1 /*******************************************************************
2 * This file is part of the Emulex Linux Device Driver for *
3 * Fibre Channel Host Bus Adapters. *
4 * Copyright (C) 2017-2022 Broadcom. All Rights Reserved. The term *
5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. *
6 * Copyright (C) 2004-2016 Emulex. All rights reserved. *
7 * EMULEX and SLI are trademarks of Emulex. *
8 * www.broadcom.com *
9 * Portions Copyright (C) 2004-2005 Christoph Hellwig *
10 * *
11 * This program is free software; you can redistribute it and/or *
12 * modify it under the terms of version 2 of the GNU General *
13 * Public License as published by the Free Software Foundation. *
14 * This program is distributed in the hope that it will be useful. *
15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND *
16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, *
17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE *
18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
19 * TO BE LEGALLY INVALID. See the GNU General Public License for *
20 * more details, a copy of which can be found in the file COPYING *
21 * included with this package. *
22 ********************************************************************/
23 #include <linux/pci.h>
24 #include <linux/slab.h>
25 #include <linux/interrupt.h>
26 #include <linux/delay.h>
27 #include <asm/unaligned.h>
28 #include <linux/crc-t10dif.h>
29 #include <net/checksum.h>
30
31 #include <scsi/scsi.h>
32 #include <scsi/scsi_device.h>
33 #include <scsi/scsi_eh.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_tcq.h>
36 #include <scsi/scsi_transport_fc.h>
37 #include <scsi/fc/fc_fs.h>
38
39 #include "lpfc_version.h"
40 #include "lpfc_hw4.h"
41 #include "lpfc_hw.h"
42 #include "lpfc_sli.h"
43 #include "lpfc_sli4.h"
44 #include "lpfc_nl.h"
45 #include "lpfc_disc.h"
46 #include "lpfc.h"
47 #include "lpfc_scsi.h"
48 #include "lpfc_nvme.h"
49 #include "lpfc_logmsg.h"
50 #include "lpfc_crtn.h"
51 #include "lpfc_vport.h"
52 #include "lpfc_debugfs.h"
53
54 static struct lpfc_iocbq *lpfc_nvmet_prep_ls_wqe(struct lpfc_hba *,
55 struct lpfc_async_xchg_ctx *,
56 dma_addr_t rspbuf,
57 uint16_t rspsize);
58 static struct lpfc_iocbq *lpfc_nvmet_prep_fcp_wqe(struct lpfc_hba *,
59 struct lpfc_async_xchg_ctx *);
60 static int lpfc_nvmet_sol_fcp_issue_abort(struct lpfc_hba *,
61 struct lpfc_async_xchg_ctx *,
62 uint32_t, uint16_t);
63 static int lpfc_nvmet_unsol_fcp_issue_abort(struct lpfc_hba *,
64 struct lpfc_async_xchg_ctx *,
65 uint32_t, uint16_t);
66 static void lpfc_nvmet_wqfull_flush(struct lpfc_hba *, struct lpfc_queue *,
67 struct lpfc_async_xchg_ctx *);
68 static void lpfc_nvmet_fcp_rqst_defer_work(struct work_struct *);
69
70 static void lpfc_nvmet_process_rcv_fcp_req(struct lpfc_nvmet_ctxbuf *ctx_buf);
71
72 static union lpfc_wqe128 lpfc_tsend_cmd_template;
73 static union lpfc_wqe128 lpfc_treceive_cmd_template;
74 static union lpfc_wqe128 lpfc_trsp_cmd_template;
75
76 /* Setup WQE templates for NVME IOs */
77 void
lpfc_nvmet_cmd_template(void)78 lpfc_nvmet_cmd_template(void)
79 {
80 union lpfc_wqe128 *wqe;
81
82 /* TSEND template */
83 wqe = &lpfc_tsend_cmd_template;
84 memset(wqe, 0, sizeof(union lpfc_wqe128));
85
86 /* Word 0, 1, 2 - BDE is variable */
87
88 /* Word 3 - payload_offset_len is zero */
89
90 /* Word 4 - relative_offset is variable */
91
92 /* Word 5 - is zero */
93
94 /* Word 6 - ctxt_tag, xri_tag is variable */
95
96 /* Word 7 - wqe_ar is variable */
97 bf_set(wqe_cmnd, &wqe->fcp_tsend.wqe_com, CMD_FCP_TSEND64_WQE);
98 bf_set(wqe_pu, &wqe->fcp_tsend.wqe_com, PARM_REL_OFF);
99 bf_set(wqe_class, &wqe->fcp_tsend.wqe_com, CLASS3);
100 bf_set(wqe_ct, &wqe->fcp_tsend.wqe_com, SLI4_CT_RPI);
101 bf_set(wqe_ar, &wqe->fcp_tsend.wqe_com, 1);
102
103 /* Word 8 - abort_tag is variable */
104
105 /* Word 9 - reqtag, rcvoxid is variable */
106
107 /* Word 10 - wqes, xc is variable */
108 bf_set(wqe_xchg, &wqe->fcp_tsend.wqe_com, LPFC_NVME_XCHG);
109 bf_set(wqe_dbde, &wqe->fcp_tsend.wqe_com, 1);
110 bf_set(wqe_wqes, &wqe->fcp_tsend.wqe_com, 0);
111 bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, 1);
112 bf_set(wqe_iod, &wqe->fcp_tsend.wqe_com, LPFC_WQE_IOD_WRITE);
113 bf_set(wqe_lenloc, &wqe->fcp_tsend.wqe_com, LPFC_WQE_LENLOC_WORD12);
114
115 /* Word 11 - sup, irsp, irsplen is variable */
116 bf_set(wqe_cmd_type, &wqe->fcp_tsend.wqe_com, FCP_COMMAND_TSEND);
117 bf_set(wqe_cqid, &wqe->fcp_tsend.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
118 bf_set(wqe_sup, &wqe->fcp_tsend.wqe_com, 0);
119 bf_set(wqe_irsp, &wqe->fcp_tsend.wqe_com, 0);
120 bf_set(wqe_irsplen, &wqe->fcp_tsend.wqe_com, 0);
121 bf_set(wqe_pbde, &wqe->fcp_tsend.wqe_com, 0);
122
123 /* Word 12 - fcp_data_len is variable */
124
125 /* Word 13, 14, 15 - PBDE is zero */
126
127 /* TRECEIVE template */
128 wqe = &lpfc_treceive_cmd_template;
129 memset(wqe, 0, sizeof(union lpfc_wqe128));
130
131 /* Word 0, 1, 2 - BDE is variable */
132
133 /* Word 3 */
134 wqe->fcp_treceive.payload_offset_len = TXRDY_PAYLOAD_LEN;
135
136 /* Word 4 - relative_offset is variable */
137
138 /* Word 5 - is zero */
139
140 /* Word 6 - ctxt_tag, xri_tag is variable */
141
142 /* Word 7 */
143 bf_set(wqe_cmnd, &wqe->fcp_treceive.wqe_com, CMD_FCP_TRECEIVE64_WQE);
144 bf_set(wqe_pu, &wqe->fcp_treceive.wqe_com, PARM_REL_OFF);
145 bf_set(wqe_class, &wqe->fcp_treceive.wqe_com, CLASS3);
146 bf_set(wqe_ct, &wqe->fcp_treceive.wqe_com, SLI4_CT_RPI);
147 bf_set(wqe_ar, &wqe->fcp_treceive.wqe_com, 0);
148
149 /* Word 8 - abort_tag is variable */
150
151 /* Word 9 - reqtag, rcvoxid is variable */
152
153 /* Word 10 - xc is variable */
154 bf_set(wqe_dbde, &wqe->fcp_treceive.wqe_com, 1);
155 bf_set(wqe_wqes, &wqe->fcp_treceive.wqe_com, 0);
156 bf_set(wqe_xchg, &wqe->fcp_treceive.wqe_com, LPFC_NVME_XCHG);
157 bf_set(wqe_iod, &wqe->fcp_treceive.wqe_com, LPFC_WQE_IOD_READ);
158 bf_set(wqe_lenloc, &wqe->fcp_treceive.wqe_com, LPFC_WQE_LENLOC_WORD12);
159 bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, 1);
160
161 /* Word 11 - pbde is variable */
162 bf_set(wqe_cmd_type, &wqe->fcp_treceive.wqe_com, FCP_COMMAND_TRECEIVE);
163 bf_set(wqe_cqid, &wqe->fcp_treceive.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
164 bf_set(wqe_sup, &wqe->fcp_treceive.wqe_com, 0);
165 bf_set(wqe_irsp, &wqe->fcp_treceive.wqe_com, 0);
166 bf_set(wqe_irsplen, &wqe->fcp_treceive.wqe_com, 0);
167 bf_set(wqe_pbde, &wqe->fcp_treceive.wqe_com, 1);
168
169 /* Word 12 - fcp_data_len is variable */
170
171 /* Word 13, 14, 15 - PBDE is variable */
172
173 /* TRSP template */
174 wqe = &lpfc_trsp_cmd_template;
175 memset(wqe, 0, sizeof(union lpfc_wqe128));
176
177 /* Word 0, 1, 2 - BDE is variable */
178
179 /* Word 3 - response_len is variable */
180
181 /* Word 4, 5 - is zero */
182
183 /* Word 6 - ctxt_tag, xri_tag is variable */
184
185 /* Word 7 */
186 bf_set(wqe_cmnd, &wqe->fcp_trsp.wqe_com, CMD_FCP_TRSP64_WQE);
187 bf_set(wqe_pu, &wqe->fcp_trsp.wqe_com, PARM_UNUSED);
188 bf_set(wqe_class, &wqe->fcp_trsp.wqe_com, CLASS3);
189 bf_set(wqe_ct, &wqe->fcp_trsp.wqe_com, SLI4_CT_RPI);
190 bf_set(wqe_ag, &wqe->fcp_trsp.wqe_com, 1); /* wqe_ar */
191
192 /* Word 8 - abort_tag is variable */
193
194 /* Word 9 - reqtag is variable */
195
196 /* Word 10 wqes, xc is variable */
197 bf_set(wqe_dbde, &wqe->fcp_trsp.wqe_com, 1);
198 bf_set(wqe_xchg, &wqe->fcp_trsp.wqe_com, LPFC_NVME_XCHG);
199 bf_set(wqe_wqes, &wqe->fcp_trsp.wqe_com, 0);
200 bf_set(wqe_xc, &wqe->fcp_trsp.wqe_com, 0);
201 bf_set(wqe_iod, &wqe->fcp_trsp.wqe_com, LPFC_WQE_IOD_NONE);
202 bf_set(wqe_lenloc, &wqe->fcp_trsp.wqe_com, LPFC_WQE_LENLOC_WORD3);
203
204 /* Word 11 irsp, irsplen is variable */
205 bf_set(wqe_cmd_type, &wqe->fcp_trsp.wqe_com, FCP_COMMAND_TRSP);
206 bf_set(wqe_cqid, &wqe->fcp_trsp.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
207 bf_set(wqe_sup, &wqe->fcp_trsp.wqe_com, 0);
208 bf_set(wqe_irsp, &wqe->fcp_trsp.wqe_com, 0);
209 bf_set(wqe_irsplen, &wqe->fcp_trsp.wqe_com, 0);
210 bf_set(wqe_pbde, &wqe->fcp_trsp.wqe_com, 0);
211
212 /* Word 12, 13, 14, 15 - is zero */
213 }
214
215 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
216 static struct lpfc_async_xchg_ctx *
lpfc_nvmet_get_ctx_for_xri(struct lpfc_hba * phba,u16 xri)217 lpfc_nvmet_get_ctx_for_xri(struct lpfc_hba *phba, u16 xri)
218 {
219 struct lpfc_async_xchg_ctx *ctxp;
220 unsigned long iflag;
221 bool found = false;
222
223 spin_lock_irqsave(&phba->sli4_hba.t_active_list_lock, iflag);
224 list_for_each_entry(ctxp, &phba->sli4_hba.t_active_ctx_list, list) {
225 if (ctxp->ctxbuf->sglq->sli4_xritag != xri)
226 continue;
227
228 found = true;
229 break;
230 }
231 spin_unlock_irqrestore(&phba->sli4_hba.t_active_list_lock, iflag);
232 if (found)
233 return ctxp;
234
235 return NULL;
236 }
237
238 static struct lpfc_async_xchg_ctx *
lpfc_nvmet_get_ctx_for_oxid(struct lpfc_hba * phba,u16 oxid,u32 sid)239 lpfc_nvmet_get_ctx_for_oxid(struct lpfc_hba *phba, u16 oxid, u32 sid)
240 {
241 struct lpfc_async_xchg_ctx *ctxp;
242 unsigned long iflag;
243 bool found = false;
244
245 spin_lock_irqsave(&phba->sli4_hba.t_active_list_lock, iflag);
246 list_for_each_entry(ctxp, &phba->sli4_hba.t_active_ctx_list, list) {
247 if (ctxp->oxid != oxid || ctxp->sid != sid)
248 continue;
249
250 found = true;
251 break;
252 }
253 spin_unlock_irqrestore(&phba->sli4_hba.t_active_list_lock, iflag);
254 if (found)
255 return ctxp;
256
257 return NULL;
258 }
259 #endif
260
261 static void
lpfc_nvmet_defer_release(struct lpfc_hba * phba,struct lpfc_async_xchg_ctx * ctxp)262 lpfc_nvmet_defer_release(struct lpfc_hba *phba,
263 struct lpfc_async_xchg_ctx *ctxp)
264 {
265 lockdep_assert_held(&ctxp->ctxlock);
266
267 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
268 "6313 NVMET Defer ctx release oxid x%x flg x%x\n",
269 ctxp->oxid, ctxp->flag);
270
271 if (ctxp->flag & LPFC_NVME_CTX_RLS)
272 return;
273
274 ctxp->flag |= LPFC_NVME_CTX_RLS;
275 spin_lock(&phba->sli4_hba.t_active_list_lock);
276 list_del(&ctxp->list);
277 spin_unlock(&phba->sli4_hba.t_active_list_lock);
278 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
279 list_add_tail(&ctxp->list, &phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
280 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
281 }
282
283 /**
284 * __lpfc_nvme_xmt_ls_rsp_cmp - Generic completion handler for the
285 * transmission of an NVME LS response.
286 * @phba: Pointer to HBA context object.
287 * @cmdwqe: Pointer to driver command WQE object.
288 * @rspwqe: Pointer to driver response WQE object.
289 *
290 * The function is called from SLI ring event handler with no
291 * lock held. The function frees memory resources used for the command
292 * used to send the NVME LS RSP.
293 **/
294 void
__lpfc_nvme_xmt_ls_rsp_cmp(struct lpfc_hba * phba,struct lpfc_iocbq * cmdwqe,struct lpfc_iocbq * rspwqe)295 __lpfc_nvme_xmt_ls_rsp_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
296 struct lpfc_iocbq *rspwqe)
297 {
298 struct lpfc_async_xchg_ctx *axchg = cmdwqe->context_un.axchg;
299 struct lpfc_wcqe_complete *wcqe = &rspwqe->wcqe_cmpl;
300 struct nvmefc_ls_rsp *ls_rsp = &axchg->ls_rsp;
301 uint32_t status, result;
302
303 status = bf_get(lpfc_wcqe_c_status, wcqe) & LPFC_IOCB_STATUS_MASK;
304 result = wcqe->parameter;
305
306 if (axchg->state != LPFC_NVME_STE_LS_RSP || axchg->entry_cnt != 2) {
307 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
308 "6410 NVMEx LS cmpl state mismatch IO x%x: "
309 "%d %d\n",
310 axchg->oxid, axchg->state, axchg->entry_cnt);
311 }
312
313 lpfc_nvmeio_data(phba, "NVMEx LS CMPL: xri x%x stat x%x result x%x\n",
314 axchg->oxid, status, result);
315
316 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC,
317 "6038 NVMEx LS rsp cmpl: %d %d oxid x%x\n",
318 status, result, axchg->oxid);
319
320 lpfc_nlp_put(cmdwqe->ndlp);
321 cmdwqe->context_un.axchg = NULL;
322 cmdwqe->bpl_dmabuf = NULL;
323 lpfc_sli_release_iocbq(phba, cmdwqe);
324 ls_rsp->done(ls_rsp);
325 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC,
326 "6200 NVMEx LS rsp cmpl done status %d oxid x%x\n",
327 status, axchg->oxid);
328 kfree(axchg);
329 }
330
331 /**
332 * lpfc_nvmet_xmt_ls_rsp_cmp - Completion handler for LS Response
333 * @phba: Pointer to HBA context object.
334 * @cmdwqe: Pointer to driver command WQE object.
335 * @rspwqe: Pointer to driver response WQE object.
336 *
337 * The function is called from SLI ring event handler with no
338 * lock held. This function is the completion handler for NVME LS commands
339 * The function updates any states and statistics, then calls the
340 * generic completion handler to free resources.
341 **/
342 static void
lpfc_nvmet_xmt_ls_rsp_cmp(struct lpfc_hba * phba,struct lpfc_iocbq * cmdwqe,struct lpfc_iocbq * rspwqe)343 lpfc_nvmet_xmt_ls_rsp_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
344 struct lpfc_iocbq *rspwqe)
345 {
346 struct lpfc_nvmet_tgtport *tgtp;
347 uint32_t status, result;
348 struct lpfc_wcqe_complete *wcqe = &rspwqe->wcqe_cmpl;
349
350 if (!phba->targetport)
351 goto finish;
352
353 status = bf_get(lpfc_wcqe_c_status, wcqe) & LPFC_IOCB_STATUS_MASK;
354 result = wcqe->parameter;
355
356 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
357 if (tgtp) {
358 if (status) {
359 atomic_inc(&tgtp->xmt_ls_rsp_error);
360 if (result == IOERR_ABORT_REQUESTED)
361 atomic_inc(&tgtp->xmt_ls_rsp_aborted);
362 if (bf_get(lpfc_wcqe_c_xb, wcqe))
363 atomic_inc(&tgtp->xmt_ls_rsp_xb_set);
364 } else {
365 atomic_inc(&tgtp->xmt_ls_rsp_cmpl);
366 }
367 }
368
369 finish:
370 __lpfc_nvme_xmt_ls_rsp_cmp(phba, cmdwqe, rspwqe);
371 }
372
373 /**
374 * lpfc_nvmet_ctxbuf_post - Repost a NVMET RQ DMA buffer and clean up context
375 * @phba: HBA buffer is associated with
376 * @ctx_buf: ctx buffer context
377 *
378 * Description: Frees the given DMA buffer in the appropriate way given by
379 * reposting it to its associated RQ so it can be reused.
380 *
381 * Notes: Takes phba->hbalock. Can be called with or without other locks held.
382 *
383 * Returns: None
384 **/
385 void
lpfc_nvmet_ctxbuf_post(struct lpfc_hba * phba,struct lpfc_nvmet_ctxbuf * ctx_buf)386 lpfc_nvmet_ctxbuf_post(struct lpfc_hba *phba, struct lpfc_nvmet_ctxbuf *ctx_buf)
387 {
388 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
389 struct lpfc_async_xchg_ctx *ctxp = ctx_buf->context;
390 struct lpfc_nvmet_tgtport *tgtp;
391 struct fc_frame_header *fc_hdr;
392 struct rqb_dmabuf *nvmebuf;
393 struct lpfc_nvmet_ctx_info *infop;
394 uint32_t size, oxid, sid;
395 int cpu;
396 unsigned long iflag;
397
398 if (ctxp->state == LPFC_NVME_STE_FREE) {
399 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
400 "6411 NVMET free, already free IO x%x: %d %d\n",
401 ctxp->oxid, ctxp->state, ctxp->entry_cnt);
402 }
403
404 if (ctxp->rqb_buffer) {
405 spin_lock_irqsave(&ctxp->ctxlock, iflag);
406 nvmebuf = ctxp->rqb_buffer;
407 /* check if freed in another path whilst acquiring lock */
408 if (nvmebuf) {
409 ctxp->rqb_buffer = NULL;
410 if (ctxp->flag & LPFC_NVME_CTX_REUSE_WQ) {
411 ctxp->flag &= ~LPFC_NVME_CTX_REUSE_WQ;
412 spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
413 nvmebuf->hrq->rqbp->rqb_free_buffer(phba,
414 nvmebuf);
415 } else {
416 spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
417 /* repost */
418 lpfc_rq_buf_free(phba, &nvmebuf->hbuf);
419 }
420 } else {
421 spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
422 }
423 }
424 ctxp->state = LPFC_NVME_STE_FREE;
425
426 spin_lock_irqsave(&phba->sli4_hba.nvmet_io_wait_lock, iflag);
427 if (phba->sli4_hba.nvmet_io_wait_cnt) {
428 list_remove_head(&phba->sli4_hba.lpfc_nvmet_io_wait_list,
429 nvmebuf, struct rqb_dmabuf,
430 hbuf.list);
431 phba->sli4_hba.nvmet_io_wait_cnt--;
432 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock,
433 iflag);
434
435 fc_hdr = (struct fc_frame_header *)(nvmebuf->hbuf.virt);
436 oxid = be16_to_cpu(fc_hdr->fh_ox_id);
437 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
438 size = nvmebuf->bytes_recv;
439 sid = sli4_sid_from_fc_hdr(fc_hdr);
440
441 ctxp = (struct lpfc_async_xchg_ctx *)ctx_buf->context;
442 ctxp->wqeq = NULL;
443 ctxp->offset = 0;
444 ctxp->phba = phba;
445 ctxp->size = size;
446 ctxp->oxid = oxid;
447 ctxp->sid = sid;
448 ctxp->state = LPFC_NVME_STE_RCV;
449 ctxp->entry_cnt = 1;
450 ctxp->flag = 0;
451 ctxp->ctxbuf = ctx_buf;
452 ctxp->rqb_buffer = (void *)nvmebuf;
453 spin_lock_init(&ctxp->ctxlock);
454
455 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
456 /* NOTE: isr time stamp is stale when context is re-assigned*/
457 if (ctxp->ts_isr_cmd) {
458 ctxp->ts_cmd_nvme = 0;
459 ctxp->ts_nvme_data = 0;
460 ctxp->ts_data_wqput = 0;
461 ctxp->ts_isr_data = 0;
462 ctxp->ts_data_nvme = 0;
463 ctxp->ts_nvme_status = 0;
464 ctxp->ts_status_wqput = 0;
465 ctxp->ts_isr_status = 0;
466 ctxp->ts_status_nvme = 0;
467 }
468 #endif
469 atomic_inc(&tgtp->rcv_fcp_cmd_in);
470
471 /* Indicate that a replacement buffer has been posted */
472 spin_lock_irqsave(&ctxp->ctxlock, iflag);
473 ctxp->flag |= LPFC_NVME_CTX_REUSE_WQ;
474 spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
475
476 if (!queue_work(phba->wq, &ctx_buf->defer_work)) {
477 atomic_inc(&tgtp->rcv_fcp_cmd_drop);
478 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
479 "6181 Unable to queue deferred work "
480 "for oxid x%x. "
481 "FCP Drop IO [x%x x%x x%x]\n",
482 ctxp->oxid,
483 atomic_read(&tgtp->rcv_fcp_cmd_in),
484 atomic_read(&tgtp->rcv_fcp_cmd_out),
485 atomic_read(&tgtp->xmt_fcp_release));
486
487 spin_lock_irqsave(&ctxp->ctxlock, iflag);
488 lpfc_nvmet_defer_release(phba, ctxp);
489 spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
490 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, sid, oxid);
491 }
492 return;
493 }
494 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock, iflag);
495
496 /*
497 * Use the CPU context list, from the MRQ the IO was received on
498 * (ctxp->idx), to save context structure.
499 */
500 spin_lock_irqsave(&phba->sli4_hba.t_active_list_lock, iflag);
501 list_del_init(&ctxp->list);
502 spin_unlock_irqrestore(&phba->sli4_hba.t_active_list_lock, iflag);
503 cpu = raw_smp_processor_id();
504 infop = lpfc_get_ctx_list(phba, cpu, ctxp->idx);
505 spin_lock_irqsave(&infop->nvmet_ctx_list_lock, iflag);
506 list_add_tail(&ctx_buf->list, &infop->nvmet_ctx_list);
507 infop->nvmet_ctx_list_cnt++;
508 spin_unlock_irqrestore(&infop->nvmet_ctx_list_lock, iflag);
509 #endif
510 }
511
512 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
513 static void
lpfc_nvmet_ktime(struct lpfc_hba * phba,struct lpfc_async_xchg_ctx * ctxp)514 lpfc_nvmet_ktime(struct lpfc_hba *phba,
515 struct lpfc_async_xchg_ctx *ctxp)
516 {
517 uint64_t seg1, seg2, seg3, seg4, seg5;
518 uint64_t seg6, seg7, seg8, seg9, seg10;
519 uint64_t segsum;
520
521 if (!ctxp->ts_isr_cmd || !ctxp->ts_cmd_nvme ||
522 !ctxp->ts_nvme_data || !ctxp->ts_data_wqput ||
523 !ctxp->ts_isr_data || !ctxp->ts_data_nvme ||
524 !ctxp->ts_nvme_status || !ctxp->ts_status_wqput ||
525 !ctxp->ts_isr_status || !ctxp->ts_status_nvme)
526 return;
527
528 if (ctxp->ts_status_nvme < ctxp->ts_isr_cmd)
529 return;
530 if (ctxp->ts_isr_cmd > ctxp->ts_cmd_nvme)
531 return;
532 if (ctxp->ts_cmd_nvme > ctxp->ts_nvme_data)
533 return;
534 if (ctxp->ts_nvme_data > ctxp->ts_data_wqput)
535 return;
536 if (ctxp->ts_data_wqput > ctxp->ts_isr_data)
537 return;
538 if (ctxp->ts_isr_data > ctxp->ts_data_nvme)
539 return;
540 if (ctxp->ts_data_nvme > ctxp->ts_nvme_status)
541 return;
542 if (ctxp->ts_nvme_status > ctxp->ts_status_wqput)
543 return;
544 if (ctxp->ts_status_wqput > ctxp->ts_isr_status)
545 return;
546 if (ctxp->ts_isr_status > ctxp->ts_status_nvme)
547 return;
548 /*
549 * Segment 1 - Time from FCP command received by MSI-X ISR
550 * to FCP command is passed to NVME Layer.
551 * Segment 2 - Time from FCP command payload handed
552 * off to NVME Layer to Driver receives a Command op
553 * from NVME Layer.
554 * Segment 3 - Time from Driver receives a Command op
555 * from NVME Layer to Command is put on WQ.
556 * Segment 4 - Time from Driver WQ put is done
557 * to MSI-X ISR for Command cmpl.
558 * Segment 5 - Time from MSI-X ISR for Command cmpl to
559 * Command cmpl is passed to NVME Layer.
560 * Segment 6 - Time from Command cmpl is passed to NVME
561 * Layer to Driver receives a RSP op from NVME Layer.
562 * Segment 7 - Time from Driver receives a RSP op from
563 * NVME Layer to WQ put is done on TRSP FCP Status.
564 * Segment 8 - Time from Driver WQ put is done on TRSP
565 * FCP Status to MSI-X ISR for TRSP cmpl.
566 * Segment 9 - Time from MSI-X ISR for TRSP cmpl to
567 * TRSP cmpl is passed to NVME Layer.
568 * Segment 10 - Time from FCP command received by
569 * MSI-X ISR to command is completed on wire.
570 * (Segments 1 thru 8) for READDATA / WRITEDATA
571 * (Segments 1 thru 4) for READDATA_RSP
572 */
573 seg1 = ctxp->ts_cmd_nvme - ctxp->ts_isr_cmd;
574 segsum = seg1;
575
576 seg2 = ctxp->ts_nvme_data - ctxp->ts_isr_cmd;
577 if (segsum > seg2)
578 return;
579 seg2 -= segsum;
580 segsum += seg2;
581
582 seg3 = ctxp->ts_data_wqput - ctxp->ts_isr_cmd;
583 if (segsum > seg3)
584 return;
585 seg3 -= segsum;
586 segsum += seg3;
587
588 seg4 = ctxp->ts_isr_data - ctxp->ts_isr_cmd;
589 if (segsum > seg4)
590 return;
591 seg4 -= segsum;
592 segsum += seg4;
593
594 seg5 = ctxp->ts_data_nvme - ctxp->ts_isr_cmd;
595 if (segsum > seg5)
596 return;
597 seg5 -= segsum;
598 segsum += seg5;
599
600
601 /* For auto rsp commands seg6 thru seg10 will be 0 */
602 if (ctxp->ts_nvme_status > ctxp->ts_data_nvme) {
603 seg6 = ctxp->ts_nvme_status - ctxp->ts_isr_cmd;
604 if (segsum > seg6)
605 return;
606 seg6 -= segsum;
607 segsum += seg6;
608
609 seg7 = ctxp->ts_status_wqput - ctxp->ts_isr_cmd;
610 if (segsum > seg7)
611 return;
612 seg7 -= segsum;
613 segsum += seg7;
614
615 seg8 = ctxp->ts_isr_status - ctxp->ts_isr_cmd;
616 if (segsum > seg8)
617 return;
618 seg8 -= segsum;
619 segsum += seg8;
620
621 seg9 = ctxp->ts_status_nvme - ctxp->ts_isr_cmd;
622 if (segsum > seg9)
623 return;
624 seg9 -= segsum;
625 segsum += seg9;
626
627 if (ctxp->ts_isr_status < ctxp->ts_isr_cmd)
628 return;
629 seg10 = (ctxp->ts_isr_status -
630 ctxp->ts_isr_cmd);
631 } else {
632 if (ctxp->ts_isr_data < ctxp->ts_isr_cmd)
633 return;
634 seg6 = 0;
635 seg7 = 0;
636 seg8 = 0;
637 seg9 = 0;
638 seg10 = (ctxp->ts_isr_data - ctxp->ts_isr_cmd);
639 }
640
641 phba->ktime_seg1_total += seg1;
642 if (seg1 < phba->ktime_seg1_min)
643 phba->ktime_seg1_min = seg1;
644 else if (seg1 > phba->ktime_seg1_max)
645 phba->ktime_seg1_max = seg1;
646
647 phba->ktime_seg2_total += seg2;
648 if (seg2 < phba->ktime_seg2_min)
649 phba->ktime_seg2_min = seg2;
650 else if (seg2 > phba->ktime_seg2_max)
651 phba->ktime_seg2_max = seg2;
652
653 phba->ktime_seg3_total += seg3;
654 if (seg3 < phba->ktime_seg3_min)
655 phba->ktime_seg3_min = seg3;
656 else if (seg3 > phba->ktime_seg3_max)
657 phba->ktime_seg3_max = seg3;
658
659 phba->ktime_seg4_total += seg4;
660 if (seg4 < phba->ktime_seg4_min)
661 phba->ktime_seg4_min = seg4;
662 else if (seg4 > phba->ktime_seg4_max)
663 phba->ktime_seg4_max = seg4;
664
665 phba->ktime_seg5_total += seg5;
666 if (seg5 < phba->ktime_seg5_min)
667 phba->ktime_seg5_min = seg5;
668 else if (seg5 > phba->ktime_seg5_max)
669 phba->ktime_seg5_max = seg5;
670
671 phba->ktime_data_samples++;
672 if (!seg6)
673 goto out;
674
675 phba->ktime_seg6_total += seg6;
676 if (seg6 < phba->ktime_seg6_min)
677 phba->ktime_seg6_min = seg6;
678 else if (seg6 > phba->ktime_seg6_max)
679 phba->ktime_seg6_max = seg6;
680
681 phba->ktime_seg7_total += seg7;
682 if (seg7 < phba->ktime_seg7_min)
683 phba->ktime_seg7_min = seg7;
684 else if (seg7 > phba->ktime_seg7_max)
685 phba->ktime_seg7_max = seg7;
686
687 phba->ktime_seg8_total += seg8;
688 if (seg8 < phba->ktime_seg8_min)
689 phba->ktime_seg8_min = seg8;
690 else if (seg8 > phba->ktime_seg8_max)
691 phba->ktime_seg8_max = seg8;
692
693 phba->ktime_seg9_total += seg9;
694 if (seg9 < phba->ktime_seg9_min)
695 phba->ktime_seg9_min = seg9;
696 else if (seg9 > phba->ktime_seg9_max)
697 phba->ktime_seg9_max = seg9;
698 out:
699 phba->ktime_seg10_total += seg10;
700 if (seg10 < phba->ktime_seg10_min)
701 phba->ktime_seg10_min = seg10;
702 else if (seg10 > phba->ktime_seg10_max)
703 phba->ktime_seg10_max = seg10;
704 phba->ktime_status_samples++;
705 }
706 #endif
707
708 /**
709 * lpfc_nvmet_xmt_fcp_op_cmp - Completion handler for FCP Response
710 * @phba: Pointer to HBA context object.
711 * @cmdwqe: Pointer to driver command WQE object.
712 * @rspwqe: Pointer to driver response WQE object.
713 *
714 * The function is called from SLI ring event handler with no
715 * lock held. This function is the completion handler for NVME FCP commands
716 * The function frees memory resources used for the NVME commands.
717 **/
718 static void
lpfc_nvmet_xmt_fcp_op_cmp(struct lpfc_hba * phba,struct lpfc_iocbq * cmdwqe,struct lpfc_iocbq * rspwqe)719 lpfc_nvmet_xmt_fcp_op_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
720 struct lpfc_iocbq *rspwqe)
721 {
722 struct lpfc_nvmet_tgtport *tgtp;
723 struct nvmefc_tgt_fcp_req *rsp;
724 struct lpfc_async_xchg_ctx *ctxp;
725 uint32_t status, result, op, start_clean, logerr;
726 struct lpfc_wcqe_complete *wcqe = &rspwqe->wcqe_cmpl;
727 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
728 int id;
729 #endif
730
731 ctxp = cmdwqe->context_un.axchg;
732 ctxp->flag &= ~LPFC_NVME_IO_INP;
733
734 rsp = &ctxp->hdlrctx.fcp_req;
735 op = rsp->op;
736
737 status = bf_get(lpfc_wcqe_c_status, wcqe);
738 result = wcqe->parameter;
739
740 if (phba->targetport)
741 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
742 else
743 tgtp = NULL;
744
745 lpfc_nvmeio_data(phba, "NVMET FCP CMPL: xri x%x op x%x status x%x\n",
746 ctxp->oxid, op, status);
747
748 if (status) {
749 rsp->fcp_error = NVME_SC_DATA_XFER_ERROR;
750 rsp->transferred_length = 0;
751 if (tgtp) {
752 atomic_inc(&tgtp->xmt_fcp_rsp_error);
753 if (result == IOERR_ABORT_REQUESTED)
754 atomic_inc(&tgtp->xmt_fcp_rsp_aborted);
755 }
756
757 logerr = LOG_NVME_IOERR;
758
759 /* pick up SLI4 exhange busy condition */
760 if (bf_get(lpfc_wcqe_c_xb, wcqe)) {
761 ctxp->flag |= LPFC_NVME_XBUSY;
762 logerr |= LOG_NVME_ABTS;
763 if (tgtp)
764 atomic_inc(&tgtp->xmt_fcp_rsp_xb_set);
765
766 } else {
767 ctxp->flag &= ~LPFC_NVME_XBUSY;
768 }
769
770 lpfc_printf_log(phba, KERN_INFO, logerr,
771 "6315 IO Error Cmpl oxid: x%x xri: x%x %x/%x "
772 "XBUSY:x%x\n",
773 ctxp->oxid, ctxp->ctxbuf->sglq->sli4_xritag,
774 status, result, ctxp->flag);
775
776 } else {
777 rsp->fcp_error = NVME_SC_SUCCESS;
778 if (op == NVMET_FCOP_RSP)
779 rsp->transferred_length = rsp->rsplen;
780 else
781 rsp->transferred_length = rsp->transfer_length;
782 if (tgtp)
783 atomic_inc(&tgtp->xmt_fcp_rsp_cmpl);
784 }
785
786 if ((op == NVMET_FCOP_READDATA_RSP) ||
787 (op == NVMET_FCOP_RSP)) {
788 /* Sanity check */
789 ctxp->state = LPFC_NVME_STE_DONE;
790 ctxp->entry_cnt++;
791
792 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
793 if (ctxp->ts_cmd_nvme) {
794 if (rsp->op == NVMET_FCOP_READDATA_RSP) {
795 ctxp->ts_isr_data =
796 cmdwqe->isr_timestamp;
797 ctxp->ts_data_nvme =
798 ktime_get_ns();
799 ctxp->ts_nvme_status =
800 ctxp->ts_data_nvme;
801 ctxp->ts_status_wqput =
802 ctxp->ts_data_nvme;
803 ctxp->ts_isr_status =
804 ctxp->ts_data_nvme;
805 ctxp->ts_status_nvme =
806 ctxp->ts_data_nvme;
807 } else {
808 ctxp->ts_isr_status =
809 cmdwqe->isr_timestamp;
810 ctxp->ts_status_nvme =
811 ktime_get_ns();
812 }
813 }
814 #endif
815 rsp->done(rsp);
816 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
817 if (ctxp->ts_cmd_nvme)
818 lpfc_nvmet_ktime(phba, ctxp);
819 #endif
820 /* lpfc_nvmet_xmt_fcp_release() will recycle the context */
821 } else {
822 ctxp->entry_cnt++;
823 start_clean = offsetof(struct lpfc_iocbq, cmd_flag);
824 memset(((char *)cmdwqe) + start_clean, 0,
825 (sizeof(struct lpfc_iocbq) - start_clean));
826 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
827 if (ctxp->ts_cmd_nvme) {
828 ctxp->ts_isr_data = cmdwqe->isr_timestamp;
829 ctxp->ts_data_nvme = ktime_get_ns();
830 }
831 #endif
832 rsp->done(rsp);
833 }
834 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
835 if (phba->hdwqstat_on & LPFC_CHECK_NVMET_IO) {
836 id = raw_smp_processor_id();
837 this_cpu_inc(phba->sli4_hba.c_stat->cmpl_io);
838 if (ctxp->cpu != id)
839 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR,
840 "6704 CPU Check cmdcmpl: "
841 "cpu %d expect %d\n",
842 id, ctxp->cpu);
843 }
844 #endif
845 }
846
847 /**
848 * __lpfc_nvme_xmt_ls_rsp - Generic service routine to issue transmit
849 * an NVME LS rsp for a prior NVME LS request that was received.
850 * @axchg: pointer to exchange context for the NVME LS request the response
851 * is for.
852 * @ls_rsp: pointer to the transport LS RSP that is to be sent
853 * @xmt_ls_rsp_cmp: completion routine to call upon RSP transmit done
854 *
855 * This routine is used to format and send a WQE to transmit a NVME LS
856 * Response. The response is for a prior NVME LS request that was
857 * received and posted to the transport.
858 *
859 * Returns:
860 * 0 : if response successfully transmit
861 * non-zero : if response failed to transmit, of the form -Exxx.
862 **/
863 int
__lpfc_nvme_xmt_ls_rsp(struct lpfc_async_xchg_ctx * axchg,struct nvmefc_ls_rsp * ls_rsp,void (* xmt_ls_rsp_cmp)(struct lpfc_hba * phba,struct lpfc_iocbq * cmdwqe,struct lpfc_iocbq * rspwqe))864 __lpfc_nvme_xmt_ls_rsp(struct lpfc_async_xchg_ctx *axchg,
865 struct nvmefc_ls_rsp *ls_rsp,
866 void (*xmt_ls_rsp_cmp)(struct lpfc_hba *phba,
867 struct lpfc_iocbq *cmdwqe,
868 struct lpfc_iocbq *rspwqe))
869 {
870 struct lpfc_hba *phba = axchg->phba;
871 struct hbq_dmabuf *nvmebuf = (struct hbq_dmabuf *)axchg->rqb_buffer;
872 struct lpfc_iocbq *nvmewqeq;
873 struct lpfc_dmabuf dmabuf;
874 struct ulp_bde64 bpl;
875 int rc;
876
877 if (phba->pport->load_flag & FC_UNLOADING)
878 return -ENODEV;
879
880 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC,
881 "6023 NVMEx LS rsp oxid x%x\n", axchg->oxid);
882
883 if (axchg->state != LPFC_NVME_STE_LS_RCV || axchg->entry_cnt != 1) {
884 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
885 "6412 NVMEx LS rsp state mismatch "
886 "oxid x%x: %d %d\n",
887 axchg->oxid, axchg->state, axchg->entry_cnt);
888 return -EALREADY;
889 }
890 axchg->state = LPFC_NVME_STE_LS_RSP;
891 axchg->entry_cnt++;
892
893 nvmewqeq = lpfc_nvmet_prep_ls_wqe(phba, axchg, ls_rsp->rspdma,
894 ls_rsp->rsplen);
895 if (nvmewqeq == NULL) {
896 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
897 "6150 NVMEx LS Drop Rsp x%x: Prep\n",
898 axchg->oxid);
899 rc = -ENOMEM;
900 goto out_free_buf;
901 }
902
903 /* Save numBdes for bpl2sgl */
904 nvmewqeq->num_bdes = 1;
905 nvmewqeq->hba_wqidx = 0;
906 nvmewqeq->bpl_dmabuf = &dmabuf;
907 dmabuf.virt = &bpl;
908 bpl.addrLow = nvmewqeq->wqe.xmit_sequence.bde.addrLow;
909 bpl.addrHigh = nvmewqeq->wqe.xmit_sequence.bde.addrHigh;
910 bpl.tus.f.bdeSize = ls_rsp->rsplen;
911 bpl.tus.f.bdeFlags = 0;
912 bpl.tus.w = le32_to_cpu(bpl.tus.w);
913 /*
914 * Note: although we're using stack space for the dmabuf, the
915 * call to lpfc_sli4_issue_wqe is synchronous, so it will not
916 * be referenced after it returns back to this routine.
917 */
918
919 nvmewqeq->cmd_cmpl = xmt_ls_rsp_cmp;
920 nvmewqeq->context_un.axchg = axchg;
921
922 lpfc_nvmeio_data(phba, "NVMEx LS RSP: xri x%x wqidx x%x len x%x\n",
923 axchg->oxid, nvmewqeq->hba_wqidx, ls_rsp->rsplen);
924
925 rc = lpfc_sli4_issue_wqe(phba, axchg->hdwq, nvmewqeq);
926
927 /* clear to be sure there's no reference */
928 nvmewqeq->bpl_dmabuf = NULL;
929
930 if (rc == WQE_SUCCESS) {
931 /*
932 * Okay to repost buffer here, but wait till cmpl
933 * before freeing ctxp and iocbq.
934 */
935 lpfc_in_buf_free(phba, &nvmebuf->dbuf);
936 return 0;
937 }
938
939 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
940 "6151 NVMEx LS RSP x%x: failed to transmit %d\n",
941 axchg->oxid, rc);
942
943 rc = -ENXIO;
944
945 lpfc_nlp_put(nvmewqeq->ndlp);
946
947 out_free_buf:
948 /* Give back resources */
949 lpfc_in_buf_free(phba, &nvmebuf->dbuf);
950
951 /*
952 * As transport doesn't track completions of responses, if the rsp
953 * fails to send, the transport will effectively ignore the rsp
954 * and consider the LS done. However, the driver has an active
955 * exchange open for the LS - so be sure to abort the exchange
956 * if the response isn't sent.
957 */
958 lpfc_nvme_unsol_ls_issue_abort(phba, axchg, axchg->sid, axchg->oxid);
959 return rc;
960 }
961
962 /**
963 * lpfc_nvmet_xmt_ls_rsp - Transmit NVME LS response
964 * @tgtport: pointer to target port that NVME LS is to be transmit from.
965 * @ls_rsp: pointer to the transport LS RSP that is to be sent
966 *
967 * Driver registers this routine to transmit responses for received NVME
968 * LS requests.
969 *
970 * This routine is used to format and send a WQE to transmit a NVME LS
971 * Response. The ls_rsp is used to reverse-map the LS to the original
972 * NVME LS request sequence, which provides addressing information for
973 * the remote port the LS to be sent to, as well as the exchange id
974 * that is the LS is bound to.
975 *
976 * Returns:
977 * 0 : if response successfully transmit
978 * non-zero : if response failed to transmit, of the form -Exxx.
979 **/
980 static int
lpfc_nvmet_xmt_ls_rsp(struct nvmet_fc_target_port * tgtport,struct nvmefc_ls_rsp * ls_rsp)981 lpfc_nvmet_xmt_ls_rsp(struct nvmet_fc_target_port *tgtport,
982 struct nvmefc_ls_rsp *ls_rsp)
983 {
984 struct lpfc_async_xchg_ctx *axchg =
985 container_of(ls_rsp, struct lpfc_async_xchg_ctx, ls_rsp);
986 struct lpfc_nvmet_tgtport *nvmep = tgtport->private;
987 int rc;
988
989 if (axchg->phba->pport->load_flag & FC_UNLOADING)
990 return -ENODEV;
991
992 rc = __lpfc_nvme_xmt_ls_rsp(axchg, ls_rsp, lpfc_nvmet_xmt_ls_rsp_cmp);
993
994 if (rc) {
995 atomic_inc(&nvmep->xmt_ls_drop);
996 /*
997 * unless the failure is due to having already sent
998 * the response, an abort will be generated for the
999 * exchange if the rsp can't be sent.
1000 */
1001 if (rc != -EALREADY)
1002 atomic_inc(&nvmep->xmt_ls_abort);
1003 return rc;
1004 }
1005
1006 atomic_inc(&nvmep->xmt_ls_rsp);
1007 return 0;
1008 }
1009
1010 static int
lpfc_nvmet_xmt_fcp_op(struct nvmet_fc_target_port * tgtport,struct nvmefc_tgt_fcp_req * rsp)1011 lpfc_nvmet_xmt_fcp_op(struct nvmet_fc_target_port *tgtport,
1012 struct nvmefc_tgt_fcp_req *rsp)
1013 {
1014 struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private;
1015 struct lpfc_async_xchg_ctx *ctxp =
1016 container_of(rsp, struct lpfc_async_xchg_ctx, hdlrctx.fcp_req);
1017 struct lpfc_hba *phba = ctxp->phba;
1018 struct lpfc_queue *wq;
1019 struct lpfc_iocbq *nvmewqeq;
1020 struct lpfc_sli_ring *pring;
1021 unsigned long iflags;
1022 int rc;
1023 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
1024 int id;
1025 #endif
1026
1027 if (phba->pport->load_flag & FC_UNLOADING) {
1028 rc = -ENODEV;
1029 goto aerr;
1030 }
1031
1032 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
1033 if (ctxp->ts_cmd_nvme) {
1034 if (rsp->op == NVMET_FCOP_RSP)
1035 ctxp->ts_nvme_status = ktime_get_ns();
1036 else
1037 ctxp->ts_nvme_data = ktime_get_ns();
1038 }
1039
1040 /* Setup the hdw queue if not already set */
1041 if (!ctxp->hdwq)
1042 ctxp->hdwq = &phba->sli4_hba.hdwq[rsp->hwqid];
1043
1044 if (phba->hdwqstat_on & LPFC_CHECK_NVMET_IO) {
1045 id = raw_smp_processor_id();
1046 this_cpu_inc(phba->sli4_hba.c_stat->xmt_io);
1047 if (rsp->hwqid != id)
1048 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR,
1049 "6705 CPU Check OP: "
1050 "cpu %d expect %d\n",
1051 id, rsp->hwqid);
1052 ctxp->cpu = id; /* Setup cpu for cmpl check */
1053 }
1054 #endif
1055
1056 /* Sanity check */
1057 if ((ctxp->flag & LPFC_NVME_ABTS_RCV) ||
1058 (ctxp->state == LPFC_NVME_STE_ABORT)) {
1059 atomic_inc(&lpfc_nvmep->xmt_fcp_drop);
1060 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1061 "6102 IO oxid x%x aborted\n",
1062 ctxp->oxid);
1063 rc = -ENXIO;
1064 goto aerr;
1065 }
1066
1067 nvmewqeq = lpfc_nvmet_prep_fcp_wqe(phba, ctxp);
1068 if (nvmewqeq == NULL) {
1069 atomic_inc(&lpfc_nvmep->xmt_fcp_drop);
1070 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1071 "6152 FCP Drop IO x%x: Prep\n",
1072 ctxp->oxid);
1073 rc = -ENXIO;
1074 goto aerr;
1075 }
1076
1077 nvmewqeq->cmd_cmpl = lpfc_nvmet_xmt_fcp_op_cmp;
1078 nvmewqeq->context_un.axchg = ctxp;
1079 nvmewqeq->cmd_flag |= LPFC_IO_NVMET;
1080 ctxp->wqeq->hba_wqidx = rsp->hwqid;
1081
1082 lpfc_nvmeio_data(phba, "NVMET FCP CMND: xri x%x op x%x len x%x\n",
1083 ctxp->oxid, rsp->op, rsp->rsplen);
1084
1085 ctxp->flag |= LPFC_NVME_IO_INP;
1086 rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, nvmewqeq);
1087 if (rc == WQE_SUCCESS) {
1088 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
1089 if (!ctxp->ts_cmd_nvme)
1090 return 0;
1091 if (rsp->op == NVMET_FCOP_RSP)
1092 ctxp->ts_status_wqput = ktime_get_ns();
1093 else
1094 ctxp->ts_data_wqput = ktime_get_ns();
1095 #endif
1096 return 0;
1097 }
1098
1099 if (rc == -EBUSY) {
1100 /*
1101 * WQ was full, so queue nvmewqeq to be sent after
1102 * WQE release CQE
1103 */
1104 ctxp->flag |= LPFC_NVME_DEFER_WQFULL;
1105 wq = ctxp->hdwq->io_wq;
1106 pring = wq->pring;
1107 spin_lock_irqsave(&pring->ring_lock, iflags);
1108 list_add_tail(&nvmewqeq->list, &wq->wqfull_list);
1109 wq->q_flag |= HBA_NVMET_WQFULL;
1110 spin_unlock_irqrestore(&pring->ring_lock, iflags);
1111 atomic_inc(&lpfc_nvmep->defer_wqfull);
1112 return 0;
1113 }
1114
1115 /* Give back resources */
1116 atomic_inc(&lpfc_nvmep->xmt_fcp_drop);
1117 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1118 "6153 FCP Drop IO x%x: Issue: %d\n",
1119 ctxp->oxid, rc);
1120
1121 ctxp->wqeq->hba_wqidx = 0;
1122 nvmewqeq->context_un.axchg = NULL;
1123 nvmewqeq->bpl_dmabuf = NULL;
1124 rc = -EBUSY;
1125 aerr:
1126 return rc;
1127 }
1128
1129 static void
lpfc_nvmet_targetport_delete(struct nvmet_fc_target_port * targetport)1130 lpfc_nvmet_targetport_delete(struct nvmet_fc_target_port *targetport)
1131 {
1132 struct lpfc_nvmet_tgtport *tport = targetport->private;
1133
1134 /* release any threads waiting for the unreg to complete */
1135 if (tport->phba->targetport)
1136 complete(tport->tport_unreg_cmp);
1137 }
1138
1139 static void
lpfc_nvmet_xmt_fcp_abort(struct nvmet_fc_target_port * tgtport,struct nvmefc_tgt_fcp_req * req)1140 lpfc_nvmet_xmt_fcp_abort(struct nvmet_fc_target_port *tgtport,
1141 struct nvmefc_tgt_fcp_req *req)
1142 {
1143 struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private;
1144 struct lpfc_async_xchg_ctx *ctxp =
1145 container_of(req, struct lpfc_async_xchg_ctx, hdlrctx.fcp_req);
1146 struct lpfc_hba *phba = ctxp->phba;
1147 struct lpfc_queue *wq;
1148 unsigned long flags;
1149
1150 if (phba->pport->load_flag & FC_UNLOADING)
1151 return;
1152
1153 if (!ctxp->hdwq)
1154 ctxp->hdwq = &phba->sli4_hba.hdwq[0];
1155
1156 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
1157 "6103 NVMET Abort op: oxid x%x flg x%x ste %d\n",
1158 ctxp->oxid, ctxp->flag, ctxp->state);
1159
1160 lpfc_nvmeio_data(phba, "NVMET FCP ABRT: xri x%x flg x%x ste x%x\n",
1161 ctxp->oxid, ctxp->flag, ctxp->state);
1162
1163 atomic_inc(&lpfc_nvmep->xmt_fcp_abort);
1164
1165 spin_lock_irqsave(&ctxp->ctxlock, flags);
1166
1167 /* Since iaab/iaar are NOT set, we need to check
1168 * if the firmware is in process of aborting IO
1169 */
1170 if (ctxp->flag & (LPFC_NVME_XBUSY | LPFC_NVME_ABORT_OP)) {
1171 spin_unlock_irqrestore(&ctxp->ctxlock, flags);
1172 return;
1173 }
1174 ctxp->flag |= LPFC_NVME_ABORT_OP;
1175
1176 if (ctxp->flag & LPFC_NVME_DEFER_WQFULL) {
1177 spin_unlock_irqrestore(&ctxp->ctxlock, flags);
1178 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid,
1179 ctxp->oxid);
1180 wq = ctxp->hdwq->io_wq;
1181 lpfc_nvmet_wqfull_flush(phba, wq, ctxp);
1182 return;
1183 }
1184 spin_unlock_irqrestore(&ctxp->ctxlock, flags);
1185
1186 /* A state of LPFC_NVME_STE_RCV means we have just received
1187 * the NVME command and have not started processing it.
1188 * (by issuing any IO WQEs on this exchange yet)
1189 */
1190 if (ctxp->state == LPFC_NVME_STE_RCV)
1191 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid,
1192 ctxp->oxid);
1193 else
1194 lpfc_nvmet_sol_fcp_issue_abort(phba, ctxp, ctxp->sid,
1195 ctxp->oxid);
1196 }
1197
1198 static void
lpfc_nvmet_xmt_fcp_release(struct nvmet_fc_target_port * tgtport,struct nvmefc_tgt_fcp_req * rsp)1199 lpfc_nvmet_xmt_fcp_release(struct nvmet_fc_target_port *tgtport,
1200 struct nvmefc_tgt_fcp_req *rsp)
1201 {
1202 struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private;
1203 struct lpfc_async_xchg_ctx *ctxp =
1204 container_of(rsp, struct lpfc_async_xchg_ctx, hdlrctx.fcp_req);
1205 struct lpfc_hba *phba = ctxp->phba;
1206 unsigned long flags;
1207 bool aborting = false;
1208
1209 spin_lock_irqsave(&ctxp->ctxlock, flags);
1210 if (ctxp->flag & LPFC_NVME_XBUSY)
1211 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR,
1212 "6027 NVMET release with XBUSY flag x%x"
1213 " oxid x%x\n",
1214 ctxp->flag, ctxp->oxid);
1215 else if (ctxp->state != LPFC_NVME_STE_DONE &&
1216 ctxp->state != LPFC_NVME_STE_ABORT)
1217 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1218 "6413 NVMET release bad state %d %d oxid x%x\n",
1219 ctxp->state, ctxp->entry_cnt, ctxp->oxid);
1220
1221 if ((ctxp->flag & LPFC_NVME_ABORT_OP) ||
1222 (ctxp->flag & LPFC_NVME_XBUSY)) {
1223 aborting = true;
1224 /* let the abort path do the real release */
1225 lpfc_nvmet_defer_release(phba, ctxp);
1226 }
1227 spin_unlock_irqrestore(&ctxp->ctxlock, flags);
1228
1229 lpfc_nvmeio_data(phba, "NVMET FCP FREE: xri x%x ste %d abt %d\n", ctxp->oxid,
1230 ctxp->state, aborting);
1231
1232 atomic_inc(&lpfc_nvmep->xmt_fcp_release);
1233 ctxp->flag &= ~LPFC_NVME_TNOTIFY;
1234
1235 if (aborting)
1236 return;
1237
1238 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
1239 }
1240
1241 static void
lpfc_nvmet_defer_rcv(struct nvmet_fc_target_port * tgtport,struct nvmefc_tgt_fcp_req * rsp)1242 lpfc_nvmet_defer_rcv(struct nvmet_fc_target_port *tgtport,
1243 struct nvmefc_tgt_fcp_req *rsp)
1244 {
1245 struct lpfc_nvmet_tgtport *tgtp;
1246 struct lpfc_async_xchg_ctx *ctxp =
1247 container_of(rsp, struct lpfc_async_xchg_ctx, hdlrctx.fcp_req);
1248 struct rqb_dmabuf *nvmebuf = ctxp->rqb_buffer;
1249 struct lpfc_hba *phba = ctxp->phba;
1250 unsigned long iflag;
1251
1252
1253 lpfc_nvmeio_data(phba, "NVMET DEFERRCV: xri x%x sz %d CPU %02x\n",
1254 ctxp->oxid, ctxp->size, raw_smp_processor_id());
1255
1256 if (!nvmebuf) {
1257 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR,
1258 "6425 Defer rcv: no buffer oxid x%x: "
1259 "flg %x ste %x\n",
1260 ctxp->oxid, ctxp->flag, ctxp->state);
1261 return;
1262 }
1263
1264 tgtp = phba->targetport->private;
1265 if (tgtp)
1266 atomic_inc(&tgtp->rcv_fcp_cmd_defer);
1267
1268 /* Free the nvmebuf since a new buffer already replaced it */
1269 nvmebuf->hrq->rqbp->rqb_free_buffer(phba, nvmebuf);
1270 spin_lock_irqsave(&ctxp->ctxlock, iflag);
1271 ctxp->rqb_buffer = NULL;
1272 spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
1273 }
1274
1275 /**
1276 * lpfc_nvmet_ls_req_cmp - completion handler for a nvme ls request
1277 * @phba: Pointer to HBA context object
1278 * @cmdwqe: Pointer to driver command WQE object.
1279 * @rspwqe: Pointer to driver response WQE object.
1280 *
1281 * This function is the completion handler for NVME LS requests.
1282 * The function updates any states and statistics, then calls the
1283 * generic completion handler to finish completion of the request.
1284 **/
1285 static void
lpfc_nvmet_ls_req_cmp(struct lpfc_hba * phba,struct lpfc_iocbq * cmdwqe,struct lpfc_iocbq * rspwqe)1286 lpfc_nvmet_ls_req_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
1287 struct lpfc_iocbq *rspwqe)
1288 {
1289 struct lpfc_wcqe_complete *wcqe = &rspwqe->wcqe_cmpl;
1290 __lpfc_nvme_ls_req_cmp(phba, cmdwqe->vport, cmdwqe, wcqe);
1291 }
1292
1293 /**
1294 * lpfc_nvmet_ls_req - Issue an Link Service request
1295 * @targetport: pointer to target instance registered with nvmet transport.
1296 * @hosthandle: hosthandle set by the driver in a prior ls_rqst_rcv.
1297 * Driver sets this value to the ndlp pointer.
1298 * @pnvme_lsreq: the transport nvme_ls_req structure for the LS
1299 *
1300 * Driver registers this routine to handle any link service request
1301 * from the nvme_fc transport to a remote nvme-aware port.
1302 *
1303 * Return value :
1304 * 0 - Success
1305 * non-zero: various error codes, in form of -Exxx
1306 **/
1307 static int
lpfc_nvmet_ls_req(struct nvmet_fc_target_port * targetport,void * hosthandle,struct nvmefc_ls_req * pnvme_lsreq)1308 lpfc_nvmet_ls_req(struct nvmet_fc_target_port *targetport,
1309 void *hosthandle,
1310 struct nvmefc_ls_req *pnvme_lsreq)
1311 {
1312 struct lpfc_nvmet_tgtport *lpfc_nvmet = targetport->private;
1313 struct lpfc_hba *phba;
1314 struct lpfc_nodelist *ndlp;
1315 int ret;
1316 u32 hstate;
1317
1318 if (!lpfc_nvmet)
1319 return -EINVAL;
1320
1321 phba = lpfc_nvmet->phba;
1322 if (phba->pport->load_flag & FC_UNLOADING)
1323 return -EINVAL;
1324
1325 hstate = atomic_read(&lpfc_nvmet->state);
1326 if (hstate == LPFC_NVMET_INV_HOST_ACTIVE)
1327 return -EACCES;
1328
1329 ndlp = (struct lpfc_nodelist *)hosthandle;
1330
1331 ret = __lpfc_nvme_ls_req(phba->pport, ndlp, pnvme_lsreq,
1332 lpfc_nvmet_ls_req_cmp);
1333
1334 return ret;
1335 }
1336
1337 /**
1338 * lpfc_nvmet_ls_abort - Abort a prior NVME LS request
1339 * @targetport: Transport targetport, that LS was issued from.
1340 * @hosthandle: hosthandle set by the driver in a prior ls_rqst_rcv.
1341 * Driver sets this value to the ndlp pointer.
1342 * @pnvme_lsreq: the transport nvme_ls_req structure for LS to be aborted
1343 *
1344 * Driver registers this routine to abort an NVME LS request that is
1345 * in progress (from the transports perspective).
1346 **/
1347 static void
lpfc_nvmet_ls_abort(struct nvmet_fc_target_port * targetport,void * hosthandle,struct nvmefc_ls_req * pnvme_lsreq)1348 lpfc_nvmet_ls_abort(struct nvmet_fc_target_port *targetport,
1349 void *hosthandle,
1350 struct nvmefc_ls_req *pnvme_lsreq)
1351 {
1352 struct lpfc_nvmet_tgtport *lpfc_nvmet = targetport->private;
1353 struct lpfc_hba *phba;
1354 struct lpfc_nodelist *ndlp;
1355 int ret;
1356
1357 phba = lpfc_nvmet->phba;
1358 if (phba->pport->load_flag & FC_UNLOADING)
1359 return;
1360
1361 ndlp = (struct lpfc_nodelist *)hosthandle;
1362
1363 ret = __lpfc_nvme_ls_abort(phba->pport, ndlp, pnvme_lsreq);
1364 if (!ret)
1365 atomic_inc(&lpfc_nvmet->xmt_ls_abort);
1366 }
1367
1368 static void
lpfc_nvmet_host_release(void * hosthandle)1369 lpfc_nvmet_host_release(void *hosthandle)
1370 {
1371 struct lpfc_nodelist *ndlp = hosthandle;
1372 struct lpfc_hba *phba = ndlp->phba;
1373 struct lpfc_nvmet_tgtport *tgtp;
1374
1375 if (!phba->targetport || !phba->targetport->private)
1376 return;
1377
1378 lpfc_printf_log(phba, KERN_ERR, LOG_NVME,
1379 "6202 NVMET XPT releasing hosthandle x%px "
1380 "DID x%x xflags x%x refcnt %d\n",
1381 hosthandle, ndlp->nlp_DID, ndlp->fc4_xpt_flags,
1382 kref_read(&ndlp->kref));
1383 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
1384 spin_lock_irq(&ndlp->lock);
1385 ndlp->fc4_xpt_flags &= ~NLP_XPT_HAS_HH;
1386 spin_unlock_irq(&ndlp->lock);
1387 lpfc_nlp_put(ndlp);
1388 atomic_set(&tgtp->state, 0);
1389 }
1390
1391 static void
lpfc_nvmet_discovery_event(struct nvmet_fc_target_port * tgtport)1392 lpfc_nvmet_discovery_event(struct nvmet_fc_target_port *tgtport)
1393 {
1394 struct lpfc_nvmet_tgtport *tgtp;
1395 struct lpfc_hba *phba;
1396 uint32_t rc;
1397
1398 tgtp = tgtport->private;
1399 phba = tgtp->phba;
1400
1401 rc = lpfc_issue_els_rscn(phba->pport, 0);
1402 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1403 "6420 NVMET subsystem change: Notification %s\n",
1404 (rc) ? "Failed" : "Sent");
1405 }
1406
1407 static struct nvmet_fc_target_template lpfc_tgttemplate = {
1408 .targetport_delete = lpfc_nvmet_targetport_delete,
1409 .xmt_ls_rsp = lpfc_nvmet_xmt_ls_rsp,
1410 .fcp_op = lpfc_nvmet_xmt_fcp_op,
1411 .fcp_abort = lpfc_nvmet_xmt_fcp_abort,
1412 .fcp_req_release = lpfc_nvmet_xmt_fcp_release,
1413 .defer_rcv = lpfc_nvmet_defer_rcv,
1414 .discovery_event = lpfc_nvmet_discovery_event,
1415 .ls_req = lpfc_nvmet_ls_req,
1416 .ls_abort = lpfc_nvmet_ls_abort,
1417 .host_release = lpfc_nvmet_host_release,
1418
1419 .max_hw_queues = 1,
1420 .max_sgl_segments = LPFC_NVMET_DEFAULT_SEGS,
1421 .max_dif_sgl_segments = LPFC_NVMET_DEFAULT_SEGS,
1422 .dma_boundary = 0xFFFFFFFF,
1423
1424 /* optional features */
1425 .target_features = 0,
1426 /* sizes of additional private data for data structures */
1427 .target_priv_sz = sizeof(struct lpfc_nvmet_tgtport),
1428 .lsrqst_priv_sz = 0,
1429 };
1430
1431 static void
__lpfc_nvmet_clean_io_for_cpu(struct lpfc_hba * phba,struct lpfc_nvmet_ctx_info * infop)1432 __lpfc_nvmet_clean_io_for_cpu(struct lpfc_hba *phba,
1433 struct lpfc_nvmet_ctx_info *infop)
1434 {
1435 struct lpfc_nvmet_ctxbuf *ctx_buf, *next_ctx_buf;
1436 unsigned long flags;
1437
1438 spin_lock_irqsave(&infop->nvmet_ctx_list_lock, flags);
1439 list_for_each_entry_safe(ctx_buf, next_ctx_buf,
1440 &infop->nvmet_ctx_list, list) {
1441 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1442 list_del_init(&ctx_buf->list);
1443 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1444
1445 spin_lock(&phba->hbalock);
1446 __lpfc_clear_active_sglq(phba, ctx_buf->sglq->sli4_lxritag);
1447 spin_unlock(&phba->hbalock);
1448
1449 ctx_buf->sglq->state = SGL_FREED;
1450 ctx_buf->sglq->ndlp = NULL;
1451
1452 spin_lock(&phba->sli4_hba.sgl_list_lock);
1453 list_add_tail(&ctx_buf->sglq->list,
1454 &phba->sli4_hba.lpfc_nvmet_sgl_list);
1455 spin_unlock(&phba->sli4_hba.sgl_list_lock);
1456
1457 lpfc_sli_release_iocbq(phba, ctx_buf->iocbq);
1458 kfree(ctx_buf->context);
1459 }
1460 spin_unlock_irqrestore(&infop->nvmet_ctx_list_lock, flags);
1461 }
1462
1463 static void
lpfc_nvmet_cleanup_io_context(struct lpfc_hba * phba)1464 lpfc_nvmet_cleanup_io_context(struct lpfc_hba *phba)
1465 {
1466 struct lpfc_nvmet_ctx_info *infop;
1467 int i, j;
1468
1469 /* The first context list, MRQ 0 CPU 0 */
1470 infop = phba->sli4_hba.nvmet_ctx_info;
1471 if (!infop)
1472 return;
1473
1474 /* Cycle the the entire CPU context list for every MRQ */
1475 for (i = 0; i < phba->cfg_nvmet_mrq; i++) {
1476 for_each_present_cpu(j) {
1477 infop = lpfc_get_ctx_list(phba, j, i);
1478 __lpfc_nvmet_clean_io_for_cpu(phba, infop);
1479 }
1480 }
1481 kfree(phba->sli4_hba.nvmet_ctx_info);
1482 phba->sli4_hba.nvmet_ctx_info = NULL;
1483 }
1484
1485 static int
lpfc_nvmet_setup_io_context(struct lpfc_hba * phba)1486 lpfc_nvmet_setup_io_context(struct lpfc_hba *phba)
1487 {
1488 struct lpfc_nvmet_ctxbuf *ctx_buf;
1489 struct lpfc_iocbq *nvmewqe;
1490 union lpfc_wqe128 *wqe;
1491 struct lpfc_nvmet_ctx_info *last_infop;
1492 struct lpfc_nvmet_ctx_info *infop;
1493 int i, j, idx, cpu;
1494
1495 lpfc_printf_log(phba, KERN_INFO, LOG_NVME,
1496 "6403 Allocate NVMET resources for %d XRIs\n",
1497 phba->sli4_hba.nvmet_xri_cnt);
1498
1499 phba->sli4_hba.nvmet_ctx_info = kcalloc(
1500 phba->sli4_hba.num_possible_cpu * phba->cfg_nvmet_mrq,
1501 sizeof(struct lpfc_nvmet_ctx_info), GFP_KERNEL);
1502 if (!phba->sli4_hba.nvmet_ctx_info) {
1503 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1504 "6419 Failed allocate memory for "
1505 "nvmet context lists\n");
1506 return -ENOMEM;
1507 }
1508
1509 /*
1510 * Assuming X CPUs in the system, and Y MRQs, allocate some
1511 * lpfc_nvmet_ctx_info structures as follows:
1512 *
1513 * cpu0/mrq0 cpu1/mrq0 ... cpuX/mrq0
1514 * cpu0/mrq1 cpu1/mrq1 ... cpuX/mrq1
1515 * ...
1516 * cpuX/mrqY cpuX/mrqY ... cpuX/mrqY
1517 *
1518 * Each line represents a MRQ "silo" containing an entry for
1519 * every CPU.
1520 *
1521 * MRQ X is initially assumed to be associated with CPU X, thus
1522 * contexts are initially distributed across all MRQs using
1523 * the MRQ index (N) as follows cpuN/mrqN. When contexts are
1524 * freed, the are freed to the MRQ silo based on the CPU number
1525 * of the IO completion. Thus a context that was allocated for MRQ A
1526 * whose IO completed on CPU B will be freed to cpuB/mrqA.
1527 */
1528 for_each_possible_cpu(i) {
1529 for (j = 0; j < phba->cfg_nvmet_mrq; j++) {
1530 infop = lpfc_get_ctx_list(phba, i, j);
1531 INIT_LIST_HEAD(&infop->nvmet_ctx_list);
1532 spin_lock_init(&infop->nvmet_ctx_list_lock);
1533 infop->nvmet_ctx_list_cnt = 0;
1534 }
1535 }
1536
1537 /*
1538 * Setup the next CPU context info ptr for each MRQ.
1539 * MRQ 0 will cycle thru CPUs 0 - X separately from
1540 * MRQ 1 cycling thru CPUs 0 - X, and so on.
1541 */
1542 for (j = 0; j < phba->cfg_nvmet_mrq; j++) {
1543 last_infop = lpfc_get_ctx_list(phba,
1544 cpumask_first(cpu_present_mask),
1545 j);
1546 for (i = phba->sli4_hba.num_possible_cpu - 1; i >= 0; i--) {
1547 infop = lpfc_get_ctx_list(phba, i, j);
1548 infop->nvmet_ctx_next_cpu = last_infop;
1549 last_infop = infop;
1550 }
1551 }
1552
1553 /* For all nvmet xris, allocate resources needed to process a
1554 * received command on a per xri basis.
1555 */
1556 idx = 0;
1557 cpu = cpumask_first(cpu_present_mask);
1558 for (i = 0; i < phba->sli4_hba.nvmet_xri_cnt; i++) {
1559 ctx_buf = kzalloc(sizeof(*ctx_buf), GFP_KERNEL);
1560 if (!ctx_buf) {
1561 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1562 "6404 Ran out of memory for NVMET\n");
1563 return -ENOMEM;
1564 }
1565
1566 ctx_buf->context = kzalloc(sizeof(*ctx_buf->context),
1567 GFP_KERNEL);
1568 if (!ctx_buf->context) {
1569 kfree(ctx_buf);
1570 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1571 "6405 Ran out of NVMET "
1572 "context memory\n");
1573 return -ENOMEM;
1574 }
1575 ctx_buf->context->ctxbuf = ctx_buf;
1576 ctx_buf->context->state = LPFC_NVME_STE_FREE;
1577
1578 ctx_buf->iocbq = lpfc_sli_get_iocbq(phba);
1579 if (!ctx_buf->iocbq) {
1580 kfree(ctx_buf->context);
1581 kfree(ctx_buf);
1582 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1583 "6406 Ran out of NVMET iocb/WQEs\n");
1584 return -ENOMEM;
1585 }
1586 ctx_buf->iocbq->cmd_flag = LPFC_IO_NVMET;
1587 nvmewqe = ctx_buf->iocbq;
1588 wqe = &nvmewqe->wqe;
1589
1590 /* Initialize WQE */
1591 memset(wqe, 0, sizeof(union lpfc_wqe));
1592
1593 ctx_buf->iocbq->cmd_dmabuf = NULL;
1594 spin_lock(&phba->sli4_hba.sgl_list_lock);
1595 ctx_buf->sglq = __lpfc_sli_get_nvmet_sglq(phba, ctx_buf->iocbq);
1596 spin_unlock(&phba->sli4_hba.sgl_list_lock);
1597 if (!ctx_buf->sglq) {
1598 lpfc_sli_release_iocbq(phba, ctx_buf->iocbq);
1599 kfree(ctx_buf->context);
1600 kfree(ctx_buf);
1601 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1602 "6407 Ran out of NVMET XRIs\n");
1603 return -ENOMEM;
1604 }
1605 INIT_WORK(&ctx_buf->defer_work, lpfc_nvmet_fcp_rqst_defer_work);
1606
1607 /*
1608 * Add ctx to MRQidx context list. Our initial assumption
1609 * is MRQidx will be associated with CPUidx. This association
1610 * can change on the fly.
1611 */
1612 infop = lpfc_get_ctx_list(phba, cpu, idx);
1613 spin_lock(&infop->nvmet_ctx_list_lock);
1614 list_add_tail(&ctx_buf->list, &infop->nvmet_ctx_list);
1615 infop->nvmet_ctx_list_cnt++;
1616 spin_unlock(&infop->nvmet_ctx_list_lock);
1617
1618 /* Spread ctx structures evenly across all MRQs */
1619 idx++;
1620 if (idx >= phba->cfg_nvmet_mrq) {
1621 idx = 0;
1622 cpu = cpumask_first(cpu_present_mask);
1623 continue;
1624 }
1625 cpu = cpumask_next(cpu, cpu_present_mask);
1626 if (cpu == nr_cpu_ids)
1627 cpu = cpumask_first(cpu_present_mask);
1628
1629 }
1630
1631 for_each_present_cpu(i) {
1632 for (j = 0; j < phba->cfg_nvmet_mrq; j++) {
1633 infop = lpfc_get_ctx_list(phba, i, j);
1634 lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT,
1635 "6408 TOTAL NVMET ctx for CPU %d "
1636 "MRQ %d: cnt %d nextcpu x%px\n",
1637 i, j, infop->nvmet_ctx_list_cnt,
1638 infop->nvmet_ctx_next_cpu);
1639 }
1640 }
1641 return 0;
1642 }
1643
1644 int
lpfc_nvmet_create_targetport(struct lpfc_hba * phba)1645 lpfc_nvmet_create_targetport(struct lpfc_hba *phba)
1646 {
1647 struct lpfc_vport *vport = phba->pport;
1648 struct lpfc_nvmet_tgtport *tgtp;
1649 struct nvmet_fc_port_info pinfo;
1650 int error;
1651
1652 if (phba->targetport)
1653 return 0;
1654
1655 error = lpfc_nvmet_setup_io_context(phba);
1656 if (error)
1657 return error;
1658
1659 memset(&pinfo, 0, sizeof(struct nvmet_fc_port_info));
1660 pinfo.node_name = wwn_to_u64(vport->fc_nodename.u.wwn);
1661 pinfo.port_name = wwn_to_u64(vport->fc_portname.u.wwn);
1662 pinfo.port_id = vport->fc_myDID;
1663
1664 /* We need to tell the transport layer + 1 because it takes page
1665 * alignment into account. When space for the SGL is allocated we
1666 * allocate + 3, one for cmd, one for rsp and one for this alignment
1667 */
1668 lpfc_tgttemplate.max_sgl_segments = phba->cfg_nvme_seg_cnt + 1;
1669 lpfc_tgttemplate.max_hw_queues = phba->cfg_hdw_queue;
1670 lpfc_tgttemplate.target_features = NVMET_FCTGTFEAT_READDATA_RSP;
1671
1672 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
1673 error = nvmet_fc_register_targetport(&pinfo, &lpfc_tgttemplate,
1674 &phba->pcidev->dev,
1675 &phba->targetport);
1676 #else
1677 error = -ENOENT;
1678 #endif
1679 if (error) {
1680 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1681 "6025 Cannot register NVME targetport x%x: "
1682 "portnm %llx nodenm %llx segs %d qs %d\n",
1683 error,
1684 pinfo.port_name, pinfo.node_name,
1685 lpfc_tgttemplate.max_sgl_segments,
1686 lpfc_tgttemplate.max_hw_queues);
1687 phba->targetport = NULL;
1688 phba->nvmet_support = 0;
1689
1690 lpfc_nvmet_cleanup_io_context(phba);
1691
1692 } else {
1693 tgtp = (struct lpfc_nvmet_tgtport *)
1694 phba->targetport->private;
1695 tgtp->phba = phba;
1696
1697 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC,
1698 "6026 Registered NVME "
1699 "targetport: x%px, private x%px "
1700 "portnm %llx nodenm %llx segs %d qs %d\n",
1701 phba->targetport, tgtp,
1702 pinfo.port_name, pinfo.node_name,
1703 lpfc_tgttemplate.max_sgl_segments,
1704 lpfc_tgttemplate.max_hw_queues);
1705
1706 atomic_set(&tgtp->rcv_ls_req_in, 0);
1707 atomic_set(&tgtp->rcv_ls_req_out, 0);
1708 atomic_set(&tgtp->rcv_ls_req_drop, 0);
1709 atomic_set(&tgtp->xmt_ls_abort, 0);
1710 atomic_set(&tgtp->xmt_ls_abort_cmpl, 0);
1711 atomic_set(&tgtp->xmt_ls_rsp, 0);
1712 atomic_set(&tgtp->xmt_ls_drop, 0);
1713 atomic_set(&tgtp->xmt_ls_rsp_error, 0);
1714 atomic_set(&tgtp->xmt_ls_rsp_xb_set, 0);
1715 atomic_set(&tgtp->xmt_ls_rsp_aborted, 0);
1716 atomic_set(&tgtp->xmt_ls_rsp_cmpl, 0);
1717 atomic_set(&tgtp->rcv_fcp_cmd_in, 0);
1718 atomic_set(&tgtp->rcv_fcp_cmd_out, 0);
1719 atomic_set(&tgtp->rcv_fcp_cmd_drop, 0);
1720 atomic_set(&tgtp->xmt_fcp_drop, 0);
1721 atomic_set(&tgtp->xmt_fcp_read_rsp, 0);
1722 atomic_set(&tgtp->xmt_fcp_read, 0);
1723 atomic_set(&tgtp->xmt_fcp_write, 0);
1724 atomic_set(&tgtp->xmt_fcp_rsp, 0);
1725 atomic_set(&tgtp->xmt_fcp_release, 0);
1726 atomic_set(&tgtp->xmt_fcp_rsp_cmpl, 0);
1727 atomic_set(&tgtp->xmt_fcp_rsp_error, 0);
1728 atomic_set(&tgtp->xmt_fcp_rsp_xb_set, 0);
1729 atomic_set(&tgtp->xmt_fcp_rsp_aborted, 0);
1730 atomic_set(&tgtp->xmt_fcp_rsp_drop, 0);
1731 atomic_set(&tgtp->xmt_fcp_xri_abort_cqe, 0);
1732 atomic_set(&tgtp->xmt_fcp_abort, 0);
1733 atomic_set(&tgtp->xmt_fcp_abort_cmpl, 0);
1734 atomic_set(&tgtp->xmt_abort_unsol, 0);
1735 atomic_set(&tgtp->xmt_abort_sol, 0);
1736 atomic_set(&tgtp->xmt_abort_rsp, 0);
1737 atomic_set(&tgtp->xmt_abort_rsp_error, 0);
1738 atomic_set(&tgtp->defer_ctx, 0);
1739 atomic_set(&tgtp->defer_fod, 0);
1740 atomic_set(&tgtp->defer_wqfull, 0);
1741 }
1742 return error;
1743 }
1744
1745 int
lpfc_nvmet_update_targetport(struct lpfc_hba * phba)1746 lpfc_nvmet_update_targetport(struct lpfc_hba *phba)
1747 {
1748 struct lpfc_vport *vport = phba->pport;
1749
1750 if (!phba->targetport)
1751 return 0;
1752
1753 lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME,
1754 "6007 Update NVMET port x%px did x%x\n",
1755 phba->targetport, vport->fc_myDID);
1756
1757 phba->targetport->port_id = vport->fc_myDID;
1758 return 0;
1759 }
1760
1761 /**
1762 * lpfc_sli4_nvmet_xri_aborted - Fast-path process of nvmet xri abort
1763 * @phba: pointer to lpfc hba data structure.
1764 * @axri: pointer to the nvmet xri abort wcqe structure.
1765 *
1766 * This routine is invoked by the worker thread to process a SLI4 fast-path
1767 * NVMET aborted xri.
1768 **/
1769 void
lpfc_sli4_nvmet_xri_aborted(struct lpfc_hba * phba,struct sli4_wcqe_xri_aborted * axri)1770 lpfc_sli4_nvmet_xri_aborted(struct lpfc_hba *phba,
1771 struct sli4_wcqe_xri_aborted *axri)
1772 {
1773 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
1774 uint16_t xri = bf_get(lpfc_wcqe_xa_xri, axri);
1775 uint16_t rxid = bf_get(lpfc_wcqe_xa_remote_xid, axri);
1776 struct lpfc_async_xchg_ctx *ctxp, *next_ctxp;
1777 struct lpfc_nvmet_tgtport *tgtp;
1778 struct nvmefc_tgt_fcp_req *req = NULL;
1779 struct lpfc_nodelist *ndlp;
1780 unsigned long iflag = 0;
1781 int rrq_empty = 0;
1782 bool released = false;
1783
1784 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
1785 "6317 XB aborted xri x%x rxid x%x\n", xri, rxid);
1786
1787 if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME))
1788 return;
1789
1790 if (phba->targetport) {
1791 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
1792 atomic_inc(&tgtp->xmt_fcp_xri_abort_cqe);
1793 }
1794
1795 spin_lock_irqsave(&phba->sli4_hba.abts_nvmet_buf_list_lock, iflag);
1796 list_for_each_entry_safe(ctxp, next_ctxp,
1797 &phba->sli4_hba.lpfc_abts_nvmet_ctx_list,
1798 list) {
1799 if (ctxp->ctxbuf->sglq->sli4_xritag != xri)
1800 continue;
1801
1802 spin_unlock_irqrestore(&phba->sli4_hba.abts_nvmet_buf_list_lock,
1803 iflag);
1804
1805 spin_lock_irqsave(&ctxp->ctxlock, iflag);
1806 /* Check if we already received a free context call
1807 * and we have completed processing an abort situation.
1808 */
1809 if (ctxp->flag & LPFC_NVME_CTX_RLS &&
1810 !(ctxp->flag & LPFC_NVME_ABORT_OP)) {
1811 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1812 list_del_init(&ctxp->list);
1813 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1814 released = true;
1815 }
1816 ctxp->flag &= ~LPFC_NVME_XBUSY;
1817 spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
1818
1819 rrq_empty = list_empty(&phba->active_rrq_list);
1820 ndlp = lpfc_findnode_did(phba->pport, ctxp->sid);
1821 if (ndlp &&
1822 (ndlp->nlp_state == NLP_STE_UNMAPPED_NODE ||
1823 ndlp->nlp_state == NLP_STE_MAPPED_NODE)) {
1824 lpfc_set_rrq_active(phba, ndlp,
1825 ctxp->ctxbuf->sglq->sli4_lxritag,
1826 rxid, 1);
1827 lpfc_sli4_abts_err_handler(phba, ndlp, axri);
1828 }
1829
1830 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
1831 "6318 XB aborted oxid x%x flg x%x (%x)\n",
1832 ctxp->oxid, ctxp->flag, released);
1833 if (released)
1834 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
1835
1836 if (rrq_empty)
1837 lpfc_worker_wake_up(phba);
1838 return;
1839 }
1840 spin_unlock_irqrestore(&phba->sli4_hba.abts_nvmet_buf_list_lock, iflag);
1841 ctxp = lpfc_nvmet_get_ctx_for_xri(phba, xri);
1842 if (ctxp) {
1843 /*
1844 * Abort already done by FW, so BA_ACC sent.
1845 * However, the transport may be unaware.
1846 */
1847 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
1848 "6323 NVMET Rcv ABTS xri x%x ctxp state x%x "
1849 "flag x%x oxid x%x rxid x%x\n",
1850 xri, ctxp->state, ctxp->flag, ctxp->oxid,
1851 rxid);
1852
1853 spin_lock_irqsave(&ctxp->ctxlock, iflag);
1854 ctxp->flag |= LPFC_NVME_ABTS_RCV;
1855 ctxp->state = LPFC_NVME_STE_ABORT;
1856 spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
1857
1858 lpfc_nvmeio_data(phba,
1859 "NVMET ABTS RCV: xri x%x CPU %02x rjt %d\n",
1860 xri, raw_smp_processor_id(), 0);
1861
1862 req = &ctxp->hdlrctx.fcp_req;
1863 if (req)
1864 nvmet_fc_rcv_fcp_abort(phba->targetport, req);
1865 }
1866 #endif
1867 }
1868
1869 int
lpfc_nvmet_rcv_unsol_abort(struct lpfc_vport * vport,struct fc_frame_header * fc_hdr)1870 lpfc_nvmet_rcv_unsol_abort(struct lpfc_vport *vport,
1871 struct fc_frame_header *fc_hdr)
1872 {
1873 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
1874 struct lpfc_hba *phba = vport->phba;
1875 struct lpfc_async_xchg_ctx *ctxp, *next_ctxp;
1876 struct nvmefc_tgt_fcp_req *rsp;
1877 uint32_t sid;
1878 uint16_t oxid, xri;
1879 unsigned long iflag = 0;
1880
1881 sid = sli4_sid_from_fc_hdr(fc_hdr);
1882 oxid = be16_to_cpu(fc_hdr->fh_ox_id);
1883
1884 spin_lock_irqsave(&phba->sli4_hba.abts_nvmet_buf_list_lock, iflag);
1885 list_for_each_entry_safe(ctxp, next_ctxp,
1886 &phba->sli4_hba.lpfc_abts_nvmet_ctx_list,
1887 list) {
1888 if (ctxp->oxid != oxid || ctxp->sid != sid)
1889 continue;
1890
1891 xri = ctxp->ctxbuf->sglq->sli4_xritag;
1892
1893 spin_unlock_irqrestore(&phba->sli4_hba.abts_nvmet_buf_list_lock,
1894 iflag);
1895 spin_lock_irqsave(&ctxp->ctxlock, iflag);
1896 ctxp->flag |= LPFC_NVME_ABTS_RCV;
1897 spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
1898
1899 lpfc_nvmeio_data(phba,
1900 "NVMET ABTS RCV: xri x%x CPU %02x rjt %d\n",
1901 xri, raw_smp_processor_id(), 0);
1902
1903 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
1904 "6319 NVMET Rcv ABTS:acc xri x%x\n", xri);
1905
1906 rsp = &ctxp->hdlrctx.fcp_req;
1907 nvmet_fc_rcv_fcp_abort(phba->targetport, rsp);
1908
1909 /* Respond with BA_ACC accordingly */
1910 lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 1);
1911 return 0;
1912 }
1913 spin_unlock_irqrestore(&phba->sli4_hba.abts_nvmet_buf_list_lock, iflag);
1914 /* check the wait list */
1915 if (phba->sli4_hba.nvmet_io_wait_cnt) {
1916 struct rqb_dmabuf *nvmebuf;
1917 struct fc_frame_header *fc_hdr_tmp;
1918 u32 sid_tmp;
1919 u16 oxid_tmp;
1920 bool found = false;
1921
1922 spin_lock_irqsave(&phba->sli4_hba.nvmet_io_wait_lock, iflag);
1923
1924 /* match by oxid and s_id */
1925 list_for_each_entry(nvmebuf,
1926 &phba->sli4_hba.lpfc_nvmet_io_wait_list,
1927 hbuf.list) {
1928 fc_hdr_tmp = (struct fc_frame_header *)
1929 (nvmebuf->hbuf.virt);
1930 oxid_tmp = be16_to_cpu(fc_hdr_tmp->fh_ox_id);
1931 sid_tmp = sli4_sid_from_fc_hdr(fc_hdr_tmp);
1932 if (oxid_tmp != oxid || sid_tmp != sid)
1933 continue;
1934
1935 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
1936 "6321 NVMET Rcv ABTS oxid x%x from x%x "
1937 "is waiting for a ctxp\n",
1938 oxid, sid);
1939
1940 list_del_init(&nvmebuf->hbuf.list);
1941 phba->sli4_hba.nvmet_io_wait_cnt--;
1942 found = true;
1943 break;
1944 }
1945 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock,
1946 iflag);
1947
1948 /* free buffer since already posted a new DMA buffer to RQ */
1949 if (found) {
1950 nvmebuf->hrq->rqbp->rqb_free_buffer(phba, nvmebuf);
1951 /* Respond with BA_ACC accordingly */
1952 lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 1);
1953 return 0;
1954 }
1955 }
1956
1957 /* check active list */
1958 ctxp = lpfc_nvmet_get_ctx_for_oxid(phba, oxid, sid);
1959 if (ctxp) {
1960 xri = ctxp->ctxbuf->sglq->sli4_xritag;
1961
1962 spin_lock_irqsave(&ctxp->ctxlock, iflag);
1963 ctxp->flag |= (LPFC_NVME_ABTS_RCV | LPFC_NVME_ABORT_OP);
1964 spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
1965
1966 lpfc_nvmeio_data(phba,
1967 "NVMET ABTS RCV: xri x%x CPU %02x rjt %d\n",
1968 xri, raw_smp_processor_id(), 0);
1969
1970 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
1971 "6322 NVMET Rcv ABTS:acc oxid x%x xri x%x "
1972 "flag x%x state x%x\n",
1973 ctxp->oxid, xri, ctxp->flag, ctxp->state);
1974
1975 if (ctxp->flag & LPFC_NVME_TNOTIFY) {
1976 /* Notify the transport */
1977 nvmet_fc_rcv_fcp_abort(phba->targetport,
1978 &ctxp->hdlrctx.fcp_req);
1979 } else {
1980 cancel_work_sync(&ctxp->ctxbuf->defer_work);
1981 spin_lock_irqsave(&ctxp->ctxlock, iflag);
1982 lpfc_nvmet_defer_release(phba, ctxp);
1983 spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
1984 }
1985 lpfc_nvmet_sol_fcp_issue_abort(phba, ctxp, ctxp->sid,
1986 ctxp->oxid);
1987
1988 lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 1);
1989 return 0;
1990 }
1991
1992 lpfc_nvmeio_data(phba, "NVMET ABTS RCV: oxid x%x CPU %02x rjt %d\n",
1993 oxid, raw_smp_processor_id(), 1);
1994
1995 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
1996 "6320 NVMET Rcv ABTS:rjt oxid x%x\n", oxid);
1997
1998 /* Respond with BA_RJT accordingly */
1999 lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 0);
2000 #endif
2001 return 0;
2002 }
2003
2004 static void
lpfc_nvmet_wqfull_flush(struct lpfc_hba * phba,struct lpfc_queue * wq,struct lpfc_async_xchg_ctx * ctxp)2005 lpfc_nvmet_wqfull_flush(struct lpfc_hba *phba, struct lpfc_queue *wq,
2006 struct lpfc_async_xchg_ctx *ctxp)
2007 {
2008 struct lpfc_sli_ring *pring;
2009 struct lpfc_iocbq *nvmewqeq;
2010 struct lpfc_iocbq *next_nvmewqeq;
2011 unsigned long iflags;
2012 struct lpfc_wcqe_complete wcqe;
2013 struct lpfc_wcqe_complete *wcqep;
2014
2015 pring = wq->pring;
2016 wcqep = &wcqe;
2017
2018 /* Fake an ABORT error code back to cmpl routine */
2019 memset(wcqep, 0, sizeof(struct lpfc_wcqe_complete));
2020 bf_set(lpfc_wcqe_c_status, wcqep, IOSTAT_LOCAL_REJECT);
2021 wcqep->parameter = IOERR_ABORT_REQUESTED;
2022
2023 spin_lock_irqsave(&pring->ring_lock, iflags);
2024 list_for_each_entry_safe(nvmewqeq, next_nvmewqeq,
2025 &wq->wqfull_list, list) {
2026 if (ctxp) {
2027 /* Checking for a specific IO to flush */
2028 if (nvmewqeq->context_un.axchg == ctxp) {
2029 list_del(&nvmewqeq->list);
2030 spin_unlock_irqrestore(&pring->ring_lock,
2031 iflags);
2032 memcpy(&nvmewqeq->wcqe_cmpl, wcqep,
2033 sizeof(*wcqep));
2034 lpfc_nvmet_xmt_fcp_op_cmp(phba, nvmewqeq,
2035 nvmewqeq);
2036 return;
2037 }
2038 continue;
2039 } else {
2040 /* Flush all IOs */
2041 list_del(&nvmewqeq->list);
2042 spin_unlock_irqrestore(&pring->ring_lock, iflags);
2043 memcpy(&nvmewqeq->wcqe_cmpl, wcqep, sizeof(*wcqep));
2044 lpfc_nvmet_xmt_fcp_op_cmp(phba, nvmewqeq, nvmewqeq);
2045 spin_lock_irqsave(&pring->ring_lock, iflags);
2046 }
2047 }
2048 if (!ctxp)
2049 wq->q_flag &= ~HBA_NVMET_WQFULL;
2050 spin_unlock_irqrestore(&pring->ring_lock, iflags);
2051 }
2052
2053 void
lpfc_nvmet_wqfull_process(struct lpfc_hba * phba,struct lpfc_queue * wq)2054 lpfc_nvmet_wqfull_process(struct lpfc_hba *phba,
2055 struct lpfc_queue *wq)
2056 {
2057 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
2058 struct lpfc_sli_ring *pring;
2059 struct lpfc_iocbq *nvmewqeq;
2060 struct lpfc_async_xchg_ctx *ctxp;
2061 unsigned long iflags;
2062 int rc;
2063
2064 /*
2065 * Some WQE slots are available, so try to re-issue anything
2066 * on the WQ wqfull_list.
2067 */
2068 pring = wq->pring;
2069 spin_lock_irqsave(&pring->ring_lock, iflags);
2070 while (!list_empty(&wq->wqfull_list)) {
2071 list_remove_head(&wq->wqfull_list, nvmewqeq, struct lpfc_iocbq,
2072 list);
2073 spin_unlock_irqrestore(&pring->ring_lock, iflags);
2074 ctxp = nvmewqeq->context_un.axchg;
2075 rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, nvmewqeq);
2076 spin_lock_irqsave(&pring->ring_lock, iflags);
2077 if (rc == -EBUSY) {
2078 /* WQ was full again, so put it back on the list */
2079 list_add(&nvmewqeq->list, &wq->wqfull_list);
2080 spin_unlock_irqrestore(&pring->ring_lock, iflags);
2081 return;
2082 }
2083 if (rc == WQE_SUCCESS) {
2084 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
2085 if (ctxp->ts_cmd_nvme) {
2086 if (ctxp->hdlrctx.fcp_req.op == NVMET_FCOP_RSP)
2087 ctxp->ts_status_wqput = ktime_get_ns();
2088 else
2089 ctxp->ts_data_wqput = ktime_get_ns();
2090 }
2091 #endif
2092 } else {
2093 WARN_ON(rc);
2094 }
2095 }
2096 wq->q_flag &= ~HBA_NVMET_WQFULL;
2097 spin_unlock_irqrestore(&pring->ring_lock, iflags);
2098
2099 #endif
2100 }
2101
2102 void
lpfc_nvmet_destroy_targetport(struct lpfc_hba * phba)2103 lpfc_nvmet_destroy_targetport(struct lpfc_hba *phba)
2104 {
2105 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
2106 struct lpfc_nvmet_tgtport *tgtp;
2107 struct lpfc_queue *wq;
2108 uint32_t qidx;
2109 DECLARE_COMPLETION_ONSTACK(tport_unreg_cmp);
2110
2111 if (phba->nvmet_support == 0)
2112 return;
2113 if (phba->targetport) {
2114 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
2115 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
2116 wq = phba->sli4_hba.hdwq[qidx].io_wq;
2117 lpfc_nvmet_wqfull_flush(phba, wq, NULL);
2118 }
2119 tgtp->tport_unreg_cmp = &tport_unreg_cmp;
2120 nvmet_fc_unregister_targetport(phba->targetport);
2121 if (!wait_for_completion_timeout(&tport_unreg_cmp,
2122 msecs_to_jiffies(LPFC_NVMET_WAIT_TMO)))
2123 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2124 "6179 Unreg targetport x%px timeout "
2125 "reached.\n", phba->targetport);
2126 lpfc_nvmet_cleanup_io_context(phba);
2127 }
2128 phba->targetport = NULL;
2129 #endif
2130 }
2131
2132 /**
2133 * lpfc_nvmet_handle_lsreq - Process an NVME LS request
2134 * @phba: pointer to lpfc hba data structure.
2135 * @axchg: pointer to exchange context for the NVME LS request
2136 *
2137 * This routine is used for processing an asychronously received NVME LS
2138 * request. Any remaining validation is done and the LS is then forwarded
2139 * to the nvmet-fc transport via nvmet_fc_rcv_ls_req().
2140 *
2141 * The calling sequence should be: nvmet_fc_rcv_ls_req() -> (processing)
2142 * -> lpfc_nvmet_xmt_ls_rsp/cmp -> req->done.
2143 * lpfc_nvme_xmt_ls_rsp_cmp should free the allocated axchg.
2144 *
2145 * Returns 0 if LS was handled and delivered to the transport
2146 * Returns 1 if LS failed to be handled and should be dropped
2147 */
2148 int
lpfc_nvmet_handle_lsreq(struct lpfc_hba * phba,struct lpfc_async_xchg_ctx * axchg)2149 lpfc_nvmet_handle_lsreq(struct lpfc_hba *phba,
2150 struct lpfc_async_xchg_ctx *axchg)
2151 {
2152 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
2153 struct lpfc_nvmet_tgtport *tgtp = phba->targetport->private;
2154 uint32_t *payload = axchg->payload;
2155 int rc;
2156
2157 atomic_inc(&tgtp->rcv_ls_req_in);
2158
2159 /*
2160 * Driver passes the ndlp as the hosthandle argument allowing
2161 * the transport to generate LS requests for any associateions
2162 * that are created.
2163 */
2164 rc = nvmet_fc_rcv_ls_req(phba->targetport, axchg->ndlp, &axchg->ls_rsp,
2165 axchg->payload, axchg->size);
2166
2167 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC,
2168 "6037 NVMET Unsol rcv: sz %d rc %d: %08x %08x %08x "
2169 "%08x %08x %08x\n", axchg->size, rc,
2170 *payload, *(payload+1), *(payload+2),
2171 *(payload+3), *(payload+4), *(payload+5));
2172
2173 if (!rc) {
2174 atomic_inc(&tgtp->rcv_ls_req_out);
2175 return 0;
2176 }
2177
2178 atomic_inc(&tgtp->rcv_ls_req_drop);
2179 #endif
2180 return 1;
2181 }
2182
2183 static void
lpfc_nvmet_process_rcv_fcp_req(struct lpfc_nvmet_ctxbuf * ctx_buf)2184 lpfc_nvmet_process_rcv_fcp_req(struct lpfc_nvmet_ctxbuf *ctx_buf)
2185 {
2186 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
2187 struct lpfc_async_xchg_ctx *ctxp = ctx_buf->context;
2188 struct lpfc_hba *phba = ctxp->phba;
2189 struct rqb_dmabuf *nvmebuf = ctxp->rqb_buffer;
2190 struct lpfc_nvmet_tgtport *tgtp;
2191 uint32_t *payload, qno;
2192 uint32_t rc;
2193 unsigned long iflags;
2194
2195 if (!nvmebuf) {
2196 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2197 "6159 process_rcv_fcp_req, nvmebuf is NULL, "
2198 "oxid: x%x flg: x%x state: x%x\n",
2199 ctxp->oxid, ctxp->flag, ctxp->state);
2200 spin_lock_irqsave(&ctxp->ctxlock, iflags);
2201 lpfc_nvmet_defer_release(phba, ctxp);
2202 spin_unlock_irqrestore(&ctxp->ctxlock, iflags);
2203 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid,
2204 ctxp->oxid);
2205 return;
2206 }
2207
2208 if (ctxp->flag & LPFC_NVME_ABTS_RCV) {
2209 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2210 "6324 IO oxid x%x aborted\n",
2211 ctxp->oxid);
2212 return;
2213 }
2214
2215 payload = (uint32_t *)(nvmebuf->dbuf.virt);
2216 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
2217 ctxp->flag |= LPFC_NVME_TNOTIFY;
2218 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
2219 if (ctxp->ts_isr_cmd)
2220 ctxp->ts_cmd_nvme = ktime_get_ns();
2221 #endif
2222 /*
2223 * The calling sequence should be:
2224 * nvmet_fc_rcv_fcp_req->lpfc_nvmet_xmt_fcp_op/cmp- req->done
2225 * lpfc_nvmet_xmt_fcp_op_cmp should free the allocated ctxp.
2226 * When we return from nvmet_fc_rcv_fcp_req, all relevant info
2227 * the NVME command / FC header is stored.
2228 * A buffer has already been reposted for this IO, so just free
2229 * the nvmebuf.
2230 */
2231 rc = nvmet_fc_rcv_fcp_req(phba->targetport, &ctxp->hdlrctx.fcp_req,
2232 payload, ctxp->size);
2233 /* Process FCP command */
2234 if (rc == 0) {
2235 atomic_inc(&tgtp->rcv_fcp_cmd_out);
2236 spin_lock_irqsave(&ctxp->ctxlock, iflags);
2237 if ((ctxp->flag & LPFC_NVME_CTX_REUSE_WQ) ||
2238 (nvmebuf != ctxp->rqb_buffer)) {
2239 spin_unlock_irqrestore(&ctxp->ctxlock, iflags);
2240 return;
2241 }
2242 ctxp->rqb_buffer = NULL;
2243 spin_unlock_irqrestore(&ctxp->ctxlock, iflags);
2244 lpfc_rq_buf_free(phba, &nvmebuf->hbuf); /* repost */
2245 return;
2246 }
2247
2248 /* Processing of FCP command is deferred */
2249 if (rc == -EOVERFLOW) {
2250 lpfc_nvmeio_data(phba, "NVMET RCV BUSY: xri x%x sz %d "
2251 "from %06x\n",
2252 ctxp->oxid, ctxp->size, ctxp->sid);
2253 atomic_inc(&tgtp->rcv_fcp_cmd_out);
2254 atomic_inc(&tgtp->defer_fod);
2255 spin_lock_irqsave(&ctxp->ctxlock, iflags);
2256 if (ctxp->flag & LPFC_NVME_CTX_REUSE_WQ) {
2257 spin_unlock_irqrestore(&ctxp->ctxlock, iflags);
2258 return;
2259 }
2260 spin_unlock_irqrestore(&ctxp->ctxlock, iflags);
2261 /*
2262 * Post a replacement DMA buffer to RQ and defer
2263 * freeing rcv buffer till .defer_rcv callback
2264 */
2265 qno = nvmebuf->idx;
2266 lpfc_post_rq_buffer(
2267 phba, phba->sli4_hba.nvmet_mrq_hdr[qno],
2268 phba->sli4_hba.nvmet_mrq_data[qno], 1, qno);
2269 return;
2270 }
2271 ctxp->flag &= ~LPFC_NVME_TNOTIFY;
2272 atomic_inc(&tgtp->rcv_fcp_cmd_drop);
2273 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2274 "2582 FCP Drop IO x%x: err x%x: x%x x%x x%x\n",
2275 ctxp->oxid, rc,
2276 atomic_read(&tgtp->rcv_fcp_cmd_in),
2277 atomic_read(&tgtp->rcv_fcp_cmd_out),
2278 atomic_read(&tgtp->xmt_fcp_release));
2279 lpfc_nvmeio_data(phba, "NVMET FCP DROP: xri x%x sz %d from %06x\n",
2280 ctxp->oxid, ctxp->size, ctxp->sid);
2281 spin_lock_irqsave(&ctxp->ctxlock, iflags);
2282 lpfc_nvmet_defer_release(phba, ctxp);
2283 spin_unlock_irqrestore(&ctxp->ctxlock, iflags);
2284 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid, ctxp->oxid);
2285 #endif
2286 }
2287
2288 static void
lpfc_nvmet_fcp_rqst_defer_work(struct work_struct * work)2289 lpfc_nvmet_fcp_rqst_defer_work(struct work_struct *work)
2290 {
2291 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
2292 struct lpfc_nvmet_ctxbuf *ctx_buf =
2293 container_of(work, struct lpfc_nvmet_ctxbuf, defer_work);
2294
2295 lpfc_nvmet_process_rcv_fcp_req(ctx_buf);
2296 #endif
2297 }
2298
2299 static struct lpfc_nvmet_ctxbuf *
lpfc_nvmet_replenish_context(struct lpfc_hba * phba,struct lpfc_nvmet_ctx_info * current_infop)2300 lpfc_nvmet_replenish_context(struct lpfc_hba *phba,
2301 struct lpfc_nvmet_ctx_info *current_infop)
2302 {
2303 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
2304 struct lpfc_nvmet_ctxbuf *ctx_buf = NULL;
2305 struct lpfc_nvmet_ctx_info *get_infop;
2306 int i;
2307
2308 /*
2309 * The current_infop for the MRQ a NVME command IU was received
2310 * on is empty. Our goal is to replenish this MRQs context
2311 * list from a another CPUs.
2312 *
2313 * First we need to pick a context list to start looking on.
2314 * nvmet_ctx_start_cpu has available context the last time
2315 * we needed to replenish this CPU where nvmet_ctx_next_cpu
2316 * is just the next sequential CPU for this MRQ.
2317 */
2318 if (current_infop->nvmet_ctx_start_cpu)
2319 get_infop = current_infop->nvmet_ctx_start_cpu;
2320 else
2321 get_infop = current_infop->nvmet_ctx_next_cpu;
2322
2323 for (i = 0; i < phba->sli4_hba.num_possible_cpu; i++) {
2324 if (get_infop == current_infop) {
2325 get_infop = get_infop->nvmet_ctx_next_cpu;
2326 continue;
2327 }
2328 spin_lock(&get_infop->nvmet_ctx_list_lock);
2329
2330 /* Just take the entire context list, if there are any */
2331 if (get_infop->nvmet_ctx_list_cnt) {
2332 list_splice_init(&get_infop->nvmet_ctx_list,
2333 ¤t_infop->nvmet_ctx_list);
2334 current_infop->nvmet_ctx_list_cnt =
2335 get_infop->nvmet_ctx_list_cnt - 1;
2336 get_infop->nvmet_ctx_list_cnt = 0;
2337 spin_unlock(&get_infop->nvmet_ctx_list_lock);
2338
2339 current_infop->nvmet_ctx_start_cpu = get_infop;
2340 list_remove_head(¤t_infop->nvmet_ctx_list,
2341 ctx_buf, struct lpfc_nvmet_ctxbuf,
2342 list);
2343 return ctx_buf;
2344 }
2345
2346 /* Otherwise, move on to the next CPU for this MRQ */
2347 spin_unlock(&get_infop->nvmet_ctx_list_lock);
2348 get_infop = get_infop->nvmet_ctx_next_cpu;
2349 }
2350
2351 #endif
2352 /* Nothing found, all contexts for the MRQ are in-flight */
2353 return NULL;
2354 }
2355
2356 /**
2357 * lpfc_nvmet_unsol_fcp_buffer - Process an unsolicited event data buffer
2358 * @phba: pointer to lpfc hba data structure.
2359 * @idx: relative index of MRQ vector
2360 * @nvmebuf: pointer to lpfc nvme command HBQ data structure.
2361 * @isr_timestamp: in jiffies.
2362 * @cqflag: cq processing information regarding workload.
2363 *
2364 * This routine is used for processing the WQE associated with a unsolicited
2365 * event. It first determines whether there is an existing ndlp that matches
2366 * the DID from the unsolicited WQE. If not, it will create a new one with
2367 * the DID from the unsolicited WQE. The ELS command from the unsolicited
2368 * WQE is then used to invoke the proper routine and to set up proper state
2369 * of the discovery state machine.
2370 **/
2371 static void
lpfc_nvmet_unsol_fcp_buffer(struct lpfc_hba * phba,uint32_t idx,struct rqb_dmabuf * nvmebuf,uint64_t isr_timestamp,uint8_t cqflag)2372 lpfc_nvmet_unsol_fcp_buffer(struct lpfc_hba *phba,
2373 uint32_t idx,
2374 struct rqb_dmabuf *nvmebuf,
2375 uint64_t isr_timestamp,
2376 uint8_t cqflag)
2377 {
2378 struct lpfc_async_xchg_ctx *ctxp;
2379 struct lpfc_nvmet_tgtport *tgtp;
2380 struct fc_frame_header *fc_hdr;
2381 struct lpfc_nvmet_ctxbuf *ctx_buf;
2382 struct lpfc_nvmet_ctx_info *current_infop;
2383 uint32_t size, oxid, sid, qno;
2384 unsigned long iflag;
2385 int current_cpu;
2386
2387 if (!IS_ENABLED(CONFIG_NVME_TARGET_FC))
2388 return;
2389
2390 ctx_buf = NULL;
2391 if (!nvmebuf || !phba->targetport) {
2392 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2393 "6157 NVMET FCP Drop IO\n");
2394 if (nvmebuf)
2395 lpfc_rq_buf_free(phba, &nvmebuf->hbuf);
2396 return;
2397 }
2398
2399 /*
2400 * Get a pointer to the context list for this MRQ based on
2401 * the CPU this MRQ IRQ is associated with. If the CPU association
2402 * changes from our initial assumption, the context list could
2403 * be empty, thus it would need to be replenished with the
2404 * context list from another CPU for this MRQ.
2405 */
2406 current_cpu = raw_smp_processor_id();
2407 current_infop = lpfc_get_ctx_list(phba, current_cpu, idx);
2408 spin_lock_irqsave(¤t_infop->nvmet_ctx_list_lock, iflag);
2409 if (current_infop->nvmet_ctx_list_cnt) {
2410 list_remove_head(¤t_infop->nvmet_ctx_list,
2411 ctx_buf, struct lpfc_nvmet_ctxbuf, list);
2412 current_infop->nvmet_ctx_list_cnt--;
2413 } else {
2414 ctx_buf = lpfc_nvmet_replenish_context(phba, current_infop);
2415 }
2416 spin_unlock_irqrestore(¤t_infop->nvmet_ctx_list_lock, iflag);
2417
2418 fc_hdr = (struct fc_frame_header *)(nvmebuf->hbuf.virt);
2419 oxid = be16_to_cpu(fc_hdr->fh_ox_id);
2420 size = nvmebuf->bytes_recv;
2421
2422 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
2423 if (phba->hdwqstat_on & LPFC_CHECK_NVMET_IO) {
2424 this_cpu_inc(phba->sli4_hba.c_stat->rcv_io);
2425 if (idx != current_cpu)
2426 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR,
2427 "6703 CPU Check rcv: "
2428 "cpu %d expect %d\n",
2429 current_cpu, idx);
2430 }
2431 #endif
2432
2433 lpfc_nvmeio_data(phba, "NVMET FCP RCV: xri x%x sz %d CPU %02x\n",
2434 oxid, size, raw_smp_processor_id());
2435
2436 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
2437
2438 if (!ctx_buf) {
2439 /* Queue this NVME IO to process later */
2440 spin_lock_irqsave(&phba->sli4_hba.nvmet_io_wait_lock, iflag);
2441 list_add_tail(&nvmebuf->hbuf.list,
2442 &phba->sli4_hba.lpfc_nvmet_io_wait_list);
2443 phba->sli4_hba.nvmet_io_wait_cnt++;
2444 phba->sli4_hba.nvmet_io_wait_total++;
2445 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock,
2446 iflag);
2447
2448 /* Post a brand new DMA buffer to RQ */
2449 qno = nvmebuf->idx;
2450 lpfc_post_rq_buffer(
2451 phba, phba->sli4_hba.nvmet_mrq_hdr[qno],
2452 phba->sli4_hba.nvmet_mrq_data[qno], 1, qno);
2453
2454 atomic_inc(&tgtp->defer_ctx);
2455 return;
2456 }
2457
2458 sid = sli4_sid_from_fc_hdr(fc_hdr);
2459
2460 ctxp = (struct lpfc_async_xchg_ctx *)ctx_buf->context;
2461 spin_lock_irqsave(&phba->sli4_hba.t_active_list_lock, iflag);
2462 list_add_tail(&ctxp->list, &phba->sli4_hba.t_active_ctx_list);
2463 spin_unlock_irqrestore(&phba->sli4_hba.t_active_list_lock, iflag);
2464 if (ctxp->state != LPFC_NVME_STE_FREE) {
2465 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2466 "6414 NVMET Context corrupt %d %d oxid x%x\n",
2467 ctxp->state, ctxp->entry_cnt, ctxp->oxid);
2468 }
2469 ctxp->wqeq = NULL;
2470 ctxp->offset = 0;
2471 ctxp->phba = phba;
2472 ctxp->size = size;
2473 ctxp->oxid = oxid;
2474 ctxp->sid = sid;
2475 ctxp->idx = idx;
2476 ctxp->state = LPFC_NVME_STE_RCV;
2477 ctxp->entry_cnt = 1;
2478 ctxp->flag = 0;
2479 ctxp->ctxbuf = ctx_buf;
2480 ctxp->rqb_buffer = (void *)nvmebuf;
2481 ctxp->hdwq = NULL;
2482 spin_lock_init(&ctxp->ctxlock);
2483
2484 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
2485 if (isr_timestamp)
2486 ctxp->ts_isr_cmd = isr_timestamp;
2487 ctxp->ts_cmd_nvme = 0;
2488 ctxp->ts_nvme_data = 0;
2489 ctxp->ts_data_wqput = 0;
2490 ctxp->ts_isr_data = 0;
2491 ctxp->ts_data_nvme = 0;
2492 ctxp->ts_nvme_status = 0;
2493 ctxp->ts_status_wqput = 0;
2494 ctxp->ts_isr_status = 0;
2495 ctxp->ts_status_nvme = 0;
2496 #endif
2497
2498 atomic_inc(&tgtp->rcv_fcp_cmd_in);
2499 /* check for cq processing load */
2500 if (!cqflag) {
2501 lpfc_nvmet_process_rcv_fcp_req(ctx_buf);
2502 return;
2503 }
2504
2505 if (!queue_work(phba->wq, &ctx_buf->defer_work)) {
2506 atomic_inc(&tgtp->rcv_fcp_cmd_drop);
2507 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2508 "6325 Unable to queue work for oxid x%x. "
2509 "FCP Drop IO [x%x x%x x%x]\n",
2510 ctxp->oxid,
2511 atomic_read(&tgtp->rcv_fcp_cmd_in),
2512 atomic_read(&tgtp->rcv_fcp_cmd_out),
2513 atomic_read(&tgtp->xmt_fcp_release));
2514
2515 spin_lock_irqsave(&ctxp->ctxlock, iflag);
2516 lpfc_nvmet_defer_release(phba, ctxp);
2517 spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
2518 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, sid, oxid);
2519 }
2520 }
2521
2522 /**
2523 * lpfc_nvmet_unsol_fcp_event - Process an unsolicited event from an nvme nport
2524 * @phba: pointer to lpfc hba data structure.
2525 * @idx: relative index of MRQ vector
2526 * @nvmebuf: pointer to received nvme data structure.
2527 * @isr_timestamp: in jiffies.
2528 * @cqflag: cq processing information regarding workload.
2529 *
2530 * This routine is used to process an unsolicited event received from a SLI
2531 * (Service Level Interface) ring. The actual processing of the data buffer
2532 * associated with the unsolicited event is done by invoking the routine
2533 * lpfc_nvmet_unsol_fcp_buffer() after properly set up the buffer from the
2534 * SLI RQ on which the unsolicited event was received.
2535 **/
2536 void
lpfc_nvmet_unsol_fcp_event(struct lpfc_hba * phba,uint32_t idx,struct rqb_dmabuf * nvmebuf,uint64_t isr_timestamp,uint8_t cqflag)2537 lpfc_nvmet_unsol_fcp_event(struct lpfc_hba *phba,
2538 uint32_t idx,
2539 struct rqb_dmabuf *nvmebuf,
2540 uint64_t isr_timestamp,
2541 uint8_t cqflag)
2542 {
2543 if (!nvmebuf) {
2544 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2545 "3167 NVMET FCP Drop IO\n");
2546 return;
2547 }
2548 if (phba->nvmet_support == 0) {
2549 lpfc_rq_buf_free(phba, &nvmebuf->hbuf);
2550 return;
2551 }
2552 lpfc_nvmet_unsol_fcp_buffer(phba, idx, nvmebuf, isr_timestamp, cqflag);
2553 }
2554
2555 /**
2556 * lpfc_nvmet_prep_ls_wqe - Allocate and prepare a lpfc wqe data structure
2557 * @phba: pointer to a host N_Port data structure.
2558 * @ctxp: Context info for NVME LS Request
2559 * @rspbuf: DMA buffer of NVME command.
2560 * @rspsize: size of the NVME command.
2561 *
2562 * This routine is used for allocating a lpfc-WQE data structure from
2563 * the driver lpfc-WQE free-list and prepare the WQE with the parameters
2564 * passed into the routine for discovery state machine to issue an Extended
2565 * Link Service (NVME) commands. It is a generic lpfc-WQE allocation
2566 * and preparation routine that is used by all the discovery state machine
2567 * routines and the NVME command-specific fields will be later set up by
2568 * the individual discovery machine routines after calling this routine
2569 * allocating and preparing a generic WQE data structure. It fills in the
2570 * Buffer Descriptor Entries (BDEs), allocates buffers for both command
2571 * payload and response payload (if expected). The reference count on the
2572 * ndlp is incremented by 1 and the reference to the ndlp is put into
2573 * context1 of the WQE data structure for this WQE to hold the ndlp
2574 * reference for the command's callback function to access later.
2575 *
2576 * Return code
2577 * Pointer to the newly allocated/prepared nvme wqe data structure
2578 * NULL - when nvme wqe data structure allocation/preparation failed
2579 **/
2580 static struct lpfc_iocbq *
lpfc_nvmet_prep_ls_wqe(struct lpfc_hba * phba,struct lpfc_async_xchg_ctx * ctxp,dma_addr_t rspbuf,uint16_t rspsize)2581 lpfc_nvmet_prep_ls_wqe(struct lpfc_hba *phba,
2582 struct lpfc_async_xchg_ctx *ctxp,
2583 dma_addr_t rspbuf, uint16_t rspsize)
2584 {
2585 struct lpfc_nodelist *ndlp;
2586 struct lpfc_iocbq *nvmewqe;
2587 union lpfc_wqe128 *wqe;
2588
2589 if (!lpfc_is_link_up(phba)) {
2590 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2591 "6104 NVMET prep LS wqe: link err: "
2592 "NPORT x%x oxid:x%x ste %d\n",
2593 ctxp->sid, ctxp->oxid, ctxp->state);
2594 return NULL;
2595 }
2596
2597 /* Allocate buffer for command wqe */
2598 nvmewqe = lpfc_sli_get_iocbq(phba);
2599 if (nvmewqe == NULL) {
2600 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2601 "6105 NVMET prep LS wqe: No WQE: "
2602 "NPORT x%x oxid x%x ste %d\n",
2603 ctxp->sid, ctxp->oxid, ctxp->state);
2604 return NULL;
2605 }
2606
2607 ndlp = lpfc_findnode_did(phba->pport, ctxp->sid);
2608 if (!ndlp ||
2609 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) &&
2610 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) {
2611 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2612 "6106 NVMET prep LS wqe: No ndlp: "
2613 "NPORT x%x oxid x%x ste %d\n",
2614 ctxp->sid, ctxp->oxid, ctxp->state);
2615 goto nvme_wqe_free_wqeq_exit;
2616 }
2617 ctxp->wqeq = nvmewqe;
2618
2619 /* prevent preparing wqe with NULL ndlp reference */
2620 nvmewqe->ndlp = lpfc_nlp_get(ndlp);
2621 if (!nvmewqe->ndlp)
2622 goto nvme_wqe_free_wqeq_exit;
2623 nvmewqe->context_un.axchg = ctxp;
2624
2625 wqe = &nvmewqe->wqe;
2626 memset(wqe, 0, sizeof(union lpfc_wqe));
2627
2628 /* Words 0 - 2 */
2629 wqe->xmit_sequence.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64;
2630 wqe->xmit_sequence.bde.tus.f.bdeSize = rspsize;
2631 wqe->xmit_sequence.bde.addrLow = le32_to_cpu(putPaddrLow(rspbuf));
2632 wqe->xmit_sequence.bde.addrHigh = le32_to_cpu(putPaddrHigh(rspbuf));
2633
2634 /* Word 3 */
2635
2636 /* Word 4 */
2637
2638 /* Word 5 */
2639 bf_set(wqe_dfctl, &wqe->xmit_sequence.wge_ctl, 0);
2640 bf_set(wqe_ls, &wqe->xmit_sequence.wge_ctl, 1);
2641 bf_set(wqe_la, &wqe->xmit_sequence.wge_ctl, 0);
2642 bf_set(wqe_rctl, &wqe->xmit_sequence.wge_ctl, FC_RCTL_ELS4_REP);
2643 bf_set(wqe_type, &wqe->xmit_sequence.wge_ctl, FC_TYPE_NVME);
2644
2645 /* Word 6 */
2646 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com,
2647 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
2648 bf_set(wqe_xri_tag, &wqe->xmit_sequence.wqe_com, nvmewqe->sli4_xritag);
2649
2650 /* Word 7 */
2651 bf_set(wqe_cmnd, &wqe->xmit_sequence.wqe_com,
2652 CMD_XMIT_SEQUENCE64_WQE);
2653 bf_set(wqe_ct, &wqe->xmit_sequence.wqe_com, SLI4_CT_RPI);
2654 bf_set(wqe_class, &wqe->xmit_sequence.wqe_com, CLASS3);
2655 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0);
2656
2657 /* Word 8 */
2658 wqe->xmit_sequence.wqe_com.abort_tag = nvmewqe->iotag;
2659
2660 /* Word 9 */
2661 bf_set(wqe_reqtag, &wqe->xmit_sequence.wqe_com, nvmewqe->iotag);
2662 /* Needs to be set by caller */
2663 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, ctxp->oxid);
2664
2665 /* Word 10 */
2666 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1);
2667 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, LPFC_WQE_IOD_WRITE);
2668 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com,
2669 LPFC_WQE_LENLOC_WORD12);
2670 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0);
2671
2672 /* Word 11 */
2673 bf_set(wqe_cqid, &wqe->xmit_sequence.wqe_com,
2674 LPFC_WQE_CQ_ID_DEFAULT);
2675 bf_set(wqe_cmd_type, &wqe->xmit_sequence.wqe_com,
2676 OTHER_COMMAND);
2677
2678 /* Word 12 */
2679 wqe->xmit_sequence.xmit_len = rspsize;
2680
2681 nvmewqe->retry = 1;
2682 nvmewqe->vport = phba->pport;
2683 nvmewqe->drvrTimeout = (phba->fc_ratov * 3) + LPFC_DRVR_TIMEOUT;
2684 nvmewqe->cmd_flag |= LPFC_IO_NVME_LS;
2685
2686 /* Xmit NVMET response to remote NPORT <did> */
2687 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC,
2688 "6039 Xmit NVMET LS response to remote "
2689 "NPORT x%x iotag:x%x oxid:x%x size:x%x\n",
2690 ndlp->nlp_DID, nvmewqe->iotag, ctxp->oxid,
2691 rspsize);
2692 return nvmewqe;
2693
2694 nvme_wqe_free_wqeq_exit:
2695 nvmewqe->context_un.axchg = NULL;
2696 nvmewqe->ndlp = NULL;
2697 nvmewqe->bpl_dmabuf = NULL;
2698 lpfc_sli_release_iocbq(phba, nvmewqe);
2699 return NULL;
2700 }
2701
2702
2703 static struct lpfc_iocbq *
lpfc_nvmet_prep_fcp_wqe(struct lpfc_hba * phba,struct lpfc_async_xchg_ctx * ctxp)2704 lpfc_nvmet_prep_fcp_wqe(struct lpfc_hba *phba,
2705 struct lpfc_async_xchg_ctx *ctxp)
2706 {
2707 struct nvmefc_tgt_fcp_req *rsp = &ctxp->hdlrctx.fcp_req;
2708 struct lpfc_nvmet_tgtport *tgtp;
2709 struct sli4_sge *sgl;
2710 struct lpfc_nodelist *ndlp;
2711 struct lpfc_iocbq *nvmewqe;
2712 struct scatterlist *sgel;
2713 union lpfc_wqe128 *wqe;
2714 struct ulp_bde64 *bde;
2715 dma_addr_t physaddr;
2716 int i, cnt, nsegs;
2717 bool use_pbde = false;
2718 int xc = 1;
2719
2720 if (!lpfc_is_link_up(phba)) {
2721 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2722 "6107 NVMET prep FCP wqe: link err:"
2723 "NPORT x%x oxid x%x ste %d\n",
2724 ctxp->sid, ctxp->oxid, ctxp->state);
2725 return NULL;
2726 }
2727
2728 ndlp = lpfc_findnode_did(phba->pport, ctxp->sid);
2729 if (!ndlp ||
2730 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) &&
2731 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) {
2732 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2733 "6108 NVMET prep FCP wqe: no ndlp: "
2734 "NPORT x%x oxid x%x ste %d\n",
2735 ctxp->sid, ctxp->oxid, ctxp->state);
2736 return NULL;
2737 }
2738
2739 if (rsp->sg_cnt > lpfc_tgttemplate.max_sgl_segments) {
2740 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2741 "6109 NVMET prep FCP wqe: seg cnt err: "
2742 "NPORT x%x oxid x%x ste %d cnt %d\n",
2743 ctxp->sid, ctxp->oxid, ctxp->state,
2744 phba->cfg_nvme_seg_cnt);
2745 return NULL;
2746 }
2747 nsegs = rsp->sg_cnt;
2748
2749 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
2750 nvmewqe = ctxp->wqeq;
2751 if (nvmewqe == NULL) {
2752 /* Allocate buffer for command wqe */
2753 nvmewqe = ctxp->ctxbuf->iocbq;
2754 if (nvmewqe == NULL) {
2755 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2756 "6110 NVMET prep FCP wqe: No "
2757 "WQE: NPORT x%x oxid x%x ste %d\n",
2758 ctxp->sid, ctxp->oxid, ctxp->state);
2759 return NULL;
2760 }
2761 ctxp->wqeq = nvmewqe;
2762 xc = 0; /* create new XRI */
2763 nvmewqe->sli4_lxritag = NO_XRI;
2764 nvmewqe->sli4_xritag = NO_XRI;
2765 }
2766
2767 /* Sanity check */
2768 if (((ctxp->state == LPFC_NVME_STE_RCV) &&
2769 (ctxp->entry_cnt == 1)) ||
2770 (ctxp->state == LPFC_NVME_STE_DATA)) {
2771 wqe = &nvmewqe->wqe;
2772 } else {
2773 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2774 "6111 Wrong state NVMET FCP: %d cnt %d\n",
2775 ctxp->state, ctxp->entry_cnt);
2776 return NULL;
2777 }
2778
2779 sgl = (struct sli4_sge *)ctxp->ctxbuf->sglq->sgl;
2780 switch (rsp->op) {
2781 case NVMET_FCOP_READDATA:
2782 case NVMET_FCOP_READDATA_RSP:
2783 /* From the tsend template, initialize words 7 - 11 */
2784 memcpy(&wqe->words[7],
2785 &lpfc_tsend_cmd_template.words[7],
2786 sizeof(uint32_t) * 5);
2787
2788 /* Words 0 - 2 : The first sg segment */
2789 sgel = &rsp->sg[0];
2790 physaddr = sg_dma_address(sgel);
2791 wqe->fcp_tsend.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64;
2792 wqe->fcp_tsend.bde.tus.f.bdeSize = sg_dma_len(sgel);
2793 wqe->fcp_tsend.bde.addrLow = cpu_to_le32(putPaddrLow(physaddr));
2794 wqe->fcp_tsend.bde.addrHigh =
2795 cpu_to_le32(putPaddrHigh(physaddr));
2796
2797 /* Word 3 */
2798 wqe->fcp_tsend.payload_offset_len = 0;
2799
2800 /* Word 4 */
2801 wqe->fcp_tsend.relative_offset = ctxp->offset;
2802
2803 /* Word 5 */
2804 wqe->fcp_tsend.reserved = 0;
2805
2806 /* Word 6 */
2807 bf_set(wqe_ctxt_tag, &wqe->fcp_tsend.wqe_com,
2808 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
2809 bf_set(wqe_xri_tag, &wqe->fcp_tsend.wqe_com,
2810 nvmewqe->sli4_xritag);
2811
2812 /* Word 7 - set ar later */
2813
2814 /* Word 8 */
2815 wqe->fcp_tsend.wqe_com.abort_tag = nvmewqe->iotag;
2816
2817 /* Word 9 */
2818 bf_set(wqe_reqtag, &wqe->fcp_tsend.wqe_com, nvmewqe->iotag);
2819 bf_set(wqe_rcvoxid, &wqe->fcp_tsend.wqe_com, ctxp->oxid);
2820
2821 /* Word 10 - set wqes later, in template xc=1 */
2822 if (!xc)
2823 bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, 0);
2824
2825 /* Word 12 */
2826 wqe->fcp_tsend.fcp_data_len = rsp->transfer_length;
2827
2828 /* Setup 2 SKIP SGEs */
2829 sgl->addr_hi = 0;
2830 sgl->addr_lo = 0;
2831 sgl->word2 = 0;
2832 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP);
2833 sgl->word2 = cpu_to_le32(sgl->word2);
2834 sgl->sge_len = 0;
2835 sgl++;
2836 sgl->addr_hi = 0;
2837 sgl->addr_lo = 0;
2838 sgl->word2 = 0;
2839 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP);
2840 sgl->word2 = cpu_to_le32(sgl->word2);
2841 sgl->sge_len = 0;
2842 sgl++;
2843 if (rsp->op == NVMET_FCOP_READDATA_RSP) {
2844 atomic_inc(&tgtp->xmt_fcp_read_rsp);
2845
2846 /* In template ar=1 wqes=0 sup=0 irsp=0 irsplen=0 */
2847
2848 if (rsp->rsplen == LPFC_NVMET_SUCCESS_LEN) {
2849 if (ndlp->nlp_flag & NLP_SUPPRESS_RSP)
2850 bf_set(wqe_sup,
2851 &wqe->fcp_tsend.wqe_com, 1);
2852 } else {
2853 bf_set(wqe_wqes, &wqe->fcp_tsend.wqe_com, 1);
2854 bf_set(wqe_irsp, &wqe->fcp_tsend.wqe_com, 1);
2855 bf_set(wqe_irsplen, &wqe->fcp_tsend.wqe_com,
2856 ((rsp->rsplen >> 2) - 1));
2857 memcpy(&wqe->words[16], rsp->rspaddr,
2858 rsp->rsplen);
2859 }
2860 } else {
2861 atomic_inc(&tgtp->xmt_fcp_read);
2862
2863 /* In template ar=1 wqes=0 sup=0 irsp=0 irsplen=0 */
2864 bf_set(wqe_ar, &wqe->fcp_tsend.wqe_com, 0);
2865 }
2866 break;
2867
2868 case NVMET_FCOP_WRITEDATA:
2869 /* From the treceive template, initialize words 3 - 11 */
2870 memcpy(&wqe->words[3],
2871 &lpfc_treceive_cmd_template.words[3],
2872 sizeof(uint32_t) * 9);
2873
2874 /* Words 0 - 2 : First SGE is skipped, set invalid BDE type */
2875 wqe->fcp_treceive.bde.tus.f.bdeFlags = LPFC_SGE_TYPE_SKIP;
2876 wqe->fcp_treceive.bde.tus.f.bdeSize = 0;
2877 wqe->fcp_treceive.bde.addrLow = 0;
2878 wqe->fcp_treceive.bde.addrHigh = 0;
2879
2880 /* Word 4 */
2881 wqe->fcp_treceive.relative_offset = ctxp->offset;
2882
2883 /* Word 6 */
2884 bf_set(wqe_ctxt_tag, &wqe->fcp_treceive.wqe_com,
2885 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
2886 bf_set(wqe_xri_tag, &wqe->fcp_treceive.wqe_com,
2887 nvmewqe->sli4_xritag);
2888
2889 /* Word 7 */
2890
2891 /* Word 8 */
2892 wqe->fcp_treceive.wqe_com.abort_tag = nvmewqe->iotag;
2893
2894 /* Word 9 */
2895 bf_set(wqe_reqtag, &wqe->fcp_treceive.wqe_com, nvmewqe->iotag);
2896 bf_set(wqe_rcvoxid, &wqe->fcp_treceive.wqe_com, ctxp->oxid);
2897
2898 /* Word 10 - in template xc=1 */
2899 if (!xc)
2900 bf_set(wqe_xc, &wqe->fcp_treceive.wqe_com, 0);
2901
2902 /* Word 11 - check for pbde */
2903 if (nsegs == 1 && phba->cfg_enable_pbde) {
2904 use_pbde = true;
2905 /* Word 11 - PBDE bit already preset by template */
2906 } else {
2907 /* Overwrite default template setting */
2908 bf_set(wqe_pbde, &wqe->fcp_treceive.wqe_com, 0);
2909 }
2910
2911 /* Word 12 */
2912 wqe->fcp_tsend.fcp_data_len = rsp->transfer_length;
2913
2914 /* Setup 2 SKIP SGEs */
2915 sgl->addr_hi = 0;
2916 sgl->addr_lo = 0;
2917 sgl->word2 = 0;
2918 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP);
2919 sgl->word2 = cpu_to_le32(sgl->word2);
2920 sgl->sge_len = 0;
2921 sgl++;
2922 sgl->addr_hi = 0;
2923 sgl->addr_lo = 0;
2924 sgl->word2 = 0;
2925 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP);
2926 sgl->word2 = cpu_to_le32(sgl->word2);
2927 sgl->sge_len = 0;
2928 sgl++;
2929 atomic_inc(&tgtp->xmt_fcp_write);
2930 break;
2931
2932 case NVMET_FCOP_RSP:
2933 /* From the treceive template, initialize words 4 - 11 */
2934 memcpy(&wqe->words[4],
2935 &lpfc_trsp_cmd_template.words[4],
2936 sizeof(uint32_t) * 8);
2937
2938 /* Words 0 - 2 */
2939 physaddr = rsp->rspdma;
2940 wqe->fcp_trsp.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64;
2941 wqe->fcp_trsp.bde.tus.f.bdeSize = rsp->rsplen;
2942 wqe->fcp_trsp.bde.addrLow =
2943 cpu_to_le32(putPaddrLow(physaddr));
2944 wqe->fcp_trsp.bde.addrHigh =
2945 cpu_to_le32(putPaddrHigh(physaddr));
2946
2947 /* Word 3 */
2948 wqe->fcp_trsp.response_len = rsp->rsplen;
2949
2950 /* Word 6 */
2951 bf_set(wqe_ctxt_tag, &wqe->fcp_trsp.wqe_com,
2952 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
2953 bf_set(wqe_xri_tag, &wqe->fcp_trsp.wqe_com,
2954 nvmewqe->sli4_xritag);
2955
2956 /* Word 7 */
2957
2958 /* Word 8 */
2959 wqe->fcp_trsp.wqe_com.abort_tag = nvmewqe->iotag;
2960
2961 /* Word 9 */
2962 bf_set(wqe_reqtag, &wqe->fcp_trsp.wqe_com, nvmewqe->iotag);
2963 bf_set(wqe_rcvoxid, &wqe->fcp_trsp.wqe_com, ctxp->oxid);
2964
2965 /* Word 10 */
2966 if (xc)
2967 bf_set(wqe_xc, &wqe->fcp_trsp.wqe_com, 1);
2968
2969 /* Word 11 */
2970 /* In template wqes=0 irsp=0 irsplen=0 - good response */
2971 if (rsp->rsplen != LPFC_NVMET_SUCCESS_LEN) {
2972 /* Bad response - embed it */
2973 bf_set(wqe_wqes, &wqe->fcp_trsp.wqe_com, 1);
2974 bf_set(wqe_irsp, &wqe->fcp_trsp.wqe_com, 1);
2975 bf_set(wqe_irsplen, &wqe->fcp_trsp.wqe_com,
2976 ((rsp->rsplen >> 2) - 1));
2977 memcpy(&wqe->words[16], rsp->rspaddr, rsp->rsplen);
2978 }
2979
2980 /* Word 12 */
2981 wqe->fcp_trsp.rsvd_12_15[0] = 0;
2982
2983 /* Use rspbuf, NOT sg list */
2984 nsegs = 0;
2985 sgl->word2 = 0;
2986 atomic_inc(&tgtp->xmt_fcp_rsp);
2987 break;
2988
2989 default:
2990 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR,
2991 "6064 Unknown Rsp Op %d\n",
2992 rsp->op);
2993 return NULL;
2994 }
2995
2996 nvmewqe->retry = 1;
2997 nvmewqe->vport = phba->pport;
2998 nvmewqe->drvrTimeout = (phba->fc_ratov * 3) + LPFC_DRVR_TIMEOUT;
2999 nvmewqe->ndlp = ndlp;
3000
3001 for_each_sg(rsp->sg, sgel, nsegs, i) {
3002 physaddr = sg_dma_address(sgel);
3003 cnt = sg_dma_len(sgel);
3004 sgl->addr_hi = putPaddrHigh(physaddr);
3005 sgl->addr_lo = putPaddrLow(physaddr);
3006 sgl->word2 = 0;
3007 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_DATA);
3008 bf_set(lpfc_sli4_sge_offset, sgl, ctxp->offset);
3009 if ((i+1) == rsp->sg_cnt)
3010 bf_set(lpfc_sli4_sge_last, sgl, 1);
3011 sgl->word2 = cpu_to_le32(sgl->word2);
3012 sgl->sge_len = cpu_to_le32(cnt);
3013 sgl++;
3014 ctxp->offset += cnt;
3015 }
3016
3017 bde = (struct ulp_bde64 *)&wqe->words[13];
3018 if (use_pbde) {
3019 /* decrement sgl ptr backwards once to first data sge */
3020 sgl--;
3021
3022 /* Words 13-15 (PBDE) */
3023 bde->addrLow = sgl->addr_lo;
3024 bde->addrHigh = sgl->addr_hi;
3025 bde->tus.f.bdeSize = le32_to_cpu(sgl->sge_len);
3026 bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64;
3027 bde->tus.w = cpu_to_le32(bde->tus.w);
3028 } else {
3029 memset(bde, 0, sizeof(struct ulp_bde64));
3030 }
3031 ctxp->state = LPFC_NVME_STE_DATA;
3032 ctxp->entry_cnt++;
3033 return nvmewqe;
3034 }
3035
3036 /**
3037 * lpfc_nvmet_sol_fcp_abort_cmp - Completion handler for ABTS
3038 * @phba: Pointer to HBA context object.
3039 * @cmdwqe: Pointer to driver command WQE object.
3040 * @rspwqe: Pointer to driver response WQE object.
3041 *
3042 * The function is called from SLI ring event handler with no
3043 * lock held. This function is the completion handler for NVME ABTS for FCP cmds
3044 * The function frees memory resources used for the NVME commands.
3045 **/
3046 static void
lpfc_nvmet_sol_fcp_abort_cmp(struct lpfc_hba * phba,struct lpfc_iocbq * cmdwqe,struct lpfc_iocbq * rspwqe)3047 lpfc_nvmet_sol_fcp_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
3048 struct lpfc_iocbq *rspwqe)
3049 {
3050 struct lpfc_async_xchg_ctx *ctxp;
3051 struct lpfc_nvmet_tgtport *tgtp;
3052 uint32_t result;
3053 unsigned long flags;
3054 bool released = false;
3055 struct lpfc_wcqe_complete *wcqe = &rspwqe->wcqe_cmpl;
3056
3057 ctxp = cmdwqe->context_un.axchg;
3058 result = wcqe->parameter;
3059
3060 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
3061 if (ctxp->flag & LPFC_NVME_ABORT_OP)
3062 atomic_inc(&tgtp->xmt_fcp_abort_cmpl);
3063
3064 spin_lock_irqsave(&ctxp->ctxlock, flags);
3065 ctxp->state = LPFC_NVME_STE_DONE;
3066
3067 /* Check if we already received a free context call
3068 * and we have completed processing an abort situation.
3069 */
3070 if ((ctxp->flag & LPFC_NVME_CTX_RLS) &&
3071 !(ctxp->flag & LPFC_NVME_XBUSY)) {
3072 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
3073 list_del_init(&ctxp->list);
3074 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
3075 released = true;
3076 }
3077 ctxp->flag &= ~LPFC_NVME_ABORT_OP;
3078 spin_unlock_irqrestore(&ctxp->ctxlock, flags);
3079 atomic_inc(&tgtp->xmt_abort_rsp);
3080
3081 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
3082 "6165 ABORT cmpl: oxid x%x flg x%x (%d) "
3083 "WCQE: %08x %08x %08x %08x\n",
3084 ctxp->oxid, ctxp->flag, released,
3085 wcqe->word0, wcqe->total_data_placed,
3086 result, wcqe->word3);
3087
3088 cmdwqe->rsp_dmabuf = NULL;
3089 cmdwqe->bpl_dmabuf = NULL;
3090 /*
3091 * if transport has released ctx, then can reuse it. Otherwise,
3092 * will be recycled by transport release call.
3093 */
3094 if (released)
3095 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
3096
3097 /* This is the iocbq for the abort, not the command */
3098 lpfc_sli_release_iocbq(phba, cmdwqe);
3099
3100 /* Since iaab/iaar are NOT set, there is no work left.
3101 * For LPFC_NVME_XBUSY, lpfc_sli4_nvmet_xri_aborted
3102 * should have been called already.
3103 */
3104 }
3105
3106 /**
3107 * lpfc_nvmet_unsol_fcp_abort_cmp - Completion handler for ABTS
3108 * @phba: Pointer to HBA context object.
3109 * @cmdwqe: Pointer to driver command WQE object.
3110 * @rspwqe: Pointer to driver response WQE object.
3111 *
3112 * The function is called from SLI ring event handler with no
3113 * lock held. This function is the completion handler for NVME ABTS for FCP cmds
3114 * The function frees memory resources used for the NVME commands.
3115 **/
3116 static void
lpfc_nvmet_unsol_fcp_abort_cmp(struct lpfc_hba * phba,struct lpfc_iocbq * cmdwqe,struct lpfc_iocbq * rspwqe)3117 lpfc_nvmet_unsol_fcp_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
3118 struct lpfc_iocbq *rspwqe)
3119 {
3120 struct lpfc_async_xchg_ctx *ctxp;
3121 struct lpfc_nvmet_tgtport *tgtp;
3122 unsigned long flags;
3123 uint32_t result;
3124 bool released = false;
3125 struct lpfc_wcqe_complete *wcqe = &rspwqe->wcqe_cmpl;
3126
3127 ctxp = cmdwqe->context_un.axchg;
3128 result = wcqe->parameter;
3129
3130 if (!ctxp) {
3131 /* if context is clear, related io alrady complete */
3132 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
3133 "6070 ABTS cmpl: WCQE: %08x %08x %08x %08x\n",
3134 wcqe->word0, wcqe->total_data_placed,
3135 result, wcqe->word3);
3136 return;
3137 }
3138
3139 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
3140 spin_lock_irqsave(&ctxp->ctxlock, flags);
3141 if (ctxp->flag & LPFC_NVME_ABORT_OP)
3142 atomic_inc(&tgtp->xmt_fcp_abort_cmpl);
3143
3144 /* Sanity check */
3145 if (ctxp->state != LPFC_NVME_STE_ABORT) {
3146 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3147 "6112 ABTS Wrong state:%d oxid x%x\n",
3148 ctxp->state, ctxp->oxid);
3149 }
3150
3151 /* Check if we already received a free context call
3152 * and we have completed processing an abort situation.
3153 */
3154 ctxp->state = LPFC_NVME_STE_DONE;
3155 if ((ctxp->flag & LPFC_NVME_CTX_RLS) &&
3156 !(ctxp->flag & LPFC_NVME_XBUSY)) {
3157 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
3158 list_del_init(&ctxp->list);
3159 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
3160 released = true;
3161 }
3162 ctxp->flag &= ~LPFC_NVME_ABORT_OP;
3163 spin_unlock_irqrestore(&ctxp->ctxlock, flags);
3164 atomic_inc(&tgtp->xmt_abort_rsp);
3165
3166 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
3167 "6316 ABTS cmpl oxid x%x flg x%x (%x) "
3168 "WCQE: %08x %08x %08x %08x\n",
3169 ctxp->oxid, ctxp->flag, released,
3170 wcqe->word0, wcqe->total_data_placed,
3171 result, wcqe->word3);
3172
3173 cmdwqe->rsp_dmabuf = NULL;
3174 cmdwqe->bpl_dmabuf = NULL;
3175 /*
3176 * if transport has released ctx, then can reuse it. Otherwise,
3177 * will be recycled by transport release call.
3178 */
3179 if (released)
3180 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
3181
3182 /* Since iaab/iaar are NOT set, there is no work left.
3183 * For LPFC_NVME_XBUSY, lpfc_sli4_nvmet_xri_aborted
3184 * should have been called already.
3185 */
3186 }
3187
3188 /**
3189 * lpfc_nvmet_xmt_ls_abort_cmp - Completion handler for ABTS
3190 * @phba: Pointer to HBA context object.
3191 * @cmdwqe: Pointer to driver command WQE object.
3192 * @rspwqe: Pointer to driver response WQE object.
3193 *
3194 * The function is called from SLI ring event handler with no
3195 * lock held. This function is the completion handler for NVME ABTS for LS cmds
3196 * The function frees memory resources used for the NVME commands.
3197 **/
3198 static void
lpfc_nvmet_xmt_ls_abort_cmp(struct lpfc_hba * phba,struct lpfc_iocbq * cmdwqe,struct lpfc_iocbq * rspwqe)3199 lpfc_nvmet_xmt_ls_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
3200 struct lpfc_iocbq *rspwqe)
3201 {
3202 struct lpfc_async_xchg_ctx *ctxp;
3203 struct lpfc_nvmet_tgtport *tgtp;
3204 uint32_t result;
3205 struct lpfc_wcqe_complete *wcqe = &rspwqe->wcqe_cmpl;
3206
3207 ctxp = cmdwqe->context_un.axchg;
3208 result = wcqe->parameter;
3209
3210 if (phba->nvmet_support) {
3211 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
3212 atomic_inc(&tgtp->xmt_ls_abort_cmpl);
3213 }
3214
3215 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
3216 "6083 Abort cmpl: ctx x%px WCQE:%08x %08x %08x %08x\n",
3217 ctxp, wcqe->word0, wcqe->total_data_placed,
3218 result, wcqe->word3);
3219
3220 if (!ctxp) {
3221 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3222 "6415 NVMET LS Abort No ctx: WCQE: "
3223 "%08x %08x %08x %08x\n",
3224 wcqe->word0, wcqe->total_data_placed,
3225 result, wcqe->word3);
3226
3227 lpfc_sli_release_iocbq(phba, cmdwqe);
3228 return;
3229 }
3230
3231 if (ctxp->state != LPFC_NVME_STE_LS_ABORT) {
3232 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3233 "6416 NVMET LS abort cmpl state mismatch: "
3234 "oxid x%x: %d %d\n",
3235 ctxp->oxid, ctxp->state, ctxp->entry_cnt);
3236 }
3237
3238 cmdwqe->rsp_dmabuf = NULL;
3239 cmdwqe->bpl_dmabuf = NULL;
3240 lpfc_sli_release_iocbq(phba, cmdwqe);
3241 kfree(ctxp);
3242 }
3243
3244 static int
lpfc_nvmet_unsol_issue_abort(struct lpfc_hba * phba,struct lpfc_async_xchg_ctx * ctxp,uint32_t sid,uint16_t xri)3245 lpfc_nvmet_unsol_issue_abort(struct lpfc_hba *phba,
3246 struct lpfc_async_xchg_ctx *ctxp,
3247 uint32_t sid, uint16_t xri)
3248 {
3249 struct lpfc_nvmet_tgtport *tgtp = NULL;
3250 struct lpfc_iocbq *abts_wqeq;
3251 union lpfc_wqe128 *wqe_abts;
3252 struct lpfc_nodelist *ndlp;
3253
3254 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
3255 "6067 ABTS: sid %x xri x%x/x%x\n",
3256 sid, xri, ctxp->wqeq->sli4_xritag);
3257
3258 if (phba->nvmet_support && phba->targetport)
3259 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
3260
3261 ndlp = lpfc_findnode_did(phba->pport, sid);
3262 if (!ndlp ||
3263 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) &&
3264 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) {
3265 if (tgtp)
3266 atomic_inc(&tgtp->xmt_abort_rsp_error);
3267 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3268 "6134 Drop ABTS - wrong NDLP state x%x.\n",
3269 (ndlp) ? ndlp->nlp_state : NLP_STE_MAX_STATE);
3270
3271 /* No failure to an ABTS request. */
3272 return 0;
3273 }
3274
3275 abts_wqeq = ctxp->wqeq;
3276 wqe_abts = &abts_wqeq->wqe;
3277
3278 /*
3279 * Since we zero the whole WQE, we need to ensure we set the WQE fields
3280 * that were initialized in lpfc_sli4_nvmet_alloc.
3281 */
3282 memset(wqe_abts, 0, sizeof(union lpfc_wqe));
3283
3284 /* Word 5 */
3285 bf_set(wqe_dfctl, &wqe_abts->xmit_sequence.wge_ctl, 0);
3286 bf_set(wqe_ls, &wqe_abts->xmit_sequence.wge_ctl, 1);
3287 bf_set(wqe_la, &wqe_abts->xmit_sequence.wge_ctl, 0);
3288 bf_set(wqe_rctl, &wqe_abts->xmit_sequence.wge_ctl, FC_RCTL_BA_ABTS);
3289 bf_set(wqe_type, &wqe_abts->xmit_sequence.wge_ctl, FC_TYPE_BLS);
3290
3291 /* Word 6 */
3292 bf_set(wqe_ctxt_tag, &wqe_abts->xmit_sequence.wqe_com,
3293 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
3294 bf_set(wqe_xri_tag, &wqe_abts->xmit_sequence.wqe_com,
3295 abts_wqeq->sli4_xritag);
3296
3297 /* Word 7 */
3298 bf_set(wqe_cmnd, &wqe_abts->xmit_sequence.wqe_com,
3299 CMD_XMIT_SEQUENCE64_WQE);
3300 bf_set(wqe_ct, &wqe_abts->xmit_sequence.wqe_com, SLI4_CT_RPI);
3301 bf_set(wqe_class, &wqe_abts->xmit_sequence.wqe_com, CLASS3);
3302 bf_set(wqe_pu, &wqe_abts->xmit_sequence.wqe_com, 0);
3303
3304 /* Word 8 */
3305 wqe_abts->xmit_sequence.wqe_com.abort_tag = abts_wqeq->iotag;
3306
3307 /* Word 9 */
3308 bf_set(wqe_reqtag, &wqe_abts->xmit_sequence.wqe_com, abts_wqeq->iotag);
3309 /* Needs to be set by caller */
3310 bf_set(wqe_rcvoxid, &wqe_abts->xmit_sequence.wqe_com, xri);
3311
3312 /* Word 10 */
3313 bf_set(wqe_iod, &wqe_abts->xmit_sequence.wqe_com, LPFC_WQE_IOD_WRITE);
3314 bf_set(wqe_lenloc, &wqe_abts->xmit_sequence.wqe_com,
3315 LPFC_WQE_LENLOC_WORD12);
3316 bf_set(wqe_ebde_cnt, &wqe_abts->xmit_sequence.wqe_com, 0);
3317 bf_set(wqe_qosd, &wqe_abts->xmit_sequence.wqe_com, 0);
3318
3319 /* Word 11 */
3320 bf_set(wqe_cqid, &wqe_abts->xmit_sequence.wqe_com,
3321 LPFC_WQE_CQ_ID_DEFAULT);
3322 bf_set(wqe_cmd_type, &wqe_abts->xmit_sequence.wqe_com,
3323 OTHER_COMMAND);
3324
3325 abts_wqeq->vport = phba->pport;
3326 abts_wqeq->ndlp = ndlp;
3327 abts_wqeq->context_un.axchg = ctxp;
3328 abts_wqeq->bpl_dmabuf = NULL;
3329 abts_wqeq->num_bdes = 0;
3330 /* hba_wqidx should already be setup from command we are aborting */
3331 abts_wqeq->iocb.ulpCommand = CMD_XMIT_SEQUENCE64_CR;
3332 abts_wqeq->iocb.ulpLe = 1;
3333
3334 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
3335 "6069 Issue ABTS to xri x%x reqtag x%x\n",
3336 xri, abts_wqeq->iotag);
3337 return 1;
3338 }
3339
3340 /**
3341 * lpfc_nvmet_prep_abort_wqe - set up 'abort' work queue entry.
3342 * @pwqeq: Pointer to command iocb.
3343 * @xritag: Tag that uniqely identifies the local exchange resource.
3344 * @opt: Option bits -
3345 * bit 0 = inhibit sending abts on the link
3346 *
3347 * This function is called with hbalock held.
3348 **/
3349 static void
lpfc_nvmet_prep_abort_wqe(struct lpfc_iocbq * pwqeq,u16 xritag,u8 opt)3350 lpfc_nvmet_prep_abort_wqe(struct lpfc_iocbq *pwqeq, u16 xritag, u8 opt)
3351 {
3352 union lpfc_wqe128 *wqe = &pwqeq->wqe;
3353
3354 /* WQEs are reused. Clear stale data and set key fields to
3355 * zero like ia, iaab, iaar, xri_tag, and ctxt_tag.
3356 */
3357 memset(wqe, 0, sizeof(*wqe));
3358
3359 if (opt & INHIBIT_ABORT)
3360 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1);
3361 /* Abort specified xri tag, with the mask deliberately zeroed */
3362 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG);
3363
3364 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX);
3365
3366 /* Abort the I/O associated with this outstanding exchange ID. */
3367 wqe->abort_cmd.wqe_com.abort_tag = xritag;
3368
3369 /* iotag for the wqe completion. */
3370 bf_set(wqe_reqtag, &wqe->abort_cmd.wqe_com, pwqeq->iotag);
3371
3372 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1);
3373 bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE);
3374
3375 bf_set(wqe_cmd_type, &wqe->abort_cmd.wqe_com, OTHER_COMMAND);
3376 bf_set(wqe_wqec, &wqe->abort_cmd.wqe_com, 1);
3377 bf_set(wqe_cqid, &wqe->abort_cmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
3378 }
3379
3380 static int
lpfc_nvmet_sol_fcp_issue_abort(struct lpfc_hba * phba,struct lpfc_async_xchg_ctx * ctxp,uint32_t sid,uint16_t xri)3381 lpfc_nvmet_sol_fcp_issue_abort(struct lpfc_hba *phba,
3382 struct lpfc_async_xchg_ctx *ctxp,
3383 uint32_t sid, uint16_t xri)
3384 {
3385 struct lpfc_nvmet_tgtport *tgtp;
3386 struct lpfc_iocbq *abts_wqeq;
3387 struct lpfc_nodelist *ndlp;
3388 unsigned long flags;
3389 u8 opt;
3390 int rc;
3391
3392 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
3393 if (!ctxp->wqeq) {
3394 ctxp->wqeq = ctxp->ctxbuf->iocbq;
3395 ctxp->wqeq->hba_wqidx = 0;
3396 }
3397
3398 ndlp = lpfc_findnode_did(phba->pport, sid);
3399 if (!ndlp ||
3400 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) &&
3401 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) {
3402 atomic_inc(&tgtp->xmt_abort_rsp_error);
3403 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3404 "6160 Drop ABORT - wrong NDLP state x%x.\n",
3405 (ndlp) ? ndlp->nlp_state : NLP_STE_MAX_STATE);
3406
3407 /* No failure to an ABTS request. */
3408 spin_lock_irqsave(&ctxp->ctxlock, flags);
3409 ctxp->flag &= ~LPFC_NVME_ABORT_OP;
3410 spin_unlock_irqrestore(&ctxp->ctxlock, flags);
3411 return 0;
3412 }
3413
3414 /* Issue ABTS for this WQE based on iotag */
3415 ctxp->abort_wqeq = lpfc_sli_get_iocbq(phba);
3416 spin_lock_irqsave(&ctxp->ctxlock, flags);
3417 if (!ctxp->abort_wqeq) {
3418 atomic_inc(&tgtp->xmt_abort_rsp_error);
3419 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3420 "6161 ABORT failed: No wqeqs: "
3421 "xri: x%x\n", ctxp->oxid);
3422 /* No failure to an ABTS request. */
3423 ctxp->flag &= ~LPFC_NVME_ABORT_OP;
3424 spin_unlock_irqrestore(&ctxp->ctxlock, flags);
3425 return 0;
3426 }
3427 abts_wqeq = ctxp->abort_wqeq;
3428 ctxp->state = LPFC_NVME_STE_ABORT;
3429 opt = (ctxp->flag & LPFC_NVME_ABTS_RCV) ? INHIBIT_ABORT : 0;
3430 spin_unlock_irqrestore(&ctxp->ctxlock, flags);
3431
3432 /* Announce entry to new IO submit field. */
3433 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
3434 "6162 ABORT Request to rport DID x%06x "
3435 "for xri x%x x%x\n",
3436 ctxp->sid, ctxp->oxid, ctxp->wqeq->sli4_xritag);
3437
3438 /* If the hba is getting reset, this flag is set. It is
3439 * cleared when the reset is complete and rings reestablished.
3440 */
3441 spin_lock_irqsave(&phba->hbalock, flags);
3442 /* driver queued commands are in process of being flushed */
3443 if (phba->hba_flag & HBA_IOQ_FLUSH) {
3444 spin_unlock_irqrestore(&phba->hbalock, flags);
3445 atomic_inc(&tgtp->xmt_abort_rsp_error);
3446 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3447 "6163 Driver in reset cleanup - flushing "
3448 "NVME Req now. hba_flag x%x oxid x%x\n",
3449 phba->hba_flag, ctxp->oxid);
3450 lpfc_sli_release_iocbq(phba, abts_wqeq);
3451 spin_lock_irqsave(&ctxp->ctxlock, flags);
3452 ctxp->flag &= ~LPFC_NVME_ABORT_OP;
3453 spin_unlock_irqrestore(&ctxp->ctxlock, flags);
3454 return 0;
3455 }
3456
3457 /* Outstanding abort is in progress */
3458 if (abts_wqeq->cmd_flag & LPFC_DRIVER_ABORTED) {
3459 spin_unlock_irqrestore(&phba->hbalock, flags);
3460 atomic_inc(&tgtp->xmt_abort_rsp_error);
3461 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3462 "6164 Outstanding NVME I/O Abort Request "
3463 "still pending on oxid x%x\n",
3464 ctxp->oxid);
3465 lpfc_sli_release_iocbq(phba, abts_wqeq);
3466 spin_lock_irqsave(&ctxp->ctxlock, flags);
3467 ctxp->flag &= ~LPFC_NVME_ABORT_OP;
3468 spin_unlock_irqrestore(&ctxp->ctxlock, flags);
3469 return 0;
3470 }
3471
3472 /* Ready - mark outstanding as aborted by driver. */
3473 abts_wqeq->cmd_flag |= LPFC_DRIVER_ABORTED;
3474
3475 lpfc_nvmet_prep_abort_wqe(abts_wqeq, ctxp->wqeq->sli4_xritag, opt);
3476
3477 /* ABTS WQE must go to the same WQ as the WQE to be aborted */
3478 abts_wqeq->hba_wqidx = ctxp->wqeq->hba_wqidx;
3479 abts_wqeq->cmd_cmpl = lpfc_nvmet_sol_fcp_abort_cmp;
3480 abts_wqeq->cmd_flag |= LPFC_IO_NVME;
3481 abts_wqeq->context_un.axchg = ctxp;
3482 abts_wqeq->vport = phba->pport;
3483 if (!ctxp->hdwq)
3484 ctxp->hdwq = &phba->sli4_hba.hdwq[abts_wqeq->hba_wqidx];
3485
3486 rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, abts_wqeq);
3487 spin_unlock_irqrestore(&phba->hbalock, flags);
3488 if (rc == WQE_SUCCESS) {
3489 atomic_inc(&tgtp->xmt_abort_sol);
3490 return 0;
3491 }
3492
3493 atomic_inc(&tgtp->xmt_abort_rsp_error);
3494 spin_lock_irqsave(&ctxp->ctxlock, flags);
3495 ctxp->flag &= ~LPFC_NVME_ABORT_OP;
3496 spin_unlock_irqrestore(&ctxp->ctxlock, flags);
3497 lpfc_sli_release_iocbq(phba, abts_wqeq);
3498 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3499 "6166 Failed ABORT issue_wqe with status x%x "
3500 "for oxid x%x.\n",
3501 rc, ctxp->oxid);
3502 return 1;
3503 }
3504
3505 static int
lpfc_nvmet_unsol_fcp_issue_abort(struct lpfc_hba * phba,struct lpfc_async_xchg_ctx * ctxp,uint32_t sid,uint16_t xri)3506 lpfc_nvmet_unsol_fcp_issue_abort(struct lpfc_hba *phba,
3507 struct lpfc_async_xchg_ctx *ctxp,
3508 uint32_t sid, uint16_t xri)
3509 {
3510 struct lpfc_nvmet_tgtport *tgtp;
3511 struct lpfc_iocbq *abts_wqeq;
3512 unsigned long flags;
3513 bool released = false;
3514 int rc;
3515
3516 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
3517 if (!ctxp->wqeq) {
3518 ctxp->wqeq = ctxp->ctxbuf->iocbq;
3519 ctxp->wqeq->hba_wqidx = 0;
3520 }
3521
3522 if (ctxp->state == LPFC_NVME_STE_FREE) {
3523 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3524 "6417 NVMET ABORT ctx freed %d %d oxid x%x\n",
3525 ctxp->state, ctxp->entry_cnt, ctxp->oxid);
3526 rc = WQE_BUSY;
3527 goto aerr;
3528 }
3529 ctxp->state = LPFC_NVME_STE_ABORT;
3530 ctxp->entry_cnt++;
3531 rc = lpfc_nvmet_unsol_issue_abort(phba, ctxp, sid, xri);
3532 if (rc == 0)
3533 goto aerr;
3534
3535 spin_lock_irqsave(&phba->hbalock, flags);
3536 abts_wqeq = ctxp->wqeq;
3537 abts_wqeq->cmd_cmpl = lpfc_nvmet_unsol_fcp_abort_cmp;
3538 abts_wqeq->cmd_flag |= LPFC_IO_NVMET;
3539 if (!ctxp->hdwq)
3540 ctxp->hdwq = &phba->sli4_hba.hdwq[abts_wqeq->hba_wqidx];
3541
3542 rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, abts_wqeq);
3543 spin_unlock_irqrestore(&phba->hbalock, flags);
3544 if (rc == WQE_SUCCESS) {
3545 return 0;
3546 }
3547
3548 aerr:
3549 spin_lock_irqsave(&ctxp->ctxlock, flags);
3550 if (ctxp->flag & LPFC_NVME_CTX_RLS) {
3551 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
3552 list_del_init(&ctxp->list);
3553 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
3554 released = true;
3555 }
3556 ctxp->flag &= ~(LPFC_NVME_ABORT_OP | LPFC_NVME_CTX_RLS);
3557 spin_unlock_irqrestore(&ctxp->ctxlock, flags);
3558
3559 atomic_inc(&tgtp->xmt_abort_rsp_error);
3560 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3561 "6135 Failed to Issue ABTS for oxid x%x. Status x%x "
3562 "(%x)\n",
3563 ctxp->oxid, rc, released);
3564 if (released)
3565 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
3566 return 1;
3567 }
3568
3569 /**
3570 * lpfc_nvme_unsol_ls_issue_abort - issue ABTS on an exchange received
3571 * via async frame receive where the frame is not handled.
3572 * @phba: pointer to adapter structure
3573 * @ctxp: pointer to the asynchronously received received sequence
3574 * @sid: address of the remote port to send the ABTS to
3575 * @xri: oxid value to for the ABTS (other side's exchange id).
3576 **/
3577 int
lpfc_nvme_unsol_ls_issue_abort(struct lpfc_hba * phba,struct lpfc_async_xchg_ctx * ctxp,uint32_t sid,uint16_t xri)3578 lpfc_nvme_unsol_ls_issue_abort(struct lpfc_hba *phba,
3579 struct lpfc_async_xchg_ctx *ctxp,
3580 uint32_t sid, uint16_t xri)
3581 {
3582 struct lpfc_nvmet_tgtport *tgtp = NULL;
3583 struct lpfc_iocbq *abts_wqeq;
3584 unsigned long flags;
3585 int rc;
3586
3587 if ((ctxp->state == LPFC_NVME_STE_LS_RCV && ctxp->entry_cnt == 1) ||
3588 (ctxp->state == LPFC_NVME_STE_LS_RSP && ctxp->entry_cnt == 2)) {
3589 ctxp->state = LPFC_NVME_STE_LS_ABORT;
3590 ctxp->entry_cnt++;
3591 } else {
3592 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3593 "6418 NVMET LS abort state mismatch "
3594 "IO x%x: %d %d\n",
3595 ctxp->oxid, ctxp->state, ctxp->entry_cnt);
3596 ctxp->state = LPFC_NVME_STE_LS_ABORT;
3597 }
3598
3599 if (phba->nvmet_support && phba->targetport)
3600 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
3601
3602 if (!ctxp->wqeq) {
3603 /* Issue ABTS for this WQE based on iotag */
3604 ctxp->wqeq = lpfc_sli_get_iocbq(phba);
3605 if (!ctxp->wqeq) {
3606 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3607 "6068 Abort failed: No wqeqs: "
3608 "xri: x%x\n", xri);
3609 /* No failure to an ABTS request. */
3610 kfree(ctxp);
3611 return 0;
3612 }
3613 }
3614 abts_wqeq = ctxp->wqeq;
3615
3616 if (lpfc_nvmet_unsol_issue_abort(phba, ctxp, sid, xri) == 0) {
3617 rc = WQE_BUSY;
3618 goto out;
3619 }
3620
3621 spin_lock_irqsave(&phba->hbalock, flags);
3622 abts_wqeq->cmd_cmpl = lpfc_nvmet_xmt_ls_abort_cmp;
3623 abts_wqeq->cmd_flag |= LPFC_IO_NVME_LS;
3624 rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, abts_wqeq);
3625 spin_unlock_irqrestore(&phba->hbalock, flags);
3626 if (rc == WQE_SUCCESS) {
3627 if (tgtp)
3628 atomic_inc(&tgtp->xmt_abort_unsol);
3629 return 0;
3630 }
3631 out:
3632 if (tgtp)
3633 atomic_inc(&tgtp->xmt_abort_rsp_error);
3634 abts_wqeq->rsp_dmabuf = NULL;
3635 abts_wqeq->bpl_dmabuf = NULL;
3636 lpfc_sli_release_iocbq(phba, abts_wqeq);
3637 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3638 "6056 Failed to Issue ABTS. Status x%x\n", rc);
3639 return 1;
3640 }
3641
3642 /**
3643 * lpfc_nvmet_invalidate_host
3644 *
3645 * @phba: pointer to the driver instance bound to an adapter port.
3646 * @ndlp: pointer to an lpfc_nodelist type
3647 *
3648 * This routine upcalls the nvmet transport to invalidate an NVME
3649 * host to which this target instance had active connections.
3650 */
3651 void
lpfc_nvmet_invalidate_host(struct lpfc_hba * phba,struct lpfc_nodelist * ndlp)3652 lpfc_nvmet_invalidate_host(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp)
3653 {
3654 u32 ndlp_has_hh;
3655 struct lpfc_nvmet_tgtport *tgtp;
3656
3657 lpfc_printf_log(phba, KERN_INFO,
3658 LOG_NVME | LOG_NVME_ABTS | LOG_NVME_DISC,
3659 "6203 Invalidating hosthandle x%px\n",
3660 ndlp);
3661
3662 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
3663 atomic_set(&tgtp->state, LPFC_NVMET_INV_HOST_ACTIVE);
3664
3665 spin_lock_irq(&ndlp->lock);
3666 ndlp_has_hh = ndlp->fc4_xpt_flags & NLP_XPT_HAS_HH;
3667 spin_unlock_irq(&ndlp->lock);
3668
3669 /* Do not invalidate any nodes that do not have a hosthandle.
3670 * The host_release callbk will cause a node reference
3671 * count imbalance and a crash.
3672 */
3673 if (!ndlp_has_hh) {
3674 lpfc_printf_log(phba, KERN_INFO,
3675 LOG_NVME | LOG_NVME_ABTS | LOG_NVME_DISC,
3676 "6204 Skip invalidate on node x%px DID x%x\n",
3677 ndlp, ndlp->nlp_DID);
3678 return;
3679 }
3680
3681 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
3682 /* Need to get the nvmet_fc_target_port pointer here.*/
3683 nvmet_fc_invalidate_host(phba->targetport, ndlp);
3684 #endif
3685 }
3686