kmem(memcg, -nr_pages);
3254 __refill_stock(memcg, nr_pages);
3255
3256 css_put(&memcg->css);
3257 }
3258
3259 /*
3260 * The leftover is flushed to the centralized per-memcg value.
3261 * On the next attempt to refill obj stock it will be moved
3262 * to a per-cpu stock (probably, on an other CPU), see
3263 * refill_obj_stock().
3264 *
3265 * How often it's flushed is a trade-off between the memory
3266 * limit enforcement accuracy and potential CPU contention,
3267 * so it might be changed in the future.
3268 */
3269 atomic_add(nr_bytes, &old->nr_charged_bytes);
3270 stock->nr_bytes = 0;
3271 }
3272
3273 /*
3274 * Flush the vmstat data in current stock
3275 */
3276 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3277 if (stock->nr_slab_reclaimable_b) {
3278 mod_objcg_mlstate(old, stock->cached_pgdat,
3279 NR_SLAB_RECLAIMABLE_B,
3280 stock->nr_slab_reclaimable_b);
3281 stock->nr_slab_reclaimable_b = 0;
3282 }
3283 if (stock->nr_slab_unreclaimable_b) {
3284 mod_objcg_mlstate(old, stock->cached_pgdat,
3285 NR_SLAB_UNRECLAIMABLE_B,
3286 stock->nr_slab_unreclaimable_b);
3287 stock->nr_slab_unreclaimable_b = 0;
3288 }
3289 stock->cached_pgdat = NULL;
3290 }
3291
3292 stock->cached_objcg = NULL;
3293 /*
3294 * The `old' objects needs to be released by the caller via
3295 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3296 */
3297 return old;
3298 }
3299
obj_stock_flush_required(struct memcg_stock_pcp * stock,struct mem_cgroup * root_memcg)3300 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3301 struct mem_cgroup *root_memcg)
3302 {
3303 struct mem_cgroup *memcg;
3304
3305 if (stock->cached_objcg) {
3306 memcg = obj_cgroup_memcg(stock->cached_objcg);
3307 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3308 return true;
3309 }
3310
3311 return false;
3312 }
3313
refill_obj_stock(struct obj_cgroup * objcg,unsigned int nr_bytes,bool allow_uncharge)3314 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3315 bool allow_uncharge)
3316 {
3317 struct memcg_stock_pcp *stock;
3318 struct obj_cgroup *old = NULL;
3319 unsigned long flags;
3320 unsigned int nr_pages = 0;
3321
3322 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3323
3324 stock = this_cpu_ptr(&memcg_stock);
3325 if (stock->cached_objcg != objcg) { /* reset if necessary */
3326 old = drain_obj_stock(stock);
3327 obj_cgroup_get(objcg);
3328 stock->cached_objcg = objcg;
3329 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3330 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3331 allow_uncharge = true; /* Allow uncharge when objcg changes */
3332 }
3333 stock->nr_bytes += nr_bytes;
3334
3335 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3336 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3337 stock->nr_bytes &= (PAGE_SIZE - 1);
3338 }
3339
3340 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3341 if (old)
3342 obj_cgroup_put(old);
3343
3344 if (nr_pages)
3345 obj_cgroup_uncharge_pages(objcg, nr_pages);
3346 }
3347
obj_cgroup_charge(struct obj_cgroup * objcg,gfp_t gfp,size_t size)3348 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3349 {
3350 unsigned int nr_pages, nr_bytes;
3351 int ret;
3352
3353 if (consume_obj_stock(objcg, size))
3354 return 0;
3355
3356 /*
3357 * In theory, objcg->nr_charged_bytes can have enough
3358 * pre-charged bytes to satisfy the allocation. However,
3359 * flushing objcg->nr_charged_bytes requires two atomic
3360 * operations, and objcg->nr_charged_bytes can't be big.
3361 * The shared objcg->nr_charged_bytes can also become a
3362 * performance bottleneck if all tasks of the same memcg are
3363 * trying to update it. So it's better to ignore it and try
3364 * grab some new pages. The stock's nr_bytes will be flushed to
3365 * objcg->nr_charged_bytes later on when objcg changes.
3366 *
3367 * The stock's nr_bytes may contain enough pre-charged bytes
3368 * to allow one less page from being charged, but we can't rely
3369 * on the pre-charged bytes not being changed outside of
3370 * consume_obj_stock() or refill_obj_stock(). So ignore those
3371 * pre-charged bytes as well when charging pages. To avoid a
3372 * page uncharge right after a page charge, we set the
3373 * allow_uncharge flag to false when calling refill_obj_stock()
3374 * to temporarily allow the pre-charged bytes to exceed the page
3375 * size limit. The maximum reachable value of the pre-charged
3376 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3377 * race.
3378 */
3379 nr_pages = size >> PAGE_SHIFT;
3380 nr_bytes = size & (PAGE_SIZE - 1);
3381
3382 if (nr_bytes)
3383 nr_pages += 1;
3384
3385 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3386 if (!ret && nr_bytes)
3387 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3388
3389 return ret;
3390 }
3391
obj_cgroup_uncharge(struct obj_cgroup * objcg,size_t size)3392 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3393 {
3394 refill_obj_stock(objcg, size, true);
3395 }
3396
3397 #endif /* CONFIG_MEMCG_KMEM */
3398
3399 /*
3400 * Because page_memcg(head) is not set on tails, set it now.
3401 */
split_page_memcg(struct page * head,unsigned int nr)3402 void split_page_memcg(struct page *head, unsigned int nr)
3403 {
3404 struct folio *folio = page_folio(head);
3405 struct mem_cgroup *memcg = folio_memcg(folio);
3406 int i;
3407
3408 if (mem_cgroup_disabled() || !memcg)
3409 return;
3410
3411 for (i = 1; i < nr; i++)
3412 folio_page(folio, i)->memcg_data = folio->memcg_data;
3413
3414 if (folio_memcg_kmem(folio))
3415 obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
3416 else
3417 css_get_many(&memcg->css, nr - 1);
3418 }
3419
3420 #ifdef CONFIG_SWAP
3421 /**
3422 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3423 * @entry: swap entry to be moved
3424 * @from: mem_cgroup which the entry is moved from
3425 * @to: mem_cgroup which the entry is moved to
3426 *
3427 * It succeeds only when the swap_cgroup's record for this entry is the same
3428 * as the mem_cgroup's id of @from.
3429 *
3430 * Returns 0 on success, -EINVAL on failure.
3431 *
3432 * The caller must have charged to @to, IOW, called page_counter_charge() about
3433 * both res and memsw, and called css_get().
3434 */
mem_cgroup_move_swap_account(swp_entry_t entry,struct mem_cgroup * from,struct mem_cgroup * to)3435 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3436 struct mem_cgroup *from, struct mem_cgroup *to)
3437 {
3438 unsigned short old_id, new_id;
3439
3440 old_id = mem_cgroup_id(from);
3441 new_id = mem_cgroup_id(to);
3442
3443 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3444 mod_memcg_state(from, MEMCG_SWAP, -1);
3445 mod_memcg_state(to, MEMCG_SWAP, 1);
3446 return 0;
3447 }
3448 return -EINVAL;
3449 }
3450 #else
mem_cgroup_move_swap_account(swp_entry_t entry,struct mem_cgroup * from,struct mem_cgroup * to)3451 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3452 struct mem_cgroup *from, struct mem_cgroup *to)
3453 {
3454 return -EINVAL;
3455 }
3456 #endif
3457
3458 static DEFINE_MUTEX(memcg_max_mutex);
3459
mem_cgroup_resize_max(struct mem_cgroup * memcg,unsigned long max,bool memsw)3460 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3461 unsigned long max, bool memsw)
3462 {
3463 bool enlarge = false;
3464 bool drained = false;
3465 int ret;
3466 bool limits_invariant;
3467 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3468
3469 do {
3470 if (signal_pending(current)) {
3471 ret = -EINTR;
3472 break;
3473 }
3474
3475 mutex_lock(&memcg_max_mutex);
3476 /*
3477 * Make sure that the new limit (memsw or memory limit) doesn't
3478 * break our basic invariant rule memory.max <= memsw.max.
3479 */
3480 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3481 max <= memcg->memsw.max;
3482 if (!limits_invariant) {
3483 mutex_unlock(&memcg_max_mutex);
3484 ret = -EINVAL;
3485 break;
3486 }
3487 if (max > counter->max)
3488 enlarge = true;
3489 ret = page_counter_set_max(counter, max);
3490 mutex_unlock(&memcg_max_mutex);
3491
3492 if (!ret)
3493 break;
3494
3495 if (!drained) {
3496 drain_all_stock(memcg);
3497 drained = true;
3498 continue;
3499 }
3500
3501 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3502 memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) {
3503 ret = -EBUSY;
3504 break;
3505 }
3506 } while (true);
3507
3508 if (!ret && enlarge)
3509 memcg_oom_recover(memcg);
3510
3511 return ret;
3512 }
3513
mem_cgroup_soft_limit_reclaim(pg_data_t * pgdat,int order,gfp_t gfp_mask,unsigned long * total_scanned)3514 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3515 gfp_t gfp_mask,
3516 unsigned long *total_scanned)
3517 {
3518 unsigned long nr_reclaimed = 0;
3519 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3520 unsigned long reclaimed;
3521 int loop = 0;
3522 struct mem_cgroup_tree_per_node *mctz;
3523 unsigned long excess;
3524
3525 if (order > 0)
3526 return 0;
3527
3528 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3529
3530 /*
3531 * Do not even bother to check the largest node if the root
3532 * is empty. Do it lockless to prevent lock bouncing. Races
3533 * are acceptable as soft limit is best effort anyway.
3534 */
3535 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3536 return 0;
3537
3538 /*
3539 * This loop can run a while, specially if mem_cgroup's continuously
3540 * keep exceeding their soft limit and putting the system under
3541 * pressure
3542 */
3543 do {
3544 if (next_mz)
3545 mz = next_mz;
3546 else
3547 mz = mem_cgroup_largest_soft_limit_node(mctz);
3548 if (!mz)
3549 break;
3550
3551 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3552 gfp_mask, total_scanned);
3553 nr_reclaimed += reclaimed;
3554 spin_lock_irq(&mctz->lock);
3555
3556 /*
3557 * If we failed to reclaim anything from this memory cgroup
3558 * it is time to move on to the next cgroup
3559 */
3560 next_mz = NULL;
3561 if (!reclaimed)
3562 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3563
3564 excess = soft_limit_excess(mz->memcg);
3565 /*
3566 * One school of thought says that we should not add
3567 * back the node to the tree if reclaim returns 0.
3568 * But our reclaim could return 0, simply because due
3569 * to priority we are exposing a smaller subset of
3570 * memory to reclaim from. Consider this as a longer
3571 * term TODO.
3572 */
3573 /* If excess == 0, no tree ops */
3574 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3575 spin_unlock_irq(&mctz->lock);
3576 css_put(&mz->memcg->css);
3577 loop++;
3578 /*
3579 * Could not reclaim anything and there are no more
3580 * mem cgroups to try or we seem to be looping without
3581 * reclaiming anything.
3582 */
3583 if (!nr_reclaimed &&
3584 (next_mz == NULL ||
3585 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3586 break;
3587 } while (!nr_reclaimed);
3588 if (next_mz)
3589 css_put(&next_mz->memcg->css);
3590 return nr_reclaimed;
3591 }
3592
3593 /*
3594 * Reclaims as many pages from the given memcg as possible.
3595 *
3596 * Caller is responsible for holding css reference for memcg.
3597 */
mem_cgroup_force_empty(struct mem_cgroup * memcg)3598 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3599 {
3600 int nr_retries = MAX_RECLAIM_RETRIES;
3601
3602 /* we call try-to-free pages for make this cgroup empty */
3603 lru_add_drain_all();
3604
3605 drain_all_stock(memcg);
3606
3607 /* try to free all pages in this cgroup */
3608 while (nr_retries && page_counter_read(&memcg->memory)) {
3609 if (signal_pending(current))
3610 return -EINTR;
3611
3612 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3613 MEMCG_RECLAIM_MAY_SWAP))
3614 nr_retries--;
3615 }
3616
3617 return 0;
3618 }
3619
mem_cgroup_force_empty_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3620 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3621 char *buf, size_t nbytes,
3622 loff_t off)
3623 {
3624 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3625
3626 if (mem_cgroup_is_root(memcg))
3627 return -EINVAL;
3628 return mem_cgroup_force_empty(memcg) ?: nbytes;
3629 }
3630
mem_cgroup_hierarchy_read(struct cgroup_subsys_state * css,struct cftype * cft)3631 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3632 struct cftype *cft)
3633 {
3634 return 1;
3635 }
3636
mem_cgroup_hierarchy_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3637 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3638 struct cftype *cft, u64 val)
3639 {
3640 if (val == 1)
3641 return 0;
3642
3643 pr_warn_once("Non-hierarchical mode is deprecated. "
3644 "Please report your usecase to linux-mm@kvack.org if you "
3645 "depend on this functionality.\n");
3646
3647 return -EINVAL;
3648 }
3649
mem_cgroup_usage(struct mem_cgroup * memcg,bool swap)3650 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3651 {
3652 unsigned long val;
3653
3654 if (mem_cgroup_is_root(memcg)) {
3655 mem_cgroup_flush_stats();
3656 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3657 memcg_page_state(memcg, NR_ANON_MAPPED);
3658 if (swap)
3659 val += memcg_page_state(memcg, MEMCG_SWAP);
3660 } else {
3661 if (!swap)
3662 val = page_counter_read(&memcg->memory);
3663 else
3664 val = page_counter_read(&memcg->memsw);
3665 }
3666 return val;
3667 }
3668
3669 enum {
3670 RES_USAGE,
3671 RES_LIMIT,
3672 RES_MAX_USAGE,
3673 RES_FAILCNT,
3674 RES_SOFT_LIMIT,
3675 };
3676
mem_cgroup_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)3677 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3678 struct cftype *cft)
3679 {
3680 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3681 struct page_counter *counter;
3682
3683 switch (MEMFILE_TYPE(cft->private)) {
3684 case _MEM:
3685 counter = &memcg->memory;
3686 break;
3687 case _MEMSWAP:
3688 counter = &memcg->memsw;
3689 break;
3690 case _KMEM:
3691 counter = &memcg->kmem;
3692 break;
3693 case _TCP:
3694 counter = &memcg->tcpmem;
3695 break;
3696 default:
3697 BUG();
3698 }
3699
3700 switch (MEMFILE_ATTR(cft->private)) {
3701 case RES_USAGE:
3702 if (counter == &memcg->memory)
3703 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3704 if (counter == &memcg->memsw)
3705 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3706 return (u64)page_counter_read(counter) * PAGE_SIZE;
3707 case RES_LIMIT:
3708 return (u64)counter->max * PAGE_SIZE;
3709 case RES_MAX_USAGE:
3710 return (u64)counter->watermark * PAGE_SIZE;
3711 case RES_FAILCNT:
3712 return counter->failcnt;
3713 case RES_SOFT_LIMIT:
3714 return (u64)memcg->soft_limit * PAGE_SIZE;
3715 default:
3716 BUG();
3717 }
3718 }
3719
3720 #ifdef CONFIG_MEMCG_KMEM
memcg_online_kmem(struct mem_cgroup * memcg)3721 static int memcg_online_kmem(struct mem_cgroup *memcg)
3722 {
3723 struct obj_cgroup *objcg;
3724
3725 if (mem_cgroup_kmem_disabled())
3726 return 0;
3727
3728 if (unlikely(mem_cgroup_is_root(memcg)))
3729 return 0;
3730
3731 objcg = obj_cgroup_alloc();
3732 if (!objcg)
3733 return -ENOMEM;
3734
3735 objcg->memcg = memcg;
3736 rcu_assign_pointer(memcg->objcg, objcg);
3737
3738 static_branch_enable(&memcg_kmem_enabled_key);
3739
3740 memcg->kmemcg_id = memcg->id.id;
3741
3742 return 0;
3743 }
3744
memcg_offline_kmem(struct mem_cgroup * memcg)3745 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3746 {
3747 struct mem_cgroup *parent;
3748
3749 if (mem_cgroup_kmem_disabled())
3750 return;
3751
3752 if (unlikely(mem_cgroup_is_root(memcg)))
3753 return;
3754
3755 parent = parent_mem_cgroup(memcg);
3756 if (!parent)
3757 parent = root_mem_cgroup;
3758
3759 memcg_reparent_objcgs(memcg, parent);
3760
3761 /*
3762 * After we have finished memcg_reparent_objcgs(), all list_lrus
3763 * corresponding to this cgroup are guaranteed to remain empty.
3764 * The ordering is imposed by list_lru_node->lock taken by
3765 * memcg_reparent_list_lrus().
3766 */
3767 memcg_reparent_list_lrus(memcg, parent);
3768 }
3769 #else
memcg_online_kmem(struct mem_cgroup * memcg)3770 static int memcg_online_kmem(struct mem_cgroup *memcg)
3771 {
3772 return 0;
3773 }
memcg_offline_kmem(struct mem_cgroup * memcg)3774 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3775 {
3776 }
3777 #endif /* CONFIG_MEMCG_KMEM */
3778
memcg_update_tcp_max(struct mem_cgroup * memcg,unsigned long max)3779 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3780 {
3781 int ret;
3782
3783 mutex_lock(&memcg_max_mutex);
3784
3785 ret = page_counter_set_max(&memcg->tcpmem, max);
3786 if (ret)
3787 goto out;
3788
3789 if (!memcg->tcpmem_active) {
3790 /*
3791 * The active flag needs to be written after the static_key
3792 * update. This is what guarantees that the socket activation
3793 * function is the last one to run. See mem_cgroup_sk_alloc()
3794 * for details, and note that we don't mark any socket as
3795 * belonging to this memcg until that flag is up.
3796 *
3797 * We need to do this, because static_keys will span multiple
3798 * sites, but we can't control their order. If we mark a socket
3799 * as accounted, but the accounting functions are not patched in
3800 * yet, we'll lose accounting.
3801 *
3802 * We never race with the readers in mem_cgroup_sk_alloc(),
3803 * because when this value change, the code to process it is not
3804 * patched in yet.
3805 */
3806 static_branch_inc(&memcg_sockets_enabled_key);
3807 memcg->tcpmem_active = true;
3808 }
3809 out:
3810 mutex_unlock(&memcg_max_mutex);
3811 return ret;
3812 }
3813
3814 /*
3815 * The user of this function is...
3816 * RES_LIMIT.
3817 */
mem_cgroup_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3818 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3819 char *buf, size_t nbytes, loff_t off)
3820 {
3821 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3822 unsigned long nr_pages;
3823 int ret;
3824
3825 buf = strstrip(buf);
3826 ret = page_counter_memparse(buf, "-1", &nr_pages);
3827 if (ret)
3828 return ret;
3829
3830 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3831 case RES_LIMIT:
3832 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3833 ret = -EINVAL;
3834 break;
3835 }
3836 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3837 case _MEM:
3838 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3839 break;
3840 case _MEMSWAP:
3841 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3842 break;
3843 case _KMEM:
3844 /* kmem.limit_in_bytes is deprecated. */
3845 ret = -EOPNOTSUPP;
3846 break;
3847 case _TCP:
3848 ret = memcg_update_tcp_max(memcg, nr_pages);
3849 break;
3850 }
3851 break;
3852 case RES_SOFT_LIMIT:
3853 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
3854 ret = -EOPNOTSUPP;
3855 } else {
3856 memcg->soft_limit = nr_pages;
3857 ret = 0;
3858 }
3859 break;
3860 }
3861 return ret ?: nbytes;
3862 }
3863
mem_cgroup_reset(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3864 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3865 size_t nbytes, loff_t off)
3866 {
3867 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3868 struct page_counter *counter;
3869
3870 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3871 case _MEM:
3872 counter = &memcg->memory;
3873 break;
3874 case _MEMSWAP:
3875 counter = &memcg->memsw;
3876 break;
3877 case _KMEM:
3878 counter = &memcg->kmem;
3879 break;
3880 case _TCP:
3881 counter = &memcg->tcpmem;
3882 break;
3883 default:
3884 BUG();
3885 }
3886
3887 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3888 case RES_MAX_USAGE:
3889 page_counter_reset_watermark(counter);
3890 break;
3891 case RES_FAILCNT:
3892 counter->failcnt = 0;
3893 break;
3894 default:
3895 BUG();
3896 }
3897
3898 return nbytes;
3899 }
3900
mem_cgroup_move_charge_read(struct cgroup_subsys_state * css,struct cftype * cft)3901 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3902 struct cftype *cft)
3903 {
3904 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3905 }
3906
3907 #ifdef CONFIG_MMU
mem_cgroup_move_charge_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3908 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3909 struct cftype *cft, u64 val)
3910 {
3911 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3912
3913 if (val & ~MOVE_MASK)
3914 return -EINVAL;
3915
3916 /*
3917 * No kind of locking is needed in here, because ->can_attach() will
3918 * check this value once in the beginning of the process, and then carry
3919 * on with stale data. This means that changes to this value will only
3920 * affect task migrations starting after the change.
3921 */
3922 memcg->move_charge_at_immigrate = val;
3923 return 0;
3924 }
3925 #else
mem_cgroup_move_charge_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3926 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3927 struct cftype *cft, u64 val)
3928 {
3929 return -ENOSYS;
3930 }
3931 #endif
3932
3933 #ifdef CONFIG_NUMA
3934
3935 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3936 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3937 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3938
mem_cgroup_node_nr_lru_pages(struct mem_cgroup * memcg,int nid,unsigned int lru_mask,bool tree)3939 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3940 int nid, unsigned int lru_mask, bool tree)
3941 {
3942 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3943 unsigned long nr = 0;
3944 enum lru_list lru;
3945
3946 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3947
3948 for_each_lru(lru) {
3949 if (!(BIT(lru) & lru_mask))
3950 continue;
3951 if (tree)
3952 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3953 else
3954 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3955 }
3956 return nr;
3957 }
3958
mem_cgroup_nr_lru_pages(struct mem_cgroup * memcg,unsigned int lru_mask,bool tree)3959 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3960 unsigned int lru_mask,
3961 bool tree)
3962 {
3963 unsigned long nr = 0;
3964 enum lru_list lru;
3965
3966 for_each_lru(lru) {
3967 if (!(BIT(lru) & lru_mask))
3968 continue;
3969 if (tree)
3970 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3971 else
3972 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3973 }
3974 return nr;
3975 }
3976
memcg_numa_stat_show(struct seq_file * m,void * v)3977 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3978 {
3979 struct numa_stat {
3980 const char *name;
3981 unsigned int lru_mask;
3982 };
3983
3984 static const struct numa_stat stats[] = {
3985 { "total", LRU_ALL },
3986 { "file", LRU_ALL_FILE },
3987 { "anon", LRU_ALL_ANON },
3988 { "unevictable", BIT(LRU_UNEVICTABLE) },
3989 };
3990 const struct numa_stat *stat;
3991 int nid;
3992 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3993
3994 mem_cgroup_flush_stats();
3995
3996 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3997 seq_printf(m, "%s=%lu", stat->name,
3998 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3999 false));
4000 for_each_node_state(nid, N_MEMORY)
4001 seq_printf(m, " N%d=%lu", nid,
4002 mem_cgroup_node_nr_lru_pages(memcg, nid,
4003 stat->lru_mask, false));
4004 seq_putc(m, '\n');
4005 }
4006
4007 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4008
4009 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4010 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4011 true));
4012 for_each_node_state(nid, N_MEMORY)
4013 seq_printf(m, " N%d=%lu", nid,
4014 mem_cgroup_node_nr_lru_pages(memcg, nid,
4015 stat->lru_mask, true));
4016 seq_putc(m, '\n');
4017 }
4018
4019 return 0;
4020 }
4021 #endif /* CONFIG_NUMA */
4022
4023 static const unsigned int memcg1_stats[] = {
4024 NR_FILE_PAGES,
4025 NR_ANON_MAPPED,
4026 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4027 NR_ANON_THPS,
4028 #endif
4029 NR_SHMEM,
4030 NR_FILE_MAPPED,
4031 NR_FILE_DIRTY,
4032 NR_WRITEBACK,
4033 WORKINGSET_REFAULT_ANON,
4034 WORKINGSET_REFAULT_FILE,
4035 MEMCG_SWAP,
4036 };
4037
4038 static const char *const memcg1_stat_names[] = {
4039 "cache",
4040 "rss",
4041 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4042 "rss_huge",
4043 #endif
4044 "shmem",
4045 "mapped_file",
4046 "dirty",
4047 "writeback",
4048 "workingset_refault_anon",
4049 "workingset_refault_file",
4050 "swap",
4051 };
4052
4053 /* Universal VM events cgroup1 shows, original sort order */
4054 static const unsigned int memcg1_events[] = {
4055 PGPGIN,
4056 PGPGOUT,
4057 PGFAULT,
4058 PGMAJFAULT,
4059 };
4060
memcg_stat_show(struct seq_file * m,void * v)4061 static int memcg_stat_show(struct seq_file *m, void *v)
4062 {
4063 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4064 unsigned long memory, memsw;
4065 struct mem_cgroup *mi;
4066 unsigned int i;
4067
4068 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4069
4070 mem_cgroup_flush_stats();
4071
4072 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4073 unsigned long nr;
4074
4075 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4076 continue;
4077 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4078 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
4079 nr * memcg_page_state_unit(memcg1_stats[i]));
4080 }
4081
4082 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4083 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4084 memcg_events_local(memcg, memcg1_events[i]));
4085
4086 for (i = 0; i < NR_LRU_LISTS; i++)
4087 seq_printf(m, "%s %lu\n", lru_list_name(i),
4088 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4089 PAGE_SIZE);
4090
4091 /* Hierarchical information */
4092 memory = memsw = PAGE_COUNTER_MAX;
4093 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4094 memory = min(memory, READ_ONCE(mi->memory.max));
4095 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4096 }
4097 seq_printf(m, "hierarchical_memory_limit %llu\n",
4098 (u64)memory * PAGE_SIZE);
4099 if (do_memsw_account())
4100 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4101 (u64)memsw * PAGE_SIZE);
4102
4103 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4104 unsigned long nr;
4105
4106 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4107 continue;
4108 nr = memcg_page_state(memcg, memcg1_stats[i]);
4109 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4110 (u64)nr * memcg_page_state_unit(memcg1_stats[i]));
4111 }
4112
4113 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4114 seq_printf(m, "total_%s %llu\n",
4115 vm_event_name(memcg1_events[i]),
4116 (u64)memcg_events(memcg, memcg1_events[i]));
4117
4118 for (i = 0; i < NR_LRU_LISTS; i++)
4119 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4120 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4121 PAGE_SIZE);
4122
4123 #ifdef CONFIG_DEBUG_VM
4124 {
4125 pg_data_t *pgdat;
4126 struct mem_cgroup_per_node *mz;
4127 unsigned long anon_cost = 0;
4128 unsigned long file_cost = 0;
4129
4130 for_each_online_pgdat(pgdat) {
4131 mz = memcg->nodeinfo[pgdat->node_id];
4132
4133 anon_cost += mz->lruvec.anon_cost;
4134 file_cost += mz->lruvec.file_cost;
4135 }
4136 seq_printf(m, "anon_cost %lu\n", anon_cost);
4137 seq_printf(m, "file_cost %lu\n", file_cost);
4138 }
4139 #endif
4140
4141 return 0;
4142 }
4143
mem_cgroup_swappiness_read(struct cgroup_subsys_state * css,struct cftype * cft)4144 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4145 struct cftype *cft)
4146 {
4147 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4148
4149 return mem_cgroup_swappiness(memcg);
4150 }
4151
mem_cgroup_swappiness_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)4152 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4153 struct cftype *cft, u64 val)
4154 {
4155 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4156
4157 if (val > 200)
4158 return -EINVAL;
4159
4160 if (!mem_cgroup_is_root(memcg))
4161 memcg->swappiness = val;
4162 else
4163 vm_swappiness = val;
4164
4165 return 0;
4166 }
4167
__mem_cgroup_threshold(struct mem_cgroup * memcg,bool swap)4168 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4169 {
4170 struct mem_cgroup_threshold_ary *t;
4171 unsigned long usage;
4172 int i;
4173
4174 rcu_read_lock();
4175 if (!swap)
4176 t = rcu_dereference(memcg->thresholds.primary);
4177 else
4178 t = rcu_dereference(memcg->memsw_thresholds.primary);
4179
4180 if (!t)
4181 goto unlock;
4182
4183 usage = mem_cgroup_usage(memcg, swap);
4184
4185 /*
4186 * current_threshold points to threshold just below or equal to usage.
4187 * If it's not true, a threshold was crossed after last
4188 * call of __mem_cgroup_threshold().
4189 */
4190 i = t->current_threshold;
4191
4192 /*
4193 * Iterate backward over array of thresholds starting from
4194 * current_threshold and check if a threshold is crossed.
4195 * If none of thresholds below usage is crossed, we read
4196 * only one element of the array here.
4197 */
4198 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4199 eventfd_signal(t->entries[i].eventfd, 1);
4200
4201 /* i = current_threshold + 1 */
4202 i++;
4203
4204 /*
4205 * Iterate forward over array of thresholds starting from
4206 * current_threshold+1 and check if a threshold is crossed.
4207 * If none of thresholds above usage is crossed, we read
4208 * only one element of the array here.
4209 */
4210 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4211 eventfd_signal(t->entries[i].eventfd, 1);
4212
4213 /* Update current_threshold */
4214 t->current_threshold = i - 1;
4215 unlock:
4216 rcu_read_unlock();
4217 }
4218
mem_cgroup_threshold(struct mem_cgroup * memcg)4219 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4220 {
4221 while (memcg) {
4222 __mem_cgroup_threshold(memcg, false);
4223 if (do_memsw_account())
4224 __mem_cgroup_threshold(memcg, true);
4225
4226 memcg = parent_mem_cgroup(memcg);
4227 }
4228 }
4229
compare_thresholds(const void * a,const void * b)4230 static int compare_thresholds(const void *a, const void *b)
4231 {
4232 const struct mem_cgroup_threshold *_a = a;
4233 const struct mem_cgroup_threshold *_b = b;
4234
4235 if (_a->threshold > _b->threshold)
4236 return 1;
4237
4238 if (_a->threshold < _b->threshold)
4239 return -1;
4240
4241 return 0;
4242 }
4243
mem_cgroup_oom_notify_cb(struct mem_cgroup * memcg)4244 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4245 {
4246 struct mem_cgroup_eventfd_list *ev;
4247
4248 spin_lock(&memcg_oom_lock);
4249
4250 list_for_each_entry(ev, &memcg->oom_notify, list)
4251 eventfd_signal(ev->eventfd, 1);
4252
4253 spin_unlock(&memcg_oom_lock);
4254 return 0;
4255 }
4256
mem_cgroup_oom_notify(struct mem_cgroup * memcg)4257 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4258 {
4259 struct mem_cgroup *iter;
4260
4261 for_each_mem_cgroup_tree(iter, memcg)
4262 mem_cgroup_oom_notify_cb(iter);
4263 }
4264
__mem_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args,enum res_type type)4265 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4266 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4267 {
4268 struct mem_cgroup_thresholds *thresholds;
4269 struct mem_cgroup_threshold_ary *new;
4270 unsigned long threshold;
4271 unsigned long usage;
4272 int i, size, ret;
4273
4274 ret = page_counter_memparse(args, "-1", &threshold);
4275 if (ret)
4276 return ret;
4277
4278 mutex_lock(&memcg->thresholds_lock);
4279
4280 if (type == _MEM) {
4281 thresholds = &memcg->thresholds;
4282 usage = mem_cgroup_usage(memcg, false);
4283 } else if (type == _MEMSWAP) {
4284 thresholds = &memcg->memsw_thresholds;
4285 usage = mem_cgroup_usage(memcg, true);
4286 } else
4287 BUG();
4288
4289 /* Check if a threshold crossed before adding a new one */
4290 if (thresholds->primary)
4291 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4292
4293 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4294
4295 /* Allocate memory for new array of thresholds */
4296 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4297 if (!new) {
4298 ret = -ENOMEM;
4299 goto unlock;
4300 }
4301 new->size = size;
4302
4303 /* Copy thresholds (if any) to new array */
4304 if (thresholds->primary)
4305 memcpy(new->entries, thresholds->primary->entries,
4306 flex_array_size(new, entries, size - 1));
4307
4308 /* Add new threshold */
4309 new->entries[size - 1].eventfd = eventfd;
4310 new->entries[size - 1].threshold = threshold;
4311
4312 /* Sort thresholds. Registering of new threshold isn't time-critical */
4313 sort(new->entries, size, sizeof(*new->entries),
4314 compare_thresholds, NULL);
4315
4316 /* Find current threshold */
4317 new->current_threshold = -1;
4318 for (i = 0; i < size; i++) {
4319 if (new->entries[i].threshold <= usage) {
4320 /*
4321 * new->current_threshold will not be used until
4322 * rcu_assign_pointer(), so it's safe to increment
4323 * it here.
4324 */
4325 ++new->current_threshold;
4326 } else
4327 break;
4328 }
4329
4330 /* Free old spare buffer and save old primary buffer as spare */
4331 kfree(thresholds->spare);
4332 thresholds->spare = thresholds->primary;
4333
4334 rcu_assign_pointer(thresholds->primary, new);
4335
4336 /* To be sure that nobody uses thresholds */
4337 synchronize_rcu();
4338
4339 unlock:
4340 mutex_unlock(&memcg->thresholds_lock);
4341
4342 return ret;
4343 }
4344
mem_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)4345 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4346 struct eventfd_ctx *eventfd, const char *args)
4347 {
4348 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4349 }
4350
memsw_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)4351 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4352 struct eventfd_ctx *eventfd, const char *args)
4353 {
4354 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4355 }
4356
__mem_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,enum res_type type)4357 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4358 struct eventfd_ctx *eventfd, enum res_type type)
4359 {
4360 struct mem_cgroup_thresholds *thresholds;
4361 struct mem_cgroup_threshold_ary *new;
4362 unsigned long usage;
4363 int i, j, size, entries;
4364
4365 mutex_lock(&memcg->thresholds_lock);
4366
4367 if (type == _MEM) {
4368 thresholds = &memcg->thresholds;
4369 usage = mem_cgroup_usage(memcg, false);
4370 } else if (type == _MEMSWAP) {
4371 thresholds = &memcg->memsw_thresholds;
4372 usage = mem_cgroup_usage(memcg, true);
4373 } else
4374 BUG();
4375
4376 if (!thresholds->primary)
4377 goto unlock;
4378
4379 /* Check if a threshold crossed before removing */
4380 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4381
4382 /* Calculate new number of threshold */
4383 size = entries = 0;
4384 for (i = 0; i < thresholds->primary->size; i++) {
4385 if (thresholds->primary->entries[i].eventfd != eventfd)
4386 size++;
4387 else
4388 entries++;
4389 }
4390
4391 new = thresholds->spare;
4392
4393 /* If no items related to eventfd have been cleared, nothing to do */
4394 if (!entries)
4395 goto unlock;
4396
4397 /* Set thresholds array to NULL if we don't have thresholds */
4398 if (!size) {
4399 kfree(new);
4400 new = NULL;
4401 goto swap_buffers;
4402 }
4403
4404 new->size = size;
4405
4406 /* Copy thresholds and find current threshold */
4407 new->current_threshold = -1;
4408 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4409 if (thresholds->primary->entries[i].eventfd == eventfd)
4410 continue;
4411
4412 new->entries[j] = thresholds->primary->entries[i];
4413 if (new->entries[j].threshold <= usage) {
4414 /*
4415 * new->current_threshold will not be used
4416 * until rcu_assign_pointer(), so it's safe to increment
4417 * it here.
4418 */
4419 ++new->current_threshold;
4420 }
4421 j++;
4422 }
4423
4424 swap_buffers:
4425 /* Swap primary and spare array */
4426 thresholds->spare = thresholds->primary;
4427
4428 rcu_assign_pointer(thresholds->primary, new);
4429
4430 /* To be sure that nobody uses thresholds */
4431 synchronize_rcu();
4432
4433 /* If all events are unregistered, free the spare array */
4434 if (!new) {
4435 kfree(thresholds->spare);
4436 thresholds->spare = NULL;
4437 }
4438 unlock:
4439 mutex_unlock(&memcg->thresholds_lock);
4440 }
4441
mem_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)4442 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4443 struct eventfd_ctx *eventfd)
4444 {
4445 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4446 }
4447
memsw_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)4448 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4449 struct eventfd_ctx *eventfd)
4450 {
4451 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4452 }
4453
mem_cgroup_oom_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)4454 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4455 struct eventfd_ctx *eventfd, const char *args)
4456 {
4457 struct mem_cgroup_eventfd_list *event;
4458
4459 event = kmalloc(sizeof(*event), GFP_KERNEL);
4460 if (!event)
4461 return -ENOMEM;
4462
4463 spin_lock(&memcg_oom_lock);
4464
4465 event->eventfd = eventfd;
4466 list_add(&event->list, &memcg->oom_notify);
4467
4468 /* already in OOM ? */
4469 if (memcg->under_oom)
4470 eventfd_signal(eventfd, 1);
4471 spin_unlock(&memcg_oom_lock);
4472
4473 return 0;
4474 }
4475
mem_cgroup_oom_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)4476 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4477 struct eventfd_ctx *eventfd)
4478 {
4479 struct mem_cgroup_eventfd_list *ev, *tmp;
4480
4481 spin_lock(&memcg_oom_lock);
4482
4483 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4484 if (ev->eventfd == eventfd) {
4485 list_del(&ev->list);
4486 kfree(ev);
4487 }
4488 }
4489
4490 spin_unlock(&memcg_oom_lock);
4491 }
4492
mem_cgroup_oom_control_read(struct seq_file * sf,void * v)4493 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4494 {
4495 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4496
4497 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4498 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4499 seq_printf(sf, "oom_kill %lu\n",
4500 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4501 return 0;
4502 }
4503
mem_cgroup_oom_control_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)4504 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4505 struct cftype *cft, u64 val)
4506 {
4507 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4508
4509 /* cannot set to root cgroup and only 0 and 1 are allowed */
4510 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4511 return -EINVAL;
4512
4513 memcg->oom_kill_disable = val;
4514 if (!val)
4515 memcg_oom_recover(memcg);
4516
4517 return 0;
4518 }
4519
4520 #ifdef CONFIG_CGROUP_WRITEBACK
4521
4522 #include <trace/events/writeback.h>
4523
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)4524 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4525 {
4526 return wb_domain_init(&memcg->cgwb_domain, gfp);
4527 }
4528
memcg_wb_domain_exit(struct mem_cgroup * memcg)4529 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4530 {
4531 wb_domain_exit(&memcg->cgwb_domain);
4532 }
4533
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)4534 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4535 {
4536 wb_domain_size_changed(&memcg->cgwb_domain);
4537 }
4538
mem_cgroup_wb_domain(struct bdi_writeback * wb)4539 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4540 {
4541 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4542
4543 if (!memcg->css.parent)
4544 return NULL;
4545
4546 return &memcg->cgwb_domain;
4547 }
4548
4549 /**
4550 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4551 * @wb: bdi_writeback in question
4552 * @pfilepages: out parameter for number of file pages
4553 * @pheadroom: out parameter for number of allocatable pages according to memcg
4554 * @pdirty: out parameter for number of dirty pages
4555 * @pwriteback: out parameter for number of pages under writeback
4556 *
4557 * Determine the numbers of file, headroom, dirty, and writeback pages in
4558 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4559 * is a bit more involved.
4560 *
4561 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4562 * headroom is calculated as the lowest headroom of itself and the
4563 * ancestors. Note that this doesn't consider the actual amount of
4564 * available memory in the system. The caller should further cap
4565 * *@pheadroom accordingly.
4566 */
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)4567 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4568 unsigned long *pheadroom, unsigned long *pdirty,
4569 unsigned long *pwriteback)
4570 {
4571 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4572 struct mem_cgroup *parent;
4573
4574 mem_cgroup_flush_stats();
4575
4576 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4577 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4578 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4579 memcg_page_state(memcg, NR_ACTIVE_FILE);
4580
4581 *pheadroom = PAGE_COUNTER_MAX;
4582 while ((parent = parent_mem_cgroup(memcg))) {
4583 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4584 READ_ONCE(memcg->memory.high));
4585 unsigned long used = page_counter_read(&memcg->memory);
4586
4587 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4588 memcg = parent;
4589 }
4590 }
4591
4592 /*
4593 * Foreign dirty flushing
4594 *
4595 * There's an inherent mismatch between memcg and writeback. The former
4596 * tracks ownership per-page while the latter per-inode. This was a
4597 * deliberate design decision because honoring per-page ownership in the
4598 * writeback path is complicated, may lead to higher CPU and IO overheads
4599 * and deemed unnecessary given that write-sharing an inode across
4600 * different cgroups isn't a common use-case.
4601 *
4602 * Combined with inode majority-writer ownership switching, this works well
4603 * enough in most cases but there are some pathological cases. For
4604 * example, let's say there are two cgroups A and B which keep writing to
4605 * different but confined parts of the same inode. B owns the inode and
4606 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4607 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4608 * triggering background writeback. A will be slowed down without a way to
4609 * make writeback of the dirty pages happen.
4610 *
4611 * Conditions like the above can lead to a cgroup getting repeatedly and
4612 * severely throttled after making some progress after each
4613 * dirty_expire_interval while the underlying IO device is almost
4614 * completely idle.
4615 *
4616 * Solving this problem completely requires matching the ownership tracking
4617 * granularities between memcg and writeback in either direction. However,
4618 * the more egregious behaviors can be avoided by simply remembering the
4619 * most recent foreign dirtying events and initiating remote flushes on
4620 * them when local writeback isn't enough to keep the memory clean enough.
4621 *
4622 * The following two functions implement such mechanism. When a foreign
4623 * page - a page whose memcg and writeback ownerships don't match - is
4624 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4625 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4626 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4627 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4628 * foreign bdi_writebacks which haven't expired. Both the numbers of
4629 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4630 * limited to MEMCG_CGWB_FRN_CNT.
4631 *
4632 * The mechanism only remembers IDs and doesn't hold any object references.
4633 * As being wrong occasionally doesn't matter, updates and accesses to the
4634 * records are lockless and racy.
4635 */
mem_cgroup_track_foreign_dirty_slowpath(struct folio * folio,struct bdi_writeback * wb)4636 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4637 struct bdi_writeback *wb)
4638 {
4639 struct mem_cgroup *memcg = folio_memcg(folio);
4640 struct memcg_cgwb_frn *frn;
4641 u64 now = get_jiffies_64();
4642 u64 oldest_at = now;
4643 int oldest = -1;
4644 int i;
4645
4646 trace_track_foreign_dirty(folio, wb);
4647
4648 /*
4649 * Pick the slot to use. If there is already a slot for @wb, keep
4650 * using it. If not replace the oldest one which isn't being
4651 * written out.
4652 */
4653 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4654 frn = &memcg->cgwb_frn[i];
4655 if (frn->bdi_id == wb->bdi->id &&
4656 frn->memcg_id == wb->memcg_css->id)
4657 break;
4658 if (time_before64(frn->at, oldest_at) &&
4659 atomic_read(&frn->done.cnt) == 1) {
4660 oldest = i;
4661 oldest_at = frn->at;
4662 }
4663 }
4664
4665 if (i < MEMCG_CGWB_FRN_CNT) {
4666 /*
4667 * Re-using an existing one. Update timestamp lazily to
4668 * avoid making the cacheline hot. We want them to be
4669 * reasonably up-to-date and significantly shorter than
4670 * dirty_expire_interval as that's what expires the record.
4671 * Use the shorter of 1s and dirty_expire_interval / 8.
4672 */
4673 unsigned long update_intv =
4674 min_t(unsigned long, HZ,
4675 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4676
4677 if (time_before64(frn->at, now - update_intv))
4678 frn->at = now;
4679 } else if (oldest >= 0) {
4680 /* replace the oldest free one */
4681 frn = &memcg->cgwb_frn[oldest];
4682 frn->bdi_id = wb->bdi->id;
4683 frn->memcg_id = wb->memcg_css->id;
4684 frn->at = now;
4685 }
4686 }
4687
4688 /* issue foreign writeback flushes for recorded foreign dirtying events */
mem_cgroup_flush_foreign(struct bdi_writeback * wb)4689 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4690 {
4691 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4692 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4693 u64 now = jiffies_64;
4694 int i;
4695
4696 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4697 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4698
4699 /*
4700 * If the record is older than dirty_expire_interval,
4701 * writeback on it has already started. No need to kick it
4702 * off again. Also, don't start a new one if there's
4703 * already one in flight.
4704 */
4705 if (time_after64(frn->at, now - intv) &&
4706 atomic_read(&frn->done.cnt) == 1) {
4707 frn->at = 0;
4708 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4709 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4710 WB_REASON_FOREIGN_FLUSH,
4711 &frn->done);
4712 }
4713 }
4714 }
4715
4716 #else /* CONFIG_CGROUP_WRITEBACK */
4717
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)4718 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4719 {
4720 return 0;
4721 }
4722
memcg_wb_domain_exit(struct mem_cgroup * memcg)4723 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4724 {
4725 }
4726
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)4727 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4728 {
4729 }
4730
4731 #endif /* CONFIG_CGROUP_WRITEBACK */
4732
4733 /*
4734 * DO NOT USE IN NEW FILES.
4735 *
4736 * "cgroup.event_control" implementation.
4737 *
4738 * This is way over-engineered. It tries to support fully configurable
4739 * events for each user. Such level of flexibility is completely
4740 * unnecessary especially in the light of the planned unified hierarchy.
4741 *
4742 * Please deprecate this and replace with something simpler if at all
4743 * possible.
4744 */
4745
4746 /*
4747 * Unregister event and free resources.
4748 *
4749 * Gets called from workqueue.
4750 */
memcg_event_remove(struct work_struct * work)4751 static void memcg_event_remove(struct work_struct *work)
4752 {
4753 struct mem_cgroup_event *event =
4754 container_of(work, struct mem_cgroup_event, remove);
4755 struct mem_cgroup *memcg = event->memcg;
4756
4757 remove_wait_queue(event->wqh, &event->wait);
4758
4759 event->unregister_event(memcg, event->eventfd);
4760
4761 /* Notify userspace the event is going away. */
4762 eventfd_signal(event->eventfd, 1);
4763
4764 eventfd_ctx_put(event->eventfd);
4765 kfree(event);
4766 css_put(&memcg->css);
4767 }
4768
4769 /*
4770 * Gets called on EPOLLHUP on eventfd when user closes it.
4771 *
4772 * Called with wqh->lock held and interrupts disabled.
4773 */
memcg_event_wake(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)4774 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4775 int sync, void *key)
4776 {
4777 struct mem_cgroup_event *event =
4778 container_of(wait, struct mem_cgroup_event, wait);
4779 struct mem_cgroup *memcg = event->memcg;
4780 __poll_t flags = key_to_poll(key);
4781
4782 if (flags & EPOLLHUP) {
4783 /*
4784 * If the event has been detached at cgroup removal, we
4785 * can simply return knowing the other side will cleanup
4786 * for us.
4787 *
4788 * We can't race against event freeing since the other
4789 * side will require wqh->lock via remove_wait_queue(),
4790 * which we hold.
4791 */
4792 spin_lock(&memcg->event_list_lock);
4793 if (!list_empty(&event->list)) {
4794 list_del_init(&event->list);
4795 /*
4796 * We are in atomic context, but cgroup_event_remove()
4797 * may sleep, so we have to call it in workqueue.
4798 */
4799 schedule_work(&event->remove);
4800 }
4801 spin_unlock(&memcg->event_list_lock);
4802 }
4803
4804 return 0;
4805 }
4806
memcg_event_ptable_queue_proc(struct file * file,wait_queue_head_t * wqh,poll_table * pt)4807 static void memcg_event_ptable_queue_proc(struct file *file,
4808 wait_queue_head_t *wqh, poll_table *pt)
4809 {
4810 struct mem_cgroup_event *event =
4811 container_of(pt, struct mem_cgroup_event, pt);
4812
4813 event->wqh = wqh;
4814 add_wait_queue(wqh, &event->wait);
4815 }
4816
4817 /*
4818 * DO NOT USE IN NEW FILES.
4819 *
4820 * Parse input and register new cgroup event handler.
4821 *
4822 * Input must be in format '<event_fd> <control_fd> <args>'.
4823 * Interpretation of args is defined by control file implementation.
4824 */
memcg_write_event_control(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4825 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4826 char *buf, size_t nbytes, loff_t off)
4827 {
4828 struct cgroup_subsys_state *css = of_css(of);
4829 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4830 struct mem_cgroup_event *event;
4831 struct cgroup_subsys_state *cfile_css;
4832 unsigned int efd, cfd;
4833 struct fd efile;
4834 struct fd cfile;
4835 struct dentry *cdentry;
4836 const char *name;
4837 char *endp;
4838 int ret;
4839
4840 if (IS_ENABLED(CONFIG_PREEMPT_RT))
4841 return -EOPNOTSUPP;
4842
4843 buf = strstrip(buf);
4844
4845 efd = simple_strtoul(buf, &endp, 10);
4846 if (*endp != ' ')
4847 return -EINVAL;
4848 buf = endp + 1;
4849
4850 cfd = simple_strtoul(buf, &endp, 10);
4851 if ((*endp != ' ') && (*endp != '\0'))
4852 return -EINVAL;
4853 buf = endp + 1;
4854
4855 event = kzalloc(sizeof(*event), GFP_KERNEL);
4856 if (!event)
4857 return -ENOMEM;
4858
4859 event->memcg = memcg;
4860 INIT_LIST_HEAD(&event->list);
4861 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4862 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4863 INIT_WORK(&event->remove, memcg_event_remove);
4864
4865 efile = fdget(efd);
4866 if (!efile.file) {
4867 ret = -EBADF;
4868 goto out_kfree;
4869 }
4870
4871 event->eventfd = eventfd_ctx_fileget(efile.file);
4872 if (IS_ERR(event->eventfd)) {
4873 ret = PTR_ERR(event->eventfd);
4874 goto out_put_efile;
4875 }
4876
4877 cfile = fdget(cfd);
4878 if (!cfile.file) {
4879 ret = -EBADF;
4880 goto out_put_eventfd;
4881 }
4882
4883 /* the process need read permission on control file */
4884 /* AV: shouldn't we check that it's been opened for read instead? */
4885 ret = file_permission(cfile.file, MAY_READ);
4886 if (ret < 0)
4887 goto out_put_cfile;
4888
4889 /*
4890 * The control file must be a regular cgroup1 file. As a regular cgroup
4891 * file can't be renamed, it's safe to access its name afterwards.
4892 */
4893 cdentry = cfile.file->f_path.dentry;
4894 if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
4895 ret = -EINVAL;
4896 goto out_put_cfile;
4897 }
4898
4899 /*
4900 * Determine the event callbacks and set them in @event. This used
4901 * to be done via struct cftype but cgroup core no longer knows
4902 * about these events. The following is crude but the whole thing
4903 * is for compatibility anyway.
4904 *
4905 * DO NOT ADD NEW FILES.
4906 */
4907 name = cdentry->d_name.name;
4908
4909 if (!strcmp(name, "memory.usage_in_bytes")) {
4910 event->register_event = mem_cgroup_usage_register_event;
4911 event->unregister_event = mem_cgroup_usage_unregister_event;
4912 } else if (!strcmp(name, "memory.oom_control")) {
4913 event->register_event = mem_cgroup_oom_register_event;
4914 event->unregister_event = mem_cgroup_oom_unregister_event;
4915 } else if (!strcmp(name, "memory.pressure_level")) {
4916 event->register_event = vmpressure_register_event;
4917 event->unregister_event = vmpressure_unregister_event;
4918 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4919 event->register_event = memsw_cgroup_usage_register_event;
4920 event->unregister_event = memsw_cgroup_usage_unregister_event;
4921 } else {
4922 ret = -EINVAL;
4923 goto out_put_cfile;
4924 }
4925
4926 /*
4927 * Verify @cfile should belong to @css. Also, remaining events are
4928 * automatically removed on cgroup destruction but the removal is
4929 * asynchronous, so take an extra ref on @css.
4930 */
4931 cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
4932 &memory_cgrp_subsys);
4933 ret = -EINVAL;
4934 if (IS_ERR(cfile_css))
4935 goto out_put_cfile;
4936 if (cfile_css != css) {
4937 css_put(cfile_css);
4938 goto out_put_cfile;
4939 }
4940
4941 ret = event->register_event(memcg, event->eventfd, buf);
4942 if (ret)
4943 goto out_put_css;
4944
4945 vfs_poll(efile.file, &event->pt);
4946
4947 spin_lock_irq(&memcg->event_list_lock);
4948 list_add(&event->list, &memcg->event_list);
4949 spin_unlock_irq(&memcg->event_list_lock);
4950
4951 fdput(cfile);
4952 fdput(efile);
4953
4954 return nbytes;
4955
4956 out_put_css:
4957 css_put(css);
4958 out_put_cfile:
4959 fdput(cfile);
4960 out_put_eventfd:
4961 eventfd_ctx_put(event->eventfd);
4962 out_put_efile:
4963 fdput(efile);
4964 out_kfree:
4965 kfree(event);
4966
4967 return ret;
4968 }
4969
4970 #if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
mem_cgroup_slab_show(struct seq_file * m,void * p)4971 static int mem_cgroup_slab_show(struct seq_file *m, void *p)
4972 {
4973 /*
4974 * Deprecated.
4975 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
4976 */
4977 return 0;
4978 }
4979 #endif
4980
4981 static struct cftype mem_cgroup_legacy_files[] = {
4982 {
4983 .name = "usage_in_bytes",
4984 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4985 .read_u64 = mem_cgroup_read_u64,
4986 },
4987 {
4988 .name = "max_usage_in_bytes",
4989 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4990 .write = mem_cgroup_reset,
4991 .read_u64 = mem_cgroup_read_u64,
4992 },
4993 {
4994 .name = "limit_in_bytes",
4995 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4996 .write = mem_cgroup_write,
4997 .read_u64 = mem_cgroup_read_u64,
4998 },
4999 {
5000 .name = "soft_limit_in_bytes",
5001 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5002 .write = mem_cgroup_write,
5003 .read_u64 = mem_cgroup_read_u64,
5004 },
5005 {
5006 .name = "failcnt",
5007 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5008 .write = mem_cgroup_reset,
5009 .read_u64 = mem_cgroup_read_u64,
5010 },
5011 {
5012 .name = "stat",
5013 .seq_show = memcg_stat_show,
5014 },
5015 {
5016 .name = "force_empty",
5017 .write = mem_cgroup_force_empty_write,
5018 },
5019 {
5020 .name = "use_hierarchy",
5021 .write_u64 = mem_cgroup_hierarchy_write,
5022 .read_u64 = mem_cgroup_hierarchy_read,
5023 },
5024 {
5025 .name = "cgroup.event_control", /* XXX: for compat */
5026 .write = memcg_write_event_control,
5027 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5028 },
5029 {
5030 .name = "swappiness",
5031 .read_u64 = mem_cgroup_swappiness_read,
5032 .write_u64 = mem_cgroup_swappiness_write,
5033 },
5034 {
5035 .name = "move_charge_at_immigrate",
5036 .read_u64 = mem_cgroup_move_charge_read,
5037 .write_u64 = mem_cgroup_move_charge_write,
5038 },
5039 {
5040 .name = "oom_control",
5041 .seq_show = mem_cgroup_oom_control_read,
5042 .write_u64 = mem_cgroup_oom_control_write,
5043 },
5044 {
5045 .name = "pressure_level",
5046 },
5047 #ifdef CONFIG_NUMA
5048 {
5049 .name = "numa_stat",
5050 .seq_show = memcg_numa_stat_show,
5051 },
5052 #endif
5053 {
5054 .name = "kmem.limit_in_bytes",
5055 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5056 .write = mem_cgroup_write,
5057 .read_u64 = mem_cgroup_read_u64,
5058 },
5059 {
5060 .name = "kmem.usage_in_bytes",
5061 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5062 .read_u64 = mem_cgroup_read_u64,
5063 },
5064 {
5065 .name = "kmem.failcnt",
5066 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5067 .write = mem_cgroup_reset,
5068 .read_u64 = mem_cgroup_read_u64,
5069 },
5070 {
5071 .name = "kmem.max_usage_in_bytes",
5072 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5073 .write = mem_cgroup_reset,
5074 .read_u64 = mem_cgroup_read_u64,
5075 },
5076 #if defined(CONFIG_MEMCG_KMEM) && \
5077 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5078 {
5079 .name = "kmem.slabinfo",
5080 .seq_show = mem_cgroup_slab_show,
5081 },
5082 #endif
5083 {
5084 .name = "kmem.tcp.limit_in_bytes",
5085 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5086 .write = mem_cgroup_write,
5087 .read_u64 = mem_cgroup_read_u64,
5088 },
5089 {
5090 .name = "kmem.tcp.usage_in_bytes",
5091 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5092 .read_u64 = mem_cgroup_read_u64,
5093 },
5094 {
5095 .name = "kmem.tcp.failcnt",
5096 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5097 .write = mem_cgroup_reset,
5098 .read_u64 = mem_cgroup_read_u64,
5099 },
5100 {
5101 .name = "kmem.tcp.max_usage_in_bytes",
5102 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5103 .write = mem_cgroup_reset,
5104 .read_u64 = mem_cgroup_read_u64,
5105 },
5106 { }, /* terminate */
5107 };
5108
5109 /*
5110 * Private memory cgroup IDR
5111 *
5112 * Swap-out records and page cache shadow entries need to store memcg
5113 * references in constrained space, so we maintain an ID space that is
5114 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5115 * memory-controlled cgroups to 64k.
5116 *
5117 * However, there usually are many references to the offline CSS after
5118 * the cgroup has been destroyed, such as page cache or reclaimable
5119 * slab objects, that don't need to hang on to the ID. We want to keep
5120 * those dead CSS from occupying IDs, or we might quickly exhaust the
5121 * relatively small ID space and prevent the creation of new cgroups
5122 * even when there are much fewer than 64k cgroups - possibly none.
5123 *
5124 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5125 * be freed and recycled when it's no longer needed, which is usually
5126 * when the CSS is offlined.
5127 *
5128 * The only exception to that are records of swapped out tmpfs/shmem
5129 * pages that need to be attributed to live ancestors on swapin. But
5130 * those references are manageable from userspace.
5131 */
5132
5133 static DEFINE_IDR(mem_cgroup_idr);
5134
mem_cgroup_id_remove(struct mem_cgroup * memcg)5135 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5136 {
5137 if (memcg->id.id > 0) {
5138 idr_remove(&mem_cgroup_idr, memcg->id.id);
5139 memcg->id.id = 0;
5140 }
5141 }
5142
mem_cgroup_id_get_many(struct mem_cgroup * memcg,unsigned int n)5143 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5144 unsigned int n)
5145 {
5146 refcount_add(n, &memcg->id.ref);
5147 }
5148
mem_cgroup_id_put_many(struct mem_cgroup * memcg,unsigned int n)5149 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5150 {
5151 if (refcount_sub_and_test(n, &memcg->id.ref)) {
5152 mem_cgroup_id_remove(memcg);
5153
5154 /* Memcg ID pins CSS */
5155 css_put(&memcg->css);
5156 }
5157 }
5158
mem_cgroup_id_put(struct mem_cgroup * memcg)5159 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5160 {
5161 mem_cgroup_id_put_many(memcg, 1);
5162 }
5163
5164 /**
5165 * mem_cgroup_from_id - look up a memcg from a memcg id
5166 * @id: the memcg id to look up
5167 *
5168 * Caller must hold rcu_read_lock().
5169 */
mem_cgroup_from_id(unsigned short id)5170 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5171 {
5172 WARN_ON_ONCE(!rcu_read_lock_held());
5173 return idr_find(&mem_cgroup_idr, id);
5174 }
5175
5176 #ifdef CONFIG_SHRINKER_DEBUG
mem_cgroup_get_from_ino(unsigned long ino)5177 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5178 {
5179 struct cgroup *cgrp;
5180 struct cgroup_subsys_state *css;
5181 struct mem_cgroup *memcg;
5182
5183 cgrp = cgroup_get_from_id(ino);
5184 if (IS_ERR(cgrp))
5185 return ERR_CAST(cgrp);
5186
5187 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
5188 if (css)
5189 memcg = container_of(css, struct mem_cgroup, css);
5190 else
5191 memcg = ERR_PTR(-ENOENT);
5192
5193 cgroup_put(cgrp);
5194
5195 return memcg;
5196 }
5197 #endif
5198
alloc_mem_cgroup_per_node_info(struct mem_cgroup * memcg,int node)5199 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5200 {
5201 struct mem_cgroup_per_node *pn;
5202
5203 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
5204 if (!pn)
5205 return 1;
5206
5207 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5208 GFP_KERNEL_ACCOUNT);
5209 if (!pn->lruvec_stats_percpu) {
5210 kfree(pn);
5211 return 1;
5212 }
5213
5214 lruvec_init(&pn->lruvec);
5215 pn->memcg = memcg;
5216
5217 memcg->nodeinfo[node] = pn;
5218 return 0;
5219 }
5220
free_mem_cgroup_per_node_info(struct mem_cgroup * memcg,int node)5221 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5222 {
5223 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5224
5225 if (!pn)
5226 return;
5227
5228 free_percpu(pn->lruvec_stats_percpu);
5229 kfree(pn);
5230 }
5231
__mem_cgroup_free(struct mem_cgroup * memcg)5232 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5233 {
5234 int node;
5235
5236 for_each_node(node)
5237 free_mem_cgroup_per_node_info(memcg, node);
5238 kfree(memcg->vmstats);
5239 free_percpu(memcg->vmstats_percpu);
5240 kfree(memcg);
5241 }
5242
mem_cgroup_free(struct mem_cgroup * memcg)5243 static void mem_cgroup_free(struct mem_cgroup *memcg)
5244 {
5245 lru_gen_exit_memcg(memcg);
5246 memcg_wb_domain_exit(memcg);
5247 __mem_cgroup_free(memcg);
5248 }
5249
mem_cgroup_alloc(void)5250 static struct mem_cgroup *mem_cgroup_alloc(void)
5251 {
5252 struct mem_cgroup *memcg;
5253 int node;
5254 int __maybe_unused i;
5255 long error = -ENOMEM;
5256
5257 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
5258 if (!memcg)
5259 return ERR_PTR(error);
5260
5261 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5262 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
5263 if (memcg->id.id < 0) {
5264 error = memcg->id.id;
5265 goto fail;
5266 }
5267
5268 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL);
5269 if (!memcg->vmstats)
5270 goto fail;
5271
5272 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5273 GFP_KERNEL_ACCOUNT);
5274 if (!memcg->vmstats_percpu)
5275 goto fail;
5276
5277 for_each_node(node)
5278 if (alloc_mem_cgroup_per_node_info(memcg, node))
5279 goto fail;
5280
5281 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5282 goto fail;
5283
5284 INIT_WORK(&memcg->high_work, high_work_func);
5285 INIT_LIST_HEAD(&memcg->oom_notify);
5286 mutex_init(&memcg->thresholds_lock);
5287 spin_lock_init(&memcg->move_lock);
5288 vmpressure_init(&memcg->vmpressure);
5289 INIT_LIST_HEAD(&memcg->event_list);
5290 spin_lock_init(&memcg->event_list_lock);
5291 memcg->socket_pressure = jiffies;
5292 #ifdef CONFIG_MEMCG_KMEM
5293 memcg->kmemcg_id = -1;
5294 INIT_LIST_HEAD(&memcg->objcg_list);
5295 #endif
5296 #ifdef CONFIG_CGROUP_WRITEBACK
5297 INIT_LIST_HEAD(&memcg->cgwb_list);
5298 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5299 memcg->cgwb_frn[i].done =
5300 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5301 #endif
5302 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5303 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5304 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5305 memcg->deferred_split_queue.split_queue_len = 0;
5306 #endif
5307 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5308 lru_gen_init_memcg(memcg);
5309 return memcg;
5310 fail:
5311 mem_cgroup_id_remove(memcg);
5312 __mem_cgroup_free(memcg);
5313 return ERR_PTR(error);
5314 }
5315
5316 static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)5317 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5318 {
5319 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5320 struct mem_cgroup *memcg, *old_memcg;
5321
5322 old_memcg = set_active_memcg(parent);
5323 memcg = mem_cgroup_alloc();
5324 set_active_memcg(old_memcg);
5325 if (IS_ERR(memcg))
5326 return ERR_CAST(memcg);
5327
5328 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5329 memcg->soft_limit = PAGE_COUNTER_MAX;
5330 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5331 memcg->zswap_max = PAGE_COUNTER_MAX;
5332 #endif
5333 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5334 if (parent) {
5335 memcg->swappiness = mem_cgroup_swappiness(parent);
5336 memcg->oom_kill_disable = parent->oom_kill_disable;
5337
5338 page_counter_init(&memcg->memory, &parent->memory);
5339 page_counter_init(&memcg->swap, &parent->swap);
5340 page_counter_init(&memcg->kmem, &parent->kmem);
5341 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5342 } else {
5343 init_memcg_events();
5344 page_counter_init(&memcg->memory, NULL);
5345 page_counter_init(&memcg->swap, NULL);
5346 page_counter_init(&memcg->kmem, NULL);
5347 page_counter_init(&memcg->tcpmem, NULL);
5348
5349 root_mem_cgroup = memcg;
5350 return &memcg->css;
5351 }
5352
5353 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5354 static_branch_inc(&memcg_sockets_enabled_key);
5355
5356 return &memcg->css;
5357 }
5358
mem_cgroup_css_online(struct cgroup_subsys_state * css)5359 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5360 {
5361 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5362
5363 if (memcg_online_kmem(memcg))
5364 goto remove_id;
5365
5366 /*
5367 * A memcg must be visible for expand_shrinker_info()
5368 * by the time the maps are allocated. So, we allocate maps
5369 * here, when for_each_mem_cgroup() can't skip it.
5370 */
5371 if (alloc_shrinker_info(memcg))
5372 goto offline_kmem;
5373
5374 /* Online state pins memcg ID, memcg ID pins CSS */
5375 refcount_set(&memcg->id.ref, 1);
5376 css_get(css);
5377
5378 if (unlikely(mem_cgroup_is_root(memcg)))
5379 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5380 2UL*HZ);
5381 return 0;
5382 offline_kmem:
5383 memcg_offline_kmem(memcg);
5384 remove_id:
5385 mem_cgroup_id_remove(memcg);
5386 return -ENOMEM;
5387 }
5388
mem_cgroup_css_offline(struct cgroup_subsys_state * css)5389 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5390 {
5391 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5392 struct mem_cgroup_event *event, *tmp;
5393
5394 /*
5395 * Unregister events and notify userspace.
5396 * Notify userspace about cgroup removing only after rmdir of cgroup
5397 * directory to avoid race between userspace and kernelspace.
5398 */
5399 spin_lock_irq(&memcg->event_list_lock);
5400 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5401 list_del_init(&event->list);
5402 schedule_work(&event->remove);
5403 }
5404 spin_unlock_irq(&memcg->event_list_lock);
5405
5406 page_counter_set_min(&memcg->memory, 0);
5407 page_counter_set_low(&memcg->memory, 0);
5408
5409 memcg_offline_kmem(memcg);
5410 reparent_shrinker_deferred(memcg);
5411 wb_memcg_offline(memcg);
5412
5413 drain_all_stock(memcg);
5414
5415 mem_cgroup_id_put(memcg);
5416 }
5417
mem_cgroup_css_released(struct cgroup_subsys_state * css)5418 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5419 {
5420 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5421
5422 invalidate_reclaim_iterators(memcg);
5423 }
5424
mem_cgroup_css_free(struct cgroup_subsys_state * css)5425 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5426 {
5427 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5428 int __maybe_unused i;
5429
5430 #ifdef CONFIG_CGROUP_WRITEBACK
5431 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5432 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5433 #endif
5434 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5435 static_branch_dec(&memcg_sockets_enabled_key);
5436
5437 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5438 static_branch_dec(&memcg_sockets_enabled_key);
5439
5440 vmpressure_cleanup(&memcg->vmpressure);
5441 cancel_work_sync(&memcg->high_work);
5442 mem_cgroup_remove_from_trees(memcg);
5443 free_shrinker_info(memcg);
5444 mem_cgroup_free(memcg);
5445 }
5446
5447 /**
5448 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5449 * @css: the target css
5450 *
5451 * Reset the states of the mem_cgroup associated with @css. This is
5452 * invoked when the userland requests disabling on the default hierarchy
5453 * but the memcg is pinned through dependency. The memcg should stop
5454 * applying policies and should revert to the vanilla state as it may be
5455 * made visible again.
5456 *
5457 * The current implementation only resets the essential configurations.
5458 * This needs to be expanded to cover all the visible parts.
5459 */
mem_cgroup_css_reset(struct cgroup_subsys_state * css)5460 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5461 {
5462 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5463
5464 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5465 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5466 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5467 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5468 page_counter_set_min(&memcg->memory, 0);
5469 page_counter_set_low(&memcg->memory, 0);
5470 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5471 memcg->soft_limit = PAGE_COUNTER_MAX;
5472 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5473 memcg_wb_domain_size_changed(memcg);
5474 }
5475
mem_cgroup_css_rstat_flush(struct cgroup_subsys_state * css,int cpu)5476 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5477 {
5478 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5479 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5480 struct memcg_vmstats_percpu *statc;
5481 long delta, v;
5482 int i, nid;
5483
5484 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5485
5486 for (i = 0; i < MEMCG_NR_STAT; i++) {
5487 /*
5488 * Collect the aggregated propagation counts of groups
5489 * below us. We're in a per-cpu loop here and this is
5490 * a global counter, so the first cycle will get them.
5491 */
5492 delta = memcg->vmstats->state_pending[i];
5493 if (delta)
5494 memcg->vmstats->state_pending[i] = 0;
5495
5496 /* Add CPU changes on this level since the last flush */
5497 v = READ_ONCE(statc->state[i]);
5498 if (v != statc->state_prev[i]) {
5499 delta += v - statc->state_prev[i];
5500 statc->state_prev[i] = v;
5501 }
5502
5503 if (!delta)
5504 continue;
5505
5506 /* Aggregate counts on this level and propagate upwards */
5507 memcg->vmstats->state[i] += delta;
5508 if (parent)
5509 parent->vmstats->state_pending[i] += delta;
5510 }
5511
5512 for (i = 0; i < NR_MEMCG_EVENTS; i++) {
5513 delta = memcg->vmstats->events_pending[i];
5514 if (delta)
5515 memcg->vmstats->events_pending[i] = 0;
5516
5517 v = READ_ONCE(statc->events[i]);
5518 if (v != statc->events_prev[i]) {
5519 delta += v - statc->events_prev[i];
5520 statc->events_prev[i] = v;
5521 }
5522
5523 if (!delta)
5524 continue;
5525
5526 memcg->vmstats->events[i] += delta;
5527 if (parent)
5528 parent->vmstats->events_pending[i] += delta;
5529 }
5530
5531 for_each_node_state(nid, N_MEMORY) {
5532 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5533 struct mem_cgroup_per_node *ppn = NULL;
5534 struct lruvec_stats_percpu *lstatc;
5535
5536 if (parent)
5537 ppn = parent->nodeinfo[nid];
5538
5539 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5540
5541 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5542 delta = pn->lruvec_stats.state_pending[i];
5543 if (delta)
5544 pn->lruvec_stats.state_pending[i] = 0;
5545
5546 v = READ_ONCE(lstatc->state[i]);
5547 if (v != lstatc->state_prev[i]) {
5548 delta += v - lstatc->state_prev[i];
5549 lstatc->state_prev[i] = v;
5550 }
5551
5552 if (!delta)
5553 continue;
5554
5555 pn->lruvec_stats.state[i] += delta;
5556 if (ppn)
5557 ppn->lruvec_stats.state_pending[i] += delta;
5558 }
5559 }
5560 }
5561
5562 #ifdef CONFIG_MMU
5563 /* Handlers for move charge at task migration. */
mem_cgroup_do_precharge(unsigned long count)5564 static int mem_cgroup_do_precharge(unsigned long count)
5565 {
5566 int ret;
5567
5568 /* Try a single bulk charge without reclaim first, kswapd may wake */
5569 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5570 if (!ret) {
5571 mc.precharge += count;
5572 return ret;
5573 }
5574
5575 /* Try charges one by one with reclaim, but do not retry */
5576 while (count--) {
5577 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5578 if (ret)
5579 return ret;
5580 mc.precharge++;
5581 cond_resched();
5582 }
5583 return 0;
5584 }
5585
5586 union mc_target {
5587 struct page *page;
5588 swp_entry_t ent;
5589 };
5590
5591 enum mc_target_type {
5592 MC_TARGET_NONE = 0,
5593 MC_TARGET_PAGE,
5594 MC_TARGET_SWAP,
5595 MC_TARGET_DEVICE,
5596 };
5597
mc_handle_present_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent)5598 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5599 unsigned long addr, pte_t ptent)
5600 {
5601 struct page *page = vm_normal_page(vma, addr, ptent);
5602
5603 if (!page || !page_mapped(page))
5604 return NULL;
5605 if (PageAnon(page)) {
5606 if (!(mc.flags & MOVE_ANON))
5607 return NULL;
5608 } else {
5609 if (!(mc.flags & MOVE_FILE))
5610 return NULL;
5611 }
5612 if (!get_page_unless_zero(page))
5613 return NULL;
5614
5615 return page;
5616 }
5617
5618 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
mc_handle_swap_pte(struct vm_area_struct * vma,pte_t ptent,swp_entry_t * entry)5619 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5620 pte_t ptent, swp_entry_t *entry)
5621 {
5622 struct page *page = NULL;
5623 swp_entry_t ent = pte_to_swp_entry(ptent);
5624
5625 if (!(mc.flags & MOVE_ANON))
5626 return NULL;
5627
5628 /*
5629 * Handle device private pages that are not accessible by the CPU, but
5630 * stored as special swap entries in the page table.
5631 */
5632 if (is_device_private_entry(ent)) {
5633 page = pfn_swap_entry_to_page(ent);
5634 if (!get_page_unless_zero(page))
5635 return NULL;
5636 return page;
5637 }
5638
5639 if (non_swap_entry(ent))
5640 return NULL;
5641
5642 /*
5643 * Because swap_cache_get_folio() updates some statistics counter,
5644 * we call find_get_page() with swapper_space directly.
5645 */
5646 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5647 entry->val = ent.val;
5648
5649 return page;
5650 }
5651 #else
mc_handle_swap_pte(struct vm_area_struct * vma,pte_t ptent,swp_entry_t * entry)5652 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5653 pte_t ptent, swp_entry_t *entry)
5654 {
5655 return NULL;
5656 }
5657 #endif
5658
mc_handle_file_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent)5659 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5660 unsigned long addr, pte_t ptent)
5661 {
5662 if (!vma->vm_file) /* anonymous vma */
5663 return NULL;
5664 if (!(mc.flags & MOVE_FILE))
5665 return NULL;
5666
5667 /* page is moved even if it's not RSS of this task(page-faulted). */
5668 /* shmem/tmpfs may report page out on swap: account for that too. */
5669 return find_get_incore_page(vma->vm_file->f_mapping,
5670 linear_page_index(vma, addr));
5671 }
5672
5673 /**
5674 * mem_cgroup_move_account - move account of the page
5675 * @page: the page
5676 * @compound: charge the page as compound or small page
5677 * @from: mem_cgroup which the page is moved from.
5678 * @to: mem_cgroup which the page is moved to. @from != @to.
5679 *
5680 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5681 *
5682 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5683 * from old cgroup.
5684 */
mem_cgroup_move_account(struct page * page,bool compound,struct mem_cgroup * from,struct mem_cgroup * to)5685 static int mem_cgroup_move_account(struct page *page,
5686 bool compound,
5687 struct mem_cgroup *from,
5688 struct mem_cgroup *to)
5689 {
5690 struct folio *folio = page_folio(page);
5691 struct lruvec *from_vec, *to_vec;
5692 struct pglist_data *pgdat;
5693 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
5694 int nid, ret;
5695
5696 VM_BUG_ON(from == to);
5697 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
5698 VM_BUG_ON(compound && !folio_test_large(folio));
5699
5700 /*
5701 * Prevent mem_cgroup_migrate() from looking at
5702 * page's memory cgroup of its source page while we change it.
5703 */
5704 ret = -EBUSY;
5705 if (!folio_trylock(folio))
5706 goto out;
5707
5708 ret = -EINVAL;
5709 if (folio_memcg(folio) != from)
5710 goto out_unlock;
5711
5712 pgdat = folio_pgdat(folio);
5713 from_vec = mem_cgroup_lruvec(from, pgdat);
5714 to_vec = mem_cgroup_lruvec(to, pgdat);
5715
5716 folio_memcg_lock(folio);
5717
5718 if (folio_test_anon(folio)) {
5719 if (folio_mapped(folio)) {
5720 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5721 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5722 if (folio_test_transhuge(folio)) {
5723 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5724 -nr_pages);
5725 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5726 nr_pages);
5727 }
5728 }
5729 } else {
5730 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5731 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5732
5733 if (folio_test_swapbacked(folio)) {
5734 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5735 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5736 }
5737
5738 if (folio_mapped(folio)) {
5739 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5740 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5741 }
5742
5743 if (folio_test_dirty(folio)) {
5744 struct address_space *mapping = folio_mapping(folio);
5745
5746 if (mapping_can_writeback(mapping)) {
5747 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5748 -nr_pages);
5749 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5750 nr_pages);
5751 }
5752 }
5753 }
5754
5755 if (folio_test_writeback(folio)) {
5756 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5757 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5758 }
5759
5760 /*
5761 * All state has been migrated, let's switch to the new memcg.
5762 *
5763 * It is safe to change page's memcg here because the page
5764 * is referenced, charged, isolated, and locked: we can't race
5765 * with (un)charging, migration, LRU putback, or anything else
5766 * that would rely on a stable page's memory cgroup.
5767 *
5768 * Note that lock_page_memcg is a memcg lock, not a page lock,
5769 * to save space. As soon as we switch page's memory cgroup to a
5770 * new memcg that isn't locked, the above state can change
5771 * concurrently again. Make sure we're truly done with it.
5772 */
5773 smp_mb();
5774
5775 css_get(&to->css);
5776 css_put(&from->css);
5777
5778 folio->memcg_data = (unsigned long)to;
5779
5780 __folio_memcg_unlock(from);
5781
5782 ret = 0;
5783 nid = folio_nid(folio);
5784
5785 local_irq_disable();
5786 mem_cgroup_charge_statistics(to, nr_pages);
5787 memcg_check_events(to, nid);
5788 mem_cgroup_charge_statistics(from, -nr_pages);
5789 memcg_check_events(from, nid);
5790 local_irq_enable();
5791 out_unlock:
5792 folio_unlock(folio);
5793 out:
5794 return ret;
5795 }
5796
5797 /**
5798 * get_mctgt_type - get target type of moving charge
5799 * @vma: the vma the pte to be checked belongs
5800 * @addr: the address corresponding to the pte to be checked
5801 * @ptent: the pte to be checked
5802 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5803 *
5804 * Returns
5805 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5806 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5807 * move charge. if @target is not NULL, the page is stored in target->page
5808 * with extra refcnt got(Callers should handle it).
5809 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5810 * target for charge migration. if @target is not NULL, the entry is stored
5811 * in target->ent.
5812 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is device memory and
5813 * thus not on the lru.
5814 * For now we such page is charge like a regular page would be as for all
5815 * intent and purposes it is just special memory taking the place of a
5816 * regular page.
5817 *
5818 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5819 *
5820 * Called with pte lock held.
5821 */
5822
get_mctgt_type(struct vm_area_struct * vma,unsigned long addr,pte_t ptent,union mc_target * target)5823 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5824 unsigned long addr, pte_t ptent, union mc_target *target)
5825 {
5826 struct page *page = NULL;
5827 enum mc_target_type ret = MC_TARGET_NONE;
5828 swp_entry_t ent = { .val = 0 };
5829
5830 if (pte_present(ptent))
5831 page = mc_handle_present_pte(vma, addr, ptent);
5832 else if (pte_none_mostly(ptent))
5833 /*
5834 * PTE markers should be treated as a none pte here, separated
5835 * from other swap handling below.
5836 */
5837 page = mc_handle_file_pte(vma, addr, ptent);
5838 else if (is_swap_pte(ptent))
5839 page = mc_handle_swap_pte(vma, ptent, &ent);
5840
5841 if (!page && !ent.val)
5842 return ret;
5843 if (page) {
5844 /*
5845 * Do only loose check w/o serialization.
5846 * mem_cgroup_move_account() checks the page is valid or
5847 * not under LRU exclusion.
5848 */
5849 if (page_memcg(page) == mc.from) {
5850 ret = MC_TARGET_PAGE;
5851 if (is_device_private_page(page) ||
5852 is_device_coherent_page(page))
5853 ret = MC_TARGET_DEVICE;
5854 if (target)
5855 target->page = page;
5856 }
5857 if (!ret || !target)
5858 put_page(page);
5859 }
5860 /*
5861 * There is a swap entry and a page doesn't exist or isn't charged.
5862 * But we cannot move a tail-page in a THP.
5863 */
5864 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5865 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5866 ret = MC_TARGET_SWAP;
5867 if (target)
5868 target->ent = ent;
5869 }
5870 return ret;
5871 }
5872
5873 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5874 /*
5875 * We don't consider PMD mapped swapping or file mapped pages because THP does
5876 * not support them for now.
5877 * Caller should make sure that pmd_trans_huge(pmd) is true.
5878 */
get_mctgt_type_thp(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd,union mc_target * target)5879 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5880 unsigned long addr, pmd_t pmd, union mc_target *target)
5881 {
5882 struct page *page = NULL;
5883 enum mc_target_type ret = MC_TARGET_NONE;
5884
5885 if (unlikely(is_swap_pmd(pmd))) {
5886 VM_BUG_ON(thp_migration_supported() &&
5887 !is_pmd_migration_entry(pmd));
5888 return ret;
5889 }
5890 page = pmd_page(pmd);
5891 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5892 if (!(mc.flags & MOVE_ANON))
5893 return ret;
5894 if (page_memcg(page) == mc.from) {
5895 ret = MC_TARGET_PAGE;
5896 if (target) {
5897 get_page(page);
5898 target->page = page;
5899 }
5900 }
5901 return ret;
5902 }
5903 #else
get_mctgt_type_thp(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd,union mc_target * target)5904 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5905 unsigned long addr, pmd_t pmd, union mc_target *target)
5906 {
5907 return MC_TARGET_NONE;
5908 }
5909 #endif
5910
mem_cgroup_count_precharge_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)5911 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5912 unsigned long addr, unsigned long end,
5913 struct mm_walk *walk)
5914 {
5915 struct vm_area_struct *vma = walk->vma;
5916 pte_t *pte;
5917 spinlock_t *ptl;
5918
5919 ptl = pmd_trans_huge_lock(pmd, vma);
5920 if (ptl) {
5921 /*
5922 * Note their can not be MC_TARGET_DEVICE for now as we do not
5923 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5924 * this might change.
5925 */
5926 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5927 mc.precharge += HPAGE_PMD_NR;
5928 spin_unlock(ptl);
5929 return 0;
5930 }
5931
5932 if (pmd_trans_unstable(pmd))
5933 return 0;
5934 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5935 for (; addr != end; pte++, addr += PAGE_SIZE)
5936 if (get_mctgt_type(vma, addr, *pte, NULL))
5937 mc.precharge++; /* increment precharge temporarily */
5938 pte_unmap_unlock(pte - 1, ptl);
5939 cond_resched();
5940
5941 return 0;
5942 }
5943
5944 static const struct mm_walk_ops precharge_walk_ops = {
5945 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5946 };
5947
mem_cgroup_count_precharge(struct mm_struct * mm)5948 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5949 {
5950 unsigned long precharge;
5951
5952 mmap_read_lock(mm);
5953 walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
5954 mmap_read_unlock(mm);
5955
5956 precharge = mc.precharge;
5957 mc.precharge = 0;
5958
5959 return precharge;
5960 }
5961
mem_cgroup_precharge_mc(struct mm_struct * mm)5962 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5963 {
5964 unsigned long precharge = mem_cgroup_count_precharge(mm);
5965
5966 VM_BUG_ON(mc.moving_task);
5967 mc.moving_task = current;
5968 return mem_cgroup_do_precharge(precharge);
5969 }
5970
5971 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
__mem_cgroup_clear_mc(void)5972 static void __mem_cgroup_clear_mc(void)
5973 {
5974 struct mem_cgroup *from = mc.from;
5975 struct mem_cgroup *to = mc.to;
5976
5977 /* we must uncharge all the leftover precharges from mc.to */
5978 if (mc.precharge) {
5979 cancel_charge(mc.to, mc.precharge);
5980 mc.precharge = 0;
5981 }
5982 /*
5983 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5984 * we must uncharge here.
5985 */
5986 if (mc.moved_charge) {
5987 cancel_charge(mc.from, mc.moved_charge);
5988 mc.moved_charge = 0;
5989 }
5990 /* we must fixup refcnts and charges */
5991 if (mc.moved_swap) {
5992 /* uncharge swap account from the old cgroup */
5993 if (!mem_cgroup_is_root(mc.from))
5994 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5995
5996 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5997
5998 /*
5999 * we charged both to->memory and to->memsw, so we
6000 * should uncharge to->memory.
6001 */
6002 if (!mem_cgroup_is_root(mc.to))
6003 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
6004
6005 mc.moved_swap = 0;
6006 }
6007 memcg_oom_recover(from);
6008 memcg_oom_recover(to);
6009 wake_up_all(&mc.waitq);
6010 }
6011
mem_cgroup_clear_mc(void)6012 static void mem_cgroup_clear_mc(void)
6013 {
6014 struct mm_struct *mm = mc.mm;
6015
6016 /*
6017 * we must clear moving_task before waking up waiters at the end of
6018 * task migration.
6019 */
6020 mc.moving_task = NULL;
6021 __mem_cgroup_clear_mc();
6022 spin_lock(&mc.lock);
6023 mc.from = NULL;
6024 mc.to = NULL;
6025 mc.mm = NULL;
6026 spin_unlock(&mc.lock);
6027
6028 mmput(mm);
6029 }
6030
mem_cgroup_can_attach(struct cgroup_taskset * tset)6031 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6032 {
6033 struct cgroup_subsys_state *css;
6034 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
6035 struct mem_cgroup *from;
6036 struct task_struct *leader, *p;
6037 struct mm_struct *mm;
6038 unsigned long move_flags;
6039 int ret = 0;
6040
6041 /* charge immigration isn't supported on the default hierarchy */
6042 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6043 return 0;
6044
6045 /*
6046 * Multi-process migrations only happen on the default hierarchy
6047 * where charge immigration is not used. Perform charge
6048 * immigration if @tset contains a leader and whine if there are
6049 * multiple.
6050 */
6051 p = NULL;
6052 cgroup_taskset_for_each_leader(leader, css, tset) {
6053 WARN_ON_ONCE(p);
6054 p = leader;
6055 memcg = mem_cgroup_from_css(css);
6056 }
6057 if (!p)
6058 return 0;
6059
6060 /*
6061 * We are now committed to this value whatever it is. Changes in this
6062 * tunable will only affect upcoming migrations, not the current one.
6063 * So we need to save it, and keep it going.
6064 */
6065 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6066 if (!move_flags)
6067 return 0;
6068
6069 from = mem_cgroup_from_task(p);
6070
6071 VM_BUG_ON(from == memcg);
6072
6073 mm = get_task_mm(p);
6074 if (!mm)
6075 return 0;
6076 /* We move charges only when we move a owner of the mm */
6077 if (mm->owner == p) {
6078 VM_BUG_ON(mc.from);
6079 VM_BUG_ON(mc.to);
6080 VM_BUG_ON(mc.precharge);
6081 VM_BUG_ON(mc.moved_charge);
6082 VM_BUG_ON(mc.moved_swap);
6083
6084 spin_lock(&mc.lock);
6085 mc.mm = mm;
6086 mc.from = from;
6087 mc.to = memcg;
6088 mc.flags = move_flags;
6089 spin_unlock(&mc.lock);
6090 /* We set mc.moving_task later */
6091
6092 ret = mem_cgroup_precharge_mc(mm);
6093 if (ret)
6094 mem_cgroup_clear_mc();
6095 } else {
6096 mmput(mm);
6097 }
6098 return ret;
6099 }
6100
mem_cgroup_cancel_attach(struct cgroup_taskset * tset)6101 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6102 {
6103 if (mc.to)
6104 mem_cgroup_clear_mc();
6105 }
6106
mem_cgroup_move_charge_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)6107 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6108 unsigned long addr, unsigned long end,
6109 struct mm_walk *walk)
6110 {
6111 int ret = 0;
6112 struct vm_area_struct *vma = walk->vma;
6113 pte_t *pte;
6114 spinlock_t *ptl;
6115 enum mc_target_type target_type;
6116 union mc_target target;
6117 struct page *page;
6118
6119 ptl = pmd_trans_huge_lock(pmd, vma);
6120 if (ptl) {
6121 if (mc.precharge < HPAGE_PMD_NR) {
6122 spin_unlock(ptl);
6123 return 0;
6124 }
6125 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6126 if (target_type == MC_TARGET_PAGE) {
6127 page = target.page;
6128 if (!isolate_lru_page(page)) {
6129 if (!mem_cgroup_move_account(page, true,
6130 mc.from, mc.to)) {
6131 mc.precharge -= HPAGE_PMD_NR;
6132 mc.moved_charge += HPAGE_PMD_NR;
6133 }
6134 putback_lru_page(page);
6135 }
6136 put_page(page);
6137 } else if (target_type == MC_TARGET_DEVICE) {
6138 page = target.page;
6139 if (!mem_cgroup_move_account(page, true,
6140 mc.from, mc.to)) {
6141 mc.precharge -= HPAGE_PMD_NR;
6142 mc.moved_charge += HPAGE_PMD_NR;
6143 }
6144 put_page(page);
6145 }
6146 spin_unlock(ptl);
6147 return 0;
6148 }
6149
6150 if (pmd_trans_unstable(pmd))
6151 return 0;
6152 retry:
6153 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6154 for (; addr != end; addr += PAGE_SIZE) {
6155 pte_t ptent = *(pte++);
6156 bool device = false;
6157 swp_entry_t ent;
6158
6159 if (!mc.precharge)
6160 break;
6161
6162 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6163 case MC_TARGET_DEVICE:
6164 device = true;
6165 fallthrough;
6166 case MC_TARGET_PAGE:
6167 page = target.page;
6168 /*
6169 * We can have a part of the split pmd here. Moving it
6170 * can be done but it would be too convoluted so simply
6171 * ignore such a partial THP and keep it in original
6172 * memcg. There should be somebody mapping the head.
6173 */
6174 if (PageTransCompound(page))
6175 goto put;
6176 if (!device && isolate_lru_page(page))
6177 goto put;
6178 if (!mem_cgroup_move_account(page, false,
6179 mc.from, mc.to)) {
6180 mc.precharge--;
6181 /* we uncharge from mc.from later. */
6182 mc.moved_charge++;
6183 }
6184 if (!device)
6185 putback_lru_page(page);
6186 put: /* get_mctgt_type() gets the page */
6187 put_page(page);
6188 break;
6189 case MC_TARGET_SWAP:
6190 ent = target.ent;
6191 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6192 mc.precharge--;
6193 mem_cgroup_id_get_many(mc.to, 1);
6194 /* we fixup other refcnts and charges later. */
6195 mc.moved_swap++;
6196 }
6197 break;
6198 default:
6199 break;
6200 }
6201 }
6202 pte_unmap_unlock(pte - 1, ptl);
6203 cond_resched();
6204
6205 if (addr != end) {
6206 /*
6207 * We have consumed all precharges we got in can_attach().
6208 * We try charge one by one, but don't do any additional
6209 * charges to mc.to if we have failed in charge once in attach()
6210 * phase.
6211 */
6212 ret = mem_cgroup_do_precharge(1);
6213 if (!ret)
6214 goto retry;
6215 }
6216
6217 return ret;
6218 }
6219
6220 static const struct mm_walk_ops charge_walk_ops = {
6221 .pmd_entry = mem_cgroup_move_charge_pte_range,
6222 };
6223
mem_cgroup_move_charge(void)6224 static void mem_cgroup_move_charge(void)
6225 {
6226 lru_add_drain_all();
6227 /*
6228 * Signal lock_page_memcg() to take the memcg's move_lock
6229 * while we're moving its pages to another memcg. Then wait
6230 * for already started RCU-only updates to finish.
6231 */
6232 atomic_inc(&mc.from->moving_account);
6233 synchronize_rcu();
6234 retry:
6235 if (unlikely(!mmap_read_trylock(mc.mm))) {
6236 /*
6237 * Someone who are holding the mmap_lock might be waiting in
6238 * waitq. So we cancel all extra charges, wake up all waiters,
6239 * and retry. Because we cancel precharges, we might not be able
6240 * to move enough charges, but moving charge is a best-effort
6241 * feature anyway, so it wouldn't be a big problem.
6242 */
6243 __mem_cgroup_clear_mc();
6244 cond_resched();
6245 goto retry;
6246 }
6247 /*
6248 * When we have consumed all precharges and failed in doing
6249 * additional charge, the page walk just aborts.
6250 */
6251 walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
6252 mmap_read_unlock(mc.mm);
6253 atomic_dec(&mc.from->moving_account);
6254 }
6255
mem_cgroup_move_task(void)6256 static void mem_cgroup_move_task(void)
6257 {
6258 if (mc.to) {
6259 mem_cgroup_move_charge();
6260 mem_cgroup_clear_mc();
6261 }
6262 }
6263 #else /* !CONFIG_MMU */
mem_cgroup_can_attach(struct cgroup_taskset * tset)6264 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6265 {
6266 return 0;
6267 }
mem_cgroup_cancel_attach(struct cgroup_taskset * tset)6268 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6269 {
6270 }
mem_cgroup_move_task(void)6271 static void mem_cgroup_move_task(void)
6272 {
6273 }
6274 #endif
6275
6276 #ifdef CONFIG_LRU_GEN
mem_cgroup_attach(struct cgroup_taskset * tset)6277 static void mem_cgroup_attach(struct cgroup_taskset *tset)
6278 {
6279 struct task_struct *task;
6280 struct cgroup_subsys_state *css;
6281
6282 /* find the first leader if there is any */
6283 cgroup_taskset_for_each_leader(task, css, tset)
6284 break;
6285
6286 if (!task)
6287 return;
6288
6289 task_lock(task);
6290 if (task->mm && READ_ONCE(task->mm->owner) == task)
6291 lru_gen_migrate_mm(task->mm);
6292 task_unlock(task);
6293 }
6294 #else
mem_cgroup_attach(struct cgroup_taskset * tset)6295 static void mem_cgroup_attach(struct cgroup_taskset *tset)
6296 {
6297 }
6298 #endif /* CONFIG_LRU_GEN */
6299
seq_puts_memcg_tunable(struct seq_file * m,unsigned long value)6300 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6301 {
6302 if (value == PAGE_COUNTER_MAX)
6303 seq_puts(m, "max\n");
6304 else
6305 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6306
6307 return 0;
6308 }
6309
memory_current_read(struct cgroup_subsys_state * css,struct cftype * cft)6310 static u64 memory_current_read(struct cgroup_subsys_state *css,
6311 struct cftype *cft)
6312 {
6313 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6314
6315 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6316 }
6317
memory_peak_read(struct cgroup_subsys_state * css,struct cftype * cft)6318 static u64 memory_peak_read(struct cgroup_subsys_state *css,
6319 struct cftype *cft)
6320 {
6321 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6322
6323 return (u64)memcg->memory.watermark * PAGE_SIZE;
6324 }
6325
memory_min_show(struct seq_file * m,void * v)6326 static int memory_min_show(struct seq_file *m, void *v)
6327 {
6328 return seq_puts_memcg_tunable(m,
6329 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6330 }
6331
memory_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6332 static ssize_t memory_min_write(struct kernfs_open_file *of,
6333 char *buf, size_t nbytes, loff_t off)
6334 {
6335 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6336 unsigned long min;
6337 int err;
6338
6339 buf = strstrip(buf);
6340 err = page_counter_memparse(buf, "max", &min);
6341 if (err)
6342 return err;
6343
6344 page_counter_set_min(&memcg->memory, min);
6345
6346 return nbytes;
6347 }
6348
memory_low_show(struct seq_file * m,void * v)6349 static int memory_low_show(struct seq_file *m, void *v)
6350 {
6351 return seq_puts_memcg_tunable(m,
6352 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6353 }
6354
memory_low_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6355 static ssize_t memory_low_write(struct kernfs_open_file *of,
6356 char *buf, size_t nbytes, loff_t off)
6357 {
6358 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6359 unsigned long low;
6360 int err;
6361
6362 buf = strstrip(buf);
6363 err = page_counter_memparse(buf, "max", &low);
6364 if (err)
6365 return err;
6366
6367 page_counter_set_low(&memcg->memory, low);
6368
6369 return nbytes;
6370 }
6371
memory_high_show(struct seq_file * m,void * v)6372 static int memory_high_show(struct seq_file *m, void *v)
6373 {
6374 return seq_puts_memcg_tunable(m,
6375 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6376 }
6377
memory_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6378 static ssize_t memory_high_write(struct kernfs_open_file *of,
6379 char *buf, size_t nbytes, loff_t off)
6380 {
6381 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6382 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6383 bool drained = false;
6384 unsigned long high;
6385 int err;
6386
6387 buf = strstrip(buf);
6388 err = page_counter_memparse(buf, "max", &high);
6389 if (err)
6390 return err;
6391
6392 page_counter_set_high(&memcg->memory, high);
6393
6394 for (;;) {
6395 unsigned long nr_pages = page_counter_read(&memcg->memory);
6396 unsigned long reclaimed;
6397
6398 if (nr_pages <= high)
6399 break;
6400
6401 if (signal_pending(current))
6402 break;
6403
6404 if (!drained) {
6405 drain_all_stock(memcg);
6406 drained = true;
6407 continue;
6408 }
6409
6410 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6411 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP);
6412
6413 if (!reclaimed && !nr_retries--)
6414 break;
6415 }
6416
6417 memcg_wb_domain_size_changed(memcg);
6418 return nbytes;
6419 }
6420
memory_max_show(struct seq_file * m,void * v)6421 static int memory_max_show(struct seq_file *m, void *v)
6422 {
6423 return seq_puts_memcg_tunable(m,
6424 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6425 }
6426
memory_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6427 static ssize_t memory_max_write(struct kernfs_open_file *of,
6428 char *buf, size_t nbytes, loff_t off)
6429 {
6430 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6431 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6432 bool drained = false;
6433 unsigned long max;
6434 int err;
6435
6436 buf = strstrip(buf);
6437 err = page_counter_memparse(buf, "max", &max);
6438 if (err)
6439 return err;
6440
6441 xchg(&memcg->memory.max, max);
6442
6443 for (;;) {
6444 unsigned long nr_pages = page_counter_read(&memcg->memory);
6445
6446 if (nr_pages <= max)
6447 break;
6448
6449 if (signal_pending(current))
6450 break;
6451
6452 if (!drained) {
6453 drain_all_stock(memcg);
6454 drained = true;
6455 continue;
6456 }
6457
6458 if (nr_reclaims) {
6459 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6460 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP))
6461 nr_reclaims--;
6462 continue;
6463 }
6464
6465 memcg_memory_event(memcg, MEMCG_OOM);
6466 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6467 break;
6468 }
6469
6470 memcg_wb_domain_size_changed(memcg);
6471 return nbytes;
6472 }
6473
__memory_events_show(struct seq_file * m,atomic_long_t * events)6474 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6475 {
6476 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6477 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6478 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6479 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6480 seq_printf(m, "oom_kill %lu\n",
6481 atomic_long_read(&events[MEMCG_OOM_KILL]));
6482 seq_printf(m, "oom_group_kill %lu\n",
6483 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
6484 }
6485
memory_events_show(struct seq_file * m,void * v)6486 static int memory_events_show(struct seq_file *m, void *v)
6487 {
6488 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6489
6490 __memory_events_show(m, memcg->memory_events);
6491 return 0;
6492 }
6493
memory_events_local_show(struct seq_file * m,void * v)6494 static int memory_events_local_show(struct seq_file *m, void *v)
6495 {
6496 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6497
6498 __memory_events_show(m, memcg->memory_events_local);
6499 return 0;
6500 }
6501
memory_stat_show(struct seq_file * m,void * v)6502 static int memory_stat_show(struct seq_file *m, void *v)
6503 {
6504 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6505 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
6506
6507 if (!buf)
6508 return -ENOMEM;
6509 memory_stat_format(memcg, buf, PAGE_SIZE);
6510 seq_puts(m, buf);
6511 kfree(buf);
6512 return 0;
6513 }
6514
6515 #ifdef CONFIG_NUMA
lruvec_page_state_output(struct lruvec * lruvec,int item)6516 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6517 int item)
6518 {
6519 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6520 }
6521
memory_numa_stat_show(struct seq_file * m,void * v)6522 static int memory_numa_stat_show(struct seq_file *m, void *v)
6523 {
6524 int i;
6525 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6526
6527 mem_cgroup_flush_stats();
6528
6529 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6530 int nid;
6531
6532 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6533 continue;
6534
6535 seq_printf(m, "%s", memory_stats[i].name);
6536 for_each_node_state(nid, N_MEMORY) {
6537 u64 size;
6538 struct lruvec *lruvec;
6539
6540 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6541 size = lruvec_page_state_output(lruvec,
6542 memory_stats[i].idx);
6543 seq_printf(m, " N%d=%llu", nid, size);
6544 }
6545 seq_putc(m, '\n');
6546 }
6547
6548 return 0;
6549 }
6550 #endif
6551
memory_oom_group_show(struct seq_file * m,void * v)6552 static int memory_oom_group_show(struct seq_file *m, void *v)
6553 {
6554 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6555
6556 seq_printf(m, "%d\n", memcg->oom_group);
6557
6558 return 0;
6559 }
6560
memory_oom_group_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6561 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6562 char *buf, size_t nbytes, loff_t off)
6563 {
6564 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6565 int ret, oom_group;
6566
6567 buf = strstrip(buf);
6568 if (!buf)
6569 return -EINVAL;
6570
6571 ret = kstrtoint(buf, 0, &oom_group);
6572 if (ret)
6573 return ret;
6574
6575 if (oom_group != 0 && oom_group != 1)
6576 return -EINVAL;
6577
6578 memcg->oom_group = oom_group;
6579
6580 return nbytes;
6581 }
6582
memory_reclaim(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6583 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6584 size_t nbytes, loff_t off)
6585 {
6586 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6587 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6588 unsigned long nr_to_reclaim, nr_reclaimed = 0;
6589 unsigned int reclaim_options;
6590 int err;
6591
6592 buf = strstrip(buf);
6593 err = page_counter_memparse(buf, "", &nr_to_reclaim);
6594 if (err)
6595 return err;
6596
6597 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
6598 while (nr_reclaimed < nr_to_reclaim) {
6599 unsigned long reclaimed;
6600
6601 if (signal_pending(current))
6602 return -EINTR;
6603
6604 /*
6605 * This is the final attempt, drain percpu lru caches in the
6606 * hope of introducing more evictable pages for
6607 * try_to_free_mem_cgroup_pages().
6608 */
6609 if (!nr_retries)
6610 lru_add_drain_all();
6611
6612 reclaimed = try_to_free_mem_cgroup_pages(memcg,
6613 nr_to_reclaim - nr_reclaimed,
6614 GFP_KERNEL, reclaim_options);
6615
6616 if (!reclaimed && !nr_retries--)
6617 return -EAGAIN;
6618
6619 nr_reclaimed += reclaimed;
6620 }
6621
6622 return nbytes;
6623 }
6624
6625 static struct cftype memory_files[] = {
6626 {
6627 .name = "current",
6628 .flags = CFTYPE_NOT_ON_ROOT,
6629 .read_u64 = memory_current_read,
6630 },
6631 {
6632 .name = "peak",
6633 .flags = CFTYPE_NOT_ON_ROOT,
6634 .read_u64 = memory_peak_read,
6635 },
6636 {
6637 .name = "min",
6638 .flags = CFTYPE_NOT_ON_ROOT,
6639 .seq_show = memory_min_show,
6640 .write = memory_min_write,
6641 },
6642 {
6643 .name = "low",
6644 .flags = CFTYPE_NOT_ON_ROOT,
6645 .seq_show = memory_low_show,
6646 .write = memory_low_write,
6647 },
6648 {
6649 .name = "high",
6650 .flags = CFTYPE_NOT_ON_ROOT,
6651 .seq_show = memory_high_show,
6652 .write = memory_high_write,
6653 },
6654 {
6655 .name = "max",
6656 .flags = CFTYPE_NOT_ON_ROOT,
6657 .seq_show = memory_max_show,
6658 .write = memory_max_write,
6659 },
6660 {
6661 .name = "events",
6662 .flags = CFTYPE_NOT_ON_ROOT,
6663 .file_offset = offsetof(struct mem_cgroup, events_file),
6664 .seq_show = memory_events_show,
6665 },
6666 {
6667 .name = "events.local",
6668 .flags = CFTYPE_NOT_ON_ROOT,
6669 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6670 .seq_show = memory_events_local_show,
6671 },
6672 {
6673 .name = "stat",
6674 .seq_show = memory_stat_show,
6675 },
6676 #ifdef CONFIG_NUMA
6677 {
6678 .name = "numa_stat",
6679 .seq_show = memory_numa_stat_show,
6680 },
6681 #endif
6682 {
6683 .name = "oom.group",
6684 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6685 .seq_show = memory_oom_group_show,
6686 .write = memory_oom_group_write,
6687 },
6688 {
6689 .name = "reclaim",
6690 .flags = CFTYPE_NS_DELEGATABLE,
6691 .write = memory_reclaim,
6692 },
6693 { } /* terminate */
6694 };
6695
6696 struct cgroup_subsys memory_cgrp_subsys = {
6697 .css_alloc = mem_cgroup_css_alloc,
6698 .css_online = mem_cgroup_css_online,
6699 .css_offline = mem_cgroup_css_offline,
6700 .css_released = mem_cgroup_css_released,
6701 .css_free = mem_cgroup_css_free,
6702 .css_reset = mem_cgroup_css_reset,
6703 .css_rstat_flush = mem_cgroup_css_rstat_flush,
6704 .can_attach = mem_cgroup_can_attach,
6705 .attach = mem_cgroup_attach,
6706 .cancel_attach = mem_cgroup_cancel_attach,
6707 .post_attach = mem_cgroup_move_task,
6708 .dfl_cftypes = memory_files,
6709 .legacy_cftypes = mem_cgroup_legacy_files,
6710 .early_init = 0,
6711 };
6712
6713 /*
6714 * This function calculates an individual cgroup's effective
6715 * protection which is derived from its own memory.min/low, its
6716 * parent's and siblings' settings, as well as the actual memory
6717 * distribution in the tree.
6718 *
6719 * The following rules apply to the effective protection values:
6720 *
6721 * 1. At the first level of reclaim, effective protection is equal to
6722 * the declared protection in memory.min and memory.low.
6723 *
6724 * 2. To enable safe delegation of the protection configuration, at
6725 * subsequent levels the effective protection is capped to the
6726 * parent's effective protection.
6727 *
6728 * 3. To make complex and dynamic subtrees easier to configure, the
6729 * user is allowed to overcommit the declared protection at a given
6730 * level. If that is the case, the parent's effective protection is
6731 * distributed to the children in proportion to how much protection
6732 * they have declared and how much of it they are utilizing.
6733 *
6734 * This makes distribution proportional, but also work-conserving:
6735 * if one cgroup claims much more protection than it uses memory,
6736 * the unused remainder is available to its siblings.
6737 *
6738 * 4. Conversely, when the declared protection is undercommitted at a
6739 * given level, the distribution of the larger parental protection
6740 * budget is NOT proportional. A cgroup's protection from a sibling
6741 * is capped to its own memory.min/low setting.
6742 *
6743 * 5. However, to allow protecting recursive subtrees from each other
6744 * without having to declare each individual cgroup's fixed share
6745 * of the ancestor's claim to protection, any unutilized -
6746 * "floating" - protection from up the tree is distributed in
6747 * proportion to each cgroup's *usage*. This makes the protection
6748 * neutral wrt sibling cgroups and lets them compete freely over
6749 * the shared parental protection budget, but it protects the
6750 * subtree as a whole from neighboring subtrees.
6751 *
6752 * Note that 4. and 5. are not in conflict: 4. is about protecting
6753 * against immediate siblings whereas 5. is about protecting against
6754 * neighboring subtrees.
6755 */
effective_protection(unsigned long usage,unsigned long parent_usage,unsigned long setting,unsigned long parent_effective,unsigned long siblings_protected)6756 static unsigned long effective_protection(unsigned long usage,
6757 unsigned long parent_usage,
6758 unsigned long setting,
6759 unsigned long parent_effective,
6760 unsigned long siblings_protected)
6761 {
6762 unsigned long protected;
6763 unsigned long ep;
6764
6765 protected = min(usage, setting);
6766 /*
6767 * If all cgroups at this level combined claim and use more
6768 * protection then what the parent affords them, distribute
6769 * shares in proportion to utilization.
6770 *
6771 * We are using actual utilization rather than the statically
6772 * claimed protection in order to be work-conserving: claimed
6773 * but unused protection is available to siblings that would
6774 * otherwise get a smaller chunk than what they claimed.
6775 */
6776 if (siblings_protected > parent_effective)
6777 return protected * parent_effective / siblings_protected;
6778
6779 /*
6780 * Ok, utilized protection of all children is within what the
6781 * parent affords them, so we know whatever this child claims
6782 * and utilizes is effectively protected.
6783 *
6784 * If there is unprotected usage beyond this value, reclaim
6785 * will apply pressure in proportion to that amount.
6786 *
6787 * If there is unutilized protection, the cgroup will be fully
6788 * shielded from reclaim, but we do return a smaller value for
6789 * protection than what the group could enjoy in theory. This
6790 * is okay. With the overcommit distribution above, effective
6791 * protection is always dependent on how memory is actually
6792 * consumed among the siblings anyway.
6793 */
6794 ep = protected;
6795
6796 /*
6797 * If the children aren't claiming (all of) the protection
6798 * afforded to them by the parent, distribute the remainder in
6799 * proportion to the (unprotected) memory of each cgroup. That
6800 * way, cgroups that aren't explicitly prioritized wrt each
6801 * other compete freely over the allowance, but they are
6802 * collectively protected from neighboring trees.
6803 *
6804 * We're using unprotected memory for the weight so that if
6805 * some cgroups DO claim explicit protection, we don't protect
6806 * the same bytes twice.
6807 *
6808 * Check both usage and parent_usage against the respective
6809 * protected values. One should imply the other, but they
6810 * aren't read atomically - make sure the division is sane.
6811 */
6812 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6813 return ep;
6814 if (parent_effective > siblings_protected &&
6815 parent_usage > siblings_protected &&
6816 usage > protected) {
6817 unsigned long unclaimed;
6818
6819 unclaimed = parent_effective - siblings_protected;
6820 unclaimed *= usage - protected;
6821 unclaimed /= parent_usage - siblings_protected;
6822
6823 ep += unclaimed;
6824 }
6825
6826 return ep;
6827 }
6828
6829 /**
6830 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6831 * @root: the top ancestor of the sub-tree being checked
6832 * @memcg: the memory cgroup to check
6833 *
6834 * WARNING: This function is not stateless! It can only be used as part
6835 * of a top-down tree iteration, not for isolated queries.
6836 */
mem_cgroup_calculate_protection(struct mem_cgroup * root,struct mem_cgroup * memcg)6837 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6838 struct mem_cgroup *memcg)
6839 {
6840 unsigned long usage, parent_usage;
6841 struct mem_cgroup *parent;
6842
6843 if (mem_cgroup_disabled())
6844 return;
6845
6846 if (!root)
6847 root = root_mem_cgroup;
6848
6849 /*
6850 * Effective values of the reclaim targets are ignored so they
6851 * can be stale. Have a look at mem_cgroup_protection for more
6852 * details.
6853 * TODO: calculation should be more robust so that we do not need
6854 * that special casing.
6855 */
6856 if (memcg == root)
6857 return;
6858
6859 usage = page_counter_read(&memcg->memory);
6860 if (!usage)
6861 return;
6862
6863 parent = parent_mem_cgroup(memcg);
6864
6865 if (parent == root) {
6866 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6867 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6868 return;
6869 }
6870
6871 parent_usage = page_counter_read(&parent->memory);
6872
6873 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6874 READ_ONCE(memcg->memory.min),
6875 READ_ONCE(parent->memory.emin),
6876 atomic_long_read(&parent->memory.children_min_usage)));
6877
6878 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6879 READ_ONCE(memcg->memory.low),
6880 READ_ONCE(parent->memory.elow),
6881 atomic_long_read(&parent->memory.children_low_usage)));
6882 }
6883
charge_memcg(struct folio * folio,struct mem_cgroup * memcg,gfp_t gfp)6884 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
6885 gfp_t gfp)
6886 {
6887 long nr_pages = folio_nr_pages(folio);
6888 int ret;
6889
6890 ret = try_charge(memcg, gfp, nr_pages);
6891 if (ret)
6892 goto out;
6893
6894 css_get(&memcg->css);
6895 commit_charge(folio, memcg);
6896
6897 local_irq_disable();
6898 mem_cgroup_charge_statistics(memcg, nr_pages);
6899 memcg_check_events(memcg, folio_nid(folio));
6900 local_irq_enable();
6901 out:
6902 return ret;
6903 }
6904
__mem_cgroup_charge(struct folio * folio,struct mm_struct * mm,gfp_t gfp)6905 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
6906 {
6907 struct mem_cgroup *memcg;
6908 int ret;
6909
6910 memcg = get_mem_cgroup_from_mm(mm);
6911 ret = charge_memcg(folio, memcg, gfp);
6912 css_put(&memcg->css);
6913
6914 return ret;
6915 }
6916
6917 /**
6918 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
6919 * @folio: folio to charge.
6920 * @mm: mm context of the victim
6921 * @gfp: reclaim mode
6922 * @entry: swap entry for which the folio is allocated
6923 *
6924 * This function charges a folio allocated for swapin. Please call this before
6925 * adding the folio to the swapcache.
6926 *
6927 * Returns 0 on success. Otherwise, an error code is returned.
6928 */
mem_cgroup_swapin_charge_folio(struct folio * folio,struct mm_struct * mm,gfp_t gfp,swp_entry_t entry)6929 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
6930 gfp_t gfp, swp_entry_t entry)
6931 {
6932 struct mem_cgroup *memcg;
6933 unsigned short id;
6934 int ret;
6935
6936 if (mem_cgroup_disabled())
6937 return 0;
6938
6939 id = lookup_swap_cgroup_id(entry);
6940 rcu_read_lock();
6941 memcg = mem_cgroup_from_id(id);
6942 if (!memcg || !css_tryget_online(&memcg->css))
6943 memcg = get_mem_cgroup_from_mm(mm);
6944 rcu_read_unlock();
6945
6946 ret = charge_memcg(folio, memcg, gfp);
6947
6948 css_put(&memcg->css);
6949 return ret;
6950 }
6951
6952 /*
6953 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6954 * @entry: swap entry for which the page is charged
6955 *
6956 * Call this function after successfully adding the charged page to swapcache.
6957 *
6958 * Note: This function assumes the page for which swap slot is being uncharged
6959 * is order 0 page.
6960 */
mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)6961 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6962 {
6963 /*
6964 * Cgroup1's unified memory+swap counter has been charged with the
6965 * new swapcache page, finish the transfer by uncharging the swap
6966 * slot. The swap slot would also get uncharged when it dies, but
6967 * it can stick around indefinitely and we'd count the page twice
6968 * the entire time.
6969 *
6970 * Cgroup2 has separate resource counters for memory and swap,
6971 * so this is a non-issue here. Memory and swap charge lifetimes
6972 * correspond 1:1 to page and swap slot lifetimes: we charge the
6973 * page to memory here, and uncharge swap when the slot is freed.
6974 */
6975 if (!mem_cgroup_disabled() && do_memsw_account()) {
6976 /*
6977 * The swap entry might not get freed for a long time,
6978 * let's not wait for it. The page already received a
6979 * memory+swap charge, drop the swap entry duplicate.
6980 */
6981 mem_cgroup_uncharge_swap(entry, 1);
6982 }
6983 }
6984
6985 struct uncharge_gather {
6986 struct mem_cgroup *memcg;
6987 unsigned long nr_memory;
6988 unsigned long pgpgout;
6989 unsigned long nr_kmem;
6990 int nid;
6991 };
6992
uncharge_gather_clear(struct uncharge_gather * ug)6993 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6994 {
6995 memset(ug, 0, sizeof(*ug));
6996 }
6997
uncharge_batch(const struct uncharge_gather * ug)6998 static void uncharge_batch(const struct uncharge_gather *ug)
6999 {
7000 unsigned long flags;
7001
7002 if (ug->nr_memory) {
7003 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7004 if (do_memsw_account())
7005 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
7006 if (ug->nr_kmem)
7007 memcg_account_kmem(ug->memcg, -ug->nr_kmem);
7008 memcg_oom_recover(ug->memcg);
7009 }
7010
7011 local_irq_save(flags);
7012 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
7013 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
7014 memcg_check_events(ug->memcg, ug->nid);
7015 local_irq_restore(flags);
7016
7017 /* drop reference from uncharge_folio */
7018 css_put(&ug->memcg->css);
7019 }
7020
uncharge_folio(struct folio * folio,struct uncharge_gather * ug)7021 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
7022 {
7023 long nr_pages;
7024 struct mem_cgroup *memcg;
7025 struct obj_cgroup *objcg;
7026
7027 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7028
7029 /*
7030 * Nobody should be changing or seriously looking at
7031 * folio memcg or objcg at this point, we have fully
7032 * exclusive access to the folio.
7033 */
7034 if (folio_memcg_kmem(folio)) {
7035 objcg = __folio_objcg(folio);
7036 /*
7037 * This get matches the put at the end of the function and
7038 * kmem pages do not hold memcg references anymore.
7039 */
7040 memcg = get_mem_cgroup_from_objcg(objcg);
7041 } else {
7042 memcg = __folio_memcg(folio);
7043 }
7044
7045 if (!memcg)
7046 return;
7047
7048 if (ug->memcg != memcg) {
7049 if (ug->memcg) {
7050 uncharge_batch(ug);
7051 uncharge_gather_clear(ug);
7052 }
7053 ug->memcg = memcg;
7054 ug->nid = folio_nid(folio);
7055
7056 /* pairs with css_put in uncharge_batch */
7057 css_get(&memcg->css);
7058 }
7059
7060 nr_pages = folio_nr_pages(folio);
7061
7062 if (folio_memcg_kmem(folio)) {
7063 ug->nr_memory += nr_pages;
7064 ug->nr_kmem += nr_pages;
7065
7066 folio->memcg_data = 0;
7067 obj_cgroup_put(objcg);
7068 } else {
7069 /* LRU pages aren't accounted at the root level */
7070 if (!mem_cgroup_is_root(memcg))
7071 ug->nr_memory += nr_pages;
7072 ug->pgpgout++;
7073
7074 folio->memcg_data = 0;
7075 }
7076
7077 css_put(&memcg->css);
7078 }
7079
__mem_cgroup_uncharge(struct folio * folio)7080 void __mem_cgroup_uncharge(struct folio *folio)
7081 {
7082 struct uncharge_gather ug;
7083
7084 /* Don't touch folio->lru of any random page, pre-check: */
7085 if (!folio_memcg(folio))
7086 return;
7087
7088 uncharge_gather_clear(&ug);
7089 uncharge_folio(folio, &ug);
7090 uncharge_batch(&ug);
7091 }
7092
7093 /**
7094 * __mem_cgroup_uncharge_list - uncharge a list of page
7095 * @page_list: list of pages to uncharge
7096 *
7097 * Uncharge a list of pages previously charged with
7098 * __mem_cgroup_charge().
7099 */
__mem_cgroup_uncharge_list(struct list_head * page_list)7100 void __mem_cgroup_uncharge_list(struct list_head *page_list)
7101 {
7102 struct uncharge_gather ug;
7103 struct folio *folio;
7104
7105 uncharge_gather_clear(&ug);
7106 list_for_each_entry(folio, page_list, lru)
7107 uncharge_folio(folio, &ug);
7108 if (ug.memcg)
7109 uncharge_batch(&ug);
7110 }
7111
7112 /**
7113 * mem_cgroup_migrate - Charge a folio's replacement.
7114 * @old: Currently circulating folio.
7115 * @new: Replacement folio.
7116 *
7117 * Charge @new as a replacement folio for @old. @old will
7118 * be uncharged upon free.
7119 *
7120 * Both folios must be locked, @new->mapping must be set up.
7121 */
mem_cgroup_migrate(struct folio * old,struct folio * new)7122 void mem_cgroup_migrate(struct folio *old, struct folio *new)
7123 {
7124 struct mem_cgroup *memcg;
7125 long nr_pages = folio_nr_pages(new);
7126 unsigned long flags;
7127
7128 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7129 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7130 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7131 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
7132
7133 if (mem_cgroup_disabled())
7134 return;
7135
7136 /* Page cache replacement: new folio already charged? */
7137 if (folio_memcg(new))
7138 return;
7139
7140 memcg = folio_memcg(old);
7141 VM_WARN_ON_ONCE_FOLIO(!memcg, old);
7142 if (!memcg)
7143 return;
7144
7145 /* Force-charge the new page. The old one will be freed soon */
7146 if (!mem_cgroup_is_root(memcg)) {
7147 page_counter_charge(&memcg->memory, nr_pages);
7148 if (do_memsw_account())
7149 page_counter_charge(&memcg->memsw, nr_pages);
7150 }
7151
7152 css_get(&memcg->css);
7153 commit_charge(new, memcg);
7154
7155 local_irq_save(flags);
7156 mem_cgroup_charge_statistics(memcg, nr_pages);
7157 memcg_check_events(memcg, folio_nid(new));
7158 local_irq_restore(flags);
7159 }
7160
7161 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7162 EXPORT_SYMBOL(memcg_sockets_enabled_key);
7163
mem_cgroup_sk_alloc(struct sock * sk)7164 void mem_cgroup_sk_alloc(struct sock *sk)
7165 {
7166 struct mem_cgroup *memcg;
7167
7168 if (!mem_cgroup_sockets_enabled)
7169 return;
7170
7171 /* Do not associate the sock with unrelated interrupted task's memcg. */
7172 if (!in_task())
7173 return;
7174
7175 rcu_read_lock();
7176 memcg = mem_cgroup_from_task(current);
7177 if (memcg == root_mem_cgroup)
7178 goto out;
7179 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7180 goto out;
7181 if (css_tryget(&memcg->css))
7182 sk->sk_memcg = memcg;
7183 out:
7184 rcu_read_unlock();
7185 }
7186
mem_cgroup_sk_free(struct sock * sk)7187 void mem_cgroup_sk_free(struct sock *sk)
7188 {
7189 if (sk->sk_memcg)
7190 css_put(&sk->sk_memcg->css);
7191 }
7192
7193 /**
7194 * mem_cgroup_charge_skmem - charge socket memory
7195 * @memcg: memcg to charge
7196 * @nr_pages: number of pages to charge
7197 * @gfp_mask: reclaim mode
7198 *
7199 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7200 * @memcg's configured limit, %false if it doesn't.
7201 */
mem_cgroup_charge_skmem(struct mem_cgroup * memcg,unsigned int nr_pages,gfp_t gfp_mask)7202 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7203 gfp_t gfp_mask)
7204 {
7205 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7206 struct page_counter *fail;
7207
7208 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7209 memcg->tcpmem_pressure = 0;
7210 return true;
7211 }
7212 memcg->tcpmem_pressure = 1;
7213 if (gfp_mask & __GFP_NOFAIL) {
7214 page_counter_charge(&memcg->tcpmem, nr_pages);
7215 return true;
7216 }
7217 return false;
7218 }
7219
7220 if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7221 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7222 return true;
7223 }
7224
7225 return false;
7226 }
7227
7228 /**
7229 * mem_cgroup_uncharge_skmem - uncharge socket memory
7230 * @memcg: memcg to uncharge
7231 * @nr_pages: number of pages to uncharge
7232 */
mem_cgroup_uncharge_skmem(struct mem_cgroup * memcg,unsigned int nr_pages)7233 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7234 {
7235 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7236 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7237 return;
7238 }
7239
7240 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7241
7242 refill_stock(memcg, nr_pages);
7243 }
7244
cgroup_memory(char * s)7245 static int __init cgroup_memory(char *s)
7246 {
7247 char *token;
7248
7249 while ((token = strsep(&s, ",")) != NULL) {
7250 if (!*token)
7251 continue;
7252 if (!strcmp(token, "nosocket"))
7253 cgroup_memory_nosocket = true;
7254 if (!strcmp(token, "nokmem"))
7255 cgroup_memory_nokmem = true;
7256 }
7257 return 1;
7258 }
7259 __setup("cgroup.memory=", cgroup_memory);
7260
7261 /*
7262 * subsys_initcall() for memory controller.
7263 *
7264 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7265 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7266 * basically everything that doesn't depend on a specific mem_cgroup structure
7267 * should be initialized from here.
7268 */
mem_cgroup_init(void)7269 static int __init mem_cgroup_init(void)
7270 {
7271 int cpu, node;
7272
7273 /*
7274 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7275 * used for per-memcg-per-cpu caching of per-node statistics. In order
7276 * to work fine, we should make sure that the overfill threshold can't
7277 * exceed S32_MAX / PAGE_SIZE.
7278 */
7279 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7280
7281 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7282 memcg_hotplug_cpu_dead);
7283
7284 for_each_possible_cpu(cpu)
7285 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7286 drain_local_stock);
7287
7288 for_each_node(node) {
7289 struct mem_cgroup_tree_per_node *rtpn;
7290
7291 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7292 node_online(node) ? node : NUMA_NO_NODE);
7293
7294 rtpn->rb_root = RB_ROOT;
7295 rtpn->rb_rightmost = NULL;
7296 spin_lock_init(&rtpn->lock);
7297 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7298 }
7299
7300 return 0;
7301 }
7302 subsys_initcall(mem_cgroup_init);
7303
7304 #ifdef CONFIG_SWAP
mem_cgroup_id_get_online(struct mem_cgroup * memcg)7305 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7306 {
7307 while (!refcount_inc_not_zero(&memcg->id.ref)) {
7308 /*
7309 * The root cgroup cannot be destroyed, so it's refcount must
7310 * always be >= 1.
7311 */
7312 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7313 VM_BUG_ON(1);
7314 break;
7315 }
7316 memcg = parent_mem_cgroup(memcg);
7317 if (!memcg)
7318 memcg = root_mem_cgroup;
7319 }
7320 return memcg;
7321 }
7322
7323 /**
7324 * mem_cgroup_swapout - transfer a memsw charge to swap
7325 * @folio: folio whose memsw charge to transfer
7326 * @entry: swap entry to move the charge to
7327 *
7328 * Transfer the memsw charge of @folio to @entry.
7329 */
mem_cgroup_swapout(struct folio * folio,swp_entry_t entry)7330 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
7331 {
7332 struct mem_cgroup *memcg, *swap_memcg;
7333 unsigned int nr_entries;
7334 unsigned short oldid;
7335
7336 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7337 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
7338
7339 if (mem_cgroup_disabled())
7340 return;
7341
7342 if (!do_memsw_account())
7343 return;
7344
7345 memcg = folio_memcg(folio);
7346
7347 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7348 if (!memcg)
7349 return;
7350
7351 /*
7352 * In case the memcg owning these pages has been offlined and doesn't
7353 * have an ID allocated to it anymore, charge the closest online
7354 * ancestor for the swap instead and transfer the memory+swap charge.
7355 */
7356 swap_memcg = mem_cgroup_id_get_online(memcg);
7357 nr_entries = folio_nr_pages(folio);
7358 /* Get references for the tail pages, too */
7359 if (nr_entries > 1)
7360 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7361 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7362 nr_entries);
7363 VM_BUG_ON_FOLIO(oldid, folio);
7364 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7365
7366 folio->memcg_data = 0;
7367
7368 if (!mem_cgroup_is_root(memcg))
7369 page_counter_uncharge(&memcg->memory, nr_entries);
7370
7371 if (memcg != swap_memcg) {
7372 if (!mem_cgroup_is_root(swap_memcg))
7373 page_counter_charge(&swap_memcg->memsw, nr_entries);
7374 page_counter_uncharge(&memcg->memsw, nr_entries);
7375 }
7376
7377 /*
7378 * Interrupts should be disabled here because the caller holds the
7379 * i_pages lock which is taken with interrupts-off. It is
7380 * important here to have the interrupts disabled because it is the
7381 * only synchronisation we have for updating the per-CPU variables.
7382 */
7383 memcg_stats_lock();
7384 mem_cgroup_charge_statistics(memcg, -nr_entries);
7385 memcg_stats_unlock();
7386 memcg_check_events(memcg, folio_nid(folio));
7387
7388 css_put(&memcg->css);
7389 }
7390
7391 /**
7392 * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7393 * @folio: folio being added to swap
7394 * @entry: swap entry to charge
7395 *
7396 * Try to charge @folio's memcg for the swap space at @entry.
7397 *
7398 * Returns 0 on success, -ENOMEM on failure.
7399 */
__mem_cgroup_try_charge_swap(struct folio * folio,swp_entry_t entry)7400 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
7401 {
7402 unsigned int nr_pages = folio_nr_pages(folio);
7403 struct page_counter *counter;
7404 struct mem_cgroup *memcg;
7405 unsigned short oldid;
7406
7407 if (do_memsw_account())
7408 return 0;
7409
7410 memcg = folio_memcg(folio);
7411
7412 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7413 if (!memcg)
7414 return 0;
7415
7416 if (!entry.val) {
7417 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7418 return 0;
7419 }
7420
7421 memcg = mem_cgroup_id_get_online(memcg);
7422
7423 if (!mem_cgroup_is_root(memcg) &&
7424 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7425 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7426 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7427 mem_cgroup_id_put(memcg);
7428 return -ENOMEM;
7429 }
7430
7431 /* Get references for the tail pages, too */
7432 if (nr_pages > 1)
7433 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7434 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7435 VM_BUG_ON_FOLIO(oldid, folio);
7436 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7437
7438 return 0;
7439 }
7440
7441 /**
7442 * __mem_cgroup_uncharge_swap - uncharge swap space
7443 * @entry: swap entry to uncharge
7444 * @nr_pages: the amount of swap space to uncharge
7445 */
__mem_cgroup_uncharge_swap(swp_entry_t entry,unsigned int nr_pages)7446 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7447 {
7448 struct mem_cgroup *memcg;
7449 unsigned short id;
7450
7451 if (mem_cgroup_disabled())
7452 return;
7453
7454 id = swap_cgroup_record(entry, 0, nr_pages);
7455 rcu_read_lock();
7456 memcg = mem_cgroup_from_id(id);
7457 if (memcg) {
7458 if (!mem_cgroup_is_root(memcg)) {
7459 if (do_memsw_account())
7460 page_counter_uncharge(&memcg->memsw, nr_pages);
7461 else
7462 page_counter_uncharge(&memcg->swap, nr_pages);
7463 }
7464 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7465 mem_cgroup_id_put_many(memcg, nr_pages);
7466 }
7467 rcu_read_unlock();
7468 }
7469
mem_cgroup_get_nr_swap_pages(struct mem_cgroup * memcg)7470 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7471 {
7472 long nr_swap_pages = get_nr_swap_pages();
7473
7474 if (mem_cgroup_disabled() || do_memsw_account())
7475 return nr_swap_pages;
7476 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7477 nr_swap_pages = min_t(long, nr_swap_pages,
7478 READ_ONCE(memcg->swap.max) -
7479 page_counter_read(&memcg->swap));
7480 return nr_swap_pages;
7481 }
7482
mem_cgroup_swap_full(struct folio * folio)7483 bool mem_cgroup_swap_full(struct folio *folio)
7484 {
7485 struct mem_cgroup *memcg;
7486
7487 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
7488
7489 if (vm_swap_full())
7490 return true;
7491 if (do_memsw_account())
7492 return false;
7493
7494 memcg = folio_memcg(folio);
7495 if (!memcg)
7496 return false;
7497
7498 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7499 unsigned long usage = page_counter_read(&memcg->swap);
7500
7501 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7502 usage * 2 >= READ_ONCE(memcg->swap.max))
7503 return true;
7504 }
7505
7506 return false;
7507 }
7508
setup_swap_account(char * s)7509 static int __init setup_swap_account(char *s)
7510 {
7511 pr_warn_once("The swapaccount= commandline option is deprecated. "
7512 "Please report your usecase to linux-mm@kvack.org if you "
7513 "depend on this functionality.\n");
7514 return 1;
7515 }
7516 __setup("swapaccount=", setup_swap_account);
7517
swap_current_read(struct cgroup_subsys_state * css,struct cftype * cft)7518 static u64 swap_current_read(struct cgroup_subsys_state *css,
7519 struct cftype *cft)
7520 {
7521 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7522
7523 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7524 }
7525
swap_high_show(struct seq_file * m,void * v)7526 static int swap_high_show(struct seq_file *m, void *v)
7527 {
7528 return seq_puts_memcg_tunable(m,
7529 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7530 }
7531
swap_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)7532 static ssize_t swap_high_write(struct kernfs_open_file *of,
7533 char *buf, size_t nbytes, loff_t off)
7534 {
7535 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7536 unsigned long high;
7537 int err;
7538
7539 buf = strstrip(buf);
7540 err = page_counter_memparse(buf, "max", &high);
7541 if (err)
7542 return err;
7543
7544 page_counter_set_high(&memcg->swap, high);
7545
7546 return nbytes;
7547 }
7548
swap_max_show(struct seq_file * m,void * v)7549 static int swap_max_show(struct seq_file *m, void *v)
7550 {
7551 return seq_puts_memcg_tunable(m,
7552 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7553 }
7554
swap_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)7555 static ssize_t swap_max_write(struct kernfs_open_file *of,
7556 char *buf, size_t nbytes, loff_t off)
7557 {
7558 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7559 unsigned long max;
7560 int err;
7561
7562 buf = strstrip(buf);
7563 err = page_counter_memparse(buf, "max", &max);
7564 if (err)
7565 return err;
7566
7567 xchg(&memcg->swap.max, max);
7568
7569 return nbytes;
7570 }
7571
swap_events_show(struct seq_file * m,void * v)7572 static int swap_events_show(struct seq_file *m, void *v)
7573 {
7574 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7575
7576 seq_printf(m, "high %lu\n",
7577 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7578 seq_printf(m, "max %lu\n",
7579 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7580 seq_printf(m, "fail %lu\n",
7581 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7582
7583 return 0;
7584 }
7585
7586 static struct cftype swap_files[] = {
7587 {
7588 .name = "swap.current",
7589 .flags = CFTYPE_NOT_ON_ROOT,
7590 .read_u64 = swap_current_read,
7591 },
7592 {
7593 .name = "swap.high",
7594 .flags = CFTYPE_NOT_ON_ROOT,
7595 .seq_show = swap_high_show,
7596 .write = swap_high_write,
7597 },
7598 {
7599 .name = "swap.max",
7600 .flags = CFTYPE_NOT_ON_ROOT,
7601 .seq_show = swap_max_show,
7602 .write = swap_max_write,
7603 },
7604 {
7605 .name = "swap.events",
7606 .flags = CFTYPE_NOT_ON_ROOT,
7607 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7608 .seq_show = swap_events_show,
7609 },
7610 { } /* terminate */
7611 };
7612
7613 static struct cftype memsw_files[] = {
7614 {
7615 .name = "memsw.usage_in_bytes",
7616 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7617 .read_u64 = mem_cgroup_read_u64,
7618 },
7619 {
7620 .name = "memsw.max_usage_in_bytes",
7621 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7622 .write = mem_cgroup_reset,
7623 .read_u64 = mem_cgroup_read_u64,
7624 },
7625 {
7626 .name = "memsw.limit_in_bytes",
7627 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7628 .write = mem_cgroup_write,
7629 .read_u64 = mem_cgroup_read_u64,
7630 },
7631 {
7632 .name = "memsw.failcnt",
7633 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7634 .write = mem_cgroup_reset,
7635 .read_u64 = mem_cgroup_read_u64,
7636 },
7637 { }, /* terminate */
7638 };
7639
7640 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7641 /**
7642 * obj_cgroup_may_zswap - check if this cgroup can zswap
7643 * @objcg: the object cgroup
7644 *
7645 * Check if the hierarchical zswap limit has been reached.
7646 *
7647 * This doesn't check for specific headroom, and it is not atomic
7648 * either. But with zswap, the size of the allocation is only known
7649 * once compression has occured, and this optimistic pre-check avoids
7650 * spending cycles on compression when there is already no room left
7651 * or zswap is disabled altogether somewhere in the hierarchy.
7652 */
obj_cgroup_may_zswap(struct obj_cgroup * objcg)7653 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
7654 {
7655 struct mem_cgroup *memcg, *original_memcg;
7656 bool ret = true;
7657
7658 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7659 return true;
7660
7661 original_memcg = get_mem_cgroup_from_objcg(objcg);
7662 for (memcg = original_memcg; memcg != root_mem_cgroup;
7663 memcg = parent_mem_cgroup(memcg)) {
7664 unsigned long max = READ_ONCE(memcg->zswap_max);
7665 unsigned long pages;
7666
7667 if (max == PAGE_COUNTER_MAX)
7668 continue;
7669 if (max == 0) {
7670 ret = false;
7671 break;
7672 }
7673
7674 cgroup_rstat_flush(memcg->css.cgroup);
7675 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
7676 if (pages < max)
7677 continue;
7678 ret = false;
7679 break;
7680 }
7681 mem_cgroup_put(original_memcg);
7682 return ret;
7683 }
7684
7685 /**
7686 * obj_cgroup_charge_zswap - charge compression backend memory
7687 * @objcg: the object cgroup
7688 * @size: size of compressed object
7689 *
7690 * This forces the charge after obj_cgroup_may_swap() allowed
7691 * compression and storage in zwap for this cgroup to go ahead.
7692 */
obj_cgroup_charge_zswap(struct obj_cgroup * objcg,size_t size)7693 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
7694 {
7695 struct mem_cgroup *memcg;
7696
7697 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7698 return;
7699
7700 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
7701
7702 /* PF_MEMALLOC context, charging must succeed */
7703 if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
7704 VM_WARN_ON_ONCE(1);
7705
7706 rcu_read_lock();
7707 memcg = obj_cgroup_memcg(objcg);
7708 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
7709 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
7710 rcu_read_unlock();
7711 }
7712
7713 /**
7714 * obj_cgroup_uncharge_zswap - uncharge compression backend memory
7715 * @objcg: the object cgroup
7716 * @size: size of compressed object
7717 *
7718 * Uncharges zswap memory on page in.
7719 */
obj_cgroup_uncharge_zswap(struct obj_cgroup * objcg,size_t size)7720 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
7721 {
7722 struct mem_cgroup *memcg;
7723
7724 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7725 return;
7726
7727 obj_cgroup_uncharge(objcg, size);
7728
7729 rcu_read_lock();
7730 memcg = obj_cgroup_memcg(objcg);
7731 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
7732 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
7733 rcu_read_unlock();
7734 }
7735
zswap_current_read(struct cgroup_subsys_state * css,struct cftype * cft)7736 static u64 zswap_current_read(struct cgroup_subsys_state *css,
7737 struct cftype *cft)
7738 {
7739 cgroup_rstat_flush(css->cgroup);
7740 return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B);
7741 }
7742
zswap_max_show(struct seq_file * m,void * v)7743 static int zswap_max_show(struct seq_file *m, void *v)
7744 {
7745 return seq_puts_memcg_tunable(m,
7746 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
7747 }
7748
zswap_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)7749 static ssize_t zswap_max_write(struct kernfs_open_file *of,
7750 char *buf, size_t nbytes, loff_t off)
7751 {
7752 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7753 unsigned long max;
7754 int err;
7755
7756 buf = strstrip(buf);
7757 err = page_counter_memparse(buf, "max", &max);
7758 if (err)
7759 return err;
7760
7761 xchg(&memcg->zswap_max, max);
7762
7763 return nbytes;
7764 }
7765
7766 static struct cftype zswap_files[] = {
7767 {
7768 .name = "zswap.current",
7769 .flags = CFTYPE_NOT_ON_ROOT,
7770 .read_u64 = zswap_current_read,
7771 },
7772 {
7773 .name = "zswap.max",
7774 .flags = CFTYPE_NOT_ON_ROOT,
7775 .seq_show = zswap_max_show,
7776 .write = zswap_max_write,
7777 },
7778 { } /* terminate */
7779 };
7780 #endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
7781
mem_cgroup_swap_init(void)7782 static int __init mem_cgroup_swap_init(void)
7783 {
7784 if (mem_cgroup_disabled())
7785 return 0;
7786
7787 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7788 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7789 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7790 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
7791 #endif
7792 return 0;
7793 }
7794 subsys_initcall(mem_cgroup_swap_init);
7795
7796 #endif /* CONFIG_SWAP */
7797