1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
63 #include <linux/kcov.h>
64 
65 #include <net/protocol.h>
66 #include <net/dst.h>
67 #include <net/sock.h>
68 #include <net/checksum.h>
69 #include <net/ip6_checksum.h>
70 #include <net/xfrm.h>
71 #include <net/mpls.h>
72 #include <net/mptcp.h>
73 #include <net/mctp.h>
74 #include <net/page_pool.h>
75 
76 #include <linux/uaccess.h>
77 #include <trace/events/skb.h>
78 #include <linux/highmem.h>
79 #include <linux/capability.h>
80 #include <linux/user_namespace.h>
81 #include <linux/indirect_call_wrapper.h>
82 
83 #include "dev.h"
84 #include "sock_destructor.h"
85 
86 struct kmem_cache *skbuff_head_cache __ro_after_init;
87 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
88 #ifdef CONFIG_SKB_EXTENSIONS
89 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
90 #endif
91 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
92 EXPORT_SYMBOL(sysctl_max_skb_frags);
93 
94 #undef FN
95 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
96 const char * const drop_reasons[] = {
97 	DEFINE_DROP_REASON(FN, FN)
98 };
99 EXPORT_SYMBOL(drop_reasons);
100 
101 /**
102  *	skb_panic - private function for out-of-line support
103  *	@skb:	buffer
104  *	@sz:	size
105  *	@addr:	address
106  *	@msg:	skb_over_panic or skb_under_panic
107  *
108  *	Out-of-line support for skb_put() and skb_push().
109  *	Called via the wrapper skb_over_panic() or skb_under_panic().
110  *	Keep out of line to prevent kernel bloat.
111  *	__builtin_return_address is not used because it is not always reliable.
112  */
skb_panic(struct sk_buff * skb,unsigned int sz,void * addr,const char msg[])113 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
114 		      const char msg[])
115 {
116 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
117 		 msg, addr, skb->len, sz, skb->head, skb->data,
118 		 (unsigned long)skb->tail, (unsigned long)skb->end,
119 		 skb->dev ? skb->dev->name : "<NULL>");
120 	BUG();
121 }
122 
skb_over_panic(struct sk_buff * skb,unsigned int sz,void * addr)123 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
124 {
125 	skb_panic(skb, sz, addr, __func__);
126 }
127 
skb_under_panic(struct sk_buff * skb,unsigned int sz,void * addr)128 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
129 {
130 	skb_panic(skb, sz, addr, __func__);
131 }
132 
133 #define NAPI_SKB_CACHE_SIZE	64
134 #define NAPI_SKB_CACHE_BULK	16
135 #define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2)
136 
137 #if PAGE_SIZE == SZ_4K
138 
139 #define NAPI_HAS_SMALL_PAGE_FRAG	1
140 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	((nc).pfmemalloc)
141 
142 /* specialized page frag allocator using a single order 0 page
143  * and slicing it into 1K sized fragment. Constrained to systems
144  * with a very limited amount of 1K fragments fitting a single
145  * page - to avoid excessive truesize underestimation
146  */
147 
148 struct page_frag_1k {
149 	void *va;
150 	u16 offset;
151 	bool pfmemalloc;
152 };
153 
page_frag_alloc_1k(struct page_frag_1k * nc,gfp_t gfp)154 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp)
155 {
156 	struct page *page;
157 	int offset;
158 
159 	offset = nc->offset - SZ_1K;
160 	if (likely(offset >= 0))
161 		goto use_frag;
162 
163 	page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
164 	if (!page)
165 		return NULL;
166 
167 	nc->va = page_address(page);
168 	nc->pfmemalloc = page_is_pfmemalloc(page);
169 	offset = PAGE_SIZE - SZ_1K;
170 	page_ref_add(page, offset / SZ_1K);
171 
172 use_frag:
173 	nc->offset = offset;
174 	return nc->va + offset;
175 }
176 #else
177 
178 /* the small page is actually unused in this build; add dummy helpers
179  * to please the compiler and avoid later preprocessor's conditionals
180  */
181 #define NAPI_HAS_SMALL_PAGE_FRAG	0
182 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	false
183 
184 struct page_frag_1k {
185 };
186 
page_frag_alloc_1k(struct page_frag_1k * nc,gfp_t gfp_mask)187 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask)
188 {
189 	return NULL;
190 }
191 
192 #endif
193 
194 struct napi_alloc_cache {
195 	struct page_frag_cache page;
196 	struct page_frag_1k page_small;
197 	unsigned int skb_count;
198 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
199 };
200 
201 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
202 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
203 
204 /* Double check that napi_get_frags() allocates skbs with
205  * skb->head being backed by slab, not a page fragment.
206  * This is to make sure bug fixed in 3226b158e67c
207  * ("net: avoid 32 x truesize under-estimation for tiny skbs")
208  * does not accidentally come back.
209  */
napi_get_frags_check(struct napi_struct * napi)210 void napi_get_frags_check(struct napi_struct *napi)
211 {
212 	struct sk_buff *skb;
213 
214 	local_bh_disable();
215 	skb = napi_get_frags(napi);
216 	WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag);
217 	napi_free_frags(napi);
218 	local_bh_enable();
219 }
220 
__napi_alloc_frag_align(unsigned int fragsz,unsigned int align_mask)221 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
222 {
223 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
224 
225 	fragsz = SKB_DATA_ALIGN(fragsz);
226 
227 	return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
228 }
229 EXPORT_SYMBOL(__napi_alloc_frag_align);
230 
__netdev_alloc_frag_align(unsigned int fragsz,unsigned int align_mask)231 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
232 {
233 	void *data;
234 
235 	fragsz = SKB_DATA_ALIGN(fragsz);
236 	if (in_hardirq() || irqs_disabled()) {
237 		struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
238 
239 		data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
240 	} else {
241 		struct napi_alloc_cache *nc;
242 
243 		local_bh_disable();
244 		nc = this_cpu_ptr(&napi_alloc_cache);
245 		data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
246 		local_bh_enable();
247 	}
248 	return data;
249 }
250 EXPORT_SYMBOL(__netdev_alloc_frag_align);
251 
napi_skb_cache_get(void)252 static struct sk_buff *napi_skb_cache_get(void)
253 {
254 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
255 	struct sk_buff *skb;
256 
257 	if (unlikely(!nc->skb_count)) {
258 		nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache,
259 						      GFP_ATOMIC,
260 						      NAPI_SKB_CACHE_BULK,
261 						      nc->skb_cache);
262 		if (unlikely(!nc->skb_count))
263 			return NULL;
264 	}
265 
266 	skb = nc->skb_cache[--nc->skb_count];
267 	kasan_unpoison_object_data(skbuff_head_cache, skb);
268 
269 	return skb;
270 }
271 
272 /* Caller must provide SKB that is memset cleared */
__build_skb_around(struct sk_buff * skb,void * data,unsigned int frag_size)273 static void __build_skb_around(struct sk_buff *skb, void *data,
274 			       unsigned int frag_size)
275 {
276 	struct skb_shared_info *shinfo;
277 	unsigned int size = frag_size ? : ksize(data);
278 
279 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
280 
281 	/* Assumes caller memset cleared SKB */
282 	skb->truesize = SKB_TRUESIZE(size);
283 	refcount_set(&skb->users, 1);
284 	skb->head = data;
285 	skb->data = data;
286 	skb_reset_tail_pointer(skb);
287 	skb_set_end_offset(skb, size);
288 	skb->mac_header = (typeof(skb->mac_header))~0U;
289 	skb->transport_header = (typeof(skb->transport_header))~0U;
290 	skb->alloc_cpu = raw_smp_processor_id();
291 	/* make sure we initialize shinfo sequentially */
292 	shinfo = skb_shinfo(skb);
293 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
294 	atomic_set(&shinfo->dataref, 1);
295 
296 	skb_set_kcov_handle(skb, kcov_common_handle());
297 }
298 
299 /**
300  * __build_skb - build a network buffer
301  * @data: data buffer provided by caller
302  * @frag_size: size of data, or 0 if head was kmalloced
303  *
304  * Allocate a new &sk_buff. Caller provides space holding head and
305  * skb_shared_info. @data must have been allocated by kmalloc() only if
306  * @frag_size is 0, otherwise data should come from the page allocator
307  *  or vmalloc()
308  * The return is the new skb buffer.
309  * On a failure the return is %NULL, and @data is not freed.
310  * Notes :
311  *  Before IO, driver allocates only data buffer where NIC put incoming frame
312  *  Driver should add room at head (NET_SKB_PAD) and
313  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
314  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
315  *  before giving packet to stack.
316  *  RX rings only contains data buffers, not full skbs.
317  */
__build_skb(void * data,unsigned int frag_size)318 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
319 {
320 	struct sk_buff *skb;
321 
322 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
323 	if (unlikely(!skb))
324 		return NULL;
325 
326 	memset(skb, 0, offsetof(struct sk_buff, tail));
327 	__build_skb_around(skb, data, frag_size);
328 
329 	return skb;
330 }
331 
332 /* build_skb() is wrapper over __build_skb(), that specifically
333  * takes care of skb->head and skb->pfmemalloc
334  * This means that if @frag_size is not zero, then @data must be backed
335  * by a page fragment, not kmalloc() or vmalloc()
336  */
build_skb(void * data,unsigned int frag_size)337 struct sk_buff *build_skb(void *data, unsigned int frag_size)
338 {
339 	struct sk_buff *skb = __build_skb(data, frag_size);
340 
341 	if (skb && frag_size) {
342 		skb->head_frag = 1;
343 		if (page_is_pfmemalloc(virt_to_head_page(data)))
344 			skb->pfmemalloc = 1;
345 	}
346 	return skb;
347 }
348 EXPORT_SYMBOL(build_skb);
349 
350 /**
351  * build_skb_around - build a network buffer around provided skb
352  * @skb: sk_buff provide by caller, must be memset cleared
353  * @data: data buffer provided by caller
354  * @frag_size: size of data, or 0 if head was kmalloced
355  */
build_skb_around(struct sk_buff * skb,void * data,unsigned int frag_size)356 struct sk_buff *build_skb_around(struct sk_buff *skb,
357 				 void *data, unsigned int frag_size)
358 {
359 	if (unlikely(!skb))
360 		return NULL;
361 
362 	__build_skb_around(skb, data, frag_size);
363 
364 	if (frag_size) {
365 		skb->head_frag = 1;
366 		if (page_is_pfmemalloc(virt_to_head_page(data)))
367 			skb->pfmemalloc = 1;
368 	}
369 	return skb;
370 }
371 EXPORT_SYMBOL(build_skb_around);
372 
373 /**
374  * __napi_build_skb - build a network buffer
375  * @data: data buffer provided by caller
376  * @frag_size: size of data, or 0 if head was kmalloced
377  *
378  * Version of __build_skb() that uses NAPI percpu caches to obtain
379  * skbuff_head instead of inplace allocation.
380  *
381  * Returns a new &sk_buff on success, %NULL on allocation failure.
382  */
__napi_build_skb(void * data,unsigned int frag_size)383 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
384 {
385 	struct sk_buff *skb;
386 
387 	skb = napi_skb_cache_get();
388 	if (unlikely(!skb))
389 		return NULL;
390 
391 	memset(skb, 0, offsetof(struct sk_buff, tail));
392 	__build_skb_around(skb, data, frag_size);
393 
394 	return skb;
395 }
396 
397 /**
398  * napi_build_skb - build a network buffer
399  * @data: data buffer provided by caller
400  * @frag_size: size of data, or 0 if head was kmalloced
401  *
402  * Version of __napi_build_skb() that takes care of skb->head_frag
403  * and skb->pfmemalloc when the data is a page or page fragment.
404  *
405  * Returns a new &sk_buff on success, %NULL on allocation failure.
406  */
napi_build_skb(void * data,unsigned int frag_size)407 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
408 {
409 	struct sk_buff *skb = __napi_build_skb(data, frag_size);
410 
411 	if (likely(skb) && frag_size) {
412 		skb->head_frag = 1;
413 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
414 	}
415 
416 	return skb;
417 }
418 EXPORT_SYMBOL(napi_build_skb);
419 
420 /*
421  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
422  * the caller if emergency pfmemalloc reserves are being used. If it is and
423  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
424  * may be used. Otherwise, the packet data may be discarded until enough
425  * memory is free
426  */
kmalloc_reserve(size_t size,gfp_t flags,int node,bool * pfmemalloc)427 static void *kmalloc_reserve(size_t size, gfp_t flags, int node,
428 			     bool *pfmemalloc)
429 {
430 	void *obj;
431 	bool ret_pfmemalloc = false;
432 
433 	/*
434 	 * Try a regular allocation, when that fails and we're not entitled
435 	 * to the reserves, fail.
436 	 */
437 	obj = kmalloc_node_track_caller(size,
438 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
439 					node);
440 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
441 		goto out;
442 
443 	/* Try again but now we are using pfmemalloc reserves */
444 	ret_pfmemalloc = true;
445 	obj = kmalloc_node_track_caller(size, flags, node);
446 
447 out:
448 	if (pfmemalloc)
449 		*pfmemalloc = ret_pfmemalloc;
450 
451 	return obj;
452 }
453 
454 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
455  *	'private' fields and also do memory statistics to find all the
456  *	[BEEP] leaks.
457  *
458  */
459 
460 /**
461  *	__alloc_skb	-	allocate a network buffer
462  *	@size: size to allocate
463  *	@gfp_mask: allocation mask
464  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
465  *		instead of head cache and allocate a cloned (child) skb.
466  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
467  *		allocations in case the data is required for writeback
468  *	@node: numa node to allocate memory on
469  *
470  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
471  *	tail room of at least size bytes. The object has a reference count
472  *	of one. The return is the buffer. On a failure the return is %NULL.
473  *
474  *	Buffers may only be allocated from interrupts using a @gfp_mask of
475  *	%GFP_ATOMIC.
476  */
__alloc_skb(unsigned int size,gfp_t gfp_mask,int flags,int node)477 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
478 			    int flags, int node)
479 {
480 	struct kmem_cache *cache;
481 	struct sk_buff *skb;
482 	unsigned int osize;
483 	bool pfmemalloc;
484 	u8 *data;
485 
486 	cache = (flags & SKB_ALLOC_FCLONE)
487 		? skbuff_fclone_cache : skbuff_head_cache;
488 
489 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
490 		gfp_mask |= __GFP_MEMALLOC;
491 
492 	/* Get the HEAD */
493 	if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
494 	    likely(node == NUMA_NO_NODE || node == numa_mem_id()))
495 		skb = napi_skb_cache_get();
496 	else
497 		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
498 	if (unlikely(!skb))
499 		return NULL;
500 	prefetchw(skb);
501 
502 	/* We do our best to align skb_shared_info on a separate cache
503 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
504 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
505 	 * Both skb->head and skb_shared_info are cache line aligned.
506 	 */
507 	size = SKB_DATA_ALIGN(size);
508 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
509 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
510 	if (unlikely(!data))
511 		goto nodata;
512 	/* kmalloc(size) might give us more room than requested.
513 	 * Put skb_shared_info exactly at the end of allocated zone,
514 	 * to allow max possible filling before reallocation.
515 	 */
516 	osize = ksize(data);
517 	size = SKB_WITH_OVERHEAD(osize);
518 	prefetchw(data + size);
519 
520 	/*
521 	 * Only clear those fields we need to clear, not those that we will
522 	 * actually initialise below. Hence, don't put any more fields after
523 	 * the tail pointer in struct sk_buff!
524 	 */
525 	memset(skb, 0, offsetof(struct sk_buff, tail));
526 	__build_skb_around(skb, data, osize);
527 	skb->pfmemalloc = pfmemalloc;
528 
529 	if (flags & SKB_ALLOC_FCLONE) {
530 		struct sk_buff_fclones *fclones;
531 
532 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
533 
534 		skb->fclone = SKB_FCLONE_ORIG;
535 		refcount_set(&fclones->fclone_ref, 1);
536 	}
537 
538 	return skb;
539 
540 nodata:
541 	kmem_cache_free(cache, skb);
542 	return NULL;
543 }
544 EXPORT_SYMBOL(__alloc_skb);
545 
546 /**
547  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
548  *	@dev: network device to receive on
549  *	@len: length to allocate
550  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
551  *
552  *	Allocate a new &sk_buff and assign it a usage count of one. The
553  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
554  *	the headroom they think they need without accounting for the
555  *	built in space. The built in space is used for optimisations.
556  *
557  *	%NULL is returned if there is no free memory.
558  */
__netdev_alloc_skb(struct net_device * dev,unsigned int len,gfp_t gfp_mask)559 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
560 				   gfp_t gfp_mask)
561 {
562 	struct page_frag_cache *nc;
563 	struct sk_buff *skb;
564 	bool pfmemalloc;
565 	void *data;
566 
567 	len += NET_SKB_PAD;
568 
569 	/* If requested length is either too small or too big,
570 	 * we use kmalloc() for skb->head allocation.
571 	 */
572 	if (len <= SKB_WITH_OVERHEAD(1024) ||
573 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
574 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
575 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
576 		if (!skb)
577 			goto skb_fail;
578 		goto skb_success;
579 	}
580 
581 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
582 	len = SKB_DATA_ALIGN(len);
583 
584 	if (sk_memalloc_socks())
585 		gfp_mask |= __GFP_MEMALLOC;
586 
587 	if (in_hardirq() || irqs_disabled()) {
588 		nc = this_cpu_ptr(&netdev_alloc_cache);
589 		data = page_frag_alloc(nc, len, gfp_mask);
590 		pfmemalloc = nc->pfmemalloc;
591 	} else {
592 		local_bh_disable();
593 		nc = this_cpu_ptr(&napi_alloc_cache.page);
594 		data = page_frag_alloc(nc, len, gfp_mask);
595 		pfmemalloc = nc->pfmemalloc;
596 		local_bh_enable();
597 	}
598 
599 	if (unlikely(!data))
600 		return NULL;
601 
602 	skb = __build_skb(data, len);
603 	if (unlikely(!skb)) {
604 		skb_free_frag(data);
605 		return NULL;
606 	}
607 
608 	if (pfmemalloc)
609 		skb->pfmemalloc = 1;
610 	skb->head_frag = 1;
611 
612 skb_success:
613 	skb_reserve(skb, NET_SKB_PAD);
614 	skb->dev = dev;
615 
616 skb_fail:
617 	return skb;
618 }
619 EXPORT_SYMBOL(__netdev_alloc_skb);
620 
621 /**
622  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
623  *	@napi: napi instance this buffer was allocated for
624  *	@len: length to allocate
625  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
626  *
627  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
628  *	attempt to allocate the head from a special reserved region used
629  *	only for NAPI Rx allocation.  By doing this we can save several
630  *	CPU cycles by avoiding having to disable and re-enable IRQs.
631  *
632  *	%NULL is returned if there is no free memory.
633  */
__napi_alloc_skb(struct napi_struct * napi,unsigned int len,gfp_t gfp_mask)634 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
635 				 gfp_t gfp_mask)
636 {
637 	struct napi_alloc_cache *nc;
638 	struct sk_buff *skb;
639 	bool pfmemalloc;
640 	void *data;
641 
642 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
643 	len += NET_SKB_PAD + NET_IP_ALIGN;
644 
645 	/* If requested length is either too small or too big,
646 	 * we use kmalloc() for skb->head allocation.
647 	 * When the small frag allocator is available, prefer it over kmalloc
648 	 * for small fragments
649 	 */
650 	if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) ||
651 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
652 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
653 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
654 				  NUMA_NO_NODE);
655 		if (!skb)
656 			goto skb_fail;
657 		goto skb_success;
658 	}
659 
660 	nc = this_cpu_ptr(&napi_alloc_cache);
661 
662 	if (sk_memalloc_socks())
663 		gfp_mask |= __GFP_MEMALLOC;
664 
665 	if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) {
666 		/* we are artificially inflating the allocation size, but
667 		 * that is not as bad as it may look like, as:
668 		 * - 'len' less than GRO_MAX_HEAD makes little sense
669 		 * - On most systems, larger 'len' values lead to fragment
670 		 *   size above 512 bytes
671 		 * - kmalloc would use the kmalloc-1k slab for such values
672 		 * - Builds with smaller GRO_MAX_HEAD will very likely do
673 		 *   little networking, as that implies no WiFi and no
674 		 *   tunnels support, and 32 bits arches.
675 		 */
676 		len = SZ_1K;
677 
678 		data = page_frag_alloc_1k(&nc->page_small, gfp_mask);
679 		pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small);
680 	} else {
681 		len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
682 		len = SKB_DATA_ALIGN(len);
683 
684 		data = page_frag_alloc(&nc->page, len, gfp_mask);
685 		pfmemalloc = nc->page.pfmemalloc;
686 	}
687 
688 	if (unlikely(!data))
689 		return NULL;
690 
691 	skb = __napi_build_skb(data, len);
692 	if (unlikely(!skb)) {
693 		skb_free_frag(data);
694 		return NULL;
695 	}
696 
697 	if (pfmemalloc)
698 		skb->pfmemalloc = 1;
699 	skb->head_frag = 1;
700 
701 skb_success:
702 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
703 	skb->dev = napi->dev;
704 
705 skb_fail:
706 	return skb;
707 }
708 EXPORT_SYMBOL(__napi_alloc_skb);
709 
skb_add_rx_frag(struct sk_buff * skb,int i,struct page * page,int off,int size,unsigned int truesize)710 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
711 		     int size, unsigned int truesize)
712 {
713 	skb_fill_page_desc(skb, i, page, off, size);
714 	skb->len += size;
715 	skb->data_len += size;
716 	skb->truesize += truesize;
717 }
718 EXPORT_SYMBOL(skb_add_rx_frag);
719 
skb_coalesce_rx_frag(struct sk_buff * skb,int i,int size,unsigned int truesize)720 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
721 			  unsigned int truesize)
722 {
723 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
724 
725 	skb_frag_size_add(frag, size);
726 	skb->len += size;
727 	skb->data_len += size;
728 	skb->truesize += truesize;
729 }
730 EXPORT_SYMBOL(skb_coalesce_rx_frag);
731 
skb_drop_list(struct sk_buff ** listp)732 static void skb_drop_list(struct sk_buff **listp)
733 {
734 	kfree_skb_list(*listp);
735 	*listp = NULL;
736 }
737 
skb_drop_fraglist(struct sk_buff * skb)738 static inline void skb_drop_fraglist(struct sk_buff *skb)
739 {
740 	skb_drop_list(&skb_shinfo(skb)->frag_list);
741 }
742 
skb_clone_fraglist(struct sk_buff * skb)743 static void skb_clone_fraglist(struct sk_buff *skb)
744 {
745 	struct sk_buff *list;
746 
747 	skb_walk_frags(skb, list)
748 		skb_get(list);
749 }
750 
skb_free_head(struct sk_buff * skb)751 static void skb_free_head(struct sk_buff *skb)
752 {
753 	unsigned char *head = skb->head;
754 
755 	if (skb->head_frag) {
756 		if (skb_pp_recycle(skb, head))
757 			return;
758 		skb_free_frag(head);
759 	} else {
760 		kfree(head);
761 	}
762 }
763 
skb_release_data(struct sk_buff * skb)764 static void skb_release_data(struct sk_buff *skb)
765 {
766 	struct skb_shared_info *shinfo = skb_shinfo(skb);
767 	int i;
768 
769 	if (skb->cloned &&
770 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
771 			      &shinfo->dataref))
772 		goto exit;
773 
774 	if (skb_zcopy(skb)) {
775 		bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
776 
777 		skb_zcopy_clear(skb, true);
778 		if (skip_unref)
779 			goto free_head;
780 	}
781 
782 	for (i = 0; i < shinfo->nr_frags; i++)
783 		__skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
784 
785 free_head:
786 	if (shinfo->frag_list)
787 		kfree_skb_list(shinfo->frag_list);
788 
789 	skb_free_head(skb);
790 exit:
791 	/* When we clone an SKB we copy the reycling bit. The pp_recycle
792 	 * bit is only set on the head though, so in order to avoid races
793 	 * while trying to recycle fragments on __skb_frag_unref() we need
794 	 * to make one SKB responsible for triggering the recycle path.
795 	 * So disable the recycling bit if an SKB is cloned and we have
796 	 * additional references to the fragmented part of the SKB.
797 	 * Eventually the last SKB will have the recycling bit set and it's
798 	 * dataref set to 0, which will trigger the recycling
799 	 */
800 	skb->pp_recycle = 0;
801 }
802 
803 /*
804  *	Free an skbuff by memory without cleaning the state.
805  */
kfree_skbmem(struct sk_buff * skb)806 static void kfree_skbmem(struct sk_buff *skb)
807 {
808 	struct sk_buff_fclones *fclones;
809 
810 	switch (skb->fclone) {
811 	case SKB_FCLONE_UNAVAILABLE:
812 		kmem_cache_free(skbuff_head_cache, skb);
813 		return;
814 
815 	case SKB_FCLONE_ORIG:
816 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
817 
818 		/* We usually free the clone (TX completion) before original skb
819 		 * This test would have no chance to be true for the clone,
820 		 * while here, branch prediction will be good.
821 		 */
822 		if (refcount_read(&fclones->fclone_ref) == 1)
823 			goto fastpath;
824 		break;
825 
826 	default: /* SKB_FCLONE_CLONE */
827 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
828 		break;
829 	}
830 	if (!refcount_dec_and_test(&fclones->fclone_ref))
831 		return;
832 fastpath:
833 	kmem_cache_free(skbuff_fclone_cache, fclones);
834 }
835 
skb_release_head_state(struct sk_buff * skb)836 void skb_release_head_state(struct sk_buff *skb)
837 {
838 	skb_dst_drop(skb);
839 	if (skb->destructor) {
840 		DEBUG_NET_WARN_ON_ONCE(in_hardirq());
841 		skb->destructor(skb);
842 	}
843 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
844 	nf_conntrack_put(skb_nfct(skb));
845 #endif
846 	skb_ext_put(skb);
847 }
848 
849 /* Free everything but the sk_buff shell. */
skb_release_all(struct sk_buff * skb)850 static void skb_release_all(struct sk_buff *skb)
851 {
852 	skb_release_head_state(skb);
853 	if (likely(skb->head))
854 		skb_release_data(skb);
855 }
856 
857 /**
858  *	__kfree_skb - private function
859  *	@skb: buffer
860  *
861  *	Free an sk_buff. Release anything attached to the buffer.
862  *	Clean the state. This is an internal helper function. Users should
863  *	always call kfree_skb
864  */
865 
__kfree_skb(struct sk_buff * skb)866 void __kfree_skb(struct sk_buff *skb)
867 {
868 	skb_release_all(skb);
869 	kfree_skbmem(skb);
870 }
871 EXPORT_SYMBOL(__kfree_skb);
872 
873 /**
874  *	kfree_skb_reason - free an sk_buff with special reason
875  *	@skb: buffer to free
876  *	@reason: reason why this skb is dropped
877  *
878  *	Drop a reference to the buffer and free it if the usage count has
879  *	hit zero. Meanwhile, pass the drop reason to 'kfree_skb'
880  *	tracepoint.
881  */
882 void __fix_address
kfree_skb_reason(struct sk_buff * skb,enum skb_drop_reason reason)883 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
884 {
885 	if (unlikely(!skb_unref(skb)))
886 		return;
887 
888 	DEBUG_NET_WARN_ON_ONCE(reason <= 0 || reason >= SKB_DROP_REASON_MAX);
889 
890 	trace_kfree_skb(skb, __builtin_return_address(0), reason);
891 	__kfree_skb(skb);
892 }
893 EXPORT_SYMBOL(kfree_skb_reason);
894 
kfree_skb_list_reason(struct sk_buff * segs,enum skb_drop_reason reason)895 void kfree_skb_list_reason(struct sk_buff *segs,
896 			   enum skb_drop_reason reason)
897 {
898 	while (segs) {
899 		struct sk_buff *next = segs->next;
900 
901 		kfree_skb_reason(segs, reason);
902 		segs = next;
903 	}
904 }
905 EXPORT_SYMBOL(kfree_skb_list_reason);
906 
907 /* Dump skb information and contents.
908  *
909  * Must only be called from net_ratelimit()-ed paths.
910  *
911  * Dumps whole packets if full_pkt, only headers otherwise.
912  */
skb_dump(const char * level,const struct sk_buff * skb,bool full_pkt)913 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
914 {
915 	struct skb_shared_info *sh = skb_shinfo(skb);
916 	struct net_device *dev = skb->dev;
917 	struct sock *sk = skb->sk;
918 	struct sk_buff *list_skb;
919 	bool has_mac, has_trans;
920 	int headroom, tailroom;
921 	int i, len, seg_len;
922 
923 	if (full_pkt)
924 		len = skb->len;
925 	else
926 		len = min_t(int, skb->len, MAX_HEADER + 128);
927 
928 	headroom = skb_headroom(skb);
929 	tailroom = skb_tailroom(skb);
930 
931 	has_mac = skb_mac_header_was_set(skb);
932 	has_trans = skb_transport_header_was_set(skb);
933 
934 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
935 	       "mac=(%d,%d) net=(%d,%d) trans=%d\n"
936 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
937 	       "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
938 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
939 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
940 	       has_mac ? skb->mac_header : -1,
941 	       has_mac ? skb_mac_header_len(skb) : -1,
942 	       skb->network_header,
943 	       has_trans ? skb_network_header_len(skb) : -1,
944 	       has_trans ? skb->transport_header : -1,
945 	       sh->tx_flags, sh->nr_frags,
946 	       sh->gso_size, sh->gso_type, sh->gso_segs,
947 	       skb->csum, skb->ip_summed, skb->csum_complete_sw,
948 	       skb->csum_valid, skb->csum_level,
949 	       skb->hash, skb->sw_hash, skb->l4_hash,
950 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
951 
952 	if (dev)
953 		printk("%sdev name=%s feat=%pNF\n",
954 		       level, dev->name, &dev->features);
955 	if (sk)
956 		printk("%ssk family=%hu type=%u proto=%u\n",
957 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
958 
959 	if (full_pkt && headroom)
960 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
961 			       16, 1, skb->head, headroom, false);
962 
963 	seg_len = min_t(int, skb_headlen(skb), len);
964 	if (seg_len)
965 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
966 			       16, 1, skb->data, seg_len, false);
967 	len -= seg_len;
968 
969 	if (full_pkt && tailroom)
970 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
971 			       16, 1, skb_tail_pointer(skb), tailroom, false);
972 
973 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
974 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
975 		u32 p_off, p_len, copied;
976 		struct page *p;
977 		u8 *vaddr;
978 
979 		skb_frag_foreach_page(frag, skb_frag_off(frag),
980 				      skb_frag_size(frag), p, p_off, p_len,
981 				      copied) {
982 			seg_len = min_t(int, p_len, len);
983 			vaddr = kmap_atomic(p);
984 			print_hex_dump(level, "skb frag:     ",
985 				       DUMP_PREFIX_OFFSET,
986 				       16, 1, vaddr + p_off, seg_len, false);
987 			kunmap_atomic(vaddr);
988 			len -= seg_len;
989 			if (!len)
990 				break;
991 		}
992 	}
993 
994 	if (full_pkt && skb_has_frag_list(skb)) {
995 		printk("skb fraglist:\n");
996 		skb_walk_frags(skb, list_skb)
997 			skb_dump(level, list_skb, true);
998 	}
999 }
1000 EXPORT_SYMBOL(skb_dump);
1001 
1002 /**
1003  *	skb_tx_error - report an sk_buff xmit error
1004  *	@skb: buffer that triggered an error
1005  *
1006  *	Report xmit error if a device callback is tracking this skb.
1007  *	skb must be freed afterwards.
1008  */
skb_tx_error(struct sk_buff * skb)1009 void skb_tx_error(struct sk_buff *skb)
1010 {
1011 	if (skb) {
1012 		skb_zcopy_downgrade_managed(skb);
1013 		skb_zcopy_clear(skb, true);
1014 	}
1015 }
1016 EXPORT_SYMBOL(skb_tx_error);
1017 
1018 #ifdef CONFIG_TRACEPOINTS
1019 /**
1020  *	consume_skb - free an skbuff
1021  *	@skb: buffer to free
1022  *
1023  *	Drop a ref to the buffer and free it if the usage count has hit zero
1024  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
1025  *	is being dropped after a failure and notes that
1026  */
consume_skb(struct sk_buff * skb)1027 void consume_skb(struct sk_buff *skb)
1028 {
1029 	if (!skb_unref(skb))
1030 		return;
1031 
1032 	trace_consume_skb(skb);
1033 	__kfree_skb(skb);
1034 }
1035 EXPORT_SYMBOL(consume_skb);
1036 #endif
1037 
1038 /**
1039  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
1040  *	@skb: buffer to free
1041  *
1042  *	Alike consume_skb(), but this variant assumes that this is the last
1043  *	skb reference and all the head states have been already dropped
1044  */
__consume_stateless_skb(struct sk_buff * skb)1045 void __consume_stateless_skb(struct sk_buff *skb)
1046 {
1047 	trace_consume_skb(skb);
1048 	skb_release_data(skb);
1049 	kfree_skbmem(skb);
1050 }
1051 
napi_skb_cache_put(struct sk_buff * skb)1052 static void napi_skb_cache_put(struct sk_buff *skb)
1053 {
1054 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1055 	u32 i;
1056 
1057 	kasan_poison_object_data(skbuff_head_cache, skb);
1058 	nc->skb_cache[nc->skb_count++] = skb;
1059 
1060 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1061 		for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1062 			kasan_unpoison_object_data(skbuff_head_cache,
1063 						   nc->skb_cache[i]);
1064 
1065 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF,
1066 				     nc->skb_cache + NAPI_SKB_CACHE_HALF);
1067 		nc->skb_count = NAPI_SKB_CACHE_HALF;
1068 	}
1069 }
1070 
__kfree_skb_defer(struct sk_buff * skb)1071 void __kfree_skb_defer(struct sk_buff *skb)
1072 {
1073 	skb_release_all(skb);
1074 	napi_skb_cache_put(skb);
1075 }
1076 
napi_skb_free_stolen_head(struct sk_buff * skb)1077 void napi_skb_free_stolen_head(struct sk_buff *skb)
1078 {
1079 	if (unlikely(skb->slow_gro)) {
1080 		nf_reset_ct(skb);
1081 		skb_dst_drop(skb);
1082 		skb_ext_put(skb);
1083 		skb_orphan(skb);
1084 		skb->slow_gro = 0;
1085 	}
1086 	napi_skb_cache_put(skb);
1087 }
1088 
napi_consume_skb(struct sk_buff * skb,int budget)1089 void napi_consume_skb(struct sk_buff *skb, int budget)
1090 {
1091 	/* Zero budget indicate non-NAPI context called us, like netpoll */
1092 	if (unlikely(!budget)) {
1093 		dev_consume_skb_any(skb);
1094 		return;
1095 	}
1096 
1097 	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1098 
1099 	if (!skb_unref(skb))
1100 		return;
1101 
1102 	/* if reaching here SKB is ready to free */
1103 	trace_consume_skb(skb);
1104 
1105 	/* if SKB is a clone, don't handle this case */
1106 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1107 		__kfree_skb(skb);
1108 		return;
1109 	}
1110 
1111 	skb_release_all(skb);
1112 	napi_skb_cache_put(skb);
1113 }
1114 EXPORT_SYMBOL(napi_consume_skb);
1115 
1116 /* Make sure a field is contained by headers group */
1117 #define CHECK_SKB_FIELD(field) \
1118 	BUILD_BUG_ON(offsetof(struct sk_buff, field) !=		\
1119 		     offsetof(struct sk_buff, headers.field));	\
1120 
__copy_skb_header(struct sk_buff * new,const struct sk_buff * old)1121 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1122 {
1123 	new->tstamp		= old->tstamp;
1124 	/* We do not copy old->sk */
1125 	new->dev		= old->dev;
1126 	memcpy(new->cb, old->cb, sizeof(old->cb));
1127 	skb_dst_copy(new, old);
1128 	__skb_ext_copy(new, old);
1129 	__nf_copy(new, old, false);
1130 
1131 	/* Note : this field could be in the headers group.
1132 	 * It is not yet because we do not want to have a 16 bit hole
1133 	 */
1134 	new->queue_mapping = old->queue_mapping;
1135 
1136 	memcpy(&new->headers, &old->headers, sizeof(new->headers));
1137 	CHECK_SKB_FIELD(protocol);
1138 	CHECK_SKB_FIELD(csum);
1139 	CHECK_SKB_FIELD(hash);
1140 	CHECK_SKB_FIELD(priority);
1141 	CHECK_SKB_FIELD(skb_iif);
1142 	CHECK_SKB_FIELD(vlan_proto);
1143 	CHECK_SKB_FIELD(vlan_tci);
1144 	CHECK_SKB_FIELD(transport_header);
1145 	CHECK_SKB_FIELD(network_header);
1146 	CHECK_SKB_FIELD(mac_header);
1147 	CHECK_SKB_FIELD(inner_protocol);
1148 	CHECK_SKB_FIELD(inner_transport_header);
1149 	CHECK_SKB_FIELD(inner_network_header);
1150 	CHECK_SKB_FIELD(inner_mac_header);
1151 	CHECK_SKB_FIELD(mark);
1152 #ifdef CONFIG_NETWORK_SECMARK
1153 	CHECK_SKB_FIELD(secmark);
1154 #endif
1155 #ifdef CONFIG_NET_RX_BUSY_POLL
1156 	CHECK_SKB_FIELD(napi_id);
1157 #endif
1158 	CHECK_SKB_FIELD(alloc_cpu);
1159 #ifdef CONFIG_XPS
1160 	CHECK_SKB_FIELD(sender_cpu);
1161 #endif
1162 #ifdef CONFIG_NET_SCHED
1163 	CHECK_SKB_FIELD(tc_index);
1164 #endif
1165 
1166 }
1167 
1168 /*
1169  * You should not add any new code to this function.  Add it to
1170  * __copy_skb_header above instead.
1171  */
__skb_clone(struct sk_buff * n,struct sk_buff * skb)1172 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1173 {
1174 #define C(x) n->x = skb->x
1175 
1176 	n->next = n->prev = NULL;
1177 	n->sk = NULL;
1178 	__copy_skb_header(n, skb);
1179 
1180 	C(len);
1181 	C(data_len);
1182 	C(mac_len);
1183 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1184 	n->cloned = 1;
1185 	n->nohdr = 0;
1186 	n->peeked = 0;
1187 	C(pfmemalloc);
1188 	C(pp_recycle);
1189 	n->destructor = NULL;
1190 	C(tail);
1191 	C(end);
1192 	C(head);
1193 	C(head_frag);
1194 	C(data);
1195 	C(truesize);
1196 	refcount_set(&n->users, 1);
1197 
1198 	atomic_inc(&(skb_shinfo(skb)->dataref));
1199 	skb->cloned = 1;
1200 
1201 	return n;
1202 #undef C
1203 }
1204 
1205 /**
1206  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1207  * @first: first sk_buff of the msg
1208  */
alloc_skb_for_msg(struct sk_buff * first)1209 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1210 {
1211 	struct sk_buff *n;
1212 
1213 	n = alloc_skb(0, GFP_ATOMIC);
1214 	if (!n)
1215 		return NULL;
1216 
1217 	n->len = first->len;
1218 	n->data_len = first->len;
1219 	n->truesize = first->truesize;
1220 
1221 	skb_shinfo(n)->frag_list = first;
1222 
1223 	__copy_skb_header(n, first);
1224 	n->destructor = NULL;
1225 
1226 	return n;
1227 }
1228 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1229 
1230 /**
1231  *	skb_morph	-	morph one skb into another
1232  *	@dst: the skb to receive the contents
1233  *	@src: the skb to supply the contents
1234  *
1235  *	This is identical to skb_clone except that the target skb is
1236  *	supplied by the user.
1237  *
1238  *	The target skb is returned upon exit.
1239  */
skb_morph(struct sk_buff * dst,struct sk_buff * src)1240 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1241 {
1242 	skb_release_all(dst);
1243 	return __skb_clone(dst, src);
1244 }
1245 EXPORT_SYMBOL_GPL(skb_morph);
1246 
mm_account_pinned_pages(struct mmpin * mmp,size_t size)1247 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1248 {
1249 	unsigned long max_pg, num_pg, new_pg, old_pg;
1250 	struct user_struct *user;
1251 
1252 	if (capable(CAP_IPC_LOCK) || !size)
1253 		return 0;
1254 
1255 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1256 	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1257 	user = mmp->user ? : current_user();
1258 
1259 	do {
1260 		old_pg = atomic_long_read(&user->locked_vm);
1261 		new_pg = old_pg + num_pg;
1262 		if (new_pg > max_pg)
1263 			return -ENOBUFS;
1264 	} while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1265 		 old_pg);
1266 
1267 	if (!mmp->user) {
1268 		mmp->user = get_uid(user);
1269 		mmp->num_pg = num_pg;
1270 	} else {
1271 		mmp->num_pg += num_pg;
1272 	}
1273 
1274 	return 0;
1275 }
1276 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1277 
mm_unaccount_pinned_pages(struct mmpin * mmp)1278 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1279 {
1280 	if (mmp->user) {
1281 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1282 		free_uid(mmp->user);
1283 	}
1284 }
1285 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1286 
msg_zerocopy_alloc(struct sock * sk,size_t size)1287 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1288 {
1289 	struct ubuf_info_msgzc *uarg;
1290 	struct sk_buff *skb;
1291 
1292 	WARN_ON_ONCE(!in_task());
1293 
1294 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1295 	if (!skb)
1296 		return NULL;
1297 
1298 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1299 	uarg = (void *)skb->cb;
1300 	uarg->mmp.user = NULL;
1301 
1302 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1303 		kfree_skb(skb);
1304 		return NULL;
1305 	}
1306 
1307 	uarg->ubuf.callback = msg_zerocopy_callback;
1308 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1309 	uarg->len = 1;
1310 	uarg->bytelen = size;
1311 	uarg->zerocopy = 1;
1312 	uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1313 	refcount_set(&uarg->ubuf.refcnt, 1);
1314 	sock_hold(sk);
1315 
1316 	return &uarg->ubuf;
1317 }
1318 
skb_from_uarg(struct ubuf_info_msgzc * uarg)1319 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1320 {
1321 	return container_of((void *)uarg, struct sk_buff, cb);
1322 }
1323 
msg_zerocopy_realloc(struct sock * sk,size_t size,struct ubuf_info * uarg)1324 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1325 				       struct ubuf_info *uarg)
1326 {
1327 	if (uarg) {
1328 		struct ubuf_info_msgzc *uarg_zc;
1329 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1330 		u32 bytelen, next;
1331 
1332 		/* there might be non MSG_ZEROCOPY users */
1333 		if (uarg->callback != msg_zerocopy_callback)
1334 			return NULL;
1335 
1336 		/* realloc only when socket is locked (TCP, UDP cork),
1337 		 * so uarg->len and sk_zckey access is serialized
1338 		 */
1339 		if (!sock_owned_by_user(sk)) {
1340 			WARN_ON_ONCE(1);
1341 			return NULL;
1342 		}
1343 
1344 		uarg_zc = uarg_to_msgzc(uarg);
1345 		bytelen = uarg_zc->bytelen + size;
1346 		if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1347 			/* TCP can create new skb to attach new uarg */
1348 			if (sk->sk_type == SOCK_STREAM)
1349 				goto new_alloc;
1350 			return NULL;
1351 		}
1352 
1353 		next = (u32)atomic_read(&sk->sk_zckey);
1354 		if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1355 			if (mm_account_pinned_pages(&uarg_zc->mmp, size))
1356 				return NULL;
1357 			uarg_zc->len++;
1358 			uarg_zc->bytelen = bytelen;
1359 			atomic_set(&sk->sk_zckey, ++next);
1360 
1361 			/* no extra ref when appending to datagram (MSG_MORE) */
1362 			if (sk->sk_type == SOCK_STREAM)
1363 				net_zcopy_get(uarg);
1364 
1365 			return uarg;
1366 		}
1367 	}
1368 
1369 new_alloc:
1370 	return msg_zerocopy_alloc(sk, size);
1371 }
1372 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1373 
skb_zerocopy_notify_extend(struct sk_buff * skb,u32 lo,u16 len)1374 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1375 {
1376 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1377 	u32 old_lo, old_hi;
1378 	u64 sum_len;
1379 
1380 	old_lo = serr->ee.ee_info;
1381 	old_hi = serr->ee.ee_data;
1382 	sum_len = old_hi - old_lo + 1ULL + len;
1383 
1384 	if (sum_len >= (1ULL << 32))
1385 		return false;
1386 
1387 	if (lo != old_hi + 1)
1388 		return false;
1389 
1390 	serr->ee.ee_data += len;
1391 	return true;
1392 }
1393 
__msg_zerocopy_callback(struct ubuf_info_msgzc * uarg)1394 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1395 {
1396 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1397 	struct sock_exterr_skb *serr;
1398 	struct sock *sk = skb->sk;
1399 	struct sk_buff_head *q;
1400 	unsigned long flags;
1401 	bool is_zerocopy;
1402 	u32 lo, hi;
1403 	u16 len;
1404 
1405 	mm_unaccount_pinned_pages(&uarg->mmp);
1406 
1407 	/* if !len, there was only 1 call, and it was aborted
1408 	 * so do not queue a completion notification
1409 	 */
1410 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1411 		goto release;
1412 
1413 	len = uarg->len;
1414 	lo = uarg->id;
1415 	hi = uarg->id + len - 1;
1416 	is_zerocopy = uarg->zerocopy;
1417 
1418 	serr = SKB_EXT_ERR(skb);
1419 	memset(serr, 0, sizeof(*serr));
1420 	serr->ee.ee_errno = 0;
1421 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1422 	serr->ee.ee_data = hi;
1423 	serr->ee.ee_info = lo;
1424 	if (!is_zerocopy)
1425 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1426 
1427 	q = &sk->sk_error_queue;
1428 	spin_lock_irqsave(&q->lock, flags);
1429 	tail = skb_peek_tail(q);
1430 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1431 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1432 		__skb_queue_tail(q, skb);
1433 		skb = NULL;
1434 	}
1435 	spin_unlock_irqrestore(&q->lock, flags);
1436 
1437 	sk_error_report(sk);
1438 
1439 release:
1440 	consume_skb(skb);
1441 	sock_put(sk);
1442 }
1443 
msg_zerocopy_callback(struct sk_buff * skb,struct ubuf_info * uarg,bool success)1444 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1445 			   bool success)
1446 {
1447 	struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1448 
1449 	uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1450 
1451 	if (refcount_dec_and_test(&uarg->refcnt))
1452 		__msg_zerocopy_callback(uarg_zc);
1453 }
1454 EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1455 
msg_zerocopy_put_abort(struct ubuf_info * uarg,bool have_uref)1456 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1457 {
1458 	struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1459 
1460 	atomic_dec(&sk->sk_zckey);
1461 	uarg_to_msgzc(uarg)->len--;
1462 
1463 	if (have_uref)
1464 		msg_zerocopy_callback(NULL, uarg, true);
1465 }
1466 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1467 
skb_zerocopy_iter_stream(struct sock * sk,struct sk_buff * skb,struct msghdr * msg,int len,struct ubuf_info * uarg)1468 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1469 			     struct msghdr *msg, int len,
1470 			     struct ubuf_info *uarg)
1471 {
1472 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1473 	int err, orig_len = skb->len;
1474 
1475 	/* An skb can only point to one uarg. This edge case happens when
1476 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1477 	 */
1478 	if (orig_uarg && uarg != orig_uarg)
1479 		return -EEXIST;
1480 
1481 	err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len);
1482 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1483 		struct sock *save_sk = skb->sk;
1484 
1485 		/* Streams do not free skb on error. Reset to prev state. */
1486 		iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1487 		skb->sk = sk;
1488 		___pskb_trim(skb, orig_len);
1489 		skb->sk = save_sk;
1490 		return err;
1491 	}
1492 
1493 	skb_zcopy_set(skb, uarg, NULL);
1494 	return skb->len - orig_len;
1495 }
1496 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1497 
__skb_zcopy_downgrade_managed(struct sk_buff * skb)1498 void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1499 {
1500 	int i;
1501 
1502 	skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1503 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1504 		skb_frag_ref(skb, i);
1505 }
1506 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1507 
skb_zerocopy_clone(struct sk_buff * nskb,struct sk_buff * orig,gfp_t gfp_mask)1508 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1509 			      gfp_t gfp_mask)
1510 {
1511 	if (skb_zcopy(orig)) {
1512 		if (skb_zcopy(nskb)) {
1513 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1514 			if (!gfp_mask) {
1515 				WARN_ON_ONCE(1);
1516 				return -ENOMEM;
1517 			}
1518 			if (skb_uarg(nskb) == skb_uarg(orig))
1519 				return 0;
1520 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1521 				return -EIO;
1522 		}
1523 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1524 	}
1525 	return 0;
1526 }
1527 
1528 /**
1529  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1530  *	@skb: the skb to modify
1531  *	@gfp_mask: allocation priority
1532  *
1533  *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1534  *	It will copy all frags into kernel and drop the reference
1535  *	to userspace pages.
1536  *
1537  *	If this function is called from an interrupt gfp_mask() must be
1538  *	%GFP_ATOMIC.
1539  *
1540  *	Returns 0 on success or a negative error code on failure
1541  *	to allocate kernel memory to copy to.
1542  */
skb_copy_ubufs(struct sk_buff * skb,gfp_t gfp_mask)1543 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1544 {
1545 	int num_frags = skb_shinfo(skb)->nr_frags;
1546 	struct page *page, *head = NULL;
1547 	int i, new_frags;
1548 	u32 d_off;
1549 
1550 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1551 		return -EINVAL;
1552 
1553 	if (!num_frags)
1554 		goto release;
1555 
1556 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1557 	for (i = 0; i < new_frags; i++) {
1558 		page = alloc_page(gfp_mask);
1559 		if (!page) {
1560 			while (head) {
1561 				struct page *next = (struct page *)page_private(head);
1562 				put_page(head);
1563 				head = next;
1564 			}
1565 			return -ENOMEM;
1566 		}
1567 		set_page_private(page, (unsigned long)head);
1568 		head = page;
1569 	}
1570 
1571 	page = head;
1572 	d_off = 0;
1573 	for (i = 0; i < num_frags; i++) {
1574 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1575 		u32 p_off, p_len, copied;
1576 		struct page *p;
1577 		u8 *vaddr;
1578 
1579 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1580 				      p, p_off, p_len, copied) {
1581 			u32 copy, done = 0;
1582 			vaddr = kmap_atomic(p);
1583 
1584 			while (done < p_len) {
1585 				if (d_off == PAGE_SIZE) {
1586 					d_off = 0;
1587 					page = (struct page *)page_private(page);
1588 				}
1589 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1590 				memcpy(page_address(page) + d_off,
1591 				       vaddr + p_off + done, copy);
1592 				done += copy;
1593 				d_off += copy;
1594 			}
1595 			kunmap_atomic(vaddr);
1596 		}
1597 	}
1598 
1599 	/* skb frags release userspace buffers */
1600 	for (i = 0; i < num_frags; i++)
1601 		skb_frag_unref(skb, i);
1602 
1603 	/* skb frags point to kernel buffers */
1604 	for (i = 0; i < new_frags - 1; i++) {
1605 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1606 		head = (struct page *)page_private(head);
1607 	}
1608 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1609 	skb_shinfo(skb)->nr_frags = new_frags;
1610 
1611 release:
1612 	skb_zcopy_clear(skb, false);
1613 	return 0;
1614 }
1615 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1616 
1617 /**
1618  *	skb_clone	-	duplicate an sk_buff
1619  *	@skb: buffer to clone
1620  *	@gfp_mask: allocation priority
1621  *
1622  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1623  *	copies share the same packet data but not structure. The new
1624  *	buffer has a reference count of 1. If the allocation fails the
1625  *	function returns %NULL otherwise the new buffer is returned.
1626  *
1627  *	If this function is called from an interrupt gfp_mask() must be
1628  *	%GFP_ATOMIC.
1629  */
1630 
skb_clone(struct sk_buff * skb,gfp_t gfp_mask)1631 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1632 {
1633 	struct sk_buff_fclones *fclones = container_of(skb,
1634 						       struct sk_buff_fclones,
1635 						       skb1);
1636 	struct sk_buff *n;
1637 
1638 	if (skb_orphan_frags(skb, gfp_mask))
1639 		return NULL;
1640 
1641 	if (skb->fclone == SKB_FCLONE_ORIG &&
1642 	    refcount_read(&fclones->fclone_ref) == 1) {
1643 		n = &fclones->skb2;
1644 		refcount_set(&fclones->fclone_ref, 2);
1645 		n->fclone = SKB_FCLONE_CLONE;
1646 	} else {
1647 		if (skb_pfmemalloc(skb))
1648 			gfp_mask |= __GFP_MEMALLOC;
1649 
1650 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1651 		if (!n)
1652 			return NULL;
1653 
1654 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1655 	}
1656 
1657 	return __skb_clone(n, skb);
1658 }
1659 EXPORT_SYMBOL(skb_clone);
1660 
skb_headers_offset_update(struct sk_buff * skb,int off)1661 void skb_headers_offset_update(struct sk_buff *skb, int off)
1662 {
1663 	/* Only adjust this if it actually is csum_start rather than csum */
1664 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1665 		skb->csum_start += off;
1666 	/* {transport,network,mac}_header and tail are relative to skb->head */
1667 	skb->transport_header += off;
1668 	skb->network_header   += off;
1669 	if (skb_mac_header_was_set(skb))
1670 		skb->mac_header += off;
1671 	skb->inner_transport_header += off;
1672 	skb->inner_network_header += off;
1673 	skb->inner_mac_header += off;
1674 }
1675 EXPORT_SYMBOL(skb_headers_offset_update);
1676 
skb_copy_header(struct sk_buff * new,const struct sk_buff * old)1677 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1678 {
1679 	__copy_skb_header(new, old);
1680 
1681 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1682 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1683 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1684 }
1685 EXPORT_SYMBOL(skb_copy_header);
1686 
skb_alloc_rx_flag(const struct sk_buff * skb)1687 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1688 {
1689 	if (skb_pfmemalloc(skb))
1690 		return SKB_ALLOC_RX;
1691 	return 0;
1692 }
1693 
1694 /**
1695  *	skb_copy	-	create private copy of an sk_buff
1696  *	@skb: buffer to copy
1697  *	@gfp_mask: allocation priority
1698  *
1699  *	Make a copy of both an &sk_buff and its data. This is used when the
1700  *	caller wishes to modify the data and needs a private copy of the
1701  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1702  *	on success. The returned buffer has a reference count of 1.
1703  *
1704  *	As by-product this function converts non-linear &sk_buff to linear
1705  *	one, so that &sk_buff becomes completely private and caller is allowed
1706  *	to modify all the data of returned buffer. This means that this
1707  *	function is not recommended for use in circumstances when only
1708  *	header is going to be modified. Use pskb_copy() instead.
1709  */
1710 
skb_copy(const struct sk_buff * skb,gfp_t gfp_mask)1711 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1712 {
1713 	int headerlen = skb_headroom(skb);
1714 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1715 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1716 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1717 
1718 	if (!n)
1719 		return NULL;
1720 
1721 	/* Set the data pointer */
1722 	skb_reserve(n, headerlen);
1723 	/* Set the tail pointer and length */
1724 	skb_put(n, skb->len);
1725 
1726 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1727 
1728 	skb_copy_header(n, skb);
1729 	return n;
1730 }
1731 EXPORT_SYMBOL(skb_copy);
1732 
1733 /**
1734  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1735  *	@skb: buffer to copy
1736  *	@headroom: headroom of new skb
1737  *	@gfp_mask: allocation priority
1738  *	@fclone: if true allocate the copy of the skb from the fclone
1739  *	cache instead of the head cache; it is recommended to set this
1740  *	to true for the cases where the copy will likely be cloned
1741  *
1742  *	Make a copy of both an &sk_buff and part of its data, located
1743  *	in header. Fragmented data remain shared. This is used when
1744  *	the caller wishes to modify only header of &sk_buff and needs
1745  *	private copy of the header to alter. Returns %NULL on failure
1746  *	or the pointer to the buffer on success.
1747  *	The returned buffer has a reference count of 1.
1748  */
1749 
__pskb_copy_fclone(struct sk_buff * skb,int headroom,gfp_t gfp_mask,bool fclone)1750 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1751 				   gfp_t gfp_mask, bool fclone)
1752 {
1753 	unsigned int size = skb_headlen(skb) + headroom;
1754 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1755 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1756 
1757 	if (!n)
1758 		goto out;
1759 
1760 	/* Set the data pointer */
1761 	skb_reserve(n, headroom);
1762 	/* Set the tail pointer and length */
1763 	skb_put(n, skb_headlen(skb));
1764 	/* Copy the bytes */
1765 	skb_copy_from_linear_data(skb, n->data, n->len);
1766 
1767 	n->truesize += skb->data_len;
1768 	n->data_len  = skb->data_len;
1769 	n->len	     = skb->len;
1770 
1771 	if (skb_shinfo(skb)->nr_frags) {
1772 		int i;
1773 
1774 		if (skb_orphan_frags(skb, gfp_mask) ||
1775 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1776 			kfree_skb(n);
1777 			n = NULL;
1778 			goto out;
1779 		}
1780 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1781 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1782 			skb_frag_ref(skb, i);
1783 		}
1784 		skb_shinfo(n)->nr_frags = i;
1785 	}
1786 
1787 	if (skb_has_frag_list(skb)) {
1788 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1789 		skb_clone_fraglist(n);
1790 	}
1791 
1792 	skb_copy_header(n, skb);
1793 out:
1794 	return n;
1795 }
1796 EXPORT_SYMBOL(__pskb_copy_fclone);
1797 
1798 /**
1799  *	pskb_expand_head - reallocate header of &sk_buff
1800  *	@skb: buffer to reallocate
1801  *	@nhead: room to add at head
1802  *	@ntail: room to add at tail
1803  *	@gfp_mask: allocation priority
1804  *
1805  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1806  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1807  *	reference count of 1. Returns zero in the case of success or error,
1808  *	if expansion failed. In the last case, &sk_buff is not changed.
1809  *
1810  *	All the pointers pointing into skb header may change and must be
1811  *	reloaded after call to this function.
1812  */
1813 
pskb_expand_head(struct sk_buff * skb,int nhead,int ntail,gfp_t gfp_mask)1814 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1815 		     gfp_t gfp_mask)
1816 {
1817 	int i, osize = skb_end_offset(skb);
1818 	int size = osize + nhead + ntail;
1819 	long off;
1820 	u8 *data;
1821 
1822 	BUG_ON(nhead < 0);
1823 
1824 	BUG_ON(skb_shared(skb));
1825 
1826 	skb_zcopy_downgrade_managed(skb);
1827 
1828 	size = SKB_DATA_ALIGN(size);
1829 
1830 	if (skb_pfmemalloc(skb))
1831 		gfp_mask |= __GFP_MEMALLOC;
1832 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1833 			       gfp_mask, NUMA_NO_NODE, NULL);
1834 	if (!data)
1835 		goto nodata;
1836 	size = SKB_WITH_OVERHEAD(ksize(data));
1837 
1838 	/* Copy only real data... and, alas, header. This should be
1839 	 * optimized for the cases when header is void.
1840 	 */
1841 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1842 
1843 	memcpy((struct skb_shared_info *)(data + size),
1844 	       skb_shinfo(skb),
1845 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1846 
1847 	/*
1848 	 * if shinfo is shared we must drop the old head gracefully, but if it
1849 	 * is not we can just drop the old head and let the existing refcount
1850 	 * be since all we did is relocate the values
1851 	 */
1852 	if (skb_cloned(skb)) {
1853 		if (skb_orphan_frags(skb, gfp_mask))
1854 			goto nofrags;
1855 		if (skb_zcopy(skb))
1856 			refcount_inc(&skb_uarg(skb)->refcnt);
1857 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1858 			skb_frag_ref(skb, i);
1859 
1860 		if (skb_has_frag_list(skb))
1861 			skb_clone_fraglist(skb);
1862 
1863 		skb_release_data(skb);
1864 	} else {
1865 		skb_free_head(skb);
1866 	}
1867 	off = (data + nhead) - skb->head;
1868 
1869 	skb->head     = data;
1870 	skb->head_frag = 0;
1871 	skb->data    += off;
1872 
1873 	skb_set_end_offset(skb, size);
1874 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1875 	off           = nhead;
1876 #endif
1877 	skb->tail	      += off;
1878 	skb_headers_offset_update(skb, nhead);
1879 	skb->cloned   = 0;
1880 	skb->hdr_len  = 0;
1881 	skb->nohdr    = 0;
1882 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1883 
1884 	skb_metadata_clear(skb);
1885 
1886 	/* It is not generally safe to change skb->truesize.
1887 	 * For the moment, we really care of rx path, or
1888 	 * when skb is orphaned (not attached to a socket).
1889 	 */
1890 	if (!skb->sk || skb->destructor == sock_edemux)
1891 		skb->truesize += size - osize;
1892 
1893 	return 0;
1894 
1895 nofrags:
1896 	kfree(data);
1897 nodata:
1898 	return -ENOMEM;
1899 }
1900 EXPORT_SYMBOL(pskb_expand_head);
1901 
1902 /* Make private copy of skb with writable head and some headroom */
1903 
skb_realloc_headroom(struct sk_buff * skb,unsigned int headroom)1904 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1905 {
1906 	struct sk_buff *skb2;
1907 	int delta = headroom - skb_headroom(skb);
1908 
1909 	if (delta <= 0)
1910 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1911 	else {
1912 		skb2 = skb_clone(skb, GFP_ATOMIC);
1913 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1914 					     GFP_ATOMIC)) {
1915 			kfree_skb(skb2);
1916 			skb2 = NULL;
1917 		}
1918 	}
1919 	return skb2;
1920 }
1921 EXPORT_SYMBOL(skb_realloc_headroom);
1922 
__skb_unclone_keeptruesize(struct sk_buff * skb,gfp_t pri)1923 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1924 {
1925 	unsigned int saved_end_offset, saved_truesize;
1926 	struct skb_shared_info *shinfo;
1927 	int res;
1928 
1929 	saved_end_offset = skb_end_offset(skb);
1930 	saved_truesize = skb->truesize;
1931 
1932 	res = pskb_expand_head(skb, 0, 0, pri);
1933 	if (res)
1934 		return res;
1935 
1936 	skb->truesize = saved_truesize;
1937 
1938 	if (likely(skb_end_offset(skb) == saved_end_offset))
1939 		return 0;
1940 
1941 	shinfo = skb_shinfo(skb);
1942 
1943 	/* We are about to change back skb->end,
1944 	 * we need to move skb_shinfo() to its new location.
1945 	 */
1946 	memmove(skb->head + saved_end_offset,
1947 		shinfo,
1948 		offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
1949 
1950 	skb_set_end_offset(skb, saved_end_offset);
1951 
1952 	return 0;
1953 }
1954 
1955 /**
1956  *	skb_expand_head - reallocate header of &sk_buff
1957  *	@skb: buffer to reallocate
1958  *	@headroom: needed headroom
1959  *
1960  *	Unlike skb_realloc_headroom, this one does not allocate a new skb
1961  *	if possible; copies skb->sk to new skb as needed
1962  *	and frees original skb in case of failures.
1963  *
1964  *	It expect increased headroom and generates warning otherwise.
1965  */
1966 
skb_expand_head(struct sk_buff * skb,unsigned int headroom)1967 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
1968 {
1969 	int delta = headroom - skb_headroom(skb);
1970 	int osize = skb_end_offset(skb);
1971 	struct sock *sk = skb->sk;
1972 
1973 	if (WARN_ONCE(delta <= 0,
1974 		      "%s is expecting an increase in the headroom", __func__))
1975 		return skb;
1976 
1977 	delta = SKB_DATA_ALIGN(delta);
1978 	/* pskb_expand_head() might crash, if skb is shared. */
1979 	if (skb_shared(skb) || !is_skb_wmem(skb)) {
1980 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
1981 
1982 		if (unlikely(!nskb))
1983 			goto fail;
1984 
1985 		if (sk)
1986 			skb_set_owner_w(nskb, sk);
1987 		consume_skb(skb);
1988 		skb = nskb;
1989 	}
1990 	if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
1991 		goto fail;
1992 
1993 	if (sk && is_skb_wmem(skb)) {
1994 		delta = skb_end_offset(skb) - osize;
1995 		refcount_add(delta, &sk->sk_wmem_alloc);
1996 		skb->truesize += delta;
1997 	}
1998 	return skb;
1999 
2000 fail:
2001 	kfree_skb(skb);
2002 	return NULL;
2003 }
2004 EXPORT_SYMBOL(skb_expand_head);
2005 
2006 /**
2007  *	skb_copy_expand	-	copy and expand sk_buff
2008  *	@skb: buffer to copy
2009  *	@newheadroom: new free bytes at head
2010  *	@newtailroom: new free bytes at tail
2011  *	@gfp_mask: allocation priority
2012  *
2013  *	Make a copy of both an &sk_buff and its data and while doing so
2014  *	allocate additional space.
2015  *
2016  *	This is used when the caller wishes to modify the data and needs a
2017  *	private copy of the data to alter as well as more space for new fields.
2018  *	Returns %NULL on failure or the pointer to the buffer
2019  *	on success. The returned buffer has a reference count of 1.
2020  *
2021  *	You must pass %GFP_ATOMIC as the allocation priority if this function
2022  *	is called from an interrupt.
2023  */
skb_copy_expand(const struct sk_buff * skb,int newheadroom,int newtailroom,gfp_t gfp_mask)2024 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2025 				int newheadroom, int newtailroom,
2026 				gfp_t gfp_mask)
2027 {
2028 	/*
2029 	 *	Allocate the copy buffer
2030 	 */
2031 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
2032 					gfp_mask, skb_alloc_rx_flag(skb),
2033 					NUMA_NO_NODE);
2034 	int oldheadroom = skb_headroom(skb);
2035 	int head_copy_len, head_copy_off;
2036 
2037 	if (!n)
2038 		return NULL;
2039 
2040 	skb_reserve(n, newheadroom);
2041 
2042 	/* Set the tail pointer and length */
2043 	skb_put(n, skb->len);
2044 
2045 	head_copy_len = oldheadroom;
2046 	head_copy_off = 0;
2047 	if (newheadroom <= head_copy_len)
2048 		head_copy_len = newheadroom;
2049 	else
2050 		head_copy_off = newheadroom - head_copy_len;
2051 
2052 	/* Copy the linear header and data. */
2053 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2054 			     skb->len + head_copy_len));
2055 
2056 	skb_copy_header(n, skb);
2057 
2058 	skb_headers_offset_update(n, newheadroom - oldheadroom);
2059 
2060 	return n;
2061 }
2062 EXPORT_SYMBOL(skb_copy_expand);
2063 
2064 /**
2065  *	__skb_pad		-	zero pad the tail of an skb
2066  *	@skb: buffer to pad
2067  *	@pad: space to pad
2068  *	@free_on_error: free buffer on error
2069  *
2070  *	Ensure that a buffer is followed by a padding area that is zero
2071  *	filled. Used by network drivers which may DMA or transfer data
2072  *	beyond the buffer end onto the wire.
2073  *
2074  *	May return error in out of memory cases. The skb is freed on error
2075  *	if @free_on_error is true.
2076  */
2077 
__skb_pad(struct sk_buff * skb,int pad,bool free_on_error)2078 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2079 {
2080 	int err;
2081 	int ntail;
2082 
2083 	/* If the skbuff is non linear tailroom is always zero.. */
2084 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2085 		memset(skb->data+skb->len, 0, pad);
2086 		return 0;
2087 	}
2088 
2089 	ntail = skb->data_len + pad - (skb->end - skb->tail);
2090 	if (likely(skb_cloned(skb) || ntail > 0)) {
2091 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2092 		if (unlikely(err))
2093 			goto free_skb;
2094 	}
2095 
2096 	/* FIXME: The use of this function with non-linear skb's really needs
2097 	 * to be audited.
2098 	 */
2099 	err = skb_linearize(skb);
2100 	if (unlikely(err))
2101 		goto free_skb;
2102 
2103 	memset(skb->data + skb->len, 0, pad);
2104 	return 0;
2105 
2106 free_skb:
2107 	if (free_on_error)
2108 		kfree_skb(skb);
2109 	return err;
2110 }
2111 EXPORT_SYMBOL(__skb_pad);
2112 
2113 /**
2114  *	pskb_put - add data to the tail of a potentially fragmented buffer
2115  *	@skb: start of the buffer to use
2116  *	@tail: tail fragment of the buffer to use
2117  *	@len: amount of data to add
2118  *
2119  *	This function extends the used data area of the potentially
2120  *	fragmented buffer. @tail must be the last fragment of @skb -- or
2121  *	@skb itself. If this would exceed the total buffer size the kernel
2122  *	will panic. A pointer to the first byte of the extra data is
2123  *	returned.
2124  */
2125 
pskb_put(struct sk_buff * skb,struct sk_buff * tail,int len)2126 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2127 {
2128 	if (tail != skb) {
2129 		skb->data_len += len;
2130 		skb->len += len;
2131 	}
2132 	return skb_put(tail, len);
2133 }
2134 EXPORT_SYMBOL_GPL(pskb_put);
2135 
2136 /**
2137  *	skb_put - add data to a buffer
2138  *	@skb: buffer to use
2139  *	@len: amount of data to add
2140  *
2141  *	This function extends the used data area of the buffer. If this would
2142  *	exceed the total buffer size the kernel will panic. A pointer to the
2143  *	first byte of the extra data is returned.
2144  */
skb_put(struct sk_buff * skb,unsigned int len)2145 void *skb_put(struct sk_buff *skb, unsigned int len)
2146 {
2147 	void *tmp = skb_tail_pointer(skb);
2148 	SKB_LINEAR_ASSERT(skb);
2149 	skb->tail += len;
2150 	skb->len  += len;
2151 	if (unlikely(skb->tail > skb->end))
2152 		skb_over_panic(skb, len, __builtin_return_address(0));
2153 	return tmp;
2154 }
2155 EXPORT_SYMBOL(skb_put);
2156 
2157 /**
2158  *	skb_push - add data to the start of a buffer
2159  *	@skb: buffer to use
2160  *	@len: amount of data to add
2161  *
2162  *	This function extends the used data area of the buffer at the buffer
2163  *	start. If this would exceed the total buffer headroom the kernel will
2164  *	panic. A pointer to the first byte of the extra data is returned.
2165  */
skb_push(struct sk_buff * skb,unsigned int len)2166 void *skb_push(struct sk_buff *skb, unsigned int len)
2167 {
2168 	skb->data -= len;
2169 	skb->len  += len;
2170 	if (unlikely(skb->data < skb->head))
2171 		skb_under_panic(skb, len, __builtin_return_address(0));
2172 	return skb->data;
2173 }
2174 EXPORT_SYMBOL(skb_push);
2175 
2176 /**
2177  *	skb_pull - remove data from the start of a buffer
2178  *	@skb: buffer to use
2179  *	@len: amount of data to remove
2180  *
2181  *	This function removes data from the start of a buffer, returning
2182  *	the memory to the headroom. A pointer to the next data in the buffer
2183  *	is returned. Once the data has been pulled future pushes will overwrite
2184  *	the old data.
2185  */
skb_pull(struct sk_buff * skb,unsigned int len)2186 void *skb_pull(struct sk_buff *skb, unsigned int len)
2187 {
2188 	return skb_pull_inline(skb, len);
2189 }
2190 EXPORT_SYMBOL(skb_pull);
2191 
2192 /**
2193  *	skb_pull_data - remove data from the start of a buffer returning its
2194  *	original position.
2195  *	@skb: buffer to use
2196  *	@len: amount of data to remove
2197  *
2198  *	This function removes data from the start of a buffer, returning
2199  *	the memory to the headroom. A pointer to the original data in the buffer
2200  *	is returned after checking if there is enough data to pull. Once the
2201  *	data has been pulled future pushes will overwrite the old data.
2202  */
skb_pull_data(struct sk_buff * skb,size_t len)2203 void *skb_pull_data(struct sk_buff *skb, size_t len)
2204 {
2205 	void *data = skb->data;
2206 
2207 	if (skb->len < len)
2208 		return NULL;
2209 
2210 	skb_pull(skb, len);
2211 
2212 	return data;
2213 }
2214 EXPORT_SYMBOL(skb_pull_data);
2215 
2216 /**
2217  *	skb_trim - remove end from a buffer
2218  *	@skb: buffer to alter
2219  *	@len: new length
2220  *
2221  *	Cut the length of a buffer down by removing data from the tail. If
2222  *	the buffer is already under the length specified it is not modified.
2223  *	The skb must be linear.
2224  */
skb_trim(struct sk_buff * skb,unsigned int len)2225 void skb_trim(struct sk_buff *skb, unsigned int len)
2226 {
2227 	if (skb->len > len)
2228 		__skb_trim(skb, len);
2229 }
2230 EXPORT_SYMBOL(skb_trim);
2231 
2232 /* Trims skb to length len. It can change skb pointers.
2233  */
2234 
___pskb_trim(struct sk_buff * skb,unsigned int len)2235 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2236 {
2237 	struct sk_buff **fragp;
2238 	struct sk_buff *frag;
2239 	int offset = skb_headlen(skb);
2240 	int nfrags = skb_shinfo(skb)->nr_frags;
2241 	int i;
2242 	int err;
2243 
2244 	if (skb_cloned(skb) &&
2245 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2246 		return err;
2247 
2248 	i = 0;
2249 	if (offset >= len)
2250 		goto drop_pages;
2251 
2252 	for (; i < nfrags; i++) {
2253 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2254 
2255 		if (end < len) {
2256 			offset = end;
2257 			continue;
2258 		}
2259 
2260 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2261 
2262 drop_pages:
2263 		skb_shinfo(skb)->nr_frags = i;
2264 
2265 		for (; i < nfrags; i++)
2266 			skb_frag_unref(skb, i);
2267 
2268 		if (skb_has_frag_list(skb))
2269 			skb_drop_fraglist(skb);
2270 		goto done;
2271 	}
2272 
2273 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2274 	     fragp = &frag->next) {
2275 		int end = offset + frag->len;
2276 
2277 		if (skb_shared(frag)) {
2278 			struct sk_buff *nfrag;
2279 
2280 			nfrag = skb_clone(frag, GFP_ATOMIC);
2281 			if (unlikely(!nfrag))
2282 				return -ENOMEM;
2283 
2284 			nfrag->next = frag->next;
2285 			consume_skb(frag);
2286 			frag = nfrag;
2287 			*fragp = frag;
2288 		}
2289 
2290 		if (end < len) {
2291 			offset = end;
2292 			continue;
2293 		}
2294 
2295 		if (end > len &&
2296 		    unlikely((err = pskb_trim(frag, len - offset))))
2297 			return err;
2298 
2299 		if (frag->next)
2300 			skb_drop_list(&frag->next);
2301 		break;
2302 	}
2303 
2304 done:
2305 	if (len > skb_headlen(skb)) {
2306 		skb->data_len -= skb->len - len;
2307 		skb->len       = len;
2308 	} else {
2309 		skb->len       = len;
2310 		skb->data_len  = 0;
2311 		skb_set_tail_pointer(skb, len);
2312 	}
2313 
2314 	if (!skb->sk || skb->destructor == sock_edemux)
2315 		skb_condense(skb);
2316 	return 0;
2317 }
2318 EXPORT_SYMBOL(___pskb_trim);
2319 
2320 /* Note : use pskb_trim_rcsum() instead of calling this directly
2321  */
pskb_trim_rcsum_slow(struct sk_buff * skb,unsigned int len)2322 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2323 {
2324 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2325 		int delta = skb->len - len;
2326 
2327 		skb->csum = csum_block_sub(skb->csum,
2328 					   skb_checksum(skb, len, delta, 0),
2329 					   len);
2330 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2331 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2332 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2333 
2334 		if (offset + sizeof(__sum16) > hdlen)
2335 			return -EINVAL;
2336 	}
2337 	return __pskb_trim(skb, len);
2338 }
2339 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2340 
2341 /**
2342  *	__pskb_pull_tail - advance tail of skb header
2343  *	@skb: buffer to reallocate
2344  *	@delta: number of bytes to advance tail
2345  *
2346  *	The function makes a sense only on a fragmented &sk_buff,
2347  *	it expands header moving its tail forward and copying necessary
2348  *	data from fragmented part.
2349  *
2350  *	&sk_buff MUST have reference count of 1.
2351  *
2352  *	Returns %NULL (and &sk_buff does not change) if pull failed
2353  *	or value of new tail of skb in the case of success.
2354  *
2355  *	All the pointers pointing into skb header may change and must be
2356  *	reloaded after call to this function.
2357  */
2358 
2359 /* Moves tail of skb head forward, copying data from fragmented part,
2360  * when it is necessary.
2361  * 1. It may fail due to malloc failure.
2362  * 2. It may change skb pointers.
2363  *
2364  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2365  */
__pskb_pull_tail(struct sk_buff * skb,int delta)2366 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2367 {
2368 	/* If skb has not enough free space at tail, get new one
2369 	 * plus 128 bytes for future expansions. If we have enough
2370 	 * room at tail, reallocate without expansion only if skb is cloned.
2371 	 */
2372 	int i, k, eat = (skb->tail + delta) - skb->end;
2373 
2374 	if (eat > 0 || skb_cloned(skb)) {
2375 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2376 				     GFP_ATOMIC))
2377 			return NULL;
2378 	}
2379 
2380 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2381 			     skb_tail_pointer(skb), delta));
2382 
2383 	/* Optimization: no fragments, no reasons to preestimate
2384 	 * size of pulled pages. Superb.
2385 	 */
2386 	if (!skb_has_frag_list(skb))
2387 		goto pull_pages;
2388 
2389 	/* Estimate size of pulled pages. */
2390 	eat = delta;
2391 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2392 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2393 
2394 		if (size >= eat)
2395 			goto pull_pages;
2396 		eat -= size;
2397 	}
2398 
2399 	/* If we need update frag list, we are in troubles.
2400 	 * Certainly, it is possible to add an offset to skb data,
2401 	 * but taking into account that pulling is expected to
2402 	 * be very rare operation, it is worth to fight against
2403 	 * further bloating skb head and crucify ourselves here instead.
2404 	 * Pure masohism, indeed. 8)8)
2405 	 */
2406 	if (eat) {
2407 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2408 		struct sk_buff *clone = NULL;
2409 		struct sk_buff *insp = NULL;
2410 
2411 		do {
2412 			if (list->len <= eat) {
2413 				/* Eaten as whole. */
2414 				eat -= list->len;
2415 				list = list->next;
2416 				insp = list;
2417 			} else {
2418 				/* Eaten partially. */
2419 				if (skb_is_gso(skb) && !list->head_frag &&
2420 				    skb_headlen(list))
2421 					skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2422 
2423 				if (skb_shared(list)) {
2424 					/* Sucks! We need to fork list. :-( */
2425 					clone = skb_clone(list, GFP_ATOMIC);
2426 					if (!clone)
2427 						return NULL;
2428 					insp = list->next;
2429 					list = clone;
2430 				} else {
2431 					/* This may be pulled without
2432 					 * problems. */
2433 					insp = list;
2434 				}
2435 				if (!pskb_pull(list, eat)) {
2436 					kfree_skb(clone);
2437 					return NULL;
2438 				}
2439 				break;
2440 			}
2441 		} while (eat);
2442 
2443 		/* Free pulled out fragments. */
2444 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2445 			skb_shinfo(skb)->frag_list = list->next;
2446 			consume_skb(list);
2447 		}
2448 		/* And insert new clone at head. */
2449 		if (clone) {
2450 			clone->next = list;
2451 			skb_shinfo(skb)->frag_list = clone;
2452 		}
2453 	}
2454 	/* Success! Now we may commit changes to skb data. */
2455 
2456 pull_pages:
2457 	eat = delta;
2458 	k = 0;
2459 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2460 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2461 
2462 		if (size <= eat) {
2463 			skb_frag_unref(skb, i);
2464 			eat -= size;
2465 		} else {
2466 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2467 
2468 			*frag = skb_shinfo(skb)->frags[i];
2469 			if (eat) {
2470 				skb_frag_off_add(frag, eat);
2471 				skb_frag_size_sub(frag, eat);
2472 				if (!i)
2473 					goto end;
2474 				eat = 0;
2475 			}
2476 			k++;
2477 		}
2478 	}
2479 	skb_shinfo(skb)->nr_frags = k;
2480 
2481 end:
2482 	skb->tail     += delta;
2483 	skb->data_len -= delta;
2484 
2485 	if (!skb->data_len)
2486 		skb_zcopy_clear(skb, false);
2487 
2488 	return skb_tail_pointer(skb);
2489 }
2490 EXPORT_SYMBOL(__pskb_pull_tail);
2491 
2492 /**
2493  *	skb_copy_bits - copy bits from skb to kernel buffer
2494  *	@skb: source skb
2495  *	@offset: offset in source
2496  *	@to: destination buffer
2497  *	@len: number of bytes to copy
2498  *
2499  *	Copy the specified number of bytes from the source skb to the
2500  *	destination buffer.
2501  *
2502  *	CAUTION ! :
2503  *		If its prototype is ever changed,
2504  *		check arch/{*}/net/{*}.S files,
2505  *		since it is called from BPF assembly code.
2506  */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)2507 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2508 {
2509 	int start = skb_headlen(skb);
2510 	struct sk_buff *frag_iter;
2511 	int i, copy;
2512 
2513 	if (offset > (int)skb->len - len)
2514 		goto fault;
2515 
2516 	/* Copy header. */
2517 	if ((copy = start - offset) > 0) {
2518 		if (copy > len)
2519 			copy = len;
2520 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2521 		if ((len -= copy) == 0)
2522 			return 0;
2523 		offset += copy;
2524 		to     += copy;
2525 	}
2526 
2527 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2528 		int end;
2529 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2530 
2531 		WARN_ON(start > offset + len);
2532 
2533 		end = start + skb_frag_size(f);
2534 		if ((copy = end - offset) > 0) {
2535 			u32 p_off, p_len, copied;
2536 			struct page *p;
2537 			u8 *vaddr;
2538 
2539 			if (copy > len)
2540 				copy = len;
2541 
2542 			skb_frag_foreach_page(f,
2543 					      skb_frag_off(f) + offset - start,
2544 					      copy, p, p_off, p_len, copied) {
2545 				vaddr = kmap_atomic(p);
2546 				memcpy(to + copied, vaddr + p_off, p_len);
2547 				kunmap_atomic(vaddr);
2548 			}
2549 
2550 			if ((len -= copy) == 0)
2551 				return 0;
2552 			offset += copy;
2553 			to     += copy;
2554 		}
2555 		start = end;
2556 	}
2557 
2558 	skb_walk_frags(skb, frag_iter) {
2559 		int end;
2560 
2561 		WARN_ON(start > offset + len);
2562 
2563 		end = start + frag_iter->len;
2564 		if ((copy = end - offset) > 0) {
2565 			if (copy > len)
2566 				copy = len;
2567 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2568 				goto fault;
2569 			if ((len -= copy) == 0)
2570 				return 0;
2571 			offset += copy;
2572 			to     += copy;
2573 		}
2574 		start = end;
2575 	}
2576 
2577 	if (!len)
2578 		return 0;
2579 
2580 fault:
2581 	return -EFAULT;
2582 }
2583 EXPORT_SYMBOL(skb_copy_bits);
2584 
2585 /*
2586  * Callback from splice_to_pipe(), if we need to release some pages
2587  * at the end of the spd in case we error'ed out in filling the pipe.
2588  */
sock_spd_release(struct splice_pipe_desc * spd,unsigned int i)2589 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2590 {
2591 	put_page(spd->pages[i]);
2592 }
2593 
linear_to_page(struct page * page,unsigned int * len,unsigned int * offset,struct sock * sk)2594 static struct page *linear_to_page(struct page *page, unsigned int *len,
2595 				   unsigned int *offset,
2596 				   struct sock *sk)
2597 {
2598 	struct page_frag *pfrag = sk_page_frag(sk);
2599 
2600 	if (!sk_page_frag_refill(sk, pfrag))
2601 		return NULL;
2602 
2603 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2604 
2605 	memcpy(page_address(pfrag->page) + pfrag->offset,
2606 	       page_address(page) + *offset, *len);
2607 	*offset = pfrag->offset;
2608 	pfrag->offset += *len;
2609 
2610 	return pfrag->page;
2611 }
2612 
spd_can_coalesce(const struct splice_pipe_desc * spd,struct page * page,unsigned int offset)2613 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2614 			     struct page *page,
2615 			     unsigned int offset)
2616 {
2617 	return	spd->nr_pages &&
2618 		spd->pages[spd->nr_pages - 1] == page &&
2619 		(spd->partial[spd->nr_pages - 1].offset +
2620 		 spd->partial[spd->nr_pages - 1].len == offset);
2621 }
2622 
2623 /*
2624  * Fill page/offset/length into spd, if it can hold more pages.
2625  */
spd_fill_page(struct splice_pipe_desc * spd,struct pipe_inode_info * pipe,struct page * page,unsigned int * len,unsigned int offset,bool linear,struct sock * sk)2626 static bool spd_fill_page(struct splice_pipe_desc *spd,
2627 			  struct pipe_inode_info *pipe, struct page *page,
2628 			  unsigned int *len, unsigned int offset,
2629 			  bool linear,
2630 			  struct sock *sk)
2631 {
2632 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2633 		return true;
2634 
2635 	if (linear) {
2636 		page = linear_to_page(page, len, &offset, sk);
2637 		if (!page)
2638 			return true;
2639 	}
2640 	if (spd_can_coalesce(spd, page, offset)) {
2641 		spd->partial[spd->nr_pages - 1].len += *len;
2642 		return false;
2643 	}
2644 	get_page(page);
2645 	spd->pages[spd->nr_pages] = page;
2646 	spd->partial[spd->nr_pages].len = *len;
2647 	spd->partial[spd->nr_pages].offset = offset;
2648 	spd->nr_pages++;
2649 
2650 	return false;
2651 }
2652 
__splice_segment(struct page * page,unsigned int poff,unsigned int plen,unsigned int * off,unsigned int * len,struct splice_pipe_desc * spd,bool linear,struct sock * sk,struct pipe_inode_info * pipe)2653 static bool __splice_segment(struct page *page, unsigned int poff,
2654 			     unsigned int plen, unsigned int *off,
2655 			     unsigned int *len,
2656 			     struct splice_pipe_desc *spd, bool linear,
2657 			     struct sock *sk,
2658 			     struct pipe_inode_info *pipe)
2659 {
2660 	if (!*len)
2661 		return true;
2662 
2663 	/* skip this segment if already processed */
2664 	if (*off >= plen) {
2665 		*off -= plen;
2666 		return false;
2667 	}
2668 
2669 	/* ignore any bits we already processed */
2670 	poff += *off;
2671 	plen -= *off;
2672 	*off = 0;
2673 
2674 	do {
2675 		unsigned int flen = min(*len, plen);
2676 
2677 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2678 				  linear, sk))
2679 			return true;
2680 		poff += flen;
2681 		plen -= flen;
2682 		*len -= flen;
2683 	} while (*len && plen);
2684 
2685 	return false;
2686 }
2687 
2688 /*
2689  * Map linear and fragment data from the skb to spd. It reports true if the
2690  * pipe is full or if we already spliced the requested length.
2691  */
__skb_splice_bits(struct sk_buff * skb,struct pipe_inode_info * pipe,unsigned int * offset,unsigned int * len,struct splice_pipe_desc * spd,struct sock * sk)2692 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2693 			      unsigned int *offset, unsigned int *len,
2694 			      struct splice_pipe_desc *spd, struct sock *sk)
2695 {
2696 	int seg;
2697 	struct sk_buff *iter;
2698 
2699 	/* map the linear part :
2700 	 * If skb->head_frag is set, this 'linear' part is backed by a
2701 	 * fragment, and if the head is not shared with any clones then
2702 	 * we can avoid a copy since we own the head portion of this page.
2703 	 */
2704 	if (__splice_segment(virt_to_page(skb->data),
2705 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2706 			     skb_headlen(skb),
2707 			     offset, len, spd,
2708 			     skb_head_is_locked(skb),
2709 			     sk, pipe))
2710 		return true;
2711 
2712 	/*
2713 	 * then map the fragments
2714 	 */
2715 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2716 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2717 
2718 		if (__splice_segment(skb_frag_page(f),
2719 				     skb_frag_off(f), skb_frag_size(f),
2720 				     offset, len, spd, false, sk, pipe))
2721 			return true;
2722 	}
2723 
2724 	skb_walk_frags(skb, iter) {
2725 		if (*offset >= iter->len) {
2726 			*offset -= iter->len;
2727 			continue;
2728 		}
2729 		/* __skb_splice_bits() only fails if the output has no room
2730 		 * left, so no point in going over the frag_list for the error
2731 		 * case.
2732 		 */
2733 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2734 			return true;
2735 	}
2736 
2737 	return false;
2738 }
2739 
2740 /*
2741  * Map data from the skb to a pipe. Should handle both the linear part,
2742  * the fragments, and the frag list.
2743  */
skb_splice_bits(struct sk_buff * skb,struct sock * sk,unsigned int offset,struct pipe_inode_info * pipe,unsigned int tlen,unsigned int flags)2744 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2745 		    struct pipe_inode_info *pipe, unsigned int tlen,
2746 		    unsigned int flags)
2747 {
2748 	struct partial_page partial[MAX_SKB_FRAGS];
2749 	struct page *pages[MAX_SKB_FRAGS];
2750 	struct splice_pipe_desc spd = {
2751 		.pages = pages,
2752 		.partial = partial,
2753 		.nr_pages_max = MAX_SKB_FRAGS,
2754 		.ops = &nosteal_pipe_buf_ops,
2755 		.spd_release = sock_spd_release,
2756 	};
2757 	int ret = 0;
2758 
2759 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2760 
2761 	if (spd.nr_pages)
2762 		ret = splice_to_pipe(pipe, &spd);
2763 
2764 	return ret;
2765 }
2766 EXPORT_SYMBOL_GPL(skb_splice_bits);
2767 
sendmsg_unlocked(struct sock * sk,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)2768 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg,
2769 			    struct kvec *vec, size_t num, size_t size)
2770 {
2771 	struct socket *sock = sk->sk_socket;
2772 
2773 	if (!sock)
2774 		return -EINVAL;
2775 	return kernel_sendmsg(sock, msg, vec, num, size);
2776 }
2777 
sendpage_unlocked(struct sock * sk,struct page * page,int offset,size_t size,int flags)2778 static int sendpage_unlocked(struct sock *sk, struct page *page, int offset,
2779 			     size_t size, int flags)
2780 {
2781 	struct socket *sock = sk->sk_socket;
2782 
2783 	if (!sock)
2784 		return -EINVAL;
2785 	return kernel_sendpage(sock, page, offset, size, flags);
2786 }
2787 
2788 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg,
2789 			    struct kvec *vec, size_t num, size_t size);
2790 typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset,
2791 			     size_t size, int flags);
__skb_send_sock(struct sock * sk,struct sk_buff * skb,int offset,int len,sendmsg_func sendmsg,sendpage_func sendpage)2792 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
2793 			   int len, sendmsg_func sendmsg, sendpage_func sendpage)
2794 {
2795 	unsigned int orig_len = len;
2796 	struct sk_buff *head = skb;
2797 	unsigned short fragidx;
2798 	int slen, ret;
2799 
2800 do_frag_list:
2801 
2802 	/* Deal with head data */
2803 	while (offset < skb_headlen(skb) && len) {
2804 		struct kvec kv;
2805 		struct msghdr msg;
2806 
2807 		slen = min_t(int, len, skb_headlen(skb) - offset);
2808 		kv.iov_base = skb->data + offset;
2809 		kv.iov_len = slen;
2810 		memset(&msg, 0, sizeof(msg));
2811 		msg.msg_flags = MSG_DONTWAIT;
2812 
2813 		ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked,
2814 				      sendmsg_unlocked, sk, &msg, &kv, 1, slen);
2815 		if (ret <= 0)
2816 			goto error;
2817 
2818 		offset += ret;
2819 		len -= ret;
2820 	}
2821 
2822 	/* All the data was skb head? */
2823 	if (!len)
2824 		goto out;
2825 
2826 	/* Make offset relative to start of frags */
2827 	offset -= skb_headlen(skb);
2828 
2829 	/* Find where we are in frag list */
2830 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2831 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2832 
2833 		if (offset < skb_frag_size(frag))
2834 			break;
2835 
2836 		offset -= skb_frag_size(frag);
2837 	}
2838 
2839 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2840 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2841 
2842 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2843 
2844 		while (slen) {
2845 			ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked,
2846 					      sendpage_unlocked, sk,
2847 					      skb_frag_page(frag),
2848 					      skb_frag_off(frag) + offset,
2849 					      slen, MSG_DONTWAIT);
2850 			if (ret <= 0)
2851 				goto error;
2852 
2853 			len -= ret;
2854 			offset += ret;
2855 			slen -= ret;
2856 		}
2857 
2858 		offset = 0;
2859 	}
2860 
2861 	if (len) {
2862 		/* Process any frag lists */
2863 
2864 		if (skb == head) {
2865 			if (skb_has_frag_list(skb)) {
2866 				skb = skb_shinfo(skb)->frag_list;
2867 				goto do_frag_list;
2868 			}
2869 		} else if (skb->next) {
2870 			skb = skb->next;
2871 			goto do_frag_list;
2872 		}
2873 	}
2874 
2875 out:
2876 	return orig_len - len;
2877 
2878 error:
2879 	return orig_len == len ? ret : orig_len - len;
2880 }
2881 
2882 /* Send skb data on a socket. Socket must be locked. */
skb_send_sock_locked(struct sock * sk,struct sk_buff * skb,int offset,int len)2883 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2884 			 int len)
2885 {
2886 	return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked,
2887 			       kernel_sendpage_locked);
2888 }
2889 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2890 
2891 /* Send skb data on a socket. Socket must be unlocked. */
skb_send_sock(struct sock * sk,struct sk_buff * skb,int offset,int len)2892 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2893 {
2894 	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked,
2895 			       sendpage_unlocked);
2896 }
2897 
2898 /**
2899  *	skb_store_bits - store bits from kernel buffer to skb
2900  *	@skb: destination buffer
2901  *	@offset: offset in destination
2902  *	@from: source buffer
2903  *	@len: number of bytes to copy
2904  *
2905  *	Copy the specified number of bytes from the source buffer to the
2906  *	destination skb.  This function handles all the messy bits of
2907  *	traversing fragment lists and such.
2908  */
2909 
skb_store_bits(struct sk_buff * skb,int offset,const void * from,int len)2910 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2911 {
2912 	int start = skb_headlen(skb);
2913 	struct sk_buff *frag_iter;
2914 	int i, copy;
2915 
2916 	if (offset > (int)skb->len - len)
2917 		goto fault;
2918 
2919 	if ((copy = start - offset) > 0) {
2920 		if (copy > len)
2921 			copy = len;
2922 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2923 		if ((len -= copy) == 0)
2924 			return 0;
2925 		offset += copy;
2926 		from += copy;
2927 	}
2928 
2929 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2930 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2931 		int end;
2932 
2933 		WARN_ON(start > offset + len);
2934 
2935 		end = start + skb_frag_size(frag);
2936 		if ((copy = end - offset) > 0) {
2937 			u32 p_off, p_len, copied;
2938 			struct page *p;
2939 			u8 *vaddr;
2940 
2941 			if (copy > len)
2942 				copy = len;
2943 
2944 			skb_frag_foreach_page(frag,
2945 					      skb_frag_off(frag) + offset - start,
2946 					      copy, p, p_off, p_len, copied) {
2947 				vaddr = kmap_atomic(p);
2948 				memcpy(vaddr + p_off, from + copied, p_len);
2949 				kunmap_atomic(vaddr);
2950 			}
2951 
2952 			if ((len -= copy) == 0)
2953 				return 0;
2954 			offset += copy;
2955 			from += copy;
2956 		}
2957 		start = end;
2958 	}
2959 
2960 	skb_walk_frags(skb, frag_iter) {
2961 		int end;
2962 
2963 		WARN_ON(start > offset + len);
2964 
2965 		end = start + frag_iter->len;
2966 		if ((copy = end - offset) > 0) {
2967 			if (copy > len)
2968 				copy = len;
2969 			if (skb_store_bits(frag_iter, offset - start,
2970 					   from, copy))
2971 				goto fault;
2972 			if ((len -= copy) == 0)
2973 				return 0;
2974 			offset += copy;
2975 			from += copy;
2976 		}
2977 		start = end;
2978 	}
2979 	if (!len)
2980 		return 0;
2981 
2982 fault:
2983 	return -EFAULT;
2984 }
2985 EXPORT_SYMBOL(skb_store_bits);
2986 
2987 /* Checksum skb data. */
__skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum,const struct skb_checksum_ops * ops)2988 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2989 		      __wsum csum, const struct skb_checksum_ops *ops)
2990 {
2991 	int start = skb_headlen(skb);
2992 	int i, copy = start - offset;
2993 	struct sk_buff *frag_iter;
2994 	int pos = 0;
2995 
2996 	/* Checksum header. */
2997 	if (copy > 0) {
2998 		if (copy > len)
2999 			copy = len;
3000 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
3001 				       skb->data + offset, copy, csum);
3002 		if ((len -= copy) == 0)
3003 			return csum;
3004 		offset += copy;
3005 		pos	= copy;
3006 	}
3007 
3008 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3009 		int end;
3010 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3011 
3012 		WARN_ON(start > offset + len);
3013 
3014 		end = start + skb_frag_size(frag);
3015 		if ((copy = end - offset) > 0) {
3016 			u32 p_off, p_len, copied;
3017 			struct page *p;
3018 			__wsum csum2;
3019 			u8 *vaddr;
3020 
3021 			if (copy > len)
3022 				copy = len;
3023 
3024 			skb_frag_foreach_page(frag,
3025 					      skb_frag_off(frag) + offset - start,
3026 					      copy, p, p_off, p_len, copied) {
3027 				vaddr = kmap_atomic(p);
3028 				csum2 = INDIRECT_CALL_1(ops->update,
3029 							csum_partial_ext,
3030 							vaddr + p_off, p_len, 0);
3031 				kunmap_atomic(vaddr);
3032 				csum = INDIRECT_CALL_1(ops->combine,
3033 						       csum_block_add_ext, csum,
3034 						       csum2, pos, p_len);
3035 				pos += p_len;
3036 			}
3037 
3038 			if (!(len -= copy))
3039 				return csum;
3040 			offset += copy;
3041 		}
3042 		start = end;
3043 	}
3044 
3045 	skb_walk_frags(skb, frag_iter) {
3046 		int end;
3047 
3048 		WARN_ON(start > offset + len);
3049 
3050 		end = start + frag_iter->len;
3051 		if ((copy = end - offset) > 0) {
3052 			__wsum csum2;
3053 			if (copy > len)
3054 				copy = len;
3055 			csum2 = __skb_checksum(frag_iter, offset - start,
3056 					       copy, 0, ops);
3057 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
3058 					       csum, csum2, pos, copy);
3059 			if ((len -= copy) == 0)
3060 				return csum;
3061 			offset += copy;
3062 			pos    += copy;
3063 		}
3064 		start = end;
3065 	}
3066 	BUG_ON(len);
3067 
3068 	return csum;
3069 }
3070 EXPORT_SYMBOL(__skb_checksum);
3071 
skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum)3072 __wsum skb_checksum(const struct sk_buff *skb, int offset,
3073 		    int len, __wsum csum)
3074 {
3075 	const struct skb_checksum_ops ops = {
3076 		.update  = csum_partial_ext,
3077 		.combine = csum_block_add_ext,
3078 	};
3079 
3080 	return __skb_checksum(skb, offset, len, csum, &ops);
3081 }
3082 EXPORT_SYMBOL(skb_checksum);
3083 
3084 /* Both of above in one bottle. */
3085 
skb_copy_and_csum_bits(const struct sk_buff * skb,int offset,u8 * to,int len)3086 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3087 				    u8 *to, int len)
3088 {
3089 	int start = skb_headlen(skb);
3090 	int i, copy = start - offset;
3091 	struct sk_buff *frag_iter;
3092 	int pos = 0;
3093 	__wsum csum = 0;
3094 
3095 	/* Copy header. */
3096 	if (copy > 0) {
3097 		if (copy > len)
3098 			copy = len;
3099 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
3100 						 copy);
3101 		if ((len -= copy) == 0)
3102 			return csum;
3103 		offset += copy;
3104 		to     += copy;
3105 		pos	= copy;
3106 	}
3107 
3108 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3109 		int end;
3110 
3111 		WARN_ON(start > offset + len);
3112 
3113 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3114 		if ((copy = end - offset) > 0) {
3115 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3116 			u32 p_off, p_len, copied;
3117 			struct page *p;
3118 			__wsum csum2;
3119 			u8 *vaddr;
3120 
3121 			if (copy > len)
3122 				copy = len;
3123 
3124 			skb_frag_foreach_page(frag,
3125 					      skb_frag_off(frag) + offset - start,
3126 					      copy, p, p_off, p_len, copied) {
3127 				vaddr = kmap_atomic(p);
3128 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3129 								  to + copied,
3130 								  p_len);
3131 				kunmap_atomic(vaddr);
3132 				csum = csum_block_add(csum, csum2, pos);
3133 				pos += p_len;
3134 			}
3135 
3136 			if (!(len -= copy))
3137 				return csum;
3138 			offset += copy;
3139 			to     += copy;
3140 		}
3141 		start = end;
3142 	}
3143 
3144 	skb_walk_frags(skb, frag_iter) {
3145 		__wsum csum2;
3146 		int end;
3147 
3148 		WARN_ON(start > offset + len);
3149 
3150 		end = start + frag_iter->len;
3151 		if ((copy = end - offset) > 0) {
3152 			if (copy > len)
3153 				copy = len;
3154 			csum2 = skb_copy_and_csum_bits(frag_iter,
3155 						       offset - start,
3156 						       to, copy);
3157 			csum = csum_block_add(csum, csum2, pos);
3158 			if ((len -= copy) == 0)
3159 				return csum;
3160 			offset += copy;
3161 			to     += copy;
3162 			pos    += copy;
3163 		}
3164 		start = end;
3165 	}
3166 	BUG_ON(len);
3167 	return csum;
3168 }
3169 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3170 
__skb_checksum_complete_head(struct sk_buff * skb,int len)3171 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3172 {
3173 	__sum16 sum;
3174 
3175 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3176 	/* See comments in __skb_checksum_complete(). */
3177 	if (likely(!sum)) {
3178 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3179 		    !skb->csum_complete_sw)
3180 			netdev_rx_csum_fault(skb->dev, skb);
3181 	}
3182 	if (!skb_shared(skb))
3183 		skb->csum_valid = !sum;
3184 	return sum;
3185 }
3186 EXPORT_SYMBOL(__skb_checksum_complete_head);
3187 
3188 /* This function assumes skb->csum already holds pseudo header's checksum,
3189  * which has been changed from the hardware checksum, for example, by
3190  * __skb_checksum_validate_complete(). And, the original skb->csum must
3191  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3192  *
3193  * It returns non-zero if the recomputed checksum is still invalid, otherwise
3194  * zero. The new checksum is stored back into skb->csum unless the skb is
3195  * shared.
3196  */
__skb_checksum_complete(struct sk_buff * skb)3197 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3198 {
3199 	__wsum csum;
3200 	__sum16 sum;
3201 
3202 	csum = skb_checksum(skb, 0, skb->len, 0);
3203 
3204 	sum = csum_fold(csum_add(skb->csum, csum));
3205 	/* This check is inverted, because we already knew the hardware
3206 	 * checksum is invalid before calling this function. So, if the
3207 	 * re-computed checksum is valid instead, then we have a mismatch
3208 	 * between the original skb->csum and skb_checksum(). This means either
3209 	 * the original hardware checksum is incorrect or we screw up skb->csum
3210 	 * when moving skb->data around.
3211 	 */
3212 	if (likely(!sum)) {
3213 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3214 		    !skb->csum_complete_sw)
3215 			netdev_rx_csum_fault(skb->dev, skb);
3216 	}
3217 
3218 	if (!skb_shared(skb)) {
3219 		/* Save full packet checksum */
3220 		skb->csum = csum;
3221 		skb->ip_summed = CHECKSUM_COMPLETE;
3222 		skb->csum_complete_sw = 1;
3223 		skb->csum_valid = !sum;
3224 	}
3225 
3226 	return sum;
3227 }
3228 EXPORT_SYMBOL(__skb_checksum_complete);
3229 
warn_crc32c_csum_update(const void * buff,int len,__wsum sum)3230 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3231 {
3232 	net_warn_ratelimited(
3233 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3234 		__func__);
3235 	return 0;
3236 }
3237 
warn_crc32c_csum_combine(__wsum csum,__wsum csum2,int offset,int len)3238 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3239 				       int offset, int len)
3240 {
3241 	net_warn_ratelimited(
3242 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3243 		__func__);
3244 	return 0;
3245 }
3246 
3247 static const struct skb_checksum_ops default_crc32c_ops = {
3248 	.update  = warn_crc32c_csum_update,
3249 	.combine = warn_crc32c_csum_combine,
3250 };
3251 
3252 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3253 	&default_crc32c_ops;
3254 EXPORT_SYMBOL(crc32c_csum_stub);
3255 
3256  /**
3257  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3258  *	@from: source buffer
3259  *
3260  *	Calculates the amount of linear headroom needed in the 'to' skb passed
3261  *	into skb_zerocopy().
3262  */
3263 unsigned int
skb_zerocopy_headlen(const struct sk_buff * from)3264 skb_zerocopy_headlen(const struct sk_buff *from)
3265 {
3266 	unsigned int hlen = 0;
3267 
3268 	if (!from->head_frag ||
3269 	    skb_headlen(from) < L1_CACHE_BYTES ||
3270 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3271 		hlen = skb_headlen(from);
3272 		if (!hlen)
3273 			hlen = from->len;
3274 	}
3275 
3276 	if (skb_has_frag_list(from))
3277 		hlen = from->len;
3278 
3279 	return hlen;
3280 }
3281 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3282 
3283 /**
3284  *	skb_zerocopy - Zero copy skb to skb
3285  *	@to: destination buffer
3286  *	@from: source buffer
3287  *	@len: number of bytes to copy from source buffer
3288  *	@hlen: size of linear headroom in destination buffer
3289  *
3290  *	Copies up to `len` bytes from `from` to `to` by creating references
3291  *	to the frags in the source buffer.
3292  *
3293  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3294  *	headroom in the `to` buffer.
3295  *
3296  *	Return value:
3297  *	0: everything is OK
3298  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3299  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3300  */
3301 int
skb_zerocopy(struct sk_buff * to,struct sk_buff * from,int len,int hlen)3302 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3303 {
3304 	int i, j = 0;
3305 	int plen = 0; /* length of skb->head fragment */
3306 	int ret;
3307 	struct page *page;
3308 	unsigned int offset;
3309 
3310 	BUG_ON(!from->head_frag && !hlen);
3311 
3312 	/* dont bother with small payloads */
3313 	if (len <= skb_tailroom(to))
3314 		return skb_copy_bits(from, 0, skb_put(to, len), len);
3315 
3316 	if (hlen) {
3317 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3318 		if (unlikely(ret))
3319 			return ret;
3320 		len -= hlen;
3321 	} else {
3322 		plen = min_t(int, skb_headlen(from), len);
3323 		if (plen) {
3324 			page = virt_to_head_page(from->head);
3325 			offset = from->data - (unsigned char *)page_address(page);
3326 			__skb_fill_page_desc(to, 0, page, offset, plen);
3327 			get_page(page);
3328 			j = 1;
3329 			len -= plen;
3330 		}
3331 	}
3332 
3333 	skb_len_add(to, len + plen);
3334 
3335 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3336 		skb_tx_error(from);
3337 		return -ENOMEM;
3338 	}
3339 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3340 
3341 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3342 		int size;
3343 
3344 		if (!len)
3345 			break;
3346 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3347 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3348 					len);
3349 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3350 		len -= size;
3351 		skb_frag_ref(to, j);
3352 		j++;
3353 	}
3354 	skb_shinfo(to)->nr_frags = j;
3355 
3356 	return 0;
3357 }
3358 EXPORT_SYMBOL_GPL(skb_zerocopy);
3359 
skb_copy_and_csum_dev(const struct sk_buff * skb,u8 * to)3360 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3361 {
3362 	__wsum csum;
3363 	long csstart;
3364 
3365 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3366 		csstart = skb_checksum_start_offset(skb);
3367 	else
3368 		csstart = skb_headlen(skb);
3369 
3370 	BUG_ON(csstart > skb_headlen(skb));
3371 
3372 	skb_copy_from_linear_data(skb, to, csstart);
3373 
3374 	csum = 0;
3375 	if (csstart != skb->len)
3376 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3377 					      skb->len - csstart);
3378 
3379 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3380 		long csstuff = csstart + skb->csum_offset;
3381 
3382 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3383 	}
3384 }
3385 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3386 
3387 /**
3388  *	skb_dequeue - remove from the head of the queue
3389  *	@list: list to dequeue from
3390  *
3391  *	Remove the head of the list. The list lock is taken so the function
3392  *	may be used safely with other locking list functions. The head item is
3393  *	returned or %NULL if the list is empty.
3394  */
3395 
skb_dequeue(struct sk_buff_head * list)3396 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3397 {
3398 	unsigned long flags;
3399 	struct sk_buff *result;
3400 
3401 	spin_lock_irqsave(&list->lock, flags);
3402 	result = __skb_dequeue(list);
3403 	spin_unlock_irqrestore(&list->lock, flags);
3404 	return result;
3405 }
3406 EXPORT_SYMBOL(skb_dequeue);
3407 
3408 /**
3409  *	skb_dequeue_tail - remove from the tail of the queue
3410  *	@list: list to dequeue from
3411  *
3412  *	Remove the tail of the list. The list lock is taken so the function
3413  *	may be used safely with other locking list functions. The tail item is
3414  *	returned or %NULL if the list is empty.
3415  */
skb_dequeue_tail(struct sk_buff_head * list)3416 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3417 {
3418 	unsigned long flags;
3419 	struct sk_buff *result;
3420 
3421 	spin_lock_irqsave(&list->lock, flags);
3422 	result = __skb_dequeue_tail(list);
3423 	spin_unlock_irqrestore(&list->lock, flags);
3424 	return result;
3425 }
3426 EXPORT_SYMBOL(skb_dequeue_tail);
3427 
3428 /**
3429  *	skb_queue_purge - empty a list
3430  *	@list: list to empty
3431  *
3432  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3433  *	the list and one reference dropped. This function takes the list
3434  *	lock and is atomic with respect to other list locking functions.
3435  */
skb_queue_purge(struct sk_buff_head * list)3436 void skb_queue_purge(struct sk_buff_head *list)
3437 {
3438 	struct sk_buff *skb;
3439 	while ((skb = skb_dequeue(list)) != NULL)
3440 		kfree_skb(skb);
3441 }
3442 EXPORT_SYMBOL(skb_queue_purge);
3443 
3444 /**
3445  *	skb_rbtree_purge - empty a skb rbtree
3446  *	@root: root of the rbtree to empty
3447  *	Return value: the sum of truesizes of all purged skbs.
3448  *
3449  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3450  *	the list and one reference dropped. This function does not take
3451  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3452  *	out-of-order queue is protected by the socket lock).
3453  */
skb_rbtree_purge(struct rb_root * root)3454 unsigned int skb_rbtree_purge(struct rb_root *root)
3455 {
3456 	struct rb_node *p = rb_first(root);
3457 	unsigned int sum = 0;
3458 
3459 	while (p) {
3460 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3461 
3462 		p = rb_next(p);
3463 		rb_erase(&skb->rbnode, root);
3464 		sum += skb->truesize;
3465 		kfree_skb(skb);
3466 	}
3467 	return sum;
3468 }
3469 
3470 /**
3471  *	skb_queue_head - queue a buffer at the list head
3472  *	@list: list to use
3473  *	@newsk: buffer to queue
3474  *
3475  *	Queue a buffer at the start of the list. This function takes the
3476  *	list lock and can be used safely with other locking &sk_buff functions
3477  *	safely.
3478  *
3479  *	A buffer cannot be placed on two lists at the same time.
3480  */
skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)3481 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3482 {
3483 	unsigned long flags;
3484 
3485 	spin_lock_irqsave(&list->lock, flags);
3486 	__skb_queue_head(list, newsk);
3487 	spin_unlock_irqrestore(&list->lock, flags);
3488 }
3489 EXPORT_SYMBOL(skb_queue_head);
3490 
3491 /**
3492  *	skb_queue_tail - queue a buffer at the list tail
3493  *	@list: list to use
3494  *	@newsk: buffer to queue
3495  *
3496  *	Queue a buffer at the tail of the list. This function takes the
3497  *	list lock and can be used safely with other locking &sk_buff functions
3498  *	safely.
3499  *
3500  *	A buffer cannot be placed on two lists at the same time.
3501  */
skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)3502 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3503 {
3504 	unsigned long flags;
3505 
3506 	spin_lock_irqsave(&list->lock, flags);
3507 	__skb_queue_tail(list, newsk);
3508 	spin_unlock_irqrestore(&list->lock, flags);
3509 }
3510 EXPORT_SYMBOL(skb_queue_tail);
3511 
3512 /**
3513  *	skb_unlink	-	remove a buffer from a list
3514  *	@skb: buffer to remove
3515  *	@list: list to use
3516  *
3517  *	Remove a packet from a list. The list locks are taken and this
3518  *	function is atomic with respect to other list locked calls
3519  *
3520  *	You must know what list the SKB is on.
3521  */
skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)3522 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3523 {
3524 	unsigned long flags;
3525 
3526 	spin_lock_irqsave(&list->lock, flags);
3527 	__skb_unlink(skb, list);
3528 	spin_unlock_irqrestore(&list->lock, flags);
3529 }
3530 EXPORT_SYMBOL(skb_unlink);
3531 
3532 /**
3533  *	skb_append	-	append a buffer
3534  *	@old: buffer to insert after
3535  *	@newsk: buffer to insert
3536  *	@list: list to use
3537  *
3538  *	Place a packet after a given packet in a list. The list locks are taken
3539  *	and this function is atomic with respect to other list locked calls.
3540  *	A buffer cannot be placed on two lists at the same time.
3541  */
skb_append(struct sk_buff * old,struct sk_buff * newsk,struct sk_buff_head * list)3542 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3543 {
3544 	unsigned long flags;
3545 
3546 	spin_lock_irqsave(&list->lock, flags);
3547 	__skb_queue_after(list, old, newsk);
3548 	spin_unlock_irqrestore(&list->lock, flags);
3549 }
3550 EXPORT_SYMBOL(skb_append);
3551 
skb_split_inside_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,const int pos)3552 static inline void skb_split_inside_header(struct sk_buff *skb,
3553 					   struct sk_buff* skb1,
3554 					   const u32 len, const int pos)
3555 {
3556 	int i;
3557 
3558 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3559 					 pos - len);
3560 	/* And move data appendix as is. */
3561 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3562 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3563 
3564 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3565 	skb_shinfo(skb)->nr_frags  = 0;
3566 	skb1->data_len		   = skb->data_len;
3567 	skb1->len		   += skb1->data_len;
3568 	skb->data_len		   = 0;
3569 	skb->len		   = len;
3570 	skb_set_tail_pointer(skb, len);
3571 }
3572 
skb_split_no_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,int pos)3573 static inline void skb_split_no_header(struct sk_buff *skb,
3574 				       struct sk_buff* skb1,
3575 				       const u32 len, int pos)
3576 {
3577 	int i, k = 0;
3578 	const int nfrags = skb_shinfo(skb)->nr_frags;
3579 
3580 	skb_shinfo(skb)->nr_frags = 0;
3581 	skb1->len		  = skb1->data_len = skb->len - len;
3582 	skb->len		  = len;
3583 	skb->data_len		  = len - pos;
3584 
3585 	for (i = 0; i < nfrags; i++) {
3586 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3587 
3588 		if (pos + size > len) {
3589 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3590 
3591 			if (pos < len) {
3592 				/* Split frag.
3593 				 * We have two variants in this case:
3594 				 * 1. Move all the frag to the second
3595 				 *    part, if it is possible. F.e.
3596 				 *    this approach is mandatory for TUX,
3597 				 *    where splitting is expensive.
3598 				 * 2. Split is accurately. We make this.
3599 				 */
3600 				skb_frag_ref(skb, i);
3601 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3602 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3603 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3604 				skb_shinfo(skb)->nr_frags++;
3605 			}
3606 			k++;
3607 		} else
3608 			skb_shinfo(skb)->nr_frags++;
3609 		pos += size;
3610 	}
3611 	skb_shinfo(skb1)->nr_frags = k;
3612 }
3613 
3614 /**
3615  * skb_split - Split fragmented skb to two parts at length len.
3616  * @skb: the buffer to split
3617  * @skb1: the buffer to receive the second part
3618  * @len: new length for skb
3619  */
skb_split(struct sk_buff * skb,struct sk_buff * skb1,const u32 len)3620 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3621 {
3622 	int pos = skb_headlen(skb);
3623 	const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
3624 
3625 	skb_zcopy_downgrade_managed(skb);
3626 
3627 	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
3628 	skb_zerocopy_clone(skb1, skb, 0);
3629 	if (len < pos)	/* Split line is inside header. */
3630 		skb_split_inside_header(skb, skb1, len, pos);
3631 	else		/* Second chunk has no header, nothing to copy. */
3632 		skb_split_no_header(skb, skb1, len, pos);
3633 }
3634 EXPORT_SYMBOL(skb_split);
3635 
3636 /* Shifting from/to a cloned skb is a no-go.
3637  *
3638  * Caller cannot keep skb_shinfo related pointers past calling here!
3639  */
skb_prepare_for_shift(struct sk_buff * skb)3640 static int skb_prepare_for_shift(struct sk_buff *skb)
3641 {
3642 	return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
3643 }
3644 
3645 /**
3646  * skb_shift - Shifts paged data partially from skb to another
3647  * @tgt: buffer into which tail data gets added
3648  * @skb: buffer from which the paged data comes from
3649  * @shiftlen: shift up to this many bytes
3650  *
3651  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3652  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3653  * It's up to caller to free skb if everything was shifted.
3654  *
3655  * If @tgt runs out of frags, the whole operation is aborted.
3656  *
3657  * Skb cannot include anything else but paged data while tgt is allowed
3658  * to have non-paged data as well.
3659  *
3660  * TODO: full sized shift could be optimized but that would need
3661  * specialized skb free'er to handle frags without up-to-date nr_frags.
3662  */
skb_shift(struct sk_buff * tgt,struct sk_buff * skb,int shiftlen)3663 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3664 {
3665 	int from, to, merge, todo;
3666 	skb_frag_t *fragfrom, *fragto;
3667 
3668 	BUG_ON(shiftlen > skb->len);
3669 
3670 	if (skb_headlen(skb))
3671 		return 0;
3672 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3673 		return 0;
3674 
3675 	todo = shiftlen;
3676 	from = 0;
3677 	to = skb_shinfo(tgt)->nr_frags;
3678 	fragfrom = &skb_shinfo(skb)->frags[from];
3679 
3680 	/* Actual merge is delayed until the point when we know we can
3681 	 * commit all, so that we don't have to undo partial changes
3682 	 */
3683 	if (!to ||
3684 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3685 			      skb_frag_off(fragfrom))) {
3686 		merge = -1;
3687 	} else {
3688 		merge = to - 1;
3689 
3690 		todo -= skb_frag_size(fragfrom);
3691 		if (todo < 0) {
3692 			if (skb_prepare_for_shift(skb) ||
3693 			    skb_prepare_for_shift(tgt))
3694 				return 0;
3695 
3696 			/* All previous frag pointers might be stale! */
3697 			fragfrom = &skb_shinfo(skb)->frags[from];
3698 			fragto = &skb_shinfo(tgt)->frags[merge];
3699 
3700 			skb_frag_size_add(fragto, shiftlen);
3701 			skb_frag_size_sub(fragfrom, shiftlen);
3702 			skb_frag_off_add(fragfrom, shiftlen);
3703 
3704 			goto onlymerged;
3705 		}
3706 
3707 		from++;
3708 	}
3709 
3710 	/* Skip full, not-fitting skb to avoid expensive operations */
3711 	if ((shiftlen == skb->len) &&
3712 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3713 		return 0;
3714 
3715 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3716 		return 0;
3717 
3718 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3719 		if (to == MAX_SKB_FRAGS)
3720 			return 0;
3721 
3722 		fragfrom = &skb_shinfo(skb)->frags[from];
3723 		fragto = &skb_shinfo(tgt)->frags[to];
3724 
3725 		if (todo >= skb_frag_size(fragfrom)) {
3726 			*fragto = *fragfrom;
3727 			todo -= skb_frag_size(fragfrom);
3728 			from++;
3729 			to++;
3730 
3731 		} else {
3732 			__skb_frag_ref(fragfrom);
3733 			skb_frag_page_copy(fragto, fragfrom);
3734 			skb_frag_off_copy(fragto, fragfrom);
3735 			skb_frag_size_set(fragto, todo);
3736 
3737 			skb_frag_off_add(fragfrom, todo);
3738 			skb_frag_size_sub(fragfrom, todo);
3739 			todo = 0;
3740 
3741 			to++;
3742 			break;
3743 		}
3744 	}
3745 
3746 	/* Ready to "commit" this state change to tgt */
3747 	skb_shinfo(tgt)->nr_frags = to;
3748 
3749 	if (merge >= 0) {
3750 		fragfrom = &skb_shinfo(skb)->frags[0];
3751 		fragto = &skb_shinfo(tgt)->frags[merge];
3752 
3753 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3754 		__skb_frag_unref(fragfrom, skb->pp_recycle);
3755 	}
3756 
3757 	/* Reposition in the original skb */
3758 	to = 0;
3759 	while (from < skb_shinfo(skb)->nr_frags)
3760 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3761 	skb_shinfo(skb)->nr_frags = to;
3762 
3763 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3764 
3765 onlymerged:
3766 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3767 	 * the other hand might need it if it needs to be resent
3768 	 */
3769 	tgt->ip_summed = CHECKSUM_PARTIAL;
3770 	skb->ip_summed = CHECKSUM_PARTIAL;
3771 
3772 	skb_len_add(skb, -shiftlen);
3773 	skb_len_add(tgt, shiftlen);
3774 
3775 	return shiftlen;
3776 }
3777 
3778 /**
3779  * skb_prepare_seq_read - Prepare a sequential read of skb data
3780  * @skb: the buffer to read
3781  * @from: lower offset of data to be read
3782  * @to: upper offset of data to be read
3783  * @st: state variable
3784  *
3785  * Initializes the specified state variable. Must be called before
3786  * invoking skb_seq_read() for the first time.
3787  */
skb_prepare_seq_read(struct sk_buff * skb,unsigned int from,unsigned int to,struct skb_seq_state * st)3788 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3789 			  unsigned int to, struct skb_seq_state *st)
3790 {
3791 	st->lower_offset = from;
3792 	st->upper_offset = to;
3793 	st->root_skb = st->cur_skb = skb;
3794 	st->frag_idx = st->stepped_offset = 0;
3795 	st->frag_data = NULL;
3796 	st->frag_off = 0;
3797 }
3798 EXPORT_SYMBOL(skb_prepare_seq_read);
3799 
3800 /**
3801  * skb_seq_read - Sequentially read skb data
3802  * @consumed: number of bytes consumed by the caller so far
3803  * @data: destination pointer for data to be returned
3804  * @st: state variable
3805  *
3806  * Reads a block of skb data at @consumed relative to the
3807  * lower offset specified to skb_prepare_seq_read(). Assigns
3808  * the head of the data block to @data and returns the length
3809  * of the block or 0 if the end of the skb data or the upper
3810  * offset has been reached.
3811  *
3812  * The caller is not required to consume all of the data
3813  * returned, i.e. @consumed is typically set to the number
3814  * of bytes already consumed and the next call to
3815  * skb_seq_read() will return the remaining part of the block.
3816  *
3817  * Note 1: The size of each block of data returned can be arbitrary,
3818  *       this limitation is the cost for zerocopy sequential
3819  *       reads of potentially non linear data.
3820  *
3821  * Note 2: Fragment lists within fragments are not implemented
3822  *       at the moment, state->root_skb could be replaced with
3823  *       a stack for this purpose.
3824  */
skb_seq_read(unsigned int consumed,const u8 ** data,struct skb_seq_state * st)3825 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3826 			  struct skb_seq_state *st)
3827 {
3828 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3829 	skb_frag_t *frag;
3830 
3831 	if (unlikely(abs_offset >= st->upper_offset)) {
3832 		if (st->frag_data) {
3833 			kunmap_atomic(st->frag_data);
3834 			st->frag_data = NULL;
3835 		}
3836 		return 0;
3837 	}
3838 
3839 next_skb:
3840 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3841 
3842 	if (abs_offset < block_limit && !st->frag_data) {
3843 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3844 		return block_limit - abs_offset;
3845 	}
3846 
3847 	if (st->frag_idx == 0 && !st->frag_data)
3848 		st->stepped_offset += skb_headlen(st->cur_skb);
3849 
3850 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3851 		unsigned int pg_idx, pg_off, pg_sz;
3852 
3853 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3854 
3855 		pg_idx = 0;
3856 		pg_off = skb_frag_off(frag);
3857 		pg_sz = skb_frag_size(frag);
3858 
3859 		if (skb_frag_must_loop(skb_frag_page(frag))) {
3860 			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
3861 			pg_off = offset_in_page(pg_off + st->frag_off);
3862 			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
3863 						    PAGE_SIZE - pg_off);
3864 		}
3865 
3866 		block_limit = pg_sz + st->stepped_offset;
3867 		if (abs_offset < block_limit) {
3868 			if (!st->frag_data)
3869 				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
3870 
3871 			*data = (u8 *)st->frag_data + pg_off +
3872 				(abs_offset - st->stepped_offset);
3873 
3874 			return block_limit - abs_offset;
3875 		}
3876 
3877 		if (st->frag_data) {
3878 			kunmap_atomic(st->frag_data);
3879 			st->frag_data = NULL;
3880 		}
3881 
3882 		st->stepped_offset += pg_sz;
3883 		st->frag_off += pg_sz;
3884 		if (st->frag_off == skb_frag_size(frag)) {
3885 			st->frag_off = 0;
3886 			st->frag_idx++;
3887 		}
3888 	}
3889 
3890 	if (st->frag_data) {
3891 		kunmap_atomic(st->frag_data);
3892 		st->frag_data = NULL;
3893 	}
3894 
3895 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3896 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3897 		st->frag_idx = 0;
3898 		goto next_skb;
3899 	} else if (st->cur_skb->next) {
3900 		st->cur_skb = st->cur_skb->next;
3901 		st->frag_idx = 0;
3902 		goto next_skb;
3903 	}
3904 
3905 	return 0;
3906 }
3907 EXPORT_SYMBOL(skb_seq_read);
3908 
3909 /**
3910  * skb_abort_seq_read - Abort a sequential read of skb data
3911  * @st: state variable
3912  *
3913  * Must be called if skb_seq_read() was not called until it
3914  * returned 0.
3915  */
skb_abort_seq_read(struct skb_seq_state * st)3916 void skb_abort_seq_read(struct skb_seq_state *st)
3917 {
3918 	if (st->frag_data)
3919 		kunmap_atomic(st->frag_data);
3920 }
3921 EXPORT_SYMBOL(skb_abort_seq_read);
3922 
3923 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3924 
skb_ts_get_next_block(unsigned int offset,const u8 ** text,struct ts_config * conf,struct ts_state * state)3925 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3926 					  struct ts_config *conf,
3927 					  struct ts_state *state)
3928 {
3929 	return skb_seq_read(offset, text, TS_SKB_CB(state));
3930 }
3931 
skb_ts_finish(struct ts_config * conf,struct ts_state * state)3932 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3933 {
3934 	skb_abort_seq_read(TS_SKB_CB(state));
3935 }
3936 
3937 /**
3938  * skb_find_text - Find a text pattern in skb data
3939  * @skb: the buffer to look in
3940  * @from: search offset
3941  * @to: search limit
3942  * @config: textsearch configuration
3943  *
3944  * Finds a pattern in the skb data according to the specified
3945  * textsearch configuration. Use textsearch_next() to retrieve
3946  * subsequent occurrences of the pattern. Returns the offset
3947  * to the first occurrence or UINT_MAX if no match was found.
3948  */
skb_find_text(struct sk_buff * skb,unsigned int from,unsigned int to,struct ts_config * config)3949 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3950 			   unsigned int to, struct ts_config *config)
3951 {
3952 	struct ts_state state;
3953 	unsigned int ret;
3954 
3955 	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
3956 
3957 	config->get_next_block = skb_ts_get_next_block;
3958 	config->finish = skb_ts_finish;
3959 
3960 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3961 
3962 	ret = textsearch_find(config, &state);
3963 	return (ret <= to - from ? ret : UINT_MAX);
3964 }
3965 EXPORT_SYMBOL(skb_find_text);
3966 
skb_append_pagefrags(struct sk_buff * skb,struct page * page,int offset,size_t size)3967 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3968 			 int offset, size_t size)
3969 {
3970 	int i = skb_shinfo(skb)->nr_frags;
3971 
3972 	if (skb_can_coalesce(skb, i, page, offset)) {
3973 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3974 	} else if (i < MAX_SKB_FRAGS) {
3975 		skb_zcopy_downgrade_managed(skb);
3976 		get_page(page);
3977 		skb_fill_page_desc_noacc(skb, i, page, offset, size);
3978 	} else {
3979 		return -EMSGSIZE;
3980 	}
3981 
3982 	return 0;
3983 }
3984 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3985 
3986 /**
3987  *	skb_pull_rcsum - pull skb and update receive checksum
3988  *	@skb: buffer to update
3989  *	@len: length of data pulled
3990  *
3991  *	This function performs an skb_pull on the packet and updates
3992  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3993  *	receive path processing instead of skb_pull unless you know
3994  *	that the checksum difference is zero (e.g., a valid IP header)
3995  *	or you are setting ip_summed to CHECKSUM_NONE.
3996  */
skb_pull_rcsum(struct sk_buff * skb,unsigned int len)3997 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3998 {
3999 	unsigned char *data = skb->data;
4000 
4001 	BUG_ON(len > skb->len);
4002 	__skb_pull(skb, len);
4003 	skb_postpull_rcsum(skb, data, len);
4004 	return skb->data;
4005 }
4006 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4007 
skb_head_frag_to_page_desc(struct sk_buff * frag_skb)4008 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4009 {
4010 	skb_frag_t head_frag;
4011 	struct page *page;
4012 
4013 	page = virt_to_head_page(frag_skb->head);
4014 	__skb_frag_set_page(&head_frag, page);
4015 	skb_frag_off_set(&head_frag, frag_skb->data -
4016 			 (unsigned char *)page_address(page));
4017 	skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
4018 	return head_frag;
4019 }
4020 
skb_segment_list(struct sk_buff * skb,netdev_features_t features,unsigned int offset)4021 struct sk_buff *skb_segment_list(struct sk_buff *skb,
4022 				 netdev_features_t features,
4023 				 unsigned int offset)
4024 {
4025 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4026 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
4027 	unsigned int delta_truesize = 0;
4028 	unsigned int delta_len = 0;
4029 	struct sk_buff *tail = NULL;
4030 	struct sk_buff *nskb, *tmp;
4031 	int len_diff, err;
4032 
4033 	skb_push(skb, -skb_network_offset(skb) + offset);
4034 
4035 	skb_shinfo(skb)->frag_list = NULL;
4036 
4037 	do {
4038 		nskb = list_skb;
4039 		list_skb = list_skb->next;
4040 
4041 		err = 0;
4042 		delta_truesize += nskb->truesize;
4043 		if (skb_shared(nskb)) {
4044 			tmp = skb_clone(nskb, GFP_ATOMIC);
4045 			if (tmp) {
4046 				consume_skb(nskb);
4047 				nskb = tmp;
4048 				err = skb_unclone(nskb, GFP_ATOMIC);
4049 			} else {
4050 				err = -ENOMEM;
4051 			}
4052 		}
4053 
4054 		if (!tail)
4055 			skb->next = nskb;
4056 		else
4057 			tail->next = nskb;
4058 
4059 		if (unlikely(err)) {
4060 			nskb->next = list_skb;
4061 			goto err_linearize;
4062 		}
4063 
4064 		tail = nskb;
4065 
4066 		delta_len += nskb->len;
4067 
4068 		skb_push(nskb, -skb_network_offset(nskb) + offset);
4069 
4070 		skb_release_head_state(nskb);
4071 		len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4072 		__copy_skb_header(nskb, skb);
4073 
4074 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4075 		nskb->transport_header += len_diff;
4076 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4077 						 nskb->data - tnl_hlen,
4078 						 offset + tnl_hlen);
4079 
4080 		if (skb_needs_linearize(nskb, features) &&
4081 		    __skb_linearize(nskb))
4082 			goto err_linearize;
4083 
4084 	} while (list_skb);
4085 
4086 	skb->truesize = skb->truesize - delta_truesize;
4087 	skb->data_len = skb->data_len - delta_len;
4088 	skb->len = skb->len - delta_len;
4089 
4090 	skb_gso_reset(skb);
4091 
4092 	skb->prev = tail;
4093 
4094 	if (skb_needs_linearize(skb, features) &&
4095 	    __skb_linearize(skb))
4096 		goto err_linearize;
4097 
4098 	skb_get(skb);
4099 
4100 	return skb;
4101 
4102 err_linearize:
4103 	kfree_skb_list(skb->next);
4104 	skb->next = NULL;
4105 	return ERR_PTR(-ENOMEM);
4106 }
4107 EXPORT_SYMBOL_GPL(skb_segment_list);
4108 
4109 /**
4110  *	skb_segment - Perform protocol segmentation on skb.
4111  *	@head_skb: buffer to segment
4112  *	@features: features for the output path (see dev->features)
4113  *
4114  *	This function performs segmentation on the given skb.  It returns
4115  *	a pointer to the first in a list of new skbs for the segments.
4116  *	In case of error it returns ERR_PTR(err).
4117  */
skb_segment(struct sk_buff * head_skb,netdev_features_t features)4118 struct sk_buff *skb_segment(struct sk_buff *head_skb,
4119 			    netdev_features_t features)
4120 {
4121 	struct sk_buff *segs = NULL;
4122 	struct sk_buff *tail = NULL;
4123 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4124 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
4125 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
4126 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4127 	struct sk_buff *frag_skb = head_skb;
4128 	unsigned int offset = doffset;
4129 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4130 	unsigned int partial_segs = 0;
4131 	unsigned int headroom;
4132 	unsigned int len = head_skb->len;
4133 	__be16 proto;
4134 	bool csum, sg;
4135 	int nfrags = skb_shinfo(head_skb)->nr_frags;
4136 	int err = -ENOMEM;
4137 	int i = 0;
4138 	int pos;
4139 
4140 	if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4141 	    mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4142 		struct sk_buff *check_skb;
4143 
4144 		for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4145 			if (skb_headlen(check_skb) && !check_skb->head_frag) {
4146 				/* gso_size is untrusted, and we have a frag_list with
4147 				 * a linear non head_frag item.
4148 				 *
4149 				 * If head_skb's headlen does not fit requested gso_size,
4150 				 * it means that the frag_list members do NOT terminate
4151 				 * on exact gso_size boundaries. Hence we cannot perform
4152 				 * skb_frag_t page sharing. Therefore we must fallback to
4153 				 * copying the frag_list skbs; we do so by disabling SG.
4154 				 */
4155 				features &= ~NETIF_F_SG;
4156 				break;
4157 			}
4158 		}
4159 	}
4160 
4161 	__skb_push(head_skb, doffset);
4162 	proto = skb_network_protocol(head_skb, NULL);
4163 	if (unlikely(!proto))
4164 		return ERR_PTR(-EINVAL);
4165 
4166 	sg = !!(features & NETIF_F_SG);
4167 	csum = !!can_checksum_protocol(features, proto);
4168 
4169 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
4170 		if (!(features & NETIF_F_GSO_PARTIAL)) {
4171 			struct sk_buff *iter;
4172 			unsigned int frag_len;
4173 
4174 			if (!list_skb ||
4175 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4176 				goto normal;
4177 
4178 			/* If we get here then all the required
4179 			 * GSO features except frag_list are supported.
4180 			 * Try to split the SKB to multiple GSO SKBs
4181 			 * with no frag_list.
4182 			 * Currently we can do that only when the buffers don't
4183 			 * have a linear part and all the buffers except
4184 			 * the last are of the same length.
4185 			 */
4186 			frag_len = list_skb->len;
4187 			skb_walk_frags(head_skb, iter) {
4188 				if (frag_len != iter->len && iter->next)
4189 					goto normal;
4190 				if (skb_headlen(iter) && !iter->head_frag)
4191 					goto normal;
4192 
4193 				len -= iter->len;
4194 			}
4195 
4196 			if (len != frag_len)
4197 				goto normal;
4198 		}
4199 
4200 		/* GSO partial only requires that we trim off any excess that
4201 		 * doesn't fit into an MSS sized block, so take care of that
4202 		 * now.
4203 		 */
4204 		partial_segs = len / mss;
4205 		if (partial_segs > 1)
4206 			mss *= partial_segs;
4207 		else
4208 			partial_segs = 0;
4209 	}
4210 
4211 normal:
4212 	headroom = skb_headroom(head_skb);
4213 	pos = skb_headlen(head_skb);
4214 
4215 	do {
4216 		struct sk_buff *nskb;
4217 		skb_frag_t *nskb_frag;
4218 		int hsize;
4219 		int size;
4220 
4221 		if (unlikely(mss == GSO_BY_FRAGS)) {
4222 			len = list_skb->len;
4223 		} else {
4224 			len = head_skb->len - offset;
4225 			if (len > mss)
4226 				len = mss;
4227 		}
4228 
4229 		hsize = skb_headlen(head_skb) - offset;
4230 
4231 		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4232 		    (skb_headlen(list_skb) == len || sg)) {
4233 			BUG_ON(skb_headlen(list_skb) > len);
4234 
4235 			i = 0;
4236 			nfrags = skb_shinfo(list_skb)->nr_frags;
4237 			frag = skb_shinfo(list_skb)->frags;
4238 			frag_skb = list_skb;
4239 			pos += skb_headlen(list_skb);
4240 
4241 			while (pos < offset + len) {
4242 				BUG_ON(i >= nfrags);
4243 
4244 				size = skb_frag_size(frag);
4245 				if (pos + size > offset + len)
4246 					break;
4247 
4248 				i++;
4249 				pos += size;
4250 				frag++;
4251 			}
4252 
4253 			nskb = skb_clone(list_skb, GFP_ATOMIC);
4254 			list_skb = list_skb->next;
4255 
4256 			if (unlikely(!nskb))
4257 				goto err;
4258 
4259 			if (unlikely(pskb_trim(nskb, len))) {
4260 				kfree_skb(nskb);
4261 				goto err;
4262 			}
4263 
4264 			hsize = skb_end_offset(nskb);
4265 			if (skb_cow_head(nskb, doffset + headroom)) {
4266 				kfree_skb(nskb);
4267 				goto err;
4268 			}
4269 
4270 			nskb->truesize += skb_end_offset(nskb) - hsize;
4271 			skb_release_head_state(nskb);
4272 			__skb_push(nskb, doffset);
4273 		} else {
4274 			if (hsize < 0)
4275 				hsize = 0;
4276 			if (hsize > len || !sg)
4277 				hsize = len;
4278 
4279 			nskb = __alloc_skb(hsize + doffset + headroom,
4280 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4281 					   NUMA_NO_NODE);
4282 
4283 			if (unlikely(!nskb))
4284 				goto err;
4285 
4286 			skb_reserve(nskb, headroom);
4287 			__skb_put(nskb, doffset);
4288 		}
4289 
4290 		if (segs)
4291 			tail->next = nskb;
4292 		else
4293 			segs = nskb;
4294 		tail = nskb;
4295 
4296 		__copy_skb_header(nskb, head_skb);
4297 
4298 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4299 		skb_reset_mac_len(nskb);
4300 
4301 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4302 						 nskb->data - tnl_hlen,
4303 						 doffset + tnl_hlen);
4304 
4305 		if (nskb->len == len + doffset)
4306 			goto perform_csum_check;
4307 
4308 		if (!sg) {
4309 			if (!csum) {
4310 				if (!nskb->remcsum_offload)
4311 					nskb->ip_summed = CHECKSUM_NONE;
4312 				SKB_GSO_CB(nskb)->csum =
4313 					skb_copy_and_csum_bits(head_skb, offset,
4314 							       skb_put(nskb,
4315 								       len),
4316 							       len);
4317 				SKB_GSO_CB(nskb)->csum_start =
4318 					skb_headroom(nskb) + doffset;
4319 			} else {
4320 				if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4321 					goto err;
4322 			}
4323 			continue;
4324 		}
4325 
4326 		nskb_frag = skb_shinfo(nskb)->frags;
4327 
4328 		skb_copy_from_linear_data_offset(head_skb, offset,
4329 						 skb_put(nskb, hsize), hsize);
4330 
4331 		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4332 					   SKBFL_SHARED_FRAG;
4333 
4334 		if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4335 		    skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4336 			goto err;
4337 
4338 		while (pos < offset + len) {
4339 			if (i >= nfrags) {
4340 				i = 0;
4341 				nfrags = skb_shinfo(list_skb)->nr_frags;
4342 				frag = skb_shinfo(list_skb)->frags;
4343 				frag_skb = list_skb;
4344 				if (!skb_headlen(list_skb)) {
4345 					BUG_ON(!nfrags);
4346 				} else {
4347 					BUG_ON(!list_skb->head_frag);
4348 
4349 					/* to make room for head_frag. */
4350 					i--;
4351 					frag--;
4352 				}
4353 				if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4354 				    skb_zerocopy_clone(nskb, frag_skb,
4355 						       GFP_ATOMIC))
4356 					goto err;
4357 
4358 				list_skb = list_skb->next;
4359 			}
4360 
4361 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4362 				     MAX_SKB_FRAGS)) {
4363 				net_warn_ratelimited(
4364 					"skb_segment: too many frags: %u %u\n",
4365 					pos, mss);
4366 				err = -EINVAL;
4367 				goto err;
4368 			}
4369 
4370 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4371 			__skb_frag_ref(nskb_frag);
4372 			size = skb_frag_size(nskb_frag);
4373 
4374 			if (pos < offset) {
4375 				skb_frag_off_add(nskb_frag, offset - pos);
4376 				skb_frag_size_sub(nskb_frag, offset - pos);
4377 			}
4378 
4379 			skb_shinfo(nskb)->nr_frags++;
4380 
4381 			if (pos + size <= offset + len) {
4382 				i++;
4383 				frag++;
4384 				pos += size;
4385 			} else {
4386 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4387 				goto skip_fraglist;
4388 			}
4389 
4390 			nskb_frag++;
4391 		}
4392 
4393 skip_fraglist:
4394 		nskb->data_len = len - hsize;
4395 		nskb->len += nskb->data_len;
4396 		nskb->truesize += nskb->data_len;
4397 
4398 perform_csum_check:
4399 		if (!csum) {
4400 			if (skb_has_shared_frag(nskb) &&
4401 			    __skb_linearize(nskb))
4402 				goto err;
4403 
4404 			if (!nskb->remcsum_offload)
4405 				nskb->ip_summed = CHECKSUM_NONE;
4406 			SKB_GSO_CB(nskb)->csum =
4407 				skb_checksum(nskb, doffset,
4408 					     nskb->len - doffset, 0);
4409 			SKB_GSO_CB(nskb)->csum_start =
4410 				skb_headroom(nskb) + doffset;
4411 		}
4412 	} while ((offset += len) < head_skb->len);
4413 
4414 	/* Some callers want to get the end of the list.
4415 	 * Put it in segs->prev to avoid walking the list.
4416 	 * (see validate_xmit_skb_list() for example)
4417 	 */
4418 	segs->prev = tail;
4419 
4420 	if (partial_segs) {
4421 		struct sk_buff *iter;
4422 		int type = skb_shinfo(head_skb)->gso_type;
4423 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4424 
4425 		/* Update type to add partial and then remove dodgy if set */
4426 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4427 		type &= ~SKB_GSO_DODGY;
4428 
4429 		/* Update GSO info and prepare to start updating headers on
4430 		 * our way back down the stack of protocols.
4431 		 */
4432 		for (iter = segs; iter; iter = iter->next) {
4433 			skb_shinfo(iter)->gso_size = gso_size;
4434 			skb_shinfo(iter)->gso_segs = partial_segs;
4435 			skb_shinfo(iter)->gso_type = type;
4436 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4437 		}
4438 
4439 		if (tail->len - doffset <= gso_size)
4440 			skb_shinfo(tail)->gso_size = 0;
4441 		else if (tail != segs)
4442 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4443 	}
4444 
4445 	/* Following permits correct backpressure, for protocols
4446 	 * using skb_set_owner_w().
4447 	 * Idea is to tranfert ownership from head_skb to last segment.
4448 	 */
4449 	if (head_skb->destructor == sock_wfree) {
4450 		swap(tail->truesize, head_skb->truesize);
4451 		swap(tail->destructor, head_skb->destructor);
4452 		swap(tail->sk, head_skb->sk);
4453 	}
4454 	return segs;
4455 
4456 err:
4457 	kfree_skb_list(segs);
4458 	return ERR_PTR(err);
4459 }
4460 EXPORT_SYMBOL_GPL(skb_segment);
4461 
4462 #ifdef CONFIG_SKB_EXTENSIONS
4463 #define SKB_EXT_ALIGN_VALUE	8
4464 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4465 
4466 static const u8 skb_ext_type_len[] = {
4467 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4468 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4469 #endif
4470 #ifdef CONFIG_XFRM
4471 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4472 #endif
4473 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4474 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4475 #endif
4476 #if IS_ENABLED(CONFIG_MPTCP)
4477 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4478 #endif
4479 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4480 	[SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4481 #endif
4482 };
4483 
skb_ext_total_length(void)4484 static __always_inline unsigned int skb_ext_total_length(void)
4485 {
4486 	return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4487 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4488 		skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4489 #endif
4490 #ifdef CONFIG_XFRM
4491 		skb_ext_type_len[SKB_EXT_SEC_PATH] +
4492 #endif
4493 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4494 		skb_ext_type_len[TC_SKB_EXT] +
4495 #endif
4496 #if IS_ENABLED(CONFIG_MPTCP)
4497 		skb_ext_type_len[SKB_EXT_MPTCP] +
4498 #endif
4499 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4500 		skb_ext_type_len[SKB_EXT_MCTP] +
4501 #endif
4502 		0;
4503 }
4504 
skb_extensions_init(void)4505 static void skb_extensions_init(void)
4506 {
4507 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4508 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4509 
4510 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4511 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4512 					     0,
4513 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4514 					     NULL);
4515 }
4516 #else
skb_extensions_init(void)4517 static void skb_extensions_init(void) {}
4518 #endif
4519 
skb_init(void)4520 void __init skb_init(void)
4521 {
4522 	skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4523 					      sizeof(struct sk_buff),
4524 					      0,
4525 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4526 					      offsetof(struct sk_buff, cb),
4527 					      sizeof_field(struct sk_buff, cb),
4528 					      NULL);
4529 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4530 						sizeof(struct sk_buff_fclones),
4531 						0,
4532 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4533 						NULL);
4534 	skb_extensions_init();
4535 }
4536 
4537 static int
__skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len,unsigned int recursion_level)4538 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4539 	       unsigned int recursion_level)
4540 {
4541 	int start = skb_headlen(skb);
4542 	int i, copy = start - offset;
4543 	struct sk_buff *frag_iter;
4544 	int elt = 0;
4545 
4546 	if (unlikely(recursion_level >= 24))
4547 		return -EMSGSIZE;
4548 
4549 	if (copy > 0) {
4550 		if (copy > len)
4551 			copy = len;
4552 		sg_set_buf(sg, skb->data + offset, copy);
4553 		elt++;
4554 		if ((len -= copy) == 0)
4555 			return elt;
4556 		offset += copy;
4557 	}
4558 
4559 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4560 		int end;
4561 
4562 		WARN_ON(start > offset + len);
4563 
4564 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4565 		if ((copy = end - offset) > 0) {
4566 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4567 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4568 				return -EMSGSIZE;
4569 
4570 			if (copy > len)
4571 				copy = len;
4572 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4573 				    skb_frag_off(frag) + offset - start);
4574 			elt++;
4575 			if (!(len -= copy))
4576 				return elt;
4577 			offset += copy;
4578 		}
4579 		start = end;
4580 	}
4581 
4582 	skb_walk_frags(skb, frag_iter) {
4583 		int end, ret;
4584 
4585 		WARN_ON(start > offset + len);
4586 
4587 		end = start + frag_iter->len;
4588 		if ((copy = end - offset) > 0) {
4589 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4590 				return -EMSGSIZE;
4591 
4592 			if (copy > len)
4593 				copy = len;
4594 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4595 					      copy, recursion_level + 1);
4596 			if (unlikely(ret < 0))
4597 				return ret;
4598 			elt += ret;
4599 			if ((len -= copy) == 0)
4600 				return elt;
4601 			offset += copy;
4602 		}
4603 		start = end;
4604 	}
4605 	BUG_ON(len);
4606 	return elt;
4607 }
4608 
4609 /**
4610  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4611  *	@skb: Socket buffer containing the buffers to be mapped
4612  *	@sg: The scatter-gather list to map into
4613  *	@offset: The offset into the buffer's contents to start mapping
4614  *	@len: Length of buffer space to be mapped
4615  *
4616  *	Fill the specified scatter-gather list with mappings/pointers into a
4617  *	region of the buffer space attached to a socket buffer. Returns either
4618  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4619  *	could not fit.
4620  */
skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)4621 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4622 {
4623 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4624 
4625 	if (nsg <= 0)
4626 		return nsg;
4627 
4628 	sg_mark_end(&sg[nsg - 1]);
4629 
4630 	return nsg;
4631 }
4632 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4633 
4634 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4635  * sglist without mark the sg which contain last skb data as the end.
4636  * So the caller can mannipulate sg list as will when padding new data after
4637  * the first call without calling sg_unmark_end to expend sg list.
4638  *
4639  * Scenario to use skb_to_sgvec_nomark:
4640  * 1. sg_init_table
4641  * 2. skb_to_sgvec_nomark(payload1)
4642  * 3. skb_to_sgvec_nomark(payload2)
4643  *
4644  * This is equivalent to:
4645  * 1. sg_init_table
4646  * 2. skb_to_sgvec(payload1)
4647  * 3. sg_unmark_end
4648  * 4. skb_to_sgvec(payload2)
4649  *
4650  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4651  * is more preferable.
4652  */
skb_to_sgvec_nomark(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)4653 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4654 			int offset, int len)
4655 {
4656 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4657 }
4658 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4659 
4660 
4661 
4662 /**
4663  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4664  *	@skb: The socket buffer to check.
4665  *	@tailbits: Amount of trailing space to be added
4666  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4667  *
4668  *	Make sure that the data buffers attached to a socket buffer are
4669  *	writable. If they are not, private copies are made of the data buffers
4670  *	and the socket buffer is set to use these instead.
4671  *
4672  *	If @tailbits is given, make sure that there is space to write @tailbits
4673  *	bytes of data beyond current end of socket buffer.  @trailer will be
4674  *	set to point to the skb in which this space begins.
4675  *
4676  *	The number of scatterlist elements required to completely map the
4677  *	COW'd and extended socket buffer will be returned.
4678  */
skb_cow_data(struct sk_buff * skb,int tailbits,struct sk_buff ** trailer)4679 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4680 {
4681 	int copyflag;
4682 	int elt;
4683 	struct sk_buff *skb1, **skb_p;
4684 
4685 	/* If skb is cloned or its head is paged, reallocate
4686 	 * head pulling out all the pages (pages are considered not writable
4687 	 * at the moment even if they are anonymous).
4688 	 */
4689 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4690 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4691 		return -ENOMEM;
4692 
4693 	/* Easy case. Most of packets will go this way. */
4694 	if (!skb_has_frag_list(skb)) {
4695 		/* A little of trouble, not enough of space for trailer.
4696 		 * This should not happen, when stack is tuned to generate
4697 		 * good frames. OK, on miss we reallocate and reserve even more
4698 		 * space, 128 bytes is fair. */
4699 
4700 		if (skb_tailroom(skb) < tailbits &&
4701 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4702 			return -ENOMEM;
4703 
4704 		/* Voila! */
4705 		*trailer = skb;
4706 		return 1;
4707 	}
4708 
4709 	/* Misery. We are in troubles, going to mincer fragments... */
4710 
4711 	elt = 1;
4712 	skb_p = &skb_shinfo(skb)->frag_list;
4713 	copyflag = 0;
4714 
4715 	while ((skb1 = *skb_p) != NULL) {
4716 		int ntail = 0;
4717 
4718 		/* The fragment is partially pulled by someone,
4719 		 * this can happen on input. Copy it and everything
4720 		 * after it. */
4721 
4722 		if (skb_shared(skb1))
4723 			copyflag = 1;
4724 
4725 		/* If the skb is the last, worry about trailer. */
4726 
4727 		if (skb1->next == NULL && tailbits) {
4728 			if (skb_shinfo(skb1)->nr_frags ||
4729 			    skb_has_frag_list(skb1) ||
4730 			    skb_tailroom(skb1) < tailbits)
4731 				ntail = tailbits + 128;
4732 		}
4733 
4734 		if (copyflag ||
4735 		    skb_cloned(skb1) ||
4736 		    ntail ||
4737 		    skb_shinfo(skb1)->nr_frags ||
4738 		    skb_has_frag_list(skb1)) {
4739 			struct sk_buff *skb2;
4740 
4741 			/* Fuck, we are miserable poor guys... */
4742 			if (ntail == 0)
4743 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4744 			else
4745 				skb2 = skb_copy_expand(skb1,
4746 						       skb_headroom(skb1),
4747 						       ntail,
4748 						       GFP_ATOMIC);
4749 			if (unlikely(skb2 == NULL))
4750 				return -ENOMEM;
4751 
4752 			if (skb1->sk)
4753 				skb_set_owner_w(skb2, skb1->sk);
4754 
4755 			/* Looking around. Are we still alive?
4756 			 * OK, link new skb, drop old one */
4757 
4758 			skb2->next = skb1->next;
4759 			*skb_p = skb2;
4760 			kfree_skb(skb1);
4761 			skb1 = skb2;
4762 		}
4763 		elt++;
4764 		*trailer = skb1;
4765 		skb_p = &skb1->next;
4766 	}
4767 
4768 	return elt;
4769 }
4770 EXPORT_SYMBOL_GPL(skb_cow_data);
4771 
sock_rmem_free(struct sk_buff * skb)4772 static void sock_rmem_free(struct sk_buff *skb)
4773 {
4774 	struct sock *sk = skb->sk;
4775 
4776 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4777 }
4778 
skb_set_err_queue(struct sk_buff * skb)4779 static void skb_set_err_queue(struct sk_buff *skb)
4780 {
4781 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4782 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4783 	 */
4784 	skb->pkt_type = PACKET_OUTGOING;
4785 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4786 }
4787 
4788 /*
4789  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4790  */
sock_queue_err_skb(struct sock * sk,struct sk_buff * skb)4791 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4792 {
4793 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4794 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4795 		return -ENOMEM;
4796 
4797 	skb_orphan(skb);
4798 	skb->sk = sk;
4799 	skb->destructor = sock_rmem_free;
4800 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4801 	skb_set_err_queue(skb);
4802 
4803 	/* before exiting rcu section, make sure dst is refcounted */
4804 	skb_dst_force(skb);
4805 
4806 	skb_queue_tail(&sk->sk_error_queue, skb);
4807 	if (!sock_flag(sk, SOCK_DEAD))
4808 		sk_error_report(sk);
4809 	return 0;
4810 }
4811 EXPORT_SYMBOL(sock_queue_err_skb);
4812 
is_icmp_err_skb(const struct sk_buff * skb)4813 static bool is_icmp_err_skb(const struct sk_buff *skb)
4814 {
4815 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4816 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4817 }
4818 
sock_dequeue_err_skb(struct sock * sk)4819 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4820 {
4821 	struct sk_buff_head *q = &sk->sk_error_queue;
4822 	struct sk_buff *skb, *skb_next = NULL;
4823 	bool icmp_next = false;
4824 	unsigned long flags;
4825 
4826 	spin_lock_irqsave(&q->lock, flags);
4827 	skb = __skb_dequeue(q);
4828 	if (skb && (skb_next = skb_peek(q))) {
4829 		icmp_next = is_icmp_err_skb(skb_next);
4830 		if (icmp_next)
4831 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4832 	}
4833 	spin_unlock_irqrestore(&q->lock, flags);
4834 
4835 	if (is_icmp_err_skb(skb) && !icmp_next)
4836 		sk->sk_err = 0;
4837 
4838 	if (skb_next)
4839 		sk_error_report(sk);
4840 
4841 	return skb;
4842 }
4843 EXPORT_SYMBOL(sock_dequeue_err_skb);
4844 
4845 /**
4846  * skb_clone_sk - create clone of skb, and take reference to socket
4847  * @skb: the skb to clone
4848  *
4849  * This function creates a clone of a buffer that holds a reference on
4850  * sk_refcnt.  Buffers created via this function are meant to be
4851  * returned using sock_queue_err_skb, or free via kfree_skb.
4852  *
4853  * When passing buffers allocated with this function to sock_queue_err_skb
4854  * it is necessary to wrap the call with sock_hold/sock_put in order to
4855  * prevent the socket from being released prior to being enqueued on
4856  * the sk_error_queue.
4857  */
skb_clone_sk(struct sk_buff * skb)4858 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4859 {
4860 	struct sock *sk = skb->sk;
4861 	struct sk_buff *clone;
4862 
4863 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4864 		return NULL;
4865 
4866 	clone = skb_clone(skb, GFP_ATOMIC);
4867 	if (!clone) {
4868 		sock_put(sk);
4869 		return NULL;
4870 	}
4871 
4872 	clone->sk = sk;
4873 	clone->destructor = sock_efree;
4874 
4875 	return clone;
4876 }
4877 EXPORT_SYMBOL(skb_clone_sk);
4878 
__skb_complete_tx_timestamp(struct sk_buff * skb,struct sock * sk,int tstype,bool opt_stats)4879 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4880 					struct sock *sk,
4881 					int tstype,
4882 					bool opt_stats)
4883 {
4884 	struct sock_exterr_skb *serr;
4885 	int err;
4886 
4887 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4888 
4889 	serr = SKB_EXT_ERR(skb);
4890 	memset(serr, 0, sizeof(*serr));
4891 	serr->ee.ee_errno = ENOMSG;
4892 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4893 	serr->ee.ee_info = tstype;
4894 	serr->opt_stats = opt_stats;
4895 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4896 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4897 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4898 		if (sk_is_tcp(sk))
4899 			serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
4900 	}
4901 
4902 	err = sock_queue_err_skb(sk, skb);
4903 
4904 	if (err)
4905 		kfree_skb(skb);
4906 }
4907 
skb_may_tx_timestamp(struct sock * sk,bool tsonly)4908 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4909 {
4910 	bool ret;
4911 
4912 	if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
4913 		return true;
4914 
4915 	read_lock_bh(&sk->sk_callback_lock);
4916 	ret = sk->sk_socket && sk->sk_socket->file &&
4917 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4918 	read_unlock_bh(&sk->sk_callback_lock);
4919 	return ret;
4920 }
4921 
skb_complete_tx_timestamp(struct sk_buff * skb,struct skb_shared_hwtstamps * hwtstamps)4922 void skb_complete_tx_timestamp(struct sk_buff *skb,
4923 			       struct skb_shared_hwtstamps *hwtstamps)
4924 {
4925 	struct sock *sk = skb->sk;
4926 
4927 	if (!skb_may_tx_timestamp(sk, false))
4928 		goto err;
4929 
4930 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4931 	 * but only if the socket refcount is not zero.
4932 	 */
4933 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4934 		*skb_hwtstamps(skb) = *hwtstamps;
4935 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4936 		sock_put(sk);
4937 		return;
4938 	}
4939 
4940 err:
4941 	kfree_skb(skb);
4942 }
4943 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4944 
__skb_tstamp_tx(struct sk_buff * orig_skb,const struct sk_buff * ack_skb,struct skb_shared_hwtstamps * hwtstamps,struct sock * sk,int tstype)4945 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4946 		     const struct sk_buff *ack_skb,
4947 		     struct skb_shared_hwtstamps *hwtstamps,
4948 		     struct sock *sk, int tstype)
4949 {
4950 	struct sk_buff *skb;
4951 	bool tsonly, opt_stats = false;
4952 
4953 	if (!sk)
4954 		return;
4955 
4956 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4957 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4958 		return;
4959 
4960 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4961 	if (!skb_may_tx_timestamp(sk, tsonly))
4962 		return;
4963 
4964 	if (tsonly) {
4965 #ifdef CONFIG_INET
4966 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4967 		    sk_is_tcp(sk)) {
4968 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
4969 							     ack_skb);
4970 			opt_stats = true;
4971 		} else
4972 #endif
4973 			skb = alloc_skb(0, GFP_ATOMIC);
4974 	} else {
4975 		skb = skb_clone(orig_skb, GFP_ATOMIC);
4976 	}
4977 	if (!skb)
4978 		return;
4979 
4980 	if (tsonly) {
4981 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4982 					     SKBTX_ANY_TSTAMP;
4983 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4984 	}
4985 
4986 	if (hwtstamps)
4987 		*skb_hwtstamps(skb) = *hwtstamps;
4988 	else
4989 		__net_timestamp(skb);
4990 
4991 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4992 }
4993 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4994 
skb_tstamp_tx(struct sk_buff * orig_skb,struct skb_shared_hwtstamps * hwtstamps)4995 void skb_tstamp_tx(struct sk_buff *orig_skb,
4996 		   struct skb_shared_hwtstamps *hwtstamps)
4997 {
4998 	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
4999 			       SCM_TSTAMP_SND);
5000 }
5001 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5002 
skb_complete_wifi_ack(struct sk_buff * skb,bool acked)5003 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5004 {
5005 	struct sock *sk = skb->sk;
5006 	struct sock_exterr_skb *serr;
5007 	int err = 1;
5008 
5009 	skb->wifi_acked_valid = 1;
5010 	skb->wifi_acked = acked;
5011 
5012 	serr = SKB_EXT_ERR(skb);
5013 	memset(serr, 0, sizeof(*serr));
5014 	serr->ee.ee_errno = ENOMSG;
5015 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5016 
5017 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5018 	 * but only if the socket refcount is not zero.
5019 	 */
5020 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5021 		err = sock_queue_err_skb(sk, skb);
5022 		sock_put(sk);
5023 	}
5024 	if (err)
5025 		kfree_skb(skb);
5026 }
5027 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5028 
5029 /**
5030  * skb_partial_csum_set - set up and verify partial csum values for packet
5031  * @skb: the skb to set
5032  * @start: the number of bytes after skb->data to start checksumming.
5033  * @off: the offset from start to place the checksum.
5034  *
5035  * For untrusted partially-checksummed packets, we need to make sure the values
5036  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5037  *
5038  * This function checks and sets those values and skb->ip_summed: if this
5039  * returns false you should drop the packet.
5040  */
skb_partial_csum_set(struct sk_buff * skb,u16 start,u16 off)5041 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5042 {
5043 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5044 	u32 csum_start = skb_headroom(skb) + (u32)start;
5045 
5046 	if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
5047 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5048 				     start, off, skb_headroom(skb), skb_headlen(skb));
5049 		return false;
5050 	}
5051 	skb->ip_summed = CHECKSUM_PARTIAL;
5052 	skb->csum_start = csum_start;
5053 	skb->csum_offset = off;
5054 	skb_set_transport_header(skb, start);
5055 	return true;
5056 }
5057 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5058 
skb_maybe_pull_tail(struct sk_buff * skb,unsigned int len,unsigned int max)5059 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5060 			       unsigned int max)
5061 {
5062 	if (skb_headlen(skb) >= len)
5063 		return 0;
5064 
5065 	/* If we need to pullup then pullup to the max, so we
5066 	 * won't need to do it again.
5067 	 */
5068 	if (max > skb->len)
5069 		max = skb->len;
5070 
5071 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5072 		return -ENOMEM;
5073 
5074 	if (skb_headlen(skb) < len)
5075 		return -EPROTO;
5076 
5077 	return 0;
5078 }
5079 
5080 #define MAX_TCP_HDR_LEN (15 * 4)
5081 
skb_checksum_setup_ip(struct sk_buff * skb,typeof(IPPROTO_IP) proto,unsigned int off)5082 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5083 				      typeof(IPPROTO_IP) proto,
5084 				      unsigned int off)
5085 {
5086 	int err;
5087 
5088 	switch (proto) {
5089 	case IPPROTO_TCP:
5090 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5091 					  off + MAX_TCP_HDR_LEN);
5092 		if (!err && !skb_partial_csum_set(skb, off,
5093 						  offsetof(struct tcphdr,
5094 							   check)))
5095 			err = -EPROTO;
5096 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5097 
5098 	case IPPROTO_UDP:
5099 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5100 					  off + sizeof(struct udphdr));
5101 		if (!err && !skb_partial_csum_set(skb, off,
5102 						  offsetof(struct udphdr,
5103 							   check)))
5104 			err = -EPROTO;
5105 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5106 	}
5107 
5108 	return ERR_PTR(-EPROTO);
5109 }
5110 
5111 /* This value should be large enough to cover a tagged ethernet header plus
5112  * maximally sized IP and TCP or UDP headers.
5113  */
5114 #define MAX_IP_HDR_LEN 128
5115 
skb_checksum_setup_ipv4(struct sk_buff * skb,bool recalculate)5116 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5117 {
5118 	unsigned int off;
5119 	bool fragment;
5120 	__sum16 *csum;
5121 	int err;
5122 
5123 	fragment = false;
5124 
5125 	err = skb_maybe_pull_tail(skb,
5126 				  sizeof(struct iphdr),
5127 				  MAX_IP_HDR_LEN);
5128 	if (err < 0)
5129 		goto out;
5130 
5131 	if (ip_is_fragment(ip_hdr(skb)))
5132 		fragment = true;
5133 
5134 	off = ip_hdrlen(skb);
5135 
5136 	err = -EPROTO;
5137 
5138 	if (fragment)
5139 		goto out;
5140 
5141 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5142 	if (IS_ERR(csum))
5143 		return PTR_ERR(csum);
5144 
5145 	if (recalculate)
5146 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5147 					   ip_hdr(skb)->daddr,
5148 					   skb->len - off,
5149 					   ip_hdr(skb)->protocol, 0);
5150 	err = 0;
5151 
5152 out:
5153 	return err;
5154 }
5155 
5156 /* This value should be large enough to cover a tagged ethernet header plus
5157  * an IPv6 header, all options, and a maximal TCP or UDP header.
5158  */
5159 #define MAX_IPV6_HDR_LEN 256
5160 
5161 #define OPT_HDR(type, skb, off) \
5162 	(type *)(skb_network_header(skb) + (off))
5163 
skb_checksum_setup_ipv6(struct sk_buff * skb,bool recalculate)5164 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5165 {
5166 	int err;
5167 	u8 nexthdr;
5168 	unsigned int off;
5169 	unsigned int len;
5170 	bool fragment;
5171 	bool done;
5172 	__sum16 *csum;
5173 
5174 	fragment = false;
5175 	done = false;
5176 
5177 	off = sizeof(struct ipv6hdr);
5178 
5179 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5180 	if (err < 0)
5181 		goto out;
5182 
5183 	nexthdr = ipv6_hdr(skb)->nexthdr;
5184 
5185 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5186 	while (off <= len && !done) {
5187 		switch (nexthdr) {
5188 		case IPPROTO_DSTOPTS:
5189 		case IPPROTO_HOPOPTS:
5190 		case IPPROTO_ROUTING: {
5191 			struct ipv6_opt_hdr *hp;
5192 
5193 			err = skb_maybe_pull_tail(skb,
5194 						  off +
5195 						  sizeof(struct ipv6_opt_hdr),
5196 						  MAX_IPV6_HDR_LEN);
5197 			if (err < 0)
5198 				goto out;
5199 
5200 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5201 			nexthdr = hp->nexthdr;
5202 			off += ipv6_optlen(hp);
5203 			break;
5204 		}
5205 		case IPPROTO_AH: {
5206 			struct ip_auth_hdr *hp;
5207 
5208 			err = skb_maybe_pull_tail(skb,
5209 						  off +
5210 						  sizeof(struct ip_auth_hdr),
5211 						  MAX_IPV6_HDR_LEN);
5212 			if (err < 0)
5213 				goto out;
5214 
5215 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5216 			nexthdr = hp->nexthdr;
5217 			off += ipv6_authlen(hp);
5218 			break;
5219 		}
5220 		case IPPROTO_FRAGMENT: {
5221 			struct frag_hdr *hp;
5222 
5223 			err = skb_maybe_pull_tail(skb,
5224 						  off +
5225 						  sizeof(struct frag_hdr),
5226 						  MAX_IPV6_HDR_LEN);
5227 			if (err < 0)
5228 				goto out;
5229 
5230 			hp = OPT_HDR(struct frag_hdr, skb, off);
5231 
5232 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5233 				fragment = true;
5234 
5235 			nexthdr = hp->nexthdr;
5236 			off += sizeof(struct frag_hdr);
5237 			break;
5238 		}
5239 		default:
5240 			done = true;
5241 			break;
5242 		}
5243 	}
5244 
5245 	err = -EPROTO;
5246 
5247 	if (!done || fragment)
5248 		goto out;
5249 
5250 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5251 	if (IS_ERR(csum))
5252 		return PTR_ERR(csum);
5253 
5254 	if (recalculate)
5255 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5256 					 &ipv6_hdr(skb)->daddr,
5257 					 skb->len - off, nexthdr, 0);
5258 	err = 0;
5259 
5260 out:
5261 	return err;
5262 }
5263 
5264 /**
5265  * skb_checksum_setup - set up partial checksum offset
5266  * @skb: the skb to set up
5267  * @recalculate: if true the pseudo-header checksum will be recalculated
5268  */
skb_checksum_setup(struct sk_buff * skb,bool recalculate)5269 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5270 {
5271 	int err;
5272 
5273 	switch (skb->protocol) {
5274 	case htons(ETH_P_IP):
5275 		err = skb_checksum_setup_ipv4(skb, recalculate);
5276 		break;
5277 
5278 	case htons(ETH_P_IPV6):
5279 		err = skb_checksum_setup_ipv6(skb, recalculate);
5280 		break;
5281 
5282 	default:
5283 		err = -EPROTO;
5284 		break;
5285 	}
5286 
5287 	return err;
5288 }
5289 EXPORT_SYMBOL(skb_checksum_setup);
5290 
5291 /**
5292  * skb_checksum_maybe_trim - maybe trims the given skb
5293  * @skb: the skb to check
5294  * @transport_len: the data length beyond the network header
5295  *
5296  * Checks whether the given skb has data beyond the given transport length.
5297  * If so, returns a cloned skb trimmed to this transport length.
5298  * Otherwise returns the provided skb. Returns NULL in error cases
5299  * (e.g. transport_len exceeds skb length or out-of-memory).
5300  *
5301  * Caller needs to set the skb transport header and free any returned skb if it
5302  * differs from the provided skb.
5303  */
skb_checksum_maybe_trim(struct sk_buff * skb,unsigned int transport_len)5304 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5305 					       unsigned int transport_len)
5306 {
5307 	struct sk_buff *skb_chk;
5308 	unsigned int len = skb_transport_offset(skb) + transport_len;
5309 	int ret;
5310 
5311 	if (skb->len < len)
5312 		return NULL;
5313 	else if (skb->len == len)
5314 		return skb;
5315 
5316 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5317 	if (!skb_chk)
5318 		return NULL;
5319 
5320 	ret = pskb_trim_rcsum(skb_chk, len);
5321 	if (ret) {
5322 		kfree_skb(skb_chk);
5323 		return NULL;
5324 	}
5325 
5326 	return skb_chk;
5327 }
5328 
5329 /**
5330  * skb_checksum_trimmed - validate checksum of an skb
5331  * @skb: the skb to check
5332  * @transport_len: the data length beyond the network header
5333  * @skb_chkf: checksum function to use
5334  *
5335  * Applies the given checksum function skb_chkf to the provided skb.
5336  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5337  *
5338  * If the skb has data beyond the given transport length, then a
5339  * trimmed & cloned skb is checked and returned.
5340  *
5341  * Caller needs to set the skb transport header and free any returned skb if it
5342  * differs from the provided skb.
5343  */
skb_checksum_trimmed(struct sk_buff * skb,unsigned int transport_len,__sum16 (* skb_chkf)(struct sk_buff * skb))5344 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5345 				     unsigned int transport_len,
5346 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5347 {
5348 	struct sk_buff *skb_chk;
5349 	unsigned int offset = skb_transport_offset(skb);
5350 	__sum16 ret;
5351 
5352 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5353 	if (!skb_chk)
5354 		goto err;
5355 
5356 	if (!pskb_may_pull(skb_chk, offset))
5357 		goto err;
5358 
5359 	skb_pull_rcsum(skb_chk, offset);
5360 	ret = skb_chkf(skb_chk);
5361 	skb_push_rcsum(skb_chk, offset);
5362 
5363 	if (ret)
5364 		goto err;
5365 
5366 	return skb_chk;
5367 
5368 err:
5369 	if (skb_chk && skb_chk != skb)
5370 		kfree_skb(skb_chk);
5371 
5372 	return NULL;
5373 
5374 }
5375 EXPORT_SYMBOL(skb_checksum_trimmed);
5376 
__skb_warn_lro_forwarding(const struct sk_buff * skb)5377 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5378 {
5379 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5380 			     skb->dev->name);
5381 }
5382 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5383 
kfree_skb_partial(struct sk_buff * skb,bool head_stolen)5384 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5385 {
5386 	if (head_stolen) {
5387 		skb_release_head_state(skb);
5388 		kmem_cache_free(skbuff_head_cache, skb);
5389 	} else {
5390 		__kfree_skb(skb);
5391 	}
5392 }
5393 EXPORT_SYMBOL(kfree_skb_partial);
5394 
5395 /**
5396  * skb_try_coalesce - try to merge skb to prior one
5397  * @to: prior buffer
5398  * @from: buffer to add
5399  * @fragstolen: pointer to boolean
5400  * @delta_truesize: how much more was allocated than was requested
5401  */
skb_try_coalesce(struct sk_buff * to,struct sk_buff * from,bool * fragstolen,int * delta_truesize)5402 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5403 		      bool *fragstolen, int *delta_truesize)
5404 {
5405 	struct skb_shared_info *to_shinfo, *from_shinfo;
5406 	int i, delta, len = from->len;
5407 
5408 	*fragstolen = false;
5409 
5410 	if (skb_cloned(to))
5411 		return false;
5412 
5413 	/* In general, avoid mixing slab allocated and page_pool allocated
5414 	 * pages within the same SKB. However when @to is not pp_recycle and
5415 	 * @from is cloned, we can transition frag pages from page_pool to
5416 	 * reference counted.
5417 	 *
5418 	 * On the other hand, don't allow coalescing two pp_recycle SKBs if
5419 	 * @from is cloned, in case the SKB is using page_pool fragment
5420 	 * references (PP_FLAG_PAGE_FRAG). Since we only take full page
5421 	 * references for cloned SKBs at the moment that would result in
5422 	 * inconsistent reference counts.
5423 	 */
5424 	if (to->pp_recycle != (from->pp_recycle && !skb_cloned(from)))
5425 		return false;
5426 
5427 	if (len <= skb_tailroom(to)) {
5428 		if (len)
5429 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5430 		*delta_truesize = 0;
5431 		return true;
5432 	}
5433 
5434 	to_shinfo = skb_shinfo(to);
5435 	from_shinfo = skb_shinfo(from);
5436 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5437 		return false;
5438 	if (skb_zcopy(to) || skb_zcopy(from))
5439 		return false;
5440 
5441 	if (skb_headlen(from) != 0) {
5442 		struct page *page;
5443 		unsigned int offset;
5444 
5445 		if (to_shinfo->nr_frags +
5446 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5447 			return false;
5448 
5449 		if (skb_head_is_locked(from))
5450 			return false;
5451 
5452 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5453 
5454 		page = virt_to_head_page(from->head);
5455 		offset = from->data - (unsigned char *)page_address(page);
5456 
5457 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5458 				   page, offset, skb_headlen(from));
5459 		*fragstolen = true;
5460 	} else {
5461 		if (to_shinfo->nr_frags +
5462 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5463 			return false;
5464 
5465 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5466 	}
5467 
5468 	WARN_ON_ONCE(delta < len);
5469 
5470 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5471 	       from_shinfo->frags,
5472 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5473 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5474 
5475 	if (!skb_cloned(from))
5476 		from_shinfo->nr_frags = 0;
5477 
5478 	/* if the skb is not cloned this does nothing
5479 	 * since we set nr_frags to 0.
5480 	 */
5481 	for (i = 0; i < from_shinfo->nr_frags; i++)
5482 		__skb_frag_ref(&from_shinfo->frags[i]);
5483 
5484 	to->truesize += delta;
5485 	to->len += len;
5486 	to->data_len += len;
5487 
5488 	*delta_truesize = delta;
5489 	return true;
5490 }
5491 EXPORT_SYMBOL(skb_try_coalesce);
5492 
5493 /**
5494  * skb_scrub_packet - scrub an skb
5495  *
5496  * @skb: buffer to clean
5497  * @xnet: packet is crossing netns
5498  *
5499  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5500  * into/from a tunnel. Some information have to be cleared during these
5501  * operations.
5502  * skb_scrub_packet can also be used to clean a skb before injecting it in
5503  * another namespace (@xnet == true). We have to clear all information in the
5504  * skb that could impact namespace isolation.
5505  */
skb_scrub_packet(struct sk_buff * skb,bool xnet)5506 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5507 {
5508 	skb->pkt_type = PACKET_HOST;
5509 	skb->skb_iif = 0;
5510 	skb->ignore_df = 0;
5511 	skb_dst_drop(skb);
5512 	skb_ext_reset(skb);
5513 	nf_reset_ct(skb);
5514 	nf_reset_trace(skb);
5515 
5516 #ifdef CONFIG_NET_SWITCHDEV
5517 	skb->offload_fwd_mark = 0;
5518 	skb->offload_l3_fwd_mark = 0;
5519 #endif
5520 
5521 	if (!xnet)
5522 		return;
5523 
5524 	ipvs_reset(skb);
5525 	skb->mark = 0;
5526 	skb_clear_tstamp(skb);
5527 }
5528 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5529 
5530 /**
5531  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5532  *
5533  * @skb: GSO skb
5534  *
5535  * skb_gso_transport_seglen is used to determine the real size of the
5536  * individual segments, including Layer4 headers (TCP/UDP).
5537  *
5538  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5539  */
skb_gso_transport_seglen(const struct sk_buff * skb)5540 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5541 {
5542 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5543 	unsigned int thlen = 0;
5544 
5545 	if (skb->encapsulation) {
5546 		thlen = skb_inner_transport_header(skb) -
5547 			skb_transport_header(skb);
5548 
5549 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5550 			thlen += inner_tcp_hdrlen(skb);
5551 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5552 		thlen = tcp_hdrlen(skb);
5553 	} else if (unlikely(skb_is_gso_sctp(skb))) {
5554 		thlen = sizeof(struct sctphdr);
5555 	} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5556 		thlen = sizeof(struct udphdr);
5557 	}
5558 	/* UFO sets gso_size to the size of the fragmentation
5559 	 * payload, i.e. the size of the L4 (UDP) header is already
5560 	 * accounted for.
5561 	 */
5562 	return thlen + shinfo->gso_size;
5563 }
5564 
5565 /**
5566  * skb_gso_network_seglen - Return length of individual segments of a gso packet
5567  *
5568  * @skb: GSO skb
5569  *
5570  * skb_gso_network_seglen is used to determine the real size of the
5571  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5572  *
5573  * The MAC/L2 header is not accounted for.
5574  */
skb_gso_network_seglen(const struct sk_buff * skb)5575 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5576 {
5577 	unsigned int hdr_len = skb_transport_header(skb) -
5578 			       skb_network_header(skb);
5579 
5580 	return hdr_len + skb_gso_transport_seglen(skb);
5581 }
5582 
5583 /**
5584  * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5585  *
5586  * @skb: GSO skb
5587  *
5588  * skb_gso_mac_seglen is used to determine the real size of the
5589  * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5590  * headers (TCP/UDP).
5591  */
skb_gso_mac_seglen(const struct sk_buff * skb)5592 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5593 {
5594 	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5595 
5596 	return hdr_len + skb_gso_transport_seglen(skb);
5597 }
5598 
5599 /**
5600  * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5601  *
5602  * There are a couple of instances where we have a GSO skb, and we
5603  * want to determine what size it would be after it is segmented.
5604  *
5605  * We might want to check:
5606  * -    L3+L4+payload size (e.g. IP forwarding)
5607  * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5608  *
5609  * This is a helper to do that correctly considering GSO_BY_FRAGS.
5610  *
5611  * @skb: GSO skb
5612  *
5613  * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5614  *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5615  *
5616  * @max_len: The maximum permissible length.
5617  *
5618  * Returns true if the segmented length <= max length.
5619  */
skb_gso_size_check(const struct sk_buff * skb,unsigned int seg_len,unsigned int max_len)5620 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5621 				      unsigned int seg_len,
5622 				      unsigned int max_len) {
5623 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5624 	const struct sk_buff *iter;
5625 
5626 	if (shinfo->gso_size != GSO_BY_FRAGS)
5627 		return seg_len <= max_len;
5628 
5629 	/* Undo this so we can re-use header sizes */
5630 	seg_len -= GSO_BY_FRAGS;
5631 
5632 	skb_walk_frags(skb, iter) {
5633 		if (seg_len + skb_headlen(iter) > max_len)
5634 			return false;
5635 	}
5636 
5637 	return true;
5638 }
5639 
5640 /**
5641  * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5642  *
5643  * @skb: GSO skb
5644  * @mtu: MTU to validate against
5645  *
5646  * skb_gso_validate_network_len validates if a given skb will fit a
5647  * wanted MTU once split. It considers L3 headers, L4 headers, and the
5648  * payload.
5649  */
skb_gso_validate_network_len(const struct sk_buff * skb,unsigned int mtu)5650 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5651 {
5652 	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5653 }
5654 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5655 
5656 /**
5657  * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5658  *
5659  * @skb: GSO skb
5660  * @len: length to validate against
5661  *
5662  * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5663  * length once split, including L2, L3 and L4 headers and the payload.
5664  */
skb_gso_validate_mac_len(const struct sk_buff * skb,unsigned int len)5665 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5666 {
5667 	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5668 }
5669 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5670 
skb_reorder_vlan_header(struct sk_buff * skb)5671 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5672 {
5673 	int mac_len, meta_len;
5674 	void *meta;
5675 
5676 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5677 		kfree_skb(skb);
5678 		return NULL;
5679 	}
5680 
5681 	mac_len = skb->data - skb_mac_header(skb);
5682 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5683 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5684 			mac_len - VLAN_HLEN - ETH_TLEN);
5685 	}
5686 
5687 	meta_len = skb_metadata_len(skb);
5688 	if (meta_len) {
5689 		meta = skb_metadata_end(skb) - meta_len;
5690 		memmove(meta + VLAN_HLEN, meta, meta_len);
5691 	}
5692 
5693 	skb->mac_header += VLAN_HLEN;
5694 	return skb;
5695 }
5696 
skb_vlan_untag(struct sk_buff * skb)5697 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5698 {
5699 	struct vlan_hdr *vhdr;
5700 	u16 vlan_tci;
5701 
5702 	if (unlikely(skb_vlan_tag_present(skb))) {
5703 		/* vlan_tci is already set-up so leave this for another time */
5704 		return skb;
5705 	}
5706 
5707 	skb = skb_share_check(skb, GFP_ATOMIC);
5708 	if (unlikely(!skb))
5709 		goto err_free;
5710 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5711 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5712 		goto err_free;
5713 
5714 	vhdr = (struct vlan_hdr *)skb->data;
5715 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5716 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5717 
5718 	skb_pull_rcsum(skb, VLAN_HLEN);
5719 	vlan_set_encap_proto(skb, vhdr);
5720 
5721 	skb = skb_reorder_vlan_header(skb);
5722 	if (unlikely(!skb))
5723 		goto err_free;
5724 
5725 	skb_reset_network_header(skb);
5726 	if (!skb_transport_header_was_set(skb))
5727 		skb_reset_transport_header(skb);
5728 	skb_reset_mac_len(skb);
5729 
5730 	return skb;
5731 
5732 err_free:
5733 	kfree_skb(skb);
5734 	return NULL;
5735 }
5736 EXPORT_SYMBOL(skb_vlan_untag);
5737 
skb_ensure_writable(struct sk_buff * skb,unsigned int write_len)5738 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
5739 {
5740 	if (!pskb_may_pull(skb, write_len))
5741 		return -ENOMEM;
5742 
5743 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5744 		return 0;
5745 
5746 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5747 }
5748 EXPORT_SYMBOL(skb_ensure_writable);
5749 
5750 /* remove VLAN header from packet and update csum accordingly.
5751  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5752  */
__skb_vlan_pop(struct sk_buff * skb,u16 * vlan_tci)5753 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5754 {
5755 	struct vlan_hdr *vhdr;
5756 	int offset = skb->data - skb_mac_header(skb);
5757 	int err;
5758 
5759 	if (WARN_ONCE(offset,
5760 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5761 		      offset)) {
5762 		return -EINVAL;
5763 	}
5764 
5765 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5766 	if (unlikely(err))
5767 		return err;
5768 
5769 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5770 
5771 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5772 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5773 
5774 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5775 	__skb_pull(skb, VLAN_HLEN);
5776 
5777 	vlan_set_encap_proto(skb, vhdr);
5778 	skb->mac_header += VLAN_HLEN;
5779 
5780 	if (skb_network_offset(skb) < ETH_HLEN)
5781 		skb_set_network_header(skb, ETH_HLEN);
5782 
5783 	skb_reset_mac_len(skb);
5784 
5785 	return err;
5786 }
5787 EXPORT_SYMBOL(__skb_vlan_pop);
5788 
5789 /* Pop a vlan tag either from hwaccel or from payload.
5790  * Expects skb->data at mac header.
5791  */
skb_vlan_pop(struct sk_buff * skb)5792 int skb_vlan_pop(struct sk_buff *skb)
5793 {
5794 	u16 vlan_tci;
5795 	__be16 vlan_proto;
5796 	int err;
5797 
5798 	if (likely(skb_vlan_tag_present(skb))) {
5799 		__vlan_hwaccel_clear_tag(skb);
5800 	} else {
5801 		if (unlikely(!eth_type_vlan(skb->protocol)))
5802 			return 0;
5803 
5804 		err = __skb_vlan_pop(skb, &vlan_tci);
5805 		if (err)
5806 			return err;
5807 	}
5808 	/* move next vlan tag to hw accel tag */
5809 	if (likely(!eth_type_vlan(skb->protocol)))
5810 		return 0;
5811 
5812 	vlan_proto = skb->protocol;
5813 	err = __skb_vlan_pop(skb, &vlan_tci);
5814 	if (unlikely(err))
5815 		return err;
5816 
5817 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5818 	return 0;
5819 }
5820 EXPORT_SYMBOL(skb_vlan_pop);
5821 
5822 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5823  * Expects skb->data at mac header.
5824  */
skb_vlan_push(struct sk_buff * skb,__be16 vlan_proto,u16 vlan_tci)5825 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5826 {
5827 	if (skb_vlan_tag_present(skb)) {
5828 		int offset = skb->data - skb_mac_header(skb);
5829 		int err;
5830 
5831 		if (WARN_ONCE(offset,
5832 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5833 			      offset)) {
5834 			return -EINVAL;
5835 		}
5836 
5837 		err = __vlan_insert_tag(skb, skb->vlan_proto,
5838 					skb_vlan_tag_get(skb));
5839 		if (err)
5840 			return err;
5841 
5842 		skb->protocol = skb->vlan_proto;
5843 		skb->mac_len += VLAN_HLEN;
5844 
5845 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5846 	}
5847 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5848 	return 0;
5849 }
5850 EXPORT_SYMBOL(skb_vlan_push);
5851 
5852 /**
5853  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5854  *
5855  * @skb: Socket buffer to modify
5856  *
5857  * Drop the Ethernet header of @skb.
5858  *
5859  * Expects that skb->data points to the mac header and that no VLAN tags are
5860  * present.
5861  *
5862  * Returns 0 on success, -errno otherwise.
5863  */
skb_eth_pop(struct sk_buff * skb)5864 int skb_eth_pop(struct sk_buff *skb)
5865 {
5866 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5867 	    skb_network_offset(skb) < ETH_HLEN)
5868 		return -EPROTO;
5869 
5870 	skb_pull_rcsum(skb, ETH_HLEN);
5871 	skb_reset_mac_header(skb);
5872 	skb_reset_mac_len(skb);
5873 
5874 	return 0;
5875 }
5876 EXPORT_SYMBOL(skb_eth_pop);
5877 
5878 /**
5879  * skb_eth_push() - Add a new Ethernet header at the head of a packet
5880  *
5881  * @skb: Socket buffer to modify
5882  * @dst: Destination MAC address of the new header
5883  * @src: Source MAC address of the new header
5884  *
5885  * Prepend @skb with a new Ethernet header.
5886  *
5887  * Expects that skb->data points to the mac header, which must be empty.
5888  *
5889  * Returns 0 on success, -errno otherwise.
5890  */
skb_eth_push(struct sk_buff * skb,const unsigned char * dst,const unsigned char * src)5891 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5892 		 const unsigned char *src)
5893 {
5894 	struct ethhdr *eth;
5895 	int err;
5896 
5897 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
5898 		return -EPROTO;
5899 
5900 	err = skb_cow_head(skb, sizeof(*eth));
5901 	if (err < 0)
5902 		return err;
5903 
5904 	skb_push(skb, sizeof(*eth));
5905 	skb_reset_mac_header(skb);
5906 	skb_reset_mac_len(skb);
5907 
5908 	eth = eth_hdr(skb);
5909 	ether_addr_copy(eth->h_dest, dst);
5910 	ether_addr_copy(eth->h_source, src);
5911 	eth->h_proto = skb->protocol;
5912 
5913 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
5914 
5915 	return 0;
5916 }
5917 EXPORT_SYMBOL(skb_eth_push);
5918 
5919 /* Update the ethertype of hdr and the skb csum value if required. */
skb_mod_eth_type(struct sk_buff * skb,struct ethhdr * hdr,__be16 ethertype)5920 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5921 			     __be16 ethertype)
5922 {
5923 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5924 		__be16 diff[] = { ~hdr->h_proto, ethertype };
5925 
5926 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5927 	}
5928 
5929 	hdr->h_proto = ethertype;
5930 }
5931 
5932 /**
5933  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5934  *                   the packet
5935  *
5936  * @skb: buffer
5937  * @mpls_lse: MPLS label stack entry to push
5938  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5939  * @mac_len: length of the MAC header
5940  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5941  *            ethernet
5942  *
5943  * Expects skb->data at mac header.
5944  *
5945  * Returns 0 on success, -errno otherwise.
5946  */
skb_mpls_push(struct sk_buff * skb,__be32 mpls_lse,__be16 mpls_proto,int mac_len,bool ethernet)5947 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5948 		  int mac_len, bool ethernet)
5949 {
5950 	struct mpls_shim_hdr *lse;
5951 	int err;
5952 
5953 	if (unlikely(!eth_p_mpls(mpls_proto)))
5954 		return -EINVAL;
5955 
5956 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5957 	if (skb->encapsulation)
5958 		return -EINVAL;
5959 
5960 	err = skb_cow_head(skb, MPLS_HLEN);
5961 	if (unlikely(err))
5962 		return err;
5963 
5964 	if (!skb->inner_protocol) {
5965 		skb_set_inner_network_header(skb, skb_network_offset(skb));
5966 		skb_set_inner_protocol(skb, skb->protocol);
5967 	}
5968 
5969 	skb_push(skb, MPLS_HLEN);
5970 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5971 		mac_len);
5972 	skb_reset_mac_header(skb);
5973 	skb_set_network_header(skb, mac_len);
5974 	skb_reset_mac_len(skb);
5975 
5976 	lse = mpls_hdr(skb);
5977 	lse->label_stack_entry = mpls_lse;
5978 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5979 
5980 	if (ethernet && mac_len >= ETH_HLEN)
5981 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5982 	skb->protocol = mpls_proto;
5983 
5984 	return 0;
5985 }
5986 EXPORT_SYMBOL_GPL(skb_mpls_push);
5987 
5988 /**
5989  * skb_mpls_pop() - pop the outermost MPLS header
5990  *
5991  * @skb: buffer
5992  * @next_proto: ethertype of header after popped MPLS header
5993  * @mac_len: length of the MAC header
5994  * @ethernet: flag to indicate if the packet is ethernet
5995  *
5996  * Expects skb->data at mac header.
5997  *
5998  * Returns 0 on success, -errno otherwise.
5999  */
skb_mpls_pop(struct sk_buff * skb,__be16 next_proto,int mac_len,bool ethernet)6000 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6001 		 bool ethernet)
6002 {
6003 	int err;
6004 
6005 	if (unlikely(!eth_p_mpls(skb->protocol)))
6006 		return 0;
6007 
6008 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6009 	if (unlikely(err))
6010 		return err;
6011 
6012 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6013 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6014 		mac_len);
6015 
6016 	__skb_pull(skb, MPLS_HLEN);
6017 	skb_reset_mac_header(skb);
6018 	skb_set_network_header(skb, mac_len);
6019 
6020 	if (ethernet && mac_len >= ETH_HLEN) {
6021 		struct ethhdr *hdr;
6022 
6023 		/* use mpls_hdr() to get ethertype to account for VLANs. */
6024 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6025 		skb_mod_eth_type(skb, hdr, next_proto);
6026 	}
6027 	skb->protocol = next_proto;
6028 
6029 	return 0;
6030 }
6031 EXPORT_SYMBOL_GPL(skb_mpls_pop);
6032 
6033 /**
6034  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6035  *
6036  * @skb: buffer
6037  * @mpls_lse: new MPLS label stack entry to update to
6038  *
6039  * Expects skb->data at mac header.
6040  *
6041  * Returns 0 on success, -errno otherwise.
6042  */
skb_mpls_update_lse(struct sk_buff * skb,__be32 mpls_lse)6043 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6044 {
6045 	int err;
6046 
6047 	if (unlikely(!eth_p_mpls(skb->protocol)))
6048 		return -EINVAL;
6049 
6050 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6051 	if (unlikely(err))
6052 		return err;
6053 
6054 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6055 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6056 
6057 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6058 	}
6059 
6060 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
6061 
6062 	return 0;
6063 }
6064 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6065 
6066 /**
6067  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6068  *
6069  * @skb: buffer
6070  *
6071  * Expects skb->data at mac header.
6072  *
6073  * Returns 0 on success, -errno otherwise.
6074  */
skb_mpls_dec_ttl(struct sk_buff * skb)6075 int skb_mpls_dec_ttl(struct sk_buff *skb)
6076 {
6077 	u32 lse;
6078 	u8 ttl;
6079 
6080 	if (unlikely(!eth_p_mpls(skb->protocol)))
6081 		return -EINVAL;
6082 
6083 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6084 		return -ENOMEM;
6085 
6086 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6087 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6088 	if (!--ttl)
6089 		return -EINVAL;
6090 
6091 	lse &= ~MPLS_LS_TTL_MASK;
6092 	lse |= ttl << MPLS_LS_TTL_SHIFT;
6093 
6094 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6095 }
6096 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6097 
6098 /**
6099  * alloc_skb_with_frags - allocate skb with page frags
6100  *
6101  * @header_len: size of linear part
6102  * @data_len: needed length in frags
6103  * @max_page_order: max page order desired.
6104  * @errcode: pointer to error code if any
6105  * @gfp_mask: allocation mask
6106  *
6107  * This can be used to allocate a paged skb, given a maximal order for frags.
6108  */
alloc_skb_with_frags(unsigned long header_len,unsigned long data_len,int max_page_order,int * errcode,gfp_t gfp_mask)6109 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6110 				     unsigned long data_len,
6111 				     int max_page_order,
6112 				     int *errcode,
6113 				     gfp_t gfp_mask)
6114 {
6115 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
6116 	unsigned long chunk;
6117 	struct sk_buff *skb;
6118 	struct page *page;
6119 	int i;
6120 
6121 	*errcode = -EMSGSIZE;
6122 	/* Note this test could be relaxed, if we succeed to allocate
6123 	 * high order pages...
6124 	 */
6125 	if (npages > MAX_SKB_FRAGS)
6126 		return NULL;
6127 
6128 	*errcode = -ENOBUFS;
6129 	skb = alloc_skb(header_len, gfp_mask);
6130 	if (!skb)
6131 		return NULL;
6132 
6133 	skb->truesize += npages << PAGE_SHIFT;
6134 
6135 	for (i = 0; npages > 0; i++) {
6136 		int order = max_page_order;
6137 
6138 		while (order) {
6139 			if (npages >= 1 << order) {
6140 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6141 						   __GFP_COMP |
6142 						   __GFP_NOWARN,
6143 						   order);
6144 				if (page)
6145 					goto fill_page;
6146 				/* Do not retry other high order allocations */
6147 				order = 1;
6148 				max_page_order = 0;
6149 			}
6150 			order--;
6151 		}
6152 		page = alloc_page(gfp_mask);
6153 		if (!page)
6154 			goto failure;
6155 fill_page:
6156 		chunk = min_t(unsigned long, data_len,
6157 			      PAGE_SIZE << order);
6158 		skb_fill_page_desc(skb, i, page, 0, chunk);
6159 		data_len -= chunk;
6160 		npages -= 1 << order;
6161 	}
6162 	return skb;
6163 
6164 failure:
6165 	kfree_skb(skb);
6166 	return NULL;
6167 }
6168 EXPORT_SYMBOL(alloc_skb_with_frags);
6169 
6170 /* carve out the first off bytes from skb when off < headlen */
pskb_carve_inside_header(struct sk_buff * skb,const u32 off,const int headlen,gfp_t gfp_mask)6171 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6172 				    const int headlen, gfp_t gfp_mask)
6173 {
6174 	int i;
6175 	int size = skb_end_offset(skb);
6176 	int new_hlen = headlen - off;
6177 	u8 *data;
6178 
6179 	size = SKB_DATA_ALIGN(size);
6180 
6181 	if (skb_pfmemalloc(skb))
6182 		gfp_mask |= __GFP_MEMALLOC;
6183 	data = kmalloc_reserve(size +
6184 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6185 			       gfp_mask, NUMA_NO_NODE, NULL);
6186 	if (!data)
6187 		return -ENOMEM;
6188 
6189 	size = SKB_WITH_OVERHEAD(ksize(data));
6190 
6191 	/* Copy real data, and all frags */
6192 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6193 	skb->len -= off;
6194 
6195 	memcpy((struct skb_shared_info *)(data + size),
6196 	       skb_shinfo(skb),
6197 	       offsetof(struct skb_shared_info,
6198 			frags[skb_shinfo(skb)->nr_frags]));
6199 	if (skb_cloned(skb)) {
6200 		/* drop the old head gracefully */
6201 		if (skb_orphan_frags(skb, gfp_mask)) {
6202 			kfree(data);
6203 			return -ENOMEM;
6204 		}
6205 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6206 			skb_frag_ref(skb, i);
6207 		if (skb_has_frag_list(skb))
6208 			skb_clone_fraglist(skb);
6209 		skb_release_data(skb);
6210 	} else {
6211 		/* we can reuse existing recount- all we did was
6212 		 * relocate values
6213 		 */
6214 		skb_free_head(skb);
6215 	}
6216 
6217 	skb->head = data;
6218 	skb->data = data;
6219 	skb->head_frag = 0;
6220 	skb_set_end_offset(skb, size);
6221 	skb_set_tail_pointer(skb, skb_headlen(skb));
6222 	skb_headers_offset_update(skb, 0);
6223 	skb->cloned = 0;
6224 	skb->hdr_len = 0;
6225 	skb->nohdr = 0;
6226 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6227 
6228 	return 0;
6229 }
6230 
6231 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6232 
6233 /* carve out the first eat bytes from skb's frag_list. May recurse into
6234  * pskb_carve()
6235  */
pskb_carve_frag_list(struct sk_buff * skb,struct skb_shared_info * shinfo,int eat,gfp_t gfp_mask)6236 static int pskb_carve_frag_list(struct sk_buff *skb,
6237 				struct skb_shared_info *shinfo, int eat,
6238 				gfp_t gfp_mask)
6239 {
6240 	struct sk_buff *list = shinfo->frag_list;
6241 	struct sk_buff *clone = NULL;
6242 	struct sk_buff *insp = NULL;
6243 
6244 	do {
6245 		if (!list) {
6246 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6247 			return -EFAULT;
6248 		}
6249 		if (list->len <= eat) {
6250 			/* Eaten as whole. */
6251 			eat -= list->len;
6252 			list = list->next;
6253 			insp = list;
6254 		} else {
6255 			/* Eaten partially. */
6256 			if (skb_shared(list)) {
6257 				clone = skb_clone(list, gfp_mask);
6258 				if (!clone)
6259 					return -ENOMEM;
6260 				insp = list->next;
6261 				list = clone;
6262 			} else {
6263 				/* This may be pulled without problems. */
6264 				insp = list;
6265 			}
6266 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6267 				kfree_skb(clone);
6268 				return -ENOMEM;
6269 			}
6270 			break;
6271 		}
6272 	} while (eat);
6273 
6274 	/* Free pulled out fragments. */
6275 	while ((list = shinfo->frag_list) != insp) {
6276 		shinfo->frag_list = list->next;
6277 		consume_skb(list);
6278 	}
6279 	/* And insert new clone at head. */
6280 	if (clone) {
6281 		clone->next = list;
6282 		shinfo->frag_list = clone;
6283 	}
6284 	return 0;
6285 }
6286 
6287 /* carve off first len bytes from skb. Split line (off) is in the
6288  * non-linear part of skb
6289  */
pskb_carve_inside_nonlinear(struct sk_buff * skb,const u32 off,int pos,gfp_t gfp_mask)6290 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6291 				       int pos, gfp_t gfp_mask)
6292 {
6293 	int i, k = 0;
6294 	int size = skb_end_offset(skb);
6295 	u8 *data;
6296 	const int nfrags = skb_shinfo(skb)->nr_frags;
6297 	struct skb_shared_info *shinfo;
6298 
6299 	size = SKB_DATA_ALIGN(size);
6300 
6301 	if (skb_pfmemalloc(skb))
6302 		gfp_mask |= __GFP_MEMALLOC;
6303 	data = kmalloc_reserve(size +
6304 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6305 			       gfp_mask, NUMA_NO_NODE, NULL);
6306 	if (!data)
6307 		return -ENOMEM;
6308 
6309 	size = SKB_WITH_OVERHEAD(ksize(data));
6310 
6311 	memcpy((struct skb_shared_info *)(data + size),
6312 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6313 	if (skb_orphan_frags(skb, gfp_mask)) {
6314 		kfree(data);
6315 		return -ENOMEM;
6316 	}
6317 	shinfo = (struct skb_shared_info *)(data + size);
6318 	for (i = 0; i < nfrags; i++) {
6319 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6320 
6321 		if (pos + fsize > off) {
6322 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6323 
6324 			if (pos < off) {
6325 				/* Split frag.
6326 				 * We have two variants in this case:
6327 				 * 1. Move all the frag to the second
6328 				 *    part, if it is possible. F.e.
6329 				 *    this approach is mandatory for TUX,
6330 				 *    where splitting is expensive.
6331 				 * 2. Split is accurately. We make this.
6332 				 */
6333 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6334 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6335 			}
6336 			skb_frag_ref(skb, i);
6337 			k++;
6338 		}
6339 		pos += fsize;
6340 	}
6341 	shinfo->nr_frags = k;
6342 	if (skb_has_frag_list(skb))
6343 		skb_clone_fraglist(skb);
6344 
6345 	/* split line is in frag list */
6346 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6347 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6348 		if (skb_has_frag_list(skb))
6349 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6350 		kfree(data);
6351 		return -ENOMEM;
6352 	}
6353 	skb_release_data(skb);
6354 
6355 	skb->head = data;
6356 	skb->head_frag = 0;
6357 	skb->data = data;
6358 	skb_set_end_offset(skb, size);
6359 	skb_reset_tail_pointer(skb);
6360 	skb_headers_offset_update(skb, 0);
6361 	skb->cloned   = 0;
6362 	skb->hdr_len  = 0;
6363 	skb->nohdr    = 0;
6364 	skb->len -= off;
6365 	skb->data_len = skb->len;
6366 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6367 	return 0;
6368 }
6369 
6370 /* remove len bytes from the beginning of the skb */
pskb_carve(struct sk_buff * skb,const u32 len,gfp_t gfp)6371 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6372 {
6373 	int headlen = skb_headlen(skb);
6374 
6375 	if (len < headlen)
6376 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6377 	else
6378 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6379 }
6380 
6381 /* Extract to_copy bytes starting at off from skb, and return this in
6382  * a new skb
6383  */
pskb_extract(struct sk_buff * skb,int off,int to_copy,gfp_t gfp)6384 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6385 			     int to_copy, gfp_t gfp)
6386 {
6387 	struct sk_buff  *clone = skb_clone(skb, gfp);
6388 
6389 	if (!clone)
6390 		return NULL;
6391 
6392 	if (pskb_carve(clone, off, gfp) < 0 ||
6393 	    pskb_trim(clone, to_copy)) {
6394 		kfree_skb(clone);
6395 		return NULL;
6396 	}
6397 	return clone;
6398 }
6399 EXPORT_SYMBOL(pskb_extract);
6400 
6401 /**
6402  * skb_condense - try to get rid of fragments/frag_list if possible
6403  * @skb: buffer
6404  *
6405  * Can be used to save memory before skb is added to a busy queue.
6406  * If packet has bytes in frags and enough tail room in skb->head,
6407  * pull all of them, so that we can free the frags right now and adjust
6408  * truesize.
6409  * Notes:
6410  *	We do not reallocate skb->head thus can not fail.
6411  *	Caller must re-evaluate skb->truesize if needed.
6412  */
skb_condense(struct sk_buff * skb)6413 void skb_condense(struct sk_buff *skb)
6414 {
6415 	if (skb->data_len) {
6416 		if (skb->data_len > skb->end - skb->tail ||
6417 		    skb_cloned(skb))
6418 			return;
6419 
6420 		/* Nice, we can free page frag(s) right now */
6421 		__pskb_pull_tail(skb, skb->data_len);
6422 	}
6423 	/* At this point, skb->truesize might be over estimated,
6424 	 * because skb had a fragment, and fragments do not tell
6425 	 * their truesize.
6426 	 * When we pulled its content into skb->head, fragment
6427 	 * was freed, but __pskb_pull_tail() could not possibly
6428 	 * adjust skb->truesize, not knowing the frag truesize.
6429 	 */
6430 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6431 }
6432 
6433 #ifdef CONFIG_SKB_EXTENSIONS
skb_ext_get_ptr(struct skb_ext * ext,enum skb_ext_id id)6434 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6435 {
6436 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6437 }
6438 
6439 /**
6440  * __skb_ext_alloc - allocate a new skb extensions storage
6441  *
6442  * @flags: See kmalloc().
6443  *
6444  * Returns the newly allocated pointer. The pointer can later attached to a
6445  * skb via __skb_ext_set().
6446  * Note: caller must handle the skb_ext as an opaque data.
6447  */
__skb_ext_alloc(gfp_t flags)6448 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6449 {
6450 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6451 
6452 	if (new) {
6453 		memset(new->offset, 0, sizeof(new->offset));
6454 		refcount_set(&new->refcnt, 1);
6455 	}
6456 
6457 	return new;
6458 }
6459 
skb_ext_maybe_cow(struct skb_ext * old,unsigned int old_active)6460 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6461 					 unsigned int old_active)
6462 {
6463 	struct skb_ext *new;
6464 
6465 	if (refcount_read(&old->refcnt) == 1)
6466 		return old;
6467 
6468 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6469 	if (!new)
6470 		return NULL;
6471 
6472 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6473 	refcount_set(&new->refcnt, 1);
6474 
6475 #ifdef CONFIG_XFRM
6476 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6477 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6478 		unsigned int i;
6479 
6480 		for (i = 0; i < sp->len; i++)
6481 			xfrm_state_hold(sp->xvec[i]);
6482 	}
6483 #endif
6484 	__skb_ext_put(old);
6485 	return new;
6486 }
6487 
6488 /**
6489  * __skb_ext_set - attach the specified extension storage to this skb
6490  * @skb: buffer
6491  * @id: extension id
6492  * @ext: extension storage previously allocated via __skb_ext_alloc()
6493  *
6494  * Existing extensions, if any, are cleared.
6495  *
6496  * Returns the pointer to the extension.
6497  */
__skb_ext_set(struct sk_buff * skb,enum skb_ext_id id,struct skb_ext * ext)6498 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6499 		    struct skb_ext *ext)
6500 {
6501 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6502 
6503 	skb_ext_put(skb);
6504 	newlen = newoff + skb_ext_type_len[id];
6505 	ext->chunks = newlen;
6506 	ext->offset[id] = newoff;
6507 	skb->extensions = ext;
6508 	skb->active_extensions = 1 << id;
6509 	return skb_ext_get_ptr(ext, id);
6510 }
6511 
6512 /**
6513  * skb_ext_add - allocate space for given extension, COW if needed
6514  * @skb: buffer
6515  * @id: extension to allocate space for
6516  *
6517  * Allocates enough space for the given extension.
6518  * If the extension is already present, a pointer to that extension
6519  * is returned.
6520  *
6521  * If the skb was cloned, COW applies and the returned memory can be
6522  * modified without changing the extension space of clones buffers.
6523  *
6524  * Returns pointer to the extension or NULL on allocation failure.
6525  */
skb_ext_add(struct sk_buff * skb,enum skb_ext_id id)6526 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6527 {
6528 	struct skb_ext *new, *old = NULL;
6529 	unsigned int newlen, newoff;
6530 
6531 	if (skb->active_extensions) {
6532 		old = skb->extensions;
6533 
6534 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6535 		if (!new)
6536 			return NULL;
6537 
6538 		if (__skb_ext_exist(new, id))
6539 			goto set_active;
6540 
6541 		newoff = new->chunks;
6542 	} else {
6543 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6544 
6545 		new = __skb_ext_alloc(GFP_ATOMIC);
6546 		if (!new)
6547 			return NULL;
6548 	}
6549 
6550 	newlen = newoff + skb_ext_type_len[id];
6551 	new->chunks = newlen;
6552 	new->offset[id] = newoff;
6553 set_active:
6554 	skb->slow_gro = 1;
6555 	skb->extensions = new;
6556 	skb->active_extensions |= 1 << id;
6557 	return skb_ext_get_ptr(new, id);
6558 }
6559 EXPORT_SYMBOL(skb_ext_add);
6560 
6561 #ifdef CONFIG_XFRM
skb_ext_put_sp(struct sec_path * sp)6562 static void skb_ext_put_sp(struct sec_path *sp)
6563 {
6564 	unsigned int i;
6565 
6566 	for (i = 0; i < sp->len; i++)
6567 		xfrm_state_put(sp->xvec[i]);
6568 }
6569 #endif
6570 
6571 #ifdef CONFIG_MCTP_FLOWS
skb_ext_put_mctp(struct mctp_flow * flow)6572 static void skb_ext_put_mctp(struct mctp_flow *flow)
6573 {
6574 	if (flow->key)
6575 		mctp_key_unref(flow->key);
6576 }
6577 #endif
6578 
__skb_ext_del(struct sk_buff * skb,enum skb_ext_id id)6579 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6580 {
6581 	struct skb_ext *ext = skb->extensions;
6582 
6583 	skb->active_extensions &= ~(1 << id);
6584 	if (skb->active_extensions == 0) {
6585 		skb->extensions = NULL;
6586 		__skb_ext_put(ext);
6587 #ifdef CONFIG_XFRM
6588 	} else if (id == SKB_EXT_SEC_PATH &&
6589 		   refcount_read(&ext->refcnt) == 1) {
6590 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6591 
6592 		skb_ext_put_sp(sp);
6593 		sp->len = 0;
6594 #endif
6595 	}
6596 }
6597 EXPORT_SYMBOL(__skb_ext_del);
6598 
__skb_ext_put(struct skb_ext * ext)6599 void __skb_ext_put(struct skb_ext *ext)
6600 {
6601 	/* If this is last clone, nothing can increment
6602 	 * it after check passes.  Avoids one atomic op.
6603 	 */
6604 	if (refcount_read(&ext->refcnt) == 1)
6605 		goto free_now;
6606 
6607 	if (!refcount_dec_and_test(&ext->refcnt))
6608 		return;
6609 free_now:
6610 #ifdef CONFIG_XFRM
6611 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6612 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6613 #endif
6614 #ifdef CONFIG_MCTP_FLOWS
6615 	if (__skb_ext_exist(ext, SKB_EXT_MCTP))
6616 		skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
6617 #endif
6618 
6619 	kmem_cache_free(skbuff_ext_cache, ext);
6620 }
6621 EXPORT_SYMBOL(__skb_ext_put);
6622 #endif /* CONFIG_SKB_EXTENSIONS */
6623 
6624 /**
6625  * skb_attempt_defer_free - queue skb for remote freeing
6626  * @skb: buffer
6627  *
6628  * Put @skb in a per-cpu list, using the cpu which
6629  * allocated the skb/pages to reduce false sharing
6630  * and memory zone spinlock contention.
6631  */
skb_attempt_defer_free(struct sk_buff * skb)6632 void skb_attempt_defer_free(struct sk_buff *skb)
6633 {
6634 	int cpu = skb->alloc_cpu;
6635 	struct softnet_data *sd;
6636 	unsigned long flags;
6637 	unsigned int defer_max;
6638 	bool kick;
6639 
6640 	if (WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
6641 	    !cpu_online(cpu) ||
6642 	    cpu == raw_smp_processor_id()) {
6643 nodefer:	__kfree_skb(skb);
6644 		return;
6645 	}
6646 
6647 	sd = &per_cpu(softnet_data, cpu);
6648 	defer_max = READ_ONCE(sysctl_skb_defer_max);
6649 	if (READ_ONCE(sd->defer_count) >= defer_max)
6650 		goto nodefer;
6651 
6652 	spin_lock_irqsave(&sd->defer_lock, flags);
6653 	/* Send an IPI every time queue reaches half capacity. */
6654 	kick = sd->defer_count == (defer_max >> 1);
6655 	/* Paired with the READ_ONCE() few lines above */
6656 	WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
6657 
6658 	skb->next = sd->defer_list;
6659 	/* Paired with READ_ONCE() in skb_defer_free_flush() */
6660 	WRITE_ONCE(sd->defer_list, skb);
6661 	spin_unlock_irqrestore(&sd->defer_lock, flags);
6662 
6663 	/* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
6664 	 * if we are unlucky enough (this seems very unlikely).
6665 	 */
6666 	if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1))
6667 		smp_call_function_single_async(cpu, &sd->defer_csd);
6668 }
6669