1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * This file contains common KASAN code.
4 *
5 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
6 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
7 *
8 * Some code borrowed from https://github.com/xairy/kasan-prototype by
9 * Andrey Konovalov <andreyknvl@gmail.com>
10 */
11
12 #include <linux/export.h>
13 #include <linux/init.h>
14 #include <linux/kasan.h>
15 #include <linux/kernel.h>
16 #include <linux/linkage.h>
17 #include <linux/memblock.h>
18 #include <linux/memory.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/printk.h>
22 #include <linux/sched.h>
23 #include <linux/sched/task_stack.h>
24 #include <linux/slab.h>
25 #include <linux/stacktrace.h>
26 #include <linux/string.h>
27 #include <linux/types.h>
28 #include <linux/bug.h>
29
30 #include "kasan.h"
31 #include "../slab.h"
32
kasan_save_stack(gfp_t flags,bool can_alloc)33 depot_stack_handle_t kasan_save_stack(gfp_t flags, bool can_alloc)
34 {
35 unsigned long entries[KASAN_STACK_DEPTH];
36 unsigned int nr_entries;
37
38 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0);
39 return __stack_depot_save(entries, nr_entries, flags, can_alloc);
40 }
41
kasan_set_track(struct kasan_track * track,gfp_t flags)42 void kasan_set_track(struct kasan_track *track, gfp_t flags)
43 {
44 track->pid = current->pid;
45 track->stack = kasan_save_stack(flags, true);
46 }
47
48 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
kasan_enable_current(void)49 void kasan_enable_current(void)
50 {
51 current->kasan_depth++;
52 }
53 EXPORT_SYMBOL(kasan_enable_current);
54
kasan_disable_current(void)55 void kasan_disable_current(void)
56 {
57 current->kasan_depth--;
58 }
59 EXPORT_SYMBOL(kasan_disable_current);
60
61 #endif /* CONFIG_KASAN_GENERIC || CONFIG_KASAN_SW_TAGS */
62
__kasan_unpoison_range(const void * address,size_t size)63 void __kasan_unpoison_range(const void *address, size_t size)
64 {
65 kasan_unpoison(address, size, false);
66 }
67
68 #ifdef CONFIG_KASAN_STACK
69 /* Unpoison the entire stack for a task. */
kasan_unpoison_task_stack(struct task_struct * task)70 void kasan_unpoison_task_stack(struct task_struct *task)
71 {
72 void *base = task_stack_page(task);
73
74 kasan_unpoison(base, THREAD_SIZE, false);
75 }
76
77 /* Unpoison the stack for the current task beyond a watermark sp value. */
kasan_unpoison_task_stack_below(const void * watermark)78 asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
79 {
80 /*
81 * Calculate the task stack base address. Avoid using 'current'
82 * because this function is called by early resume code which hasn't
83 * yet set up the percpu register (%gs).
84 */
85 void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));
86
87 kasan_unpoison(base, watermark - base, false);
88 }
89 #endif /* CONFIG_KASAN_STACK */
90
91 /*
92 * Only allow cache merging when stack collection is disabled and no metadata
93 * is present.
94 */
__kasan_never_merge(void)95 slab_flags_t __kasan_never_merge(void)
96 {
97 if (kasan_stack_collection_enabled())
98 return SLAB_KASAN;
99 return 0;
100 }
101
__kasan_unpoison_pages(struct page * page,unsigned int order,bool init)102 void __kasan_unpoison_pages(struct page *page, unsigned int order, bool init)
103 {
104 u8 tag;
105 unsigned long i;
106
107 if (unlikely(PageHighMem(page)))
108 return;
109
110 tag = kasan_random_tag();
111 for (i = 0; i < (1 << order); i++)
112 page_kasan_tag_set(page + i, tag);
113 kasan_unpoison(page_address(page), PAGE_SIZE << order, init);
114 }
115
__kasan_poison_pages(struct page * page,unsigned int order,bool init)116 void __kasan_poison_pages(struct page *page, unsigned int order, bool init)
117 {
118 if (likely(!PageHighMem(page)))
119 kasan_poison(page_address(page), PAGE_SIZE << order,
120 KASAN_PAGE_FREE, init);
121 }
122
123 /*
124 * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
125 * For larger allocations larger redzones are used.
126 */
optimal_redzone(unsigned int object_size)127 static inline unsigned int optimal_redzone(unsigned int object_size)
128 {
129 return
130 object_size <= 64 - 16 ? 16 :
131 object_size <= 128 - 32 ? 32 :
132 object_size <= 512 - 64 ? 64 :
133 object_size <= 4096 - 128 ? 128 :
134 object_size <= (1 << 14) - 256 ? 256 :
135 object_size <= (1 << 15) - 512 ? 512 :
136 object_size <= (1 << 16) - 1024 ? 1024 : 2048;
137 }
138
__kasan_cache_create(struct kmem_cache * cache,unsigned int * size,slab_flags_t * flags)139 void __kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
140 slab_flags_t *flags)
141 {
142 unsigned int ok_size;
143 unsigned int optimal_size;
144
145 /*
146 * SLAB_KASAN is used to mark caches as ones that are sanitized by
147 * KASAN. Currently this flag is used in two places:
148 * 1. In slab_ksize() when calculating the size of the accessible
149 * memory within the object.
150 * 2. In slab_common.c to prevent merging of sanitized caches.
151 */
152 *flags |= SLAB_KASAN;
153
154 if (!kasan_stack_collection_enabled())
155 return;
156
157 ok_size = *size;
158
159 /* Add alloc meta into redzone. */
160 cache->kasan_info.alloc_meta_offset = *size;
161 *size += sizeof(struct kasan_alloc_meta);
162
163 /*
164 * If alloc meta doesn't fit, don't add it.
165 * This can only happen with SLAB, as it has KMALLOC_MAX_SIZE equal
166 * to KMALLOC_MAX_CACHE_SIZE and doesn't fall back to page_alloc for
167 * larger sizes.
168 */
169 if (*size > KMALLOC_MAX_SIZE) {
170 cache->kasan_info.alloc_meta_offset = 0;
171 *size = ok_size;
172 /* Continue, since free meta might still fit. */
173 }
174
175 /* Only the generic mode uses free meta or flexible redzones. */
176 if (!IS_ENABLED(CONFIG_KASAN_GENERIC)) {
177 cache->kasan_info.free_meta_offset = KASAN_NO_FREE_META;
178 return;
179 }
180
181 /*
182 * Add free meta into redzone when it's not possible to store
183 * it in the object. This is the case when:
184 * 1. Object is SLAB_TYPESAFE_BY_RCU, which means that it can
185 * be touched after it was freed, or
186 * 2. Object has a constructor, which means it's expected to
187 * retain its content until the next allocation, or
188 * 3. Object is too small.
189 * Otherwise cache->kasan_info.free_meta_offset = 0 is implied.
190 */
191 if ((cache->flags & SLAB_TYPESAFE_BY_RCU) || cache->ctor ||
192 cache->object_size < sizeof(struct kasan_free_meta)) {
193 ok_size = *size;
194
195 cache->kasan_info.free_meta_offset = *size;
196 *size += sizeof(struct kasan_free_meta);
197
198 /* If free meta doesn't fit, don't add it. */
199 if (*size > KMALLOC_MAX_SIZE) {
200 cache->kasan_info.free_meta_offset = KASAN_NO_FREE_META;
201 *size = ok_size;
202 }
203 }
204
205 /* Calculate size with optimal redzone. */
206 optimal_size = cache->object_size + optimal_redzone(cache->object_size);
207 /* Limit it with KMALLOC_MAX_SIZE (relevant for SLAB only). */
208 if (optimal_size > KMALLOC_MAX_SIZE)
209 optimal_size = KMALLOC_MAX_SIZE;
210 /* Use optimal size if the size with added metas is not large enough. */
211 if (*size < optimal_size)
212 *size = optimal_size;
213 }
214
__kasan_cache_create_kmalloc(struct kmem_cache * cache)215 void __kasan_cache_create_kmalloc(struct kmem_cache *cache)
216 {
217 cache->kasan_info.is_kmalloc = true;
218 }
219
__kasan_metadata_size(struct kmem_cache * cache)220 size_t __kasan_metadata_size(struct kmem_cache *cache)
221 {
222 if (!kasan_stack_collection_enabled())
223 return 0;
224 return (cache->kasan_info.alloc_meta_offset ?
225 sizeof(struct kasan_alloc_meta) : 0) +
226 (cache->kasan_info.free_meta_offset ?
227 sizeof(struct kasan_free_meta) : 0);
228 }
229
kasan_get_alloc_meta(struct kmem_cache * cache,const void * object)230 struct kasan_alloc_meta *kasan_get_alloc_meta(struct kmem_cache *cache,
231 const void *object)
232 {
233 if (!cache->kasan_info.alloc_meta_offset)
234 return NULL;
235 return kasan_reset_tag(object) + cache->kasan_info.alloc_meta_offset;
236 }
237
238 #ifdef CONFIG_KASAN_GENERIC
kasan_get_free_meta(struct kmem_cache * cache,const void * object)239 struct kasan_free_meta *kasan_get_free_meta(struct kmem_cache *cache,
240 const void *object)
241 {
242 BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
243 if (cache->kasan_info.free_meta_offset == KASAN_NO_FREE_META)
244 return NULL;
245 return kasan_reset_tag(object) + cache->kasan_info.free_meta_offset;
246 }
247 #endif
248
__kasan_poison_slab(struct slab * slab)249 void __kasan_poison_slab(struct slab *slab)
250 {
251 struct page *page = slab_page(slab);
252 unsigned long i;
253
254 for (i = 0; i < compound_nr(page); i++)
255 page_kasan_tag_reset(page + i);
256 kasan_poison(page_address(page), page_size(page),
257 KASAN_SLAB_REDZONE, false);
258 }
259
__kasan_unpoison_object_data(struct kmem_cache * cache,void * object)260 void __kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
261 {
262 kasan_unpoison(object, cache->object_size, false);
263 }
264
__kasan_poison_object_data(struct kmem_cache * cache,void * object)265 void __kasan_poison_object_data(struct kmem_cache *cache, void *object)
266 {
267 kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE),
268 KASAN_SLAB_REDZONE, false);
269 }
270
271 /*
272 * This function assigns a tag to an object considering the following:
273 * 1. A cache might have a constructor, which might save a pointer to a slab
274 * object somewhere (e.g. in the object itself). We preassign a tag for
275 * each object in caches with constructors during slab creation and reuse
276 * the same tag each time a particular object is allocated.
277 * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be
278 * accessed after being freed. We preassign tags for objects in these
279 * caches as well.
280 * 3. For SLAB allocator we can't preassign tags randomly since the freelist
281 * is stored as an array of indexes instead of a linked list. Assign tags
282 * based on objects indexes, so that objects that are next to each other
283 * get different tags.
284 */
assign_tag(struct kmem_cache * cache,const void * object,bool init)285 static inline u8 assign_tag(struct kmem_cache *cache,
286 const void *object, bool init)
287 {
288 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
289 return 0xff;
290
291 /*
292 * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU
293 * set, assign a tag when the object is being allocated (init == false).
294 */
295 if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU))
296 return init ? KASAN_TAG_KERNEL : kasan_random_tag();
297
298 /* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU: */
299 #ifdef CONFIG_SLAB
300 /* For SLAB assign tags based on the object index in the freelist. */
301 return (u8)obj_to_index(cache, virt_to_slab(object), (void *)object);
302 #else
303 /*
304 * For SLUB assign a random tag during slab creation, otherwise reuse
305 * the already assigned tag.
306 */
307 return init ? kasan_random_tag() : get_tag(object);
308 #endif
309 }
310
__kasan_init_slab_obj(struct kmem_cache * cache,const void * object)311 void * __must_check __kasan_init_slab_obj(struct kmem_cache *cache,
312 const void *object)
313 {
314 struct kasan_alloc_meta *alloc_meta;
315
316 if (kasan_stack_collection_enabled()) {
317 alloc_meta = kasan_get_alloc_meta(cache, object);
318 if (alloc_meta)
319 __memset(alloc_meta, 0, sizeof(*alloc_meta));
320 }
321
322 /* Tag is ignored in set_tag() without CONFIG_KASAN_SW/HW_TAGS */
323 object = set_tag(object, assign_tag(cache, object, true));
324
325 return (void *)object;
326 }
327
____kasan_slab_free(struct kmem_cache * cache,void * object,unsigned long ip,bool quarantine,bool init)328 static inline bool ____kasan_slab_free(struct kmem_cache *cache, void *object,
329 unsigned long ip, bool quarantine, bool init)
330 {
331 u8 tag;
332 void *tagged_object;
333
334 if (!kasan_arch_is_ready())
335 return false;
336
337 tag = get_tag(object);
338 tagged_object = object;
339 object = kasan_reset_tag(object);
340
341 if (is_kfence_address(object))
342 return false;
343
344 if (unlikely(nearest_obj(cache, virt_to_slab(object), object) !=
345 object)) {
346 kasan_report_invalid_free(tagged_object, ip);
347 return true;
348 }
349
350 /* RCU slabs could be legally used after free within the RCU period */
351 if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
352 return false;
353
354 if (!kasan_byte_accessible(tagged_object)) {
355 kasan_report_invalid_free(tagged_object, ip);
356 return true;
357 }
358
359 kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE),
360 KASAN_SLAB_FREE, init);
361
362 if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine))
363 return false;
364
365 if (kasan_stack_collection_enabled())
366 kasan_set_free_info(cache, object, tag);
367
368 return kasan_quarantine_put(cache, object);
369 }
370
__kasan_slab_free(struct kmem_cache * cache,void * object,unsigned long ip,bool init)371 bool __kasan_slab_free(struct kmem_cache *cache, void *object,
372 unsigned long ip, bool init)
373 {
374 return ____kasan_slab_free(cache, object, ip, true, init);
375 }
376
____kasan_kfree_large(void * ptr,unsigned long ip)377 static inline bool ____kasan_kfree_large(void *ptr, unsigned long ip)
378 {
379 if (ptr != page_address(virt_to_head_page(ptr))) {
380 kasan_report_invalid_free(ptr, ip);
381 return true;
382 }
383
384 if (!kasan_byte_accessible(ptr)) {
385 kasan_report_invalid_free(ptr, ip);
386 return true;
387 }
388
389 /*
390 * The object will be poisoned by kasan_poison_pages() or
391 * kasan_slab_free_mempool().
392 */
393
394 return false;
395 }
396
__kasan_kfree_large(void * ptr,unsigned long ip)397 void __kasan_kfree_large(void *ptr, unsigned long ip)
398 {
399 ____kasan_kfree_large(ptr, ip);
400 }
401
__kasan_slab_free_mempool(void * ptr,unsigned long ip)402 void __kasan_slab_free_mempool(void *ptr, unsigned long ip)
403 {
404 struct folio *folio;
405
406 folio = virt_to_folio(ptr);
407
408 /*
409 * Even though this function is only called for kmem_cache_alloc and
410 * kmalloc backed mempool allocations, those allocations can still be
411 * !PageSlab() when the size provided to kmalloc is larger than
412 * KMALLOC_MAX_SIZE, and kmalloc falls back onto page_alloc.
413 */
414 if (unlikely(!folio_test_slab(folio))) {
415 if (____kasan_kfree_large(ptr, ip))
416 return;
417 kasan_poison(ptr, folio_size(folio), KASAN_PAGE_FREE, false);
418 } else {
419 struct slab *slab = folio_slab(folio);
420
421 ____kasan_slab_free(slab->slab_cache, ptr, ip, false, false);
422 }
423 }
424
set_alloc_info(struct kmem_cache * cache,void * object,gfp_t flags,bool is_kmalloc)425 static void set_alloc_info(struct kmem_cache *cache, void *object,
426 gfp_t flags, bool is_kmalloc)
427 {
428 struct kasan_alloc_meta *alloc_meta;
429
430 /* Don't save alloc info for kmalloc caches in kasan_slab_alloc(). */
431 if (cache->kasan_info.is_kmalloc && !is_kmalloc)
432 return;
433
434 alloc_meta = kasan_get_alloc_meta(cache, object);
435 if (alloc_meta)
436 kasan_set_track(&alloc_meta->alloc_track, flags);
437 }
438
__kasan_slab_alloc(struct kmem_cache * cache,void * object,gfp_t flags,bool init)439 void * __must_check __kasan_slab_alloc(struct kmem_cache *cache,
440 void *object, gfp_t flags, bool init)
441 {
442 u8 tag;
443 void *tagged_object;
444
445 if (gfpflags_allow_blocking(flags))
446 kasan_quarantine_reduce();
447
448 if (unlikely(object == NULL))
449 return NULL;
450
451 if (is_kfence_address(object))
452 return (void *)object;
453
454 /*
455 * Generate and assign random tag for tag-based modes.
456 * Tag is ignored in set_tag() for the generic mode.
457 */
458 tag = assign_tag(cache, object, false);
459 tagged_object = set_tag(object, tag);
460
461 /*
462 * Unpoison the whole object.
463 * For kmalloc() allocations, kasan_kmalloc() will do precise poisoning.
464 */
465 kasan_unpoison(tagged_object, cache->object_size, init);
466
467 /* Save alloc info (if possible) for non-kmalloc() allocations. */
468 if (kasan_stack_collection_enabled())
469 set_alloc_info(cache, (void *)object, flags, false);
470
471 return tagged_object;
472 }
473
____kasan_kmalloc(struct kmem_cache * cache,const void * object,size_t size,gfp_t flags)474 static inline void *____kasan_kmalloc(struct kmem_cache *cache,
475 const void *object, size_t size, gfp_t flags)
476 {
477 unsigned long redzone_start;
478 unsigned long redzone_end;
479
480 if (gfpflags_allow_blocking(flags))
481 kasan_quarantine_reduce();
482
483 if (unlikely(object == NULL))
484 return NULL;
485
486 if (is_kfence_address(kasan_reset_tag(object)))
487 return (void *)object;
488
489 /*
490 * The object has already been unpoisoned by kasan_slab_alloc() for
491 * kmalloc() or by kasan_krealloc() for krealloc().
492 */
493
494 /*
495 * The redzone has byte-level precision for the generic mode.
496 * Partially poison the last object granule to cover the unaligned
497 * part of the redzone.
498 */
499 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
500 kasan_poison_last_granule((void *)object, size);
501
502 /* Poison the aligned part of the redzone. */
503 redzone_start = round_up((unsigned long)(object + size),
504 KASAN_GRANULE_SIZE);
505 redzone_end = round_up((unsigned long)(object + cache->object_size),
506 KASAN_GRANULE_SIZE);
507 kasan_poison((void *)redzone_start, redzone_end - redzone_start,
508 KASAN_SLAB_REDZONE, false);
509
510 /*
511 * Save alloc info (if possible) for kmalloc() allocations.
512 * This also rewrites the alloc info when called from kasan_krealloc().
513 */
514 if (kasan_stack_collection_enabled())
515 set_alloc_info(cache, (void *)object, flags, true);
516
517 /* Keep the tag that was set by kasan_slab_alloc(). */
518 return (void *)object;
519 }
520
__kasan_kmalloc(struct kmem_cache * cache,const void * object,size_t size,gfp_t flags)521 void * __must_check __kasan_kmalloc(struct kmem_cache *cache, const void *object,
522 size_t size, gfp_t flags)
523 {
524 return ____kasan_kmalloc(cache, object, size, flags);
525 }
526 EXPORT_SYMBOL(__kasan_kmalloc);
527
__kasan_kmalloc_large(const void * ptr,size_t size,gfp_t flags)528 void * __must_check __kasan_kmalloc_large(const void *ptr, size_t size,
529 gfp_t flags)
530 {
531 unsigned long redzone_start;
532 unsigned long redzone_end;
533
534 if (gfpflags_allow_blocking(flags))
535 kasan_quarantine_reduce();
536
537 if (unlikely(ptr == NULL))
538 return NULL;
539
540 /*
541 * The object has already been unpoisoned by kasan_unpoison_pages() for
542 * alloc_pages() or by kasan_krealloc() for krealloc().
543 */
544
545 /*
546 * The redzone has byte-level precision for the generic mode.
547 * Partially poison the last object granule to cover the unaligned
548 * part of the redzone.
549 */
550 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
551 kasan_poison_last_granule(ptr, size);
552
553 /* Poison the aligned part of the redzone. */
554 redzone_start = round_up((unsigned long)(ptr + size),
555 KASAN_GRANULE_SIZE);
556 redzone_end = (unsigned long)ptr + page_size(virt_to_page(ptr));
557 kasan_poison((void *)redzone_start, redzone_end - redzone_start,
558 KASAN_PAGE_REDZONE, false);
559
560 return (void *)ptr;
561 }
562
__kasan_krealloc(const void * object,size_t size,gfp_t flags)563 void * __must_check __kasan_krealloc(const void *object, size_t size, gfp_t flags)
564 {
565 struct slab *slab;
566
567 if (unlikely(object == ZERO_SIZE_PTR))
568 return (void *)object;
569
570 /*
571 * Unpoison the object's data.
572 * Part of it might already have been unpoisoned, but it's unknown
573 * how big that part is.
574 */
575 kasan_unpoison(object, size, false);
576
577 slab = virt_to_slab(object);
578
579 /* Piggy-back on kmalloc() instrumentation to poison the redzone. */
580 if (unlikely(!slab))
581 return __kasan_kmalloc_large(object, size, flags);
582 else
583 return ____kasan_kmalloc(slab->slab_cache, object, size, flags);
584 }
585
__kasan_check_byte(const void * address,unsigned long ip)586 bool __kasan_check_byte(const void *address, unsigned long ip)
587 {
588 if (!kasan_byte_accessible(address)) {
589 kasan_report((unsigned long)address, 1, false, ip);
590 return false;
591 }
592 return true;
593 }
594