1 /*
2 * SPDX-License-Identifier: MIT
3 *
4 * Copyright © 2014-2016 Intel Corporation
5 */
6
7 #include <drm/drm_cache.h>
8
9 #include "gt/intel_gt.h"
10 #include "gt/intel_tlb.h"
11
12 #include "i915_drv.h"
13 #include "i915_gem_object.h"
14 #include "i915_scatterlist.h"
15 #include "i915_gem_lmem.h"
16 #include "i915_gem_mman.h"
17
__i915_gem_object_set_pages(struct drm_i915_gem_object * obj,struct sg_table * pages)18 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
19 struct sg_table *pages)
20 {
21 struct drm_i915_private *i915 = to_i915(obj->base.dev);
22 unsigned long supported = RUNTIME_INFO(i915)->page_sizes;
23 bool shrinkable;
24 int i;
25
26 assert_object_held_shared(obj);
27
28 if (i915_gem_object_is_volatile(obj))
29 obj->mm.madv = I915_MADV_DONTNEED;
30
31 /* Make the pages coherent with the GPU (flushing any swapin). */
32 if (obj->cache_dirty) {
33 WARN_ON_ONCE(IS_DGFX(i915));
34 obj->write_domain = 0;
35 if (i915_gem_object_has_struct_page(obj))
36 drm_clflush_sg(pages);
37 obj->cache_dirty = false;
38 }
39
40 obj->mm.get_page.sg_pos = pages->sgl;
41 obj->mm.get_page.sg_idx = 0;
42 obj->mm.get_dma_page.sg_pos = pages->sgl;
43 obj->mm.get_dma_page.sg_idx = 0;
44
45 obj->mm.pages = pages;
46
47 obj->mm.page_sizes.phys = i915_sg_dma_sizes(pages->sgl);
48 GEM_BUG_ON(!obj->mm.page_sizes.phys);
49
50 /*
51 * Calculate the supported page-sizes which fit into the given
52 * sg_page_sizes. This will give us the page-sizes which we may be able
53 * to use opportunistically when later inserting into the GTT. For
54 * example if phys=2G, then in theory we should be able to use 1G, 2M,
55 * 64K or 4K pages, although in practice this will depend on a number of
56 * other factors.
57 */
58 obj->mm.page_sizes.sg = 0;
59 for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
60 if (obj->mm.page_sizes.phys & ~0u << i)
61 obj->mm.page_sizes.sg |= BIT(i);
62 }
63 GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
64
65 shrinkable = i915_gem_object_is_shrinkable(obj);
66
67 if (i915_gem_object_is_tiled(obj) &&
68 i915->gem_quirks & GEM_QUIRK_PIN_SWIZZLED_PAGES) {
69 GEM_BUG_ON(i915_gem_object_has_tiling_quirk(obj));
70 i915_gem_object_set_tiling_quirk(obj);
71 GEM_BUG_ON(!list_empty(&obj->mm.link));
72 atomic_inc(&obj->mm.shrink_pin);
73 shrinkable = false;
74 }
75
76 if (shrinkable && !i915_gem_object_has_self_managed_shrink_list(obj)) {
77 struct list_head *list;
78 unsigned long flags;
79
80 assert_object_held(obj);
81 spin_lock_irqsave(&i915->mm.obj_lock, flags);
82
83 i915->mm.shrink_count++;
84 i915->mm.shrink_memory += obj->base.size;
85
86 if (obj->mm.madv != I915_MADV_WILLNEED)
87 list = &i915->mm.purge_list;
88 else
89 list = &i915->mm.shrink_list;
90 list_add_tail(&obj->mm.link, list);
91
92 atomic_set(&obj->mm.shrink_pin, 0);
93 spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
94 }
95 }
96
____i915_gem_object_get_pages(struct drm_i915_gem_object * obj)97 int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
98 {
99 struct drm_i915_private *i915 = to_i915(obj->base.dev);
100 int err;
101
102 assert_object_held_shared(obj);
103
104 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
105 drm_dbg(&i915->drm,
106 "Attempting to obtain a purgeable object\n");
107 return -EFAULT;
108 }
109
110 err = obj->ops->get_pages(obj);
111 GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
112
113 return err;
114 }
115
116 /* Ensure that the associated pages are gathered from the backing storage
117 * and pinned into our object. i915_gem_object_pin_pages() may be called
118 * multiple times before they are released by a single call to
119 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
120 * either as a result of memory pressure (reaping pages under the shrinker)
121 * or as the object is itself released.
122 */
__i915_gem_object_get_pages(struct drm_i915_gem_object * obj)123 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
124 {
125 int err;
126
127 assert_object_held(obj);
128
129 assert_object_held_shared(obj);
130
131 if (unlikely(!i915_gem_object_has_pages(obj))) {
132 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
133
134 err = ____i915_gem_object_get_pages(obj);
135 if (err)
136 return err;
137
138 smp_mb__before_atomic();
139 }
140 atomic_inc(&obj->mm.pages_pin_count);
141
142 return 0;
143 }
144
i915_gem_object_pin_pages_unlocked(struct drm_i915_gem_object * obj)145 int i915_gem_object_pin_pages_unlocked(struct drm_i915_gem_object *obj)
146 {
147 struct i915_gem_ww_ctx ww;
148 int err;
149
150 i915_gem_ww_ctx_init(&ww, true);
151 retry:
152 err = i915_gem_object_lock(obj, &ww);
153 if (!err)
154 err = i915_gem_object_pin_pages(obj);
155
156 if (err == -EDEADLK) {
157 err = i915_gem_ww_ctx_backoff(&ww);
158 if (!err)
159 goto retry;
160 }
161 i915_gem_ww_ctx_fini(&ww);
162 return err;
163 }
164
165 /* Immediately discard the backing storage */
i915_gem_object_truncate(struct drm_i915_gem_object * obj)166 int i915_gem_object_truncate(struct drm_i915_gem_object *obj)
167 {
168 if (obj->ops->truncate)
169 return obj->ops->truncate(obj);
170
171 return 0;
172 }
173
__i915_gem_object_reset_page_iter(struct drm_i915_gem_object * obj)174 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
175 {
176 struct radix_tree_iter iter;
177 void __rcu **slot;
178
179 rcu_read_lock();
180 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
181 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
182 radix_tree_for_each_slot(slot, &obj->mm.get_dma_page.radix, &iter, 0)
183 radix_tree_delete(&obj->mm.get_dma_page.radix, iter.index);
184 rcu_read_unlock();
185 }
186
unmap_object(struct drm_i915_gem_object * obj,void * ptr)187 static void unmap_object(struct drm_i915_gem_object *obj, void *ptr)
188 {
189 if (is_vmalloc_addr(ptr))
190 vunmap(ptr);
191 }
192
flush_tlb_invalidate(struct drm_i915_gem_object * obj)193 static void flush_tlb_invalidate(struct drm_i915_gem_object *obj)
194 {
195 struct drm_i915_private *i915 = to_i915(obj->base.dev);
196 struct intel_gt *gt;
197 int id;
198
199 for_each_gt(gt, i915, id) {
200 if (!obj->mm.tlb[id])
201 continue;
202
203 intel_gt_invalidate_tlb_full(gt, obj->mm.tlb[id]);
204 obj->mm.tlb[id] = 0;
205 }
206 }
207
208 struct sg_table *
__i915_gem_object_unset_pages(struct drm_i915_gem_object * obj)209 __i915_gem_object_unset_pages(struct drm_i915_gem_object *obj)
210 {
211 struct sg_table *pages;
212
213 assert_object_held_shared(obj);
214
215 pages = fetch_and_zero(&obj->mm.pages);
216 if (IS_ERR_OR_NULL(pages))
217 return pages;
218
219 if (i915_gem_object_is_volatile(obj))
220 obj->mm.madv = I915_MADV_WILLNEED;
221
222 if (!i915_gem_object_has_self_managed_shrink_list(obj))
223 i915_gem_object_make_unshrinkable(obj);
224
225 if (obj->mm.mapping) {
226 unmap_object(obj, page_mask_bits(obj->mm.mapping));
227 obj->mm.mapping = NULL;
228 }
229
230 __i915_gem_object_reset_page_iter(obj);
231 obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;
232
233 flush_tlb_invalidate(obj);
234
235 return pages;
236 }
237
__i915_gem_object_put_pages(struct drm_i915_gem_object * obj)238 int __i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
239 {
240 struct sg_table *pages;
241
242 if (i915_gem_object_has_pinned_pages(obj))
243 return -EBUSY;
244
245 /* May be called by shrinker from within get_pages() (on another bo) */
246 assert_object_held_shared(obj);
247
248 i915_gem_object_release_mmap_offset(obj);
249
250 /*
251 * ->put_pages might need to allocate memory for the bit17 swizzle
252 * array, hence protect them from being reaped by removing them from gtt
253 * lists early.
254 */
255 pages = __i915_gem_object_unset_pages(obj);
256
257 /*
258 * XXX Temporary hijinx to avoid updating all backends to handle
259 * NULL pages. In the future, when we have more asynchronous
260 * get_pages backends we should be better able to handle the
261 * cancellation of the async task in a more uniform manner.
262 */
263 if (!IS_ERR_OR_NULL(pages))
264 obj->ops->put_pages(obj, pages);
265
266 return 0;
267 }
268
269 /* The 'mapping' part of i915_gem_object_pin_map() below */
i915_gem_object_map_page(struct drm_i915_gem_object * obj,enum i915_map_type type)270 static void *i915_gem_object_map_page(struct drm_i915_gem_object *obj,
271 enum i915_map_type type)
272 {
273 unsigned long n_pages = obj->base.size >> PAGE_SHIFT, i;
274 struct page *stack[32], **pages = stack, *page;
275 struct sgt_iter iter;
276 pgprot_t pgprot;
277 void *vaddr;
278
279 switch (type) {
280 default:
281 MISSING_CASE(type);
282 fallthrough; /* to use PAGE_KERNEL anyway */
283 case I915_MAP_WB:
284 /*
285 * On 32b, highmem using a finite set of indirect PTE (i.e.
286 * vmap) to provide virtual mappings of the high pages.
287 * As these are finite, map_new_virtual() must wait for some
288 * other kmap() to finish when it runs out. If we map a large
289 * number of objects, there is no method for it to tell us
290 * to release the mappings, and we deadlock.
291 *
292 * However, if we make an explicit vmap of the page, that
293 * uses a larger vmalloc arena, and also has the ability
294 * to tell us to release unwanted mappings. Most importantly,
295 * it will fail and propagate an error instead of waiting
296 * forever.
297 *
298 * So if the page is beyond the 32b boundary, make an explicit
299 * vmap.
300 */
301 if (n_pages == 1 && !PageHighMem(sg_page(obj->mm.pages->sgl)))
302 return page_address(sg_page(obj->mm.pages->sgl));
303 pgprot = PAGE_KERNEL;
304 break;
305 case I915_MAP_WC:
306 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
307 break;
308 }
309
310 if (n_pages > ARRAY_SIZE(stack)) {
311 /* Too big for stack -- allocate temporary array instead */
312 pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
313 if (!pages)
314 return ERR_PTR(-ENOMEM);
315 }
316
317 i = 0;
318 for_each_sgt_page(page, iter, obj->mm.pages)
319 pages[i++] = page;
320 vaddr = vmap(pages, n_pages, 0, pgprot);
321 if (pages != stack)
322 kvfree(pages);
323
324 return vaddr ?: ERR_PTR(-ENOMEM);
325 }
326
i915_gem_object_map_pfn(struct drm_i915_gem_object * obj,enum i915_map_type type)327 static void *i915_gem_object_map_pfn(struct drm_i915_gem_object *obj,
328 enum i915_map_type type)
329 {
330 resource_size_t iomap = obj->mm.region->iomap.base -
331 obj->mm.region->region.start;
332 unsigned long n_pfn = obj->base.size >> PAGE_SHIFT;
333 unsigned long stack[32], *pfns = stack, i;
334 struct sgt_iter iter;
335 dma_addr_t addr;
336 void *vaddr;
337
338 GEM_BUG_ON(type != I915_MAP_WC);
339
340 if (n_pfn > ARRAY_SIZE(stack)) {
341 /* Too big for stack -- allocate temporary array instead */
342 pfns = kvmalloc_array(n_pfn, sizeof(*pfns), GFP_KERNEL);
343 if (!pfns)
344 return ERR_PTR(-ENOMEM);
345 }
346
347 i = 0;
348 for_each_sgt_daddr(addr, iter, obj->mm.pages)
349 pfns[i++] = (iomap + addr) >> PAGE_SHIFT;
350 vaddr = vmap_pfn(pfns, n_pfn, pgprot_writecombine(PAGE_KERNEL_IO));
351 if (pfns != stack)
352 kvfree(pfns);
353
354 return vaddr ?: ERR_PTR(-ENOMEM);
355 }
356
357 /* get, pin, and map the pages of the object into kernel space */
i915_gem_object_pin_map(struct drm_i915_gem_object * obj,enum i915_map_type type)358 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
359 enum i915_map_type type)
360 {
361 enum i915_map_type has_type;
362 bool pinned;
363 void *ptr;
364 int err;
365
366 if (!i915_gem_object_has_struct_page(obj) &&
367 !i915_gem_object_has_iomem(obj))
368 return ERR_PTR(-ENXIO);
369
370 if (WARN_ON_ONCE(obj->flags & I915_BO_ALLOC_GPU_ONLY))
371 return ERR_PTR(-EINVAL);
372
373 assert_object_held(obj);
374
375 pinned = !(type & I915_MAP_OVERRIDE);
376 type &= ~I915_MAP_OVERRIDE;
377
378 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
379 if (unlikely(!i915_gem_object_has_pages(obj))) {
380 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
381
382 err = ____i915_gem_object_get_pages(obj);
383 if (err)
384 return ERR_PTR(err);
385
386 smp_mb__before_atomic();
387 }
388 atomic_inc(&obj->mm.pages_pin_count);
389 pinned = false;
390 }
391 GEM_BUG_ON(!i915_gem_object_has_pages(obj));
392
393 /*
394 * For discrete our CPU mappings needs to be consistent in order to
395 * function correctly on !x86. When mapping things through TTM, we use
396 * the same rules to determine the caching type.
397 *
398 * The caching rules, starting from DG1:
399 *
400 * - If the object can be placed in device local-memory, then the
401 * pages should be allocated and mapped as write-combined only.
402 *
403 * - Everything else is always allocated and mapped as write-back,
404 * with the guarantee that everything is also coherent with the
405 * GPU.
406 *
407 * Internal users of lmem are already expected to get this right, so no
408 * fudging needed there.
409 */
410 if (i915_gem_object_placement_possible(obj, INTEL_MEMORY_LOCAL)) {
411 if (type != I915_MAP_WC && !obj->mm.n_placements) {
412 ptr = ERR_PTR(-ENODEV);
413 goto err_unpin;
414 }
415
416 type = I915_MAP_WC;
417 } else if (IS_DGFX(to_i915(obj->base.dev))) {
418 type = I915_MAP_WB;
419 }
420
421 ptr = page_unpack_bits(obj->mm.mapping, &has_type);
422 if (ptr && has_type != type) {
423 if (pinned) {
424 ptr = ERR_PTR(-EBUSY);
425 goto err_unpin;
426 }
427
428 unmap_object(obj, ptr);
429
430 ptr = obj->mm.mapping = NULL;
431 }
432
433 if (!ptr) {
434 err = i915_gem_object_wait_moving_fence(obj, true);
435 if (err) {
436 ptr = ERR_PTR(err);
437 goto err_unpin;
438 }
439
440 if (GEM_WARN_ON(type == I915_MAP_WC && !pat_enabled()))
441 ptr = ERR_PTR(-ENODEV);
442 else if (i915_gem_object_has_struct_page(obj))
443 ptr = i915_gem_object_map_page(obj, type);
444 else
445 ptr = i915_gem_object_map_pfn(obj, type);
446 if (IS_ERR(ptr))
447 goto err_unpin;
448
449 obj->mm.mapping = page_pack_bits(ptr, type);
450 }
451
452 return ptr;
453
454 err_unpin:
455 atomic_dec(&obj->mm.pages_pin_count);
456 return ptr;
457 }
458
i915_gem_object_pin_map_unlocked(struct drm_i915_gem_object * obj,enum i915_map_type type)459 void *i915_gem_object_pin_map_unlocked(struct drm_i915_gem_object *obj,
460 enum i915_map_type type)
461 {
462 void *ret;
463
464 i915_gem_object_lock(obj, NULL);
465 ret = i915_gem_object_pin_map(obj, type);
466 i915_gem_object_unlock(obj);
467
468 return ret;
469 }
470
__i915_gem_object_flush_map(struct drm_i915_gem_object * obj,unsigned long offset,unsigned long size)471 void __i915_gem_object_flush_map(struct drm_i915_gem_object *obj,
472 unsigned long offset,
473 unsigned long size)
474 {
475 enum i915_map_type has_type;
476 void *ptr;
477
478 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
479 GEM_BUG_ON(range_overflows_t(typeof(obj->base.size),
480 offset, size, obj->base.size));
481
482 wmb(); /* let all previous writes be visible to coherent partners */
483 obj->mm.dirty = true;
484
485 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE)
486 return;
487
488 ptr = page_unpack_bits(obj->mm.mapping, &has_type);
489 if (has_type == I915_MAP_WC)
490 return;
491
492 drm_clflush_virt_range(ptr + offset, size);
493 if (size == obj->base.size) {
494 obj->write_domain &= ~I915_GEM_DOMAIN_CPU;
495 obj->cache_dirty = false;
496 }
497 }
498
__i915_gem_object_release_map(struct drm_i915_gem_object * obj)499 void __i915_gem_object_release_map(struct drm_i915_gem_object *obj)
500 {
501 GEM_BUG_ON(!obj->mm.mapping);
502
503 /*
504 * We allow removing the mapping from underneath pinned pages!
505 *
506 * Furthermore, since this is an unsafe operation reserved only
507 * for construction time manipulation, we ignore locking prudence.
508 */
509 unmap_object(obj, page_mask_bits(fetch_and_zero(&obj->mm.mapping)));
510
511 i915_gem_object_unpin_map(obj);
512 }
513
514 struct scatterlist *
__i915_gem_object_page_iter_get_sg(struct drm_i915_gem_object * obj,struct i915_gem_object_page_iter * iter,pgoff_t n,unsigned int * offset)515 __i915_gem_object_page_iter_get_sg(struct drm_i915_gem_object *obj,
516 struct i915_gem_object_page_iter *iter,
517 pgoff_t n,
518 unsigned int *offset)
519
520 {
521 const bool dma = iter == &obj->mm.get_dma_page ||
522 iter == &obj->ttm.get_io_page;
523 unsigned int idx, count;
524 struct scatterlist *sg;
525
526 might_sleep();
527 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
528 if (!i915_gem_object_has_pinned_pages(obj))
529 assert_object_held(obj);
530
531 /* As we iterate forward through the sg, we record each entry in a
532 * radixtree for quick repeated (backwards) lookups. If we have seen
533 * this index previously, we will have an entry for it.
534 *
535 * Initial lookup is O(N), but this is amortized to O(1) for
536 * sequential page access (where each new request is consecutive
537 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
538 * i.e. O(1) with a large constant!
539 */
540 if (n < READ_ONCE(iter->sg_idx))
541 goto lookup;
542
543 mutex_lock(&iter->lock);
544
545 /* We prefer to reuse the last sg so that repeated lookup of this
546 * (or the subsequent) sg are fast - comparing against the last
547 * sg is faster than going through the radixtree.
548 */
549
550 sg = iter->sg_pos;
551 idx = iter->sg_idx;
552 count = dma ? __sg_dma_page_count(sg) : __sg_page_count(sg);
553
554 while (idx + count <= n) {
555 void *entry;
556 unsigned long i;
557 int ret;
558
559 /* If we cannot allocate and insert this entry, or the
560 * individual pages from this range, cancel updating the
561 * sg_idx so that on this lookup we are forced to linearly
562 * scan onwards, but on future lookups we will try the
563 * insertion again (in which case we need to be careful of
564 * the error return reporting that we have already inserted
565 * this index).
566 */
567 ret = radix_tree_insert(&iter->radix, idx, sg);
568 if (ret && ret != -EEXIST)
569 goto scan;
570
571 entry = xa_mk_value(idx);
572 for (i = 1; i < count; i++) {
573 ret = radix_tree_insert(&iter->radix, idx + i, entry);
574 if (ret && ret != -EEXIST)
575 goto scan;
576 }
577
578 idx += count;
579 sg = ____sg_next(sg);
580 count = dma ? __sg_dma_page_count(sg) : __sg_page_count(sg);
581 }
582
583 scan:
584 iter->sg_pos = sg;
585 iter->sg_idx = idx;
586
587 mutex_unlock(&iter->lock);
588
589 if (unlikely(n < idx)) /* insertion completed by another thread */
590 goto lookup;
591
592 /* In case we failed to insert the entry into the radixtree, we need
593 * to look beyond the current sg.
594 */
595 while (idx + count <= n) {
596 idx += count;
597 sg = ____sg_next(sg);
598 count = dma ? __sg_dma_page_count(sg) : __sg_page_count(sg);
599 }
600
601 *offset = n - idx;
602 return sg;
603
604 lookup:
605 rcu_read_lock();
606
607 sg = radix_tree_lookup(&iter->radix, n);
608 GEM_BUG_ON(!sg);
609
610 /* If this index is in the middle of multi-page sg entry,
611 * the radix tree will contain a value entry that points
612 * to the start of that range. We will return the pointer to
613 * the base page and the offset of this page within the
614 * sg entry's range.
615 */
616 *offset = 0;
617 if (unlikely(xa_is_value(sg))) {
618 unsigned long base = xa_to_value(sg);
619
620 sg = radix_tree_lookup(&iter->radix, base);
621 GEM_BUG_ON(!sg);
622
623 *offset = n - base;
624 }
625
626 rcu_read_unlock();
627
628 return sg;
629 }
630
631 struct page *
__i915_gem_object_get_page(struct drm_i915_gem_object * obj,pgoff_t n)632 __i915_gem_object_get_page(struct drm_i915_gem_object *obj, pgoff_t n)
633 {
634 struct scatterlist *sg;
635 unsigned int offset;
636
637 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
638
639 sg = i915_gem_object_get_sg(obj, n, &offset);
640 return nth_page(sg_page(sg), offset);
641 }
642
643 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
644 struct page *
__i915_gem_object_get_dirty_page(struct drm_i915_gem_object * obj,pgoff_t n)645 __i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, pgoff_t n)
646 {
647 struct page *page;
648
649 page = i915_gem_object_get_page(obj, n);
650 if (!obj->mm.dirty)
651 set_page_dirty(page);
652
653 return page;
654 }
655
656 dma_addr_t
__i915_gem_object_get_dma_address_len(struct drm_i915_gem_object * obj,pgoff_t n,unsigned int * len)657 __i915_gem_object_get_dma_address_len(struct drm_i915_gem_object *obj,
658 pgoff_t n, unsigned int *len)
659 {
660 struct scatterlist *sg;
661 unsigned int offset;
662
663 sg = i915_gem_object_get_sg_dma(obj, n, &offset);
664
665 if (len)
666 *len = sg_dma_len(sg) - (offset << PAGE_SHIFT);
667
668 return sg_dma_address(sg) + (offset << PAGE_SHIFT);
669 }
670
671 dma_addr_t
__i915_gem_object_get_dma_address(struct drm_i915_gem_object * obj,pgoff_t n)672 __i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, pgoff_t n)
673 {
674 return i915_gem_object_get_dma_address_len(obj, n, NULL);
675 }
676