1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/fs-writeback.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 *
7 * Contains all the functions related to writing back and waiting
8 * upon dirty inodes against superblocks, and writing back dirty
9 * pages against inodes. ie: data writeback. Writeout of the
10 * inode itself is not handled here.
11 *
12 * 10Apr2002 Andrew Morton
13 * Split out of fs/inode.c
14 * Additions for address_space-based writeback
15 */
16
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33
34 /*
35 * 4MB minimal write chunk size
36 */
37 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
38
39 /*
40 * Passed into wb_writeback(), essentially a subset of writeback_control
41 */
42 struct wb_writeback_work {
43 long nr_pages;
44 struct super_block *sb;
45 enum writeback_sync_modes sync_mode;
46 unsigned int tagged_writepages:1;
47 unsigned int for_kupdate:1;
48 unsigned int range_cyclic:1;
49 unsigned int for_background:1;
50 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
51 unsigned int auto_free:1; /* free on completion */
52 enum wb_reason reason; /* why was writeback initiated? */
53
54 struct list_head list; /* pending work list */
55 struct wb_completion *done; /* set if the caller waits */
56 };
57
58 /*
59 * If an inode is constantly having its pages dirtied, but then the
60 * updates stop dirtytime_expire_interval seconds in the past, it's
61 * possible for the worst case time between when an inode has its
62 * timestamps updated and when they finally get written out to be two
63 * dirtytime_expire_intervals. We set the default to 12 hours (in
64 * seconds), which means most of the time inodes will have their
65 * timestamps written to disk after 12 hours, but in the worst case a
66 * few inodes might not their timestamps updated for 24 hours.
67 */
68 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69
wb_inode(struct list_head * head)70 static inline struct inode *wb_inode(struct list_head *head)
71 {
72 return list_entry(head, struct inode, i_io_list);
73 }
74
75 /*
76 * Include the creation of the trace points after defining the
77 * wb_writeback_work structure and inline functions so that the definition
78 * remains local to this file.
79 */
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/writeback.h>
82
83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
84
wb_io_lists_populated(struct bdi_writeback * wb)85 static bool wb_io_lists_populated(struct bdi_writeback *wb)
86 {
87 if (wb_has_dirty_io(wb)) {
88 return false;
89 } else {
90 set_bit(WB_has_dirty_io, &wb->state);
91 WARN_ON_ONCE(!wb->avg_write_bandwidth);
92 atomic_long_add(wb->avg_write_bandwidth,
93 &wb->bdi->tot_write_bandwidth);
94 return true;
95 }
96 }
97
wb_io_lists_depopulated(struct bdi_writeback * wb)98 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
99 {
100 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
101 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
102 clear_bit(WB_has_dirty_io, &wb->state);
103 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104 &wb->bdi->tot_write_bandwidth) < 0);
105 }
106 }
107
108 /**
109 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
110 * @inode: inode to be moved
111 * @wb: target bdi_writeback
112 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
113 *
114 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
115 * Returns %true if @inode is the first occupant of the !dirty_time IO
116 * lists; otherwise, %false.
117 */
inode_io_list_move_locked(struct inode * inode,struct bdi_writeback * wb,struct list_head * head)118 static bool inode_io_list_move_locked(struct inode *inode,
119 struct bdi_writeback *wb,
120 struct list_head *head)
121 {
122 assert_spin_locked(&wb->list_lock);
123 assert_spin_locked(&inode->i_lock);
124 WARN_ON_ONCE(inode->i_state & I_FREEING);
125
126 list_move(&inode->i_io_list, head);
127
128 /* dirty_time doesn't count as dirty_io until expiration */
129 if (head != &wb->b_dirty_time)
130 return wb_io_lists_populated(wb);
131
132 wb_io_lists_depopulated(wb);
133 return false;
134 }
135
wb_wakeup(struct bdi_writeback * wb)136 static void wb_wakeup(struct bdi_writeback *wb)
137 {
138 spin_lock_irq(&wb->work_lock);
139 if (test_bit(WB_registered, &wb->state))
140 mod_delayed_work(bdi_wq, &wb->dwork, 0);
141 spin_unlock_irq(&wb->work_lock);
142 }
143
finish_writeback_work(struct bdi_writeback * wb,struct wb_writeback_work * work)144 static void finish_writeback_work(struct bdi_writeback *wb,
145 struct wb_writeback_work *work)
146 {
147 struct wb_completion *done = work->done;
148
149 if (work->auto_free)
150 kfree(work);
151 if (done) {
152 wait_queue_head_t *waitq = done->waitq;
153
154 /* @done can't be accessed after the following dec */
155 if (atomic_dec_and_test(&done->cnt))
156 wake_up_all(waitq);
157 }
158 }
159
wb_queue_work(struct bdi_writeback * wb,struct wb_writeback_work * work)160 static void wb_queue_work(struct bdi_writeback *wb,
161 struct wb_writeback_work *work)
162 {
163 trace_writeback_queue(wb, work);
164
165 if (work->done)
166 atomic_inc(&work->done->cnt);
167
168 spin_lock_irq(&wb->work_lock);
169
170 if (test_bit(WB_registered, &wb->state)) {
171 list_add_tail(&work->list, &wb->work_list);
172 mod_delayed_work(bdi_wq, &wb->dwork, 0);
173 } else
174 finish_writeback_work(wb, work);
175
176 spin_unlock_irq(&wb->work_lock);
177 }
178
179 /**
180 * wb_wait_for_completion - wait for completion of bdi_writeback_works
181 * @done: target wb_completion
182 *
183 * Wait for one or more work items issued to @bdi with their ->done field
184 * set to @done, which should have been initialized with
185 * DEFINE_WB_COMPLETION(). This function returns after all such work items
186 * are completed. Work items which are waited upon aren't freed
187 * automatically on completion.
188 */
wb_wait_for_completion(struct wb_completion * done)189 void wb_wait_for_completion(struct wb_completion *done)
190 {
191 atomic_dec(&done->cnt); /* put down the initial count */
192 wait_event(*done->waitq, !atomic_read(&done->cnt));
193 }
194
195 #ifdef CONFIG_CGROUP_WRITEBACK
196
197 /*
198 * Parameters for foreign inode detection, see wbc_detach_inode() to see
199 * how they're used.
200 *
201 * These paramters are inherently heuristical as the detection target
202 * itself is fuzzy. All we want to do is detaching an inode from the
203 * current owner if it's being written to by some other cgroups too much.
204 *
205 * The current cgroup writeback is built on the assumption that multiple
206 * cgroups writing to the same inode concurrently is very rare and a mode
207 * of operation which isn't well supported. As such, the goal is not
208 * taking too long when a different cgroup takes over an inode while
209 * avoiding too aggressive flip-flops from occasional foreign writes.
210 *
211 * We record, very roughly, 2s worth of IO time history and if more than
212 * half of that is foreign, trigger the switch. The recording is quantized
213 * to 16 slots. To avoid tiny writes from swinging the decision too much,
214 * writes smaller than 1/8 of avg size are ignored.
215 */
216 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
217 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
218 #define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */
219 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
220
221 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
222 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
223 /* each slot's duration is 2s / 16 */
224 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
225 /* if foreign slots >= 8, switch */
226 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
227 /* one round can affect upto 5 slots */
228 #define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */
229
230 /*
231 * Maximum inodes per isw. A specific value has been chosen to make
232 * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
233 */
234 #define WB_MAX_INODES_PER_ISW ((1024UL - sizeof(struct inode_switch_wbs_context)) \
235 / sizeof(struct inode *))
236
237 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
238 static struct workqueue_struct *isw_wq;
239
__inode_attach_wb(struct inode * inode,struct folio * folio)240 void __inode_attach_wb(struct inode *inode, struct folio *folio)
241 {
242 struct backing_dev_info *bdi = inode_to_bdi(inode);
243 struct bdi_writeback *wb = NULL;
244
245 if (inode_cgwb_enabled(inode)) {
246 struct cgroup_subsys_state *memcg_css;
247
248 if (folio) {
249 memcg_css = mem_cgroup_css_from_folio(folio);
250 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
251 } else {
252 /* must pin memcg_css, see wb_get_create() */
253 memcg_css = task_get_css(current, memory_cgrp_id);
254 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
255 css_put(memcg_css);
256 }
257 }
258
259 if (!wb)
260 wb = &bdi->wb;
261
262 /*
263 * There may be multiple instances of this function racing to
264 * update the same inode. Use cmpxchg() to tell the winner.
265 */
266 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
267 wb_put(wb);
268 }
269 EXPORT_SYMBOL_GPL(__inode_attach_wb);
270
271 /**
272 * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
273 * @inode: inode of interest with i_lock held
274 * @wb: target bdi_writeback
275 *
276 * Remove the inode from wb's io lists and if necessarily put onto b_attached
277 * list. Only inodes attached to cgwb's are kept on this list.
278 */
inode_cgwb_move_to_attached(struct inode * inode,struct bdi_writeback * wb)279 static void inode_cgwb_move_to_attached(struct inode *inode,
280 struct bdi_writeback *wb)
281 {
282 assert_spin_locked(&wb->list_lock);
283 assert_spin_locked(&inode->i_lock);
284 WARN_ON_ONCE(inode->i_state & I_FREEING);
285
286 inode->i_state &= ~I_SYNC_QUEUED;
287 if (wb != &wb->bdi->wb)
288 list_move(&inode->i_io_list, &wb->b_attached);
289 else
290 list_del_init(&inode->i_io_list);
291 wb_io_lists_depopulated(wb);
292 }
293
294 /**
295 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
296 * @inode: inode of interest with i_lock held
297 *
298 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
299 * held on entry and is released on return. The returned wb is guaranteed
300 * to stay @inode's associated wb until its list_lock is released.
301 */
302 static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode * inode)303 locked_inode_to_wb_and_lock_list(struct inode *inode)
304 __releases(&inode->i_lock)
305 __acquires(&wb->list_lock)
306 {
307 while (true) {
308 struct bdi_writeback *wb = inode_to_wb(inode);
309
310 /*
311 * inode_to_wb() association is protected by both
312 * @inode->i_lock and @wb->list_lock but list_lock nests
313 * outside i_lock. Drop i_lock and verify that the
314 * association hasn't changed after acquiring list_lock.
315 */
316 wb_get(wb);
317 spin_unlock(&inode->i_lock);
318 spin_lock(&wb->list_lock);
319
320 /* i_wb may have changed inbetween, can't use inode_to_wb() */
321 if (likely(wb == inode->i_wb)) {
322 wb_put(wb); /* @inode already has ref */
323 return wb;
324 }
325
326 spin_unlock(&wb->list_lock);
327 wb_put(wb);
328 cpu_relax();
329 spin_lock(&inode->i_lock);
330 }
331 }
332
333 /**
334 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
335 * @inode: inode of interest
336 *
337 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
338 * on entry.
339 */
inode_to_wb_and_lock_list(struct inode * inode)340 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
341 __acquires(&wb->list_lock)
342 {
343 spin_lock(&inode->i_lock);
344 return locked_inode_to_wb_and_lock_list(inode);
345 }
346
347 struct inode_switch_wbs_context {
348 struct rcu_work work;
349
350 /*
351 * Multiple inodes can be switched at once. The switching procedure
352 * consists of two parts, separated by a RCU grace period. To make
353 * sure that the second part is executed for each inode gone through
354 * the first part, all inode pointers are placed into a NULL-terminated
355 * array embedded into struct inode_switch_wbs_context. Otherwise
356 * an inode could be left in a non-consistent state.
357 */
358 struct bdi_writeback *new_wb;
359 struct inode *inodes[];
360 };
361
bdi_down_write_wb_switch_rwsem(struct backing_dev_info * bdi)362 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
363 {
364 down_write(&bdi->wb_switch_rwsem);
365 }
366
bdi_up_write_wb_switch_rwsem(struct backing_dev_info * bdi)367 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
368 {
369 up_write(&bdi->wb_switch_rwsem);
370 }
371
inode_do_switch_wbs(struct inode * inode,struct bdi_writeback * old_wb,struct bdi_writeback * new_wb)372 static bool inode_do_switch_wbs(struct inode *inode,
373 struct bdi_writeback *old_wb,
374 struct bdi_writeback *new_wb)
375 {
376 struct address_space *mapping = inode->i_mapping;
377 XA_STATE(xas, &mapping->i_pages, 0);
378 struct folio *folio;
379 bool switched = false;
380
381 spin_lock(&inode->i_lock);
382 xa_lock_irq(&mapping->i_pages);
383
384 /*
385 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
386 * path owns the inode and we shouldn't modify ->i_io_list.
387 */
388 if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
389 goto skip_switch;
390
391 trace_inode_switch_wbs(inode, old_wb, new_wb);
392
393 /*
394 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
395 * to possibly dirty folios while PAGECACHE_TAG_WRITEBACK points to
396 * folios actually under writeback.
397 */
398 xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
399 if (folio_test_dirty(folio)) {
400 long nr = folio_nr_pages(folio);
401 wb_stat_mod(old_wb, WB_RECLAIMABLE, -nr);
402 wb_stat_mod(new_wb, WB_RECLAIMABLE, nr);
403 }
404 }
405
406 xas_set(&xas, 0);
407 xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
408 long nr = folio_nr_pages(folio);
409 WARN_ON_ONCE(!folio_test_writeback(folio));
410 wb_stat_mod(old_wb, WB_WRITEBACK, -nr);
411 wb_stat_mod(new_wb, WB_WRITEBACK, nr);
412 }
413
414 if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) {
415 atomic_dec(&old_wb->writeback_inodes);
416 atomic_inc(&new_wb->writeback_inodes);
417 }
418
419 wb_get(new_wb);
420
421 /*
422 * Transfer to @new_wb's IO list if necessary. If the @inode is dirty,
423 * the specific list @inode was on is ignored and the @inode is put on
424 * ->b_dirty which is always correct including from ->b_dirty_time.
425 * The transfer preserves @inode->dirtied_when ordering. If the @inode
426 * was clean, it means it was on the b_attached list, so move it onto
427 * the b_attached list of @new_wb.
428 */
429 if (!list_empty(&inode->i_io_list)) {
430 inode->i_wb = new_wb;
431
432 if (inode->i_state & I_DIRTY_ALL) {
433 struct inode *pos;
434
435 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
436 if (time_after_eq(inode->dirtied_when,
437 pos->dirtied_when))
438 break;
439 inode_io_list_move_locked(inode, new_wb,
440 pos->i_io_list.prev);
441 } else {
442 inode_cgwb_move_to_attached(inode, new_wb);
443 }
444 } else {
445 inode->i_wb = new_wb;
446 }
447
448 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
449 inode->i_wb_frn_winner = 0;
450 inode->i_wb_frn_avg_time = 0;
451 inode->i_wb_frn_history = 0;
452 switched = true;
453 skip_switch:
454 /*
455 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
456 * ensures that the new wb is visible if they see !I_WB_SWITCH.
457 */
458 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
459
460 xa_unlock_irq(&mapping->i_pages);
461 spin_unlock(&inode->i_lock);
462
463 return switched;
464 }
465
inode_switch_wbs_work_fn(struct work_struct * work)466 static void inode_switch_wbs_work_fn(struct work_struct *work)
467 {
468 struct inode_switch_wbs_context *isw =
469 container_of(to_rcu_work(work), struct inode_switch_wbs_context, work);
470 struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
471 struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
472 struct bdi_writeback *new_wb = isw->new_wb;
473 unsigned long nr_switched = 0;
474 struct inode **inodep;
475
476 /*
477 * If @inode switches cgwb membership while sync_inodes_sb() is
478 * being issued, sync_inodes_sb() might miss it. Synchronize.
479 */
480 down_read(&bdi->wb_switch_rwsem);
481
482 /*
483 * By the time control reaches here, RCU grace period has passed
484 * since I_WB_SWITCH assertion and all wb stat update transactions
485 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
486 * synchronizing against the i_pages lock.
487 *
488 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
489 * gives us exclusion against all wb related operations on @inode
490 * including IO list manipulations and stat updates.
491 */
492 if (old_wb < new_wb) {
493 spin_lock(&old_wb->list_lock);
494 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
495 } else {
496 spin_lock(&new_wb->list_lock);
497 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
498 }
499
500 for (inodep = isw->inodes; *inodep; inodep++) {
501 WARN_ON_ONCE((*inodep)->i_wb != old_wb);
502 if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
503 nr_switched++;
504 }
505
506 spin_unlock(&new_wb->list_lock);
507 spin_unlock(&old_wb->list_lock);
508
509 up_read(&bdi->wb_switch_rwsem);
510
511 if (nr_switched) {
512 wb_wakeup(new_wb);
513 wb_put_many(old_wb, nr_switched);
514 }
515
516 for (inodep = isw->inodes; *inodep; inodep++)
517 iput(*inodep);
518 wb_put(new_wb);
519 kfree(isw);
520 atomic_dec(&isw_nr_in_flight);
521 }
522
inode_prepare_wbs_switch(struct inode * inode,struct bdi_writeback * new_wb)523 static bool inode_prepare_wbs_switch(struct inode *inode,
524 struct bdi_writeback *new_wb)
525 {
526 /*
527 * Paired with smp_mb() in cgroup_writeback_umount().
528 * isw_nr_in_flight must be increased before checking SB_ACTIVE and
529 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
530 * in cgroup_writeback_umount() and the isw_wq will be not flushed.
531 */
532 smp_mb();
533
534 if (IS_DAX(inode))
535 return false;
536
537 /* while holding I_WB_SWITCH, no one else can update the association */
538 spin_lock(&inode->i_lock);
539 if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
540 inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
541 inode_to_wb(inode) == new_wb) {
542 spin_unlock(&inode->i_lock);
543 return false;
544 }
545 inode->i_state |= I_WB_SWITCH;
546 __iget(inode);
547 spin_unlock(&inode->i_lock);
548
549 return true;
550 }
551
552 /**
553 * inode_switch_wbs - change the wb association of an inode
554 * @inode: target inode
555 * @new_wb_id: ID of the new wb
556 *
557 * Switch @inode's wb association to the wb identified by @new_wb_id. The
558 * switching is performed asynchronously and may fail silently.
559 */
inode_switch_wbs(struct inode * inode,int new_wb_id)560 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
561 {
562 struct backing_dev_info *bdi = inode_to_bdi(inode);
563 struct cgroup_subsys_state *memcg_css;
564 struct inode_switch_wbs_context *isw;
565
566 /* noop if seems to be already in progress */
567 if (inode->i_state & I_WB_SWITCH)
568 return;
569
570 /* avoid queueing a new switch if too many are already in flight */
571 if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
572 return;
573
574 isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC);
575 if (!isw)
576 return;
577
578 atomic_inc(&isw_nr_in_flight);
579
580 /* find and pin the new wb */
581 rcu_read_lock();
582 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
583 if (memcg_css && !css_tryget(memcg_css))
584 memcg_css = NULL;
585 rcu_read_unlock();
586 if (!memcg_css)
587 goto out_free;
588
589 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
590 css_put(memcg_css);
591 if (!isw->new_wb)
592 goto out_free;
593
594 if (!inode_prepare_wbs_switch(inode, isw->new_wb))
595 goto out_free;
596
597 isw->inodes[0] = inode;
598
599 /*
600 * In addition to synchronizing among switchers, I_WB_SWITCH tells
601 * the RCU protected stat update paths to grab the i_page
602 * lock so that stat transfer can synchronize against them.
603 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
604 */
605 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
606 queue_rcu_work(isw_wq, &isw->work);
607 return;
608
609 out_free:
610 atomic_dec(&isw_nr_in_flight);
611 if (isw->new_wb)
612 wb_put(isw->new_wb);
613 kfree(isw);
614 }
615
isw_prepare_wbs_switch(struct inode_switch_wbs_context * isw,struct list_head * list,int * nr)616 static bool isw_prepare_wbs_switch(struct inode_switch_wbs_context *isw,
617 struct list_head *list, int *nr)
618 {
619 struct inode *inode;
620
621 list_for_each_entry(inode, list, i_io_list) {
622 if (!inode_prepare_wbs_switch(inode, isw->new_wb))
623 continue;
624
625 isw->inodes[*nr] = inode;
626 (*nr)++;
627
628 if (*nr >= WB_MAX_INODES_PER_ISW - 1)
629 return true;
630 }
631 return false;
632 }
633
634 /**
635 * cleanup_offline_cgwb - detach associated inodes
636 * @wb: target wb
637 *
638 * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
639 * to eventually release the dying @wb. Returns %true if not all inodes were
640 * switched and the function has to be restarted.
641 */
cleanup_offline_cgwb(struct bdi_writeback * wb)642 bool cleanup_offline_cgwb(struct bdi_writeback *wb)
643 {
644 struct cgroup_subsys_state *memcg_css;
645 struct inode_switch_wbs_context *isw;
646 int nr;
647 bool restart = false;
648
649 isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW),
650 GFP_KERNEL);
651 if (!isw)
652 return restart;
653
654 atomic_inc(&isw_nr_in_flight);
655
656 for (memcg_css = wb->memcg_css->parent; memcg_css;
657 memcg_css = memcg_css->parent) {
658 isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
659 if (isw->new_wb)
660 break;
661 }
662 if (unlikely(!isw->new_wb))
663 isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
664
665 nr = 0;
666 spin_lock(&wb->list_lock);
667 /*
668 * In addition to the inodes that have completed writeback, also switch
669 * cgwbs for those inodes only with dirty timestamps. Otherwise, those
670 * inodes won't be written back for a long time when lazytime is
671 * enabled, and thus pinning the dying cgwbs. It won't break the
672 * bandwidth restrictions, as writeback of inode metadata is not
673 * accounted for.
674 */
675 restart = isw_prepare_wbs_switch(isw, &wb->b_attached, &nr);
676 if (!restart)
677 restart = isw_prepare_wbs_switch(isw, &wb->b_dirty_time, &nr);
678 spin_unlock(&wb->list_lock);
679
680 /* no attached inodes? bail out */
681 if (nr == 0) {
682 atomic_dec(&isw_nr_in_flight);
683 wb_put(isw->new_wb);
684 kfree(isw);
685 return restart;
686 }
687
688 /*
689 * In addition to synchronizing among switchers, I_WB_SWITCH tells
690 * the RCU protected stat update paths to grab the i_page
691 * lock so that stat transfer can synchronize against them.
692 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
693 */
694 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
695 queue_rcu_work(isw_wq, &isw->work);
696
697 return restart;
698 }
699
700 /**
701 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
702 * @wbc: writeback_control of interest
703 * @inode: target inode
704 *
705 * @inode is locked and about to be written back under the control of @wbc.
706 * Record @inode's writeback context into @wbc and unlock the i_lock. On
707 * writeback completion, wbc_detach_inode() should be called. This is used
708 * to track the cgroup writeback context.
709 */
wbc_attach_and_unlock_inode(struct writeback_control * wbc,struct inode * inode)710 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
711 struct inode *inode)
712 {
713 if (!inode_cgwb_enabled(inode)) {
714 spin_unlock(&inode->i_lock);
715 return;
716 }
717
718 wbc->wb = inode_to_wb(inode);
719 wbc->inode = inode;
720
721 wbc->wb_id = wbc->wb->memcg_css->id;
722 wbc->wb_lcand_id = inode->i_wb_frn_winner;
723 wbc->wb_tcand_id = 0;
724 wbc->wb_bytes = 0;
725 wbc->wb_lcand_bytes = 0;
726 wbc->wb_tcand_bytes = 0;
727
728 wb_get(wbc->wb);
729 spin_unlock(&inode->i_lock);
730
731 /*
732 * A dying wb indicates that either the blkcg associated with the
733 * memcg changed or the associated memcg is dying. In the first
734 * case, a replacement wb should already be available and we should
735 * refresh the wb immediately. In the second case, trying to
736 * refresh will keep failing.
737 */
738 if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
739 inode_switch_wbs(inode, wbc->wb_id);
740 }
741 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
742
743 /**
744 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
745 * @wbc: writeback_control of the just finished writeback
746 *
747 * To be called after a writeback attempt of an inode finishes and undoes
748 * wbc_attach_and_unlock_inode(). Can be called under any context.
749 *
750 * As concurrent write sharing of an inode is expected to be very rare and
751 * memcg only tracks page ownership on first-use basis severely confining
752 * the usefulness of such sharing, cgroup writeback tracks ownership
753 * per-inode. While the support for concurrent write sharing of an inode
754 * is deemed unnecessary, an inode being written to by different cgroups at
755 * different points in time is a lot more common, and, more importantly,
756 * charging only by first-use can too readily lead to grossly incorrect
757 * behaviors (single foreign page can lead to gigabytes of writeback to be
758 * incorrectly attributed).
759 *
760 * To resolve this issue, cgroup writeback detects the majority dirtier of
761 * an inode and transfers the ownership to it. To avoid unnecessary
762 * oscillation, the detection mechanism keeps track of history and gives
763 * out the switch verdict only if the foreign usage pattern is stable over
764 * a certain amount of time and/or writeback attempts.
765 *
766 * On each writeback attempt, @wbc tries to detect the majority writer
767 * using Boyer-Moore majority vote algorithm. In addition to the byte
768 * count from the majority voting, it also counts the bytes written for the
769 * current wb and the last round's winner wb (max of last round's current
770 * wb, the winner from two rounds ago, and the last round's majority
771 * candidate). Keeping track of the historical winner helps the algorithm
772 * to semi-reliably detect the most active writer even when it's not the
773 * absolute majority.
774 *
775 * Once the winner of the round is determined, whether the winner is
776 * foreign or not and how much IO time the round consumed is recorded in
777 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
778 * over a certain threshold, the switch verdict is given.
779 */
wbc_detach_inode(struct writeback_control * wbc)780 void wbc_detach_inode(struct writeback_control *wbc)
781 {
782 struct bdi_writeback *wb = wbc->wb;
783 struct inode *inode = wbc->inode;
784 unsigned long avg_time, max_bytes, max_time;
785 u16 history;
786 int max_id;
787
788 if (!wb)
789 return;
790
791 history = inode->i_wb_frn_history;
792 avg_time = inode->i_wb_frn_avg_time;
793
794 /* pick the winner of this round */
795 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
796 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
797 max_id = wbc->wb_id;
798 max_bytes = wbc->wb_bytes;
799 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
800 max_id = wbc->wb_lcand_id;
801 max_bytes = wbc->wb_lcand_bytes;
802 } else {
803 max_id = wbc->wb_tcand_id;
804 max_bytes = wbc->wb_tcand_bytes;
805 }
806
807 /*
808 * Calculate the amount of IO time the winner consumed and fold it
809 * into the running average kept per inode. If the consumed IO
810 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
811 * deciding whether to switch or not. This is to prevent one-off
812 * small dirtiers from skewing the verdict.
813 */
814 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
815 wb->avg_write_bandwidth);
816 if (avg_time)
817 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
818 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
819 else
820 avg_time = max_time; /* immediate catch up on first run */
821
822 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
823 int slots;
824
825 /*
826 * The switch verdict is reached if foreign wb's consume
827 * more than a certain proportion of IO time in a
828 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
829 * history mask where each bit represents one sixteenth of
830 * the period. Determine the number of slots to shift into
831 * history from @max_time.
832 */
833 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
834 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
835 history <<= slots;
836 if (wbc->wb_id != max_id)
837 history |= (1U << slots) - 1;
838
839 if (history)
840 trace_inode_foreign_history(inode, wbc, history);
841
842 /*
843 * Switch if the current wb isn't the consistent winner.
844 * If there are multiple closely competing dirtiers, the
845 * inode may switch across them repeatedly over time, which
846 * is okay. The main goal is avoiding keeping an inode on
847 * the wrong wb for an extended period of time.
848 */
849 if (hweight16(history) > WB_FRN_HIST_THR_SLOTS)
850 inode_switch_wbs(inode, max_id);
851 }
852
853 /*
854 * Multiple instances of this function may race to update the
855 * following fields but we don't mind occassional inaccuracies.
856 */
857 inode->i_wb_frn_winner = max_id;
858 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
859 inode->i_wb_frn_history = history;
860
861 wb_put(wbc->wb);
862 wbc->wb = NULL;
863 }
864 EXPORT_SYMBOL_GPL(wbc_detach_inode);
865
866 /**
867 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
868 * @wbc: writeback_control of the writeback in progress
869 * @page: page being written out
870 * @bytes: number of bytes being written out
871 *
872 * @bytes from @page are about to written out during the writeback
873 * controlled by @wbc. Keep the book for foreign inode detection. See
874 * wbc_detach_inode().
875 */
wbc_account_cgroup_owner(struct writeback_control * wbc,struct page * page,size_t bytes)876 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
877 size_t bytes)
878 {
879 struct folio *folio;
880 struct cgroup_subsys_state *css;
881 int id;
882
883 /*
884 * pageout() path doesn't attach @wbc to the inode being written
885 * out. This is intentional as we don't want the function to block
886 * behind a slow cgroup. Ultimately, we want pageout() to kick off
887 * regular writeback instead of writing things out itself.
888 */
889 if (!wbc->wb || wbc->no_cgroup_owner)
890 return;
891
892 folio = page_folio(page);
893 css = mem_cgroup_css_from_folio(folio);
894 /* dead cgroups shouldn't contribute to inode ownership arbitration */
895 if (!(css->flags & CSS_ONLINE))
896 return;
897
898 id = css->id;
899
900 if (id == wbc->wb_id) {
901 wbc->wb_bytes += bytes;
902 return;
903 }
904
905 if (id == wbc->wb_lcand_id)
906 wbc->wb_lcand_bytes += bytes;
907
908 /* Boyer-Moore majority vote algorithm */
909 if (!wbc->wb_tcand_bytes)
910 wbc->wb_tcand_id = id;
911 if (id == wbc->wb_tcand_id)
912 wbc->wb_tcand_bytes += bytes;
913 else
914 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
915 }
916 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
917
918 /**
919 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
920 * @wb: target bdi_writeback to split @nr_pages to
921 * @nr_pages: number of pages to write for the whole bdi
922 *
923 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
924 * relation to the total write bandwidth of all wb's w/ dirty inodes on
925 * @wb->bdi.
926 */
wb_split_bdi_pages(struct bdi_writeback * wb,long nr_pages)927 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
928 {
929 unsigned long this_bw = wb->avg_write_bandwidth;
930 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
931
932 if (nr_pages == LONG_MAX)
933 return LONG_MAX;
934
935 /*
936 * This may be called on clean wb's and proportional distribution
937 * may not make sense, just use the original @nr_pages in those
938 * cases. In general, we wanna err on the side of writing more.
939 */
940 if (!tot_bw || this_bw >= tot_bw)
941 return nr_pages;
942 else
943 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
944 }
945
946 /**
947 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
948 * @bdi: target backing_dev_info
949 * @base_work: wb_writeback_work to issue
950 * @skip_if_busy: skip wb's which already have writeback in progress
951 *
952 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
953 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
954 * distributed to the busy wbs according to each wb's proportion in the
955 * total active write bandwidth of @bdi.
956 */
bdi_split_work_to_wbs(struct backing_dev_info * bdi,struct wb_writeback_work * base_work,bool skip_if_busy)957 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
958 struct wb_writeback_work *base_work,
959 bool skip_if_busy)
960 {
961 struct bdi_writeback *last_wb = NULL;
962 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
963 struct bdi_writeback, bdi_node);
964
965 might_sleep();
966 restart:
967 rcu_read_lock();
968 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
969 DEFINE_WB_COMPLETION(fallback_work_done, bdi);
970 struct wb_writeback_work fallback_work;
971 struct wb_writeback_work *work;
972 long nr_pages;
973
974 if (last_wb) {
975 wb_put(last_wb);
976 last_wb = NULL;
977 }
978
979 /* SYNC_ALL writes out I_DIRTY_TIME too */
980 if (!wb_has_dirty_io(wb) &&
981 (base_work->sync_mode == WB_SYNC_NONE ||
982 list_empty(&wb->b_dirty_time)))
983 continue;
984 if (skip_if_busy && writeback_in_progress(wb))
985 continue;
986
987 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
988
989 work = kmalloc(sizeof(*work), GFP_ATOMIC);
990 if (work) {
991 *work = *base_work;
992 work->nr_pages = nr_pages;
993 work->auto_free = 1;
994 wb_queue_work(wb, work);
995 continue;
996 }
997
998 /*
999 * If wb_tryget fails, the wb has been shutdown, skip it.
1000 *
1001 * Pin @wb so that it stays on @bdi->wb_list. This allows
1002 * continuing iteration from @wb after dropping and
1003 * regrabbing rcu read lock.
1004 */
1005 if (!wb_tryget(wb))
1006 continue;
1007
1008 /* alloc failed, execute synchronously using on-stack fallback */
1009 work = &fallback_work;
1010 *work = *base_work;
1011 work->nr_pages = nr_pages;
1012 work->auto_free = 0;
1013 work->done = &fallback_work_done;
1014
1015 wb_queue_work(wb, work);
1016 last_wb = wb;
1017
1018 rcu_read_unlock();
1019 wb_wait_for_completion(&fallback_work_done);
1020 goto restart;
1021 }
1022 rcu_read_unlock();
1023
1024 if (last_wb)
1025 wb_put(last_wb);
1026 }
1027
1028 /**
1029 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1030 * @bdi_id: target bdi id
1031 * @memcg_id: target memcg css id
1032 * @reason: reason why some writeback work initiated
1033 * @done: target wb_completion
1034 *
1035 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1036 * with the specified parameters.
1037 */
cgroup_writeback_by_id(u64 bdi_id,int memcg_id,enum wb_reason reason,struct wb_completion * done)1038 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id,
1039 enum wb_reason reason, struct wb_completion *done)
1040 {
1041 struct backing_dev_info *bdi;
1042 struct cgroup_subsys_state *memcg_css;
1043 struct bdi_writeback *wb;
1044 struct wb_writeback_work *work;
1045 unsigned long dirty;
1046 int ret;
1047
1048 /* lookup bdi and memcg */
1049 bdi = bdi_get_by_id(bdi_id);
1050 if (!bdi)
1051 return -ENOENT;
1052
1053 rcu_read_lock();
1054 memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1055 if (memcg_css && !css_tryget(memcg_css))
1056 memcg_css = NULL;
1057 rcu_read_unlock();
1058 if (!memcg_css) {
1059 ret = -ENOENT;
1060 goto out_bdi_put;
1061 }
1062
1063 /*
1064 * And find the associated wb. If the wb isn't there already
1065 * there's nothing to flush, don't create one.
1066 */
1067 wb = wb_get_lookup(bdi, memcg_css);
1068 if (!wb) {
1069 ret = -ENOENT;
1070 goto out_css_put;
1071 }
1072
1073 /*
1074 * The caller is attempting to write out most of
1075 * the currently dirty pages. Let's take the current dirty page
1076 * count and inflate it by 25% which should be large enough to
1077 * flush out most dirty pages while avoiding getting livelocked by
1078 * concurrent dirtiers.
1079 *
1080 * BTW the memcg stats are flushed periodically and this is best-effort
1081 * estimation, so some potential error is ok.
1082 */
1083 dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY);
1084 dirty = dirty * 10 / 8;
1085
1086 /* issue the writeback work */
1087 work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
1088 if (work) {
1089 work->nr_pages = dirty;
1090 work->sync_mode = WB_SYNC_NONE;
1091 work->range_cyclic = 1;
1092 work->reason = reason;
1093 work->done = done;
1094 work->auto_free = 1;
1095 wb_queue_work(wb, work);
1096 ret = 0;
1097 } else {
1098 ret = -ENOMEM;
1099 }
1100
1101 wb_put(wb);
1102 out_css_put:
1103 css_put(memcg_css);
1104 out_bdi_put:
1105 bdi_put(bdi);
1106 return ret;
1107 }
1108
1109 /**
1110 * cgroup_writeback_umount - flush inode wb switches for umount
1111 *
1112 * This function is called when a super_block is about to be destroyed and
1113 * flushes in-flight inode wb switches. An inode wb switch goes through
1114 * RCU and then workqueue, so the two need to be flushed in order to ensure
1115 * that all previously scheduled switches are finished. As wb switches are
1116 * rare occurrences and synchronize_rcu() can take a while, perform
1117 * flushing iff wb switches are in flight.
1118 */
cgroup_writeback_umount(void)1119 void cgroup_writeback_umount(void)
1120 {
1121 /*
1122 * SB_ACTIVE should be reliably cleared before checking
1123 * isw_nr_in_flight, see generic_shutdown_super().
1124 */
1125 smp_mb();
1126
1127 if (atomic_read(&isw_nr_in_flight)) {
1128 /*
1129 * Use rcu_barrier() to wait for all pending callbacks to
1130 * ensure that all in-flight wb switches are in the workqueue.
1131 */
1132 rcu_barrier();
1133 flush_workqueue(isw_wq);
1134 }
1135 }
1136
cgroup_writeback_init(void)1137 static int __init cgroup_writeback_init(void)
1138 {
1139 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1140 if (!isw_wq)
1141 return -ENOMEM;
1142 return 0;
1143 }
1144 fs_initcall(cgroup_writeback_init);
1145
1146 #else /* CONFIG_CGROUP_WRITEBACK */
1147
bdi_down_write_wb_switch_rwsem(struct backing_dev_info * bdi)1148 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
bdi_up_write_wb_switch_rwsem(struct backing_dev_info * bdi)1149 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1150
inode_cgwb_move_to_attached(struct inode * inode,struct bdi_writeback * wb)1151 static void inode_cgwb_move_to_attached(struct inode *inode,
1152 struct bdi_writeback *wb)
1153 {
1154 assert_spin_locked(&wb->list_lock);
1155 assert_spin_locked(&inode->i_lock);
1156 WARN_ON_ONCE(inode->i_state & I_FREEING);
1157
1158 inode->i_state &= ~I_SYNC_QUEUED;
1159 list_del_init(&inode->i_io_list);
1160 wb_io_lists_depopulated(wb);
1161 }
1162
1163 static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode * inode)1164 locked_inode_to_wb_and_lock_list(struct inode *inode)
1165 __releases(&inode->i_lock)
1166 __acquires(&wb->list_lock)
1167 {
1168 struct bdi_writeback *wb = inode_to_wb(inode);
1169
1170 spin_unlock(&inode->i_lock);
1171 spin_lock(&wb->list_lock);
1172 return wb;
1173 }
1174
inode_to_wb_and_lock_list(struct inode * inode)1175 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1176 __acquires(&wb->list_lock)
1177 {
1178 struct bdi_writeback *wb = inode_to_wb(inode);
1179
1180 spin_lock(&wb->list_lock);
1181 return wb;
1182 }
1183
wb_split_bdi_pages(struct bdi_writeback * wb,long nr_pages)1184 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1185 {
1186 return nr_pages;
1187 }
1188
bdi_split_work_to_wbs(struct backing_dev_info * bdi,struct wb_writeback_work * base_work,bool skip_if_busy)1189 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1190 struct wb_writeback_work *base_work,
1191 bool skip_if_busy)
1192 {
1193 might_sleep();
1194
1195 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1196 base_work->auto_free = 0;
1197 wb_queue_work(&bdi->wb, base_work);
1198 }
1199 }
1200
1201 #endif /* CONFIG_CGROUP_WRITEBACK */
1202
1203 /*
1204 * Add in the number of potentially dirty inodes, because each inode
1205 * write can dirty pagecache in the underlying blockdev.
1206 */
get_nr_dirty_pages(void)1207 static unsigned long get_nr_dirty_pages(void)
1208 {
1209 return global_node_page_state(NR_FILE_DIRTY) +
1210 get_nr_dirty_inodes();
1211 }
1212
wb_start_writeback(struct bdi_writeback * wb,enum wb_reason reason)1213 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1214 {
1215 if (!wb_has_dirty_io(wb))
1216 return;
1217
1218 /*
1219 * All callers of this function want to start writeback of all
1220 * dirty pages. Places like vmscan can call this at a very
1221 * high frequency, causing pointless allocations of tons of
1222 * work items and keeping the flusher threads busy retrieving
1223 * that work. Ensure that we only allow one of them pending and
1224 * inflight at the time.
1225 */
1226 if (test_bit(WB_start_all, &wb->state) ||
1227 test_and_set_bit(WB_start_all, &wb->state))
1228 return;
1229
1230 wb->start_all_reason = reason;
1231 wb_wakeup(wb);
1232 }
1233
1234 /**
1235 * wb_start_background_writeback - start background writeback
1236 * @wb: bdi_writback to write from
1237 *
1238 * Description:
1239 * This makes sure WB_SYNC_NONE background writeback happens. When
1240 * this function returns, it is only guaranteed that for given wb
1241 * some IO is happening if we are over background dirty threshold.
1242 * Caller need not hold sb s_umount semaphore.
1243 */
wb_start_background_writeback(struct bdi_writeback * wb)1244 void wb_start_background_writeback(struct bdi_writeback *wb)
1245 {
1246 /*
1247 * We just wake up the flusher thread. It will perform background
1248 * writeback as soon as there is no other work to do.
1249 */
1250 trace_writeback_wake_background(wb);
1251 wb_wakeup(wb);
1252 }
1253
1254 /*
1255 * Remove the inode from the writeback list it is on.
1256 */
inode_io_list_del(struct inode * inode)1257 void inode_io_list_del(struct inode *inode)
1258 {
1259 struct bdi_writeback *wb;
1260
1261 wb = inode_to_wb_and_lock_list(inode);
1262 spin_lock(&inode->i_lock);
1263
1264 inode->i_state &= ~I_SYNC_QUEUED;
1265 list_del_init(&inode->i_io_list);
1266 wb_io_lists_depopulated(wb);
1267
1268 spin_unlock(&inode->i_lock);
1269 spin_unlock(&wb->list_lock);
1270 }
1271 EXPORT_SYMBOL(inode_io_list_del);
1272
1273 /*
1274 * mark an inode as under writeback on the sb
1275 */
sb_mark_inode_writeback(struct inode * inode)1276 void sb_mark_inode_writeback(struct inode *inode)
1277 {
1278 struct super_block *sb = inode->i_sb;
1279 unsigned long flags;
1280
1281 if (list_empty(&inode->i_wb_list)) {
1282 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1283 if (list_empty(&inode->i_wb_list)) {
1284 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1285 trace_sb_mark_inode_writeback(inode);
1286 }
1287 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1288 }
1289 }
1290
1291 /*
1292 * clear an inode as under writeback on the sb
1293 */
sb_clear_inode_writeback(struct inode * inode)1294 void sb_clear_inode_writeback(struct inode *inode)
1295 {
1296 struct super_block *sb = inode->i_sb;
1297 unsigned long flags;
1298
1299 if (!list_empty(&inode->i_wb_list)) {
1300 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1301 if (!list_empty(&inode->i_wb_list)) {
1302 list_del_init(&inode->i_wb_list);
1303 trace_sb_clear_inode_writeback(inode);
1304 }
1305 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1306 }
1307 }
1308
1309 /*
1310 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1311 * furthest end of its superblock's dirty-inode list.
1312 *
1313 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1314 * already the most-recently-dirtied inode on the b_dirty list. If that is
1315 * the case then the inode must have been redirtied while it was being written
1316 * out and we don't reset its dirtied_when.
1317 */
redirty_tail_locked(struct inode * inode,struct bdi_writeback * wb)1318 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1319 {
1320 assert_spin_locked(&inode->i_lock);
1321
1322 inode->i_state &= ~I_SYNC_QUEUED;
1323 /*
1324 * When the inode is being freed just don't bother with dirty list
1325 * tracking. Flush worker will ignore this inode anyway and it will
1326 * trigger assertions in inode_io_list_move_locked().
1327 */
1328 if (inode->i_state & I_FREEING) {
1329 list_del_init(&inode->i_io_list);
1330 wb_io_lists_depopulated(wb);
1331 return;
1332 }
1333 if (!list_empty(&wb->b_dirty)) {
1334 struct inode *tail;
1335
1336 tail = wb_inode(wb->b_dirty.next);
1337 if (time_before(inode->dirtied_when, tail->dirtied_when))
1338 inode->dirtied_when = jiffies;
1339 }
1340 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1341 }
1342
redirty_tail(struct inode * inode,struct bdi_writeback * wb)1343 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1344 {
1345 spin_lock(&inode->i_lock);
1346 redirty_tail_locked(inode, wb);
1347 spin_unlock(&inode->i_lock);
1348 }
1349
1350 /*
1351 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1352 */
requeue_io(struct inode * inode,struct bdi_writeback * wb)1353 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1354 {
1355 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1356 }
1357
inode_sync_complete(struct inode * inode)1358 static void inode_sync_complete(struct inode *inode)
1359 {
1360 inode->i_state &= ~I_SYNC;
1361 /* If inode is clean an unused, put it into LRU now... */
1362 inode_add_lru(inode);
1363 /* Waiters must see I_SYNC cleared before being woken up */
1364 smp_mb();
1365 wake_up_bit(&inode->i_state, __I_SYNC);
1366 }
1367
inode_dirtied_after(struct inode * inode,unsigned long t)1368 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1369 {
1370 bool ret = time_after(inode->dirtied_when, t);
1371 #ifndef CONFIG_64BIT
1372 /*
1373 * For inodes being constantly redirtied, dirtied_when can get stuck.
1374 * It _appears_ to be in the future, but is actually in distant past.
1375 * This test is necessary to prevent such wrapped-around relative times
1376 * from permanently stopping the whole bdi writeback.
1377 */
1378 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1379 #endif
1380 return ret;
1381 }
1382
1383 /*
1384 * Move expired (dirtied before dirtied_before) dirty inodes from
1385 * @delaying_queue to @dispatch_queue.
1386 */
move_expired_inodes(struct list_head * delaying_queue,struct list_head * dispatch_queue,unsigned long dirtied_before)1387 static int move_expired_inodes(struct list_head *delaying_queue,
1388 struct list_head *dispatch_queue,
1389 unsigned long dirtied_before)
1390 {
1391 LIST_HEAD(tmp);
1392 struct list_head *pos, *node;
1393 struct super_block *sb = NULL;
1394 struct inode *inode;
1395 int do_sb_sort = 0;
1396 int moved = 0;
1397
1398 while (!list_empty(delaying_queue)) {
1399 inode = wb_inode(delaying_queue->prev);
1400 if (inode_dirtied_after(inode, dirtied_before))
1401 break;
1402 spin_lock(&inode->i_lock);
1403 list_move(&inode->i_io_list, &tmp);
1404 moved++;
1405 inode->i_state |= I_SYNC_QUEUED;
1406 spin_unlock(&inode->i_lock);
1407 if (sb_is_blkdev_sb(inode->i_sb))
1408 continue;
1409 if (sb && sb != inode->i_sb)
1410 do_sb_sort = 1;
1411 sb = inode->i_sb;
1412 }
1413
1414 /* just one sb in list, splice to dispatch_queue and we're done */
1415 if (!do_sb_sort) {
1416 list_splice(&tmp, dispatch_queue);
1417 goto out;
1418 }
1419
1420 /*
1421 * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue',
1422 * we don't take inode->i_lock here because it is just a pointless overhead.
1423 * Inode is already marked as I_SYNC_QUEUED so writeback list handling is
1424 * fully under our control.
1425 */
1426 while (!list_empty(&tmp)) {
1427 sb = wb_inode(tmp.prev)->i_sb;
1428 list_for_each_prev_safe(pos, node, &tmp) {
1429 inode = wb_inode(pos);
1430 if (inode->i_sb == sb)
1431 list_move(&inode->i_io_list, dispatch_queue);
1432 }
1433 }
1434 out:
1435 return moved;
1436 }
1437
1438 /*
1439 * Queue all expired dirty inodes for io, eldest first.
1440 * Before
1441 * newly dirtied b_dirty b_io b_more_io
1442 * =============> gf edc BA
1443 * After
1444 * newly dirtied b_dirty b_io b_more_io
1445 * =============> g fBAedc
1446 * |
1447 * +--> dequeue for IO
1448 */
queue_io(struct bdi_writeback * wb,struct wb_writeback_work * work,unsigned long dirtied_before)1449 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1450 unsigned long dirtied_before)
1451 {
1452 int moved;
1453 unsigned long time_expire_jif = dirtied_before;
1454
1455 assert_spin_locked(&wb->list_lock);
1456 list_splice_init(&wb->b_more_io, &wb->b_io);
1457 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1458 if (!work->for_sync)
1459 time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1460 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1461 time_expire_jif);
1462 if (moved)
1463 wb_io_lists_populated(wb);
1464 trace_writeback_queue_io(wb, work, dirtied_before, moved);
1465 }
1466
write_inode(struct inode * inode,struct writeback_control * wbc)1467 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1468 {
1469 int ret;
1470
1471 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1472 trace_writeback_write_inode_start(inode, wbc);
1473 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1474 trace_writeback_write_inode(inode, wbc);
1475 return ret;
1476 }
1477 return 0;
1478 }
1479
1480 /*
1481 * Wait for writeback on an inode to complete. Called with i_lock held.
1482 * Caller must make sure inode cannot go away when we drop i_lock.
1483 */
__inode_wait_for_writeback(struct inode * inode)1484 static void __inode_wait_for_writeback(struct inode *inode)
1485 __releases(inode->i_lock)
1486 __acquires(inode->i_lock)
1487 {
1488 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1489 wait_queue_head_t *wqh;
1490
1491 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1492 while (inode->i_state & I_SYNC) {
1493 spin_unlock(&inode->i_lock);
1494 __wait_on_bit(wqh, &wq, bit_wait,
1495 TASK_UNINTERRUPTIBLE);
1496 spin_lock(&inode->i_lock);
1497 }
1498 }
1499
1500 /*
1501 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1502 */
inode_wait_for_writeback(struct inode * inode)1503 void inode_wait_for_writeback(struct inode *inode)
1504 {
1505 spin_lock(&inode->i_lock);
1506 __inode_wait_for_writeback(inode);
1507 spin_unlock(&inode->i_lock);
1508 }
1509
1510 /*
1511 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1512 * held and drops it. It is aimed for callers not holding any inode reference
1513 * so once i_lock is dropped, inode can go away.
1514 */
inode_sleep_on_writeback(struct inode * inode)1515 static void inode_sleep_on_writeback(struct inode *inode)
1516 __releases(inode->i_lock)
1517 {
1518 DEFINE_WAIT(wait);
1519 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1520 int sleep;
1521
1522 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1523 sleep = inode->i_state & I_SYNC;
1524 spin_unlock(&inode->i_lock);
1525 if (sleep)
1526 schedule();
1527 finish_wait(wqh, &wait);
1528 }
1529
1530 /*
1531 * Find proper writeback list for the inode depending on its current state and
1532 * possibly also change of its state while we were doing writeback. Here we
1533 * handle things such as livelock prevention or fairness of writeback among
1534 * inodes. This function can be called only by flusher thread - noone else
1535 * processes all inodes in writeback lists and requeueing inodes behind flusher
1536 * thread's back can have unexpected consequences.
1537 */
requeue_inode(struct inode * inode,struct bdi_writeback * wb,struct writeback_control * wbc)1538 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1539 struct writeback_control *wbc)
1540 {
1541 if (inode->i_state & I_FREEING)
1542 return;
1543
1544 /*
1545 * Sync livelock prevention. Each inode is tagged and synced in one
1546 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1547 * the dirty time to prevent enqueue and sync it again.
1548 */
1549 if ((inode->i_state & I_DIRTY) &&
1550 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1551 inode->dirtied_when = jiffies;
1552
1553 if (wbc->pages_skipped) {
1554 /*
1555 * Writeback is not making progress due to locked buffers.
1556 * Skip this inode for now. Although having skipped pages
1557 * is odd for clean inodes, it can happen for some
1558 * filesystems so handle that gracefully.
1559 */
1560 if (inode->i_state & I_DIRTY_ALL)
1561 redirty_tail_locked(inode, wb);
1562 else
1563 inode_cgwb_move_to_attached(inode, wb);
1564 return;
1565 }
1566
1567 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1568 /*
1569 * We didn't write back all the pages. nfs_writepages()
1570 * sometimes bales out without doing anything.
1571 */
1572 if (wbc->nr_to_write <= 0) {
1573 /* Slice used up. Queue for next turn. */
1574 requeue_io(inode, wb);
1575 } else {
1576 /*
1577 * Writeback blocked by something other than
1578 * congestion. Delay the inode for some time to
1579 * avoid spinning on the CPU (100% iowait)
1580 * retrying writeback of the dirty page/inode
1581 * that cannot be performed immediately.
1582 */
1583 redirty_tail_locked(inode, wb);
1584 }
1585 } else if (inode->i_state & I_DIRTY) {
1586 /*
1587 * Filesystems can dirty the inode during writeback operations,
1588 * such as delayed allocation during submission or metadata
1589 * updates after data IO completion.
1590 */
1591 redirty_tail_locked(inode, wb);
1592 } else if (inode->i_state & I_DIRTY_TIME) {
1593 inode->dirtied_when = jiffies;
1594 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1595 inode->i_state &= ~I_SYNC_QUEUED;
1596 } else {
1597 /* The inode is clean. Remove from writeback lists. */
1598 inode_cgwb_move_to_attached(inode, wb);
1599 }
1600 }
1601
1602 /*
1603 * Write out an inode and its dirty pages (or some of its dirty pages, depending
1604 * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1605 *
1606 * This doesn't remove the inode from the writeback list it is on, except
1607 * potentially to move it from b_dirty_time to b_dirty due to timestamp
1608 * expiration. The caller is otherwise responsible for writeback list handling.
1609 *
1610 * The caller is also responsible for setting the I_SYNC flag beforehand and
1611 * calling inode_sync_complete() to clear it afterwards.
1612 */
1613 static int
__writeback_single_inode(struct inode * inode,struct writeback_control * wbc)1614 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1615 {
1616 struct address_space *mapping = inode->i_mapping;
1617 long nr_to_write = wbc->nr_to_write;
1618 unsigned dirty;
1619 int ret;
1620
1621 WARN_ON(!(inode->i_state & I_SYNC));
1622
1623 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1624
1625 ret = do_writepages(mapping, wbc);
1626
1627 /*
1628 * Make sure to wait on the data before writing out the metadata.
1629 * This is important for filesystems that modify metadata on data
1630 * I/O completion. We don't do it for sync(2) writeback because it has a
1631 * separate, external IO completion path and ->sync_fs for guaranteeing
1632 * inode metadata is written back correctly.
1633 */
1634 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1635 int err = filemap_fdatawait(mapping);
1636 if (ret == 0)
1637 ret = err;
1638 }
1639
1640 /*
1641 * If the inode has dirty timestamps and we need to write them, call
1642 * mark_inode_dirty_sync() to notify the filesystem about it and to
1643 * change I_DIRTY_TIME into I_DIRTY_SYNC.
1644 */
1645 if ((inode->i_state & I_DIRTY_TIME) &&
1646 (wbc->sync_mode == WB_SYNC_ALL ||
1647 time_after(jiffies, inode->dirtied_time_when +
1648 dirtytime_expire_interval * HZ))) {
1649 trace_writeback_lazytime(inode);
1650 mark_inode_dirty_sync(inode);
1651 }
1652
1653 /*
1654 * Get and clear the dirty flags from i_state. This needs to be done
1655 * after calling writepages because some filesystems may redirty the
1656 * inode during writepages due to delalloc. It also needs to be done
1657 * after handling timestamp expiration, as that may dirty the inode too.
1658 */
1659 spin_lock(&inode->i_lock);
1660 dirty = inode->i_state & I_DIRTY;
1661 inode->i_state &= ~dirty;
1662
1663 /*
1664 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1665 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1666 * either they see the I_DIRTY bits cleared or we see the dirtied
1667 * inode.
1668 *
1669 * I_DIRTY_PAGES is always cleared together above even if @mapping
1670 * still has dirty pages. The flag is reinstated after smp_mb() if
1671 * necessary. This guarantees that either __mark_inode_dirty()
1672 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1673 */
1674 smp_mb();
1675
1676 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1677 inode->i_state |= I_DIRTY_PAGES;
1678 else if (unlikely(inode->i_state & I_PINNING_FSCACHE_WB)) {
1679 if (!(inode->i_state & I_DIRTY_PAGES)) {
1680 inode->i_state &= ~I_PINNING_FSCACHE_WB;
1681 wbc->unpinned_fscache_wb = true;
1682 dirty |= I_PINNING_FSCACHE_WB; /* Cause write_inode */
1683 }
1684 }
1685
1686 spin_unlock(&inode->i_lock);
1687
1688 /* Don't write the inode if only I_DIRTY_PAGES was set */
1689 if (dirty & ~I_DIRTY_PAGES) {
1690 int err = write_inode(inode, wbc);
1691 if (ret == 0)
1692 ret = err;
1693 }
1694 wbc->unpinned_fscache_wb = false;
1695 trace_writeback_single_inode(inode, wbc, nr_to_write);
1696 return ret;
1697 }
1698
1699 /*
1700 * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1701 * the regular batched writeback done by the flusher threads in
1702 * writeback_sb_inodes(). @wbc controls various aspects of the write, such as
1703 * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1704 *
1705 * To prevent the inode from going away, either the caller must have a reference
1706 * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
1707 */
writeback_single_inode(struct inode * inode,struct writeback_control * wbc)1708 static int writeback_single_inode(struct inode *inode,
1709 struct writeback_control *wbc)
1710 {
1711 struct bdi_writeback *wb;
1712 int ret = 0;
1713
1714 spin_lock(&inode->i_lock);
1715 if (!atomic_read(&inode->i_count))
1716 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1717 else
1718 WARN_ON(inode->i_state & I_WILL_FREE);
1719
1720 if (inode->i_state & I_SYNC) {
1721 /*
1722 * Writeback is already running on the inode. For WB_SYNC_NONE,
1723 * that's enough and we can just return. For WB_SYNC_ALL, we
1724 * must wait for the existing writeback to complete, then do
1725 * writeback again if there's anything left.
1726 */
1727 if (wbc->sync_mode != WB_SYNC_ALL)
1728 goto out;
1729 __inode_wait_for_writeback(inode);
1730 }
1731 WARN_ON(inode->i_state & I_SYNC);
1732 /*
1733 * If the inode is already fully clean, then there's nothing to do.
1734 *
1735 * For data-integrity syncs we also need to check whether any pages are
1736 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback. If
1737 * there are any such pages, we'll need to wait for them.
1738 */
1739 if (!(inode->i_state & I_DIRTY_ALL) &&
1740 (wbc->sync_mode != WB_SYNC_ALL ||
1741 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1742 goto out;
1743 inode->i_state |= I_SYNC;
1744 wbc_attach_and_unlock_inode(wbc, inode);
1745
1746 ret = __writeback_single_inode(inode, wbc);
1747
1748 wbc_detach_inode(wbc);
1749
1750 wb = inode_to_wb_and_lock_list(inode);
1751 spin_lock(&inode->i_lock);
1752 /*
1753 * If the inode is freeing, its i_io_list shoudn't be updated
1754 * as it can be finally deleted at this moment.
1755 */
1756 if (!(inode->i_state & I_FREEING)) {
1757 /*
1758 * If the inode is now fully clean, then it can be safely
1759 * removed from its writeback list (if any). Otherwise the
1760 * flusher threads are responsible for the writeback lists.
1761 */
1762 if (!(inode->i_state & I_DIRTY_ALL))
1763 inode_cgwb_move_to_attached(inode, wb);
1764 else if (!(inode->i_state & I_SYNC_QUEUED)) {
1765 if ((inode->i_state & I_DIRTY))
1766 redirty_tail_locked(inode, wb);
1767 else if (inode->i_state & I_DIRTY_TIME) {
1768 inode->dirtied_when = jiffies;
1769 inode_io_list_move_locked(inode,
1770 wb,
1771 &wb->b_dirty_time);
1772 }
1773 }
1774 }
1775
1776 spin_unlock(&wb->list_lock);
1777 inode_sync_complete(inode);
1778 out:
1779 spin_unlock(&inode->i_lock);
1780 return ret;
1781 }
1782
writeback_chunk_size(struct bdi_writeback * wb,struct wb_writeback_work * work)1783 static long writeback_chunk_size(struct bdi_writeback *wb,
1784 struct wb_writeback_work *work)
1785 {
1786 long pages;
1787
1788 /*
1789 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1790 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1791 * here avoids calling into writeback_inodes_wb() more than once.
1792 *
1793 * The intended call sequence for WB_SYNC_ALL writeback is:
1794 *
1795 * wb_writeback()
1796 * writeback_sb_inodes() <== called only once
1797 * write_cache_pages() <== called once for each inode
1798 * (quickly) tag currently dirty pages
1799 * (maybe slowly) sync all tagged pages
1800 */
1801 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1802 pages = LONG_MAX;
1803 else {
1804 pages = min(wb->avg_write_bandwidth / 2,
1805 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1806 pages = min(pages, work->nr_pages);
1807 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1808 MIN_WRITEBACK_PAGES);
1809 }
1810
1811 return pages;
1812 }
1813
1814 /*
1815 * Write a portion of b_io inodes which belong to @sb.
1816 *
1817 * Return the number of pages and/or inodes written.
1818 *
1819 * NOTE! This is called with wb->list_lock held, and will
1820 * unlock and relock that for each inode it ends up doing
1821 * IO for.
1822 */
writeback_sb_inodes(struct super_block * sb,struct bdi_writeback * wb,struct wb_writeback_work * work)1823 static long writeback_sb_inodes(struct super_block *sb,
1824 struct bdi_writeback *wb,
1825 struct wb_writeback_work *work)
1826 {
1827 struct writeback_control wbc = {
1828 .sync_mode = work->sync_mode,
1829 .tagged_writepages = work->tagged_writepages,
1830 .for_kupdate = work->for_kupdate,
1831 .for_background = work->for_background,
1832 .for_sync = work->for_sync,
1833 .range_cyclic = work->range_cyclic,
1834 .range_start = 0,
1835 .range_end = LLONG_MAX,
1836 };
1837 unsigned long start_time = jiffies;
1838 long write_chunk;
1839 long total_wrote = 0; /* count both pages and inodes */
1840
1841 while (!list_empty(&wb->b_io)) {
1842 struct inode *inode = wb_inode(wb->b_io.prev);
1843 struct bdi_writeback *tmp_wb;
1844 long wrote;
1845
1846 if (inode->i_sb != sb) {
1847 if (work->sb) {
1848 /*
1849 * We only want to write back data for this
1850 * superblock, move all inodes not belonging
1851 * to it back onto the dirty list.
1852 */
1853 redirty_tail(inode, wb);
1854 continue;
1855 }
1856
1857 /*
1858 * The inode belongs to a different superblock.
1859 * Bounce back to the caller to unpin this and
1860 * pin the next superblock.
1861 */
1862 break;
1863 }
1864
1865 /*
1866 * Don't bother with new inodes or inodes being freed, first
1867 * kind does not need periodic writeout yet, and for the latter
1868 * kind writeout is handled by the freer.
1869 */
1870 spin_lock(&inode->i_lock);
1871 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1872 redirty_tail_locked(inode, wb);
1873 spin_unlock(&inode->i_lock);
1874 continue;
1875 }
1876 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1877 /*
1878 * If this inode is locked for writeback and we are not
1879 * doing writeback-for-data-integrity, move it to
1880 * b_more_io so that writeback can proceed with the
1881 * other inodes on s_io.
1882 *
1883 * We'll have another go at writing back this inode
1884 * when we completed a full scan of b_io.
1885 */
1886 requeue_io(inode, wb);
1887 spin_unlock(&inode->i_lock);
1888 trace_writeback_sb_inodes_requeue(inode);
1889 continue;
1890 }
1891 spin_unlock(&wb->list_lock);
1892
1893 /*
1894 * We already requeued the inode if it had I_SYNC set and we
1895 * are doing WB_SYNC_NONE writeback. So this catches only the
1896 * WB_SYNC_ALL case.
1897 */
1898 if (inode->i_state & I_SYNC) {
1899 /* Wait for I_SYNC. This function drops i_lock... */
1900 inode_sleep_on_writeback(inode);
1901 /* Inode may be gone, start again */
1902 spin_lock(&wb->list_lock);
1903 continue;
1904 }
1905 inode->i_state |= I_SYNC;
1906 wbc_attach_and_unlock_inode(&wbc, inode);
1907
1908 write_chunk = writeback_chunk_size(wb, work);
1909 wbc.nr_to_write = write_chunk;
1910 wbc.pages_skipped = 0;
1911
1912 /*
1913 * We use I_SYNC to pin the inode in memory. While it is set
1914 * evict_inode() will wait so the inode cannot be freed.
1915 */
1916 __writeback_single_inode(inode, &wbc);
1917
1918 wbc_detach_inode(&wbc);
1919 work->nr_pages -= write_chunk - wbc.nr_to_write;
1920 wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped;
1921 wrote = wrote < 0 ? 0 : wrote;
1922 total_wrote += wrote;
1923
1924 if (need_resched()) {
1925 /*
1926 * We're trying to balance between building up a nice
1927 * long list of IOs to improve our merge rate, and
1928 * getting those IOs out quickly for anyone throttling
1929 * in balance_dirty_pages(). cond_resched() doesn't
1930 * unplug, so get our IOs out the door before we
1931 * give up the CPU.
1932 */
1933 blk_flush_plug(current->plug, false);
1934 cond_resched();
1935 }
1936
1937 /*
1938 * Requeue @inode if still dirty. Be careful as @inode may
1939 * have been switched to another wb in the meantime.
1940 */
1941 tmp_wb = inode_to_wb_and_lock_list(inode);
1942 spin_lock(&inode->i_lock);
1943 if (!(inode->i_state & I_DIRTY_ALL))
1944 total_wrote++;
1945 requeue_inode(inode, tmp_wb, &wbc);
1946 inode_sync_complete(inode);
1947 spin_unlock(&inode->i_lock);
1948
1949 if (unlikely(tmp_wb != wb)) {
1950 spin_unlock(&tmp_wb->list_lock);
1951 spin_lock(&wb->list_lock);
1952 }
1953
1954 /*
1955 * bail out to wb_writeback() often enough to check
1956 * background threshold and other termination conditions.
1957 */
1958 if (total_wrote) {
1959 if (time_is_before_jiffies(start_time + HZ / 10UL))
1960 break;
1961 if (work->nr_pages <= 0)
1962 break;
1963 }
1964 }
1965 return total_wrote;
1966 }
1967
__writeback_inodes_wb(struct bdi_writeback * wb,struct wb_writeback_work * work)1968 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1969 struct wb_writeback_work *work)
1970 {
1971 unsigned long start_time = jiffies;
1972 long wrote = 0;
1973
1974 while (!list_empty(&wb->b_io)) {
1975 struct inode *inode = wb_inode(wb->b_io.prev);
1976 struct super_block *sb = inode->i_sb;
1977
1978 if (!super_trylock_shared(sb)) {
1979 /*
1980 * super_trylock_shared() may fail consistently due to
1981 * s_umount being grabbed by someone else. Don't use
1982 * requeue_io() to avoid busy retrying the inode/sb.
1983 */
1984 redirty_tail(inode, wb);
1985 continue;
1986 }
1987 wrote += writeback_sb_inodes(sb, wb, work);
1988 up_read(&sb->s_umount);
1989
1990 /* refer to the same tests at the end of writeback_sb_inodes */
1991 if (wrote) {
1992 if (time_is_before_jiffies(start_time + HZ / 10UL))
1993 break;
1994 if (work->nr_pages <= 0)
1995 break;
1996 }
1997 }
1998 /* Leave any unwritten inodes on b_io */
1999 return wrote;
2000 }
2001
writeback_inodes_wb(struct bdi_writeback * wb,long nr_pages,enum wb_reason reason)2002 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
2003 enum wb_reason reason)
2004 {
2005 struct wb_writeback_work work = {
2006 .nr_pages = nr_pages,
2007 .sync_mode = WB_SYNC_NONE,
2008 .range_cyclic = 1,
2009 .reason = reason,
2010 };
2011 struct blk_plug plug;
2012
2013 blk_start_plug(&plug);
2014 spin_lock(&wb->list_lock);
2015 if (list_empty(&wb->b_io))
2016 queue_io(wb, &work, jiffies);
2017 __writeback_inodes_wb(wb, &work);
2018 spin_unlock(&wb->list_lock);
2019 blk_finish_plug(&plug);
2020
2021 return nr_pages - work.nr_pages;
2022 }
2023
2024 /*
2025 * Explicit flushing or periodic writeback of "old" data.
2026 *
2027 * Define "old": the first time one of an inode's pages is dirtied, we mark the
2028 * dirtying-time in the inode's address_space. So this periodic writeback code
2029 * just walks the superblock inode list, writing back any inodes which are
2030 * older than a specific point in time.
2031 *
2032 * Try to run once per dirty_writeback_interval. But if a writeback event
2033 * takes longer than a dirty_writeback_interval interval, then leave a
2034 * one-second gap.
2035 *
2036 * dirtied_before takes precedence over nr_to_write. So we'll only write back
2037 * all dirty pages if they are all attached to "old" mappings.
2038 */
wb_writeback(struct bdi_writeback * wb,struct wb_writeback_work * work)2039 static long wb_writeback(struct bdi_writeback *wb,
2040 struct wb_writeback_work *work)
2041 {
2042 long nr_pages = work->nr_pages;
2043 unsigned long dirtied_before = jiffies;
2044 struct inode *inode;
2045 long progress;
2046 struct blk_plug plug;
2047
2048 blk_start_plug(&plug);
2049 for (;;) {
2050 /*
2051 * Stop writeback when nr_pages has been consumed
2052 */
2053 if (work->nr_pages <= 0)
2054 break;
2055
2056 /*
2057 * Background writeout and kupdate-style writeback may
2058 * run forever. Stop them if there is other work to do
2059 * so that e.g. sync can proceed. They'll be restarted
2060 * after the other works are all done.
2061 */
2062 if ((work->for_background || work->for_kupdate) &&
2063 !list_empty(&wb->work_list))
2064 break;
2065
2066 /*
2067 * For background writeout, stop when we are below the
2068 * background dirty threshold
2069 */
2070 if (work->for_background && !wb_over_bg_thresh(wb))
2071 break;
2072
2073
2074 spin_lock(&wb->list_lock);
2075
2076 /*
2077 * Kupdate and background works are special and we want to
2078 * include all inodes that need writing. Livelock avoidance is
2079 * handled by these works yielding to any other work so we are
2080 * safe.
2081 */
2082 if (work->for_kupdate) {
2083 dirtied_before = jiffies -
2084 msecs_to_jiffies(dirty_expire_interval * 10);
2085 } else if (work->for_background)
2086 dirtied_before = jiffies;
2087
2088 trace_writeback_start(wb, work);
2089 if (list_empty(&wb->b_io))
2090 queue_io(wb, work, dirtied_before);
2091 if (work->sb)
2092 progress = writeback_sb_inodes(work->sb, wb, work);
2093 else
2094 progress = __writeback_inodes_wb(wb, work);
2095 trace_writeback_written(wb, work);
2096
2097 /*
2098 * Did we write something? Try for more
2099 *
2100 * Dirty inodes are moved to b_io for writeback in batches.
2101 * The completion of the current batch does not necessarily
2102 * mean the overall work is done. So we keep looping as long
2103 * as made some progress on cleaning pages or inodes.
2104 */
2105 if (progress) {
2106 spin_unlock(&wb->list_lock);
2107 continue;
2108 }
2109
2110 /*
2111 * No more inodes for IO, bail
2112 */
2113 if (list_empty(&wb->b_more_io)) {
2114 spin_unlock(&wb->list_lock);
2115 break;
2116 }
2117
2118 /*
2119 * Nothing written. Wait for some inode to
2120 * become available for writeback. Otherwise
2121 * we'll just busyloop.
2122 */
2123 trace_writeback_wait(wb, work);
2124 inode = wb_inode(wb->b_more_io.prev);
2125 spin_lock(&inode->i_lock);
2126 spin_unlock(&wb->list_lock);
2127 /* This function drops i_lock... */
2128 inode_sleep_on_writeback(inode);
2129 }
2130 blk_finish_plug(&plug);
2131
2132 return nr_pages - work->nr_pages;
2133 }
2134
2135 /*
2136 * Return the next wb_writeback_work struct that hasn't been processed yet.
2137 */
get_next_work_item(struct bdi_writeback * wb)2138 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
2139 {
2140 struct wb_writeback_work *work = NULL;
2141
2142 spin_lock_irq(&wb->work_lock);
2143 if (!list_empty(&wb->work_list)) {
2144 work = list_entry(wb->work_list.next,
2145 struct wb_writeback_work, list);
2146 list_del_init(&work->list);
2147 }
2148 spin_unlock_irq(&wb->work_lock);
2149 return work;
2150 }
2151
wb_check_background_flush(struct bdi_writeback * wb)2152 static long wb_check_background_flush(struct bdi_writeback *wb)
2153 {
2154 if (wb_over_bg_thresh(wb)) {
2155
2156 struct wb_writeback_work work = {
2157 .nr_pages = LONG_MAX,
2158 .sync_mode = WB_SYNC_NONE,
2159 .for_background = 1,
2160 .range_cyclic = 1,
2161 .reason = WB_REASON_BACKGROUND,
2162 };
2163
2164 return wb_writeback(wb, &work);
2165 }
2166
2167 return 0;
2168 }
2169
wb_check_old_data_flush(struct bdi_writeback * wb)2170 static long wb_check_old_data_flush(struct bdi_writeback *wb)
2171 {
2172 unsigned long expired;
2173 long nr_pages;
2174
2175 /*
2176 * When set to zero, disable periodic writeback
2177 */
2178 if (!dirty_writeback_interval)
2179 return 0;
2180
2181 expired = wb->last_old_flush +
2182 msecs_to_jiffies(dirty_writeback_interval * 10);
2183 if (time_before(jiffies, expired))
2184 return 0;
2185
2186 wb->last_old_flush = jiffies;
2187 nr_pages = get_nr_dirty_pages();
2188
2189 if (nr_pages) {
2190 struct wb_writeback_work work = {
2191 .nr_pages = nr_pages,
2192 .sync_mode = WB_SYNC_NONE,
2193 .for_kupdate = 1,
2194 .range_cyclic = 1,
2195 .reason = WB_REASON_PERIODIC,
2196 };
2197
2198 return wb_writeback(wb, &work);
2199 }
2200
2201 return 0;
2202 }
2203
wb_check_start_all(struct bdi_writeback * wb)2204 static long wb_check_start_all(struct bdi_writeback *wb)
2205 {
2206 long nr_pages;
2207
2208 if (!test_bit(WB_start_all, &wb->state))
2209 return 0;
2210
2211 nr_pages = get_nr_dirty_pages();
2212 if (nr_pages) {
2213 struct wb_writeback_work work = {
2214 .nr_pages = wb_split_bdi_pages(wb, nr_pages),
2215 .sync_mode = WB_SYNC_NONE,
2216 .range_cyclic = 1,
2217 .reason = wb->start_all_reason,
2218 };
2219
2220 nr_pages = wb_writeback(wb, &work);
2221 }
2222
2223 clear_bit(WB_start_all, &wb->state);
2224 return nr_pages;
2225 }
2226
2227
2228 /*
2229 * Retrieve work items and do the writeback they describe
2230 */
wb_do_writeback(struct bdi_writeback * wb)2231 static long wb_do_writeback(struct bdi_writeback *wb)
2232 {
2233 struct wb_writeback_work *work;
2234 long wrote = 0;
2235
2236 set_bit(WB_writeback_running, &wb->state);
2237 while ((work = get_next_work_item(wb)) != NULL) {
2238 trace_writeback_exec(wb, work);
2239 wrote += wb_writeback(wb, work);
2240 finish_writeback_work(wb, work);
2241 }
2242
2243 /*
2244 * Check for a flush-everything request
2245 */
2246 wrote += wb_check_start_all(wb);
2247
2248 /*
2249 * Check for periodic writeback, kupdated() style
2250 */
2251 wrote += wb_check_old_data_flush(wb);
2252 wrote += wb_check_background_flush(wb);
2253 clear_bit(WB_writeback_running, &wb->state);
2254
2255 return wrote;
2256 }
2257
2258 /*
2259 * Handle writeback of dirty data for the device backed by this bdi. Also
2260 * reschedules periodically and does kupdated style flushing.
2261 */
wb_workfn(struct work_struct * work)2262 void wb_workfn(struct work_struct *work)
2263 {
2264 struct bdi_writeback *wb = container_of(to_delayed_work(work),
2265 struct bdi_writeback, dwork);
2266 long pages_written;
2267
2268 set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2269
2270 if (likely(!current_is_workqueue_rescuer() ||
2271 !test_bit(WB_registered, &wb->state))) {
2272 /*
2273 * The normal path. Keep writing back @wb until its
2274 * work_list is empty. Note that this path is also taken
2275 * if @wb is shutting down even when we're running off the
2276 * rescuer as work_list needs to be drained.
2277 */
2278 do {
2279 pages_written = wb_do_writeback(wb);
2280 trace_writeback_pages_written(pages_written);
2281 } while (!list_empty(&wb->work_list));
2282 } else {
2283 /*
2284 * bdi_wq can't get enough workers and we're running off
2285 * the emergency worker. Don't hog it. Hopefully, 1024 is
2286 * enough for efficient IO.
2287 */
2288 pages_written = writeback_inodes_wb(wb, 1024,
2289 WB_REASON_FORKER_THREAD);
2290 trace_writeback_pages_written(pages_written);
2291 }
2292
2293 if (!list_empty(&wb->work_list))
2294 wb_wakeup(wb);
2295 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2296 wb_wakeup_delayed(wb);
2297 }
2298
2299 /*
2300 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2301 * write back the whole world.
2302 */
__wakeup_flusher_threads_bdi(struct backing_dev_info * bdi,enum wb_reason reason)2303 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2304 enum wb_reason reason)
2305 {
2306 struct bdi_writeback *wb;
2307
2308 if (!bdi_has_dirty_io(bdi))
2309 return;
2310
2311 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2312 wb_start_writeback(wb, reason);
2313 }
2314
wakeup_flusher_threads_bdi(struct backing_dev_info * bdi,enum wb_reason reason)2315 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2316 enum wb_reason reason)
2317 {
2318 rcu_read_lock();
2319 __wakeup_flusher_threads_bdi(bdi, reason);
2320 rcu_read_unlock();
2321 }
2322
2323 /*
2324 * Wakeup the flusher threads to start writeback of all currently dirty pages
2325 */
wakeup_flusher_threads(enum wb_reason reason)2326 void wakeup_flusher_threads(enum wb_reason reason)
2327 {
2328 struct backing_dev_info *bdi;
2329
2330 /*
2331 * If we are expecting writeback progress we must submit plugged IO.
2332 */
2333 blk_flush_plug(current->plug, true);
2334
2335 rcu_read_lock();
2336 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2337 __wakeup_flusher_threads_bdi(bdi, reason);
2338 rcu_read_unlock();
2339 }
2340
2341 /*
2342 * Wake up bdi's periodically to make sure dirtytime inodes gets
2343 * written back periodically. We deliberately do *not* check the
2344 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2345 * kernel to be constantly waking up once there are any dirtytime
2346 * inodes on the system. So instead we define a separate delayed work
2347 * function which gets called much more rarely. (By default, only
2348 * once every 12 hours.)
2349 *
2350 * If there is any other write activity going on in the file system,
2351 * this function won't be necessary. But if the only thing that has
2352 * happened on the file system is a dirtytime inode caused by an atime
2353 * update, we need this infrastructure below to make sure that inode
2354 * eventually gets pushed out to disk.
2355 */
2356 static void wakeup_dirtytime_writeback(struct work_struct *w);
2357 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2358
wakeup_dirtytime_writeback(struct work_struct * w)2359 static void wakeup_dirtytime_writeback(struct work_struct *w)
2360 {
2361 struct backing_dev_info *bdi;
2362
2363 rcu_read_lock();
2364 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2365 struct bdi_writeback *wb;
2366
2367 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2368 if (!list_empty(&wb->b_dirty_time))
2369 wb_wakeup(wb);
2370 }
2371 rcu_read_unlock();
2372 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2373 }
2374
start_dirtytime_writeback(void)2375 static int __init start_dirtytime_writeback(void)
2376 {
2377 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2378 return 0;
2379 }
2380 __initcall(start_dirtytime_writeback);
2381
dirtytime_interval_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)2382 int dirtytime_interval_handler(struct ctl_table *table, int write,
2383 void *buffer, size_t *lenp, loff_t *ppos)
2384 {
2385 int ret;
2386
2387 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2388 if (ret == 0 && write)
2389 mod_delayed_work(system_wq, &dirtytime_work, 0);
2390 return ret;
2391 }
2392
2393 /**
2394 * __mark_inode_dirty - internal function to mark an inode dirty
2395 *
2396 * @inode: inode to mark
2397 * @flags: what kind of dirty, e.g. I_DIRTY_SYNC. This can be a combination of
2398 * multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2399 * with I_DIRTY_PAGES.
2400 *
2401 * Mark an inode as dirty. We notify the filesystem, then update the inode's
2402 * dirty flags. Then, if needed we add the inode to the appropriate dirty list.
2403 *
2404 * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2405 * instead of calling this directly.
2406 *
2407 * CAREFUL! We only add the inode to the dirty list if it is hashed or if it
2408 * refers to a blockdev. Unhashed inodes will never be added to the dirty list
2409 * even if they are later hashed, as they will have been marked dirty already.
2410 *
2411 * In short, ensure you hash any inodes _before_ you start marking them dirty.
2412 *
2413 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2414 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2415 * the kernel-internal blockdev inode represents the dirtying time of the
2416 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2417 * page->mapping->host, so the page-dirtying time is recorded in the internal
2418 * blockdev inode.
2419 */
__mark_inode_dirty(struct inode * inode,int flags)2420 void __mark_inode_dirty(struct inode *inode, int flags)
2421 {
2422 struct super_block *sb = inode->i_sb;
2423 int dirtytime = 0;
2424 struct bdi_writeback *wb = NULL;
2425
2426 trace_writeback_mark_inode_dirty(inode, flags);
2427
2428 if (flags & I_DIRTY_INODE) {
2429 /*
2430 * Inode timestamp update will piggback on this dirtying.
2431 * We tell ->dirty_inode callback that timestamps need to
2432 * be updated by setting I_DIRTY_TIME in flags.
2433 */
2434 if (inode->i_state & I_DIRTY_TIME) {
2435 spin_lock(&inode->i_lock);
2436 if (inode->i_state & I_DIRTY_TIME) {
2437 inode->i_state &= ~I_DIRTY_TIME;
2438 flags |= I_DIRTY_TIME;
2439 }
2440 spin_unlock(&inode->i_lock);
2441 }
2442
2443 /*
2444 * Notify the filesystem about the inode being dirtied, so that
2445 * (if needed) it can update on-disk fields and journal the
2446 * inode. This is only needed when the inode itself is being
2447 * dirtied now. I.e. it's only needed for I_DIRTY_INODE, not
2448 * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2449 */
2450 trace_writeback_dirty_inode_start(inode, flags);
2451 if (sb->s_op->dirty_inode)
2452 sb->s_op->dirty_inode(inode,
2453 flags & (I_DIRTY_INODE | I_DIRTY_TIME));
2454 trace_writeback_dirty_inode(inode, flags);
2455
2456 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2457 flags &= ~I_DIRTY_TIME;
2458 } else {
2459 /*
2460 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2461 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2462 * in one call to __mark_inode_dirty().)
2463 */
2464 dirtytime = flags & I_DIRTY_TIME;
2465 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2466 }
2467
2468 /*
2469 * Paired with smp_mb() in __writeback_single_inode() for the
2470 * following lockless i_state test. See there for details.
2471 */
2472 smp_mb();
2473
2474 if ((inode->i_state & flags) == flags)
2475 return;
2476
2477 spin_lock(&inode->i_lock);
2478 if ((inode->i_state & flags) != flags) {
2479 const int was_dirty = inode->i_state & I_DIRTY;
2480
2481 inode_attach_wb(inode, NULL);
2482
2483 inode->i_state |= flags;
2484
2485 /*
2486 * Grab inode's wb early because it requires dropping i_lock and we
2487 * need to make sure following checks happen atomically with dirty
2488 * list handling so that we don't move inodes under flush worker's
2489 * hands.
2490 */
2491 if (!was_dirty) {
2492 wb = locked_inode_to_wb_and_lock_list(inode);
2493 spin_lock(&inode->i_lock);
2494 }
2495
2496 /*
2497 * If the inode is queued for writeback by flush worker, just
2498 * update its dirty state. Once the flush worker is done with
2499 * the inode it will place it on the appropriate superblock
2500 * list, based upon its state.
2501 */
2502 if (inode->i_state & I_SYNC_QUEUED)
2503 goto out_unlock;
2504
2505 /*
2506 * Only add valid (hashed) inodes to the superblock's
2507 * dirty list. Add blockdev inodes as well.
2508 */
2509 if (!S_ISBLK(inode->i_mode)) {
2510 if (inode_unhashed(inode))
2511 goto out_unlock;
2512 }
2513 if (inode->i_state & I_FREEING)
2514 goto out_unlock;
2515
2516 /*
2517 * If the inode was already on b_dirty/b_io/b_more_io, don't
2518 * reposition it (that would break b_dirty time-ordering).
2519 */
2520 if (!was_dirty) {
2521 struct list_head *dirty_list;
2522 bool wakeup_bdi = false;
2523
2524 inode->dirtied_when = jiffies;
2525 if (dirtytime)
2526 inode->dirtied_time_when = jiffies;
2527
2528 if (inode->i_state & I_DIRTY)
2529 dirty_list = &wb->b_dirty;
2530 else
2531 dirty_list = &wb->b_dirty_time;
2532
2533 wakeup_bdi = inode_io_list_move_locked(inode, wb,
2534 dirty_list);
2535
2536 spin_unlock(&wb->list_lock);
2537 spin_unlock(&inode->i_lock);
2538 trace_writeback_dirty_inode_enqueue(inode);
2539
2540 /*
2541 * If this is the first dirty inode for this bdi,
2542 * we have to wake-up the corresponding bdi thread
2543 * to make sure background write-back happens
2544 * later.
2545 */
2546 if (wakeup_bdi &&
2547 (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2548 wb_wakeup_delayed(wb);
2549 return;
2550 }
2551 }
2552 out_unlock:
2553 if (wb)
2554 spin_unlock(&wb->list_lock);
2555 spin_unlock(&inode->i_lock);
2556 }
2557 EXPORT_SYMBOL(__mark_inode_dirty);
2558
2559 /*
2560 * The @s_sync_lock is used to serialise concurrent sync operations
2561 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2562 * Concurrent callers will block on the s_sync_lock rather than doing contending
2563 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2564 * has been issued up to the time this function is enter is guaranteed to be
2565 * completed by the time we have gained the lock and waited for all IO that is
2566 * in progress regardless of the order callers are granted the lock.
2567 */
wait_sb_inodes(struct super_block * sb)2568 static void wait_sb_inodes(struct super_block *sb)
2569 {
2570 LIST_HEAD(sync_list);
2571
2572 /*
2573 * We need to be protected against the filesystem going from
2574 * r/o to r/w or vice versa.
2575 */
2576 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2577
2578 mutex_lock(&sb->s_sync_lock);
2579
2580 /*
2581 * Splice the writeback list onto a temporary list to avoid waiting on
2582 * inodes that have started writeback after this point.
2583 *
2584 * Use rcu_read_lock() to keep the inodes around until we have a
2585 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2586 * the local list because inodes can be dropped from either by writeback
2587 * completion.
2588 */
2589 rcu_read_lock();
2590 spin_lock_irq(&sb->s_inode_wblist_lock);
2591 list_splice_init(&sb->s_inodes_wb, &sync_list);
2592
2593 /*
2594 * Data integrity sync. Must wait for all pages under writeback, because
2595 * there may have been pages dirtied before our sync call, but which had
2596 * writeout started before we write it out. In which case, the inode
2597 * may not be on the dirty list, but we still have to wait for that
2598 * writeout.
2599 */
2600 while (!list_empty(&sync_list)) {
2601 struct inode *inode = list_first_entry(&sync_list, struct inode,
2602 i_wb_list);
2603 struct address_space *mapping = inode->i_mapping;
2604
2605 /*
2606 * Move each inode back to the wb list before we drop the lock
2607 * to preserve consistency between i_wb_list and the mapping
2608 * writeback tag. Writeback completion is responsible to remove
2609 * the inode from either list once the writeback tag is cleared.
2610 */
2611 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2612
2613 /*
2614 * The mapping can appear untagged while still on-list since we
2615 * do not have the mapping lock. Skip it here, wb completion
2616 * will remove it.
2617 */
2618 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2619 continue;
2620
2621 spin_unlock_irq(&sb->s_inode_wblist_lock);
2622
2623 spin_lock(&inode->i_lock);
2624 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2625 spin_unlock(&inode->i_lock);
2626
2627 spin_lock_irq(&sb->s_inode_wblist_lock);
2628 continue;
2629 }
2630 __iget(inode);
2631 spin_unlock(&inode->i_lock);
2632 rcu_read_unlock();
2633
2634 /*
2635 * We keep the error status of individual mapping so that
2636 * applications can catch the writeback error using fsync(2).
2637 * See filemap_fdatawait_keep_errors() for details.
2638 */
2639 filemap_fdatawait_keep_errors(mapping);
2640
2641 cond_resched();
2642
2643 iput(inode);
2644
2645 rcu_read_lock();
2646 spin_lock_irq(&sb->s_inode_wblist_lock);
2647 }
2648 spin_unlock_irq(&sb->s_inode_wblist_lock);
2649 rcu_read_unlock();
2650 mutex_unlock(&sb->s_sync_lock);
2651 }
2652
__writeback_inodes_sb_nr(struct super_block * sb,unsigned long nr,enum wb_reason reason,bool skip_if_busy)2653 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2654 enum wb_reason reason, bool skip_if_busy)
2655 {
2656 struct backing_dev_info *bdi = sb->s_bdi;
2657 DEFINE_WB_COMPLETION(done, bdi);
2658 struct wb_writeback_work work = {
2659 .sb = sb,
2660 .sync_mode = WB_SYNC_NONE,
2661 .tagged_writepages = 1,
2662 .done = &done,
2663 .nr_pages = nr,
2664 .reason = reason,
2665 };
2666
2667 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2668 return;
2669 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2670
2671 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2672 wb_wait_for_completion(&done);
2673 }
2674
2675 /**
2676 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2677 * @sb: the superblock
2678 * @nr: the number of pages to write
2679 * @reason: reason why some writeback work initiated
2680 *
2681 * Start writeback on some inodes on this super_block. No guarantees are made
2682 * on how many (if any) will be written, and this function does not wait
2683 * for IO completion of submitted IO.
2684 */
writeback_inodes_sb_nr(struct super_block * sb,unsigned long nr,enum wb_reason reason)2685 void writeback_inodes_sb_nr(struct super_block *sb,
2686 unsigned long nr,
2687 enum wb_reason reason)
2688 {
2689 __writeback_inodes_sb_nr(sb, nr, reason, false);
2690 }
2691 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2692
2693 /**
2694 * writeback_inodes_sb - writeback dirty inodes from given super_block
2695 * @sb: the superblock
2696 * @reason: reason why some writeback work was initiated
2697 *
2698 * Start writeback on some inodes on this super_block. No guarantees are made
2699 * on how many (if any) will be written, and this function does not wait
2700 * for IO completion of submitted IO.
2701 */
writeback_inodes_sb(struct super_block * sb,enum wb_reason reason)2702 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2703 {
2704 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2705 }
2706 EXPORT_SYMBOL(writeback_inodes_sb);
2707
2708 /**
2709 * try_to_writeback_inodes_sb - try to start writeback if none underway
2710 * @sb: the superblock
2711 * @reason: reason why some writeback work was initiated
2712 *
2713 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2714 */
try_to_writeback_inodes_sb(struct super_block * sb,enum wb_reason reason)2715 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2716 {
2717 if (!down_read_trylock(&sb->s_umount))
2718 return;
2719
2720 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2721 up_read(&sb->s_umount);
2722 }
2723 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2724
2725 /**
2726 * sync_inodes_sb - sync sb inode pages
2727 * @sb: the superblock
2728 *
2729 * This function writes and waits on any dirty inode belonging to this
2730 * super_block.
2731 */
sync_inodes_sb(struct super_block * sb)2732 void sync_inodes_sb(struct super_block *sb)
2733 {
2734 struct backing_dev_info *bdi = sb->s_bdi;
2735 DEFINE_WB_COMPLETION(done, bdi);
2736 struct wb_writeback_work work = {
2737 .sb = sb,
2738 .sync_mode = WB_SYNC_ALL,
2739 .nr_pages = LONG_MAX,
2740 .range_cyclic = 0,
2741 .done = &done,
2742 .reason = WB_REASON_SYNC,
2743 .for_sync = 1,
2744 };
2745
2746 /*
2747 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2748 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2749 * bdi_has_dirty() need to be written out too.
2750 */
2751 if (bdi == &noop_backing_dev_info)
2752 return;
2753 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2754
2755 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2756 bdi_down_write_wb_switch_rwsem(bdi);
2757 bdi_split_work_to_wbs(bdi, &work, false);
2758 wb_wait_for_completion(&done);
2759 bdi_up_write_wb_switch_rwsem(bdi);
2760
2761 wait_sb_inodes(sb);
2762 }
2763 EXPORT_SYMBOL(sync_inodes_sb);
2764
2765 /**
2766 * write_inode_now - write an inode to disk
2767 * @inode: inode to write to disk
2768 * @sync: whether the write should be synchronous or not
2769 *
2770 * This function commits an inode to disk immediately if it is dirty. This is
2771 * primarily needed by knfsd.
2772 *
2773 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2774 */
write_inode_now(struct inode * inode,int sync)2775 int write_inode_now(struct inode *inode, int sync)
2776 {
2777 struct writeback_control wbc = {
2778 .nr_to_write = LONG_MAX,
2779 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2780 .range_start = 0,
2781 .range_end = LLONG_MAX,
2782 };
2783
2784 if (!mapping_can_writeback(inode->i_mapping))
2785 wbc.nr_to_write = 0;
2786
2787 might_sleep();
2788 return writeback_single_inode(inode, &wbc);
2789 }
2790 EXPORT_SYMBOL(write_inode_now);
2791
2792 /**
2793 * sync_inode_metadata - write an inode to disk
2794 * @inode: the inode to sync
2795 * @wait: wait for I/O to complete.
2796 *
2797 * Write an inode to disk and adjust its dirty state after completion.
2798 *
2799 * Note: only writes the actual inode, no associated data or other metadata.
2800 */
sync_inode_metadata(struct inode * inode,int wait)2801 int sync_inode_metadata(struct inode *inode, int wait)
2802 {
2803 struct writeback_control wbc = {
2804 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2805 .nr_to_write = 0, /* metadata-only */
2806 };
2807
2808 return writeback_single_inode(inode, &wbc);
2809 }
2810 EXPORT_SYMBOL(sync_inode_metadata);
2811