1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * High memory handling common code and variables.
4 *
5 * (C) 1999 Andrea Arcangeli, SuSE GmbH, andrea@suse.de
6 * Gerhard Wichert, Siemens AG, Gerhard.Wichert@pdb.siemens.de
7 *
8 *
9 * Redesigned the x86 32-bit VM architecture to deal with
10 * 64-bit physical space. With current x86 CPUs this
11 * means up to 64 Gigabytes physical RAM.
12 *
13 * Rewrote high memory support to move the page cache into
14 * high memory. Implemented permanent (schedulable) kmaps
15 * based on Linus' idea.
16 *
17 * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
18 */
19
20 #include <linux/mm.h>
21 #include <linux/export.h>
22 #include <linux/swap.h>
23 #include <linux/bio.h>
24 #include <linux/pagemap.h>
25 #include <linux/mempool.h>
26 #include <linux/init.h>
27 #include <linux/hash.h>
28 #include <linux/highmem.h>
29 #include <linux/kgdb.h>
30 #include <asm/tlbflush.h>
31 #include <linux/vmalloc.h>
32
33 #ifdef CONFIG_KMAP_LOCAL
kmap_local_calc_idx(int idx)34 static inline int kmap_local_calc_idx(int idx)
35 {
36 return idx + KM_MAX_IDX * smp_processor_id();
37 }
38
39 #ifndef arch_kmap_local_map_idx
40 #define arch_kmap_local_map_idx(idx, pfn) kmap_local_calc_idx(idx)
41 #endif
42 #endif /* CONFIG_KMAP_LOCAL */
43
44 /*
45 * Virtual_count is not a pure "count".
46 * 0 means that it is not mapped, and has not been mapped
47 * since a TLB flush - it is usable.
48 * 1 means that there are no users, but it has been mapped
49 * since the last TLB flush - so we can't use it.
50 * n means that there are (n-1) current users of it.
51 */
52 #ifdef CONFIG_HIGHMEM
53
54 /*
55 * Architecture with aliasing data cache may define the following family of
56 * helper functions in its asm/highmem.h to control cache color of virtual
57 * addresses where physical memory pages are mapped by kmap.
58 */
59 #ifndef get_pkmap_color
60
61 /*
62 * Determine color of virtual address where the page should be mapped.
63 */
get_pkmap_color(struct page * page)64 static inline unsigned int get_pkmap_color(struct page *page)
65 {
66 return 0;
67 }
68 #define get_pkmap_color get_pkmap_color
69
70 /*
71 * Get next index for mapping inside PKMAP region for page with given color.
72 */
get_next_pkmap_nr(unsigned int color)73 static inline unsigned int get_next_pkmap_nr(unsigned int color)
74 {
75 static unsigned int last_pkmap_nr;
76
77 last_pkmap_nr = (last_pkmap_nr + 1) & LAST_PKMAP_MASK;
78 return last_pkmap_nr;
79 }
80
81 /*
82 * Determine if page index inside PKMAP region (pkmap_nr) of given color
83 * has wrapped around PKMAP region end. When this happens an attempt to
84 * flush all unused PKMAP slots is made.
85 */
no_more_pkmaps(unsigned int pkmap_nr,unsigned int color)86 static inline int no_more_pkmaps(unsigned int pkmap_nr, unsigned int color)
87 {
88 return pkmap_nr == 0;
89 }
90
91 /*
92 * Get the number of PKMAP entries of the given color. If no free slot is
93 * found after checking that many entries, kmap will sleep waiting for
94 * someone to call kunmap and free PKMAP slot.
95 */
get_pkmap_entries_count(unsigned int color)96 static inline int get_pkmap_entries_count(unsigned int color)
97 {
98 return LAST_PKMAP;
99 }
100
101 /*
102 * Get head of a wait queue for PKMAP entries of the given color.
103 * Wait queues for different mapping colors should be independent to avoid
104 * unnecessary wakeups caused by freeing of slots of other colors.
105 */
get_pkmap_wait_queue_head(unsigned int color)106 static inline wait_queue_head_t *get_pkmap_wait_queue_head(unsigned int color)
107 {
108 static DECLARE_WAIT_QUEUE_HEAD(pkmap_map_wait);
109
110 return &pkmap_map_wait;
111 }
112 #endif
113
114 atomic_long_t _totalhigh_pages __read_mostly;
115 EXPORT_SYMBOL(_totalhigh_pages);
116
__nr_free_highpages(void)117 unsigned int __nr_free_highpages(void)
118 {
119 struct zone *zone;
120 unsigned int pages = 0;
121
122 for_each_populated_zone(zone) {
123 if (is_highmem(zone))
124 pages += zone_page_state(zone, NR_FREE_PAGES);
125 }
126
127 return pages;
128 }
129
130 static int pkmap_count[LAST_PKMAP];
131 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(kmap_lock);
132
133 pte_t *pkmap_page_table;
134
135 /*
136 * Most architectures have no use for kmap_high_get(), so let's abstract
137 * the disabling of IRQ out of the locking in that case to save on a
138 * potential useless overhead.
139 */
140 #ifdef ARCH_NEEDS_KMAP_HIGH_GET
141 #define lock_kmap() spin_lock_irq(&kmap_lock)
142 #define unlock_kmap() spin_unlock_irq(&kmap_lock)
143 #define lock_kmap_any(flags) spin_lock_irqsave(&kmap_lock, flags)
144 #define unlock_kmap_any(flags) spin_unlock_irqrestore(&kmap_lock, flags)
145 #else
146 #define lock_kmap() spin_lock(&kmap_lock)
147 #define unlock_kmap() spin_unlock(&kmap_lock)
148 #define lock_kmap_any(flags) \
149 do { spin_lock(&kmap_lock); (void)(flags); } while (0)
150 #define unlock_kmap_any(flags) \
151 do { spin_unlock(&kmap_lock); (void)(flags); } while (0)
152 #endif
153
__kmap_to_page(void * vaddr)154 struct page *__kmap_to_page(void *vaddr)
155 {
156 unsigned long base = (unsigned long) vaddr & PAGE_MASK;
157 struct kmap_ctrl *kctrl = ¤t->kmap_ctrl;
158 unsigned long addr = (unsigned long)vaddr;
159 int i;
160
161 /* kmap() mappings */
162 if (WARN_ON_ONCE(addr >= PKMAP_ADDR(0) &&
163 addr < PKMAP_ADDR(LAST_PKMAP)))
164 return pte_page(ptep_get(&pkmap_page_table[PKMAP_NR(addr)]));
165
166 /* kmap_local_page() mappings */
167 if (WARN_ON_ONCE(base >= __fix_to_virt(FIX_KMAP_END) &&
168 base < __fix_to_virt(FIX_KMAP_BEGIN))) {
169 for (i = 0; i < kctrl->idx; i++) {
170 unsigned long base_addr;
171 int idx;
172
173 idx = arch_kmap_local_map_idx(i, pte_pfn(pteval));
174 base_addr = __fix_to_virt(FIX_KMAP_BEGIN + idx);
175
176 if (base_addr == base)
177 return pte_page(kctrl->pteval[i]);
178 }
179 }
180
181 return virt_to_page(vaddr);
182 }
183 EXPORT_SYMBOL(__kmap_to_page);
184
flush_all_zero_pkmaps(void)185 static void flush_all_zero_pkmaps(void)
186 {
187 int i;
188 int need_flush = 0;
189
190 flush_cache_kmaps();
191
192 for (i = 0; i < LAST_PKMAP; i++) {
193 struct page *page;
194 pte_t ptent;
195
196 /*
197 * zero means we don't have anything to do,
198 * >1 means that it is still in use. Only
199 * a count of 1 means that it is free but
200 * needs to be unmapped
201 */
202 if (pkmap_count[i] != 1)
203 continue;
204 pkmap_count[i] = 0;
205
206 /* sanity check */
207 ptent = ptep_get(&pkmap_page_table[i]);
208 BUG_ON(pte_none(ptent));
209
210 /*
211 * Don't need an atomic fetch-and-clear op here;
212 * no-one has the page mapped, and cannot get at
213 * its virtual address (and hence PTE) without first
214 * getting the kmap_lock (which is held here).
215 * So no dangers, even with speculative execution.
216 */
217 page = pte_page(ptent);
218 pte_clear(&init_mm, PKMAP_ADDR(i), &pkmap_page_table[i]);
219
220 set_page_address(page, NULL);
221 need_flush = 1;
222 }
223 if (need_flush)
224 flush_tlb_kernel_range(PKMAP_ADDR(0), PKMAP_ADDR(LAST_PKMAP));
225 }
226
__kmap_flush_unused(void)227 void __kmap_flush_unused(void)
228 {
229 lock_kmap();
230 flush_all_zero_pkmaps();
231 unlock_kmap();
232 }
233
map_new_virtual(struct page * page)234 static inline unsigned long map_new_virtual(struct page *page)
235 {
236 unsigned long vaddr;
237 int count;
238 unsigned int last_pkmap_nr;
239 unsigned int color = get_pkmap_color(page);
240
241 start:
242 count = get_pkmap_entries_count(color);
243 /* Find an empty entry */
244 for (;;) {
245 last_pkmap_nr = get_next_pkmap_nr(color);
246 if (no_more_pkmaps(last_pkmap_nr, color)) {
247 flush_all_zero_pkmaps();
248 count = get_pkmap_entries_count(color);
249 }
250 if (!pkmap_count[last_pkmap_nr])
251 break; /* Found a usable entry */
252 if (--count)
253 continue;
254
255 /*
256 * Sleep for somebody else to unmap their entries
257 */
258 {
259 DECLARE_WAITQUEUE(wait, current);
260 wait_queue_head_t *pkmap_map_wait =
261 get_pkmap_wait_queue_head(color);
262
263 __set_current_state(TASK_UNINTERRUPTIBLE);
264 add_wait_queue(pkmap_map_wait, &wait);
265 unlock_kmap();
266 schedule();
267 remove_wait_queue(pkmap_map_wait, &wait);
268 lock_kmap();
269
270 /* Somebody else might have mapped it while we slept */
271 if (page_address(page))
272 return (unsigned long)page_address(page);
273
274 /* Re-start */
275 goto start;
276 }
277 }
278 vaddr = PKMAP_ADDR(last_pkmap_nr);
279 set_pte_at(&init_mm, vaddr,
280 &(pkmap_page_table[last_pkmap_nr]), mk_pte(page, kmap_prot));
281
282 pkmap_count[last_pkmap_nr] = 1;
283 set_page_address(page, (void *)vaddr);
284
285 return vaddr;
286 }
287
288 /**
289 * kmap_high - map a highmem page into memory
290 * @page: &struct page to map
291 *
292 * Returns the page's virtual memory address.
293 *
294 * We cannot call this from interrupts, as it may block.
295 */
kmap_high(struct page * page)296 void *kmap_high(struct page *page)
297 {
298 unsigned long vaddr;
299
300 /*
301 * For highmem pages, we can't trust "virtual" until
302 * after we have the lock.
303 */
304 lock_kmap();
305 vaddr = (unsigned long)page_address(page);
306 if (!vaddr)
307 vaddr = map_new_virtual(page);
308 pkmap_count[PKMAP_NR(vaddr)]++;
309 BUG_ON(pkmap_count[PKMAP_NR(vaddr)] < 2);
310 unlock_kmap();
311 return (void *) vaddr;
312 }
313 EXPORT_SYMBOL(kmap_high);
314
315 #ifdef ARCH_NEEDS_KMAP_HIGH_GET
316 /**
317 * kmap_high_get - pin a highmem page into memory
318 * @page: &struct page to pin
319 *
320 * Returns the page's current virtual memory address, or NULL if no mapping
321 * exists. If and only if a non null address is returned then a
322 * matching call to kunmap_high() is necessary.
323 *
324 * This can be called from any context.
325 */
kmap_high_get(struct page * page)326 void *kmap_high_get(struct page *page)
327 {
328 unsigned long vaddr, flags;
329
330 lock_kmap_any(flags);
331 vaddr = (unsigned long)page_address(page);
332 if (vaddr) {
333 BUG_ON(pkmap_count[PKMAP_NR(vaddr)] < 1);
334 pkmap_count[PKMAP_NR(vaddr)]++;
335 }
336 unlock_kmap_any(flags);
337 return (void *) vaddr;
338 }
339 #endif
340
341 /**
342 * kunmap_high - unmap a highmem page into memory
343 * @page: &struct page to unmap
344 *
345 * If ARCH_NEEDS_KMAP_HIGH_GET is not defined then this may be called
346 * only from user context.
347 */
kunmap_high(struct page * page)348 void kunmap_high(struct page *page)
349 {
350 unsigned long vaddr;
351 unsigned long nr;
352 unsigned long flags;
353 int need_wakeup;
354 unsigned int color = get_pkmap_color(page);
355 wait_queue_head_t *pkmap_map_wait;
356
357 lock_kmap_any(flags);
358 vaddr = (unsigned long)page_address(page);
359 BUG_ON(!vaddr);
360 nr = PKMAP_NR(vaddr);
361
362 /*
363 * A count must never go down to zero
364 * without a TLB flush!
365 */
366 need_wakeup = 0;
367 switch (--pkmap_count[nr]) {
368 case 0:
369 BUG();
370 case 1:
371 /*
372 * Avoid an unnecessary wake_up() function call.
373 * The common case is pkmap_count[] == 1, but
374 * no waiters.
375 * The tasks queued in the wait-queue are guarded
376 * by both the lock in the wait-queue-head and by
377 * the kmap_lock. As the kmap_lock is held here,
378 * no need for the wait-queue-head's lock. Simply
379 * test if the queue is empty.
380 */
381 pkmap_map_wait = get_pkmap_wait_queue_head(color);
382 need_wakeup = waitqueue_active(pkmap_map_wait);
383 }
384 unlock_kmap_any(flags);
385
386 /* do wake-up, if needed, race-free outside of the spin lock */
387 if (need_wakeup)
388 wake_up(pkmap_map_wait);
389 }
390 EXPORT_SYMBOL(kunmap_high);
391
zero_user_segments(struct page * page,unsigned start1,unsigned end1,unsigned start2,unsigned end2)392 void zero_user_segments(struct page *page, unsigned start1, unsigned end1,
393 unsigned start2, unsigned end2)
394 {
395 unsigned int i;
396
397 BUG_ON(end1 > page_size(page) || end2 > page_size(page));
398
399 if (start1 >= end1)
400 start1 = end1 = 0;
401 if (start2 >= end2)
402 start2 = end2 = 0;
403
404 for (i = 0; i < compound_nr(page); i++) {
405 void *kaddr = NULL;
406
407 if (start1 >= PAGE_SIZE) {
408 start1 -= PAGE_SIZE;
409 end1 -= PAGE_SIZE;
410 } else {
411 unsigned this_end = min_t(unsigned, end1, PAGE_SIZE);
412
413 if (end1 > start1) {
414 kaddr = kmap_local_page(page + i);
415 memset(kaddr + start1, 0, this_end - start1);
416 }
417 end1 -= this_end;
418 start1 = 0;
419 }
420
421 if (start2 >= PAGE_SIZE) {
422 start2 -= PAGE_SIZE;
423 end2 -= PAGE_SIZE;
424 } else {
425 unsigned this_end = min_t(unsigned, end2, PAGE_SIZE);
426
427 if (end2 > start2) {
428 if (!kaddr)
429 kaddr = kmap_local_page(page + i);
430 memset(kaddr + start2, 0, this_end - start2);
431 }
432 end2 -= this_end;
433 start2 = 0;
434 }
435
436 if (kaddr) {
437 kunmap_local(kaddr);
438 flush_dcache_page(page + i);
439 }
440
441 if (!end1 && !end2)
442 break;
443 }
444
445 BUG_ON((start1 | start2 | end1 | end2) != 0);
446 }
447 EXPORT_SYMBOL(zero_user_segments);
448 #endif /* CONFIG_HIGHMEM */
449
450 #ifdef CONFIG_KMAP_LOCAL
451
452 #include <asm/kmap_size.h>
453
454 /*
455 * With DEBUG_KMAP_LOCAL the stack depth is doubled and every second
456 * slot is unused which acts as a guard page
457 */
458 #ifdef CONFIG_DEBUG_KMAP_LOCAL
459 # define KM_INCR 2
460 #else
461 # define KM_INCR 1
462 #endif
463
kmap_local_idx_push(void)464 static inline int kmap_local_idx_push(void)
465 {
466 WARN_ON_ONCE(in_hardirq() && !irqs_disabled());
467 current->kmap_ctrl.idx += KM_INCR;
468 BUG_ON(current->kmap_ctrl.idx >= KM_MAX_IDX);
469 return current->kmap_ctrl.idx - 1;
470 }
471
kmap_local_idx(void)472 static inline int kmap_local_idx(void)
473 {
474 return current->kmap_ctrl.idx - 1;
475 }
476
kmap_local_idx_pop(void)477 static inline void kmap_local_idx_pop(void)
478 {
479 current->kmap_ctrl.idx -= KM_INCR;
480 BUG_ON(current->kmap_ctrl.idx < 0);
481 }
482
483 #ifndef arch_kmap_local_post_map
484 # define arch_kmap_local_post_map(vaddr, pteval) do { } while (0)
485 #endif
486
487 #ifndef arch_kmap_local_pre_unmap
488 # define arch_kmap_local_pre_unmap(vaddr) do { } while (0)
489 #endif
490
491 #ifndef arch_kmap_local_post_unmap
492 # define arch_kmap_local_post_unmap(vaddr) do { } while (0)
493 #endif
494
495 #ifndef arch_kmap_local_unmap_idx
496 #define arch_kmap_local_unmap_idx(idx, vaddr) kmap_local_calc_idx(idx)
497 #endif
498
499 #ifndef arch_kmap_local_high_get
arch_kmap_local_high_get(struct page * page)500 static inline void *arch_kmap_local_high_get(struct page *page)
501 {
502 return NULL;
503 }
504 #endif
505
506 #ifndef arch_kmap_local_set_pte
507 #define arch_kmap_local_set_pte(mm, vaddr, ptep, ptev) \
508 set_pte_at(mm, vaddr, ptep, ptev)
509 #endif
510
511 /* Unmap a local mapping which was obtained by kmap_high_get() */
kmap_high_unmap_local(unsigned long vaddr)512 static inline bool kmap_high_unmap_local(unsigned long vaddr)
513 {
514 #ifdef ARCH_NEEDS_KMAP_HIGH_GET
515 if (vaddr >= PKMAP_ADDR(0) && vaddr < PKMAP_ADDR(LAST_PKMAP)) {
516 kunmap_high(pte_page(ptep_get(&pkmap_page_table[PKMAP_NR(vaddr)])));
517 return true;
518 }
519 #endif
520 return false;
521 }
522
523 static pte_t *__kmap_pte;
524
kmap_get_pte(unsigned long vaddr,int idx)525 static pte_t *kmap_get_pte(unsigned long vaddr, int idx)
526 {
527 if (IS_ENABLED(CONFIG_KMAP_LOCAL_NON_LINEAR_PTE_ARRAY))
528 /*
529 * Set by the arch if __kmap_pte[-idx] does not produce
530 * the correct entry.
531 */
532 return virt_to_kpte(vaddr);
533 if (!__kmap_pte)
534 __kmap_pte = virt_to_kpte(__fix_to_virt(FIX_KMAP_BEGIN));
535 return &__kmap_pte[-idx];
536 }
537
__kmap_local_pfn_prot(unsigned long pfn,pgprot_t prot)538 void *__kmap_local_pfn_prot(unsigned long pfn, pgprot_t prot)
539 {
540 pte_t pteval, *kmap_pte;
541 unsigned long vaddr;
542 int idx;
543
544 /*
545 * Disable migration so resulting virtual address is stable
546 * across preemption.
547 */
548 migrate_disable();
549 preempt_disable();
550 idx = arch_kmap_local_map_idx(kmap_local_idx_push(), pfn);
551 vaddr = __fix_to_virt(FIX_KMAP_BEGIN + idx);
552 kmap_pte = kmap_get_pte(vaddr, idx);
553 BUG_ON(!pte_none(ptep_get(kmap_pte)));
554 pteval = pfn_pte(pfn, prot);
555 arch_kmap_local_set_pte(&init_mm, vaddr, kmap_pte, pteval);
556 arch_kmap_local_post_map(vaddr, pteval);
557 current->kmap_ctrl.pteval[kmap_local_idx()] = pteval;
558 preempt_enable();
559
560 return (void *)vaddr;
561 }
562 EXPORT_SYMBOL_GPL(__kmap_local_pfn_prot);
563
__kmap_local_page_prot(struct page * page,pgprot_t prot)564 void *__kmap_local_page_prot(struct page *page, pgprot_t prot)
565 {
566 void *kmap;
567
568 /*
569 * To broaden the usage of the actual kmap_local() machinery always map
570 * pages when debugging is enabled and the architecture has no problems
571 * with alias mappings.
572 */
573 if (!IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) && !PageHighMem(page))
574 return page_address(page);
575
576 /* Try kmap_high_get() if architecture has it enabled */
577 kmap = arch_kmap_local_high_get(page);
578 if (kmap)
579 return kmap;
580
581 return __kmap_local_pfn_prot(page_to_pfn(page), prot);
582 }
583 EXPORT_SYMBOL(__kmap_local_page_prot);
584
kunmap_local_indexed(const void * vaddr)585 void kunmap_local_indexed(const void *vaddr)
586 {
587 unsigned long addr = (unsigned long) vaddr & PAGE_MASK;
588 pte_t *kmap_pte;
589 int idx;
590
591 if (addr < __fix_to_virt(FIX_KMAP_END) ||
592 addr > __fix_to_virt(FIX_KMAP_BEGIN)) {
593 if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP)) {
594 /* This _should_ never happen! See above. */
595 WARN_ON_ONCE(1);
596 return;
597 }
598 /*
599 * Handle mappings which were obtained by kmap_high_get()
600 * first as the virtual address of such mappings is below
601 * PAGE_OFFSET. Warn for all other addresses which are in
602 * the user space part of the virtual address space.
603 */
604 if (!kmap_high_unmap_local(addr))
605 WARN_ON_ONCE(addr < PAGE_OFFSET);
606 return;
607 }
608
609 preempt_disable();
610 idx = arch_kmap_local_unmap_idx(kmap_local_idx(), addr);
611 WARN_ON_ONCE(addr != __fix_to_virt(FIX_KMAP_BEGIN + idx));
612
613 kmap_pte = kmap_get_pte(addr, idx);
614 arch_kmap_local_pre_unmap(addr);
615 pte_clear(&init_mm, addr, kmap_pte);
616 arch_kmap_local_post_unmap(addr);
617 current->kmap_ctrl.pteval[kmap_local_idx()] = __pte(0);
618 kmap_local_idx_pop();
619 preempt_enable();
620 migrate_enable();
621 }
622 EXPORT_SYMBOL(kunmap_local_indexed);
623
624 /*
625 * Invoked before switch_to(). This is safe even when during or after
626 * clearing the maps an interrupt which needs a kmap_local happens because
627 * the task::kmap_ctrl.idx is not modified by the unmapping code so a
628 * nested kmap_local will use the next unused index and restore the index
629 * on unmap. The already cleared kmaps of the outgoing task are irrelevant
630 * because the interrupt context does not know about them. The same applies
631 * when scheduling back in for an interrupt which happens before the
632 * restore is complete.
633 */
__kmap_local_sched_out(void)634 void __kmap_local_sched_out(void)
635 {
636 struct task_struct *tsk = current;
637 pte_t *kmap_pte;
638 int i;
639
640 /* Clear kmaps */
641 for (i = 0; i < tsk->kmap_ctrl.idx; i++) {
642 pte_t pteval = tsk->kmap_ctrl.pteval[i];
643 unsigned long addr;
644 int idx;
645
646 /* With debug all even slots are unmapped and act as guard */
647 if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL) && !(i & 0x01)) {
648 WARN_ON_ONCE(pte_val(pteval) != 0);
649 continue;
650 }
651 if (WARN_ON_ONCE(pte_none(pteval)))
652 continue;
653
654 /*
655 * This is a horrible hack for XTENSA to calculate the
656 * coloured PTE index. Uses the PFN encoded into the pteval
657 * and the map index calculation because the actual mapped
658 * virtual address is not stored in task::kmap_ctrl.
659 * For any sane architecture this is optimized out.
660 */
661 idx = arch_kmap_local_map_idx(i, pte_pfn(pteval));
662
663 addr = __fix_to_virt(FIX_KMAP_BEGIN + idx);
664 kmap_pte = kmap_get_pte(addr, idx);
665 arch_kmap_local_pre_unmap(addr);
666 pte_clear(&init_mm, addr, kmap_pte);
667 arch_kmap_local_post_unmap(addr);
668 }
669 }
670
__kmap_local_sched_in(void)671 void __kmap_local_sched_in(void)
672 {
673 struct task_struct *tsk = current;
674 pte_t *kmap_pte;
675 int i;
676
677 /* Restore kmaps */
678 for (i = 0; i < tsk->kmap_ctrl.idx; i++) {
679 pte_t pteval = tsk->kmap_ctrl.pteval[i];
680 unsigned long addr;
681 int idx;
682
683 /* With debug all even slots are unmapped and act as guard */
684 if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL) && !(i & 0x01)) {
685 WARN_ON_ONCE(pte_val(pteval) != 0);
686 continue;
687 }
688 if (WARN_ON_ONCE(pte_none(pteval)))
689 continue;
690
691 /* See comment in __kmap_local_sched_out() */
692 idx = arch_kmap_local_map_idx(i, pte_pfn(pteval));
693 addr = __fix_to_virt(FIX_KMAP_BEGIN + idx);
694 kmap_pte = kmap_get_pte(addr, idx);
695 set_pte_at(&init_mm, addr, kmap_pte, pteval);
696 arch_kmap_local_post_map(addr, pteval);
697 }
698 }
699
kmap_local_fork(struct task_struct * tsk)700 void kmap_local_fork(struct task_struct *tsk)
701 {
702 if (WARN_ON_ONCE(tsk->kmap_ctrl.idx))
703 memset(&tsk->kmap_ctrl, 0, sizeof(tsk->kmap_ctrl));
704 }
705
706 #endif
707
708 #if defined(HASHED_PAGE_VIRTUAL)
709
710 #define PA_HASH_ORDER 7
711
712 /*
713 * Describes one page->virtual association
714 */
715 struct page_address_map {
716 struct page *page;
717 void *virtual;
718 struct list_head list;
719 };
720
721 static struct page_address_map page_address_maps[LAST_PKMAP];
722
723 /*
724 * Hash table bucket
725 */
726 static struct page_address_slot {
727 struct list_head lh; /* List of page_address_maps */
728 spinlock_t lock; /* Protect this bucket's list */
729 } ____cacheline_aligned_in_smp page_address_htable[1<<PA_HASH_ORDER];
730
page_slot(const struct page * page)731 static struct page_address_slot *page_slot(const struct page *page)
732 {
733 return &page_address_htable[hash_ptr(page, PA_HASH_ORDER)];
734 }
735
736 /**
737 * page_address - get the mapped virtual address of a page
738 * @page: &struct page to get the virtual address of
739 *
740 * Returns the page's virtual address.
741 */
page_address(const struct page * page)742 void *page_address(const struct page *page)
743 {
744 unsigned long flags;
745 void *ret;
746 struct page_address_slot *pas;
747
748 if (!PageHighMem(page))
749 return lowmem_page_address(page);
750
751 pas = page_slot(page);
752 ret = NULL;
753 spin_lock_irqsave(&pas->lock, flags);
754 if (!list_empty(&pas->lh)) {
755 struct page_address_map *pam;
756
757 list_for_each_entry(pam, &pas->lh, list) {
758 if (pam->page == page) {
759 ret = pam->virtual;
760 break;
761 }
762 }
763 }
764
765 spin_unlock_irqrestore(&pas->lock, flags);
766 return ret;
767 }
768 EXPORT_SYMBOL(page_address);
769
770 /**
771 * set_page_address - set a page's virtual address
772 * @page: &struct page to set
773 * @virtual: virtual address to use
774 */
set_page_address(struct page * page,void * virtual)775 void set_page_address(struct page *page, void *virtual)
776 {
777 unsigned long flags;
778 struct page_address_slot *pas;
779 struct page_address_map *pam;
780
781 BUG_ON(!PageHighMem(page));
782
783 pas = page_slot(page);
784 if (virtual) { /* Add */
785 pam = &page_address_maps[PKMAP_NR((unsigned long)virtual)];
786 pam->page = page;
787 pam->virtual = virtual;
788
789 spin_lock_irqsave(&pas->lock, flags);
790 list_add_tail(&pam->list, &pas->lh);
791 spin_unlock_irqrestore(&pas->lock, flags);
792 } else { /* Remove */
793 spin_lock_irqsave(&pas->lock, flags);
794 list_for_each_entry(pam, &pas->lh, list) {
795 if (pam->page == page) {
796 list_del(&pam->list);
797 break;
798 }
799 }
800 spin_unlock_irqrestore(&pas->lock, flags);
801 }
802
803 return;
804 }
805
page_address_init(void)806 void __init page_address_init(void)
807 {
808 int i;
809
810 for (i = 0; i < ARRAY_SIZE(page_address_htable); i++) {
811 INIT_LIST_HEAD(&page_address_htable[i].lh);
812 spin_lock_init(&page_address_htable[i].lock);
813 }
814 }
815
816 #endif /* defined(HASHED_PAGE_VIRTUAL) */
817