1 /*P:400
2  * This contains run_guest() which actually calls into the Host<->Guest
3  * Switcher and analyzes the return, such as determining if the Guest wants the
4  * Host to do something.  This file also contains useful helper routines.
5 :*/
6 #include <linux/module.h>
7 #include <linux/stringify.h>
8 #include <linux/stddef.h>
9 #include <linux/io.h>
10 #include <linux/mm.h>
11 #include <linux/vmalloc.h>
12 #include <linux/cpu.h>
13 #include <linux/freezer.h>
14 #include <linux/highmem.h>
15 #include <linux/slab.h>
16 #include <asm/paravirt.h>
17 #include <asm/pgtable.h>
18 #include <asm/uaccess.h>
19 #include <asm/poll.h>
20 #include <asm/asm-offsets.h>
21 #include "lg.h"
22 
23 
24 static struct vm_struct *switcher_vma;
25 static struct page **switcher_page;
26 
27 /* This One Big lock protects all inter-guest data structures. */
28 DEFINE_MUTEX(lguest_lock);
29 
30 /*H:010
31  * We need to set up the Switcher at a high virtual address.  Remember the
32  * Switcher is a few hundred bytes of assembler code which actually changes the
33  * CPU to run the Guest, and then changes back to the Host when a trap or
34  * interrupt happens.
35  *
36  * The Switcher code must be at the same virtual address in the Guest as the
37  * Host since it will be running as the switchover occurs.
38  *
39  * Trying to map memory at a particular address is an unusual thing to do, so
40  * it's not a simple one-liner.
41  */
map_switcher(void)42 static __init int map_switcher(void)
43 {
44 	int i, err;
45 	struct page **pagep;
46 
47 	/*
48 	 * Map the Switcher in to high memory.
49 	 *
50 	 * It turns out that if we choose the address 0xFFC00000 (4MB under the
51 	 * top virtual address), it makes setting up the page tables really
52 	 * easy.
53 	 */
54 
55 	/*
56 	 * We allocate an array of struct page pointers.  map_vm_area() wants
57 	 * this, rather than just an array of pages.
58 	 */
59 	switcher_page = kmalloc(sizeof(switcher_page[0])*TOTAL_SWITCHER_PAGES,
60 				GFP_KERNEL);
61 	if (!switcher_page) {
62 		err = -ENOMEM;
63 		goto out;
64 	}
65 
66 	/*
67 	 * Now we actually allocate the pages.  The Guest will see these pages,
68 	 * so we make sure they're zeroed.
69 	 */
70 	for (i = 0; i < TOTAL_SWITCHER_PAGES; i++) {
71 		switcher_page[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
72 		if (!switcher_page[i]) {
73 			err = -ENOMEM;
74 			goto free_some_pages;
75 		}
76 	}
77 
78 	/*
79 	 * First we check that the Switcher won't overlap the fixmap area at
80 	 * the top of memory.  It's currently nowhere near, but it could have
81 	 * very strange effects if it ever happened.
82 	 */
83 	if (SWITCHER_ADDR + (TOTAL_SWITCHER_PAGES+1)*PAGE_SIZE > FIXADDR_START){
84 		err = -ENOMEM;
85 		printk("lguest: mapping switcher would thwack fixmap\n");
86 		goto free_pages;
87 	}
88 
89 	/*
90 	 * Now we reserve the "virtual memory area" we want: 0xFFC00000
91 	 * (SWITCHER_ADDR).  We might not get it in theory, but in practice
92 	 * it's worked so far.  The end address needs +1 because __get_vm_area
93 	 * allocates an extra guard page, so we need space for that.
94 	 */
95 	switcher_vma = __get_vm_area(TOTAL_SWITCHER_PAGES * PAGE_SIZE,
96 				     VM_ALLOC, SWITCHER_ADDR, SWITCHER_ADDR
97 				     + (TOTAL_SWITCHER_PAGES+1) * PAGE_SIZE);
98 	if (!switcher_vma) {
99 		err = -ENOMEM;
100 		printk("lguest: could not map switcher pages high\n");
101 		goto free_pages;
102 	}
103 
104 	/*
105 	 * This code actually sets up the pages we've allocated to appear at
106 	 * SWITCHER_ADDR.  map_vm_area() takes the vma we allocated above, the
107 	 * kind of pages we're mapping (kernel pages), and a pointer to our
108 	 * array of struct pages.  It increments that pointer, but we don't
109 	 * care.
110 	 */
111 	pagep = switcher_page;
112 	err = map_vm_area(switcher_vma, PAGE_KERNEL_EXEC, &pagep);
113 	if (err) {
114 		printk("lguest: map_vm_area failed: %i\n", err);
115 		goto free_vma;
116 	}
117 
118 	/*
119 	 * Now the Switcher is mapped at the right address, we can't fail!
120 	 * Copy in the compiled-in Switcher code (from x86/switcher_32.S).
121 	 */
122 	memcpy(switcher_vma->addr, start_switcher_text,
123 	       end_switcher_text - start_switcher_text);
124 
125 	printk(KERN_INFO "lguest: mapped switcher at %p\n",
126 	       switcher_vma->addr);
127 	/* And we succeeded... */
128 	return 0;
129 
130 free_vma:
131 	vunmap(switcher_vma->addr);
132 free_pages:
133 	i = TOTAL_SWITCHER_PAGES;
134 free_some_pages:
135 	for (--i; i >= 0; i--)
136 		__free_pages(switcher_page[i], 0);
137 	kfree(switcher_page);
138 out:
139 	return err;
140 }
141 /*:*/
142 
143 /* Cleaning up the mapping when the module is unloaded is almost... too easy. */
unmap_switcher(void)144 static void unmap_switcher(void)
145 {
146 	unsigned int i;
147 
148 	/* vunmap() undoes *both* map_vm_area() and __get_vm_area(). */
149 	vunmap(switcher_vma->addr);
150 	/* Now we just need to free the pages we copied the switcher into */
151 	for (i = 0; i < TOTAL_SWITCHER_PAGES; i++)
152 		__free_pages(switcher_page[i], 0);
153 	kfree(switcher_page);
154 }
155 
156 /*H:032
157  * Dealing With Guest Memory.
158  *
159  * Before we go too much further into the Host, we need to grok the routines
160  * we use to deal with Guest memory.
161  *
162  * When the Guest gives us (what it thinks is) a physical address, we can use
163  * the normal copy_from_user() & copy_to_user() on the corresponding place in
164  * the memory region allocated by the Launcher.
165  *
166  * But we can't trust the Guest: it might be trying to access the Launcher
167  * code.  We have to check that the range is below the pfn_limit the Launcher
168  * gave us.  We have to make sure that addr + len doesn't give us a false
169  * positive by overflowing, too.
170  */
lguest_address_ok(const struct lguest * lg,unsigned long addr,unsigned long len)171 bool lguest_address_ok(const struct lguest *lg,
172 		       unsigned long addr, unsigned long len)
173 {
174 	return (addr+len) / PAGE_SIZE < lg->pfn_limit && (addr+len >= addr);
175 }
176 
177 /*
178  * This routine copies memory from the Guest.  Here we can see how useful the
179  * kill_lguest() routine we met in the Launcher can be: we return a random
180  * value (all zeroes) instead of needing to return an error.
181  */
__lgread(struct lg_cpu * cpu,void * b,unsigned long addr,unsigned bytes)182 void __lgread(struct lg_cpu *cpu, void *b, unsigned long addr, unsigned bytes)
183 {
184 	if (!lguest_address_ok(cpu->lg, addr, bytes)
185 	    || copy_from_user(b, cpu->lg->mem_base + addr, bytes) != 0) {
186 		/* copy_from_user should do this, but as we rely on it... */
187 		memset(b, 0, bytes);
188 		kill_guest(cpu, "bad read address %#lx len %u", addr, bytes);
189 	}
190 }
191 
192 /* This is the write (copy into Guest) version. */
__lgwrite(struct lg_cpu * cpu,unsigned long addr,const void * b,unsigned bytes)193 void __lgwrite(struct lg_cpu *cpu, unsigned long addr, const void *b,
194 	       unsigned bytes)
195 {
196 	if (!lguest_address_ok(cpu->lg, addr, bytes)
197 	    || copy_to_user(cpu->lg->mem_base + addr, b, bytes) != 0)
198 		kill_guest(cpu, "bad write address %#lx len %u", addr, bytes);
199 }
200 /*:*/
201 
202 /*H:030
203  * Let's jump straight to the the main loop which runs the Guest.
204  * Remember, this is called by the Launcher reading /dev/lguest, and we keep
205  * going around and around until something interesting happens.
206  */
run_guest(struct lg_cpu * cpu,unsigned long __user * user)207 int run_guest(struct lg_cpu *cpu, unsigned long __user *user)
208 {
209 	/* We stop running once the Guest is dead. */
210 	while (!cpu->lg->dead) {
211 		unsigned int irq;
212 		bool more;
213 
214 		/* First we run any hypercalls the Guest wants done. */
215 		if (cpu->hcall)
216 			do_hypercalls(cpu);
217 
218 		/*
219 		 * It's possible the Guest did a NOTIFY hypercall to the
220 		 * Launcher.
221 		 */
222 		if (cpu->pending_notify) {
223 			/*
224 			 * Does it just needs to write to a registered
225 			 * eventfd (ie. the appropriate virtqueue thread)?
226 			 */
227 			if (!send_notify_to_eventfd(cpu)) {
228 				/* OK, we tell the main Laucher. */
229 				if (put_user(cpu->pending_notify, user))
230 					return -EFAULT;
231 				return sizeof(cpu->pending_notify);
232 			}
233 		}
234 
235 		/*
236 		 * All long-lived kernel loops need to check with this horrible
237 		 * thing called the freezer.  If the Host is trying to suspend,
238 		 * it stops us.
239 		 */
240 		try_to_freeze();
241 
242 		/* Check for signals */
243 		if (signal_pending(current))
244 			return -ERESTARTSYS;
245 
246 		/*
247 		 * Check if there are any interrupts which can be delivered now:
248 		 * if so, this sets up the hander to be executed when we next
249 		 * run the Guest.
250 		 */
251 		irq = interrupt_pending(cpu, &more);
252 		if (irq < LGUEST_IRQS)
253 			try_deliver_interrupt(cpu, irq, more);
254 
255 		/*
256 		 * Just make absolutely sure the Guest is still alive.  One of
257 		 * those hypercalls could have been fatal, for example.
258 		 */
259 		if (cpu->lg->dead)
260 			break;
261 
262 		/*
263 		 * If the Guest asked to be stopped, we sleep.  The Guest's
264 		 * clock timer will wake us.
265 		 */
266 		if (cpu->halted) {
267 			set_current_state(TASK_INTERRUPTIBLE);
268 			/*
269 			 * Just before we sleep, make sure no interrupt snuck in
270 			 * which we should be doing.
271 			 */
272 			if (interrupt_pending(cpu, &more) < LGUEST_IRQS)
273 				set_current_state(TASK_RUNNING);
274 			else
275 				schedule();
276 			continue;
277 		}
278 
279 		/*
280 		 * OK, now we're ready to jump into the Guest.  First we put up
281 		 * the "Do Not Disturb" sign:
282 		 */
283 		local_irq_disable();
284 
285 		/* Actually run the Guest until something happens. */
286 		lguest_arch_run_guest(cpu);
287 
288 		/* Now we're ready to be interrupted or moved to other CPUs */
289 		local_irq_enable();
290 
291 		/* Now we deal with whatever happened to the Guest. */
292 		lguest_arch_handle_trap(cpu);
293 	}
294 
295 	/* Special case: Guest is 'dead' but wants a reboot. */
296 	if (cpu->lg->dead == ERR_PTR(-ERESTART))
297 		return -ERESTART;
298 
299 	/* The Guest is dead => "No such file or directory" */
300 	return -ENOENT;
301 }
302 
303 /*H:000
304  * Welcome to the Host!
305  *
306  * By this point your brain has been tickled by the Guest code and numbed by
307  * the Launcher code; prepare for it to be stretched by the Host code.  This is
308  * the heart.  Let's begin at the initialization routine for the Host's lg
309  * module.
310  */
init(void)311 static int __init init(void)
312 {
313 	int err;
314 
315 	/* Lguest can't run under Xen, VMI or itself.  It does Tricky Stuff. */
316 	if (get_kernel_rpl() != 0) {
317 		printk("lguest is afraid of being a guest\n");
318 		return -EPERM;
319 	}
320 
321 	/* First we put the Switcher up in very high virtual memory. */
322 	err = map_switcher();
323 	if (err)
324 		goto out;
325 
326 	/* Now we set up the pagetable implementation for the Guests. */
327 	err = init_pagetables(switcher_page, SHARED_SWITCHER_PAGES);
328 	if (err)
329 		goto unmap;
330 
331 	/* We might need to reserve an interrupt vector. */
332 	err = init_interrupts();
333 	if (err)
334 		goto free_pgtables;
335 
336 	/* /dev/lguest needs to be registered. */
337 	err = lguest_device_init();
338 	if (err)
339 		goto free_interrupts;
340 
341 	/* Finally we do some architecture-specific setup. */
342 	lguest_arch_host_init();
343 
344 	/* All good! */
345 	return 0;
346 
347 free_interrupts:
348 	free_interrupts();
349 free_pgtables:
350 	free_pagetables();
351 unmap:
352 	unmap_switcher();
353 out:
354 	return err;
355 }
356 
357 /* Cleaning up is just the same code, backwards.  With a little French. */
fini(void)358 static void __exit fini(void)
359 {
360 	lguest_device_remove();
361 	free_interrupts();
362 	free_pagetables();
363 	unmap_switcher();
364 
365 	lguest_arch_host_fini();
366 }
367 /*:*/
368 
369 /*
370  * The Host side of lguest can be a module.  This is a nice way for people to
371  * play with it.
372  */
373 module_init(init);
374 module_exit(fini);
375 MODULE_LICENSE("GPL");
376 MODULE_AUTHOR("Rusty Russell <rusty@rustcorp.com.au>");
377