1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2014-2016 Intel Corporation
5  */
6 
7 #include <drm/drm_cache.h>
8 
9 #include "gt/intel_gt.h"
10 #include "gt/intel_tlb.h"
11 
12 #include "i915_drv.h"
13 #include "i915_gem_object.h"
14 #include "i915_scatterlist.h"
15 #include "i915_gem_lmem.h"
16 #include "i915_gem_mman.h"
17 
__i915_gem_object_set_pages(struct drm_i915_gem_object * obj,struct sg_table * pages)18 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
19 				 struct sg_table *pages)
20 {
21 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
22 	unsigned long supported = RUNTIME_INFO(i915)->page_sizes;
23 	bool shrinkable;
24 	int i;
25 
26 	assert_object_held_shared(obj);
27 
28 	if (i915_gem_object_is_volatile(obj))
29 		obj->mm.madv = I915_MADV_DONTNEED;
30 
31 	/* Make the pages coherent with the GPU (flushing any swapin). */
32 	if (obj->cache_dirty) {
33 		WARN_ON_ONCE(IS_DGFX(i915));
34 		obj->write_domain = 0;
35 		if (i915_gem_object_has_struct_page(obj))
36 			drm_clflush_sg(pages);
37 		obj->cache_dirty = false;
38 	}
39 
40 	obj->mm.get_page.sg_pos = pages->sgl;
41 	obj->mm.get_page.sg_idx = 0;
42 	obj->mm.get_dma_page.sg_pos = pages->sgl;
43 	obj->mm.get_dma_page.sg_idx = 0;
44 
45 	obj->mm.pages = pages;
46 
47 	obj->mm.page_sizes.phys = i915_sg_dma_sizes(pages->sgl);
48 	GEM_BUG_ON(!obj->mm.page_sizes.phys);
49 
50 	/*
51 	 * Calculate the supported page-sizes which fit into the given
52 	 * sg_page_sizes. This will give us the page-sizes which we may be able
53 	 * to use opportunistically when later inserting into the GTT. For
54 	 * example if phys=2G, then in theory we should be able to use 1G, 2M,
55 	 * 64K or 4K pages, although in practice this will depend on a number of
56 	 * other factors.
57 	 */
58 	obj->mm.page_sizes.sg = 0;
59 	for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
60 		if (obj->mm.page_sizes.phys & ~0u << i)
61 			obj->mm.page_sizes.sg |= BIT(i);
62 	}
63 	GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
64 
65 	shrinkable = i915_gem_object_is_shrinkable(obj);
66 
67 	if (i915_gem_object_is_tiled(obj) &&
68 	    i915->gem_quirks & GEM_QUIRK_PIN_SWIZZLED_PAGES) {
69 		GEM_BUG_ON(i915_gem_object_has_tiling_quirk(obj));
70 		i915_gem_object_set_tiling_quirk(obj);
71 		GEM_BUG_ON(!list_empty(&obj->mm.link));
72 		atomic_inc(&obj->mm.shrink_pin);
73 		shrinkable = false;
74 	}
75 
76 	if (shrinkable && !i915_gem_object_has_self_managed_shrink_list(obj)) {
77 		struct list_head *list;
78 		unsigned long flags;
79 
80 		assert_object_held(obj);
81 		spin_lock_irqsave(&i915->mm.obj_lock, flags);
82 
83 		i915->mm.shrink_count++;
84 		i915->mm.shrink_memory += obj->base.size;
85 
86 		if (obj->mm.madv != I915_MADV_WILLNEED)
87 			list = &i915->mm.purge_list;
88 		else
89 			list = &i915->mm.shrink_list;
90 		list_add_tail(&obj->mm.link, list);
91 
92 		atomic_set(&obj->mm.shrink_pin, 0);
93 		spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
94 	}
95 }
96 
____i915_gem_object_get_pages(struct drm_i915_gem_object * obj)97 int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
98 {
99 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
100 	int err;
101 
102 	assert_object_held_shared(obj);
103 
104 	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
105 		drm_dbg(&i915->drm,
106 			"Attempting to obtain a purgeable object\n");
107 		return -EFAULT;
108 	}
109 
110 	err = obj->ops->get_pages(obj);
111 	GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
112 
113 	return err;
114 }
115 
116 /* Ensure that the associated pages are gathered from the backing storage
117  * and pinned into our object. i915_gem_object_pin_pages() may be called
118  * multiple times before they are released by a single call to
119  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
120  * either as a result of memory pressure (reaping pages under the shrinker)
121  * or as the object is itself released.
122  */
__i915_gem_object_get_pages(struct drm_i915_gem_object * obj)123 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
124 {
125 	int err;
126 
127 	assert_object_held(obj);
128 
129 	assert_object_held_shared(obj);
130 
131 	if (unlikely(!i915_gem_object_has_pages(obj))) {
132 		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
133 
134 		err = ____i915_gem_object_get_pages(obj);
135 		if (err)
136 			return err;
137 
138 		smp_mb__before_atomic();
139 	}
140 	atomic_inc(&obj->mm.pages_pin_count);
141 
142 	return 0;
143 }
144 
i915_gem_object_pin_pages_unlocked(struct drm_i915_gem_object * obj)145 int i915_gem_object_pin_pages_unlocked(struct drm_i915_gem_object *obj)
146 {
147 	struct i915_gem_ww_ctx ww;
148 	int err;
149 
150 	i915_gem_ww_ctx_init(&ww, true);
151 retry:
152 	err = i915_gem_object_lock(obj, &ww);
153 	if (!err)
154 		err = i915_gem_object_pin_pages(obj);
155 
156 	if (err == -EDEADLK) {
157 		err = i915_gem_ww_ctx_backoff(&ww);
158 		if (!err)
159 			goto retry;
160 	}
161 	i915_gem_ww_ctx_fini(&ww);
162 	return err;
163 }
164 
165 /* Immediately discard the backing storage */
i915_gem_object_truncate(struct drm_i915_gem_object * obj)166 int i915_gem_object_truncate(struct drm_i915_gem_object *obj)
167 {
168 	if (obj->ops->truncate)
169 		return obj->ops->truncate(obj);
170 
171 	return 0;
172 }
173 
__i915_gem_object_reset_page_iter(struct drm_i915_gem_object * obj)174 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
175 {
176 	struct radix_tree_iter iter;
177 	void __rcu **slot;
178 
179 	rcu_read_lock();
180 	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
181 		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
182 	radix_tree_for_each_slot(slot, &obj->mm.get_dma_page.radix, &iter, 0)
183 		radix_tree_delete(&obj->mm.get_dma_page.radix, iter.index);
184 	rcu_read_unlock();
185 }
186 
unmap_object(struct drm_i915_gem_object * obj,void * ptr)187 static void unmap_object(struct drm_i915_gem_object *obj, void *ptr)
188 {
189 	if (is_vmalloc_addr(ptr))
190 		vunmap(ptr);
191 }
192 
flush_tlb_invalidate(struct drm_i915_gem_object * obj)193 static void flush_tlb_invalidate(struct drm_i915_gem_object *obj)
194 {
195 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
196 	struct intel_gt *gt;
197 	int id;
198 
199 	for_each_gt(gt, i915, id) {
200 		if (!obj->mm.tlb[id])
201 			continue;
202 
203 		intel_gt_invalidate_tlb_full(gt, obj->mm.tlb[id]);
204 		obj->mm.tlb[id] = 0;
205 	}
206 }
207 
208 struct sg_table *
__i915_gem_object_unset_pages(struct drm_i915_gem_object * obj)209 __i915_gem_object_unset_pages(struct drm_i915_gem_object *obj)
210 {
211 	struct sg_table *pages;
212 
213 	assert_object_held_shared(obj);
214 
215 	pages = fetch_and_zero(&obj->mm.pages);
216 	if (IS_ERR_OR_NULL(pages))
217 		return pages;
218 
219 	if (i915_gem_object_is_volatile(obj))
220 		obj->mm.madv = I915_MADV_WILLNEED;
221 
222 	if (!i915_gem_object_has_self_managed_shrink_list(obj))
223 		i915_gem_object_make_unshrinkable(obj);
224 
225 	if (obj->mm.mapping) {
226 		unmap_object(obj, page_mask_bits(obj->mm.mapping));
227 		obj->mm.mapping = NULL;
228 	}
229 
230 	__i915_gem_object_reset_page_iter(obj);
231 	obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;
232 
233 	flush_tlb_invalidate(obj);
234 
235 	return pages;
236 }
237 
__i915_gem_object_put_pages(struct drm_i915_gem_object * obj)238 int __i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
239 {
240 	struct sg_table *pages;
241 
242 	if (i915_gem_object_has_pinned_pages(obj))
243 		return -EBUSY;
244 
245 	/* May be called by shrinker from within get_pages() (on another bo) */
246 	assert_object_held_shared(obj);
247 
248 	i915_gem_object_release_mmap_offset(obj);
249 
250 	/*
251 	 * ->put_pages might need to allocate memory for the bit17 swizzle
252 	 * array, hence protect them from being reaped by removing them from gtt
253 	 * lists early.
254 	 */
255 	pages = __i915_gem_object_unset_pages(obj);
256 
257 	/*
258 	 * XXX Temporary hijinx to avoid updating all backends to handle
259 	 * NULL pages. In the future, when we have more asynchronous
260 	 * get_pages backends we should be better able to handle the
261 	 * cancellation of the async task in a more uniform manner.
262 	 */
263 	if (!IS_ERR_OR_NULL(pages))
264 		obj->ops->put_pages(obj, pages);
265 
266 	return 0;
267 }
268 
269 /* The 'mapping' part of i915_gem_object_pin_map() below */
i915_gem_object_map_page(struct drm_i915_gem_object * obj,enum i915_map_type type)270 static void *i915_gem_object_map_page(struct drm_i915_gem_object *obj,
271 				      enum i915_map_type type)
272 {
273 	unsigned long n_pages = obj->base.size >> PAGE_SHIFT, i;
274 	struct page *stack[32], **pages = stack, *page;
275 	struct sgt_iter iter;
276 	pgprot_t pgprot;
277 	void *vaddr;
278 
279 	switch (type) {
280 	default:
281 		MISSING_CASE(type);
282 		fallthrough;	/* to use PAGE_KERNEL anyway */
283 	case I915_MAP_WB:
284 		/*
285 		 * On 32b, highmem using a finite set of indirect PTE (i.e.
286 		 * vmap) to provide virtual mappings of the high pages.
287 		 * As these are finite, map_new_virtual() must wait for some
288 		 * other kmap() to finish when it runs out. If we map a large
289 		 * number of objects, there is no method for it to tell us
290 		 * to release the mappings, and we deadlock.
291 		 *
292 		 * However, if we make an explicit vmap of the page, that
293 		 * uses a larger vmalloc arena, and also has the ability
294 		 * to tell us to release unwanted mappings. Most importantly,
295 		 * it will fail and propagate an error instead of waiting
296 		 * forever.
297 		 *
298 		 * So if the page is beyond the 32b boundary, make an explicit
299 		 * vmap.
300 		 */
301 		if (n_pages == 1 && !PageHighMem(sg_page(obj->mm.pages->sgl)))
302 			return page_address(sg_page(obj->mm.pages->sgl));
303 		pgprot = PAGE_KERNEL;
304 		break;
305 	case I915_MAP_WC:
306 		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
307 		break;
308 	}
309 
310 	if (n_pages > ARRAY_SIZE(stack)) {
311 		/* Too big for stack -- allocate temporary array instead */
312 		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
313 		if (!pages)
314 			return ERR_PTR(-ENOMEM);
315 	}
316 
317 	i = 0;
318 	for_each_sgt_page(page, iter, obj->mm.pages)
319 		pages[i++] = page;
320 	vaddr = vmap(pages, n_pages, 0, pgprot);
321 	if (pages != stack)
322 		kvfree(pages);
323 
324 	return vaddr ?: ERR_PTR(-ENOMEM);
325 }
326 
i915_gem_object_map_pfn(struct drm_i915_gem_object * obj,enum i915_map_type type)327 static void *i915_gem_object_map_pfn(struct drm_i915_gem_object *obj,
328 				     enum i915_map_type type)
329 {
330 	resource_size_t iomap = obj->mm.region->iomap.base -
331 		obj->mm.region->region.start;
332 	unsigned long n_pfn = obj->base.size >> PAGE_SHIFT;
333 	unsigned long stack[32], *pfns = stack, i;
334 	struct sgt_iter iter;
335 	dma_addr_t addr;
336 	void *vaddr;
337 
338 	GEM_BUG_ON(type != I915_MAP_WC);
339 
340 	if (n_pfn > ARRAY_SIZE(stack)) {
341 		/* Too big for stack -- allocate temporary array instead */
342 		pfns = kvmalloc_array(n_pfn, sizeof(*pfns), GFP_KERNEL);
343 		if (!pfns)
344 			return ERR_PTR(-ENOMEM);
345 	}
346 
347 	i = 0;
348 	for_each_sgt_daddr(addr, iter, obj->mm.pages)
349 		pfns[i++] = (iomap + addr) >> PAGE_SHIFT;
350 	vaddr = vmap_pfn(pfns, n_pfn, pgprot_writecombine(PAGE_KERNEL_IO));
351 	if (pfns != stack)
352 		kvfree(pfns);
353 
354 	return vaddr ?: ERR_PTR(-ENOMEM);
355 }
356 
357 /* get, pin, and map the pages of the object into kernel space */
i915_gem_object_pin_map(struct drm_i915_gem_object * obj,enum i915_map_type type)358 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
359 			      enum i915_map_type type)
360 {
361 	enum i915_map_type has_type;
362 	bool pinned;
363 	void *ptr;
364 	int err;
365 
366 	if (!i915_gem_object_has_struct_page(obj) &&
367 	    !i915_gem_object_has_iomem(obj))
368 		return ERR_PTR(-ENXIO);
369 
370 	if (WARN_ON_ONCE(obj->flags & I915_BO_ALLOC_GPU_ONLY))
371 		return ERR_PTR(-EINVAL);
372 
373 	assert_object_held(obj);
374 
375 	pinned = !(type & I915_MAP_OVERRIDE);
376 	type &= ~I915_MAP_OVERRIDE;
377 
378 	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
379 		if (unlikely(!i915_gem_object_has_pages(obj))) {
380 			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
381 
382 			err = ____i915_gem_object_get_pages(obj);
383 			if (err)
384 				return ERR_PTR(err);
385 
386 			smp_mb__before_atomic();
387 		}
388 		atomic_inc(&obj->mm.pages_pin_count);
389 		pinned = false;
390 	}
391 	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
392 
393 	/*
394 	 * For discrete our CPU mappings needs to be consistent in order to
395 	 * function correctly on !x86. When mapping things through TTM, we use
396 	 * the same rules to determine the caching type.
397 	 *
398 	 * The caching rules, starting from DG1:
399 	 *
400 	 *	- If the object can be placed in device local-memory, then the
401 	 *	  pages should be allocated and mapped as write-combined only.
402 	 *
403 	 *	- Everything else is always allocated and mapped as write-back,
404 	 *	  with the guarantee that everything is also coherent with the
405 	 *	  GPU.
406 	 *
407 	 * Internal users of lmem are already expected to get this right, so no
408 	 * fudging needed there.
409 	 */
410 	if (i915_gem_object_placement_possible(obj, INTEL_MEMORY_LOCAL)) {
411 		if (type != I915_MAP_WC && !obj->mm.n_placements) {
412 			ptr = ERR_PTR(-ENODEV);
413 			goto err_unpin;
414 		}
415 
416 		type = I915_MAP_WC;
417 	} else if (IS_DGFX(to_i915(obj->base.dev))) {
418 		type = I915_MAP_WB;
419 	}
420 
421 	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
422 	if (ptr && has_type != type) {
423 		if (pinned) {
424 			ptr = ERR_PTR(-EBUSY);
425 			goto err_unpin;
426 		}
427 
428 		unmap_object(obj, ptr);
429 
430 		ptr = obj->mm.mapping = NULL;
431 	}
432 
433 	if (!ptr) {
434 		err = i915_gem_object_wait_moving_fence(obj, true);
435 		if (err) {
436 			ptr = ERR_PTR(err);
437 			goto err_unpin;
438 		}
439 
440 		if (GEM_WARN_ON(type == I915_MAP_WC && !pat_enabled()))
441 			ptr = ERR_PTR(-ENODEV);
442 		else if (i915_gem_object_has_struct_page(obj))
443 			ptr = i915_gem_object_map_page(obj, type);
444 		else
445 			ptr = i915_gem_object_map_pfn(obj, type);
446 		if (IS_ERR(ptr))
447 			goto err_unpin;
448 
449 		obj->mm.mapping = page_pack_bits(ptr, type);
450 	}
451 
452 	return ptr;
453 
454 err_unpin:
455 	atomic_dec(&obj->mm.pages_pin_count);
456 	return ptr;
457 }
458 
i915_gem_object_pin_map_unlocked(struct drm_i915_gem_object * obj,enum i915_map_type type)459 void *i915_gem_object_pin_map_unlocked(struct drm_i915_gem_object *obj,
460 				       enum i915_map_type type)
461 {
462 	void *ret;
463 
464 	i915_gem_object_lock(obj, NULL);
465 	ret = i915_gem_object_pin_map(obj, type);
466 	i915_gem_object_unlock(obj);
467 
468 	return ret;
469 }
470 
__i915_gem_object_flush_map(struct drm_i915_gem_object * obj,unsigned long offset,unsigned long size)471 void __i915_gem_object_flush_map(struct drm_i915_gem_object *obj,
472 				 unsigned long offset,
473 				 unsigned long size)
474 {
475 	enum i915_map_type has_type;
476 	void *ptr;
477 
478 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
479 	GEM_BUG_ON(range_overflows_t(typeof(obj->base.size),
480 				     offset, size, obj->base.size));
481 
482 	wmb(); /* let all previous writes be visible to coherent partners */
483 	obj->mm.dirty = true;
484 
485 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE)
486 		return;
487 
488 	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
489 	if (has_type == I915_MAP_WC)
490 		return;
491 
492 	drm_clflush_virt_range(ptr + offset, size);
493 	if (size == obj->base.size) {
494 		obj->write_domain &= ~I915_GEM_DOMAIN_CPU;
495 		obj->cache_dirty = false;
496 	}
497 }
498 
__i915_gem_object_release_map(struct drm_i915_gem_object * obj)499 void __i915_gem_object_release_map(struct drm_i915_gem_object *obj)
500 {
501 	GEM_BUG_ON(!obj->mm.mapping);
502 
503 	/*
504 	 * We allow removing the mapping from underneath pinned pages!
505 	 *
506 	 * Furthermore, since this is an unsafe operation reserved only
507 	 * for construction time manipulation, we ignore locking prudence.
508 	 */
509 	unmap_object(obj, page_mask_bits(fetch_and_zero(&obj->mm.mapping)));
510 
511 	i915_gem_object_unpin_map(obj);
512 }
513 
514 struct scatterlist *
__i915_gem_object_page_iter_get_sg(struct drm_i915_gem_object * obj,struct i915_gem_object_page_iter * iter,pgoff_t n,unsigned int * offset)515 __i915_gem_object_page_iter_get_sg(struct drm_i915_gem_object *obj,
516 				   struct i915_gem_object_page_iter *iter,
517 				   pgoff_t n,
518 				   unsigned int *offset)
519 
520 {
521 	const bool dma = iter == &obj->mm.get_dma_page ||
522 			 iter == &obj->ttm.get_io_page;
523 	unsigned int idx, count;
524 	struct scatterlist *sg;
525 
526 	might_sleep();
527 	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
528 	if (!i915_gem_object_has_pinned_pages(obj))
529 		assert_object_held(obj);
530 
531 	/* As we iterate forward through the sg, we record each entry in a
532 	 * radixtree for quick repeated (backwards) lookups. If we have seen
533 	 * this index previously, we will have an entry for it.
534 	 *
535 	 * Initial lookup is O(N), but this is amortized to O(1) for
536 	 * sequential page access (where each new request is consecutive
537 	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
538 	 * i.e. O(1) with a large constant!
539 	 */
540 	if (n < READ_ONCE(iter->sg_idx))
541 		goto lookup;
542 
543 	mutex_lock(&iter->lock);
544 
545 	/* We prefer to reuse the last sg so that repeated lookup of this
546 	 * (or the subsequent) sg are fast - comparing against the last
547 	 * sg is faster than going through the radixtree.
548 	 */
549 
550 	sg = iter->sg_pos;
551 	idx = iter->sg_idx;
552 	count = dma ? __sg_dma_page_count(sg) : __sg_page_count(sg);
553 
554 	while (idx + count <= n) {
555 		void *entry;
556 		unsigned long i;
557 		int ret;
558 
559 		/* If we cannot allocate and insert this entry, or the
560 		 * individual pages from this range, cancel updating the
561 		 * sg_idx so that on this lookup we are forced to linearly
562 		 * scan onwards, but on future lookups we will try the
563 		 * insertion again (in which case we need to be careful of
564 		 * the error return reporting that we have already inserted
565 		 * this index).
566 		 */
567 		ret = radix_tree_insert(&iter->radix, idx, sg);
568 		if (ret && ret != -EEXIST)
569 			goto scan;
570 
571 		entry = xa_mk_value(idx);
572 		for (i = 1; i < count; i++) {
573 			ret = radix_tree_insert(&iter->radix, idx + i, entry);
574 			if (ret && ret != -EEXIST)
575 				goto scan;
576 		}
577 
578 		idx += count;
579 		sg = ____sg_next(sg);
580 		count = dma ? __sg_dma_page_count(sg) : __sg_page_count(sg);
581 	}
582 
583 scan:
584 	iter->sg_pos = sg;
585 	iter->sg_idx = idx;
586 
587 	mutex_unlock(&iter->lock);
588 
589 	if (unlikely(n < idx)) /* insertion completed by another thread */
590 		goto lookup;
591 
592 	/* In case we failed to insert the entry into the radixtree, we need
593 	 * to look beyond the current sg.
594 	 */
595 	while (idx + count <= n) {
596 		idx += count;
597 		sg = ____sg_next(sg);
598 		count = dma ? __sg_dma_page_count(sg) : __sg_page_count(sg);
599 	}
600 
601 	*offset = n - idx;
602 	return sg;
603 
604 lookup:
605 	rcu_read_lock();
606 
607 	sg = radix_tree_lookup(&iter->radix, n);
608 	GEM_BUG_ON(!sg);
609 
610 	/* If this index is in the middle of multi-page sg entry,
611 	 * the radix tree will contain a value entry that points
612 	 * to the start of that range. We will return the pointer to
613 	 * the base page and the offset of this page within the
614 	 * sg entry's range.
615 	 */
616 	*offset = 0;
617 	if (unlikely(xa_is_value(sg))) {
618 		unsigned long base = xa_to_value(sg);
619 
620 		sg = radix_tree_lookup(&iter->radix, base);
621 		GEM_BUG_ON(!sg);
622 
623 		*offset = n - base;
624 	}
625 
626 	rcu_read_unlock();
627 
628 	return sg;
629 }
630 
631 struct page *
__i915_gem_object_get_page(struct drm_i915_gem_object * obj,pgoff_t n)632 __i915_gem_object_get_page(struct drm_i915_gem_object *obj, pgoff_t n)
633 {
634 	struct scatterlist *sg;
635 	unsigned int offset;
636 
637 	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
638 
639 	sg = i915_gem_object_get_sg(obj, n, &offset);
640 	return nth_page(sg_page(sg), offset);
641 }
642 
643 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
644 struct page *
__i915_gem_object_get_dirty_page(struct drm_i915_gem_object * obj,pgoff_t n)645 __i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, pgoff_t n)
646 {
647 	struct page *page;
648 
649 	page = i915_gem_object_get_page(obj, n);
650 	if (!obj->mm.dirty)
651 		set_page_dirty(page);
652 
653 	return page;
654 }
655 
656 dma_addr_t
__i915_gem_object_get_dma_address_len(struct drm_i915_gem_object * obj,pgoff_t n,unsigned int * len)657 __i915_gem_object_get_dma_address_len(struct drm_i915_gem_object *obj,
658 				      pgoff_t n, unsigned int *len)
659 {
660 	struct scatterlist *sg;
661 	unsigned int offset;
662 
663 	sg = i915_gem_object_get_sg_dma(obj, n, &offset);
664 
665 	if (len)
666 		*len = sg_dma_len(sg) - (offset << PAGE_SHIFT);
667 
668 	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
669 }
670 
671 dma_addr_t
__i915_gem_object_get_dma_address(struct drm_i915_gem_object * obj,pgoff_t n)672 __i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, pgoff_t n)
673 {
674 	return i915_gem_object_get_dma_address_len(obj, n, NULL);
675 }
676