1 /*
2 * SPDX-License-Identifier: MIT
3 *
4 * Copyright © 2014-2016 Intel Corporation
5 */
6
7 #include <drm/drm_cache.h>
8
9 #include "gt/intel_gt.h"
10 #include "gt/intel_gt_pm.h"
11
12 #include "i915_drv.h"
13 #include "i915_gem_object.h"
14 #include "i915_scatterlist.h"
15 #include "i915_gem_lmem.h"
16 #include "i915_gem_mman.h"
17
__i915_gem_object_set_pages(struct drm_i915_gem_object * obj,struct sg_table * pages,unsigned int sg_page_sizes)18 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
19 struct sg_table *pages,
20 unsigned int sg_page_sizes)
21 {
22 struct drm_i915_private *i915 = to_i915(obj->base.dev);
23 unsigned long supported = RUNTIME_INFO(i915)->page_sizes;
24 bool shrinkable;
25 int i;
26
27 assert_object_held_shared(obj);
28
29 if (i915_gem_object_is_volatile(obj))
30 obj->mm.madv = I915_MADV_DONTNEED;
31
32 /* Make the pages coherent with the GPU (flushing any swapin). */
33 if (obj->cache_dirty) {
34 WARN_ON_ONCE(IS_DGFX(i915));
35 obj->write_domain = 0;
36 if (i915_gem_object_has_struct_page(obj))
37 drm_clflush_sg(pages);
38 obj->cache_dirty = false;
39 }
40
41 obj->mm.get_page.sg_pos = pages->sgl;
42 obj->mm.get_page.sg_idx = 0;
43 obj->mm.get_dma_page.sg_pos = pages->sgl;
44 obj->mm.get_dma_page.sg_idx = 0;
45
46 obj->mm.pages = pages;
47
48 GEM_BUG_ON(!sg_page_sizes);
49 obj->mm.page_sizes.phys = sg_page_sizes;
50
51 /*
52 * Calculate the supported page-sizes which fit into the given
53 * sg_page_sizes. This will give us the page-sizes which we may be able
54 * to use opportunistically when later inserting into the GTT. For
55 * example if phys=2G, then in theory we should be able to use 1G, 2M,
56 * 64K or 4K pages, although in practice this will depend on a number of
57 * other factors.
58 */
59 obj->mm.page_sizes.sg = 0;
60 for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
61 if (obj->mm.page_sizes.phys & ~0u << i)
62 obj->mm.page_sizes.sg |= BIT(i);
63 }
64 GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
65
66 shrinkable = i915_gem_object_is_shrinkable(obj);
67
68 if (i915_gem_object_is_tiled(obj) &&
69 i915->gem_quirks & GEM_QUIRK_PIN_SWIZZLED_PAGES) {
70 GEM_BUG_ON(i915_gem_object_has_tiling_quirk(obj));
71 i915_gem_object_set_tiling_quirk(obj);
72 GEM_BUG_ON(!list_empty(&obj->mm.link));
73 atomic_inc(&obj->mm.shrink_pin);
74 shrinkable = false;
75 }
76
77 if (shrinkable && !i915_gem_object_has_self_managed_shrink_list(obj)) {
78 struct list_head *list;
79 unsigned long flags;
80
81 assert_object_held(obj);
82 spin_lock_irqsave(&i915->mm.obj_lock, flags);
83
84 i915->mm.shrink_count++;
85 i915->mm.shrink_memory += obj->base.size;
86
87 if (obj->mm.madv != I915_MADV_WILLNEED)
88 list = &i915->mm.purge_list;
89 else
90 list = &i915->mm.shrink_list;
91 list_add_tail(&obj->mm.link, list);
92
93 atomic_set(&obj->mm.shrink_pin, 0);
94 spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
95 }
96 }
97
____i915_gem_object_get_pages(struct drm_i915_gem_object * obj)98 int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
99 {
100 struct drm_i915_private *i915 = to_i915(obj->base.dev);
101 int err;
102
103 assert_object_held_shared(obj);
104
105 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
106 drm_dbg(&i915->drm,
107 "Attempting to obtain a purgeable object\n");
108 return -EFAULT;
109 }
110
111 err = obj->ops->get_pages(obj);
112 GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
113
114 return err;
115 }
116
117 /* Ensure that the associated pages are gathered from the backing storage
118 * and pinned into our object. i915_gem_object_pin_pages() may be called
119 * multiple times before they are released by a single call to
120 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
121 * either as a result of memory pressure (reaping pages under the shrinker)
122 * or as the object is itself released.
123 */
__i915_gem_object_get_pages(struct drm_i915_gem_object * obj)124 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
125 {
126 int err;
127
128 assert_object_held(obj);
129
130 assert_object_held_shared(obj);
131
132 if (unlikely(!i915_gem_object_has_pages(obj))) {
133 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
134
135 err = ____i915_gem_object_get_pages(obj);
136 if (err)
137 return err;
138
139 smp_mb__before_atomic();
140 }
141 atomic_inc(&obj->mm.pages_pin_count);
142
143 return 0;
144 }
145
i915_gem_object_pin_pages_unlocked(struct drm_i915_gem_object * obj)146 int i915_gem_object_pin_pages_unlocked(struct drm_i915_gem_object *obj)
147 {
148 struct i915_gem_ww_ctx ww;
149 int err;
150
151 i915_gem_ww_ctx_init(&ww, true);
152 retry:
153 err = i915_gem_object_lock(obj, &ww);
154 if (!err)
155 err = i915_gem_object_pin_pages(obj);
156
157 if (err == -EDEADLK) {
158 err = i915_gem_ww_ctx_backoff(&ww);
159 if (!err)
160 goto retry;
161 }
162 i915_gem_ww_ctx_fini(&ww);
163 return err;
164 }
165
166 /* Immediately discard the backing storage */
i915_gem_object_truncate(struct drm_i915_gem_object * obj)167 int i915_gem_object_truncate(struct drm_i915_gem_object *obj)
168 {
169 if (obj->ops->truncate)
170 return obj->ops->truncate(obj);
171
172 return 0;
173 }
174
__i915_gem_object_reset_page_iter(struct drm_i915_gem_object * obj)175 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
176 {
177 struct radix_tree_iter iter;
178 void __rcu **slot;
179
180 rcu_read_lock();
181 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
182 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
183 radix_tree_for_each_slot(slot, &obj->mm.get_dma_page.radix, &iter, 0)
184 radix_tree_delete(&obj->mm.get_dma_page.radix, iter.index);
185 rcu_read_unlock();
186 }
187
unmap_object(struct drm_i915_gem_object * obj,void * ptr)188 static void unmap_object(struct drm_i915_gem_object *obj, void *ptr)
189 {
190 if (is_vmalloc_addr(ptr))
191 vunmap(ptr);
192 }
193
flush_tlb_invalidate(struct drm_i915_gem_object * obj)194 static void flush_tlb_invalidate(struct drm_i915_gem_object *obj)
195 {
196 struct drm_i915_private *i915 = to_i915(obj->base.dev);
197 struct intel_gt *gt = to_gt(i915);
198
199 if (!obj->mm.tlb)
200 return;
201
202 intel_gt_invalidate_tlb(gt, obj->mm.tlb);
203 obj->mm.tlb = 0;
204 }
205
206 struct sg_table *
__i915_gem_object_unset_pages(struct drm_i915_gem_object * obj)207 __i915_gem_object_unset_pages(struct drm_i915_gem_object *obj)
208 {
209 struct sg_table *pages;
210
211 assert_object_held_shared(obj);
212
213 pages = fetch_and_zero(&obj->mm.pages);
214 if (IS_ERR_OR_NULL(pages))
215 return pages;
216
217 if (i915_gem_object_is_volatile(obj))
218 obj->mm.madv = I915_MADV_WILLNEED;
219
220 if (!i915_gem_object_has_self_managed_shrink_list(obj))
221 i915_gem_object_make_unshrinkable(obj);
222
223 if (obj->mm.mapping) {
224 unmap_object(obj, page_mask_bits(obj->mm.mapping));
225 obj->mm.mapping = NULL;
226 }
227
228 __i915_gem_object_reset_page_iter(obj);
229 obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;
230
231 flush_tlb_invalidate(obj);
232
233 return pages;
234 }
235
__i915_gem_object_put_pages(struct drm_i915_gem_object * obj)236 int __i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
237 {
238 struct sg_table *pages;
239
240 if (i915_gem_object_has_pinned_pages(obj))
241 return -EBUSY;
242
243 /* May be called by shrinker from within get_pages() (on another bo) */
244 assert_object_held_shared(obj);
245
246 i915_gem_object_release_mmap_offset(obj);
247
248 /*
249 * ->put_pages might need to allocate memory for the bit17 swizzle
250 * array, hence protect them from being reaped by removing them from gtt
251 * lists early.
252 */
253 pages = __i915_gem_object_unset_pages(obj);
254
255 /*
256 * XXX Temporary hijinx to avoid updating all backends to handle
257 * NULL pages. In the future, when we have more asynchronous
258 * get_pages backends we should be better able to handle the
259 * cancellation of the async task in a more uniform manner.
260 */
261 if (!IS_ERR_OR_NULL(pages))
262 obj->ops->put_pages(obj, pages);
263
264 return 0;
265 }
266
267 /* The 'mapping' part of i915_gem_object_pin_map() below */
i915_gem_object_map_page(struct drm_i915_gem_object * obj,enum i915_map_type type)268 static void *i915_gem_object_map_page(struct drm_i915_gem_object *obj,
269 enum i915_map_type type)
270 {
271 unsigned long n_pages = obj->base.size >> PAGE_SHIFT, i;
272 struct page *stack[32], **pages = stack, *page;
273 struct sgt_iter iter;
274 pgprot_t pgprot;
275 void *vaddr;
276
277 switch (type) {
278 default:
279 MISSING_CASE(type);
280 fallthrough; /* to use PAGE_KERNEL anyway */
281 case I915_MAP_WB:
282 /*
283 * On 32b, highmem using a finite set of indirect PTE (i.e.
284 * vmap) to provide virtual mappings of the high pages.
285 * As these are finite, map_new_virtual() must wait for some
286 * other kmap() to finish when it runs out. If we map a large
287 * number of objects, there is no method for it to tell us
288 * to release the mappings, and we deadlock.
289 *
290 * However, if we make an explicit vmap of the page, that
291 * uses a larger vmalloc arena, and also has the ability
292 * to tell us to release unwanted mappings. Most importantly,
293 * it will fail and propagate an error instead of waiting
294 * forever.
295 *
296 * So if the page is beyond the 32b boundary, make an explicit
297 * vmap.
298 */
299 if (n_pages == 1 && !PageHighMem(sg_page(obj->mm.pages->sgl)))
300 return page_address(sg_page(obj->mm.pages->sgl));
301 pgprot = PAGE_KERNEL;
302 break;
303 case I915_MAP_WC:
304 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
305 break;
306 }
307
308 if (n_pages > ARRAY_SIZE(stack)) {
309 /* Too big for stack -- allocate temporary array instead */
310 pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
311 if (!pages)
312 return ERR_PTR(-ENOMEM);
313 }
314
315 i = 0;
316 for_each_sgt_page(page, iter, obj->mm.pages)
317 pages[i++] = page;
318 vaddr = vmap(pages, n_pages, 0, pgprot);
319 if (pages != stack)
320 kvfree(pages);
321
322 return vaddr ?: ERR_PTR(-ENOMEM);
323 }
324
i915_gem_object_map_pfn(struct drm_i915_gem_object * obj,enum i915_map_type type)325 static void *i915_gem_object_map_pfn(struct drm_i915_gem_object *obj,
326 enum i915_map_type type)
327 {
328 resource_size_t iomap = obj->mm.region->iomap.base -
329 obj->mm.region->region.start;
330 unsigned long n_pfn = obj->base.size >> PAGE_SHIFT;
331 unsigned long stack[32], *pfns = stack, i;
332 struct sgt_iter iter;
333 dma_addr_t addr;
334 void *vaddr;
335
336 GEM_BUG_ON(type != I915_MAP_WC);
337
338 if (n_pfn > ARRAY_SIZE(stack)) {
339 /* Too big for stack -- allocate temporary array instead */
340 pfns = kvmalloc_array(n_pfn, sizeof(*pfns), GFP_KERNEL);
341 if (!pfns)
342 return ERR_PTR(-ENOMEM);
343 }
344
345 i = 0;
346 for_each_sgt_daddr(addr, iter, obj->mm.pages)
347 pfns[i++] = (iomap + addr) >> PAGE_SHIFT;
348 vaddr = vmap_pfn(pfns, n_pfn, pgprot_writecombine(PAGE_KERNEL_IO));
349 if (pfns != stack)
350 kvfree(pfns);
351
352 return vaddr ?: ERR_PTR(-ENOMEM);
353 }
354
355 /* get, pin, and map the pages of the object into kernel space */
i915_gem_object_pin_map(struct drm_i915_gem_object * obj,enum i915_map_type type)356 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
357 enum i915_map_type type)
358 {
359 enum i915_map_type has_type;
360 bool pinned;
361 void *ptr;
362 int err;
363
364 if (!i915_gem_object_has_struct_page(obj) &&
365 !i915_gem_object_has_iomem(obj))
366 return ERR_PTR(-ENXIO);
367
368 if (WARN_ON_ONCE(obj->flags & I915_BO_ALLOC_GPU_ONLY))
369 return ERR_PTR(-EINVAL);
370
371 assert_object_held(obj);
372
373 pinned = !(type & I915_MAP_OVERRIDE);
374 type &= ~I915_MAP_OVERRIDE;
375
376 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
377 if (unlikely(!i915_gem_object_has_pages(obj))) {
378 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
379
380 err = ____i915_gem_object_get_pages(obj);
381 if (err)
382 return ERR_PTR(err);
383
384 smp_mb__before_atomic();
385 }
386 atomic_inc(&obj->mm.pages_pin_count);
387 pinned = false;
388 }
389 GEM_BUG_ON(!i915_gem_object_has_pages(obj));
390
391 /*
392 * For discrete our CPU mappings needs to be consistent in order to
393 * function correctly on !x86. When mapping things through TTM, we use
394 * the same rules to determine the caching type.
395 *
396 * The caching rules, starting from DG1:
397 *
398 * - If the object can be placed in device local-memory, then the
399 * pages should be allocated and mapped as write-combined only.
400 *
401 * - Everything else is always allocated and mapped as write-back,
402 * with the guarantee that everything is also coherent with the
403 * GPU.
404 *
405 * Internal users of lmem are already expected to get this right, so no
406 * fudging needed there.
407 */
408 if (i915_gem_object_placement_possible(obj, INTEL_MEMORY_LOCAL)) {
409 if (type != I915_MAP_WC && !obj->mm.n_placements) {
410 ptr = ERR_PTR(-ENODEV);
411 goto err_unpin;
412 }
413
414 type = I915_MAP_WC;
415 } else if (IS_DGFX(to_i915(obj->base.dev))) {
416 type = I915_MAP_WB;
417 }
418
419 ptr = page_unpack_bits(obj->mm.mapping, &has_type);
420 if (ptr && has_type != type) {
421 if (pinned) {
422 ptr = ERR_PTR(-EBUSY);
423 goto err_unpin;
424 }
425
426 unmap_object(obj, ptr);
427
428 ptr = obj->mm.mapping = NULL;
429 }
430
431 if (!ptr) {
432 err = i915_gem_object_wait_moving_fence(obj, true);
433 if (err) {
434 ptr = ERR_PTR(err);
435 goto err_unpin;
436 }
437
438 if (GEM_WARN_ON(type == I915_MAP_WC && !pat_enabled()))
439 ptr = ERR_PTR(-ENODEV);
440 else if (i915_gem_object_has_struct_page(obj))
441 ptr = i915_gem_object_map_page(obj, type);
442 else
443 ptr = i915_gem_object_map_pfn(obj, type);
444 if (IS_ERR(ptr))
445 goto err_unpin;
446
447 obj->mm.mapping = page_pack_bits(ptr, type);
448 }
449
450 return ptr;
451
452 err_unpin:
453 atomic_dec(&obj->mm.pages_pin_count);
454 return ptr;
455 }
456
i915_gem_object_pin_map_unlocked(struct drm_i915_gem_object * obj,enum i915_map_type type)457 void *i915_gem_object_pin_map_unlocked(struct drm_i915_gem_object *obj,
458 enum i915_map_type type)
459 {
460 void *ret;
461
462 i915_gem_object_lock(obj, NULL);
463 ret = i915_gem_object_pin_map(obj, type);
464 i915_gem_object_unlock(obj);
465
466 return ret;
467 }
468
__i915_gem_object_flush_map(struct drm_i915_gem_object * obj,unsigned long offset,unsigned long size)469 void __i915_gem_object_flush_map(struct drm_i915_gem_object *obj,
470 unsigned long offset,
471 unsigned long size)
472 {
473 enum i915_map_type has_type;
474 void *ptr;
475
476 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
477 GEM_BUG_ON(range_overflows_t(typeof(obj->base.size),
478 offset, size, obj->base.size));
479
480 wmb(); /* let all previous writes be visible to coherent partners */
481 obj->mm.dirty = true;
482
483 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE)
484 return;
485
486 ptr = page_unpack_bits(obj->mm.mapping, &has_type);
487 if (has_type == I915_MAP_WC)
488 return;
489
490 drm_clflush_virt_range(ptr + offset, size);
491 if (size == obj->base.size) {
492 obj->write_domain &= ~I915_GEM_DOMAIN_CPU;
493 obj->cache_dirty = false;
494 }
495 }
496
__i915_gem_object_release_map(struct drm_i915_gem_object * obj)497 void __i915_gem_object_release_map(struct drm_i915_gem_object *obj)
498 {
499 GEM_BUG_ON(!obj->mm.mapping);
500
501 /*
502 * We allow removing the mapping from underneath pinned pages!
503 *
504 * Furthermore, since this is an unsafe operation reserved only
505 * for construction time manipulation, we ignore locking prudence.
506 */
507 unmap_object(obj, page_mask_bits(fetch_and_zero(&obj->mm.mapping)));
508
509 i915_gem_object_unpin_map(obj);
510 }
511
512 struct scatterlist *
__i915_gem_object_get_sg(struct drm_i915_gem_object * obj,struct i915_gem_object_page_iter * iter,unsigned int n,unsigned int * offset,bool dma)513 __i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
514 struct i915_gem_object_page_iter *iter,
515 unsigned int n,
516 unsigned int *offset,
517 bool dma)
518 {
519 struct scatterlist *sg;
520 unsigned int idx, count;
521
522 might_sleep();
523 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
524 if (!i915_gem_object_has_pinned_pages(obj))
525 assert_object_held(obj);
526
527 /* As we iterate forward through the sg, we record each entry in a
528 * radixtree for quick repeated (backwards) lookups. If we have seen
529 * this index previously, we will have an entry for it.
530 *
531 * Initial lookup is O(N), but this is amortized to O(1) for
532 * sequential page access (where each new request is consecutive
533 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
534 * i.e. O(1) with a large constant!
535 */
536 if (n < READ_ONCE(iter->sg_idx))
537 goto lookup;
538
539 mutex_lock(&iter->lock);
540
541 /* We prefer to reuse the last sg so that repeated lookup of this
542 * (or the subsequent) sg are fast - comparing against the last
543 * sg is faster than going through the radixtree.
544 */
545
546 sg = iter->sg_pos;
547 idx = iter->sg_idx;
548 count = dma ? __sg_dma_page_count(sg) : __sg_page_count(sg);
549
550 while (idx + count <= n) {
551 void *entry;
552 unsigned long i;
553 int ret;
554
555 /* If we cannot allocate and insert this entry, or the
556 * individual pages from this range, cancel updating the
557 * sg_idx so that on this lookup we are forced to linearly
558 * scan onwards, but on future lookups we will try the
559 * insertion again (in which case we need to be careful of
560 * the error return reporting that we have already inserted
561 * this index).
562 */
563 ret = radix_tree_insert(&iter->radix, idx, sg);
564 if (ret && ret != -EEXIST)
565 goto scan;
566
567 entry = xa_mk_value(idx);
568 for (i = 1; i < count; i++) {
569 ret = radix_tree_insert(&iter->radix, idx + i, entry);
570 if (ret && ret != -EEXIST)
571 goto scan;
572 }
573
574 idx += count;
575 sg = ____sg_next(sg);
576 count = dma ? __sg_dma_page_count(sg) : __sg_page_count(sg);
577 }
578
579 scan:
580 iter->sg_pos = sg;
581 iter->sg_idx = idx;
582
583 mutex_unlock(&iter->lock);
584
585 if (unlikely(n < idx)) /* insertion completed by another thread */
586 goto lookup;
587
588 /* In case we failed to insert the entry into the radixtree, we need
589 * to look beyond the current sg.
590 */
591 while (idx + count <= n) {
592 idx += count;
593 sg = ____sg_next(sg);
594 count = dma ? __sg_dma_page_count(sg) : __sg_page_count(sg);
595 }
596
597 *offset = n - idx;
598 return sg;
599
600 lookup:
601 rcu_read_lock();
602
603 sg = radix_tree_lookup(&iter->radix, n);
604 GEM_BUG_ON(!sg);
605
606 /* If this index is in the middle of multi-page sg entry,
607 * the radix tree will contain a value entry that points
608 * to the start of that range. We will return the pointer to
609 * the base page and the offset of this page within the
610 * sg entry's range.
611 */
612 *offset = 0;
613 if (unlikely(xa_is_value(sg))) {
614 unsigned long base = xa_to_value(sg);
615
616 sg = radix_tree_lookup(&iter->radix, base);
617 GEM_BUG_ON(!sg);
618
619 *offset = n - base;
620 }
621
622 rcu_read_unlock();
623
624 return sg;
625 }
626
627 struct page *
i915_gem_object_get_page(struct drm_i915_gem_object * obj,unsigned int n)628 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
629 {
630 struct scatterlist *sg;
631 unsigned int offset;
632
633 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
634
635 sg = i915_gem_object_get_sg(obj, n, &offset);
636 return nth_page(sg_page(sg), offset);
637 }
638
639 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
640 struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object * obj,unsigned int n)641 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
642 unsigned int n)
643 {
644 struct page *page;
645
646 page = i915_gem_object_get_page(obj, n);
647 if (!obj->mm.dirty)
648 set_page_dirty(page);
649
650 return page;
651 }
652
653 dma_addr_t
i915_gem_object_get_dma_address_len(struct drm_i915_gem_object * obj,unsigned long n,unsigned int * len)654 i915_gem_object_get_dma_address_len(struct drm_i915_gem_object *obj,
655 unsigned long n,
656 unsigned int *len)
657 {
658 struct scatterlist *sg;
659 unsigned int offset;
660
661 sg = i915_gem_object_get_sg_dma(obj, n, &offset);
662
663 if (len)
664 *len = sg_dma_len(sg) - (offset << PAGE_SHIFT);
665
666 return sg_dma_address(sg) + (offset << PAGE_SHIFT);
667 }
668
669 dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object * obj,unsigned long n)670 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
671 unsigned long n)
672 {
673 return i915_gem_object_get_dma_address_len(obj, n, NULL);
674 }
675