1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * tools/testing/selftests/kvm/lib/kvm_util.c
4 *
5 * Copyright (C) 2018, Google LLC.
6 */
7
8 #define _GNU_SOURCE /* for program_invocation_name */
9 #include "test_util.h"
10 #include "kvm_util.h"
11 #include "processor.h"
12
13 #include <assert.h>
14 #include <sys/mman.h>
15 #include <sys/types.h>
16 #include <sys/stat.h>
17 #include <unistd.h>
18 #include <linux/kernel.h>
19
20 #define KVM_UTIL_MIN_PFN 2
21
22 static int vcpu_mmap_sz(void);
23
open_path_or_exit(const char * path,int flags)24 int open_path_or_exit(const char *path, int flags)
25 {
26 int fd;
27
28 fd = open(path, flags);
29 __TEST_REQUIRE(fd >= 0, "%s not available (errno: %d)", path, errno);
30
31 return fd;
32 }
33
34 /*
35 * Open KVM_DEV_PATH if available, otherwise exit the entire program.
36 *
37 * Input Args:
38 * flags - The flags to pass when opening KVM_DEV_PATH.
39 *
40 * Return:
41 * The opened file descriptor of /dev/kvm.
42 */
_open_kvm_dev_path_or_exit(int flags)43 static int _open_kvm_dev_path_or_exit(int flags)
44 {
45 return open_path_or_exit(KVM_DEV_PATH, flags);
46 }
47
open_kvm_dev_path_or_exit(void)48 int open_kvm_dev_path_or_exit(void)
49 {
50 return _open_kvm_dev_path_or_exit(O_RDONLY);
51 }
52
get_module_param_bool(const char * module_name,const char * param)53 static bool get_module_param_bool(const char *module_name, const char *param)
54 {
55 const int path_size = 128;
56 char path[path_size];
57 char value;
58 ssize_t r;
59 int fd;
60
61 r = snprintf(path, path_size, "/sys/module/%s/parameters/%s",
62 module_name, param);
63 TEST_ASSERT(r < path_size,
64 "Failed to construct sysfs path in %d bytes.", path_size);
65
66 fd = open_path_or_exit(path, O_RDONLY);
67
68 r = read(fd, &value, 1);
69 TEST_ASSERT(r == 1, "read(%s) failed", path);
70
71 r = close(fd);
72 TEST_ASSERT(!r, "close(%s) failed", path);
73
74 if (value == 'Y')
75 return true;
76 else if (value == 'N')
77 return false;
78
79 TEST_FAIL("Unrecognized value '%c' for boolean module param", value);
80 }
81
get_kvm_intel_param_bool(const char * param)82 bool get_kvm_intel_param_bool(const char *param)
83 {
84 return get_module_param_bool("kvm_intel", param);
85 }
86
get_kvm_amd_param_bool(const char * param)87 bool get_kvm_amd_param_bool(const char *param)
88 {
89 return get_module_param_bool("kvm_amd", param);
90 }
91
92 /*
93 * Capability
94 *
95 * Input Args:
96 * cap - Capability
97 *
98 * Output Args: None
99 *
100 * Return:
101 * On success, the Value corresponding to the capability (KVM_CAP_*)
102 * specified by the value of cap. On failure a TEST_ASSERT failure
103 * is produced.
104 *
105 * Looks up and returns the value corresponding to the capability
106 * (KVM_CAP_*) given by cap.
107 */
kvm_check_cap(long cap)108 unsigned int kvm_check_cap(long cap)
109 {
110 int ret;
111 int kvm_fd;
112
113 kvm_fd = open_kvm_dev_path_or_exit();
114 ret = __kvm_ioctl(kvm_fd, KVM_CHECK_EXTENSION, (void *)cap);
115 TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_CHECK_EXTENSION, ret));
116
117 close(kvm_fd);
118
119 return (unsigned int)ret;
120 }
121
vm_enable_dirty_ring(struct kvm_vm * vm,uint32_t ring_size)122 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size)
123 {
124 if (vm_check_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL))
125 vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL, ring_size);
126 else
127 vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING, ring_size);
128 vm->dirty_ring_size = ring_size;
129 }
130
vm_open(struct kvm_vm * vm)131 static void vm_open(struct kvm_vm *vm)
132 {
133 vm->kvm_fd = _open_kvm_dev_path_or_exit(O_RDWR);
134
135 TEST_REQUIRE(kvm_has_cap(KVM_CAP_IMMEDIATE_EXIT));
136
137 vm->fd = __kvm_ioctl(vm->kvm_fd, KVM_CREATE_VM, (void *)vm->type);
138 TEST_ASSERT(vm->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VM, vm->fd));
139 }
140
vm_guest_mode_string(uint32_t i)141 const char *vm_guest_mode_string(uint32_t i)
142 {
143 static const char * const strings[] = {
144 [VM_MODE_P52V48_4K] = "PA-bits:52, VA-bits:48, 4K pages",
145 [VM_MODE_P52V48_64K] = "PA-bits:52, VA-bits:48, 64K pages",
146 [VM_MODE_P48V48_4K] = "PA-bits:48, VA-bits:48, 4K pages",
147 [VM_MODE_P48V48_16K] = "PA-bits:48, VA-bits:48, 16K pages",
148 [VM_MODE_P48V48_64K] = "PA-bits:48, VA-bits:48, 64K pages",
149 [VM_MODE_P40V48_4K] = "PA-bits:40, VA-bits:48, 4K pages",
150 [VM_MODE_P40V48_16K] = "PA-bits:40, VA-bits:48, 16K pages",
151 [VM_MODE_P40V48_64K] = "PA-bits:40, VA-bits:48, 64K pages",
152 [VM_MODE_PXXV48_4K] = "PA-bits:ANY, VA-bits:48, 4K pages",
153 [VM_MODE_P47V64_4K] = "PA-bits:47, VA-bits:64, 4K pages",
154 [VM_MODE_P44V64_4K] = "PA-bits:44, VA-bits:64, 4K pages",
155 [VM_MODE_P36V48_4K] = "PA-bits:36, VA-bits:48, 4K pages",
156 [VM_MODE_P36V48_16K] = "PA-bits:36, VA-bits:48, 16K pages",
157 [VM_MODE_P36V48_64K] = "PA-bits:36, VA-bits:48, 64K pages",
158 [VM_MODE_P36V47_16K] = "PA-bits:36, VA-bits:47, 16K pages",
159 };
160 _Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES,
161 "Missing new mode strings?");
162
163 TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i);
164
165 return strings[i];
166 }
167
168 const struct vm_guest_mode_params vm_guest_mode_params[] = {
169 [VM_MODE_P52V48_4K] = { 52, 48, 0x1000, 12 },
170 [VM_MODE_P52V48_64K] = { 52, 48, 0x10000, 16 },
171 [VM_MODE_P48V48_4K] = { 48, 48, 0x1000, 12 },
172 [VM_MODE_P48V48_16K] = { 48, 48, 0x4000, 14 },
173 [VM_MODE_P48V48_64K] = { 48, 48, 0x10000, 16 },
174 [VM_MODE_P40V48_4K] = { 40, 48, 0x1000, 12 },
175 [VM_MODE_P40V48_16K] = { 40, 48, 0x4000, 14 },
176 [VM_MODE_P40V48_64K] = { 40, 48, 0x10000, 16 },
177 [VM_MODE_PXXV48_4K] = { 0, 0, 0x1000, 12 },
178 [VM_MODE_P47V64_4K] = { 47, 64, 0x1000, 12 },
179 [VM_MODE_P44V64_4K] = { 44, 64, 0x1000, 12 },
180 [VM_MODE_P36V48_4K] = { 36, 48, 0x1000, 12 },
181 [VM_MODE_P36V48_16K] = { 36, 48, 0x4000, 14 },
182 [VM_MODE_P36V48_64K] = { 36, 48, 0x10000, 16 },
183 [VM_MODE_P36V47_16K] = { 36, 47, 0x4000, 14 },
184 };
185 _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES,
186 "Missing new mode params?");
187
____vm_create(enum vm_guest_mode mode,uint64_t nr_pages)188 struct kvm_vm *____vm_create(enum vm_guest_mode mode, uint64_t nr_pages)
189 {
190 struct kvm_vm *vm;
191
192 pr_debug("%s: mode='%s' pages='%ld'\n", __func__,
193 vm_guest_mode_string(mode), nr_pages);
194
195 vm = calloc(1, sizeof(*vm));
196 TEST_ASSERT(vm != NULL, "Insufficient Memory");
197
198 INIT_LIST_HEAD(&vm->vcpus);
199 vm->regions.gpa_tree = RB_ROOT;
200 vm->regions.hva_tree = RB_ROOT;
201 hash_init(vm->regions.slot_hash);
202
203 vm->mode = mode;
204 vm->type = 0;
205
206 vm->pa_bits = vm_guest_mode_params[mode].pa_bits;
207 vm->va_bits = vm_guest_mode_params[mode].va_bits;
208 vm->page_size = vm_guest_mode_params[mode].page_size;
209 vm->page_shift = vm_guest_mode_params[mode].page_shift;
210
211 /* Setup mode specific traits. */
212 switch (vm->mode) {
213 case VM_MODE_P52V48_4K:
214 vm->pgtable_levels = 4;
215 break;
216 case VM_MODE_P52V48_64K:
217 vm->pgtable_levels = 3;
218 break;
219 case VM_MODE_P48V48_4K:
220 vm->pgtable_levels = 4;
221 break;
222 case VM_MODE_P48V48_64K:
223 vm->pgtable_levels = 3;
224 break;
225 case VM_MODE_P40V48_4K:
226 case VM_MODE_P36V48_4K:
227 vm->pgtable_levels = 4;
228 break;
229 case VM_MODE_P40V48_64K:
230 case VM_MODE_P36V48_64K:
231 vm->pgtable_levels = 3;
232 break;
233 case VM_MODE_P48V48_16K:
234 case VM_MODE_P40V48_16K:
235 case VM_MODE_P36V48_16K:
236 vm->pgtable_levels = 4;
237 break;
238 case VM_MODE_P36V47_16K:
239 vm->pgtable_levels = 3;
240 break;
241 case VM_MODE_PXXV48_4K:
242 #ifdef __x86_64__
243 kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits);
244 /*
245 * Ignore KVM support for 5-level paging (vm->va_bits == 57),
246 * it doesn't take effect unless a CR4.LA57 is set, which it
247 * isn't for this VM_MODE.
248 */
249 TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57,
250 "Linear address width (%d bits) not supported",
251 vm->va_bits);
252 pr_debug("Guest physical address width detected: %d\n",
253 vm->pa_bits);
254 vm->pgtable_levels = 4;
255 vm->va_bits = 48;
256 #else
257 TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms");
258 #endif
259 break;
260 case VM_MODE_P47V64_4K:
261 vm->pgtable_levels = 5;
262 break;
263 case VM_MODE_P44V64_4K:
264 vm->pgtable_levels = 5;
265 break;
266 default:
267 TEST_FAIL("Unknown guest mode, mode: 0x%x", mode);
268 }
269
270 #ifdef __aarch64__
271 if (vm->pa_bits != 40)
272 vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits);
273 #endif
274
275 vm_open(vm);
276
277 /* Limit to VA-bit canonical virtual addresses. */
278 vm->vpages_valid = sparsebit_alloc();
279 sparsebit_set_num(vm->vpages_valid,
280 0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
281 sparsebit_set_num(vm->vpages_valid,
282 (~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
283 (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
284
285 /* Limit physical addresses to PA-bits. */
286 vm->max_gfn = vm_compute_max_gfn(vm);
287
288 /* Allocate and setup memory for guest. */
289 vm->vpages_mapped = sparsebit_alloc();
290 if (nr_pages != 0)
291 vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS,
292 0, 0, nr_pages, 0);
293
294 return vm;
295 }
296
vm_nr_pages_required(enum vm_guest_mode mode,uint32_t nr_runnable_vcpus,uint64_t extra_mem_pages)297 static uint64_t vm_nr_pages_required(enum vm_guest_mode mode,
298 uint32_t nr_runnable_vcpus,
299 uint64_t extra_mem_pages)
300 {
301 uint64_t nr_pages;
302
303 TEST_ASSERT(nr_runnable_vcpus,
304 "Use vm_create_barebones() for VMs that _never_ have vCPUs\n");
305
306 TEST_ASSERT(nr_runnable_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS),
307 "nr_vcpus = %d too large for host, max-vcpus = %d",
308 nr_runnable_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS));
309
310 /*
311 * Arbitrarily allocate 512 pages (2mb when page size is 4kb) for the
312 * test code and other per-VM assets that will be loaded into memslot0.
313 */
314 nr_pages = 512;
315
316 /* Account for the per-vCPU stacks on behalf of the test. */
317 nr_pages += nr_runnable_vcpus * DEFAULT_STACK_PGS;
318
319 /*
320 * Account for the number of pages needed for the page tables. The
321 * maximum page table size for a memory region will be when the
322 * smallest page size is used. Considering each page contains x page
323 * table descriptors, the total extra size for page tables (for extra
324 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller
325 * than N/x*2.
326 */
327 nr_pages += (nr_pages + extra_mem_pages) / PTES_PER_MIN_PAGE * 2;
328
329 return vm_adjust_num_guest_pages(mode, nr_pages);
330 }
331
__vm_create(enum vm_guest_mode mode,uint32_t nr_runnable_vcpus,uint64_t nr_extra_pages)332 struct kvm_vm *__vm_create(enum vm_guest_mode mode, uint32_t nr_runnable_vcpus,
333 uint64_t nr_extra_pages)
334 {
335 uint64_t nr_pages = vm_nr_pages_required(mode, nr_runnable_vcpus,
336 nr_extra_pages);
337 struct kvm_vm *vm;
338
339 vm = ____vm_create(mode, nr_pages);
340
341 kvm_vm_elf_load(vm, program_invocation_name);
342
343 #ifdef __x86_64__
344 vm_create_irqchip(vm);
345 #endif
346 return vm;
347 }
348
349 /*
350 * VM Create with customized parameters
351 *
352 * Input Args:
353 * mode - VM Mode (e.g. VM_MODE_P52V48_4K)
354 * nr_vcpus - VCPU count
355 * extra_mem_pages - Non-slot0 physical memory total size
356 * guest_code - Guest entry point
357 * vcpuids - VCPU IDs
358 *
359 * Output Args: None
360 *
361 * Return:
362 * Pointer to opaque structure that describes the created VM.
363 *
364 * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
365 * extra_mem_pages is only used to calculate the maximum page table size,
366 * no real memory allocation for non-slot0 memory in this function.
367 */
__vm_create_with_vcpus(enum vm_guest_mode mode,uint32_t nr_vcpus,uint64_t extra_mem_pages,void * guest_code,struct kvm_vcpu * vcpus[])368 struct kvm_vm *__vm_create_with_vcpus(enum vm_guest_mode mode, uint32_t nr_vcpus,
369 uint64_t extra_mem_pages,
370 void *guest_code, struct kvm_vcpu *vcpus[])
371 {
372 struct kvm_vm *vm;
373 int i;
374
375 TEST_ASSERT(!nr_vcpus || vcpus, "Must provide vCPU array");
376
377 vm = __vm_create(mode, nr_vcpus, extra_mem_pages);
378
379 for (i = 0; i < nr_vcpus; ++i)
380 vcpus[i] = vm_vcpu_add(vm, i, guest_code);
381
382 return vm;
383 }
384
__vm_create_with_one_vcpu(struct kvm_vcpu ** vcpu,uint64_t extra_mem_pages,void * guest_code)385 struct kvm_vm *__vm_create_with_one_vcpu(struct kvm_vcpu **vcpu,
386 uint64_t extra_mem_pages,
387 void *guest_code)
388 {
389 struct kvm_vcpu *vcpus[1];
390 struct kvm_vm *vm;
391
392 vm = __vm_create_with_vcpus(VM_MODE_DEFAULT, 1, extra_mem_pages,
393 guest_code, vcpus);
394
395 *vcpu = vcpus[0];
396 return vm;
397 }
398
399 /*
400 * VM Restart
401 *
402 * Input Args:
403 * vm - VM that has been released before
404 *
405 * Output Args: None
406 *
407 * Reopens the file descriptors associated to the VM and reinstates the
408 * global state, such as the irqchip and the memory regions that are mapped
409 * into the guest.
410 */
kvm_vm_restart(struct kvm_vm * vmp)411 void kvm_vm_restart(struct kvm_vm *vmp)
412 {
413 int ctr;
414 struct userspace_mem_region *region;
415
416 vm_open(vmp);
417 if (vmp->has_irqchip)
418 vm_create_irqchip(vmp);
419
420 hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) {
421 int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region);
422 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
423 " rc: %i errno: %i\n"
424 " slot: %u flags: 0x%x\n"
425 " guest_phys_addr: 0x%llx size: 0x%llx",
426 ret, errno, region->region.slot,
427 region->region.flags,
428 region->region.guest_phys_addr,
429 region->region.memory_size);
430 }
431 }
432
vm_arch_vcpu_recreate(struct kvm_vm * vm,uint32_t vcpu_id)433 __weak struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm,
434 uint32_t vcpu_id)
435 {
436 return __vm_vcpu_add(vm, vcpu_id);
437 }
438
vm_recreate_with_one_vcpu(struct kvm_vm * vm)439 struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm)
440 {
441 kvm_vm_restart(vm);
442
443 return vm_vcpu_recreate(vm, 0);
444 }
445
446 /*
447 * Userspace Memory Region Find
448 *
449 * Input Args:
450 * vm - Virtual Machine
451 * start - Starting VM physical address
452 * end - Ending VM physical address, inclusive.
453 *
454 * Output Args: None
455 *
456 * Return:
457 * Pointer to overlapping region, NULL if no such region.
458 *
459 * Searches for a region with any physical memory that overlaps with
460 * any portion of the guest physical addresses from start to end
461 * inclusive. If multiple overlapping regions exist, a pointer to any
462 * of the regions is returned. Null is returned only when no overlapping
463 * region exists.
464 */
465 static struct userspace_mem_region *
userspace_mem_region_find(struct kvm_vm * vm,uint64_t start,uint64_t end)466 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
467 {
468 struct rb_node *node;
469
470 for (node = vm->regions.gpa_tree.rb_node; node; ) {
471 struct userspace_mem_region *region =
472 container_of(node, struct userspace_mem_region, gpa_node);
473 uint64_t existing_start = region->region.guest_phys_addr;
474 uint64_t existing_end = region->region.guest_phys_addr
475 + region->region.memory_size - 1;
476 if (start <= existing_end && end >= existing_start)
477 return region;
478
479 if (start < existing_start)
480 node = node->rb_left;
481 else
482 node = node->rb_right;
483 }
484
485 return NULL;
486 }
487
488 /*
489 * KVM Userspace Memory Region Find
490 *
491 * Input Args:
492 * vm - Virtual Machine
493 * start - Starting VM physical address
494 * end - Ending VM physical address, inclusive.
495 *
496 * Output Args: None
497 *
498 * Return:
499 * Pointer to overlapping region, NULL if no such region.
500 *
501 * Public interface to userspace_mem_region_find. Allows tests to look up
502 * the memslot datastructure for a given range of guest physical memory.
503 */
504 struct kvm_userspace_memory_region *
kvm_userspace_memory_region_find(struct kvm_vm * vm,uint64_t start,uint64_t end)505 kvm_userspace_memory_region_find(struct kvm_vm *vm, uint64_t start,
506 uint64_t end)
507 {
508 struct userspace_mem_region *region;
509
510 region = userspace_mem_region_find(vm, start, end);
511 if (!region)
512 return NULL;
513
514 return ®ion->region;
515 }
516
vcpu_arch_free(struct kvm_vcpu * vcpu)517 __weak void vcpu_arch_free(struct kvm_vcpu *vcpu)
518 {
519
520 }
521
522 /*
523 * VM VCPU Remove
524 *
525 * Input Args:
526 * vcpu - VCPU to remove
527 *
528 * Output Args: None
529 *
530 * Return: None, TEST_ASSERT failures for all error conditions
531 *
532 * Removes a vCPU from a VM and frees its resources.
533 */
vm_vcpu_rm(struct kvm_vm * vm,struct kvm_vcpu * vcpu)534 static void vm_vcpu_rm(struct kvm_vm *vm, struct kvm_vcpu *vcpu)
535 {
536 int ret;
537
538 if (vcpu->dirty_gfns) {
539 ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size);
540 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
541 vcpu->dirty_gfns = NULL;
542 }
543
544 ret = munmap(vcpu->run, vcpu_mmap_sz());
545 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
546
547 ret = close(vcpu->fd);
548 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret));
549
550 list_del(&vcpu->list);
551
552 vcpu_arch_free(vcpu);
553 free(vcpu);
554 }
555
kvm_vm_release(struct kvm_vm * vmp)556 void kvm_vm_release(struct kvm_vm *vmp)
557 {
558 struct kvm_vcpu *vcpu, *tmp;
559 int ret;
560
561 list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list)
562 vm_vcpu_rm(vmp, vcpu);
563
564 ret = close(vmp->fd);
565 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret));
566
567 ret = close(vmp->kvm_fd);
568 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("close()", ret));
569 }
570
__vm_mem_region_delete(struct kvm_vm * vm,struct userspace_mem_region * region,bool unlink)571 static void __vm_mem_region_delete(struct kvm_vm *vm,
572 struct userspace_mem_region *region,
573 bool unlink)
574 {
575 int ret;
576
577 if (unlink) {
578 rb_erase(®ion->gpa_node, &vm->regions.gpa_tree);
579 rb_erase(®ion->hva_node, &vm->regions.hva_tree);
580 hash_del(®ion->slot_node);
581 }
582
583 region->region.memory_size = 0;
584 vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION, ®ion->region);
585
586 sparsebit_free(®ion->unused_phy_pages);
587 ret = munmap(region->mmap_start, region->mmap_size);
588 TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
589
590 free(region);
591 }
592
593 /*
594 * Destroys and frees the VM pointed to by vmp.
595 */
kvm_vm_free(struct kvm_vm * vmp)596 void kvm_vm_free(struct kvm_vm *vmp)
597 {
598 int ctr;
599 struct hlist_node *node;
600 struct userspace_mem_region *region;
601
602 if (vmp == NULL)
603 return;
604
605 /* Free cached stats metadata and close FD */
606 if (vmp->stats_fd) {
607 free(vmp->stats_desc);
608 close(vmp->stats_fd);
609 }
610
611 /* Free userspace_mem_regions. */
612 hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node)
613 __vm_mem_region_delete(vmp, region, false);
614
615 /* Free sparsebit arrays. */
616 sparsebit_free(&vmp->vpages_valid);
617 sparsebit_free(&vmp->vpages_mapped);
618
619 kvm_vm_release(vmp);
620
621 /* Free the structure describing the VM. */
622 free(vmp);
623 }
624
kvm_memfd_alloc(size_t size,bool hugepages)625 int kvm_memfd_alloc(size_t size, bool hugepages)
626 {
627 int memfd_flags = MFD_CLOEXEC;
628 int fd, r;
629
630 if (hugepages)
631 memfd_flags |= MFD_HUGETLB;
632
633 fd = memfd_create("kvm_selftest", memfd_flags);
634 TEST_ASSERT(fd != -1, __KVM_SYSCALL_ERROR("memfd_create()", fd));
635
636 r = ftruncate(fd, size);
637 TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("ftruncate()", r));
638
639 r = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, size);
640 TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("fallocate()", r));
641
642 return fd;
643 }
644
645 /*
646 * Memory Compare, host virtual to guest virtual
647 *
648 * Input Args:
649 * hva - Starting host virtual address
650 * vm - Virtual Machine
651 * gva - Starting guest virtual address
652 * len - number of bytes to compare
653 *
654 * Output Args: None
655 *
656 * Input/Output Args: None
657 *
658 * Return:
659 * Returns 0 if the bytes starting at hva for a length of len
660 * are equal the guest virtual bytes starting at gva. Returns
661 * a value < 0, if bytes at hva are less than those at gva.
662 * Otherwise a value > 0 is returned.
663 *
664 * Compares the bytes starting at the host virtual address hva, for
665 * a length of len, to the guest bytes starting at the guest virtual
666 * address given by gva.
667 */
kvm_memcmp_hva_gva(void * hva,struct kvm_vm * vm,vm_vaddr_t gva,size_t len)668 int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len)
669 {
670 size_t amt;
671
672 /*
673 * Compare a batch of bytes until either a match is found
674 * or all the bytes have been compared.
675 */
676 for (uintptr_t offset = 0; offset < len; offset += amt) {
677 uintptr_t ptr1 = (uintptr_t)hva + offset;
678
679 /*
680 * Determine host address for guest virtual address
681 * at offset.
682 */
683 uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset);
684
685 /*
686 * Determine amount to compare on this pass.
687 * Don't allow the comparsion to cross a page boundary.
688 */
689 amt = len - offset;
690 if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift))
691 amt = vm->page_size - (ptr1 % vm->page_size);
692 if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift))
693 amt = vm->page_size - (ptr2 % vm->page_size);
694
695 assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift));
696 assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift));
697
698 /*
699 * Perform the comparison. If there is a difference
700 * return that result to the caller, otherwise need
701 * to continue on looking for a mismatch.
702 */
703 int ret = memcmp((void *)ptr1, (void *)ptr2, amt);
704 if (ret != 0)
705 return ret;
706 }
707
708 /*
709 * No mismatch found. Let the caller know the two memory
710 * areas are equal.
711 */
712 return 0;
713 }
714
vm_userspace_mem_region_gpa_insert(struct rb_root * gpa_tree,struct userspace_mem_region * region)715 static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree,
716 struct userspace_mem_region *region)
717 {
718 struct rb_node **cur, *parent;
719
720 for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) {
721 struct userspace_mem_region *cregion;
722
723 cregion = container_of(*cur, typeof(*cregion), gpa_node);
724 parent = *cur;
725 if (region->region.guest_phys_addr <
726 cregion->region.guest_phys_addr)
727 cur = &(*cur)->rb_left;
728 else {
729 TEST_ASSERT(region->region.guest_phys_addr !=
730 cregion->region.guest_phys_addr,
731 "Duplicate GPA in region tree");
732
733 cur = &(*cur)->rb_right;
734 }
735 }
736
737 rb_link_node(®ion->gpa_node, parent, cur);
738 rb_insert_color(®ion->gpa_node, gpa_tree);
739 }
740
vm_userspace_mem_region_hva_insert(struct rb_root * hva_tree,struct userspace_mem_region * region)741 static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree,
742 struct userspace_mem_region *region)
743 {
744 struct rb_node **cur, *parent;
745
746 for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) {
747 struct userspace_mem_region *cregion;
748
749 cregion = container_of(*cur, typeof(*cregion), hva_node);
750 parent = *cur;
751 if (region->host_mem < cregion->host_mem)
752 cur = &(*cur)->rb_left;
753 else {
754 TEST_ASSERT(region->host_mem !=
755 cregion->host_mem,
756 "Duplicate HVA in region tree");
757
758 cur = &(*cur)->rb_right;
759 }
760 }
761
762 rb_link_node(®ion->hva_node, parent, cur);
763 rb_insert_color(®ion->hva_node, hva_tree);
764 }
765
766
__vm_set_user_memory_region(struct kvm_vm * vm,uint32_t slot,uint32_t flags,uint64_t gpa,uint64_t size,void * hva)767 int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
768 uint64_t gpa, uint64_t size, void *hva)
769 {
770 struct kvm_userspace_memory_region region = {
771 .slot = slot,
772 .flags = flags,
773 .guest_phys_addr = gpa,
774 .memory_size = size,
775 .userspace_addr = (uintptr_t)hva,
776 };
777
778 return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion);
779 }
780
vm_set_user_memory_region(struct kvm_vm * vm,uint32_t slot,uint32_t flags,uint64_t gpa,uint64_t size,void * hva)781 void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
782 uint64_t gpa, uint64_t size, void *hva)
783 {
784 int ret = __vm_set_user_memory_region(vm, slot, flags, gpa, size, hva);
785
786 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed, errno = %d (%s)",
787 errno, strerror(errno));
788 }
789
790 /*
791 * VM Userspace Memory Region Add
792 *
793 * Input Args:
794 * vm - Virtual Machine
795 * src_type - Storage source for this region.
796 * NULL to use anonymous memory.
797 * guest_paddr - Starting guest physical address
798 * slot - KVM region slot
799 * npages - Number of physical pages
800 * flags - KVM memory region flags (e.g. KVM_MEM_LOG_DIRTY_PAGES)
801 *
802 * Output Args: None
803 *
804 * Return: None
805 *
806 * Allocates a memory area of the number of pages specified by npages
807 * and maps it to the VM specified by vm, at a starting physical address
808 * given by guest_paddr. The region is created with a KVM region slot
809 * given by slot, which must be unique and < KVM_MEM_SLOTS_NUM. The
810 * region is created with the flags given by flags.
811 */
vm_userspace_mem_region_add(struct kvm_vm * vm,enum vm_mem_backing_src_type src_type,uint64_t guest_paddr,uint32_t slot,uint64_t npages,uint32_t flags)812 void vm_userspace_mem_region_add(struct kvm_vm *vm,
813 enum vm_mem_backing_src_type src_type,
814 uint64_t guest_paddr, uint32_t slot, uint64_t npages,
815 uint32_t flags)
816 {
817 int ret;
818 struct userspace_mem_region *region;
819 size_t backing_src_pagesz = get_backing_src_pagesz(src_type);
820 size_t alignment;
821
822 TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages,
823 "Number of guest pages is not compatible with the host. "
824 "Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages));
825
826 TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
827 "address not on a page boundary.\n"
828 " guest_paddr: 0x%lx vm->page_size: 0x%x",
829 guest_paddr, vm->page_size);
830 TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
831 <= vm->max_gfn, "Physical range beyond maximum "
832 "supported physical address,\n"
833 " guest_paddr: 0x%lx npages: 0x%lx\n"
834 " vm->max_gfn: 0x%lx vm->page_size: 0x%x",
835 guest_paddr, npages, vm->max_gfn, vm->page_size);
836
837 /*
838 * Confirm a mem region with an overlapping address doesn't
839 * already exist.
840 */
841 region = (struct userspace_mem_region *) userspace_mem_region_find(
842 vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1);
843 if (region != NULL)
844 TEST_FAIL("overlapping userspace_mem_region already "
845 "exists\n"
846 " requested guest_paddr: 0x%lx npages: 0x%lx "
847 "page_size: 0x%x\n"
848 " existing guest_paddr: 0x%lx size: 0x%lx",
849 guest_paddr, npages, vm->page_size,
850 (uint64_t) region->region.guest_phys_addr,
851 (uint64_t) region->region.memory_size);
852
853 /* Confirm no region with the requested slot already exists. */
854 hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
855 slot) {
856 if (region->region.slot != slot)
857 continue;
858
859 TEST_FAIL("A mem region with the requested slot "
860 "already exists.\n"
861 " requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
862 " existing slot: %u paddr: 0x%lx size: 0x%lx",
863 slot, guest_paddr, npages,
864 region->region.slot,
865 (uint64_t) region->region.guest_phys_addr,
866 (uint64_t) region->region.memory_size);
867 }
868
869 /* Allocate and initialize new mem region structure. */
870 region = calloc(1, sizeof(*region));
871 TEST_ASSERT(region != NULL, "Insufficient Memory");
872 region->mmap_size = npages * vm->page_size;
873
874 #ifdef __s390x__
875 /* On s390x, the host address must be aligned to 1M (due to PGSTEs) */
876 alignment = 0x100000;
877 #else
878 alignment = 1;
879 #endif
880
881 /*
882 * When using THP mmap is not guaranteed to returned a hugepage aligned
883 * address so we have to pad the mmap. Padding is not needed for HugeTLB
884 * because mmap will always return an address aligned to the HugeTLB
885 * page size.
886 */
887 if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
888 alignment = max(backing_src_pagesz, alignment);
889
890 ASSERT_EQ(guest_paddr, align_up(guest_paddr, backing_src_pagesz));
891
892 /* Add enough memory to align up if necessary */
893 if (alignment > 1)
894 region->mmap_size += alignment;
895
896 region->fd = -1;
897 if (backing_src_is_shared(src_type))
898 region->fd = kvm_memfd_alloc(region->mmap_size,
899 src_type == VM_MEM_SRC_SHARED_HUGETLB);
900
901 region->mmap_start = mmap(NULL, region->mmap_size,
902 PROT_READ | PROT_WRITE,
903 vm_mem_backing_src_alias(src_type)->flag,
904 region->fd, 0);
905 TEST_ASSERT(region->mmap_start != MAP_FAILED,
906 __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
907
908 TEST_ASSERT(!is_backing_src_hugetlb(src_type) ||
909 region->mmap_start == align_ptr_up(region->mmap_start, backing_src_pagesz),
910 "mmap_start %p is not aligned to HugeTLB page size 0x%lx",
911 region->mmap_start, backing_src_pagesz);
912
913 /* Align host address */
914 region->host_mem = align_ptr_up(region->mmap_start, alignment);
915
916 /* As needed perform madvise */
917 if ((src_type == VM_MEM_SRC_ANONYMOUS ||
918 src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) {
919 ret = madvise(region->host_mem, npages * vm->page_size,
920 src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
921 TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s",
922 region->host_mem, npages * vm->page_size,
923 vm_mem_backing_src_alias(src_type)->name);
924 }
925
926 region->unused_phy_pages = sparsebit_alloc();
927 sparsebit_set_num(region->unused_phy_pages,
928 guest_paddr >> vm->page_shift, npages);
929 region->region.slot = slot;
930 region->region.flags = flags;
931 region->region.guest_phys_addr = guest_paddr;
932 region->region.memory_size = npages * vm->page_size;
933 region->region.userspace_addr = (uintptr_t) region->host_mem;
934 ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION, ®ion->region);
935 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
936 " rc: %i errno: %i\n"
937 " slot: %u flags: 0x%x\n"
938 " guest_phys_addr: 0x%lx size: 0x%lx",
939 ret, errno, slot, flags,
940 guest_paddr, (uint64_t) region->region.memory_size);
941
942 /* Add to quick lookup data structures */
943 vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region);
944 vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region);
945 hash_add(vm->regions.slot_hash, ®ion->slot_node, slot);
946
947 /* If shared memory, create an alias. */
948 if (region->fd >= 0) {
949 region->mmap_alias = mmap(NULL, region->mmap_size,
950 PROT_READ | PROT_WRITE,
951 vm_mem_backing_src_alias(src_type)->flag,
952 region->fd, 0);
953 TEST_ASSERT(region->mmap_alias != MAP_FAILED,
954 __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
955
956 /* Align host alias address */
957 region->host_alias = align_ptr_up(region->mmap_alias, alignment);
958 }
959 }
960
961 /*
962 * Memslot to region
963 *
964 * Input Args:
965 * vm - Virtual Machine
966 * memslot - KVM memory slot ID
967 *
968 * Output Args: None
969 *
970 * Return:
971 * Pointer to memory region structure that describe memory region
972 * using kvm memory slot ID given by memslot. TEST_ASSERT failure
973 * on error (e.g. currently no memory region using memslot as a KVM
974 * memory slot ID).
975 */
976 struct userspace_mem_region *
memslot2region(struct kvm_vm * vm,uint32_t memslot)977 memslot2region(struct kvm_vm *vm, uint32_t memslot)
978 {
979 struct userspace_mem_region *region;
980
981 hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
982 memslot)
983 if (region->region.slot == memslot)
984 return region;
985
986 fprintf(stderr, "No mem region with the requested slot found,\n"
987 " requested slot: %u\n", memslot);
988 fputs("---- vm dump ----\n", stderr);
989 vm_dump(stderr, vm, 2);
990 TEST_FAIL("Mem region not found");
991 return NULL;
992 }
993
994 /*
995 * VM Memory Region Flags Set
996 *
997 * Input Args:
998 * vm - Virtual Machine
999 * flags - Starting guest physical address
1000 *
1001 * Output Args: None
1002 *
1003 * Return: None
1004 *
1005 * Sets the flags of the memory region specified by the value of slot,
1006 * to the values given by flags.
1007 */
vm_mem_region_set_flags(struct kvm_vm * vm,uint32_t slot,uint32_t flags)1008 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
1009 {
1010 int ret;
1011 struct userspace_mem_region *region;
1012
1013 region = memslot2region(vm, slot);
1014
1015 region->region.flags = flags;
1016
1017 ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION, ®ion->region);
1018
1019 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
1020 " rc: %i errno: %i slot: %u flags: 0x%x",
1021 ret, errno, slot, flags);
1022 }
1023
1024 /*
1025 * VM Memory Region Move
1026 *
1027 * Input Args:
1028 * vm - Virtual Machine
1029 * slot - Slot of the memory region to move
1030 * new_gpa - Starting guest physical address
1031 *
1032 * Output Args: None
1033 *
1034 * Return: None
1035 *
1036 * Change the gpa of a memory region.
1037 */
vm_mem_region_move(struct kvm_vm * vm,uint32_t slot,uint64_t new_gpa)1038 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa)
1039 {
1040 struct userspace_mem_region *region;
1041 int ret;
1042
1043 region = memslot2region(vm, slot);
1044
1045 region->region.guest_phys_addr = new_gpa;
1046
1047 ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION, ®ion->region);
1048
1049 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed\n"
1050 "ret: %i errno: %i slot: %u new_gpa: 0x%lx",
1051 ret, errno, slot, new_gpa);
1052 }
1053
1054 /*
1055 * VM Memory Region Delete
1056 *
1057 * Input Args:
1058 * vm - Virtual Machine
1059 * slot - Slot of the memory region to delete
1060 *
1061 * Output Args: None
1062 *
1063 * Return: None
1064 *
1065 * Delete a memory region.
1066 */
vm_mem_region_delete(struct kvm_vm * vm,uint32_t slot)1067 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot)
1068 {
1069 __vm_mem_region_delete(vm, memslot2region(vm, slot), true);
1070 }
1071
1072 /* Returns the size of a vCPU's kvm_run structure. */
vcpu_mmap_sz(void)1073 static int vcpu_mmap_sz(void)
1074 {
1075 int dev_fd, ret;
1076
1077 dev_fd = open_kvm_dev_path_or_exit();
1078
1079 ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
1080 TEST_ASSERT(ret >= sizeof(struct kvm_run),
1081 KVM_IOCTL_ERROR(KVM_GET_VCPU_MMAP_SIZE, ret));
1082
1083 close(dev_fd);
1084
1085 return ret;
1086 }
1087
vcpu_exists(struct kvm_vm * vm,uint32_t vcpu_id)1088 static bool vcpu_exists(struct kvm_vm *vm, uint32_t vcpu_id)
1089 {
1090 struct kvm_vcpu *vcpu;
1091
1092 list_for_each_entry(vcpu, &vm->vcpus, list) {
1093 if (vcpu->id == vcpu_id)
1094 return true;
1095 }
1096
1097 return false;
1098 }
1099
1100 /*
1101 * Adds a virtual CPU to the VM specified by vm with the ID given by vcpu_id.
1102 * No additional vCPU setup is done. Returns the vCPU.
1103 */
__vm_vcpu_add(struct kvm_vm * vm,uint32_t vcpu_id)1104 struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id)
1105 {
1106 struct kvm_vcpu *vcpu;
1107
1108 /* Confirm a vcpu with the specified id doesn't already exist. */
1109 TEST_ASSERT(!vcpu_exists(vm, vcpu_id), "vCPU%d already exists\n", vcpu_id);
1110
1111 /* Allocate and initialize new vcpu structure. */
1112 vcpu = calloc(1, sizeof(*vcpu));
1113 TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
1114
1115 vcpu->vm = vm;
1116 vcpu->id = vcpu_id;
1117 vcpu->fd = __vm_ioctl(vm, KVM_CREATE_VCPU, (void *)(unsigned long)vcpu_id);
1118 TEST_ASSERT(vcpu->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VCPU, vcpu->fd));
1119
1120 TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->run), "vcpu mmap size "
1121 "smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
1122 vcpu_mmap_sz(), sizeof(*vcpu->run));
1123 vcpu->run = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(),
1124 PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
1125 TEST_ASSERT(vcpu->run != MAP_FAILED,
1126 __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
1127
1128 /* Add to linked-list of VCPUs. */
1129 list_add(&vcpu->list, &vm->vcpus);
1130
1131 return vcpu;
1132 }
1133
1134 /*
1135 * VM Virtual Address Unused Gap
1136 *
1137 * Input Args:
1138 * vm - Virtual Machine
1139 * sz - Size (bytes)
1140 * vaddr_min - Minimum Virtual Address
1141 *
1142 * Output Args: None
1143 *
1144 * Return:
1145 * Lowest virtual address at or below vaddr_min, with at least
1146 * sz unused bytes. TEST_ASSERT failure if no area of at least
1147 * size sz is available.
1148 *
1149 * Within the VM specified by vm, locates the lowest starting virtual
1150 * address >= vaddr_min, that has at least sz unallocated bytes. A
1151 * TEST_ASSERT failure occurs for invalid input or no area of at least
1152 * sz unallocated bytes >= vaddr_min is available.
1153 */
vm_vaddr_unused_gap(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min)1154 static vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
1155 vm_vaddr_t vaddr_min)
1156 {
1157 uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
1158
1159 /* Determine lowest permitted virtual page index. */
1160 uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
1161 if ((pgidx_start * vm->page_size) < vaddr_min)
1162 goto no_va_found;
1163
1164 /* Loop over section with enough valid virtual page indexes. */
1165 if (!sparsebit_is_set_num(vm->vpages_valid,
1166 pgidx_start, pages))
1167 pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
1168 pgidx_start, pages);
1169 do {
1170 /*
1171 * Are there enough unused virtual pages available at
1172 * the currently proposed starting virtual page index.
1173 * If not, adjust proposed starting index to next
1174 * possible.
1175 */
1176 if (sparsebit_is_clear_num(vm->vpages_mapped,
1177 pgidx_start, pages))
1178 goto va_found;
1179 pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
1180 pgidx_start, pages);
1181 if (pgidx_start == 0)
1182 goto no_va_found;
1183
1184 /*
1185 * If needed, adjust proposed starting virtual address,
1186 * to next range of valid virtual addresses.
1187 */
1188 if (!sparsebit_is_set_num(vm->vpages_valid,
1189 pgidx_start, pages)) {
1190 pgidx_start = sparsebit_next_set_num(
1191 vm->vpages_valid, pgidx_start, pages);
1192 if (pgidx_start == 0)
1193 goto no_va_found;
1194 }
1195 } while (pgidx_start != 0);
1196
1197 no_va_found:
1198 TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages);
1199
1200 /* NOT REACHED */
1201 return -1;
1202
1203 va_found:
1204 TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
1205 pgidx_start, pages),
1206 "Unexpected, invalid virtual page index range,\n"
1207 " pgidx_start: 0x%lx\n"
1208 " pages: 0x%lx",
1209 pgidx_start, pages);
1210 TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
1211 pgidx_start, pages),
1212 "Unexpected, pages already mapped,\n"
1213 " pgidx_start: 0x%lx\n"
1214 " pages: 0x%lx",
1215 pgidx_start, pages);
1216
1217 return pgidx_start * vm->page_size;
1218 }
1219
1220 /*
1221 * VM Virtual Address Allocate
1222 *
1223 * Input Args:
1224 * vm - Virtual Machine
1225 * sz - Size in bytes
1226 * vaddr_min - Minimum starting virtual address
1227 *
1228 * Output Args: None
1229 *
1230 * Return:
1231 * Starting guest virtual address
1232 *
1233 * Allocates at least sz bytes within the virtual address space of the vm
1234 * given by vm. The allocated bytes are mapped to a virtual address >=
1235 * the address given by vaddr_min. Note that each allocation uses a
1236 * a unique set of pages, with the minimum real allocation being at least
1237 * a page.
1238 */
vm_vaddr_alloc(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min)1239 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min)
1240 {
1241 uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
1242
1243 virt_pgd_alloc(vm);
1244 vm_paddr_t paddr = vm_phy_pages_alloc(vm, pages,
1245 KVM_UTIL_MIN_PFN * vm->page_size, 0);
1246
1247 /*
1248 * Find an unused range of virtual page addresses of at least
1249 * pages in length.
1250 */
1251 vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
1252
1253 /* Map the virtual pages. */
1254 for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
1255 pages--, vaddr += vm->page_size, paddr += vm->page_size) {
1256
1257 virt_pg_map(vm, vaddr, paddr);
1258
1259 sparsebit_set(vm->vpages_mapped,
1260 vaddr >> vm->page_shift);
1261 }
1262
1263 return vaddr_start;
1264 }
1265
1266 /*
1267 * VM Virtual Address Allocate Pages
1268 *
1269 * Input Args:
1270 * vm - Virtual Machine
1271 *
1272 * Output Args: None
1273 *
1274 * Return:
1275 * Starting guest virtual address
1276 *
1277 * Allocates at least N system pages worth of bytes within the virtual address
1278 * space of the vm.
1279 */
vm_vaddr_alloc_pages(struct kvm_vm * vm,int nr_pages)1280 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages)
1281 {
1282 return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR);
1283 }
1284
1285 /*
1286 * VM Virtual Address Allocate Page
1287 *
1288 * Input Args:
1289 * vm - Virtual Machine
1290 *
1291 * Output Args: None
1292 *
1293 * Return:
1294 * Starting guest virtual address
1295 *
1296 * Allocates at least one system page worth of bytes within the virtual address
1297 * space of the vm.
1298 */
vm_vaddr_alloc_page(struct kvm_vm * vm)1299 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm)
1300 {
1301 return vm_vaddr_alloc_pages(vm, 1);
1302 }
1303
1304 /*
1305 * Map a range of VM virtual address to the VM's physical address
1306 *
1307 * Input Args:
1308 * vm - Virtual Machine
1309 * vaddr - Virtuall address to map
1310 * paddr - VM Physical Address
1311 * npages - The number of pages to map
1312 *
1313 * Output Args: None
1314 *
1315 * Return: None
1316 *
1317 * Within the VM given by @vm, creates a virtual translation for
1318 * @npages starting at @vaddr to the page range starting at @paddr.
1319 */
virt_map(struct kvm_vm * vm,uint64_t vaddr,uint64_t paddr,unsigned int npages)1320 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1321 unsigned int npages)
1322 {
1323 size_t page_size = vm->page_size;
1324 size_t size = npages * page_size;
1325
1326 TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
1327 TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
1328
1329 while (npages--) {
1330 virt_pg_map(vm, vaddr, paddr);
1331 vaddr += page_size;
1332 paddr += page_size;
1333 }
1334 }
1335
1336 /*
1337 * Address VM Physical to Host Virtual
1338 *
1339 * Input Args:
1340 * vm - Virtual Machine
1341 * gpa - VM physical address
1342 *
1343 * Output Args: None
1344 *
1345 * Return:
1346 * Equivalent host virtual address
1347 *
1348 * Locates the memory region containing the VM physical address given
1349 * by gpa, within the VM given by vm. When found, the host virtual
1350 * address providing the memory to the vm physical address is returned.
1351 * A TEST_ASSERT failure occurs if no region containing gpa exists.
1352 */
addr_gpa2hva(struct kvm_vm * vm,vm_paddr_t gpa)1353 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
1354 {
1355 struct userspace_mem_region *region;
1356
1357 region = userspace_mem_region_find(vm, gpa, gpa);
1358 if (!region) {
1359 TEST_FAIL("No vm physical memory at 0x%lx", gpa);
1360 return NULL;
1361 }
1362
1363 return (void *)((uintptr_t)region->host_mem
1364 + (gpa - region->region.guest_phys_addr));
1365 }
1366
1367 /*
1368 * Address Host Virtual to VM Physical
1369 *
1370 * Input Args:
1371 * vm - Virtual Machine
1372 * hva - Host virtual address
1373 *
1374 * Output Args: None
1375 *
1376 * Return:
1377 * Equivalent VM physical address
1378 *
1379 * Locates the memory region containing the host virtual address given
1380 * by hva, within the VM given by vm. When found, the equivalent
1381 * VM physical address is returned. A TEST_ASSERT failure occurs if no
1382 * region containing hva exists.
1383 */
addr_hva2gpa(struct kvm_vm * vm,void * hva)1384 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
1385 {
1386 struct rb_node *node;
1387
1388 for (node = vm->regions.hva_tree.rb_node; node; ) {
1389 struct userspace_mem_region *region =
1390 container_of(node, struct userspace_mem_region, hva_node);
1391
1392 if (hva >= region->host_mem) {
1393 if (hva <= (region->host_mem
1394 + region->region.memory_size - 1))
1395 return (vm_paddr_t)((uintptr_t)
1396 region->region.guest_phys_addr
1397 + (hva - (uintptr_t)region->host_mem));
1398
1399 node = node->rb_right;
1400 } else
1401 node = node->rb_left;
1402 }
1403
1404 TEST_FAIL("No mapping to a guest physical address, hva: %p", hva);
1405 return -1;
1406 }
1407
1408 /*
1409 * Address VM physical to Host Virtual *alias*.
1410 *
1411 * Input Args:
1412 * vm - Virtual Machine
1413 * gpa - VM physical address
1414 *
1415 * Output Args: None
1416 *
1417 * Return:
1418 * Equivalent address within the host virtual *alias* area, or NULL
1419 * (without failing the test) if the guest memory is not shared (so
1420 * no alias exists).
1421 *
1422 * Create a writable, shared virtual=>physical alias for the specific GPA.
1423 * The primary use case is to allow the host selftest to manipulate guest
1424 * memory without mapping said memory in the guest's address space. And, for
1425 * userfaultfd-based demand paging, to do so without triggering userfaults.
1426 */
addr_gpa2alias(struct kvm_vm * vm,vm_paddr_t gpa)1427 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa)
1428 {
1429 struct userspace_mem_region *region;
1430 uintptr_t offset;
1431
1432 region = userspace_mem_region_find(vm, gpa, gpa);
1433 if (!region)
1434 return NULL;
1435
1436 if (!region->host_alias)
1437 return NULL;
1438
1439 offset = gpa - region->region.guest_phys_addr;
1440 return (void *) ((uintptr_t) region->host_alias + offset);
1441 }
1442
1443 /* Create an interrupt controller chip for the specified VM. */
vm_create_irqchip(struct kvm_vm * vm)1444 void vm_create_irqchip(struct kvm_vm *vm)
1445 {
1446 vm_ioctl(vm, KVM_CREATE_IRQCHIP, NULL);
1447
1448 vm->has_irqchip = true;
1449 }
1450
_vcpu_run(struct kvm_vcpu * vcpu)1451 int _vcpu_run(struct kvm_vcpu *vcpu)
1452 {
1453 int rc;
1454
1455 do {
1456 rc = __vcpu_run(vcpu);
1457 } while (rc == -1 && errno == EINTR);
1458
1459 assert_on_unhandled_exception(vcpu);
1460
1461 return rc;
1462 }
1463
1464 /*
1465 * Invoke KVM_RUN on a vCPU until KVM returns something other than -EINTR.
1466 * Assert if the KVM returns an error (other than -EINTR).
1467 */
vcpu_run(struct kvm_vcpu * vcpu)1468 void vcpu_run(struct kvm_vcpu *vcpu)
1469 {
1470 int ret = _vcpu_run(vcpu);
1471
1472 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_RUN, ret));
1473 }
1474
vcpu_run_complete_io(struct kvm_vcpu * vcpu)1475 void vcpu_run_complete_io(struct kvm_vcpu *vcpu)
1476 {
1477 int ret;
1478
1479 vcpu->run->immediate_exit = 1;
1480 ret = __vcpu_run(vcpu);
1481 vcpu->run->immediate_exit = 0;
1482
1483 TEST_ASSERT(ret == -1 && errno == EINTR,
1484 "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i",
1485 ret, errno);
1486 }
1487
1488 /*
1489 * Get the list of guest registers which are supported for
1490 * KVM_GET_ONE_REG/KVM_SET_ONE_REG ioctls. Returns a kvm_reg_list pointer,
1491 * it is the caller's responsibility to free the list.
1492 */
vcpu_get_reg_list(struct kvm_vcpu * vcpu)1493 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu)
1494 {
1495 struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list;
1496 int ret;
1497
1498 ret = __vcpu_ioctl(vcpu, KVM_GET_REG_LIST, ®_list_n);
1499 TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0");
1500
1501 reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64));
1502 reg_list->n = reg_list_n.n;
1503 vcpu_ioctl(vcpu, KVM_GET_REG_LIST, reg_list);
1504 return reg_list;
1505 }
1506
vcpu_map_dirty_ring(struct kvm_vcpu * vcpu)1507 void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu)
1508 {
1509 uint32_t page_size = vcpu->vm->page_size;
1510 uint32_t size = vcpu->vm->dirty_ring_size;
1511
1512 TEST_ASSERT(size > 0, "Should enable dirty ring first");
1513
1514 if (!vcpu->dirty_gfns) {
1515 void *addr;
1516
1517 addr = mmap(NULL, size, PROT_READ, MAP_PRIVATE, vcpu->fd,
1518 page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1519 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private");
1520
1521 addr = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_PRIVATE, vcpu->fd,
1522 page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1523 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec");
1524
1525 addr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd,
1526 page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1527 TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed");
1528
1529 vcpu->dirty_gfns = addr;
1530 vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn);
1531 }
1532
1533 return vcpu->dirty_gfns;
1534 }
1535
1536 /*
1537 * Device Ioctl
1538 */
1539
__kvm_has_device_attr(int dev_fd,uint32_t group,uint64_t attr)1540 int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr)
1541 {
1542 struct kvm_device_attr attribute = {
1543 .group = group,
1544 .attr = attr,
1545 .flags = 0,
1546 };
1547
1548 return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute);
1549 }
1550
__kvm_test_create_device(struct kvm_vm * vm,uint64_t type)1551 int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type)
1552 {
1553 struct kvm_create_device create_dev = {
1554 .type = type,
1555 .flags = KVM_CREATE_DEVICE_TEST,
1556 };
1557
1558 return __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1559 }
1560
__kvm_create_device(struct kvm_vm * vm,uint64_t type)1561 int __kvm_create_device(struct kvm_vm *vm, uint64_t type)
1562 {
1563 struct kvm_create_device create_dev = {
1564 .type = type,
1565 .fd = -1,
1566 .flags = 0,
1567 };
1568 int err;
1569
1570 err = __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1571 TEST_ASSERT(err <= 0, "KVM_CREATE_DEVICE shouldn't return a positive value");
1572 return err ? : create_dev.fd;
1573 }
1574
__kvm_device_attr_get(int dev_fd,uint32_t group,uint64_t attr,void * val)1575 int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val)
1576 {
1577 struct kvm_device_attr kvmattr = {
1578 .group = group,
1579 .attr = attr,
1580 .flags = 0,
1581 .addr = (uintptr_t)val,
1582 };
1583
1584 return __kvm_ioctl(dev_fd, KVM_GET_DEVICE_ATTR, &kvmattr);
1585 }
1586
__kvm_device_attr_set(int dev_fd,uint32_t group,uint64_t attr,void * val)1587 int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val)
1588 {
1589 struct kvm_device_attr kvmattr = {
1590 .group = group,
1591 .attr = attr,
1592 .flags = 0,
1593 .addr = (uintptr_t)val,
1594 };
1595
1596 return __kvm_ioctl(dev_fd, KVM_SET_DEVICE_ATTR, &kvmattr);
1597 }
1598
1599 /*
1600 * IRQ related functions.
1601 */
1602
_kvm_irq_line(struct kvm_vm * vm,uint32_t irq,int level)1603 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1604 {
1605 struct kvm_irq_level irq_level = {
1606 .irq = irq,
1607 .level = level,
1608 };
1609
1610 return __vm_ioctl(vm, KVM_IRQ_LINE, &irq_level);
1611 }
1612
kvm_irq_line(struct kvm_vm * vm,uint32_t irq,int level)1613 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1614 {
1615 int ret = _kvm_irq_line(vm, irq, level);
1616
1617 TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_IRQ_LINE, ret));
1618 }
1619
kvm_gsi_routing_create(void)1620 struct kvm_irq_routing *kvm_gsi_routing_create(void)
1621 {
1622 struct kvm_irq_routing *routing;
1623 size_t size;
1624
1625 size = sizeof(struct kvm_irq_routing);
1626 /* Allocate space for the max number of entries: this wastes 196 KBs. */
1627 size += KVM_MAX_IRQ_ROUTES * sizeof(struct kvm_irq_routing_entry);
1628 routing = calloc(1, size);
1629 assert(routing);
1630
1631 return routing;
1632 }
1633
kvm_gsi_routing_irqchip_add(struct kvm_irq_routing * routing,uint32_t gsi,uint32_t pin)1634 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing,
1635 uint32_t gsi, uint32_t pin)
1636 {
1637 int i;
1638
1639 assert(routing);
1640 assert(routing->nr < KVM_MAX_IRQ_ROUTES);
1641
1642 i = routing->nr;
1643 routing->entries[i].gsi = gsi;
1644 routing->entries[i].type = KVM_IRQ_ROUTING_IRQCHIP;
1645 routing->entries[i].flags = 0;
1646 routing->entries[i].u.irqchip.irqchip = 0;
1647 routing->entries[i].u.irqchip.pin = pin;
1648 routing->nr++;
1649 }
1650
_kvm_gsi_routing_write(struct kvm_vm * vm,struct kvm_irq_routing * routing)1651 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1652 {
1653 int ret;
1654
1655 assert(routing);
1656 ret = __vm_ioctl(vm, KVM_SET_GSI_ROUTING, routing);
1657 free(routing);
1658
1659 return ret;
1660 }
1661
kvm_gsi_routing_write(struct kvm_vm * vm,struct kvm_irq_routing * routing)1662 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1663 {
1664 int ret;
1665
1666 ret = _kvm_gsi_routing_write(vm, routing);
1667 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_GSI_ROUTING, ret));
1668 }
1669
1670 /*
1671 * VM Dump
1672 *
1673 * Input Args:
1674 * vm - Virtual Machine
1675 * indent - Left margin indent amount
1676 *
1677 * Output Args:
1678 * stream - Output FILE stream
1679 *
1680 * Return: None
1681 *
1682 * Dumps the current state of the VM given by vm, to the FILE stream
1683 * given by stream.
1684 */
vm_dump(FILE * stream,struct kvm_vm * vm,uint8_t indent)1685 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
1686 {
1687 int ctr;
1688 struct userspace_mem_region *region;
1689 struct kvm_vcpu *vcpu;
1690
1691 fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
1692 fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
1693 fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
1694 fprintf(stream, "%*sMem Regions:\n", indent, "");
1695 hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) {
1696 fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
1697 "host_virt: %p\n", indent + 2, "",
1698 (uint64_t) region->region.guest_phys_addr,
1699 (uint64_t) region->region.memory_size,
1700 region->host_mem);
1701 fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
1702 sparsebit_dump(stream, region->unused_phy_pages, 0);
1703 }
1704 fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
1705 sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
1706 fprintf(stream, "%*spgd_created: %u\n", indent, "",
1707 vm->pgd_created);
1708 if (vm->pgd_created) {
1709 fprintf(stream, "%*sVirtual Translation Tables:\n",
1710 indent + 2, "");
1711 virt_dump(stream, vm, indent + 4);
1712 }
1713 fprintf(stream, "%*sVCPUs:\n", indent, "");
1714
1715 list_for_each_entry(vcpu, &vm->vcpus, list)
1716 vcpu_dump(stream, vcpu, indent + 2);
1717 }
1718
1719 /* Known KVM exit reasons */
1720 static struct exit_reason {
1721 unsigned int reason;
1722 const char *name;
1723 } exit_reasons_known[] = {
1724 {KVM_EXIT_UNKNOWN, "UNKNOWN"},
1725 {KVM_EXIT_EXCEPTION, "EXCEPTION"},
1726 {KVM_EXIT_IO, "IO"},
1727 {KVM_EXIT_HYPERCALL, "HYPERCALL"},
1728 {KVM_EXIT_DEBUG, "DEBUG"},
1729 {KVM_EXIT_HLT, "HLT"},
1730 {KVM_EXIT_MMIO, "MMIO"},
1731 {KVM_EXIT_IRQ_WINDOW_OPEN, "IRQ_WINDOW_OPEN"},
1732 {KVM_EXIT_SHUTDOWN, "SHUTDOWN"},
1733 {KVM_EXIT_FAIL_ENTRY, "FAIL_ENTRY"},
1734 {KVM_EXIT_INTR, "INTR"},
1735 {KVM_EXIT_SET_TPR, "SET_TPR"},
1736 {KVM_EXIT_TPR_ACCESS, "TPR_ACCESS"},
1737 {KVM_EXIT_S390_SIEIC, "S390_SIEIC"},
1738 {KVM_EXIT_S390_RESET, "S390_RESET"},
1739 {KVM_EXIT_DCR, "DCR"},
1740 {KVM_EXIT_NMI, "NMI"},
1741 {KVM_EXIT_INTERNAL_ERROR, "INTERNAL_ERROR"},
1742 {KVM_EXIT_OSI, "OSI"},
1743 {KVM_EXIT_PAPR_HCALL, "PAPR_HCALL"},
1744 {KVM_EXIT_DIRTY_RING_FULL, "DIRTY_RING_FULL"},
1745 {KVM_EXIT_X86_RDMSR, "RDMSR"},
1746 {KVM_EXIT_X86_WRMSR, "WRMSR"},
1747 {KVM_EXIT_XEN, "XEN"},
1748 #ifdef KVM_EXIT_MEMORY_NOT_PRESENT
1749 {KVM_EXIT_MEMORY_NOT_PRESENT, "MEMORY_NOT_PRESENT"},
1750 #endif
1751 };
1752
1753 /*
1754 * Exit Reason String
1755 *
1756 * Input Args:
1757 * exit_reason - Exit reason
1758 *
1759 * Output Args: None
1760 *
1761 * Return:
1762 * Constant string pointer describing the exit reason.
1763 *
1764 * Locates and returns a constant string that describes the KVM exit
1765 * reason given by exit_reason. If no such string is found, a constant
1766 * string of "Unknown" is returned.
1767 */
exit_reason_str(unsigned int exit_reason)1768 const char *exit_reason_str(unsigned int exit_reason)
1769 {
1770 unsigned int n1;
1771
1772 for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
1773 if (exit_reason == exit_reasons_known[n1].reason)
1774 return exit_reasons_known[n1].name;
1775 }
1776
1777 return "Unknown";
1778 }
1779
1780 /*
1781 * Physical Contiguous Page Allocator
1782 *
1783 * Input Args:
1784 * vm - Virtual Machine
1785 * num - number of pages
1786 * paddr_min - Physical address minimum
1787 * memslot - Memory region to allocate page from
1788 *
1789 * Output Args: None
1790 *
1791 * Return:
1792 * Starting physical address
1793 *
1794 * Within the VM specified by vm, locates a range of available physical
1795 * pages at or above paddr_min. If found, the pages are marked as in use
1796 * and their base address is returned. A TEST_ASSERT failure occurs if
1797 * not enough pages are available at or above paddr_min.
1798 */
vm_phy_pages_alloc(struct kvm_vm * vm,size_t num,vm_paddr_t paddr_min,uint32_t memslot)1799 vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
1800 vm_paddr_t paddr_min, uint32_t memslot)
1801 {
1802 struct userspace_mem_region *region;
1803 sparsebit_idx_t pg, base;
1804
1805 TEST_ASSERT(num > 0, "Must allocate at least one page");
1806
1807 TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
1808 "not divisible by page size.\n"
1809 " paddr_min: 0x%lx page_size: 0x%x",
1810 paddr_min, vm->page_size);
1811
1812 region = memslot2region(vm, memslot);
1813 base = pg = paddr_min >> vm->page_shift;
1814
1815 do {
1816 for (; pg < base + num; ++pg) {
1817 if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
1818 base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
1819 break;
1820 }
1821 }
1822 } while (pg && pg != base + num);
1823
1824 if (pg == 0) {
1825 fprintf(stderr, "No guest physical page available, "
1826 "paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
1827 paddr_min, vm->page_size, memslot);
1828 fputs("---- vm dump ----\n", stderr);
1829 vm_dump(stderr, vm, 2);
1830 abort();
1831 }
1832
1833 for (pg = base; pg < base + num; ++pg)
1834 sparsebit_clear(region->unused_phy_pages, pg);
1835
1836 return base * vm->page_size;
1837 }
1838
vm_phy_page_alloc(struct kvm_vm * vm,vm_paddr_t paddr_min,uint32_t memslot)1839 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
1840 uint32_t memslot)
1841 {
1842 return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
1843 }
1844
1845 /* Arbitrary minimum physical address used for virtual translation tables. */
1846 #define KVM_GUEST_PAGE_TABLE_MIN_PADDR 0x180000
1847
vm_alloc_page_table(struct kvm_vm * vm)1848 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm)
1849 {
1850 return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR, 0);
1851 }
1852
1853 /*
1854 * Address Guest Virtual to Host Virtual
1855 *
1856 * Input Args:
1857 * vm - Virtual Machine
1858 * gva - VM virtual address
1859 *
1860 * Output Args: None
1861 *
1862 * Return:
1863 * Equivalent host virtual address
1864 */
addr_gva2hva(struct kvm_vm * vm,vm_vaddr_t gva)1865 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
1866 {
1867 return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
1868 }
1869
vm_compute_max_gfn(struct kvm_vm * vm)1870 unsigned long __weak vm_compute_max_gfn(struct kvm_vm *vm)
1871 {
1872 return ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
1873 }
1874
vm_calc_num_pages(unsigned int num_pages,unsigned int page_shift,unsigned int new_page_shift,bool ceil)1875 static unsigned int vm_calc_num_pages(unsigned int num_pages,
1876 unsigned int page_shift,
1877 unsigned int new_page_shift,
1878 bool ceil)
1879 {
1880 unsigned int n = 1 << (new_page_shift - page_shift);
1881
1882 if (page_shift >= new_page_shift)
1883 return num_pages * (1 << (page_shift - new_page_shift));
1884
1885 return num_pages / n + !!(ceil && num_pages % n);
1886 }
1887
getpageshift(void)1888 static inline int getpageshift(void)
1889 {
1890 return __builtin_ffs(getpagesize()) - 1;
1891 }
1892
1893 unsigned int
vm_num_host_pages(enum vm_guest_mode mode,unsigned int num_guest_pages)1894 vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
1895 {
1896 return vm_calc_num_pages(num_guest_pages,
1897 vm_guest_mode_params[mode].page_shift,
1898 getpageshift(), true);
1899 }
1900
1901 unsigned int
vm_num_guest_pages(enum vm_guest_mode mode,unsigned int num_host_pages)1902 vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages)
1903 {
1904 return vm_calc_num_pages(num_host_pages, getpageshift(),
1905 vm_guest_mode_params[mode].page_shift, false);
1906 }
1907
vm_calc_num_guest_pages(enum vm_guest_mode mode,size_t size)1908 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size)
1909 {
1910 unsigned int n;
1911 n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size);
1912 return vm_adjust_num_guest_pages(mode, n);
1913 }
1914
1915 /*
1916 * Read binary stats descriptors
1917 *
1918 * Input Args:
1919 * stats_fd - the file descriptor for the binary stats file from which to read
1920 * header - the binary stats metadata header corresponding to the given FD
1921 *
1922 * Output Args: None
1923 *
1924 * Return:
1925 * A pointer to a newly allocated series of stat descriptors.
1926 * Caller is responsible for freeing the returned kvm_stats_desc.
1927 *
1928 * Read the stats descriptors from the binary stats interface.
1929 */
read_stats_descriptors(int stats_fd,struct kvm_stats_header * header)1930 struct kvm_stats_desc *read_stats_descriptors(int stats_fd,
1931 struct kvm_stats_header *header)
1932 {
1933 struct kvm_stats_desc *stats_desc;
1934 ssize_t desc_size, total_size, ret;
1935
1936 desc_size = get_stats_descriptor_size(header);
1937 total_size = header->num_desc * desc_size;
1938
1939 stats_desc = calloc(header->num_desc, desc_size);
1940 TEST_ASSERT(stats_desc, "Allocate memory for stats descriptors");
1941
1942 ret = pread(stats_fd, stats_desc, total_size, header->desc_offset);
1943 TEST_ASSERT(ret == total_size, "Read KVM stats descriptors");
1944
1945 return stats_desc;
1946 }
1947
1948 /*
1949 * Read stat data for a particular stat
1950 *
1951 * Input Args:
1952 * stats_fd - the file descriptor for the binary stats file from which to read
1953 * header - the binary stats metadata header corresponding to the given FD
1954 * desc - the binary stat metadata for the particular stat to be read
1955 * max_elements - the maximum number of 8-byte values to read into data
1956 *
1957 * Output Args:
1958 * data - the buffer into which stat data should be read
1959 *
1960 * Read the data values of a specified stat from the binary stats interface.
1961 */
read_stat_data(int stats_fd,struct kvm_stats_header * header,struct kvm_stats_desc * desc,uint64_t * data,size_t max_elements)1962 void read_stat_data(int stats_fd, struct kvm_stats_header *header,
1963 struct kvm_stats_desc *desc, uint64_t *data,
1964 size_t max_elements)
1965 {
1966 size_t nr_elements = min_t(ssize_t, desc->size, max_elements);
1967 size_t size = nr_elements * sizeof(*data);
1968 ssize_t ret;
1969
1970 TEST_ASSERT(desc->size, "No elements in stat '%s'", desc->name);
1971 TEST_ASSERT(max_elements, "Zero elements requested for stat '%s'", desc->name);
1972
1973 ret = pread(stats_fd, data, size,
1974 header->data_offset + desc->offset);
1975
1976 TEST_ASSERT(ret >= 0, "pread() failed on stat '%s', errno: %i (%s)",
1977 desc->name, errno, strerror(errno));
1978 TEST_ASSERT(ret == size,
1979 "pread() on stat '%s' read %ld bytes, wanted %lu bytes",
1980 desc->name, size, ret);
1981 }
1982
1983 /*
1984 * Read the data of the named stat
1985 *
1986 * Input Args:
1987 * vm - the VM for which the stat should be read
1988 * stat_name - the name of the stat to read
1989 * max_elements - the maximum number of 8-byte values to read into data
1990 *
1991 * Output Args:
1992 * data - the buffer into which stat data should be read
1993 *
1994 * Read the data values of a specified stat from the binary stats interface.
1995 */
__vm_get_stat(struct kvm_vm * vm,const char * stat_name,uint64_t * data,size_t max_elements)1996 void __vm_get_stat(struct kvm_vm *vm, const char *stat_name, uint64_t *data,
1997 size_t max_elements)
1998 {
1999 struct kvm_stats_desc *desc;
2000 size_t size_desc;
2001 int i;
2002
2003 if (!vm->stats_fd) {
2004 vm->stats_fd = vm_get_stats_fd(vm);
2005 read_stats_header(vm->stats_fd, &vm->stats_header);
2006 vm->stats_desc = read_stats_descriptors(vm->stats_fd,
2007 &vm->stats_header);
2008 }
2009
2010 size_desc = get_stats_descriptor_size(&vm->stats_header);
2011
2012 for (i = 0; i < vm->stats_header.num_desc; ++i) {
2013 desc = (void *)vm->stats_desc + (i * size_desc);
2014
2015 if (strcmp(desc->name, stat_name))
2016 continue;
2017
2018 read_stat_data(vm->stats_fd, &vm->stats_header, desc,
2019 data, max_elements);
2020
2021 break;
2022 }
2023 }
2024