1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * fs/f2fs/f2fs.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/sched/mm.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <linux/part_stat.h>
27 #include <crypto/hash.h>
28
29 #include <linux/fscrypt.h>
30 #include <linux/fsverity.h>
31
32 struct pagevec;
33
34 #ifdef CONFIG_F2FS_CHECK_FS
35 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
36 #else
37 #define f2fs_bug_on(sbi, condition) \
38 do { \
39 if (WARN_ON(condition)) \
40 set_sbi_flag(sbi, SBI_NEED_FSCK); \
41 } while (0)
42 #endif
43
44 enum {
45 FAULT_KMALLOC,
46 FAULT_KVMALLOC,
47 FAULT_PAGE_ALLOC,
48 FAULT_PAGE_GET,
49 FAULT_ALLOC_BIO, /* it's obsolete due to bio_alloc() will never fail */
50 FAULT_ALLOC_NID,
51 FAULT_ORPHAN,
52 FAULT_BLOCK,
53 FAULT_DIR_DEPTH,
54 FAULT_EVICT_INODE,
55 FAULT_TRUNCATE,
56 FAULT_READ_IO,
57 FAULT_CHECKPOINT,
58 FAULT_DISCARD,
59 FAULT_WRITE_IO,
60 FAULT_SLAB_ALLOC,
61 FAULT_DQUOT_INIT,
62 FAULT_LOCK_OP,
63 FAULT_MAX,
64 };
65
66 #ifdef CONFIG_F2FS_FAULT_INJECTION
67 #define F2FS_ALL_FAULT_TYPE ((1 << FAULT_MAX) - 1)
68
69 struct f2fs_fault_info {
70 atomic_t inject_ops;
71 unsigned int inject_rate;
72 unsigned int inject_type;
73 };
74
75 extern const char *f2fs_fault_name[FAULT_MAX];
76 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
77 #endif
78
79 /*
80 * For mount options
81 */
82 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
83 #define F2FS_MOUNT_DISCARD 0x00000004
84 #define F2FS_MOUNT_NOHEAP 0x00000008
85 #define F2FS_MOUNT_XATTR_USER 0x00000010
86 #define F2FS_MOUNT_POSIX_ACL 0x00000020
87 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
88 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
89 #define F2FS_MOUNT_INLINE_DATA 0x00000100
90 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
91 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
92 #define F2FS_MOUNT_NOBARRIER 0x00000800
93 #define F2FS_MOUNT_FASTBOOT 0x00001000
94 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
95 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
96 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
97 #define F2FS_MOUNT_USRQUOTA 0x00080000
98 #define F2FS_MOUNT_GRPQUOTA 0x00100000
99 #define F2FS_MOUNT_PRJQUOTA 0x00200000
100 #define F2FS_MOUNT_QUOTA 0x00400000
101 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000
102 #define F2FS_MOUNT_RESERVE_ROOT 0x01000000
103 #define F2FS_MOUNT_DISABLE_CHECKPOINT 0x02000000
104 #define F2FS_MOUNT_NORECOVERY 0x04000000
105 #define F2FS_MOUNT_ATGC 0x08000000
106 #define F2FS_MOUNT_MERGE_CHECKPOINT 0x10000000
107 #define F2FS_MOUNT_GC_MERGE 0x20000000
108 #define F2FS_MOUNT_COMPRESS_CACHE 0x40000000
109
110 #define F2FS_OPTION(sbi) ((sbi)->mount_opt)
111 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
112 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
113 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
114
115 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
116 typecheck(unsigned long long, b) && \
117 ((long long)((a) - (b)) > 0))
118
119 typedef u32 block_t; /*
120 * should not change u32, since it is the on-disk block
121 * address format, __le32.
122 */
123 typedef u32 nid_t;
124
125 #define COMPRESS_EXT_NUM 16
126
127 /*
128 * An implementation of an rwsem that is explicitly unfair to readers. This
129 * prevents priority inversion when a low-priority reader acquires the read lock
130 * while sleeping on the write lock but the write lock is needed by
131 * higher-priority clients.
132 */
133
134 struct f2fs_rwsem {
135 struct rw_semaphore internal_rwsem;
136 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
137 wait_queue_head_t read_waiters;
138 #endif
139 };
140
141 struct f2fs_mount_info {
142 unsigned int opt;
143 int write_io_size_bits; /* Write IO size bits */
144 block_t root_reserved_blocks; /* root reserved blocks */
145 kuid_t s_resuid; /* reserved blocks for uid */
146 kgid_t s_resgid; /* reserved blocks for gid */
147 int active_logs; /* # of active logs */
148 int inline_xattr_size; /* inline xattr size */
149 #ifdef CONFIG_F2FS_FAULT_INJECTION
150 struct f2fs_fault_info fault_info; /* For fault injection */
151 #endif
152 #ifdef CONFIG_QUOTA
153 /* Names of quota files with journalled quota */
154 char *s_qf_names[MAXQUOTAS];
155 int s_jquota_fmt; /* Format of quota to use */
156 #endif
157 /* For which write hints are passed down to block layer */
158 int alloc_mode; /* segment allocation policy */
159 int fsync_mode; /* fsync policy */
160 int fs_mode; /* fs mode: LFS or ADAPTIVE */
161 int bggc_mode; /* bggc mode: off, on or sync */
162 int discard_unit; /*
163 * discard command's offset/size should
164 * be aligned to this unit: block,
165 * segment or section
166 */
167 struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
168 block_t unusable_cap_perc; /* percentage for cap */
169 block_t unusable_cap; /* Amount of space allowed to be
170 * unusable when disabling checkpoint
171 */
172
173 /* For compression */
174 unsigned char compress_algorithm; /* algorithm type */
175 unsigned char compress_log_size; /* cluster log size */
176 unsigned char compress_level; /* compress level */
177 bool compress_chksum; /* compressed data chksum */
178 unsigned char compress_ext_cnt; /* extension count */
179 unsigned char nocompress_ext_cnt; /* nocompress extension count */
180 int compress_mode; /* compression mode */
181 unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
182 unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
183 };
184
185 #define F2FS_FEATURE_ENCRYPT 0x0001
186 #define F2FS_FEATURE_BLKZONED 0x0002
187 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004
188 #define F2FS_FEATURE_EXTRA_ATTR 0x0008
189 #define F2FS_FEATURE_PRJQUOTA 0x0010
190 #define F2FS_FEATURE_INODE_CHKSUM 0x0020
191 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040
192 #define F2FS_FEATURE_QUOTA_INO 0x0080
193 #define F2FS_FEATURE_INODE_CRTIME 0x0100
194 #define F2FS_FEATURE_LOST_FOUND 0x0200
195 #define F2FS_FEATURE_VERITY 0x0400
196 #define F2FS_FEATURE_SB_CHKSUM 0x0800
197 #define F2FS_FEATURE_CASEFOLD 0x1000
198 #define F2FS_FEATURE_COMPRESSION 0x2000
199 #define F2FS_FEATURE_RO 0x4000
200
201 #define __F2FS_HAS_FEATURE(raw_super, mask) \
202 ((raw_super->feature & cpu_to_le32(mask)) != 0)
203 #define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask)
204 #define F2FS_SET_FEATURE(sbi, mask) \
205 (sbi->raw_super->feature |= cpu_to_le32(mask))
206 #define F2FS_CLEAR_FEATURE(sbi, mask) \
207 (sbi->raw_super->feature &= ~cpu_to_le32(mask))
208
209 /*
210 * Default values for user and/or group using reserved blocks
211 */
212 #define F2FS_DEF_RESUID 0
213 #define F2FS_DEF_RESGID 0
214
215 /*
216 * For checkpoint manager
217 */
218 enum {
219 NAT_BITMAP,
220 SIT_BITMAP
221 };
222
223 #define CP_UMOUNT 0x00000001
224 #define CP_FASTBOOT 0x00000002
225 #define CP_SYNC 0x00000004
226 #define CP_RECOVERY 0x00000008
227 #define CP_DISCARD 0x00000010
228 #define CP_TRIMMED 0x00000020
229 #define CP_PAUSE 0x00000040
230 #define CP_RESIZE 0x00000080
231
232 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi)
233 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */
234 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */
235 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */
236 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */
237 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */
238 #define DEF_CP_INTERVAL 60 /* 60 secs */
239 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
240 #define DEF_DISABLE_INTERVAL 5 /* 5 secs */
241 #define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */
242 #define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */
243
244 struct cp_control {
245 int reason;
246 __u64 trim_start;
247 __u64 trim_end;
248 __u64 trim_minlen;
249 };
250
251 /*
252 * indicate meta/data type
253 */
254 enum {
255 META_CP,
256 META_NAT,
257 META_SIT,
258 META_SSA,
259 META_MAX,
260 META_POR,
261 DATA_GENERIC, /* check range only */
262 DATA_GENERIC_ENHANCE, /* strong check on range and segment bitmap */
263 DATA_GENERIC_ENHANCE_READ, /*
264 * strong check on range and segment
265 * bitmap but no warning due to race
266 * condition of read on truncated area
267 * by extent_cache
268 */
269 META_GENERIC,
270 };
271
272 /* for the list of ino */
273 enum {
274 ORPHAN_INO, /* for orphan ino list */
275 APPEND_INO, /* for append ino list */
276 UPDATE_INO, /* for update ino list */
277 TRANS_DIR_INO, /* for trasactions dir ino list */
278 FLUSH_INO, /* for multiple device flushing */
279 MAX_INO_ENTRY, /* max. list */
280 };
281
282 struct ino_entry {
283 struct list_head list; /* list head */
284 nid_t ino; /* inode number */
285 unsigned int dirty_device; /* dirty device bitmap */
286 };
287
288 /* for the list of inodes to be GCed */
289 struct inode_entry {
290 struct list_head list; /* list head */
291 struct inode *inode; /* vfs inode pointer */
292 };
293
294 struct fsync_node_entry {
295 struct list_head list; /* list head */
296 struct page *page; /* warm node page pointer */
297 unsigned int seq_id; /* sequence id */
298 };
299
300 struct ckpt_req {
301 struct completion wait; /* completion for checkpoint done */
302 struct llist_node llnode; /* llist_node to be linked in wait queue */
303 int ret; /* return code of checkpoint */
304 ktime_t queue_time; /* request queued time */
305 };
306
307 struct ckpt_req_control {
308 struct task_struct *f2fs_issue_ckpt; /* checkpoint task */
309 int ckpt_thread_ioprio; /* checkpoint merge thread ioprio */
310 wait_queue_head_t ckpt_wait_queue; /* waiting queue for wake-up */
311 atomic_t issued_ckpt; /* # of actually issued ckpts */
312 atomic_t total_ckpt; /* # of total ckpts */
313 atomic_t queued_ckpt; /* # of queued ckpts */
314 struct llist_head issue_list; /* list for command issue */
315 spinlock_t stat_lock; /* lock for below checkpoint time stats */
316 unsigned int cur_time; /* cur wait time in msec for currently issued checkpoint */
317 unsigned int peak_time; /* peak wait time in msec until now */
318 };
319
320 /* for the bitmap indicate blocks to be discarded */
321 struct discard_entry {
322 struct list_head list; /* list head */
323 block_t start_blkaddr; /* start blockaddr of current segment */
324 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
325 };
326
327 /* default discard granularity of inner discard thread, unit: block count */
328 #define DEFAULT_DISCARD_GRANULARITY 16
329
330 /* max discard pend list number */
331 #define MAX_PLIST_NUM 512
332 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
333 (MAX_PLIST_NUM - 1) : ((blk_num) - 1))
334
335 enum {
336 D_PREP, /* initial */
337 D_PARTIAL, /* partially submitted */
338 D_SUBMIT, /* all submitted */
339 D_DONE, /* finished */
340 };
341
342 struct discard_info {
343 block_t lstart; /* logical start address */
344 block_t len; /* length */
345 block_t start; /* actual start address in dev */
346 };
347
348 struct discard_cmd {
349 struct rb_node rb_node; /* rb node located in rb-tree */
350 union {
351 struct {
352 block_t lstart; /* logical start address */
353 block_t len; /* length */
354 block_t start; /* actual start address in dev */
355 };
356 struct discard_info di; /* discard info */
357
358 };
359 struct list_head list; /* command list */
360 struct completion wait; /* compleation */
361 struct block_device *bdev; /* bdev */
362 unsigned short ref; /* reference count */
363 unsigned char state; /* state */
364 unsigned char queued; /* queued discard */
365 int error; /* bio error */
366 spinlock_t lock; /* for state/bio_ref updating */
367 unsigned short bio_ref; /* bio reference count */
368 };
369
370 enum {
371 DPOLICY_BG,
372 DPOLICY_FORCE,
373 DPOLICY_FSTRIM,
374 DPOLICY_UMOUNT,
375 MAX_DPOLICY,
376 };
377
378 struct discard_policy {
379 int type; /* type of discard */
380 unsigned int min_interval; /* used for candidates exist */
381 unsigned int mid_interval; /* used for device busy */
382 unsigned int max_interval; /* used for candidates not exist */
383 unsigned int max_requests; /* # of discards issued per round */
384 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */
385 bool io_aware; /* issue discard in idle time */
386 bool sync; /* submit discard with REQ_SYNC flag */
387 bool ordered; /* issue discard by lba order */
388 bool timeout; /* discard timeout for put_super */
389 unsigned int granularity; /* discard granularity */
390 };
391
392 struct discard_cmd_control {
393 struct task_struct *f2fs_issue_discard; /* discard thread */
394 struct list_head entry_list; /* 4KB discard entry list */
395 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
396 struct list_head wait_list; /* store on-flushing entries */
397 struct list_head fstrim_list; /* in-flight discard from fstrim */
398 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
399 unsigned int discard_wake; /* to wake up discard thread */
400 struct mutex cmd_lock;
401 unsigned int nr_discards; /* # of discards in the list */
402 unsigned int max_discards; /* max. discards to be issued */
403 unsigned int max_discard_request; /* max. discard request per round */
404 unsigned int min_discard_issue_time; /* min. interval between discard issue */
405 unsigned int mid_discard_issue_time; /* mid. interval between discard issue */
406 unsigned int max_discard_issue_time; /* max. interval between discard issue */
407 unsigned int discard_granularity; /* discard granularity */
408 unsigned int undiscard_blks; /* # of undiscard blocks */
409 unsigned int next_pos; /* next discard position */
410 atomic_t issued_discard; /* # of issued discard */
411 atomic_t queued_discard; /* # of queued discard */
412 atomic_t discard_cmd_cnt; /* # of cached cmd count */
413 struct rb_root_cached root; /* root of discard rb-tree */
414 bool rbtree_check; /* config for consistence check */
415 };
416
417 /* for the list of fsync inodes, used only during recovery */
418 struct fsync_inode_entry {
419 struct list_head list; /* list head */
420 struct inode *inode; /* vfs inode pointer */
421 block_t blkaddr; /* block address locating the last fsync */
422 block_t last_dentry; /* block address locating the last dentry */
423 };
424
425 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
426 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
427
428 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
429 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
430 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
431 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
432
433 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
434 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
435
update_nats_in_cursum(struct f2fs_journal * journal,int i)436 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
437 {
438 int before = nats_in_cursum(journal);
439
440 journal->n_nats = cpu_to_le16(before + i);
441 return before;
442 }
443
update_sits_in_cursum(struct f2fs_journal * journal,int i)444 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
445 {
446 int before = sits_in_cursum(journal);
447
448 journal->n_sits = cpu_to_le16(before + i);
449 return before;
450 }
451
__has_cursum_space(struct f2fs_journal * journal,int size,int type)452 static inline bool __has_cursum_space(struct f2fs_journal *journal,
453 int size, int type)
454 {
455 if (type == NAT_JOURNAL)
456 return size <= MAX_NAT_JENTRIES(journal);
457 return size <= MAX_SIT_JENTRIES(journal);
458 }
459
460 /* for inline stuff */
461 #define DEF_INLINE_RESERVED_SIZE 1
462 static inline int get_extra_isize(struct inode *inode);
463 static inline int get_inline_xattr_addrs(struct inode *inode);
464 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \
465 (CUR_ADDRS_PER_INODE(inode) - \
466 get_inline_xattr_addrs(inode) - \
467 DEF_INLINE_RESERVED_SIZE))
468
469 /* for inline dir */
470 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
471 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
472 BITS_PER_BYTE + 1))
473 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
474 DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
475 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \
476 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
477 NR_INLINE_DENTRY(inode) + \
478 INLINE_DENTRY_BITMAP_SIZE(inode)))
479
480 /*
481 * For INODE and NODE manager
482 */
483 /* for directory operations */
484
485 struct f2fs_filename {
486 /*
487 * The filename the user specified. This is NULL for some
488 * filesystem-internal operations, e.g. converting an inline directory
489 * to a non-inline one, or roll-forward recovering an encrypted dentry.
490 */
491 const struct qstr *usr_fname;
492
493 /*
494 * The on-disk filename. For encrypted directories, this is encrypted.
495 * This may be NULL for lookups in an encrypted dir without the key.
496 */
497 struct fscrypt_str disk_name;
498
499 /* The dirhash of this filename */
500 f2fs_hash_t hash;
501
502 #ifdef CONFIG_FS_ENCRYPTION
503 /*
504 * For lookups in encrypted directories: either the buffer backing
505 * disk_name, or a buffer that holds the decoded no-key name.
506 */
507 struct fscrypt_str crypto_buf;
508 #endif
509 #if IS_ENABLED(CONFIG_UNICODE)
510 /*
511 * For casefolded directories: the casefolded name, but it's left NULL
512 * if the original name is not valid Unicode, if the original name is
513 * "." or "..", if the directory is both casefolded and encrypted and
514 * its encryption key is unavailable, or if the filesystem is doing an
515 * internal operation where usr_fname is also NULL. In all these cases
516 * we fall back to treating the name as an opaque byte sequence.
517 */
518 struct fscrypt_str cf_name;
519 #endif
520 };
521
522 struct f2fs_dentry_ptr {
523 struct inode *inode;
524 void *bitmap;
525 struct f2fs_dir_entry *dentry;
526 __u8 (*filename)[F2FS_SLOT_LEN];
527 int max;
528 int nr_bitmap;
529 };
530
make_dentry_ptr_block(struct inode * inode,struct f2fs_dentry_ptr * d,struct f2fs_dentry_block * t)531 static inline void make_dentry_ptr_block(struct inode *inode,
532 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
533 {
534 d->inode = inode;
535 d->max = NR_DENTRY_IN_BLOCK;
536 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
537 d->bitmap = t->dentry_bitmap;
538 d->dentry = t->dentry;
539 d->filename = t->filename;
540 }
541
make_dentry_ptr_inline(struct inode * inode,struct f2fs_dentry_ptr * d,void * t)542 static inline void make_dentry_ptr_inline(struct inode *inode,
543 struct f2fs_dentry_ptr *d, void *t)
544 {
545 int entry_cnt = NR_INLINE_DENTRY(inode);
546 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
547 int reserved_size = INLINE_RESERVED_SIZE(inode);
548
549 d->inode = inode;
550 d->max = entry_cnt;
551 d->nr_bitmap = bitmap_size;
552 d->bitmap = t;
553 d->dentry = t + bitmap_size + reserved_size;
554 d->filename = t + bitmap_size + reserved_size +
555 SIZE_OF_DIR_ENTRY * entry_cnt;
556 }
557
558 /*
559 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
560 * as its node offset to distinguish from index node blocks.
561 * But some bits are used to mark the node block.
562 */
563 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
564 >> OFFSET_BIT_SHIFT)
565 enum {
566 ALLOC_NODE, /* allocate a new node page if needed */
567 LOOKUP_NODE, /* look up a node without readahead */
568 LOOKUP_NODE_RA, /*
569 * look up a node with readahead called
570 * by get_data_block.
571 */
572 };
573
574 #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO or flush count */
575
576 /* congestion wait timeout value, default: 20ms */
577 #define DEFAULT_IO_TIMEOUT (msecs_to_jiffies(20))
578
579 /* maximum retry quota flush count */
580 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8
581
582 /* maximum retry of EIO'ed page */
583 #define MAX_RETRY_PAGE_EIO 100
584
585 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
586
587 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
588
589 /* dirty segments threshold for triggering CP */
590 #define DEFAULT_DIRTY_THRESHOLD 4
591
592 /* for in-memory extent cache entry */
593 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
594
595 /* number of extent info in extent cache we try to shrink */
596 #define EXTENT_CACHE_SHRINK_NUMBER 128
597
598 #define RECOVERY_MAX_RA_BLOCKS BIO_MAX_VECS
599 #define RECOVERY_MIN_RA_BLOCKS 1
600
601 struct rb_entry {
602 struct rb_node rb_node; /* rb node located in rb-tree */
603 union {
604 struct {
605 unsigned int ofs; /* start offset of the entry */
606 unsigned int len; /* length of the entry */
607 };
608 unsigned long long key; /* 64-bits key */
609 } __packed;
610 };
611
612 struct extent_info {
613 unsigned int fofs; /* start offset in a file */
614 unsigned int len; /* length of the extent */
615 u32 blk; /* start block address of the extent */
616 #ifdef CONFIG_F2FS_FS_COMPRESSION
617 unsigned int c_len; /* physical extent length of compressed blocks */
618 #endif
619 };
620
621 struct extent_node {
622 struct rb_node rb_node; /* rb node located in rb-tree */
623 struct extent_info ei; /* extent info */
624 struct list_head list; /* node in global extent list of sbi */
625 struct extent_tree *et; /* extent tree pointer */
626 };
627
628 struct extent_tree {
629 nid_t ino; /* inode number */
630 struct rb_root_cached root; /* root of extent info rb-tree */
631 struct extent_node *cached_en; /* recently accessed extent node */
632 struct extent_info largest; /* largested extent info */
633 struct list_head list; /* to be used by sbi->zombie_list */
634 rwlock_t lock; /* protect extent info rb-tree */
635 atomic_t node_cnt; /* # of extent node in rb-tree*/
636 bool largest_updated; /* largest extent updated */
637 };
638
639 /*
640 * This structure is taken from ext4_map_blocks.
641 *
642 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
643 */
644 #define F2FS_MAP_NEW (1 << BH_New)
645 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
646 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
647 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
648 F2FS_MAP_UNWRITTEN)
649
650 struct f2fs_map_blocks {
651 struct block_device *m_bdev; /* for multi-device dio */
652 block_t m_pblk;
653 block_t m_lblk;
654 unsigned int m_len;
655 unsigned int m_flags;
656 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
657 pgoff_t *m_next_extent; /* point to next possible extent */
658 int m_seg_type;
659 bool m_may_create; /* indicate it is from write path */
660 bool m_multidev_dio; /* indicate it allows multi-device dio */
661 };
662
663 /* for flag in get_data_block */
664 enum {
665 F2FS_GET_BLOCK_DEFAULT,
666 F2FS_GET_BLOCK_FIEMAP,
667 F2FS_GET_BLOCK_BMAP,
668 F2FS_GET_BLOCK_DIO,
669 F2FS_GET_BLOCK_PRE_DIO,
670 F2FS_GET_BLOCK_PRE_AIO,
671 F2FS_GET_BLOCK_PRECACHE,
672 };
673
674 /*
675 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
676 */
677 #define FADVISE_COLD_BIT 0x01
678 #define FADVISE_LOST_PINO_BIT 0x02
679 #define FADVISE_ENCRYPT_BIT 0x04
680 #define FADVISE_ENC_NAME_BIT 0x08
681 #define FADVISE_KEEP_SIZE_BIT 0x10
682 #define FADVISE_HOT_BIT 0x20
683 #define FADVISE_VERITY_BIT 0x40
684 #define FADVISE_TRUNC_BIT 0x80
685
686 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT)
687
688 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
689 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
690 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
691
692 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
693 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
694 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
695
696 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
697 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
698
699 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
700 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
701
702 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
703 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
704
705 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT)
706 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT)
707 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT)
708
709 #define file_is_verity(inode) is_file(inode, FADVISE_VERITY_BIT)
710 #define file_set_verity(inode) set_file(inode, FADVISE_VERITY_BIT)
711
712 #define file_should_truncate(inode) is_file(inode, FADVISE_TRUNC_BIT)
713 #define file_need_truncate(inode) set_file(inode, FADVISE_TRUNC_BIT)
714 #define file_dont_truncate(inode) clear_file(inode, FADVISE_TRUNC_BIT)
715
716 #define DEF_DIR_LEVEL 0
717
718 enum {
719 GC_FAILURE_PIN,
720 MAX_GC_FAILURE
721 };
722
723 /* used for f2fs_inode_info->flags */
724 enum {
725 FI_NEW_INODE, /* indicate newly allocated inode */
726 FI_DIRTY_INODE, /* indicate inode is dirty or not */
727 FI_AUTO_RECOVER, /* indicate inode is recoverable */
728 FI_DIRTY_DIR, /* indicate directory has dirty pages */
729 FI_INC_LINK, /* need to increment i_nlink */
730 FI_ACL_MODE, /* indicate acl mode */
731 FI_NO_ALLOC, /* should not allocate any blocks */
732 FI_FREE_NID, /* free allocated nide */
733 FI_NO_EXTENT, /* not to use the extent cache */
734 FI_INLINE_XATTR, /* used for inline xattr */
735 FI_INLINE_DATA, /* used for inline data*/
736 FI_INLINE_DENTRY, /* used for inline dentry */
737 FI_APPEND_WRITE, /* inode has appended data */
738 FI_UPDATE_WRITE, /* inode has in-place-update data */
739 FI_NEED_IPU, /* used for ipu per file */
740 FI_ATOMIC_FILE, /* indicate atomic file */
741 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
742 FI_DROP_CACHE, /* drop dirty page cache */
743 FI_DATA_EXIST, /* indicate data exists */
744 FI_INLINE_DOTS, /* indicate inline dot dentries */
745 FI_SKIP_WRITES, /* should skip data page writeback */
746 FI_OPU_WRITE, /* used for opu per file */
747 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
748 FI_PREALLOCATED_ALL, /* all blocks for write were preallocated */
749 FI_HOT_DATA, /* indicate file is hot */
750 FI_EXTRA_ATTR, /* indicate file has extra attribute */
751 FI_PROJ_INHERIT, /* indicate file inherits projectid */
752 FI_PIN_FILE, /* indicate file should not be gced */
753 FI_VERITY_IN_PROGRESS, /* building fs-verity Merkle tree */
754 FI_COMPRESSED_FILE, /* indicate file's data can be compressed */
755 FI_COMPRESS_CORRUPT, /* indicate compressed cluster is corrupted */
756 FI_MMAP_FILE, /* indicate file was mmapped */
757 FI_ENABLE_COMPRESS, /* enable compression in "user" compression mode */
758 FI_COMPRESS_RELEASED, /* compressed blocks were released */
759 FI_ALIGNED_WRITE, /* enable aligned write */
760 FI_COW_FILE, /* indicate COW file */
761 FI_MAX, /* max flag, never be used */
762 };
763
764 struct f2fs_inode_info {
765 struct inode vfs_inode; /* serve a vfs inode */
766 unsigned long i_flags; /* keep an inode flags for ioctl */
767 unsigned char i_advise; /* use to give file attribute hints */
768 unsigned char i_dir_level; /* use for dentry level for large dir */
769 unsigned int i_current_depth; /* only for directory depth */
770 /* for gc failure statistic */
771 unsigned int i_gc_failures[MAX_GC_FAILURE];
772 unsigned int i_pino; /* parent inode number */
773 umode_t i_acl_mode; /* keep file acl mode temporarily */
774
775 /* Use below internally in f2fs*/
776 unsigned long flags[BITS_TO_LONGS(FI_MAX)]; /* use to pass per-file flags */
777 struct f2fs_rwsem i_sem; /* protect fi info */
778 atomic_t dirty_pages; /* # of dirty pages */
779 f2fs_hash_t chash; /* hash value of given file name */
780 unsigned int clevel; /* maximum level of given file name */
781 struct task_struct *task; /* lookup and create consistency */
782 struct task_struct *cp_task; /* separate cp/wb IO stats*/
783 nid_t i_xattr_nid; /* node id that contains xattrs */
784 loff_t last_disk_size; /* lastly written file size */
785 spinlock_t i_size_lock; /* protect last_disk_size */
786
787 #ifdef CONFIG_QUOTA
788 struct dquot *i_dquot[MAXQUOTAS];
789
790 /* quota space reservation, managed internally by quota code */
791 qsize_t i_reserved_quota;
792 #endif
793 struct list_head dirty_list; /* dirty list for dirs and files */
794 struct list_head gdirty_list; /* linked in global dirty list */
795 struct task_struct *atomic_write_task; /* store atomic write task */
796 struct extent_tree *extent_tree; /* cached extent_tree entry */
797 struct inode *cow_inode; /* copy-on-write inode for atomic write */
798
799 /* avoid racing between foreground op and gc */
800 struct f2fs_rwsem i_gc_rwsem[2];
801 struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */
802
803 int i_extra_isize; /* size of extra space located in i_addr */
804 kprojid_t i_projid; /* id for project quota */
805 int i_inline_xattr_size; /* inline xattr size */
806 struct timespec64 i_crtime; /* inode creation time */
807 struct timespec64 i_disk_time[4];/* inode disk times */
808
809 /* for file compress */
810 atomic_t i_compr_blocks; /* # of compressed blocks */
811 unsigned char i_compress_algorithm; /* algorithm type */
812 unsigned char i_log_cluster_size; /* log of cluster size */
813 unsigned char i_compress_level; /* compress level (lz4hc,zstd) */
814 unsigned short i_compress_flag; /* compress flag */
815 unsigned int i_cluster_size; /* cluster size */
816 };
817
get_extent_info(struct extent_info * ext,struct f2fs_extent * i_ext)818 static inline void get_extent_info(struct extent_info *ext,
819 struct f2fs_extent *i_ext)
820 {
821 ext->fofs = le32_to_cpu(i_ext->fofs);
822 ext->blk = le32_to_cpu(i_ext->blk);
823 ext->len = le32_to_cpu(i_ext->len);
824 }
825
set_raw_extent(struct extent_info * ext,struct f2fs_extent * i_ext)826 static inline void set_raw_extent(struct extent_info *ext,
827 struct f2fs_extent *i_ext)
828 {
829 i_ext->fofs = cpu_to_le32(ext->fofs);
830 i_ext->blk = cpu_to_le32(ext->blk);
831 i_ext->len = cpu_to_le32(ext->len);
832 }
833
set_extent_info(struct extent_info * ei,unsigned int fofs,u32 blk,unsigned int len)834 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
835 u32 blk, unsigned int len)
836 {
837 ei->fofs = fofs;
838 ei->blk = blk;
839 ei->len = len;
840 #ifdef CONFIG_F2FS_FS_COMPRESSION
841 ei->c_len = 0;
842 #endif
843 }
844
__is_discard_mergeable(struct discard_info * back,struct discard_info * front,unsigned int max_len)845 static inline bool __is_discard_mergeable(struct discard_info *back,
846 struct discard_info *front, unsigned int max_len)
847 {
848 return (back->lstart + back->len == front->lstart) &&
849 (back->len + front->len <= max_len);
850 }
851
__is_discard_back_mergeable(struct discard_info * cur,struct discard_info * back,unsigned int max_len)852 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
853 struct discard_info *back, unsigned int max_len)
854 {
855 return __is_discard_mergeable(back, cur, max_len);
856 }
857
__is_discard_front_mergeable(struct discard_info * cur,struct discard_info * front,unsigned int max_len)858 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
859 struct discard_info *front, unsigned int max_len)
860 {
861 return __is_discard_mergeable(cur, front, max_len);
862 }
863
__is_extent_mergeable(struct extent_info * back,struct extent_info * front)864 static inline bool __is_extent_mergeable(struct extent_info *back,
865 struct extent_info *front)
866 {
867 #ifdef CONFIG_F2FS_FS_COMPRESSION
868 if (back->c_len && back->len != back->c_len)
869 return false;
870 if (front->c_len && front->len != front->c_len)
871 return false;
872 #endif
873 return (back->fofs + back->len == front->fofs &&
874 back->blk + back->len == front->blk);
875 }
876
__is_back_mergeable(struct extent_info * cur,struct extent_info * back)877 static inline bool __is_back_mergeable(struct extent_info *cur,
878 struct extent_info *back)
879 {
880 return __is_extent_mergeable(back, cur);
881 }
882
__is_front_mergeable(struct extent_info * cur,struct extent_info * front)883 static inline bool __is_front_mergeable(struct extent_info *cur,
884 struct extent_info *front)
885 {
886 return __is_extent_mergeable(cur, front);
887 }
888
889 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
__try_update_largest_extent(struct extent_tree * et,struct extent_node * en)890 static inline void __try_update_largest_extent(struct extent_tree *et,
891 struct extent_node *en)
892 {
893 if (en->ei.len > et->largest.len) {
894 et->largest = en->ei;
895 et->largest_updated = true;
896 }
897 }
898
899 /*
900 * For free nid management
901 */
902 enum nid_state {
903 FREE_NID, /* newly added to free nid list */
904 PREALLOC_NID, /* it is preallocated */
905 MAX_NID_STATE,
906 };
907
908 enum nat_state {
909 TOTAL_NAT,
910 DIRTY_NAT,
911 RECLAIMABLE_NAT,
912 MAX_NAT_STATE,
913 };
914
915 struct f2fs_nm_info {
916 block_t nat_blkaddr; /* base disk address of NAT */
917 nid_t max_nid; /* maximum possible node ids */
918 nid_t available_nids; /* # of available node ids */
919 nid_t next_scan_nid; /* the next nid to be scanned */
920 nid_t max_rf_node_blocks; /* max # of nodes for recovery */
921 unsigned int ram_thresh; /* control the memory footprint */
922 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
923 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
924
925 /* NAT cache management */
926 struct radix_tree_root nat_root;/* root of the nat entry cache */
927 struct radix_tree_root nat_set_root;/* root of the nat set cache */
928 struct f2fs_rwsem nat_tree_lock; /* protect nat entry tree */
929 struct list_head nat_entries; /* cached nat entry list (clean) */
930 spinlock_t nat_list_lock; /* protect clean nat entry list */
931 unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
932 unsigned int nat_blocks; /* # of nat blocks */
933
934 /* free node ids management */
935 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
936 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */
937 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */
938 spinlock_t nid_list_lock; /* protect nid lists ops */
939 struct mutex build_lock; /* lock for build free nids */
940 unsigned char **free_nid_bitmap;
941 unsigned char *nat_block_bitmap;
942 unsigned short *free_nid_count; /* free nid count of NAT block */
943
944 /* for checkpoint */
945 char *nat_bitmap; /* NAT bitmap pointer */
946
947 unsigned int nat_bits_blocks; /* # of nat bits blocks */
948 unsigned char *nat_bits; /* NAT bits blocks */
949 unsigned char *full_nat_bits; /* full NAT pages */
950 unsigned char *empty_nat_bits; /* empty NAT pages */
951 #ifdef CONFIG_F2FS_CHECK_FS
952 char *nat_bitmap_mir; /* NAT bitmap mirror */
953 #endif
954 int bitmap_size; /* bitmap size */
955 };
956
957 /*
958 * this structure is used as one of function parameters.
959 * all the information are dedicated to a given direct node block determined
960 * by the data offset in a file.
961 */
962 struct dnode_of_data {
963 struct inode *inode; /* vfs inode pointer */
964 struct page *inode_page; /* its inode page, NULL is possible */
965 struct page *node_page; /* cached direct node page */
966 nid_t nid; /* node id of the direct node block */
967 unsigned int ofs_in_node; /* data offset in the node page */
968 bool inode_page_locked; /* inode page is locked or not */
969 bool node_changed; /* is node block changed */
970 char cur_level; /* level of hole node page */
971 char max_level; /* level of current page located */
972 block_t data_blkaddr; /* block address of the node block */
973 };
974
set_new_dnode(struct dnode_of_data * dn,struct inode * inode,struct page * ipage,struct page * npage,nid_t nid)975 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
976 struct page *ipage, struct page *npage, nid_t nid)
977 {
978 memset(dn, 0, sizeof(*dn));
979 dn->inode = inode;
980 dn->inode_page = ipage;
981 dn->node_page = npage;
982 dn->nid = nid;
983 }
984
985 /*
986 * For SIT manager
987 *
988 * By default, there are 6 active log areas across the whole main area.
989 * When considering hot and cold data separation to reduce cleaning overhead,
990 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
991 * respectively.
992 * In the current design, you should not change the numbers intentionally.
993 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
994 * logs individually according to the underlying devices. (default: 6)
995 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
996 * data and 8 for node logs.
997 */
998 #define NR_CURSEG_DATA_TYPE (3)
999 #define NR_CURSEG_NODE_TYPE (3)
1000 #define NR_CURSEG_INMEM_TYPE (2)
1001 #define NR_CURSEG_RO_TYPE (2)
1002 #define NR_CURSEG_PERSIST_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
1003 #define NR_CURSEG_TYPE (NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
1004
1005 enum {
1006 CURSEG_HOT_DATA = 0, /* directory entry blocks */
1007 CURSEG_WARM_DATA, /* data blocks */
1008 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
1009 CURSEG_HOT_NODE, /* direct node blocks of directory files */
1010 CURSEG_WARM_NODE, /* direct node blocks of normal files */
1011 CURSEG_COLD_NODE, /* indirect node blocks */
1012 NR_PERSISTENT_LOG, /* number of persistent log */
1013 CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
1014 /* pinned file that needs consecutive block address */
1015 CURSEG_ALL_DATA_ATGC, /* SSR alloctor in hot/warm/cold data area */
1016 NO_CHECK_TYPE, /* number of persistent & inmem log */
1017 };
1018
1019 struct flush_cmd {
1020 struct completion wait;
1021 struct llist_node llnode;
1022 nid_t ino;
1023 int ret;
1024 };
1025
1026 struct flush_cmd_control {
1027 struct task_struct *f2fs_issue_flush; /* flush thread */
1028 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
1029 atomic_t issued_flush; /* # of issued flushes */
1030 atomic_t queued_flush; /* # of queued flushes */
1031 struct llist_head issue_list; /* list for command issue */
1032 struct llist_node *dispatch_list; /* list for command dispatch */
1033 };
1034
1035 struct f2fs_sm_info {
1036 struct sit_info *sit_info; /* whole segment information */
1037 struct free_segmap_info *free_info; /* free segment information */
1038 struct dirty_seglist_info *dirty_info; /* dirty segment information */
1039 struct curseg_info *curseg_array; /* active segment information */
1040
1041 struct f2fs_rwsem curseg_lock; /* for preventing curseg change */
1042
1043 block_t seg0_blkaddr; /* block address of 0'th segment */
1044 block_t main_blkaddr; /* start block address of main area */
1045 block_t ssa_blkaddr; /* start block address of SSA area */
1046
1047 unsigned int segment_count; /* total # of segments */
1048 unsigned int main_segments; /* # of segments in main area */
1049 unsigned int reserved_segments; /* # of reserved segments */
1050 unsigned int additional_reserved_segments;/* reserved segs for IO align feature */
1051 unsigned int ovp_segments; /* # of overprovision segments */
1052
1053 /* a threshold to reclaim prefree segments */
1054 unsigned int rec_prefree_segments;
1055
1056 /* for batched trimming */
1057 unsigned int trim_sections; /* # of sections to trim */
1058
1059 struct list_head sit_entry_set; /* sit entry set list */
1060
1061 unsigned int ipu_policy; /* in-place-update policy */
1062 unsigned int min_ipu_util; /* in-place-update threshold */
1063 unsigned int min_fsync_blocks; /* threshold for fsync */
1064 unsigned int min_seq_blocks; /* threshold for sequential blocks */
1065 unsigned int min_hot_blocks; /* threshold for hot block allocation */
1066 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */
1067
1068 /* for flush command control */
1069 struct flush_cmd_control *fcc_info;
1070
1071 /* for discard command control */
1072 struct discard_cmd_control *dcc_info;
1073 };
1074
1075 /*
1076 * For superblock
1077 */
1078 /*
1079 * COUNT_TYPE for monitoring
1080 *
1081 * f2fs monitors the number of several block types such as on-writeback,
1082 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1083 */
1084 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1085 enum count_type {
1086 F2FS_DIRTY_DENTS,
1087 F2FS_DIRTY_DATA,
1088 F2FS_DIRTY_QDATA,
1089 F2FS_DIRTY_NODES,
1090 F2FS_DIRTY_META,
1091 F2FS_DIRTY_IMETA,
1092 F2FS_WB_CP_DATA,
1093 F2FS_WB_DATA,
1094 F2FS_RD_DATA,
1095 F2FS_RD_NODE,
1096 F2FS_RD_META,
1097 F2FS_DIO_WRITE,
1098 F2FS_DIO_READ,
1099 NR_COUNT_TYPE,
1100 };
1101
1102 /*
1103 * The below are the page types of bios used in submit_bio().
1104 * The available types are:
1105 * DATA User data pages. It operates as async mode.
1106 * NODE Node pages. It operates as async mode.
1107 * META FS metadata pages such as SIT, NAT, CP.
1108 * NR_PAGE_TYPE The number of page types.
1109 * META_FLUSH Make sure the previous pages are written
1110 * with waiting the bio's completion
1111 * ... Only can be used with META.
1112 */
1113 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
1114 enum page_type {
1115 DATA = 0,
1116 NODE = 1, /* should not change this */
1117 META,
1118 NR_PAGE_TYPE,
1119 META_FLUSH,
1120 IPU, /* the below types are used by tracepoints only. */
1121 OPU,
1122 };
1123
1124 enum temp_type {
1125 HOT = 0, /* must be zero for meta bio */
1126 WARM,
1127 COLD,
1128 NR_TEMP_TYPE,
1129 };
1130
1131 enum need_lock_type {
1132 LOCK_REQ = 0,
1133 LOCK_DONE,
1134 LOCK_RETRY,
1135 };
1136
1137 enum cp_reason_type {
1138 CP_NO_NEEDED,
1139 CP_NON_REGULAR,
1140 CP_COMPRESSED,
1141 CP_HARDLINK,
1142 CP_SB_NEED_CP,
1143 CP_WRONG_PINO,
1144 CP_NO_SPC_ROLL,
1145 CP_NODE_NEED_CP,
1146 CP_FASTBOOT_MODE,
1147 CP_SPEC_LOG_NUM,
1148 CP_RECOVER_DIR,
1149 };
1150
1151 enum iostat_type {
1152 /* WRITE IO */
1153 APP_DIRECT_IO, /* app direct write IOs */
1154 APP_BUFFERED_IO, /* app buffered write IOs */
1155 APP_WRITE_IO, /* app write IOs */
1156 APP_MAPPED_IO, /* app mapped IOs */
1157 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */
1158 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */
1159 FS_META_IO, /* meta IOs from kworker/reclaimer */
1160 FS_GC_DATA_IO, /* data IOs from forground gc */
1161 FS_GC_NODE_IO, /* node IOs from forground gc */
1162 FS_CP_DATA_IO, /* data IOs from checkpoint */
1163 FS_CP_NODE_IO, /* node IOs from checkpoint */
1164 FS_CP_META_IO, /* meta IOs from checkpoint */
1165
1166 /* READ IO */
1167 APP_DIRECT_READ_IO, /* app direct read IOs */
1168 APP_BUFFERED_READ_IO, /* app buffered read IOs */
1169 APP_READ_IO, /* app read IOs */
1170 APP_MAPPED_READ_IO, /* app mapped read IOs */
1171 FS_DATA_READ_IO, /* data read IOs */
1172 FS_GDATA_READ_IO, /* data read IOs from background gc */
1173 FS_CDATA_READ_IO, /* compressed data read IOs */
1174 FS_NODE_READ_IO, /* node read IOs */
1175 FS_META_READ_IO, /* meta read IOs */
1176
1177 /* other */
1178 FS_DISCARD, /* discard */
1179 NR_IO_TYPE,
1180 };
1181
1182 struct f2fs_io_info {
1183 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
1184 nid_t ino; /* inode number */
1185 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
1186 enum temp_type temp; /* contains HOT/WARM/COLD */
1187 int op; /* contains REQ_OP_ */
1188 int op_flags; /* req_flag_bits */
1189 block_t new_blkaddr; /* new block address to be written */
1190 block_t old_blkaddr; /* old block address before Cow */
1191 struct page *page; /* page to be written */
1192 struct page *encrypted_page; /* encrypted page */
1193 struct page *compressed_page; /* compressed page */
1194 struct list_head list; /* serialize IOs */
1195 bool submitted; /* indicate IO submission */
1196 int need_lock; /* indicate we need to lock cp_rwsem */
1197 bool in_list; /* indicate fio is in io_list */
1198 bool is_por; /* indicate IO is from recovery or not */
1199 bool retry; /* need to reallocate block address */
1200 int compr_blocks; /* # of compressed block addresses */
1201 bool encrypted; /* indicate file is encrypted */
1202 enum iostat_type io_type; /* io type */
1203 struct writeback_control *io_wbc; /* writeback control */
1204 struct bio **bio; /* bio for ipu */
1205 sector_t *last_block; /* last block number in bio */
1206 unsigned char version; /* version of the node */
1207 };
1208
1209 struct bio_entry {
1210 struct bio *bio;
1211 struct list_head list;
1212 };
1213
1214 #define is_read_io(rw) ((rw) == READ)
1215 struct f2fs_bio_info {
1216 struct f2fs_sb_info *sbi; /* f2fs superblock */
1217 struct bio *bio; /* bios to merge */
1218 sector_t last_block_in_bio; /* last block number */
1219 struct f2fs_io_info fio; /* store buffered io info. */
1220 struct f2fs_rwsem io_rwsem; /* blocking op for bio */
1221 spinlock_t io_lock; /* serialize DATA/NODE IOs */
1222 struct list_head io_list; /* track fios */
1223 struct list_head bio_list; /* bio entry list head */
1224 struct f2fs_rwsem bio_list_lock; /* lock to protect bio entry list */
1225 };
1226
1227 #define FDEV(i) (sbi->devs[i])
1228 #define RDEV(i) (raw_super->devs[i])
1229 struct f2fs_dev_info {
1230 struct block_device *bdev;
1231 char path[MAX_PATH_LEN];
1232 unsigned int total_segments;
1233 block_t start_blk;
1234 block_t end_blk;
1235 #ifdef CONFIG_BLK_DEV_ZONED
1236 unsigned int nr_blkz; /* Total number of zones */
1237 unsigned long *blkz_seq; /* Bitmap indicating sequential zones */
1238 block_t *zone_capacity_blocks; /* Array of zone capacity in blks */
1239 #endif
1240 };
1241
1242 enum inode_type {
1243 DIR_INODE, /* for dirty dir inode */
1244 FILE_INODE, /* for dirty regular/symlink inode */
1245 DIRTY_META, /* for all dirtied inode metadata */
1246 ATOMIC_FILE, /* for all atomic files */
1247 NR_INODE_TYPE,
1248 };
1249
1250 /* for inner inode cache management */
1251 struct inode_management {
1252 struct radix_tree_root ino_root; /* ino entry array */
1253 spinlock_t ino_lock; /* for ino entry lock */
1254 struct list_head ino_list; /* inode list head */
1255 unsigned long ino_num; /* number of entries */
1256 };
1257
1258 /* for GC_AT */
1259 struct atgc_management {
1260 bool atgc_enabled; /* ATGC is enabled or not */
1261 struct rb_root_cached root; /* root of victim rb-tree */
1262 struct list_head victim_list; /* linked with all victim entries */
1263 unsigned int victim_count; /* victim count in rb-tree */
1264 unsigned int candidate_ratio; /* candidate ratio */
1265 unsigned int max_candidate_count; /* max candidate count */
1266 unsigned int age_weight; /* age weight, vblock_weight = 100 - age_weight */
1267 unsigned long long age_threshold; /* age threshold */
1268 };
1269
1270 struct f2fs_gc_control {
1271 unsigned int victim_segno; /* target victim segment number */
1272 int init_gc_type; /* FG_GC or BG_GC */
1273 bool no_bg_gc; /* check the space and stop bg_gc */
1274 bool should_migrate_blocks; /* should migrate blocks */
1275 bool err_gc_skipped; /* return EAGAIN if GC skipped */
1276 unsigned int nr_free_secs; /* # of free sections to do GC */
1277 };
1278
1279 /* For s_flag in struct f2fs_sb_info */
1280 enum {
1281 SBI_IS_DIRTY, /* dirty flag for checkpoint */
1282 SBI_IS_CLOSE, /* specify unmounting */
1283 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
1284 SBI_POR_DOING, /* recovery is doing or not */
1285 SBI_NEED_SB_WRITE, /* need to recover superblock */
1286 SBI_NEED_CP, /* need to checkpoint */
1287 SBI_IS_SHUTDOWN, /* shutdown by ioctl */
1288 SBI_IS_RECOVERED, /* recovered orphan/data */
1289 SBI_CP_DISABLED, /* CP was disabled last mount */
1290 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */
1291 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */
1292 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */
1293 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */
1294 SBI_IS_RESIZEFS, /* resizefs is in process */
1295 SBI_IS_FREEZING, /* freezefs is in process */
1296 };
1297
1298 enum {
1299 CP_TIME,
1300 REQ_TIME,
1301 DISCARD_TIME,
1302 GC_TIME,
1303 DISABLE_TIME,
1304 UMOUNT_DISCARD_TIMEOUT,
1305 MAX_TIME,
1306 };
1307
1308 enum {
1309 GC_NORMAL,
1310 GC_IDLE_CB,
1311 GC_IDLE_GREEDY,
1312 GC_IDLE_AT,
1313 GC_URGENT_HIGH,
1314 GC_URGENT_LOW,
1315 GC_URGENT_MID,
1316 MAX_GC_MODE,
1317 };
1318
1319 enum {
1320 BGGC_MODE_ON, /* background gc is on */
1321 BGGC_MODE_OFF, /* background gc is off */
1322 BGGC_MODE_SYNC, /*
1323 * background gc is on, migrating blocks
1324 * like foreground gc
1325 */
1326 };
1327
1328 enum {
1329 FS_MODE_ADAPTIVE, /* use both lfs/ssr allocation */
1330 FS_MODE_LFS, /* use lfs allocation only */
1331 FS_MODE_FRAGMENT_SEG, /* segment fragmentation mode */
1332 FS_MODE_FRAGMENT_BLK, /* block fragmentation mode */
1333 };
1334
1335 enum {
1336 ALLOC_MODE_DEFAULT, /* stay default */
1337 ALLOC_MODE_REUSE, /* reuse segments as much as possible */
1338 };
1339
1340 enum fsync_mode {
1341 FSYNC_MODE_POSIX, /* fsync follows posix semantics */
1342 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */
1343 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */
1344 };
1345
1346 enum {
1347 COMPR_MODE_FS, /*
1348 * automatically compress compression
1349 * enabled files
1350 */
1351 COMPR_MODE_USER, /*
1352 * automatical compression is disabled.
1353 * user can control the file compression
1354 * using ioctls
1355 */
1356 };
1357
1358 enum {
1359 DISCARD_UNIT_BLOCK, /* basic discard unit is block */
1360 DISCARD_UNIT_SEGMENT, /* basic discard unit is segment */
1361 DISCARD_UNIT_SECTION, /* basic discard unit is section */
1362 };
1363
1364 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1365 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1366 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1367
1368 /*
1369 * Layout of f2fs page.private:
1370 *
1371 * Layout A: lowest bit should be 1
1372 * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1373 * bit 0 PAGE_PRIVATE_NOT_POINTER
1374 * bit 1 PAGE_PRIVATE_ATOMIC_WRITE
1375 * bit 2 PAGE_PRIVATE_DUMMY_WRITE
1376 * bit 3 PAGE_PRIVATE_ONGOING_MIGRATION
1377 * bit 4 PAGE_PRIVATE_INLINE_INODE
1378 * bit 5 PAGE_PRIVATE_REF_RESOURCE
1379 * bit 6- f2fs private data
1380 *
1381 * Layout B: lowest bit should be 0
1382 * page.private is a wrapped pointer.
1383 */
1384 enum {
1385 PAGE_PRIVATE_NOT_POINTER, /* private contains non-pointer data */
1386 PAGE_PRIVATE_ATOMIC_WRITE, /* data page from atomic write path */
1387 PAGE_PRIVATE_DUMMY_WRITE, /* data page for padding aligned IO */
1388 PAGE_PRIVATE_ONGOING_MIGRATION, /* data page which is on-going migrating */
1389 PAGE_PRIVATE_INLINE_INODE, /* inode page contains inline data */
1390 PAGE_PRIVATE_REF_RESOURCE, /* dirty page has referenced resources */
1391 PAGE_PRIVATE_MAX
1392 };
1393
1394 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
1395 static inline bool page_private_##name(struct page *page) \
1396 { \
1397 return PagePrivate(page) && \
1398 test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
1399 test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1400 }
1401
1402 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
1403 static inline void set_page_private_##name(struct page *page) \
1404 { \
1405 if (!PagePrivate(page)) { \
1406 get_page(page); \
1407 SetPagePrivate(page); \
1408 set_page_private(page, 0); \
1409 } \
1410 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
1411 set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1412 }
1413
1414 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
1415 static inline void clear_page_private_##name(struct page *page) \
1416 { \
1417 clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1418 if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) { \
1419 set_page_private(page, 0); \
1420 if (PagePrivate(page)) { \
1421 ClearPagePrivate(page); \
1422 put_page(page); \
1423 }\
1424 } \
1425 }
1426
1427 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
1428 PAGE_PRIVATE_GET_FUNC(reference, REF_RESOURCE);
1429 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
1430 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
1431 PAGE_PRIVATE_GET_FUNC(atomic, ATOMIC_WRITE);
1432 PAGE_PRIVATE_GET_FUNC(dummy, DUMMY_WRITE);
1433
1434 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
1435 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
1436 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
1437 PAGE_PRIVATE_SET_FUNC(atomic, ATOMIC_WRITE);
1438 PAGE_PRIVATE_SET_FUNC(dummy, DUMMY_WRITE);
1439
1440 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
1441 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
1442 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
1443 PAGE_PRIVATE_CLEAR_FUNC(atomic, ATOMIC_WRITE);
1444 PAGE_PRIVATE_CLEAR_FUNC(dummy, DUMMY_WRITE);
1445
get_page_private_data(struct page * page)1446 static inline unsigned long get_page_private_data(struct page *page)
1447 {
1448 unsigned long data = page_private(page);
1449
1450 if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
1451 return 0;
1452 return data >> PAGE_PRIVATE_MAX;
1453 }
1454
set_page_private_data(struct page * page,unsigned long data)1455 static inline void set_page_private_data(struct page *page, unsigned long data)
1456 {
1457 if (!PagePrivate(page)) {
1458 get_page(page);
1459 SetPagePrivate(page);
1460 set_page_private(page, 0);
1461 }
1462 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
1463 page_private(page) |= data << PAGE_PRIVATE_MAX;
1464 }
1465
clear_page_private_data(struct page * page)1466 static inline void clear_page_private_data(struct page *page)
1467 {
1468 page_private(page) &= (1 << PAGE_PRIVATE_MAX) - 1;
1469 if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) {
1470 set_page_private(page, 0);
1471 if (PagePrivate(page)) {
1472 ClearPagePrivate(page);
1473 put_page(page);
1474 }
1475 }
1476 }
1477
1478 /* For compression */
1479 enum compress_algorithm_type {
1480 COMPRESS_LZO,
1481 COMPRESS_LZ4,
1482 COMPRESS_ZSTD,
1483 COMPRESS_LZORLE,
1484 COMPRESS_MAX,
1485 };
1486
1487 enum compress_flag {
1488 COMPRESS_CHKSUM,
1489 COMPRESS_MAX_FLAG,
1490 };
1491
1492 #define COMPRESS_WATERMARK 20
1493 #define COMPRESS_PERCENT 20
1494
1495 #define COMPRESS_DATA_RESERVED_SIZE 4
1496 struct compress_data {
1497 __le32 clen; /* compressed data size */
1498 __le32 chksum; /* compressed data chksum */
1499 __le32 reserved[COMPRESS_DATA_RESERVED_SIZE]; /* reserved */
1500 u8 cdata[]; /* compressed data */
1501 };
1502
1503 #define COMPRESS_HEADER_SIZE (sizeof(struct compress_data))
1504
1505 #define F2FS_COMPRESSED_PAGE_MAGIC 0xF5F2C000
1506
1507 #define COMPRESS_LEVEL_OFFSET 8
1508
1509 /* compress context */
1510 struct compress_ctx {
1511 struct inode *inode; /* inode the context belong to */
1512 pgoff_t cluster_idx; /* cluster index number */
1513 unsigned int cluster_size; /* page count in cluster */
1514 unsigned int log_cluster_size; /* log of cluster size */
1515 struct page **rpages; /* pages store raw data in cluster */
1516 unsigned int nr_rpages; /* total page number in rpages */
1517 struct page **cpages; /* pages store compressed data in cluster */
1518 unsigned int nr_cpages; /* total page number in cpages */
1519 unsigned int valid_nr_cpages; /* valid page number in cpages */
1520 void *rbuf; /* virtual mapped address on rpages */
1521 struct compress_data *cbuf; /* virtual mapped address on cpages */
1522 size_t rlen; /* valid data length in rbuf */
1523 size_t clen; /* valid data length in cbuf */
1524 void *private; /* payload buffer for specified compression algorithm */
1525 void *private2; /* extra payload buffer */
1526 };
1527
1528 /* compress context for write IO path */
1529 struct compress_io_ctx {
1530 u32 magic; /* magic number to indicate page is compressed */
1531 struct inode *inode; /* inode the context belong to */
1532 struct page **rpages; /* pages store raw data in cluster */
1533 unsigned int nr_rpages; /* total page number in rpages */
1534 atomic_t pending_pages; /* in-flight compressed page count */
1535 };
1536
1537 /* Context for decompressing one cluster on the read IO path */
1538 struct decompress_io_ctx {
1539 u32 magic; /* magic number to indicate page is compressed */
1540 struct inode *inode; /* inode the context belong to */
1541 pgoff_t cluster_idx; /* cluster index number */
1542 unsigned int cluster_size; /* page count in cluster */
1543 unsigned int log_cluster_size; /* log of cluster size */
1544 struct page **rpages; /* pages store raw data in cluster */
1545 unsigned int nr_rpages; /* total page number in rpages */
1546 struct page **cpages; /* pages store compressed data in cluster */
1547 unsigned int nr_cpages; /* total page number in cpages */
1548 struct page **tpages; /* temp pages to pad holes in cluster */
1549 void *rbuf; /* virtual mapped address on rpages */
1550 struct compress_data *cbuf; /* virtual mapped address on cpages */
1551 size_t rlen; /* valid data length in rbuf */
1552 size_t clen; /* valid data length in cbuf */
1553
1554 /*
1555 * The number of compressed pages remaining to be read in this cluster.
1556 * This is initially nr_cpages. It is decremented by 1 each time a page
1557 * has been read (or failed to be read). When it reaches 0, the cluster
1558 * is decompressed (or an error is reported).
1559 *
1560 * If an error occurs before all the pages have been submitted for I/O,
1561 * then this will never reach 0. In this case the I/O submitter is
1562 * responsible for calling f2fs_decompress_end_io() instead.
1563 */
1564 atomic_t remaining_pages;
1565
1566 /*
1567 * Number of references to this decompress_io_ctx.
1568 *
1569 * One reference is held for I/O completion. This reference is dropped
1570 * after the pagecache pages are updated and unlocked -- either after
1571 * decompression (and verity if enabled), or after an error.
1572 *
1573 * In addition, each compressed page holds a reference while it is in a
1574 * bio. These references are necessary prevent compressed pages from
1575 * being freed while they are still in a bio.
1576 */
1577 refcount_t refcnt;
1578
1579 bool failed; /* IO error occurred before decompression? */
1580 bool need_verity; /* need fs-verity verification after decompression? */
1581 void *private; /* payload buffer for specified decompression algorithm */
1582 void *private2; /* extra payload buffer */
1583 struct work_struct verity_work; /* work to verify the decompressed pages */
1584 };
1585
1586 #define NULL_CLUSTER ((unsigned int)(~0))
1587 #define MIN_COMPRESS_LOG_SIZE 2
1588 #define MAX_COMPRESS_LOG_SIZE 8
1589 #define MAX_COMPRESS_WINDOW_SIZE(log_size) ((PAGE_SIZE) << (log_size))
1590
1591 struct f2fs_sb_info {
1592 struct super_block *sb; /* pointer to VFS super block */
1593 struct proc_dir_entry *s_proc; /* proc entry */
1594 struct f2fs_super_block *raw_super; /* raw super block pointer */
1595 struct f2fs_rwsem sb_lock; /* lock for raw super block */
1596 int valid_super_block; /* valid super block no */
1597 unsigned long s_flag; /* flags for sbi */
1598 struct mutex writepages; /* mutex for writepages() */
1599
1600 #ifdef CONFIG_BLK_DEV_ZONED
1601 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
1602 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */
1603 #endif
1604
1605 /* for node-related operations */
1606 struct f2fs_nm_info *nm_info; /* node manager */
1607 struct inode *node_inode; /* cache node blocks */
1608
1609 /* for segment-related operations */
1610 struct f2fs_sm_info *sm_info; /* segment manager */
1611
1612 /* for bio operations */
1613 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */
1614 /* keep migration IO order for LFS mode */
1615 struct f2fs_rwsem io_order_lock;
1616 mempool_t *write_io_dummy; /* Dummy pages */
1617 pgoff_t page_eio_ofs[NR_PAGE_TYPE]; /* EIO page offset */
1618 int page_eio_cnt[NR_PAGE_TYPE]; /* EIO count */
1619
1620 /* for checkpoint */
1621 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
1622 int cur_cp_pack; /* remain current cp pack */
1623 spinlock_t cp_lock; /* for flag in ckpt */
1624 struct inode *meta_inode; /* cache meta blocks */
1625 struct f2fs_rwsem cp_global_sem; /* checkpoint procedure lock */
1626 struct f2fs_rwsem cp_rwsem; /* blocking FS operations */
1627 struct f2fs_rwsem node_write; /* locking node writes */
1628 struct f2fs_rwsem node_change; /* locking node change */
1629 wait_queue_head_t cp_wait;
1630 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
1631 long interval_time[MAX_TIME]; /* to store thresholds */
1632 struct ckpt_req_control cprc_info; /* for checkpoint request control */
1633
1634 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
1635
1636 spinlock_t fsync_node_lock; /* for node entry lock */
1637 struct list_head fsync_node_list; /* node list head */
1638 unsigned int fsync_seg_id; /* sequence id */
1639 unsigned int fsync_node_num; /* number of node entries */
1640
1641 /* for orphan inode, use 0'th array */
1642 unsigned int max_orphans; /* max orphan inodes */
1643
1644 /* for inode management */
1645 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
1646 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
1647 struct mutex flush_lock; /* for flush exclusion */
1648
1649 /* for extent tree cache */
1650 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1651 struct mutex extent_tree_lock; /* locking extent radix tree */
1652 struct list_head extent_list; /* lru list for shrinker */
1653 spinlock_t extent_lock; /* locking extent lru list */
1654 atomic_t total_ext_tree; /* extent tree count */
1655 struct list_head zombie_list; /* extent zombie tree list */
1656 atomic_t total_zombie_tree; /* extent zombie tree count */
1657 atomic_t total_ext_node; /* extent info count */
1658
1659 /* basic filesystem units */
1660 unsigned int log_sectors_per_block; /* log2 sectors per block */
1661 unsigned int log_blocksize; /* log2 block size */
1662 unsigned int blocksize; /* block size */
1663 unsigned int root_ino_num; /* root inode number*/
1664 unsigned int node_ino_num; /* node inode number*/
1665 unsigned int meta_ino_num; /* meta inode number*/
1666 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
1667 unsigned int blocks_per_seg; /* blocks per segment */
1668 unsigned int segs_per_sec; /* segments per section */
1669 unsigned int secs_per_zone; /* sections per zone */
1670 unsigned int total_sections; /* total section count */
1671 unsigned int total_node_count; /* total node block count */
1672 unsigned int total_valid_node_count; /* valid node block count */
1673 int dir_level; /* directory level */
1674 int readdir_ra; /* readahead inode in readdir */
1675 u64 max_io_bytes; /* max io bytes to merge IOs */
1676
1677 block_t user_block_count; /* # of user blocks */
1678 block_t total_valid_block_count; /* # of valid blocks */
1679 block_t discard_blks; /* discard command candidats */
1680 block_t last_valid_block_count; /* for recovery */
1681 block_t reserved_blocks; /* configurable reserved blocks */
1682 block_t current_reserved_blocks; /* current reserved blocks */
1683
1684 /* Additional tracking for no checkpoint mode */
1685 block_t unusable_block_count; /* # of blocks saved by last cp */
1686
1687 unsigned int nquota_files; /* # of quota sysfile */
1688 struct f2fs_rwsem quota_sem; /* blocking cp for flags */
1689
1690 /* # of pages, see count_type */
1691 atomic_t nr_pages[NR_COUNT_TYPE];
1692 /* # of allocated blocks */
1693 struct percpu_counter alloc_valid_block_count;
1694 /* # of node block writes as roll forward recovery */
1695 struct percpu_counter rf_node_block_count;
1696
1697 /* writeback control */
1698 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */
1699
1700 /* valid inode count */
1701 struct percpu_counter total_valid_inode_count;
1702
1703 struct f2fs_mount_info mount_opt; /* mount options */
1704
1705 /* for cleaning operations */
1706 struct f2fs_rwsem gc_lock; /*
1707 * semaphore for GC, avoid
1708 * race between GC and GC or CP
1709 */
1710 struct f2fs_gc_kthread *gc_thread; /* GC thread */
1711 struct atgc_management am; /* atgc management */
1712 unsigned int cur_victim_sec; /* current victim section num */
1713 unsigned int gc_mode; /* current GC state */
1714 unsigned int next_victim_seg[2]; /* next segment in victim section */
1715 spinlock_t gc_urgent_high_lock;
1716 bool gc_urgent_high_limited; /* indicates having limited trial count */
1717 unsigned int gc_urgent_high_remaining; /* remaining trial count for GC_URGENT_HIGH */
1718
1719 /* for skip statistic */
1720 unsigned int atomic_files; /* # of opened atomic file */
1721 unsigned long long skipped_gc_rwsem; /* FG_GC only */
1722
1723 /* threshold for gc trials on pinned files */
1724 u64 gc_pin_file_threshold;
1725 struct f2fs_rwsem pin_sem;
1726
1727 /* maximum # of trials to find a victim segment for SSR and GC */
1728 unsigned int max_victim_search;
1729 /* migration granularity of garbage collection, unit: segment */
1730 unsigned int migration_granularity;
1731
1732 /*
1733 * for stat information.
1734 * one is for the LFS mode, and the other is for the SSR mode.
1735 */
1736 #ifdef CONFIG_F2FS_STAT_FS
1737 struct f2fs_stat_info *stat_info; /* FS status information */
1738 atomic_t meta_count[META_MAX]; /* # of meta blocks */
1739 unsigned int segment_count[2]; /* # of allocated segments */
1740 unsigned int block_count[2]; /* # of allocated blocks */
1741 atomic_t inplace_count; /* # of inplace update */
1742 atomic64_t total_hit_ext; /* # of lookup extent cache */
1743 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
1744 atomic64_t read_hit_largest; /* # of hit largest extent node */
1745 atomic64_t read_hit_cached; /* # of hit cached extent node */
1746 atomic_t inline_xattr; /* # of inline_xattr inodes */
1747 atomic_t inline_inode; /* # of inline_data inodes */
1748 atomic_t inline_dir; /* # of inline_dentry inodes */
1749 atomic_t compr_inode; /* # of compressed inodes */
1750 atomic64_t compr_blocks; /* # of compressed blocks */
1751 atomic_t max_aw_cnt; /* max # of atomic writes */
1752 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */
1753 unsigned int other_skip_bggc; /* skip background gc for other reasons */
1754 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
1755 #endif
1756 spinlock_t stat_lock; /* lock for stat operations */
1757
1758 /* to attach REQ_META|REQ_FUA flags */
1759 unsigned int data_io_flag;
1760 unsigned int node_io_flag;
1761
1762 /* For sysfs support */
1763 struct kobject s_kobj; /* /sys/fs/f2fs/<devname> */
1764 struct completion s_kobj_unregister;
1765
1766 struct kobject s_stat_kobj; /* /sys/fs/f2fs/<devname>/stat */
1767 struct completion s_stat_kobj_unregister;
1768
1769 struct kobject s_feature_list_kobj; /* /sys/fs/f2fs/<devname>/feature_list */
1770 struct completion s_feature_list_kobj_unregister;
1771
1772 /* For shrinker support */
1773 struct list_head s_list;
1774 struct mutex umount_mutex;
1775 unsigned int shrinker_run_no;
1776
1777 /* For multi devices */
1778 int s_ndevs; /* number of devices */
1779 struct f2fs_dev_info *devs; /* for device list */
1780 unsigned int dirty_device; /* for checkpoint data flush */
1781 spinlock_t dev_lock; /* protect dirty_device */
1782 bool aligned_blksize; /* all devices has the same logical blksize */
1783
1784 /* For write statistics */
1785 u64 sectors_written_start;
1786 u64 kbytes_written;
1787
1788 /* Reference to checksum algorithm driver via cryptoapi */
1789 struct crypto_shash *s_chksum_driver;
1790
1791 /* Precomputed FS UUID checksum for seeding other checksums */
1792 __u32 s_chksum_seed;
1793
1794 struct workqueue_struct *post_read_wq; /* post read workqueue */
1795
1796 struct kmem_cache *inline_xattr_slab; /* inline xattr entry */
1797 unsigned int inline_xattr_slab_size; /* default inline xattr slab size */
1798
1799 /* For reclaimed segs statistics per each GC mode */
1800 unsigned int gc_segment_mode; /* GC state for reclaimed segments */
1801 unsigned int gc_reclaimed_segs[MAX_GC_MODE]; /* Reclaimed segs for each mode */
1802
1803 unsigned long seq_file_ra_mul; /* multiplier for ra_pages of seq. files in fadvise */
1804
1805 int max_fragment_chunk; /* max chunk size for block fragmentation mode */
1806 int max_fragment_hole; /* max hole size for block fragmentation mode */
1807
1808 #ifdef CONFIG_F2FS_FS_COMPRESSION
1809 struct kmem_cache *page_array_slab; /* page array entry */
1810 unsigned int page_array_slab_size; /* default page array slab size */
1811
1812 /* For runtime compression statistics */
1813 u64 compr_written_block;
1814 u64 compr_saved_block;
1815 u32 compr_new_inode;
1816
1817 /* For compressed block cache */
1818 struct inode *compress_inode; /* cache compressed blocks */
1819 unsigned int compress_percent; /* cache page percentage */
1820 unsigned int compress_watermark; /* cache page watermark */
1821 atomic_t compress_page_hit; /* cache hit count */
1822 #endif
1823
1824 #ifdef CONFIG_F2FS_IOSTAT
1825 /* For app/fs IO statistics */
1826 spinlock_t iostat_lock;
1827 unsigned long long rw_iostat[NR_IO_TYPE];
1828 unsigned long long prev_rw_iostat[NR_IO_TYPE];
1829 bool iostat_enable;
1830 unsigned long iostat_next_period;
1831 unsigned int iostat_period_ms;
1832
1833 /* For io latency related statistics info in one iostat period */
1834 spinlock_t iostat_lat_lock;
1835 struct iostat_lat_info *iostat_io_lat;
1836 #endif
1837 };
1838
1839 #ifdef CONFIG_F2FS_FAULT_INJECTION
1840 #define f2fs_show_injection_info(sbi, type) \
1841 printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n", \
1842 KERN_INFO, sbi->sb->s_id, \
1843 f2fs_fault_name[type], \
1844 __func__, __builtin_return_address(0))
time_to_inject(struct f2fs_sb_info * sbi,int type)1845 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1846 {
1847 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1848
1849 if (!ffi->inject_rate)
1850 return false;
1851
1852 if (!IS_FAULT_SET(ffi, type))
1853 return false;
1854
1855 atomic_inc(&ffi->inject_ops);
1856 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1857 atomic_set(&ffi->inject_ops, 0);
1858 return true;
1859 }
1860 return false;
1861 }
1862 #else
1863 #define f2fs_show_injection_info(sbi, type) do { } while (0)
time_to_inject(struct f2fs_sb_info * sbi,int type)1864 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1865 {
1866 return false;
1867 }
1868 #endif
1869
1870 /*
1871 * Test if the mounted volume is a multi-device volume.
1872 * - For a single regular disk volume, sbi->s_ndevs is 0.
1873 * - For a single zoned disk volume, sbi->s_ndevs is 1.
1874 * - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1875 */
f2fs_is_multi_device(struct f2fs_sb_info * sbi)1876 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1877 {
1878 return sbi->s_ndevs > 1;
1879 }
1880
f2fs_update_time(struct f2fs_sb_info * sbi,int type)1881 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1882 {
1883 unsigned long now = jiffies;
1884
1885 sbi->last_time[type] = now;
1886
1887 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1888 if (type == REQ_TIME) {
1889 sbi->last_time[DISCARD_TIME] = now;
1890 sbi->last_time[GC_TIME] = now;
1891 }
1892 }
1893
f2fs_time_over(struct f2fs_sb_info * sbi,int type)1894 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1895 {
1896 unsigned long interval = sbi->interval_time[type] * HZ;
1897
1898 return time_after(jiffies, sbi->last_time[type] + interval);
1899 }
1900
f2fs_time_to_wait(struct f2fs_sb_info * sbi,int type)1901 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1902 int type)
1903 {
1904 unsigned long interval = sbi->interval_time[type] * HZ;
1905 unsigned int wait_ms = 0;
1906 long delta;
1907
1908 delta = (sbi->last_time[type] + interval) - jiffies;
1909 if (delta > 0)
1910 wait_ms = jiffies_to_msecs(delta);
1911
1912 return wait_ms;
1913 }
1914
1915 /*
1916 * Inline functions
1917 */
__f2fs_crc32(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1918 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1919 const void *address, unsigned int length)
1920 {
1921 struct {
1922 struct shash_desc shash;
1923 char ctx[4];
1924 } desc;
1925 int err;
1926
1927 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1928
1929 desc.shash.tfm = sbi->s_chksum_driver;
1930 *(u32 *)desc.ctx = crc;
1931
1932 err = crypto_shash_update(&desc.shash, address, length);
1933 BUG_ON(err);
1934
1935 return *(u32 *)desc.ctx;
1936 }
1937
f2fs_crc32(struct f2fs_sb_info * sbi,const void * address,unsigned int length)1938 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1939 unsigned int length)
1940 {
1941 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1942 }
1943
f2fs_crc_valid(struct f2fs_sb_info * sbi,__u32 blk_crc,void * buf,size_t buf_size)1944 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1945 void *buf, size_t buf_size)
1946 {
1947 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1948 }
1949
f2fs_chksum(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1950 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1951 const void *address, unsigned int length)
1952 {
1953 return __f2fs_crc32(sbi, crc, address, length);
1954 }
1955
F2FS_I(struct inode * inode)1956 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1957 {
1958 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1959 }
1960
F2FS_SB(struct super_block * sb)1961 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1962 {
1963 return sb->s_fs_info;
1964 }
1965
F2FS_I_SB(struct inode * inode)1966 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1967 {
1968 return F2FS_SB(inode->i_sb);
1969 }
1970
F2FS_M_SB(struct address_space * mapping)1971 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1972 {
1973 return F2FS_I_SB(mapping->host);
1974 }
1975
F2FS_P_SB(struct page * page)1976 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1977 {
1978 return F2FS_M_SB(page_file_mapping(page));
1979 }
1980
F2FS_RAW_SUPER(struct f2fs_sb_info * sbi)1981 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1982 {
1983 return (struct f2fs_super_block *)(sbi->raw_super);
1984 }
1985
F2FS_CKPT(struct f2fs_sb_info * sbi)1986 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1987 {
1988 return (struct f2fs_checkpoint *)(sbi->ckpt);
1989 }
1990
F2FS_NODE(struct page * page)1991 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1992 {
1993 return (struct f2fs_node *)page_address(page);
1994 }
1995
F2FS_INODE(struct page * page)1996 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1997 {
1998 return &((struct f2fs_node *)page_address(page))->i;
1999 }
2000
NM_I(struct f2fs_sb_info * sbi)2001 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
2002 {
2003 return (struct f2fs_nm_info *)(sbi->nm_info);
2004 }
2005
SM_I(struct f2fs_sb_info * sbi)2006 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
2007 {
2008 return (struct f2fs_sm_info *)(sbi->sm_info);
2009 }
2010
SIT_I(struct f2fs_sb_info * sbi)2011 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
2012 {
2013 return (struct sit_info *)(SM_I(sbi)->sit_info);
2014 }
2015
FREE_I(struct f2fs_sb_info * sbi)2016 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
2017 {
2018 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
2019 }
2020
DIRTY_I(struct f2fs_sb_info * sbi)2021 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
2022 {
2023 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
2024 }
2025
META_MAPPING(struct f2fs_sb_info * sbi)2026 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
2027 {
2028 return sbi->meta_inode->i_mapping;
2029 }
2030
NODE_MAPPING(struct f2fs_sb_info * sbi)2031 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
2032 {
2033 return sbi->node_inode->i_mapping;
2034 }
2035
is_sbi_flag_set(struct f2fs_sb_info * sbi,unsigned int type)2036 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
2037 {
2038 return test_bit(type, &sbi->s_flag);
2039 }
2040
set_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)2041 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2042 {
2043 set_bit(type, &sbi->s_flag);
2044 }
2045
clear_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)2046 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2047 {
2048 clear_bit(type, &sbi->s_flag);
2049 }
2050
cur_cp_version(struct f2fs_checkpoint * cp)2051 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2052 {
2053 return le64_to_cpu(cp->checkpoint_ver);
2054 }
2055
f2fs_qf_ino(struct super_block * sb,int type)2056 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2057 {
2058 if (type < F2FS_MAX_QUOTAS)
2059 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2060 return 0;
2061 }
2062
cur_cp_crc(struct f2fs_checkpoint * cp)2063 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2064 {
2065 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2066 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2067 }
2068
__is_set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2069 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2070 {
2071 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2072
2073 return ckpt_flags & f;
2074 }
2075
is_set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2076 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2077 {
2078 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2079 }
2080
__set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2081 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2082 {
2083 unsigned int ckpt_flags;
2084
2085 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2086 ckpt_flags |= f;
2087 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2088 }
2089
set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2090 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2091 {
2092 unsigned long flags;
2093
2094 spin_lock_irqsave(&sbi->cp_lock, flags);
2095 __set_ckpt_flags(F2FS_CKPT(sbi), f);
2096 spin_unlock_irqrestore(&sbi->cp_lock, flags);
2097 }
2098
__clear_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2099 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2100 {
2101 unsigned int ckpt_flags;
2102
2103 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2104 ckpt_flags &= (~f);
2105 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2106 }
2107
clear_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2108 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2109 {
2110 unsigned long flags;
2111
2112 spin_lock_irqsave(&sbi->cp_lock, flags);
2113 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
2114 spin_unlock_irqrestore(&sbi->cp_lock, flags);
2115 }
2116
2117 #define init_f2fs_rwsem(sem) \
2118 do { \
2119 static struct lock_class_key __key; \
2120 \
2121 __init_f2fs_rwsem((sem), #sem, &__key); \
2122 } while (0)
2123
__init_f2fs_rwsem(struct f2fs_rwsem * sem,const char * sem_name,struct lock_class_key * key)2124 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem,
2125 const char *sem_name, struct lock_class_key *key)
2126 {
2127 __init_rwsem(&sem->internal_rwsem, sem_name, key);
2128 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2129 init_waitqueue_head(&sem->read_waiters);
2130 #endif
2131 }
2132
f2fs_rwsem_is_locked(struct f2fs_rwsem * sem)2133 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem)
2134 {
2135 return rwsem_is_locked(&sem->internal_rwsem);
2136 }
2137
f2fs_rwsem_is_contended(struct f2fs_rwsem * sem)2138 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem)
2139 {
2140 return rwsem_is_contended(&sem->internal_rwsem);
2141 }
2142
f2fs_down_read(struct f2fs_rwsem * sem)2143 static inline void f2fs_down_read(struct f2fs_rwsem *sem)
2144 {
2145 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2146 wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem));
2147 #else
2148 down_read(&sem->internal_rwsem);
2149 #endif
2150 }
2151
f2fs_down_read_trylock(struct f2fs_rwsem * sem)2152 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem)
2153 {
2154 return down_read_trylock(&sem->internal_rwsem);
2155 }
2156
2157 #ifdef CONFIG_DEBUG_LOCK_ALLOC
f2fs_down_read_nested(struct f2fs_rwsem * sem,int subclass)2158 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass)
2159 {
2160 down_read_nested(&sem->internal_rwsem, subclass);
2161 }
2162 #else
2163 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem)
2164 #endif
2165
f2fs_up_read(struct f2fs_rwsem * sem)2166 static inline void f2fs_up_read(struct f2fs_rwsem *sem)
2167 {
2168 up_read(&sem->internal_rwsem);
2169 }
2170
f2fs_down_write(struct f2fs_rwsem * sem)2171 static inline void f2fs_down_write(struct f2fs_rwsem *sem)
2172 {
2173 down_write(&sem->internal_rwsem);
2174 }
2175
f2fs_down_write_trylock(struct f2fs_rwsem * sem)2176 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem)
2177 {
2178 return down_write_trylock(&sem->internal_rwsem);
2179 }
2180
f2fs_up_write(struct f2fs_rwsem * sem)2181 static inline void f2fs_up_write(struct f2fs_rwsem *sem)
2182 {
2183 up_write(&sem->internal_rwsem);
2184 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2185 wake_up_all(&sem->read_waiters);
2186 #endif
2187 }
2188
f2fs_lock_op(struct f2fs_sb_info * sbi)2189 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2190 {
2191 f2fs_down_read(&sbi->cp_rwsem);
2192 }
2193
f2fs_trylock_op(struct f2fs_sb_info * sbi)2194 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2195 {
2196 if (time_to_inject(sbi, FAULT_LOCK_OP)) {
2197 f2fs_show_injection_info(sbi, FAULT_LOCK_OP);
2198 return 0;
2199 }
2200 return f2fs_down_read_trylock(&sbi->cp_rwsem);
2201 }
2202
f2fs_unlock_op(struct f2fs_sb_info * sbi)2203 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2204 {
2205 f2fs_up_read(&sbi->cp_rwsem);
2206 }
2207
f2fs_lock_all(struct f2fs_sb_info * sbi)2208 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2209 {
2210 f2fs_down_write(&sbi->cp_rwsem);
2211 }
2212
f2fs_unlock_all(struct f2fs_sb_info * sbi)2213 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2214 {
2215 f2fs_up_write(&sbi->cp_rwsem);
2216 }
2217
__get_cp_reason(struct f2fs_sb_info * sbi)2218 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2219 {
2220 int reason = CP_SYNC;
2221
2222 if (test_opt(sbi, FASTBOOT))
2223 reason = CP_FASTBOOT;
2224 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2225 reason = CP_UMOUNT;
2226 return reason;
2227 }
2228
__remain_node_summaries(int reason)2229 static inline bool __remain_node_summaries(int reason)
2230 {
2231 return (reason & (CP_UMOUNT | CP_FASTBOOT));
2232 }
2233
__exist_node_summaries(struct f2fs_sb_info * sbi)2234 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2235 {
2236 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2237 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2238 }
2239
2240 /*
2241 * Check whether the inode has blocks or not
2242 */
F2FS_HAS_BLOCKS(struct inode * inode)2243 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2244 {
2245 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2246
2247 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2248 }
2249
f2fs_has_xattr_block(unsigned int ofs)2250 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2251 {
2252 return ofs == XATTR_NODE_OFFSET;
2253 }
2254
__allow_reserved_blocks(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)2255 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2256 struct inode *inode, bool cap)
2257 {
2258 if (!inode)
2259 return true;
2260 if (!test_opt(sbi, RESERVE_ROOT))
2261 return false;
2262 if (IS_NOQUOTA(inode))
2263 return true;
2264 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2265 return true;
2266 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2267 in_group_p(F2FS_OPTION(sbi).s_resgid))
2268 return true;
2269 if (cap && capable(CAP_SYS_RESOURCE))
2270 return true;
2271 return false;
2272 }
2273
2274 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
inc_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,blkcnt_t * count)2275 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2276 struct inode *inode, blkcnt_t *count)
2277 {
2278 blkcnt_t diff = 0, release = 0;
2279 block_t avail_user_block_count;
2280 int ret;
2281
2282 ret = dquot_reserve_block(inode, *count);
2283 if (ret)
2284 return ret;
2285
2286 if (time_to_inject(sbi, FAULT_BLOCK)) {
2287 f2fs_show_injection_info(sbi, FAULT_BLOCK);
2288 release = *count;
2289 goto release_quota;
2290 }
2291
2292 /*
2293 * let's increase this in prior to actual block count change in order
2294 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2295 */
2296 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2297
2298 spin_lock(&sbi->stat_lock);
2299 sbi->total_valid_block_count += (block_t)(*count);
2300 avail_user_block_count = sbi->user_block_count -
2301 sbi->current_reserved_blocks;
2302
2303 if (!__allow_reserved_blocks(sbi, inode, true))
2304 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2305
2306 if (F2FS_IO_ALIGNED(sbi))
2307 avail_user_block_count -= sbi->blocks_per_seg *
2308 SM_I(sbi)->additional_reserved_segments;
2309
2310 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2311 if (avail_user_block_count > sbi->unusable_block_count)
2312 avail_user_block_count -= sbi->unusable_block_count;
2313 else
2314 avail_user_block_count = 0;
2315 }
2316 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2317 diff = sbi->total_valid_block_count - avail_user_block_count;
2318 if (diff > *count)
2319 diff = *count;
2320 *count -= diff;
2321 release = diff;
2322 sbi->total_valid_block_count -= diff;
2323 if (!*count) {
2324 spin_unlock(&sbi->stat_lock);
2325 goto enospc;
2326 }
2327 }
2328 spin_unlock(&sbi->stat_lock);
2329
2330 if (unlikely(release)) {
2331 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2332 dquot_release_reservation_block(inode, release);
2333 }
2334 f2fs_i_blocks_write(inode, *count, true, true);
2335 return 0;
2336
2337 enospc:
2338 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2339 release_quota:
2340 dquot_release_reservation_block(inode, release);
2341 return -ENOSPC;
2342 }
2343
2344 __printf(2, 3)
2345 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2346
2347 #define f2fs_err(sbi, fmt, ...) \
2348 f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2349 #define f2fs_warn(sbi, fmt, ...) \
2350 f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2351 #define f2fs_notice(sbi, fmt, ...) \
2352 f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2353 #define f2fs_info(sbi, fmt, ...) \
2354 f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2355 #define f2fs_debug(sbi, fmt, ...) \
2356 f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2357
dec_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,block_t count)2358 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2359 struct inode *inode,
2360 block_t count)
2361 {
2362 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2363
2364 spin_lock(&sbi->stat_lock);
2365 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2366 sbi->total_valid_block_count -= (block_t)count;
2367 if (sbi->reserved_blocks &&
2368 sbi->current_reserved_blocks < sbi->reserved_blocks)
2369 sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2370 sbi->current_reserved_blocks + count);
2371 spin_unlock(&sbi->stat_lock);
2372 if (unlikely(inode->i_blocks < sectors)) {
2373 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2374 inode->i_ino,
2375 (unsigned long long)inode->i_blocks,
2376 (unsigned long long)sectors);
2377 set_sbi_flag(sbi, SBI_NEED_FSCK);
2378 return;
2379 }
2380 f2fs_i_blocks_write(inode, count, false, true);
2381 }
2382
inc_page_count(struct f2fs_sb_info * sbi,int count_type)2383 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2384 {
2385 atomic_inc(&sbi->nr_pages[count_type]);
2386
2387 if (count_type == F2FS_DIRTY_DENTS ||
2388 count_type == F2FS_DIRTY_NODES ||
2389 count_type == F2FS_DIRTY_META ||
2390 count_type == F2FS_DIRTY_QDATA ||
2391 count_type == F2FS_DIRTY_IMETA)
2392 set_sbi_flag(sbi, SBI_IS_DIRTY);
2393 }
2394
inode_inc_dirty_pages(struct inode * inode)2395 static inline void inode_inc_dirty_pages(struct inode *inode)
2396 {
2397 atomic_inc(&F2FS_I(inode)->dirty_pages);
2398 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2399 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2400 if (IS_NOQUOTA(inode))
2401 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2402 }
2403
dec_page_count(struct f2fs_sb_info * sbi,int count_type)2404 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2405 {
2406 atomic_dec(&sbi->nr_pages[count_type]);
2407 }
2408
inode_dec_dirty_pages(struct inode * inode)2409 static inline void inode_dec_dirty_pages(struct inode *inode)
2410 {
2411 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2412 !S_ISLNK(inode->i_mode))
2413 return;
2414
2415 atomic_dec(&F2FS_I(inode)->dirty_pages);
2416 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2417 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2418 if (IS_NOQUOTA(inode))
2419 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2420 }
2421
get_pages(struct f2fs_sb_info * sbi,int count_type)2422 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2423 {
2424 return atomic_read(&sbi->nr_pages[count_type]);
2425 }
2426
get_dirty_pages(struct inode * inode)2427 static inline int get_dirty_pages(struct inode *inode)
2428 {
2429 return atomic_read(&F2FS_I(inode)->dirty_pages);
2430 }
2431
get_blocktype_secs(struct f2fs_sb_info * sbi,int block_type)2432 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2433 {
2434 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2435 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2436 sbi->log_blocks_per_seg;
2437
2438 return segs / sbi->segs_per_sec;
2439 }
2440
valid_user_blocks(struct f2fs_sb_info * sbi)2441 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2442 {
2443 return sbi->total_valid_block_count;
2444 }
2445
discard_blocks(struct f2fs_sb_info * sbi)2446 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2447 {
2448 return sbi->discard_blks;
2449 }
2450
__bitmap_size(struct f2fs_sb_info * sbi,int flag)2451 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2452 {
2453 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2454
2455 /* return NAT or SIT bitmap */
2456 if (flag == NAT_BITMAP)
2457 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2458 else if (flag == SIT_BITMAP)
2459 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2460
2461 return 0;
2462 }
2463
__cp_payload(struct f2fs_sb_info * sbi)2464 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2465 {
2466 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2467 }
2468
__bitmap_ptr(struct f2fs_sb_info * sbi,int flag)2469 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2470 {
2471 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2472 void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2473 int offset;
2474
2475 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2476 offset = (flag == SIT_BITMAP) ?
2477 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2478 /*
2479 * if large_nat_bitmap feature is enabled, leave checksum
2480 * protection for all nat/sit bitmaps.
2481 */
2482 return tmp_ptr + offset + sizeof(__le32);
2483 }
2484
2485 if (__cp_payload(sbi) > 0) {
2486 if (flag == NAT_BITMAP)
2487 return &ckpt->sit_nat_version_bitmap;
2488 else
2489 return (unsigned char *)ckpt + F2FS_BLKSIZE;
2490 } else {
2491 offset = (flag == NAT_BITMAP) ?
2492 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2493 return tmp_ptr + offset;
2494 }
2495 }
2496
__start_cp_addr(struct f2fs_sb_info * sbi)2497 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2498 {
2499 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2500
2501 if (sbi->cur_cp_pack == 2)
2502 start_addr += sbi->blocks_per_seg;
2503 return start_addr;
2504 }
2505
__start_cp_next_addr(struct f2fs_sb_info * sbi)2506 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2507 {
2508 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2509
2510 if (sbi->cur_cp_pack == 1)
2511 start_addr += sbi->blocks_per_seg;
2512 return start_addr;
2513 }
2514
__set_cp_next_pack(struct f2fs_sb_info * sbi)2515 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2516 {
2517 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2518 }
2519
__start_sum_addr(struct f2fs_sb_info * sbi)2520 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2521 {
2522 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2523 }
2524
inc_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2525 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2526 struct inode *inode, bool is_inode)
2527 {
2528 block_t valid_block_count;
2529 unsigned int valid_node_count, user_block_count;
2530 int err;
2531
2532 if (is_inode) {
2533 if (inode) {
2534 err = dquot_alloc_inode(inode);
2535 if (err)
2536 return err;
2537 }
2538 } else {
2539 err = dquot_reserve_block(inode, 1);
2540 if (err)
2541 return err;
2542 }
2543
2544 if (time_to_inject(sbi, FAULT_BLOCK)) {
2545 f2fs_show_injection_info(sbi, FAULT_BLOCK);
2546 goto enospc;
2547 }
2548
2549 spin_lock(&sbi->stat_lock);
2550
2551 valid_block_count = sbi->total_valid_block_count +
2552 sbi->current_reserved_blocks + 1;
2553
2554 if (!__allow_reserved_blocks(sbi, inode, false))
2555 valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2556
2557 if (F2FS_IO_ALIGNED(sbi))
2558 valid_block_count += sbi->blocks_per_seg *
2559 SM_I(sbi)->additional_reserved_segments;
2560
2561 user_block_count = sbi->user_block_count;
2562 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2563 user_block_count -= sbi->unusable_block_count;
2564
2565 if (unlikely(valid_block_count > user_block_count)) {
2566 spin_unlock(&sbi->stat_lock);
2567 goto enospc;
2568 }
2569
2570 valid_node_count = sbi->total_valid_node_count + 1;
2571 if (unlikely(valid_node_count > sbi->total_node_count)) {
2572 spin_unlock(&sbi->stat_lock);
2573 goto enospc;
2574 }
2575
2576 sbi->total_valid_node_count++;
2577 sbi->total_valid_block_count++;
2578 spin_unlock(&sbi->stat_lock);
2579
2580 if (inode) {
2581 if (is_inode)
2582 f2fs_mark_inode_dirty_sync(inode, true);
2583 else
2584 f2fs_i_blocks_write(inode, 1, true, true);
2585 }
2586
2587 percpu_counter_inc(&sbi->alloc_valid_block_count);
2588 return 0;
2589
2590 enospc:
2591 if (is_inode) {
2592 if (inode)
2593 dquot_free_inode(inode);
2594 } else {
2595 dquot_release_reservation_block(inode, 1);
2596 }
2597 return -ENOSPC;
2598 }
2599
dec_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2600 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2601 struct inode *inode, bool is_inode)
2602 {
2603 spin_lock(&sbi->stat_lock);
2604
2605 if (unlikely(!sbi->total_valid_block_count ||
2606 !sbi->total_valid_node_count)) {
2607 f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
2608 sbi->total_valid_block_count,
2609 sbi->total_valid_node_count);
2610 set_sbi_flag(sbi, SBI_NEED_FSCK);
2611 } else {
2612 sbi->total_valid_block_count--;
2613 sbi->total_valid_node_count--;
2614 }
2615
2616 if (sbi->reserved_blocks &&
2617 sbi->current_reserved_blocks < sbi->reserved_blocks)
2618 sbi->current_reserved_blocks++;
2619
2620 spin_unlock(&sbi->stat_lock);
2621
2622 if (is_inode) {
2623 dquot_free_inode(inode);
2624 } else {
2625 if (unlikely(inode->i_blocks == 0)) {
2626 f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2627 inode->i_ino,
2628 (unsigned long long)inode->i_blocks);
2629 set_sbi_flag(sbi, SBI_NEED_FSCK);
2630 return;
2631 }
2632 f2fs_i_blocks_write(inode, 1, false, true);
2633 }
2634 }
2635
valid_node_count(struct f2fs_sb_info * sbi)2636 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2637 {
2638 return sbi->total_valid_node_count;
2639 }
2640
inc_valid_inode_count(struct f2fs_sb_info * sbi)2641 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2642 {
2643 percpu_counter_inc(&sbi->total_valid_inode_count);
2644 }
2645
dec_valid_inode_count(struct f2fs_sb_info * sbi)2646 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2647 {
2648 percpu_counter_dec(&sbi->total_valid_inode_count);
2649 }
2650
valid_inode_count(struct f2fs_sb_info * sbi)2651 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2652 {
2653 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2654 }
2655
f2fs_grab_cache_page(struct address_space * mapping,pgoff_t index,bool for_write)2656 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2657 pgoff_t index, bool for_write)
2658 {
2659 struct page *page;
2660 unsigned int flags;
2661
2662 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2663 if (!for_write)
2664 page = find_get_page_flags(mapping, index,
2665 FGP_LOCK | FGP_ACCESSED);
2666 else
2667 page = find_lock_page(mapping, index);
2668 if (page)
2669 return page;
2670
2671 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2672 f2fs_show_injection_info(F2FS_M_SB(mapping),
2673 FAULT_PAGE_ALLOC);
2674 return NULL;
2675 }
2676 }
2677
2678 if (!for_write)
2679 return grab_cache_page(mapping, index);
2680
2681 flags = memalloc_nofs_save();
2682 page = grab_cache_page_write_begin(mapping, index);
2683 memalloc_nofs_restore(flags);
2684
2685 return page;
2686 }
2687
f2fs_pagecache_get_page(struct address_space * mapping,pgoff_t index,int fgp_flags,gfp_t gfp_mask)2688 static inline struct page *f2fs_pagecache_get_page(
2689 struct address_space *mapping, pgoff_t index,
2690 int fgp_flags, gfp_t gfp_mask)
2691 {
2692 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2693 f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2694 return NULL;
2695 }
2696
2697 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2698 }
2699
f2fs_copy_page(struct page * src,struct page * dst)2700 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2701 {
2702 char *src_kaddr = kmap(src);
2703 char *dst_kaddr = kmap(dst);
2704
2705 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2706 kunmap(dst);
2707 kunmap(src);
2708 }
2709
f2fs_put_page(struct page * page,int unlock)2710 static inline void f2fs_put_page(struct page *page, int unlock)
2711 {
2712 if (!page)
2713 return;
2714
2715 if (unlock) {
2716 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2717 unlock_page(page);
2718 }
2719 put_page(page);
2720 }
2721
f2fs_put_dnode(struct dnode_of_data * dn)2722 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2723 {
2724 if (dn->node_page)
2725 f2fs_put_page(dn->node_page, 1);
2726 if (dn->inode_page && dn->node_page != dn->inode_page)
2727 f2fs_put_page(dn->inode_page, 0);
2728 dn->node_page = NULL;
2729 dn->inode_page = NULL;
2730 }
2731
f2fs_kmem_cache_create(const char * name,size_t size)2732 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2733 size_t size)
2734 {
2735 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2736 }
2737
f2fs_kmem_cache_alloc_nofail(struct kmem_cache * cachep,gfp_t flags)2738 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
2739 gfp_t flags)
2740 {
2741 void *entry;
2742
2743 entry = kmem_cache_alloc(cachep, flags);
2744 if (!entry)
2745 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2746 return entry;
2747 }
2748
f2fs_kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags,bool nofail,struct f2fs_sb_info * sbi)2749 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2750 gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
2751 {
2752 if (nofail)
2753 return f2fs_kmem_cache_alloc_nofail(cachep, flags);
2754
2755 if (time_to_inject(sbi, FAULT_SLAB_ALLOC)) {
2756 f2fs_show_injection_info(sbi, FAULT_SLAB_ALLOC);
2757 return NULL;
2758 }
2759
2760 return kmem_cache_alloc(cachep, flags);
2761 }
2762
is_inflight_io(struct f2fs_sb_info * sbi,int type)2763 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2764 {
2765 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2766 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2767 get_pages(sbi, F2FS_WB_CP_DATA) ||
2768 get_pages(sbi, F2FS_DIO_READ) ||
2769 get_pages(sbi, F2FS_DIO_WRITE))
2770 return true;
2771
2772 if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2773 atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2774 return true;
2775
2776 if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2777 atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2778 return true;
2779 return false;
2780 }
2781
is_idle(struct f2fs_sb_info * sbi,int type)2782 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2783 {
2784 if (sbi->gc_mode == GC_URGENT_HIGH)
2785 return true;
2786
2787 if (is_inflight_io(sbi, type))
2788 return false;
2789
2790 if (sbi->gc_mode == GC_URGENT_MID)
2791 return true;
2792
2793 if (sbi->gc_mode == GC_URGENT_LOW &&
2794 (type == DISCARD_TIME || type == GC_TIME))
2795 return true;
2796
2797 return f2fs_time_over(sbi, type);
2798 }
2799
f2fs_radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * item)2800 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2801 unsigned long index, void *item)
2802 {
2803 while (radix_tree_insert(root, index, item))
2804 cond_resched();
2805 }
2806
2807 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
2808
IS_INODE(struct page * page)2809 static inline bool IS_INODE(struct page *page)
2810 {
2811 struct f2fs_node *p = F2FS_NODE(page);
2812
2813 return RAW_IS_INODE(p);
2814 }
2815
offset_in_addr(struct f2fs_inode * i)2816 static inline int offset_in_addr(struct f2fs_inode *i)
2817 {
2818 return (i->i_inline & F2FS_EXTRA_ATTR) ?
2819 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2820 }
2821
blkaddr_in_node(struct f2fs_node * node)2822 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2823 {
2824 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2825 }
2826
2827 static inline int f2fs_has_extra_attr(struct inode *inode);
data_blkaddr(struct inode * inode,struct page * node_page,unsigned int offset)2828 static inline block_t data_blkaddr(struct inode *inode,
2829 struct page *node_page, unsigned int offset)
2830 {
2831 struct f2fs_node *raw_node;
2832 __le32 *addr_array;
2833 int base = 0;
2834 bool is_inode = IS_INODE(node_page);
2835
2836 raw_node = F2FS_NODE(node_page);
2837
2838 if (is_inode) {
2839 if (!inode)
2840 /* from GC path only */
2841 base = offset_in_addr(&raw_node->i);
2842 else if (f2fs_has_extra_attr(inode))
2843 base = get_extra_isize(inode);
2844 }
2845
2846 addr_array = blkaddr_in_node(raw_node);
2847 return le32_to_cpu(addr_array[base + offset]);
2848 }
2849
f2fs_data_blkaddr(struct dnode_of_data * dn)2850 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2851 {
2852 return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2853 }
2854
f2fs_test_bit(unsigned int nr,char * addr)2855 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2856 {
2857 int mask;
2858
2859 addr += (nr >> 3);
2860 mask = 1 << (7 - (nr & 0x07));
2861 return mask & *addr;
2862 }
2863
f2fs_set_bit(unsigned int nr,char * addr)2864 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2865 {
2866 int mask;
2867
2868 addr += (nr >> 3);
2869 mask = 1 << (7 - (nr & 0x07));
2870 *addr |= mask;
2871 }
2872
f2fs_clear_bit(unsigned int nr,char * addr)2873 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2874 {
2875 int mask;
2876
2877 addr += (nr >> 3);
2878 mask = 1 << (7 - (nr & 0x07));
2879 *addr &= ~mask;
2880 }
2881
f2fs_test_and_set_bit(unsigned int nr,char * addr)2882 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2883 {
2884 int mask;
2885 int ret;
2886
2887 addr += (nr >> 3);
2888 mask = 1 << (7 - (nr & 0x07));
2889 ret = mask & *addr;
2890 *addr |= mask;
2891 return ret;
2892 }
2893
f2fs_test_and_clear_bit(unsigned int nr,char * addr)2894 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2895 {
2896 int mask;
2897 int ret;
2898
2899 addr += (nr >> 3);
2900 mask = 1 << (7 - (nr & 0x07));
2901 ret = mask & *addr;
2902 *addr &= ~mask;
2903 return ret;
2904 }
2905
f2fs_change_bit(unsigned int nr,char * addr)2906 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2907 {
2908 int mask;
2909
2910 addr += (nr >> 3);
2911 mask = 1 << (7 - (nr & 0x07));
2912 *addr ^= mask;
2913 }
2914
2915 /*
2916 * On-disk inode flags (f2fs_inode::i_flags)
2917 */
2918 #define F2FS_COMPR_FL 0x00000004 /* Compress file */
2919 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */
2920 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */
2921 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */
2922 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */
2923 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */
2924 #define F2FS_NOCOMP_FL 0x00000400 /* Don't compress */
2925 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */
2926 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */
2927 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */
2928 #define F2FS_CASEFOLD_FL 0x40000000 /* Casefolded file */
2929
2930 /* Flags that should be inherited by new inodes from their parent. */
2931 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2932 F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2933 F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL)
2934
2935 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2936 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2937 F2FS_CASEFOLD_FL))
2938
2939 /* Flags that are appropriate for non-directories/regular files. */
2940 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2941
f2fs_mask_flags(umode_t mode,__u32 flags)2942 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2943 {
2944 if (S_ISDIR(mode))
2945 return flags;
2946 else if (S_ISREG(mode))
2947 return flags & F2FS_REG_FLMASK;
2948 else
2949 return flags & F2FS_OTHER_FLMASK;
2950 }
2951
__mark_inode_dirty_flag(struct inode * inode,int flag,bool set)2952 static inline void __mark_inode_dirty_flag(struct inode *inode,
2953 int flag, bool set)
2954 {
2955 switch (flag) {
2956 case FI_INLINE_XATTR:
2957 case FI_INLINE_DATA:
2958 case FI_INLINE_DENTRY:
2959 case FI_NEW_INODE:
2960 if (set)
2961 return;
2962 fallthrough;
2963 case FI_DATA_EXIST:
2964 case FI_INLINE_DOTS:
2965 case FI_PIN_FILE:
2966 case FI_COMPRESS_RELEASED:
2967 f2fs_mark_inode_dirty_sync(inode, true);
2968 }
2969 }
2970
set_inode_flag(struct inode * inode,int flag)2971 static inline void set_inode_flag(struct inode *inode, int flag)
2972 {
2973 set_bit(flag, F2FS_I(inode)->flags);
2974 __mark_inode_dirty_flag(inode, flag, true);
2975 }
2976
is_inode_flag_set(struct inode * inode,int flag)2977 static inline int is_inode_flag_set(struct inode *inode, int flag)
2978 {
2979 return test_bit(flag, F2FS_I(inode)->flags);
2980 }
2981
clear_inode_flag(struct inode * inode,int flag)2982 static inline void clear_inode_flag(struct inode *inode, int flag)
2983 {
2984 clear_bit(flag, F2FS_I(inode)->flags);
2985 __mark_inode_dirty_flag(inode, flag, false);
2986 }
2987
f2fs_verity_in_progress(struct inode * inode)2988 static inline bool f2fs_verity_in_progress(struct inode *inode)
2989 {
2990 return IS_ENABLED(CONFIG_FS_VERITY) &&
2991 is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
2992 }
2993
set_acl_inode(struct inode * inode,umode_t mode)2994 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2995 {
2996 F2FS_I(inode)->i_acl_mode = mode;
2997 set_inode_flag(inode, FI_ACL_MODE);
2998 f2fs_mark_inode_dirty_sync(inode, false);
2999 }
3000
f2fs_i_links_write(struct inode * inode,bool inc)3001 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
3002 {
3003 if (inc)
3004 inc_nlink(inode);
3005 else
3006 drop_nlink(inode);
3007 f2fs_mark_inode_dirty_sync(inode, true);
3008 }
3009
f2fs_i_blocks_write(struct inode * inode,block_t diff,bool add,bool claim)3010 static inline void f2fs_i_blocks_write(struct inode *inode,
3011 block_t diff, bool add, bool claim)
3012 {
3013 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3014 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3015
3016 /* add = 1, claim = 1 should be dquot_reserve_block in pair */
3017 if (add) {
3018 if (claim)
3019 dquot_claim_block(inode, diff);
3020 else
3021 dquot_alloc_block_nofail(inode, diff);
3022 } else {
3023 dquot_free_block(inode, diff);
3024 }
3025
3026 f2fs_mark_inode_dirty_sync(inode, true);
3027 if (clean || recover)
3028 set_inode_flag(inode, FI_AUTO_RECOVER);
3029 }
3030
f2fs_i_size_write(struct inode * inode,loff_t i_size)3031 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
3032 {
3033 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3034 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3035
3036 if (i_size_read(inode) == i_size)
3037 return;
3038
3039 i_size_write(inode, i_size);
3040 f2fs_mark_inode_dirty_sync(inode, true);
3041 if (clean || recover)
3042 set_inode_flag(inode, FI_AUTO_RECOVER);
3043 }
3044
f2fs_i_depth_write(struct inode * inode,unsigned int depth)3045 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
3046 {
3047 F2FS_I(inode)->i_current_depth = depth;
3048 f2fs_mark_inode_dirty_sync(inode, true);
3049 }
3050
f2fs_i_gc_failures_write(struct inode * inode,unsigned int count)3051 static inline void f2fs_i_gc_failures_write(struct inode *inode,
3052 unsigned int count)
3053 {
3054 F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
3055 f2fs_mark_inode_dirty_sync(inode, true);
3056 }
3057
f2fs_i_xnid_write(struct inode * inode,nid_t xnid)3058 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
3059 {
3060 F2FS_I(inode)->i_xattr_nid = xnid;
3061 f2fs_mark_inode_dirty_sync(inode, true);
3062 }
3063
f2fs_i_pino_write(struct inode * inode,nid_t pino)3064 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
3065 {
3066 F2FS_I(inode)->i_pino = pino;
3067 f2fs_mark_inode_dirty_sync(inode, true);
3068 }
3069
get_inline_info(struct inode * inode,struct f2fs_inode * ri)3070 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
3071 {
3072 struct f2fs_inode_info *fi = F2FS_I(inode);
3073
3074 if (ri->i_inline & F2FS_INLINE_XATTR)
3075 set_bit(FI_INLINE_XATTR, fi->flags);
3076 if (ri->i_inline & F2FS_INLINE_DATA)
3077 set_bit(FI_INLINE_DATA, fi->flags);
3078 if (ri->i_inline & F2FS_INLINE_DENTRY)
3079 set_bit(FI_INLINE_DENTRY, fi->flags);
3080 if (ri->i_inline & F2FS_DATA_EXIST)
3081 set_bit(FI_DATA_EXIST, fi->flags);
3082 if (ri->i_inline & F2FS_INLINE_DOTS)
3083 set_bit(FI_INLINE_DOTS, fi->flags);
3084 if (ri->i_inline & F2FS_EXTRA_ATTR)
3085 set_bit(FI_EXTRA_ATTR, fi->flags);
3086 if (ri->i_inline & F2FS_PIN_FILE)
3087 set_bit(FI_PIN_FILE, fi->flags);
3088 if (ri->i_inline & F2FS_COMPRESS_RELEASED)
3089 set_bit(FI_COMPRESS_RELEASED, fi->flags);
3090 }
3091
set_raw_inline(struct inode * inode,struct f2fs_inode * ri)3092 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
3093 {
3094 ri->i_inline = 0;
3095
3096 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
3097 ri->i_inline |= F2FS_INLINE_XATTR;
3098 if (is_inode_flag_set(inode, FI_INLINE_DATA))
3099 ri->i_inline |= F2FS_INLINE_DATA;
3100 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
3101 ri->i_inline |= F2FS_INLINE_DENTRY;
3102 if (is_inode_flag_set(inode, FI_DATA_EXIST))
3103 ri->i_inline |= F2FS_DATA_EXIST;
3104 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
3105 ri->i_inline |= F2FS_INLINE_DOTS;
3106 if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
3107 ri->i_inline |= F2FS_EXTRA_ATTR;
3108 if (is_inode_flag_set(inode, FI_PIN_FILE))
3109 ri->i_inline |= F2FS_PIN_FILE;
3110 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
3111 ri->i_inline |= F2FS_COMPRESS_RELEASED;
3112 }
3113
f2fs_has_extra_attr(struct inode * inode)3114 static inline int f2fs_has_extra_attr(struct inode *inode)
3115 {
3116 return is_inode_flag_set(inode, FI_EXTRA_ATTR);
3117 }
3118
f2fs_has_inline_xattr(struct inode * inode)3119 static inline int f2fs_has_inline_xattr(struct inode *inode)
3120 {
3121 return is_inode_flag_set(inode, FI_INLINE_XATTR);
3122 }
3123
f2fs_compressed_file(struct inode * inode)3124 static inline int f2fs_compressed_file(struct inode *inode)
3125 {
3126 return S_ISREG(inode->i_mode) &&
3127 is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3128 }
3129
f2fs_need_compress_data(struct inode * inode)3130 static inline bool f2fs_need_compress_data(struct inode *inode)
3131 {
3132 int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3133
3134 if (!f2fs_compressed_file(inode))
3135 return false;
3136
3137 if (compress_mode == COMPR_MODE_FS)
3138 return true;
3139 else if (compress_mode == COMPR_MODE_USER &&
3140 is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3141 return true;
3142
3143 return false;
3144 }
3145
addrs_per_inode(struct inode * inode)3146 static inline unsigned int addrs_per_inode(struct inode *inode)
3147 {
3148 unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
3149 get_inline_xattr_addrs(inode);
3150
3151 if (!f2fs_compressed_file(inode))
3152 return addrs;
3153 return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3154 }
3155
addrs_per_block(struct inode * inode)3156 static inline unsigned int addrs_per_block(struct inode *inode)
3157 {
3158 if (!f2fs_compressed_file(inode))
3159 return DEF_ADDRS_PER_BLOCK;
3160 return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
3161 }
3162
inline_xattr_addr(struct inode * inode,struct page * page)3163 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
3164 {
3165 struct f2fs_inode *ri = F2FS_INODE(page);
3166
3167 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3168 get_inline_xattr_addrs(inode)]);
3169 }
3170
inline_xattr_size(struct inode * inode)3171 static inline int inline_xattr_size(struct inode *inode)
3172 {
3173 if (f2fs_has_inline_xattr(inode))
3174 return get_inline_xattr_addrs(inode) * sizeof(__le32);
3175 return 0;
3176 }
3177
3178 /*
3179 * Notice: check inline_data flag without inode page lock is unsafe.
3180 * It could change at any time by f2fs_convert_inline_page().
3181 */
f2fs_has_inline_data(struct inode * inode)3182 static inline int f2fs_has_inline_data(struct inode *inode)
3183 {
3184 return is_inode_flag_set(inode, FI_INLINE_DATA);
3185 }
3186
f2fs_exist_data(struct inode * inode)3187 static inline int f2fs_exist_data(struct inode *inode)
3188 {
3189 return is_inode_flag_set(inode, FI_DATA_EXIST);
3190 }
3191
f2fs_has_inline_dots(struct inode * inode)3192 static inline int f2fs_has_inline_dots(struct inode *inode)
3193 {
3194 return is_inode_flag_set(inode, FI_INLINE_DOTS);
3195 }
3196
f2fs_is_mmap_file(struct inode * inode)3197 static inline int f2fs_is_mmap_file(struct inode *inode)
3198 {
3199 return is_inode_flag_set(inode, FI_MMAP_FILE);
3200 }
3201
f2fs_is_pinned_file(struct inode * inode)3202 static inline bool f2fs_is_pinned_file(struct inode *inode)
3203 {
3204 return is_inode_flag_set(inode, FI_PIN_FILE);
3205 }
3206
f2fs_is_atomic_file(struct inode * inode)3207 static inline bool f2fs_is_atomic_file(struct inode *inode)
3208 {
3209 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3210 }
3211
f2fs_is_cow_file(struct inode * inode)3212 static inline bool f2fs_is_cow_file(struct inode *inode)
3213 {
3214 return is_inode_flag_set(inode, FI_COW_FILE);
3215 }
3216
f2fs_is_first_block_written(struct inode * inode)3217 static inline bool f2fs_is_first_block_written(struct inode *inode)
3218 {
3219 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
3220 }
3221
f2fs_is_drop_cache(struct inode * inode)3222 static inline bool f2fs_is_drop_cache(struct inode *inode)
3223 {
3224 return is_inode_flag_set(inode, FI_DROP_CACHE);
3225 }
3226
inline_data_addr(struct inode * inode,struct page * page)3227 static inline void *inline_data_addr(struct inode *inode, struct page *page)
3228 {
3229 struct f2fs_inode *ri = F2FS_INODE(page);
3230 int extra_size = get_extra_isize(inode);
3231
3232 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
3233 }
3234
f2fs_has_inline_dentry(struct inode * inode)3235 static inline int f2fs_has_inline_dentry(struct inode *inode)
3236 {
3237 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3238 }
3239
is_file(struct inode * inode,int type)3240 static inline int is_file(struct inode *inode, int type)
3241 {
3242 return F2FS_I(inode)->i_advise & type;
3243 }
3244
set_file(struct inode * inode,int type)3245 static inline void set_file(struct inode *inode, int type)
3246 {
3247 if (is_file(inode, type))
3248 return;
3249 F2FS_I(inode)->i_advise |= type;
3250 f2fs_mark_inode_dirty_sync(inode, true);
3251 }
3252
clear_file(struct inode * inode,int type)3253 static inline void clear_file(struct inode *inode, int type)
3254 {
3255 if (!is_file(inode, type))
3256 return;
3257 F2FS_I(inode)->i_advise &= ~type;
3258 f2fs_mark_inode_dirty_sync(inode, true);
3259 }
3260
f2fs_is_time_consistent(struct inode * inode)3261 static inline bool f2fs_is_time_consistent(struct inode *inode)
3262 {
3263 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
3264 return false;
3265 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
3266 return false;
3267 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
3268 return false;
3269 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
3270 &F2FS_I(inode)->i_crtime))
3271 return false;
3272 return true;
3273 }
3274
f2fs_skip_inode_update(struct inode * inode,int dsync)3275 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3276 {
3277 bool ret;
3278
3279 if (dsync) {
3280 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3281
3282 spin_lock(&sbi->inode_lock[DIRTY_META]);
3283 ret = list_empty(&F2FS_I(inode)->gdirty_list);
3284 spin_unlock(&sbi->inode_lock[DIRTY_META]);
3285 return ret;
3286 }
3287 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3288 file_keep_isize(inode) ||
3289 i_size_read(inode) & ~PAGE_MASK)
3290 return false;
3291
3292 if (!f2fs_is_time_consistent(inode))
3293 return false;
3294
3295 spin_lock(&F2FS_I(inode)->i_size_lock);
3296 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3297 spin_unlock(&F2FS_I(inode)->i_size_lock);
3298
3299 return ret;
3300 }
3301
f2fs_readonly(struct super_block * sb)3302 static inline bool f2fs_readonly(struct super_block *sb)
3303 {
3304 return sb_rdonly(sb);
3305 }
3306
f2fs_cp_error(struct f2fs_sb_info * sbi)3307 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3308 {
3309 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3310 }
3311
is_dot_dotdot(const u8 * name,size_t len)3312 static inline bool is_dot_dotdot(const u8 *name, size_t len)
3313 {
3314 if (len == 1 && name[0] == '.')
3315 return true;
3316
3317 if (len == 2 && name[0] == '.' && name[1] == '.')
3318 return true;
3319
3320 return false;
3321 }
3322
f2fs_kmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3323 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3324 size_t size, gfp_t flags)
3325 {
3326 if (time_to_inject(sbi, FAULT_KMALLOC)) {
3327 f2fs_show_injection_info(sbi, FAULT_KMALLOC);
3328 return NULL;
3329 }
3330
3331 return kmalloc(size, flags);
3332 }
3333
f2fs_kzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3334 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3335 size_t size, gfp_t flags)
3336 {
3337 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3338 }
3339
f2fs_kvmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3340 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3341 size_t size, gfp_t flags)
3342 {
3343 if (time_to_inject(sbi, FAULT_KVMALLOC)) {
3344 f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
3345 return NULL;
3346 }
3347
3348 return kvmalloc(size, flags);
3349 }
3350
f2fs_kvzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3351 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3352 size_t size, gfp_t flags)
3353 {
3354 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3355 }
3356
get_extra_isize(struct inode * inode)3357 static inline int get_extra_isize(struct inode *inode)
3358 {
3359 return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3360 }
3361
get_inline_xattr_addrs(struct inode * inode)3362 static inline int get_inline_xattr_addrs(struct inode *inode)
3363 {
3364 return F2FS_I(inode)->i_inline_xattr_size;
3365 }
3366
3367 #define f2fs_get_inode_mode(i) \
3368 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3369 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3370
3371 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \
3372 (offsetof(struct f2fs_inode, i_extra_end) - \
3373 offsetof(struct f2fs_inode, i_extra_isize)) \
3374
3375 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr))
3376 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \
3377 ((offsetof(typeof(*(f2fs_inode)), field) + \
3378 sizeof((f2fs_inode)->field)) \
3379 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \
3380
3381 #define __is_large_section(sbi) ((sbi)->segs_per_sec > 1)
3382
3383 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3384
3385 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3386 block_t blkaddr, int type);
verify_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)3387 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3388 block_t blkaddr, int type)
3389 {
3390 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3391 f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3392 blkaddr, type);
3393 f2fs_bug_on(sbi, 1);
3394 }
3395 }
3396
__is_valid_data_blkaddr(block_t blkaddr)3397 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3398 {
3399 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3400 blkaddr == COMPRESS_ADDR)
3401 return false;
3402 return true;
3403 }
3404
3405 /*
3406 * file.c
3407 */
3408 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3409 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3410 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3411 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3412 int f2fs_truncate(struct inode *inode);
3413 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path,
3414 struct kstat *stat, u32 request_mask, unsigned int flags);
3415 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
3416 struct iattr *attr);
3417 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3418 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3419 int f2fs_precache_extents(struct inode *inode);
3420 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3421 int f2fs_fileattr_set(struct user_namespace *mnt_userns,
3422 struct dentry *dentry, struct fileattr *fa);
3423 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3424 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3425 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3426 int f2fs_pin_file_control(struct inode *inode, bool inc);
3427
3428 /*
3429 * inode.c
3430 */
3431 void f2fs_set_inode_flags(struct inode *inode);
3432 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3433 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3434 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3435 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3436 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3437 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3438 void f2fs_update_inode_page(struct inode *inode);
3439 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3440 void f2fs_evict_inode(struct inode *inode);
3441 void f2fs_handle_failed_inode(struct inode *inode);
3442
3443 /*
3444 * namei.c
3445 */
3446 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3447 bool hot, bool set);
3448 struct dentry *f2fs_get_parent(struct dentry *child);
3449 int f2fs_get_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
3450 struct inode **new_inode);
3451
3452 /*
3453 * dir.c
3454 */
3455 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3456 int f2fs_init_casefolded_name(const struct inode *dir,
3457 struct f2fs_filename *fname);
3458 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3459 int lookup, struct f2fs_filename *fname);
3460 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3461 struct f2fs_filename *fname);
3462 void f2fs_free_filename(struct f2fs_filename *fname);
3463 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3464 const struct f2fs_filename *fname, int *max_slots);
3465 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3466 unsigned int start_pos, struct fscrypt_str *fstr);
3467 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3468 struct f2fs_dentry_ptr *d);
3469 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3470 const struct f2fs_filename *fname, struct page *dpage);
3471 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3472 unsigned int current_depth);
3473 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3474 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3475 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3476 const struct f2fs_filename *fname,
3477 struct page **res_page);
3478 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3479 const struct qstr *child, struct page **res_page);
3480 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3481 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3482 struct page **page);
3483 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3484 struct page *page, struct inode *inode);
3485 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3486 const struct f2fs_filename *fname);
3487 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3488 const struct fscrypt_str *name, f2fs_hash_t name_hash,
3489 unsigned int bit_pos);
3490 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3491 struct inode *inode, nid_t ino, umode_t mode);
3492 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3493 struct inode *inode, nid_t ino, umode_t mode);
3494 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3495 struct inode *inode, nid_t ino, umode_t mode);
3496 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3497 struct inode *dir, struct inode *inode);
3498 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3499 bool f2fs_empty_dir(struct inode *dir);
3500
f2fs_add_link(struct dentry * dentry,struct inode * inode)3501 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3502 {
3503 if (fscrypt_is_nokey_name(dentry))
3504 return -ENOKEY;
3505 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3506 inode, inode->i_ino, inode->i_mode);
3507 }
3508
3509 /*
3510 * super.c
3511 */
3512 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3513 void f2fs_inode_synced(struct inode *inode);
3514 int f2fs_dquot_initialize(struct inode *inode);
3515 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3516 int f2fs_quota_sync(struct super_block *sb, int type);
3517 loff_t max_file_blocks(struct inode *inode);
3518 void f2fs_quota_off_umount(struct super_block *sb);
3519 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3520 int f2fs_sync_fs(struct super_block *sb, int sync);
3521 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3522
3523 /*
3524 * hash.c
3525 */
3526 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3527
3528 /*
3529 * node.c
3530 */
3531 struct node_info;
3532
3533 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3534 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3535 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3536 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3537 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3538 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3539 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3540 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3541 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3542 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3543 struct node_info *ni, bool checkpoint_context);
3544 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3545 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3546 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3547 int f2fs_truncate_xattr_node(struct inode *inode);
3548 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3549 unsigned int seq_id);
3550 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi);
3551 int f2fs_remove_inode_page(struct inode *inode);
3552 struct page *f2fs_new_inode_page(struct inode *inode);
3553 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3554 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3555 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3556 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3557 int f2fs_move_node_page(struct page *node_page, int gc_type);
3558 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3559 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3560 struct writeback_control *wbc, bool atomic,
3561 unsigned int *seq_id);
3562 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3563 struct writeback_control *wbc,
3564 bool do_balance, enum iostat_type io_type);
3565 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3566 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3567 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3568 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3569 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3570 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3571 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3572 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3573 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3574 unsigned int segno, struct f2fs_summary_block *sum);
3575 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi);
3576 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3577 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3578 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3579 int __init f2fs_create_node_manager_caches(void);
3580 void f2fs_destroy_node_manager_caches(void);
3581
3582 /*
3583 * segment.c
3584 */
3585 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3586 int f2fs_commit_atomic_write(struct inode *inode);
3587 void f2fs_abort_atomic_write(struct inode *inode, bool clean);
3588 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3589 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3590 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3591 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3592 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3593 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3594 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3595 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3596 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3597 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3598 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3599 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3600 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3601 struct cp_control *cpc);
3602 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3603 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3604 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3605 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3606 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3607 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3608 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3609 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3610 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3611 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3612 unsigned int *newseg, bool new_sec, int dir);
3613 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3614 unsigned int start, unsigned int end);
3615 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3616 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3617 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3618 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3619 struct cp_control *cpc);
3620 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3621 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3622 block_t blk_addr);
3623 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3624 enum iostat_type io_type);
3625 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3626 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3627 struct f2fs_io_info *fio);
3628 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3629 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3630 block_t old_blkaddr, block_t new_blkaddr,
3631 bool recover_curseg, bool recover_newaddr,
3632 bool from_gc);
3633 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3634 block_t old_addr, block_t new_addr,
3635 unsigned char version, bool recover_curseg,
3636 bool recover_newaddr);
3637 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3638 block_t old_blkaddr, block_t *new_blkaddr,
3639 struct f2fs_summary *sum, int type,
3640 struct f2fs_io_info *fio);
3641 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3642 block_t blkaddr, unsigned int blkcnt);
3643 void f2fs_wait_on_page_writeback(struct page *page,
3644 enum page_type type, bool ordered, bool locked);
3645 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3646 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3647 block_t len);
3648 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3649 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3650 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3651 unsigned int val, int alloc);
3652 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3653 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3654 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3655 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3656 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3657 int __init f2fs_create_segment_manager_caches(void);
3658 void f2fs_destroy_segment_manager_caches(void);
3659 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3660 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3661 unsigned int segno);
3662 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3663 unsigned int segno);
3664
3665 #define DEF_FRAGMENT_SIZE 4
3666 #define MIN_FRAGMENT_SIZE 1
3667 #define MAX_FRAGMENT_SIZE 512
3668
f2fs_need_rand_seg(struct f2fs_sb_info * sbi)3669 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
3670 {
3671 return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
3672 F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
3673 }
3674
3675 /*
3676 * checkpoint.c
3677 */
3678 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3679 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3680 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3681 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3682 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3683 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3684 block_t blkaddr, int type);
3685 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3686 int type, bool sync);
3687 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
3688 unsigned int ra_blocks);
3689 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3690 long nr_to_write, enum iostat_type io_type);
3691 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3692 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3693 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3694 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3695 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3696 unsigned int devidx, int type);
3697 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3698 unsigned int devidx, int type);
3699 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3700 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3701 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3702 void f2fs_add_orphan_inode(struct inode *inode);
3703 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3704 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3705 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3706 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio);
3707 void f2fs_remove_dirty_inode(struct inode *inode);
3708 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3709 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3710 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3711 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3712 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3713 int __init f2fs_create_checkpoint_caches(void);
3714 void f2fs_destroy_checkpoint_caches(void);
3715 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3716 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3717 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3718 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3719
3720 /*
3721 * data.c
3722 */
3723 int __init f2fs_init_bioset(void);
3724 void f2fs_destroy_bioset(void);
3725 int f2fs_init_bio_entry_cache(void);
3726 void f2fs_destroy_bio_entry_cache(void);
3727 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3728 struct bio *bio, enum page_type type);
3729 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi);
3730 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3731 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3732 struct inode *inode, struct page *page,
3733 nid_t ino, enum page_type type);
3734 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3735 struct bio **bio, struct page *page);
3736 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3737 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3738 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3739 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3740 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3741 block_t blk_addr, sector_t *sector);
3742 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3743 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3744 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3745 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3746 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3747 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3748 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3749 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3750 int op_flags, bool for_write);
3751 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3752 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3753 bool for_write);
3754 struct page *f2fs_get_new_data_page(struct inode *inode,
3755 struct page *ipage, pgoff_t index, bool new_i_size);
3756 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3757 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3758 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3759 int create, int flag);
3760 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3761 u64 start, u64 len);
3762 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3763 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3764 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3765 int f2fs_write_single_data_page(struct page *page, int *submitted,
3766 struct bio **bio, sector_t *last_block,
3767 struct writeback_control *wbc,
3768 enum iostat_type io_type,
3769 int compr_blocks, bool allow_balance);
3770 void f2fs_write_failed(struct inode *inode, loff_t to);
3771 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length);
3772 bool f2fs_release_folio(struct folio *folio, gfp_t wait);
3773 #ifdef CONFIG_MIGRATION
3774 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3775 struct page *page, enum migrate_mode mode);
3776 #endif
3777 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3778 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3779 int f2fs_init_post_read_processing(void);
3780 void f2fs_destroy_post_read_processing(void);
3781 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3782 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3783 extern const struct iomap_ops f2fs_iomap_ops;
3784
3785 /*
3786 * gc.c
3787 */
3788 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3789 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3790 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3791 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control);
3792 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3793 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3794 int __init f2fs_create_garbage_collection_cache(void);
3795 void f2fs_destroy_garbage_collection_cache(void);
3796
3797 /*
3798 * recovery.c
3799 */
3800 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3801 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3802 int __init f2fs_create_recovery_cache(void);
3803 void f2fs_destroy_recovery_cache(void);
3804
3805 /*
3806 * debug.c
3807 */
3808 #ifdef CONFIG_F2FS_STAT_FS
3809 struct f2fs_stat_info {
3810 struct list_head stat_list;
3811 struct f2fs_sb_info *sbi;
3812 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3813 int main_area_segs, main_area_sections, main_area_zones;
3814 unsigned long long hit_largest, hit_cached, hit_rbtree;
3815 unsigned long long hit_total, total_ext;
3816 int ext_tree, zombie_tree, ext_node;
3817 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3818 int ndirty_data, ndirty_qdata;
3819 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3820 int nats, dirty_nats, sits, dirty_sits;
3821 int free_nids, avail_nids, alloc_nids;
3822 int total_count, utilization;
3823 int bg_gc, nr_wb_cp_data, nr_wb_data;
3824 int nr_rd_data, nr_rd_node, nr_rd_meta;
3825 int nr_dio_read, nr_dio_write;
3826 unsigned int io_skip_bggc, other_skip_bggc;
3827 int nr_flushing, nr_flushed, flush_list_empty;
3828 int nr_discarding, nr_discarded;
3829 int nr_discard_cmd;
3830 unsigned int undiscard_blks;
3831 int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3832 unsigned int cur_ckpt_time, peak_ckpt_time;
3833 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3834 int compr_inode;
3835 unsigned long long compr_blocks;
3836 int aw_cnt, max_aw_cnt;
3837 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3838 unsigned int bimodal, avg_vblocks;
3839 int util_free, util_valid, util_invalid;
3840 int rsvd_segs, overp_segs;
3841 int dirty_count, node_pages, meta_pages, compress_pages;
3842 int compress_page_hit;
3843 int prefree_count, call_count, cp_count, bg_cp_count;
3844 int tot_segs, node_segs, data_segs, free_segs, free_secs;
3845 int bg_node_segs, bg_data_segs;
3846 int tot_blks, data_blks, node_blks;
3847 int bg_data_blks, bg_node_blks;
3848 int curseg[NR_CURSEG_TYPE];
3849 int cursec[NR_CURSEG_TYPE];
3850 int curzone[NR_CURSEG_TYPE];
3851 unsigned int dirty_seg[NR_CURSEG_TYPE];
3852 unsigned int full_seg[NR_CURSEG_TYPE];
3853 unsigned int valid_blks[NR_CURSEG_TYPE];
3854
3855 unsigned int meta_count[META_MAX];
3856 unsigned int segment_count[2];
3857 unsigned int block_count[2];
3858 unsigned int inplace_count;
3859 unsigned long long base_mem, cache_mem, page_mem;
3860 };
3861
F2FS_STAT(struct f2fs_sb_info * sbi)3862 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3863 {
3864 return (struct f2fs_stat_info *)sbi->stat_info;
3865 }
3866
3867 #define stat_inc_cp_count(si) ((si)->cp_count++)
3868 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
3869 #define stat_inc_call_count(si) ((si)->call_count++)
3870 #define stat_inc_bggc_count(si) ((si)->bg_gc++)
3871 #define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++)
3872 #define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++)
3873 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
3874 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
3875 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
3876 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
3877 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
3878 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
3879 #define stat_inc_inline_xattr(inode) \
3880 do { \
3881 if (f2fs_has_inline_xattr(inode)) \
3882 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
3883 } while (0)
3884 #define stat_dec_inline_xattr(inode) \
3885 do { \
3886 if (f2fs_has_inline_xattr(inode)) \
3887 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
3888 } while (0)
3889 #define stat_inc_inline_inode(inode) \
3890 do { \
3891 if (f2fs_has_inline_data(inode)) \
3892 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
3893 } while (0)
3894 #define stat_dec_inline_inode(inode) \
3895 do { \
3896 if (f2fs_has_inline_data(inode)) \
3897 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
3898 } while (0)
3899 #define stat_inc_inline_dir(inode) \
3900 do { \
3901 if (f2fs_has_inline_dentry(inode)) \
3902 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
3903 } while (0)
3904 #define stat_dec_inline_dir(inode) \
3905 do { \
3906 if (f2fs_has_inline_dentry(inode)) \
3907 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
3908 } while (0)
3909 #define stat_inc_compr_inode(inode) \
3910 do { \
3911 if (f2fs_compressed_file(inode)) \
3912 (atomic_inc(&F2FS_I_SB(inode)->compr_inode)); \
3913 } while (0)
3914 #define stat_dec_compr_inode(inode) \
3915 do { \
3916 if (f2fs_compressed_file(inode)) \
3917 (atomic_dec(&F2FS_I_SB(inode)->compr_inode)); \
3918 } while (0)
3919 #define stat_add_compr_blocks(inode, blocks) \
3920 (atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3921 #define stat_sub_compr_blocks(inode, blocks) \
3922 (atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3923 #define stat_inc_meta_count(sbi, blkaddr) \
3924 do { \
3925 if (blkaddr < SIT_I(sbi)->sit_base_addr) \
3926 atomic_inc(&(sbi)->meta_count[META_CP]); \
3927 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \
3928 atomic_inc(&(sbi)->meta_count[META_SIT]); \
3929 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \
3930 atomic_inc(&(sbi)->meta_count[META_NAT]); \
3931 else if (blkaddr < SM_I(sbi)->main_blkaddr) \
3932 atomic_inc(&(sbi)->meta_count[META_SSA]); \
3933 } while (0)
3934 #define stat_inc_seg_type(sbi, curseg) \
3935 ((sbi)->segment_count[(curseg)->alloc_type]++)
3936 #define stat_inc_block_count(sbi, curseg) \
3937 ((sbi)->block_count[(curseg)->alloc_type]++)
3938 #define stat_inc_inplace_blocks(sbi) \
3939 (atomic_inc(&(sbi)->inplace_count))
3940 #define stat_update_max_atomic_write(inode) \
3941 do { \
3942 int cur = F2FS_I_SB(inode)->atomic_files; \
3943 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
3944 if (cur > max) \
3945 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
3946 } while (0)
3947 #define stat_inc_seg_count(sbi, type, gc_type) \
3948 do { \
3949 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3950 si->tot_segs++; \
3951 if ((type) == SUM_TYPE_DATA) { \
3952 si->data_segs++; \
3953 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
3954 } else { \
3955 si->node_segs++; \
3956 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
3957 } \
3958 } while (0)
3959
3960 #define stat_inc_tot_blk_count(si, blks) \
3961 ((si)->tot_blks += (blks))
3962
3963 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
3964 do { \
3965 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3966 stat_inc_tot_blk_count(si, blks); \
3967 si->data_blks += (blks); \
3968 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
3969 } while (0)
3970
3971 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
3972 do { \
3973 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3974 stat_inc_tot_blk_count(si, blks); \
3975 si->node_blks += (blks); \
3976 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
3977 } while (0)
3978
3979 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3980 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3981 void __init f2fs_create_root_stats(void);
3982 void f2fs_destroy_root_stats(void);
3983 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
3984 #else
3985 #define stat_inc_cp_count(si) do { } while (0)
3986 #define stat_inc_bg_cp_count(si) do { } while (0)
3987 #define stat_inc_call_count(si) do { } while (0)
3988 #define stat_inc_bggc_count(si) do { } while (0)
3989 #define stat_io_skip_bggc_count(sbi) do { } while (0)
3990 #define stat_other_skip_bggc_count(sbi) do { } while (0)
3991 #define stat_inc_dirty_inode(sbi, type) do { } while (0)
3992 #define stat_dec_dirty_inode(sbi, type) do { } while (0)
3993 #define stat_inc_total_hit(sbi) do { } while (0)
3994 #define stat_inc_rbtree_node_hit(sbi) do { } while (0)
3995 #define stat_inc_largest_node_hit(sbi) do { } while (0)
3996 #define stat_inc_cached_node_hit(sbi) do { } while (0)
3997 #define stat_inc_inline_xattr(inode) do { } while (0)
3998 #define stat_dec_inline_xattr(inode) do { } while (0)
3999 #define stat_inc_inline_inode(inode) do { } while (0)
4000 #define stat_dec_inline_inode(inode) do { } while (0)
4001 #define stat_inc_inline_dir(inode) do { } while (0)
4002 #define stat_dec_inline_dir(inode) do { } while (0)
4003 #define stat_inc_compr_inode(inode) do { } while (0)
4004 #define stat_dec_compr_inode(inode) do { } while (0)
4005 #define stat_add_compr_blocks(inode, blocks) do { } while (0)
4006 #define stat_sub_compr_blocks(inode, blocks) do { } while (0)
4007 #define stat_update_max_atomic_write(inode) do { } while (0)
4008 #define stat_inc_meta_count(sbi, blkaddr) do { } while (0)
4009 #define stat_inc_seg_type(sbi, curseg) do { } while (0)
4010 #define stat_inc_block_count(sbi, curseg) do { } while (0)
4011 #define stat_inc_inplace_blocks(sbi) do { } while (0)
4012 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0)
4013 #define stat_inc_tot_blk_count(si, blks) do { } while (0)
4014 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
4015 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
4016
f2fs_build_stats(struct f2fs_sb_info * sbi)4017 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_stats(struct f2fs_sb_info * sbi)4018 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
f2fs_create_root_stats(void)4019 static inline void __init f2fs_create_root_stats(void) { }
f2fs_destroy_root_stats(void)4020 static inline void f2fs_destroy_root_stats(void) { }
f2fs_update_sit_info(struct f2fs_sb_info * sbi)4021 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
4022 #endif
4023
4024 extern const struct file_operations f2fs_dir_operations;
4025 extern const struct file_operations f2fs_file_operations;
4026 extern const struct inode_operations f2fs_file_inode_operations;
4027 extern const struct address_space_operations f2fs_dblock_aops;
4028 extern const struct address_space_operations f2fs_node_aops;
4029 extern const struct address_space_operations f2fs_meta_aops;
4030 extern const struct inode_operations f2fs_dir_inode_operations;
4031 extern const struct inode_operations f2fs_symlink_inode_operations;
4032 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
4033 extern const struct inode_operations f2fs_special_inode_operations;
4034 extern struct kmem_cache *f2fs_inode_entry_slab;
4035
4036 /*
4037 * inline.c
4038 */
4039 bool f2fs_may_inline_data(struct inode *inode);
4040 bool f2fs_sanity_check_inline_data(struct inode *inode);
4041 bool f2fs_may_inline_dentry(struct inode *inode);
4042 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
4043 void f2fs_truncate_inline_inode(struct inode *inode,
4044 struct page *ipage, u64 from);
4045 int f2fs_read_inline_data(struct inode *inode, struct page *page);
4046 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
4047 int f2fs_convert_inline_inode(struct inode *inode);
4048 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
4049 int f2fs_write_inline_data(struct inode *inode, struct page *page);
4050 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
4051 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
4052 const struct f2fs_filename *fname,
4053 struct page **res_page);
4054 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
4055 struct page *ipage);
4056 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
4057 struct inode *inode, nid_t ino, umode_t mode);
4058 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
4059 struct page *page, struct inode *dir,
4060 struct inode *inode);
4061 bool f2fs_empty_inline_dir(struct inode *dir);
4062 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
4063 struct fscrypt_str *fstr);
4064 int f2fs_inline_data_fiemap(struct inode *inode,
4065 struct fiemap_extent_info *fieinfo,
4066 __u64 start, __u64 len);
4067
4068 /*
4069 * shrinker.c
4070 */
4071 unsigned long f2fs_shrink_count(struct shrinker *shrink,
4072 struct shrink_control *sc);
4073 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
4074 struct shrink_control *sc);
4075 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
4076 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
4077
4078 /*
4079 * extent_cache.c
4080 */
4081 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
4082 struct rb_entry *cached_re, unsigned int ofs);
4083 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
4084 struct rb_root_cached *root,
4085 struct rb_node **parent,
4086 unsigned long long key, bool *left_most);
4087 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
4088 struct rb_root_cached *root,
4089 struct rb_node **parent,
4090 unsigned int ofs, bool *leftmost);
4091 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
4092 struct rb_entry *cached_re, unsigned int ofs,
4093 struct rb_entry **prev_entry, struct rb_entry **next_entry,
4094 struct rb_node ***insert_p, struct rb_node **insert_parent,
4095 bool force, bool *leftmost);
4096 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
4097 struct rb_root_cached *root, bool check_key);
4098 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
4099 void f2fs_init_extent_tree(struct inode *inode, struct page *ipage);
4100 void f2fs_drop_extent_tree(struct inode *inode);
4101 unsigned int f2fs_destroy_extent_node(struct inode *inode);
4102 void f2fs_destroy_extent_tree(struct inode *inode);
4103 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
4104 struct extent_info *ei);
4105 void f2fs_update_extent_cache(struct dnode_of_data *dn);
4106 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
4107 pgoff_t fofs, block_t blkaddr, unsigned int len);
4108 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
4109 int __init f2fs_create_extent_cache(void);
4110 void f2fs_destroy_extent_cache(void);
4111
4112 /*
4113 * sysfs.c
4114 */
4115 #define MIN_RA_MUL 2
4116 #define MAX_RA_MUL 256
4117
4118 int __init f2fs_init_sysfs(void);
4119 void f2fs_exit_sysfs(void);
4120 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4121 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4122
4123 /* verity.c */
4124 extern const struct fsverity_operations f2fs_verityops;
4125
4126 /*
4127 * crypto support
4128 */
f2fs_encrypted_file(struct inode * inode)4129 static inline bool f2fs_encrypted_file(struct inode *inode)
4130 {
4131 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4132 }
4133
f2fs_set_encrypted_inode(struct inode * inode)4134 static inline void f2fs_set_encrypted_inode(struct inode *inode)
4135 {
4136 #ifdef CONFIG_FS_ENCRYPTION
4137 file_set_encrypt(inode);
4138 f2fs_set_inode_flags(inode);
4139 #endif
4140 }
4141
4142 /*
4143 * Returns true if the reads of the inode's data need to undergo some
4144 * postprocessing step, like decryption or authenticity verification.
4145 */
f2fs_post_read_required(struct inode * inode)4146 static inline bool f2fs_post_read_required(struct inode *inode)
4147 {
4148 return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4149 f2fs_compressed_file(inode);
4150 }
4151
4152 /*
4153 * compress.c
4154 */
4155 #ifdef CONFIG_F2FS_FS_COMPRESSION
4156 bool f2fs_is_compressed_page(struct page *page);
4157 struct page *f2fs_compress_control_page(struct page *page);
4158 int f2fs_prepare_compress_overwrite(struct inode *inode,
4159 struct page **pagep, pgoff_t index, void **fsdata);
4160 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4161 pgoff_t index, unsigned copied);
4162 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4163 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4164 bool f2fs_is_compress_backend_ready(struct inode *inode);
4165 int f2fs_init_compress_mempool(void);
4166 void f2fs_destroy_compress_mempool(void);
4167 void f2fs_decompress_cluster(struct decompress_io_ctx *dic);
4168 void f2fs_end_read_compressed_page(struct page *page, bool failed,
4169 block_t blkaddr);
4170 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4171 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4172 bool f2fs_all_cluster_page_loaded(struct compress_ctx *cc, struct pagevec *pvec,
4173 int index, int nr_pages);
4174 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4175 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
4176 int f2fs_write_multi_pages(struct compress_ctx *cc,
4177 int *submitted,
4178 struct writeback_control *wbc,
4179 enum iostat_type io_type);
4180 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4181 void f2fs_update_extent_tree_range_compressed(struct inode *inode,
4182 pgoff_t fofs, block_t blkaddr, unsigned int llen,
4183 unsigned int c_len);
4184 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4185 unsigned nr_pages, sector_t *last_block_in_bio,
4186 bool is_readahead, bool for_write);
4187 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4188 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed);
4189 void f2fs_put_page_dic(struct page *page);
4190 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn);
4191 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4192 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4193 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4194 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4195 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4196 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4197 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4198 int __init f2fs_init_compress_cache(void);
4199 void f2fs_destroy_compress_cache(void);
4200 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4201 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
4202 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4203 nid_t ino, block_t blkaddr);
4204 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4205 block_t blkaddr);
4206 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4207 #define inc_compr_inode_stat(inode) \
4208 do { \
4209 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \
4210 sbi->compr_new_inode++; \
4211 } while (0)
4212 #define add_compr_block_stat(inode, blocks) \
4213 do { \
4214 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \
4215 int diff = F2FS_I(inode)->i_cluster_size - blocks; \
4216 sbi->compr_written_block += blocks; \
4217 sbi->compr_saved_block += diff; \
4218 } while (0)
4219 #else
f2fs_is_compressed_page(struct page * page)4220 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
f2fs_is_compress_backend_ready(struct inode * inode)4221 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4222 {
4223 if (!f2fs_compressed_file(inode))
4224 return true;
4225 /* not support compression */
4226 return false;
4227 }
f2fs_compress_control_page(struct page * page)4228 static inline struct page *f2fs_compress_control_page(struct page *page)
4229 {
4230 WARN_ON_ONCE(1);
4231 return ERR_PTR(-EINVAL);
4232 }
f2fs_init_compress_mempool(void)4233 static inline int f2fs_init_compress_mempool(void) { return 0; }
f2fs_destroy_compress_mempool(void)4234 static inline void f2fs_destroy_compress_mempool(void) { }
f2fs_decompress_cluster(struct decompress_io_ctx * dic)4235 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic) { }
f2fs_end_read_compressed_page(struct page * page,bool failed,block_t blkaddr)4236 static inline void f2fs_end_read_compressed_page(struct page *page,
4237 bool failed, block_t blkaddr)
4238 {
4239 WARN_ON_ONCE(1);
4240 }
f2fs_put_page_dic(struct page * page)4241 static inline void f2fs_put_page_dic(struct page *page)
4242 {
4243 WARN_ON_ONCE(1);
4244 }
f2fs_cluster_blocks_are_contiguous(struct dnode_of_data * dn)4245 static inline unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn) { return 0; }
f2fs_sanity_check_cluster(struct dnode_of_data * dn)4246 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
f2fs_init_compress_inode(struct f2fs_sb_info * sbi)4247 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_compress_inode(struct f2fs_sb_info * sbi)4248 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
f2fs_init_page_array_cache(struct f2fs_sb_info * sbi)4249 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_page_array_cache(struct f2fs_sb_info * sbi)4250 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
f2fs_init_compress_cache(void)4251 static inline int __init f2fs_init_compress_cache(void) { return 0; }
f2fs_destroy_compress_cache(void)4252 static inline void f2fs_destroy_compress_cache(void) { }
f2fs_invalidate_compress_page(struct f2fs_sb_info * sbi,block_t blkaddr)4253 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
4254 block_t blkaddr) { }
f2fs_cache_compressed_page(struct f2fs_sb_info * sbi,struct page * page,nid_t ino,block_t blkaddr)4255 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4256 struct page *page, nid_t ino, block_t blkaddr) { }
f2fs_load_compressed_page(struct f2fs_sb_info * sbi,struct page * page,block_t blkaddr)4257 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4258 struct page *page, block_t blkaddr) { return false; }
f2fs_invalidate_compress_pages(struct f2fs_sb_info * sbi,nid_t ino)4259 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4260 nid_t ino) { }
4261 #define inc_compr_inode_stat(inode) do { } while (0)
f2fs_update_extent_tree_range_compressed(struct inode * inode,pgoff_t fofs,block_t blkaddr,unsigned int llen,unsigned int c_len)4262 static inline void f2fs_update_extent_tree_range_compressed(struct inode *inode,
4263 pgoff_t fofs, block_t blkaddr, unsigned int llen,
4264 unsigned int c_len) { }
4265 #endif
4266
set_compress_context(struct inode * inode)4267 static inline void set_compress_context(struct inode *inode)
4268 {
4269 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4270
4271 F2FS_I(inode)->i_compress_algorithm =
4272 F2FS_OPTION(sbi).compress_algorithm;
4273 F2FS_I(inode)->i_log_cluster_size =
4274 F2FS_OPTION(sbi).compress_log_size;
4275 F2FS_I(inode)->i_compress_flag =
4276 F2FS_OPTION(sbi).compress_chksum ?
4277 1 << COMPRESS_CHKSUM : 0;
4278 F2FS_I(inode)->i_cluster_size =
4279 1 << F2FS_I(inode)->i_log_cluster_size;
4280 if ((F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 ||
4281 F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) &&
4282 F2FS_OPTION(sbi).compress_level)
4283 F2FS_I(inode)->i_compress_flag |=
4284 F2FS_OPTION(sbi).compress_level <<
4285 COMPRESS_LEVEL_OFFSET;
4286 F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
4287 set_inode_flag(inode, FI_COMPRESSED_FILE);
4288 stat_inc_compr_inode(inode);
4289 inc_compr_inode_stat(inode);
4290 f2fs_mark_inode_dirty_sync(inode, true);
4291 }
4292
f2fs_disable_compressed_file(struct inode * inode)4293 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4294 {
4295 struct f2fs_inode_info *fi = F2FS_I(inode);
4296
4297 if (!f2fs_compressed_file(inode))
4298 return true;
4299 if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))
4300 return false;
4301
4302 fi->i_flags &= ~F2FS_COMPR_FL;
4303 stat_dec_compr_inode(inode);
4304 clear_inode_flag(inode, FI_COMPRESSED_FILE);
4305 f2fs_mark_inode_dirty_sync(inode, true);
4306 return true;
4307 }
4308
4309 #define F2FS_FEATURE_FUNCS(name, flagname) \
4310 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4311 { \
4312 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4313 }
4314
4315 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4316 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4317 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4318 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4319 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4320 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4321 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4322 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4323 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4324 F2FS_FEATURE_FUNCS(verity, VERITY);
4325 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4326 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4327 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4328 F2FS_FEATURE_FUNCS(readonly, RO);
4329
f2fs_may_extent_tree(struct inode * inode)4330 static inline bool f2fs_may_extent_tree(struct inode *inode)
4331 {
4332 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4333
4334 if (!test_opt(sbi, EXTENT_CACHE) ||
4335 is_inode_flag_set(inode, FI_NO_EXTENT) ||
4336 (is_inode_flag_set(inode, FI_COMPRESSED_FILE) &&
4337 !f2fs_sb_has_readonly(sbi)))
4338 return false;
4339
4340 /*
4341 * for recovered files during mount do not create extents
4342 * if shrinker is not registered.
4343 */
4344 if (list_empty(&sbi->s_list))
4345 return false;
4346
4347 return S_ISREG(inode->i_mode);
4348 }
4349
4350 #ifdef CONFIG_BLK_DEV_ZONED
f2fs_blkz_is_seq(struct f2fs_sb_info * sbi,int devi,block_t blkaddr)4351 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4352 block_t blkaddr)
4353 {
4354 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
4355
4356 return test_bit(zno, FDEV(devi).blkz_seq);
4357 }
4358 #endif
4359
f2fs_hw_should_discard(struct f2fs_sb_info * sbi)4360 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4361 {
4362 return f2fs_sb_has_blkzoned(sbi);
4363 }
4364
f2fs_bdev_support_discard(struct block_device * bdev)4365 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4366 {
4367 return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev);
4368 }
4369
f2fs_hw_support_discard(struct f2fs_sb_info * sbi)4370 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4371 {
4372 int i;
4373
4374 if (!f2fs_is_multi_device(sbi))
4375 return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4376
4377 for (i = 0; i < sbi->s_ndevs; i++)
4378 if (f2fs_bdev_support_discard(FDEV(i).bdev))
4379 return true;
4380 return false;
4381 }
4382
f2fs_realtime_discard_enable(struct f2fs_sb_info * sbi)4383 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4384 {
4385 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4386 f2fs_hw_should_discard(sbi);
4387 }
4388
f2fs_hw_is_readonly(struct f2fs_sb_info * sbi)4389 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4390 {
4391 int i;
4392
4393 if (!f2fs_is_multi_device(sbi))
4394 return bdev_read_only(sbi->sb->s_bdev);
4395
4396 for (i = 0; i < sbi->s_ndevs; i++)
4397 if (bdev_read_only(FDEV(i).bdev))
4398 return true;
4399 return false;
4400 }
4401
f2fs_lfs_mode(struct f2fs_sb_info * sbi)4402 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4403 {
4404 return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4405 }
4406
f2fs_may_compress(struct inode * inode)4407 static inline bool f2fs_may_compress(struct inode *inode)
4408 {
4409 if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4410 f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode))
4411 return false;
4412 return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4413 }
4414
f2fs_i_compr_blocks_update(struct inode * inode,u64 blocks,bool add)4415 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4416 u64 blocks, bool add)
4417 {
4418 struct f2fs_inode_info *fi = F2FS_I(inode);
4419 int diff = fi->i_cluster_size - blocks;
4420
4421 /* don't update i_compr_blocks if saved blocks were released */
4422 if (!add && !atomic_read(&fi->i_compr_blocks))
4423 return;
4424
4425 if (add) {
4426 atomic_add(diff, &fi->i_compr_blocks);
4427 stat_add_compr_blocks(inode, diff);
4428 } else {
4429 atomic_sub(diff, &fi->i_compr_blocks);
4430 stat_sub_compr_blocks(inode, diff);
4431 }
4432 f2fs_mark_inode_dirty_sync(inode, true);
4433 }
4434
block_unaligned_IO(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4435 static inline int block_unaligned_IO(struct inode *inode,
4436 struct kiocb *iocb, struct iov_iter *iter)
4437 {
4438 unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
4439 unsigned int blocksize_mask = (1 << i_blkbits) - 1;
4440 loff_t offset = iocb->ki_pos;
4441 unsigned long align = offset | iov_iter_alignment(iter);
4442
4443 return align & blocksize_mask;
4444 }
4445
f2fs_allow_multi_device_dio(struct f2fs_sb_info * sbi,int flag)4446 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
4447 int flag)
4448 {
4449 if (!f2fs_is_multi_device(sbi))
4450 return false;
4451 if (flag != F2FS_GET_BLOCK_DIO)
4452 return false;
4453 return sbi->aligned_blksize;
4454 }
4455
f2fs_force_buffered_io(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4456 static inline bool f2fs_force_buffered_io(struct inode *inode,
4457 struct kiocb *iocb, struct iov_iter *iter)
4458 {
4459 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4460 int rw = iov_iter_rw(iter);
4461
4462 if (!fscrypt_dio_supported(iocb, iter))
4463 return true;
4464 if (fsverity_active(inode))
4465 return true;
4466 if (f2fs_compressed_file(inode))
4467 return true;
4468
4469 /* disallow direct IO if any of devices has unaligned blksize */
4470 if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize)
4471 return true;
4472 /*
4473 * for blkzoned device, fallback direct IO to buffered IO, so
4474 * all IOs can be serialized by log-structured write.
4475 */
4476 if (f2fs_sb_has_blkzoned(sbi))
4477 return true;
4478 if (f2fs_lfs_mode(sbi) && (rw == WRITE)) {
4479 if (block_unaligned_IO(inode, iocb, iter))
4480 return true;
4481 if (F2FS_IO_ALIGNED(sbi))
4482 return true;
4483 }
4484 if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED))
4485 return true;
4486
4487 return false;
4488 }
4489
f2fs_need_verity(const struct inode * inode,pgoff_t idx)4490 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4491 {
4492 return fsverity_active(inode) &&
4493 idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4494 }
4495
4496 #ifdef CONFIG_F2FS_FAULT_INJECTION
4497 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4498 unsigned int type);
4499 #else
4500 #define f2fs_build_fault_attr(sbi, rate, type) do { } while (0)
4501 #endif
4502
is_journalled_quota(struct f2fs_sb_info * sbi)4503 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4504 {
4505 #ifdef CONFIG_QUOTA
4506 if (f2fs_sb_has_quota_ino(sbi))
4507 return true;
4508 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4509 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4510 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4511 return true;
4512 #endif
4513 return false;
4514 }
4515
f2fs_block_unit_discard(struct f2fs_sb_info * sbi)4516 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4517 {
4518 return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4519 }
4520
f2fs_io_schedule_timeout(long timeout)4521 static inline void f2fs_io_schedule_timeout(long timeout)
4522 {
4523 set_current_state(TASK_UNINTERRUPTIBLE);
4524 io_schedule_timeout(timeout);
4525 }
4526
f2fs_handle_page_eio(struct f2fs_sb_info * sbi,pgoff_t ofs,enum page_type type)4527 static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi, pgoff_t ofs,
4528 enum page_type type)
4529 {
4530 if (unlikely(f2fs_cp_error(sbi)))
4531 return;
4532
4533 if (ofs == sbi->page_eio_ofs[type]) {
4534 if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO)
4535 set_ckpt_flags(sbi, CP_ERROR_FLAG);
4536 } else {
4537 sbi->page_eio_ofs[type] = ofs;
4538 sbi->page_eio_cnt[type] = 0;
4539 }
4540 }
4541
4542 #define EFSBADCRC EBADMSG /* Bad CRC detected */
4543 #define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */
4544
4545 #endif /* _LINUX_F2FS_H */
4546