1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * BlueZ - Bluetooth protocol stack for Linux
4 *
5 * Copyright (C) 2021 Intel Corporation
6 */
7
8 #include <linux/property.h>
9
10 #include <net/bluetooth/bluetooth.h>
11 #include <net/bluetooth/hci_core.h>
12 #include <net/bluetooth/mgmt.h>
13
14 #include "hci_request.h"
15 #include "hci_debugfs.h"
16 #include "smp.h"
17 #include "eir.h"
18 #include "msft.h"
19 #include "aosp.h"
20 #include "leds.h"
21
hci_cmd_sync_complete(struct hci_dev * hdev,u8 result,u16 opcode,struct sk_buff * skb)22 static void hci_cmd_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
23 struct sk_buff *skb)
24 {
25 bt_dev_dbg(hdev, "result 0x%2.2x", result);
26
27 if (hdev->req_status != HCI_REQ_PEND)
28 return;
29
30 hdev->req_result = result;
31 hdev->req_status = HCI_REQ_DONE;
32
33 if (skb) {
34 struct sock *sk = hci_skb_sk(skb);
35
36 /* Drop sk reference if set */
37 if (sk)
38 sock_put(sk);
39
40 hdev->req_skb = skb_get(skb);
41 }
42
43 wake_up_interruptible(&hdev->req_wait_q);
44 }
45
hci_cmd_sync_alloc(struct hci_dev * hdev,u16 opcode,u32 plen,const void * param,struct sock * sk)46 static struct sk_buff *hci_cmd_sync_alloc(struct hci_dev *hdev, u16 opcode,
47 u32 plen, const void *param,
48 struct sock *sk)
49 {
50 int len = HCI_COMMAND_HDR_SIZE + plen;
51 struct hci_command_hdr *hdr;
52 struct sk_buff *skb;
53
54 skb = bt_skb_alloc(len, GFP_ATOMIC);
55 if (!skb)
56 return NULL;
57
58 hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE);
59 hdr->opcode = cpu_to_le16(opcode);
60 hdr->plen = plen;
61
62 if (plen)
63 skb_put_data(skb, param, plen);
64
65 bt_dev_dbg(hdev, "skb len %d", skb->len);
66
67 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
68 hci_skb_opcode(skb) = opcode;
69
70 /* Grab a reference if command needs to be associated with a sock (e.g.
71 * likely mgmt socket that initiated the command).
72 */
73 if (sk) {
74 hci_skb_sk(skb) = sk;
75 sock_hold(sk);
76 }
77
78 return skb;
79 }
80
hci_cmd_sync_add(struct hci_request * req,u16 opcode,u32 plen,const void * param,u8 event,struct sock * sk)81 static void hci_cmd_sync_add(struct hci_request *req, u16 opcode, u32 plen,
82 const void *param, u8 event, struct sock *sk)
83 {
84 struct hci_dev *hdev = req->hdev;
85 struct sk_buff *skb;
86
87 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
88
89 /* If an error occurred during request building, there is no point in
90 * queueing the HCI command. We can simply return.
91 */
92 if (req->err)
93 return;
94
95 skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, sk);
96 if (!skb) {
97 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
98 opcode);
99 req->err = -ENOMEM;
100 return;
101 }
102
103 if (skb_queue_empty(&req->cmd_q))
104 bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
105
106 hci_skb_event(skb) = event;
107
108 skb_queue_tail(&req->cmd_q, skb);
109 }
110
hci_cmd_sync_run(struct hci_request * req)111 static int hci_cmd_sync_run(struct hci_request *req)
112 {
113 struct hci_dev *hdev = req->hdev;
114 struct sk_buff *skb;
115 unsigned long flags;
116
117 bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q));
118
119 /* If an error occurred during request building, remove all HCI
120 * commands queued on the HCI request queue.
121 */
122 if (req->err) {
123 skb_queue_purge(&req->cmd_q);
124 return req->err;
125 }
126
127 /* Do not allow empty requests */
128 if (skb_queue_empty(&req->cmd_q))
129 return -ENODATA;
130
131 skb = skb_peek_tail(&req->cmd_q);
132 bt_cb(skb)->hci.req_complete_skb = hci_cmd_sync_complete;
133 bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
134
135 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
136 skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
137 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
138
139 queue_work(hdev->workqueue, &hdev->cmd_work);
140
141 return 0;
142 }
143
144 /* This function requires the caller holds hdev->req_lock. */
__hci_cmd_sync_sk(struct hci_dev * hdev,u16 opcode,u32 plen,const void * param,u8 event,u32 timeout,struct sock * sk)145 struct sk_buff *__hci_cmd_sync_sk(struct hci_dev *hdev, u16 opcode, u32 plen,
146 const void *param, u8 event, u32 timeout,
147 struct sock *sk)
148 {
149 struct hci_request req;
150 struct sk_buff *skb;
151 int err = 0;
152
153 bt_dev_dbg(hdev, "Opcode 0x%4x", opcode);
154
155 hci_req_init(&req, hdev);
156
157 hci_cmd_sync_add(&req, opcode, plen, param, event, sk);
158
159 hdev->req_status = HCI_REQ_PEND;
160
161 err = hci_cmd_sync_run(&req);
162 if (err < 0)
163 return ERR_PTR(err);
164
165 err = wait_event_interruptible_timeout(hdev->req_wait_q,
166 hdev->req_status != HCI_REQ_PEND,
167 timeout);
168
169 if (err == -ERESTARTSYS)
170 return ERR_PTR(-EINTR);
171
172 switch (hdev->req_status) {
173 case HCI_REQ_DONE:
174 err = -bt_to_errno(hdev->req_result);
175 break;
176
177 case HCI_REQ_CANCELED:
178 err = -hdev->req_result;
179 break;
180
181 default:
182 err = -ETIMEDOUT;
183 break;
184 }
185
186 hdev->req_status = 0;
187 hdev->req_result = 0;
188 skb = hdev->req_skb;
189 hdev->req_skb = NULL;
190
191 bt_dev_dbg(hdev, "end: err %d", err);
192
193 if (err < 0) {
194 kfree_skb(skb);
195 return ERR_PTR(err);
196 }
197
198 return skb;
199 }
200 EXPORT_SYMBOL(__hci_cmd_sync_sk);
201
202 /* This function requires the caller holds hdev->req_lock. */
__hci_cmd_sync(struct hci_dev * hdev,u16 opcode,u32 plen,const void * param,u32 timeout)203 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
204 const void *param, u32 timeout)
205 {
206 return __hci_cmd_sync_sk(hdev, opcode, plen, param, 0, timeout, NULL);
207 }
208 EXPORT_SYMBOL(__hci_cmd_sync);
209
210 /* Send HCI command and wait for command complete event */
hci_cmd_sync(struct hci_dev * hdev,u16 opcode,u32 plen,const void * param,u32 timeout)211 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
212 const void *param, u32 timeout)
213 {
214 struct sk_buff *skb;
215
216 if (!test_bit(HCI_UP, &hdev->flags))
217 return ERR_PTR(-ENETDOWN);
218
219 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
220
221 hci_req_sync_lock(hdev);
222 skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
223 hci_req_sync_unlock(hdev);
224
225 return skb;
226 }
227 EXPORT_SYMBOL(hci_cmd_sync);
228
229 /* This function requires the caller holds hdev->req_lock. */
__hci_cmd_sync_ev(struct hci_dev * hdev,u16 opcode,u32 plen,const void * param,u8 event,u32 timeout)230 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
231 const void *param, u8 event, u32 timeout)
232 {
233 return __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout,
234 NULL);
235 }
236 EXPORT_SYMBOL(__hci_cmd_sync_ev);
237
238 /* This function requires the caller holds hdev->req_lock. */
__hci_cmd_sync_status_sk(struct hci_dev * hdev,u16 opcode,u32 plen,const void * param,u8 event,u32 timeout,struct sock * sk)239 int __hci_cmd_sync_status_sk(struct hci_dev *hdev, u16 opcode, u32 plen,
240 const void *param, u8 event, u32 timeout,
241 struct sock *sk)
242 {
243 struct sk_buff *skb;
244 u8 status;
245
246 skb = __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, sk);
247 if (IS_ERR(skb)) {
248 bt_dev_err(hdev, "Opcode 0x%4x failed: %ld", opcode,
249 PTR_ERR(skb));
250 return PTR_ERR(skb);
251 }
252
253 /* If command return a status event skb will be set to NULL as there are
254 * no parameters, in case of failure IS_ERR(skb) would have be set to
255 * the actual error would be found with PTR_ERR(skb).
256 */
257 if (!skb)
258 return 0;
259
260 status = skb->data[0];
261
262 kfree_skb(skb);
263
264 return status;
265 }
266 EXPORT_SYMBOL(__hci_cmd_sync_status_sk);
267
__hci_cmd_sync_status(struct hci_dev * hdev,u16 opcode,u32 plen,const void * param,u32 timeout)268 int __hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen,
269 const void *param, u32 timeout)
270 {
271 return __hci_cmd_sync_status_sk(hdev, opcode, plen, param, 0, timeout,
272 NULL);
273 }
274 EXPORT_SYMBOL(__hci_cmd_sync_status);
275
hci_cmd_sync_work(struct work_struct * work)276 static void hci_cmd_sync_work(struct work_struct *work)
277 {
278 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_work);
279
280 bt_dev_dbg(hdev, "");
281
282 /* Dequeue all entries and run them */
283 while (1) {
284 struct hci_cmd_sync_work_entry *entry;
285
286 mutex_lock(&hdev->cmd_sync_work_lock);
287 entry = list_first_entry_or_null(&hdev->cmd_sync_work_list,
288 struct hci_cmd_sync_work_entry,
289 list);
290 if (entry)
291 list_del(&entry->list);
292 mutex_unlock(&hdev->cmd_sync_work_lock);
293
294 if (!entry)
295 break;
296
297 bt_dev_dbg(hdev, "entry %p", entry);
298
299 if (entry->func) {
300 int err;
301
302 hci_req_sync_lock(hdev);
303 err = entry->func(hdev, entry->data);
304 if (entry->destroy)
305 entry->destroy(hdev, entry->data, err);
306 hci_req_sync_unlock(hdev);
307 }
308
309 kfree(entry);
310 }
311 }
312
hci_cmd_sync_cancel_work(struct work_struct * work)313 static void hci_cmd_sync_cancel_work(struct work_struct *work)
314 {
315 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_cancel_work);
316
317 cancel_delayed_work_sync(&hdev->cmd_timer);
318 cancel_delayed_work_sync(&hdev->ncmd_timer);
319 atomic_set(&hdev->cmd_cnt, 1);
320
321 wake_up_interruptible(&hdev->req_wait_q);
322 }
323
hci_cmd_sync_init(struct hci_dev * hdev)324 void hci_cmd_sync_init(struct hci_dev *hdev)
325 {
326 INIT_WORK(&hdev->cmd_sync_work, hci_cmd_sync_work);
327 INIT_LIST_HEAD(&hdev->cmd_sync_work_list);
328 mutex_init(&hdev->cmd_sync_work_lock);
329
330 INIT_WORK(&hdev->cmd_sync_cancel_work, hci_cmd_sync_cancel_work);
331 }
332
hci_cmd_sync_clear(struct hci_dev * hdev)333 void hci_cmd_sync_clear(struct hci_dev *hdev)
334 {
335 struct hci_cmd_sync_work_entry *entry, *tmp;
336
337 cancel_work_sync(&hdev->cmd_sync_work);
338
339 list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) {
340 if (entry->destroy)
341 entry->destroy(hdev, entry->data, -ECANCELED);
342
343 list_del(&entry->list);
344 kfree(entry);
345 }
346 }
347
__hci_cmd_sync_cancel(struct hci_dev * hdev,int err)348 void __hci_cmd_sync_cancel(struct hci_dev *hdev, int err)
349 {
350 bt_dev_dbg(hdev, "err 0x%2.2x", err);
351
352 if (hdev->req_status == HCI_REQ_PEND) {
353 hdev->req_result = err;
354 hdev->req_status = HCI_REQ_CANCELED;
355
356 cancel_delayed_work_sync(&hdev->cmd_timer);
357 cancel_delayed_work_sync(&hdev->ncmd_timer);
358 atomic_set(&hdev->cmd_cnt, 1);
359
360 wake_up_interruptible(&hdev->req_wait_q);
361 }
362 }
363
hci_cmd_sync_cancel(struct hci_dev * hdev,int err)364 void hci_cmd_sync_cancel(struct hci_dev *hdev, int err)
365 {
366 bt_dev_dbg(hdev, "err 0x%2.2x", err);
367
368 if (hdev->req_status == HCI_REQ_PEND) {
369 hdev->req_result = err;
370 hdev->req_status = HCI_REQ_CANCELED;
371
372 queue_work(hdev->workqueue, &hdev->cmd_sync_cancel_work);
373 }
374 }
375 EXPORT_SYMBOL(hci_cmd_sync_cancel);
376
hci_cmd_sync_queue(struct hci_dev * hdev,hci_cmd_sync_work_func_t func,void * data,hci_cmd_sync_work_destroy_t destroy)377 int hci_cmd_sync_queue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
378 void *data, hci_cmd_sync_work_destroy_t destroy)
379 {
380 struct hci_cmd_sync_work_entry *entry;
381
382 if (hci_dev_test_flag(hdev, HCI_UNREGISTER))
383 return -ENODEV;
384
385 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
386 if (!entry)
387 return -ENOMEM;
388
389 entry->func = func;
390 entry->data = data;
391 entry->destroy = destroy;
392
393 mutex_lock(&hdev->cmd_sync_work_lock);
394 list_add_tail(&entry->list, &hdev->cmd_sync_work_list);
395 mutex_unlock(&hdev->cmd_sync_work_lock);
396
397 queue_work(hdev->req_workqueue, &hdev->cmd_sync_work);
398
399 return 0;
400 }
401 EXPORT_SYMBOL(hci_cmd_sync_queue);
402
hci_update_eir_sync(struct hci_dev * hdev)403 int hci_update_eir_sync(struct hci_dev *hdev)
404 {
405 struct hci_cp_write_eir cp;
406
407 bt_dev_dbg(hdev, "");
408
409 if (!hdev_is_powered(hdev))
410 return 0;
411
412 if (!lmp_ext_inq_capable(hdev))
413 return 0;
414
415 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
416 return 0;
417
418 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
419 return 0;
420
421 memset(&cp, 0, sizeof(cp));
422
423 eir_create(hdev, cp.data);
424
425 if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
426 return 0;
427
428 memcpy(hdev->eir, cp.data, sizeof(cp.data));
429
430 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp,
431 HCI_CMD_TIMEOUT);
432 }
433
get_service_classes(struct hci_dev * hdev)434 static u8 get_service_classes(struct hci_dev *hdev)
435 {
436 struct bt_uuid *uuid;
437 u8 val = 0;
438
439 list_for_each_entry(uuid, &hdev->uuids, list)
440 val |= uuid->svc_hint;
441
442 return val;
443 }
444
hci_update_class_sync(struct hci_dev * hdev)445 int hci_update_class_sync(struct hci_dev *hdev)
446 {
447 u8 cod[3];
448
449 bt_dev_dbg(hdev, "");
450
451 if (!hdev_is_powered(hdev))
452 return 0;
453
454 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
455 return 0;
456
457 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
458 return 0;
459
460 cod[0] = hdev->minor_class;
461 cod[1] = hdev->major_class;
462 cod[2] = get_service_classes(hdev);
463
464 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
465 cod[1] |= 0x20;
466
467 if (memcmp(cod, hdev->dev_class, 3) == 0)
468 return 0;
469
470 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CLASS_OF_DEV,
471 sizeof(cod), cod, HCI_CMD_TIMEOUT);
472 }
473
is_advertising_allowed(struct hci_dev * hdev,bool connectable)474 static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable)
475 {
476 /* If there is no connection we are OK to advertise. */
477 if (hci_conn_num(hdev, LE_LINK) == 0)
478 return true;
479
480 /* Check le_states if there is any connection in peripheral role. */
481 if (hdev->conn_hash.le_num_peripheral > 0) {
482 /* Peripheral connection state and non connectable mode
483 * bit 20.
484 */
485 if (!connectable && !(hdev->le_states[2] & 0x10))
486 return false;
487
488 /* Peripheral connection state and connectable mode bit 38
489 * and scannable bit 21.
490 */
491 if (connectable && (!(hdev->le_states[4] & 0x40) ||
492 !(hdev->le_states[2] & 0x20)))
493 return false;
494 }
495
496 /* Check le_states if there is any connection in central role. */
497 if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) {
498 /* Central connection state and non connectable mode bit 18. */
499 if (!connectable && !(hdev->le_states[2] & 0x02))
500 return false;
501
502 /* Central connection state and connectable mode bit 35 and
503 * scannable 19.
504 */
505 if (connectable && (!(hdev->le_states[4] & 0x08) ||
506 !(hdev->le_states[2] & 0x08)))
507 return false;
508 }
509
510 return true;
511 }
512
adv_use_rpa(struct hci_dev * hdev,uint32_t flags)513 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
514 {
515 /* If privacy is not enabled don't use RPA */
516 if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
517 return false;
518
519 /* If basic privacy mode is enabled use RPA */
520 if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
521 return true;
522
523 /* If limited privacy mode is enabled don't use RPA if we're
524 * both discoverable and bondable.
525 */
526 if ((flags & MGMT_ADV_FLAG_DISCOV) &&
527 hci_dev_test_flag(hdev, HCI_BONDABLE))
528 return false;
529
530 /* We're neither bondable nor discoverable in the limited
531 * privacy mode, therefore use RPA.
532 */
533 return true;
534 }
535
hci_set_random_addr_sync(struct hci_dev * hdev,bdaddr_t * rpa)536 static int hci_set_random_addr_sync(struct hci_dev *hdev, bdaddr_t *rpa)
537 {
538 /* If we're advertising or initiating an LE connection we can't
539 * go ahead and change the random address at this time. This is
540 * because the eventual initiator address used for the
541 * subsequently created connection will be undefined (some
542 * controllers use the new address and others the one we had
543 * when the operation started).
544 *
545 * In this kind of scenario skip the update and let the random
546 * address be updated at the next cycle.
547 */
548 if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
549 hci_lookup_le_connect(hdev)) {
550 bt_dev_dbg(hdev, "Deferring random address update");
551 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
552 return 0;
553 }
554
555 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RANDOM_ADDR,
556 6, rpa, HCI_CMD_TIMEOUT);
557 }
558
hci_update_random_address_sync(struct hci_dev * hdev,bool require_privacy,bool rpa,u8 * own_addr_type)559 int hci_update_random_address_sync(struct hci_dev *hdev, bool require_privacy,
560 bool rpa, u8 *own_addr_type)
561 {
562 int err;
563
564 /* If privacy is enabled use a resolvable private address. If
565 * current RPA has expired or there is something else than
566 * the current RPA in use, then generate a new one.
567 */
568 if (rpa) {
569 /* If Controller supports LL Privacy use own address type is
570 * 0x03
571 */
572 if (use_ll_privacy(hdev))
573 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
574 else
575 *own_addr_type = ADDR_LE_DEV_RANDOM;
576
577 /* Check if RPA is valid */
578 if (rpa_valid(hdev))
579 return 0;
580
581 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
582 if (err < 0) {
583 bt_dev_err(hdev, "failed to generate new RPA");
584 return err;
585 }
586
587 err = hci_set_random_addr_sync(hdev, &hdev->rpa);
588 if (err)
589 return err;
590
591 return 0;
592 }
593
594 /* In case of required privacy without resolvable private address,
595 * use an non-resolvable private address. This is useful for active
596 * scanning and non-connectable advertising.
597 */
598 if (require_privacy) {
599 bdaddr_t nrpa;
600
601 while (true) {
602 /* The non-resolvable private address is generated
603 * from random six bytes with the two most significant
604 * bits cleared.
605 */
606 get_random_bytes(&nrpa, 6);
607 nrpa.b[5] &= 0x3f;
608
609 /* The non-resolvable private address shall not be
610 * equal to the public address.
611 */
612 if (bacmp(&hdev->bdaddr, &nrpa))
613 break;
614 }
615
616 *own_addr_type = ADDR_LE_DEV_RANDOM;
617
618 return hci_set_random_addr_sync(hdev, &nrpa);
619 }
620
621 /* If forcing static address is in use or there is no public
622 * address use the static address as random address (but skip
623 * the HCI command if the current random address is already the
624 * static one.
625 *
626 * In case BR/EDR has been disabled on a dual-mode controller
627 * and a static address has been configured, then use that
628 * address instead of the public BR/EDR address.
629 */
630 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
631 !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
632 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
633 bacmp(&hdev->static_addr, BDADDR_ANY))) {
634 *own_addr_type = ADDR_LE_DEV_RANDOM;
635 if (bacmp(&hdev->static_addr, &hdev->random_addr))
636 return hci_set_random_addr_sync(hdev,
637 &hdev->static_addr);
638 return 0;
639 }
640
641 /* Neither privacy nor static address is being used so use a
642 * public address.
643 */
644 *own_addr_type = ADDR_LE_DEV_PUBLIC;
645
646 return 0;
647 }
648
hci_disable_ext_adv_instance_sync(struct hci_dev * hdev,u8 instance)649 static int hci_disable_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance)
650 {
651 struct hci_cp_le_set_ext_adv_enable *cp;
652 struct hci_cp_ext_adv_set *set;
653 u8 data[sizeof(*cp) + sizeof(*set) * 1];
654 u8 size;
655
656 /* If request specifies an instance that doesn't exist, fail */
657 if (instance > 0) {
658 struct adv_info *adv;
659
660 adv = hci_find_adv_instance(hdev, instance);
661 if (!adv)
662 return -EINVAL;
663
664 /* If not enabled there is nothing to do */
665 if (!adv->enabled)
666 return 0;
667 }
668
669 memset(data, 0, sizeof(data));
670
671 cp = (void *)data;
672 set = (void *)cp->data;
673
674 /* Instance 0x00 indicates all advertising instances will be disabled */
675 cp->num_of_sets = !!instance;
676 cp->enable = 0x00;
677
678 set->handle = instance;
679
680 size = sizeof(*cp) + sizeof(*set) * cp->num_of_sets;
681
682 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE,
683 size, data, HCI_CMD_TIMEOUT);
684 }
685
hci_set_adv_set_random_addr_sync(struct hci_dev * hdev,u8 instance,bdaddr_t * random_addr)686 static int hci_set_adv_set_random_addr_sync(struct hci_dev *hdev, u8 instance,
687 bdaddr_t *random_addr)
688 {
689 struct hci_cp_le_set_adv_set_rand_addr cp;
690 int err;
691
692 if (!instance) {
693 /* Instance 0x00 doesn't have an adv_info, instead it uses
694 * hdev->random_addr to track its address so whenever it needs
695 * to be updated this also set the random address since
696 * hdev->random_addr is shared with scan state machine.
697 */
698 err = hci_set_random_addr_sync(hdev, random_addr);
699 if (err)
700 return err;
701 }
702
703 memset(&cp, 0, sizeof(cp));
704
705 cp.handle = instance;
706 bacpy(&cp.bdaddr, random_addr);
707
708 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
709 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
710 }
711
hci_setup_ext_adv_instance_sync(struct hci_dev * hdev,u8 instance)712 int hci_setup_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance)
713 {
714 struct hci_cp_le_set_ext_adv_params cp;
715 bool connectable;
716 u32 flags;
717 bdaddr_t random_addr;
718 u8 own_addr_type;
719 int err;
720 struct adv_info *adv;
721 bool secondary_adv;
722
723 if (instance > 0) {
724 adv = hci_find_adv_instance(hdev, instance);
725 if (!adv)
726 return -EINVAL;
727 } else {
728 adv = NULL;
729 }
730
731 /* Updating parameters of an active instance will return a
732 * Command Disallowed error, so we must first disable the
733 * instance if it is active.
734 */
735 if (adv && !adv->pending) {
736 err = hci_disable_ext_adv_instance_sync(hdev, instance);
737 if (err)
738 return err;
739 }
740
741 flags = hci_adv_instance_flags(hdev, instance);
742
743 /* If the "connectable" instance flag was not set, then choose between
744 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
745 */
746 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
747 mgmt_get_connectable(hdev);
748
749 if (!is_advertising_allowed(hdev, connectable))
750 return -EPERM;
751
752 /* Set require_privacy to true only when non-connectable
753 * advertising is used. In that case it is fine to use a
754 * non-resolvable private address.
755 */
756 err = hci_get_random_address(hdev, !connectable,
757 adv_use_rpa(hdev, flags), adv,
758 &own_addr_type, &random_addr);
759 if (err < 0)
760 return err;
761
762 memset(&cp, 0, sizeof(cp));
763
764 if (adv) {
765 hci_cpu_to_le24(adv->min_interval, cp.min_interval);
766 hci_cpu_to_le24(adv->max_interval, cp.max_interval);
767 cp.tx_power = adv->tx_power;
768 } else {
769 hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval);
770 hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval);
771 cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE;
772 }
773
774 secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK);
775
776 if (connectable) {
777 if (secondary_adv)
778 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND);
779 else
780 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND);
781 } else if (hci_adv_instance_is_scannable(hdev, instance) ||
782 (flags & MGMT_ADV_PARAM_SCAN_RSP)) {
783 if (secondary_adv)
784 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND);
785 else
786 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND);
787 } else {
788 if (secondary_adv)
789 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND);
790 else
791 cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND);
792 }
793
794 /* If Own_Address_Type equals 0x02 or 0x03, the Peer_Address parameter
795 * contains the peer’s Identity Address and the Peer_Address_Type
796 * parameter contains the peer’s Identity Type (i.e., 0x00 or 0x01).
797 * These parameters are used to locate the corresponding local IRK in
798 * the resolving list; this IRK is used to generate their own address
799 * used in the advertisement.
800 */
801 if (own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED)
802 hci_copy_identity_address(hdev, &cp.peer_addr,
803 &cp.peer_addr_type);
804
805 cp.own_addr_type = own_addr_type;
806 cp.channel_map = hdev->le_adv_channel_map;
807 cp.handle = instance;
808
809 if (flags & MGMT_ADV_FLAG_SEC_2M) {
810 cp.primary_phy = HCI_ADV_PHY_1M;
811 cp.secondary_phy = HCI_ADV_PHY_2M;
812 } else if (flags & MGMT_ADV_FLAG_SEC_CODED) {
813 cp.primary_phy = HCI_ADV_PHY_CODED;
814 cp.secondary_phy = HCI_ADV_PHY_CODED;
815 } else {
816 /* In all other cases use 1M */
817 cp.primary_phy = HCI_ADV_PHY_1M;
818 cp.secondary_phy = HCI_ADV_PHY_1M;
819 }
820
821 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS,
822 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
823 if (err)
824 return err;
825
826 if ((own_addr_type == ADDR_LE_DEV_RANDOM ||
827 own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) &&
828 bacmp(&random_addr, BDADDR_ANY)) {
829 /* Check if random address need to be updated */
830 if (adv) {
831 if (!bacmp(&random_addr, &adv->random_addr))
832 return 0;
833 } else {
834 if (!bacmp(&random_addr, &hdev->random_addr))
835 return 0;
836 }
837
838 return hci_set_adv_set_random_addr_sync(hdev, instance,
839 &random_addr);
840 }
841
842 return 0;
843 }
844
hci_set_ext_scan_rsp_data_sync(struct hci_dev * hdev,u8 instance)845 static int hci_set_ext_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
846 {
847 struct {
848 struct hci_cp_le_set_ext_scan_rsp_data cp;
849 u8 data[HCI_MAX_EXT_AD_LENGTH];
850 } pdu;
851 u8 len;
852
853 memset(&pdu, 0, sizeof(pdu));
854
855 len = eir_create_scan_rsp(hdev, instance, pdu.data);
856
857 if (hdev->scan_rsp_data_len == len &&
858 !memcmp(pdu.data, hdev->scan_rsp_data, len))
859 return 0;
860
861 memcpy(hdev->scan_rsp_data, pdu.data, len);
862 hdev->scan_rsp_data_len = len;
863
864 pdu.cp.handle = instance;
865 pdu.cp.length = len;
866 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
867 pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
868
869 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA,
870 sizeof(pdu.cp) + len, &pdu.cp,
871 HCI_CMD_TIMEOUT);
872 }
873
__hci_set_scan_rsp_data_sync(struct hci_dev * hdev,u8 instance)874 static int __hci_set_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
875 {
876 struct hci_cp_le_set_scan_rsp_data cp;
877 u8 len;
878
879 memset(&cp, 0, sizeof(cp));
880
881 len = eir_create_scan_rsp(hdev, instance, cp.data);
882
883 if (hdev->scan_rsp_data_len == len &&
884 !memcmp(cp.data, hdev->scan_rsp_data, len))
885 return 0;
886
887 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
888 hdev->scan_rsp_data_len = len;
889
890 cp.length = len;
891
892 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_RSP_DATA,
893 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
894 }
895
hci_update_scan_rsp_data_sync(struct hci_dev * hdev,u8 instance)896 int hci_update_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
897 {
898 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
899 return 0;
900
901 if (ext_adv_capable(hdev))
902 return hci_set_ext_scan_rsp_data_sync(hdev, instance);
903
904 return __hci_set_scan_rsp_data_sync(hdev, instance);
905 }
906
hci_enable_ext_advertising_sync(struct hci_dev * hdev,u8 instance)907 int hci_enable_ext_advertising_sync(struct hci_dev *hdev, u8 instance)
908 {
909 struct hci_cp_le_set_ext_adv_enable *cp;
910 struct hci_cp_ext_adv_set *set;
911 u8 data[sizeof(*cp) + sizeof(*set) * 1];
912 struct adv_info *adv;
913
914 if (instance > 0) {
915 adv = hci_find_adv_instance(hdev, instance);
916 if (!adv)
917 return -EINVAL;
918 /* If already enabled there is nothing to do */
919 if (adv->enabled)
920 return 0;
921 } else {
922 adv = NULL;
923 }
924
925 cp = (void *)data;
926 set = (void *)cp->data;
927
928 memset(cp, 0, sizeof(*cp));
929
930 cp->enable = 0x01;
931 cp->num_of_sets = 0x01;
932
933 memset(set, 0, sizeof(*set));
934
935 set->handle = instance;
936
937 /* Set duration per instance since controller is responsible for
938 * scheduling it.
939 */
940 if (adv && adv->timeout) {
941 u16 duration = adv->timeout * MSEC_PER_SEC;
942
943 /* Time = N * 10 ms */
944 set->duration = cpu_to_le16(duration / 10);
945 }
946
947 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE,
948 sizeof(*cp) +
949 sizeof(*set) * cp->num_of_sets,
950 data, HCI_CMD_TIMEOUT);
951 }
952
hci_start_ext_adv_sync(struct hci_dev * hdev,u8 instance)953 int hci_start_ext_adv_sync(struct hci_dev *hdev, u8 instance)
954 {
955 int err;
956
957 err = hci_setup_ext_adv_instance_sync(hdev, instance);
958 if (err)
959 return err;
960
961 err = hci_set_ext_scan_rsp_data_sync(hdev, instance);
962 if (err)
963 return err;
964
965 return hci_enable_ext_advertising_sync(hdev, instance);
966 }
967
hci_start_adv_sync(struct hci_dev * hdev,u8 instance)968 static int hci_start_adv_sync(struct hci_dev *hdev, u8 instance)
969 {
970 int err;
971
972 if (ext_adv_capable(hdev))
973 return hci_start_ext_adv_sync(hdev, instance);
974
975 err = hci_update_adv_data_sync(hdev, instance);
976 if (err)
977 return err;
978
979 err = hci_update_scan_rsp_data_sync(hdev, instance);
980 if (err)
981 return err;
982
983 return hci_enable_advertising_sync(hdev);
984 }
985
hci_enable_advertising_sync(struct hci_dev * hdev)986 int hci_enable_advertising_sync(struct hci_dev *hdev)
987 {
988 struct adv_info *adv_instance;
989 struct hci_cp_le_set_adv_param cp;
990 u8 own_addr_type, enable = 0x01;
991 bool connectable;
992 u16 adv_min_interval, adv_max_interval;
993 u32 flags;
994 u8 status;
995
996 if (ext_adv_capable(hdev))
997 return hci_enable_ext_advertising_sync(hdev,
998 hdev->cur_adv_instance);
999
1000 flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance);
1001 adv_instance = hci_find_adv_instance(hdev, hdev->cur_adv_instance);
1002
1003 /* If the "connectable" instance flag was not set, then choose between
1004 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1005 */
1006 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1007 mgmt_get_connectable(hdev);
1008
1009 if (!is_advertising_allowed(hdev, connectable))
1010 return -EINVAL;
1011
1012 status = hci_disable_advertising_sync(hdev);
1013 if (status)
1014 return status;
1015
1016 /* Clear the HCI_LE_ADV bit temporarily so that the
1017 * hci_update_random_address knows that it's safe to go ahead
1018 * and write a new random address. The flag will be set back on
1019 * as soon as the SET_ADV_ENABLE HCI command completes.
1020 */
1021 hci_dev_clear_flag(hdev, HCI_LE_ADV);
1022
1023 /* Set require_privacy to true only when non-connectable
1024 * advertising is used. In that case it is fine to use a
1025 * non-resolvable private address.
1026 */
1027 status = hci_update_random_address_sync(hdev, !connectable,
1028 adv_use_rpa(hdev, flags),
1029 &own_addr_type);
1030 if (status)
1031 return status;
1032
1033 memset(&cp, 0, sizeof(cp));
1034
1035 if (adv_instance) {
1036 adv_min_interval = adv_instance->min_interval;
1037 adv_max_interval = adv_instance->max_interval;
1038 } else {
1039 adv_min_interval = hdev->le_adv_min_interval;
1040 adv_max_interval = hdev->le_adv_max_interval;
1041 }
1042
1043 if (connectable) {
1044 cp.type = LE_ADV_IND;
1045 } else {
1046 if (hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance))
1047 cp.type = LE_ADV_SCAN_IND;
1048 else
1049 cp.type = LE_ADV_NONCONN_IND;
1050
1051 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) ||
1052 hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
1053 adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN;
1054 adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX;
1055 }
1056 }
1057
1058 cp.min_interval = cpu_to_le16(adv_min_interval);
1059 cp.max_interval = cpu_to_le16(adv_max_interval);
1060 cp.own_address_type = own_addr_type;
1061 cp.channel_map = hdev->le_adv_channel_map;
1062
1063 status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM,
1064 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1065 if (status)
1066 return status;
1067
1068 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
1069 sizeof(enable), &enable, HCI_CMD_TIMEOUT);
1070 }
1071
enable_advertising_sync(struct hci_dev * hdev,void * data)1072 static int enable_advertising_sync(struct hci_dev *hdev, void *data)
1073 {
1074 return hci_enable_advertising_sync(hdev);
1075 }
1076
hci_enable_advertising(struct hci_dev * hdev)1077 int hci_enable_advertising(struct hci_dev *hdev)
1078 {
1079 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1080 list_empty(&hdev->adv_instances))
1081 return 0;
1082
1083 return hci_cmd_sync_queue(hdev, enable_advertising_sync, NULL, NULL);
1084 }
1085
hci_remove_ext_adv_instance_sync(struct hci_dev * hdev,u8 instance,struct sock * sk)1086 int hci_remove_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance,
1087 struct sock *sk)
1088 {
1089 int err;
1090
1091 if (!ext_adv_capable(hdev))
1092 return 0;
1093
1094 err = hci_disable_ext_adv_instance_sync(hdev, instance);
1095 if (err)
1096 return err;
1097
1098 /* If request specifies an instance that doesn't exist, fail */
1099 if (instance > 0 && !hci_find_adv_instance(hdev, instance))
1100 return -EINVAL;
1101
1102 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_REMOVE_ADV_SET,
1103 sizeof(instance), &instance, 0,
1104 HCI_CMD_TIMEOUT, sk);
1105 }
1106
cancel_adv_timeout(struct hci_dev * hdev)1107 static void cancel_adv_timeout(struct hci_dev *hdev)
1108 {
1109 if (hdev->adv_instance_timeout) {
1110 hdev->adv_instance_timeout = 0;
1111 cancel_delayed_work(&hdev->adv_instance_expire);
1112 }
1113 }
1114
hci_set_ext_adv_data_sync(struct hci_dev * hdev,u8 instance)1115 static int hci_set_ext_adv_data_sync(struct hci_dev *hdev, u8 instance)
1116 {
1117 struct {
1118 struct hci_cp_le_set_ext_adv_data cp;
1119 u8 data[HCI_MAX_EXT_AD_LENGTH];
1120 } pdu;
1121 u8 len;
1122
1123 memset(&pdu, 0, sizeof(pdu));
1124
1125 len = eir_create_adv_data(hdev, instance, pdu.data);
1126
1127 /* There's nothing to do if the data hasn't changed */
1128 if (hdev->adv_data_len == len &&
1129 memcmp(pdu.data, hdev->adv_data, len) == 0)
1130 return 0;
1131
1132 memcpy(hdev->adv_data, pdu.data, len);
1133 hdev->adv_data_len = len;
1134
1135 pdu.cp.length = len;
1136 pdu.cp.handle = instance;
1137 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1138 pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1139
1140 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_DATA,
1141 sizeof(pdu.cp) + len, &pdu.cp,
1142 HCI_CMD_TIMEOUT);
1143 }
1144
hci_set_adv_data_sync(struct hci_dev * hdev,u8 instance)1145 static int hci_set_adv_data_sync(struct hci_dev *hdev, u8 instance)
1146 {
1147 struct hci_cp_le_set_adv_data cp;
1148 u8 len;
1149
1150 memset(&cp, 0, sizeof(cp));
1151
1152 len = eir_create_adv_data(hdev, instance, cp.data);
1153
1154 /* There's nothing to do if the data hasn't changed */
1155 if (hdev->adv_data_len == len &&
1156 memcmp(cp.data, hdev->adv_data, len) == 0)
1157 return 0;
1158
1159 memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1160 hdev->adv_data_len = len;
1161
1162 cp.length = len;
1163
1164 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_DATA,
1165 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1166 }
1167
hci_update_adv_data_sync(struct hci_dev * hdev,u8 instance)1168 int hci_update_adv_data_sync(struct hci_dev *hdev, u8 instance)
1169 {
1170 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1171 return 0;
1172
1173 if (ext_adv_capable(hdev))
1174 return hci_set_ext_adv_data_sync(hdev, instance);
1175
1176 return hci_set_adv_data_sync(hdev, instance);
1177 }
1178
hci_schedule_adv_instance_sync(struct hci_dev * hdev,u8 instance,bool force)1179 int hci_schedule_adv_instance_sync(struct hci_dev *hdev, u8 instance,
1180 bool force)
1181 {
1182 struct adv_info *adv = NULL;
1183 u16 timeout;
1184
1185 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) && !ext_adv_capable(hdev))
1186 return -EPERM;
1187
1188 if (hdev->adv_instance_timeout)
1189 return -EBUSY;
1190
1191 adv = hci_find_adv_instance(hdev, instance);
1192 if (!adv)
1193 return -ENOENT;
1194
1195 /* A zero timeout means unlimited advertising. As long as there is
1196 * only one instance, duration should be ignored. We still set a timeout
1197 * in case further instances are being added later on.
1198 *
1199 * If the remaining lifetime of the instance is more than the duration
1200 * then the timeout corresponds to the duration, otherwise it will be
1201 * reduced to the remaining instance lifetime.
1202 */
1203 if (adv->timeout == 0 || adv->duration <= adv->remaining_time)
1204 timeout = adv->duration;
1205 else
1206 timeout = adv->remaining_time;
1207
1208 /* The remaining time is being reduced unless the instance is being
1209 * advertised without time limit.
1210 */
1211 if (adv->timeout)
1212 adv->remaining_time = adv->remaining_time - timeout;
1213
1214 /* Only use work for scheduling instances with legacy advertising */
1215 if (!ext_adv_capable(hdev)) {
1216 hdev->adv_instance_timeout = timeout;
1217 queue_delayed_work(hdev->req_workqueue,
1218 &hdev->adv_instance_expire,
1219 msecs_to_jiffies(timeout * 1000));
1220 }
1221
1222 /* If we're just re-scheduling the same instance again then do not
1223 * execute any HCI commands. This happens when a single instance is
1224 * being advertised.
1225 */
1226 if (!force && hdev->cur_adv_instance == instance &&
1227 hci_dev_test_flag(hdev, HCI_LE_ADV))
1228 return 0;
1229
1230 hdev->cur_adv_instance = instance;
1231
1232 return hci_start_adv_sync(hdev, instance);
1233 }
1234
hci_clear_adv_sets_sync(struct hci_dev * hdev,struct sock * sk)1235 static int hci_clear_adv_sets_sync(struct hci_dev *hdev, struct sock *sk)
1236 {
1237 int err;
1238
1239 if (!ext_adv_capable(hdev))
1240 return 0;
1241
1242 /* Disable instance 0x00 to disable all instances */
1243 err = hci_disable_ext_adv_instance_sync(hdev, 0x00);
1244 if (err)
1245 return err;
1246
1247 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CLEAR_ADV_SETS,
1248 0, NULL, 0, HCI_CMD_TIMEOUT, sk);
1249 }
1250
hci_clear_adv_sync(struct hci_dev * hdev,struct sock * sk,bool force)1251 static int hci_clear_adv_sync(struct hci_dev *hdev, struct sock *sk, bool force)
1252 {
1253 struct adv_info *adv, *n;
1254
1255 if (ext_adv_capable(hdev))
1256 /* Remove all existing sets */
1257 return hci_clear_adv_sets_sync(hdev, sk);
1258
1259 /* This is safe as long as there is no command send while the lock is
1260 * held.
1261 */
1262 hci_dev_lock(hdev);
1263
1264 /* Cleanup non-ext instances */
1265 list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) {
1266 u8 instance = adv->instance;
1267 int err;
1268
1269 if (!(force || adv->timeout))
1270 continue;
1271
1272 err = hci_remove_adv_instance(hdev, instance);
1273 if (!err)
1274 mgmt_advertising_removed(sk, hdev, instance);
1275 }
1276
1277 hci_dev_unlock(hdev);
1278
1279 return 0;
1280 }
1281
hci_remove_adv_sync(struct hci_dev * hdev,u8 instance,struct sock * sk)1282 static int hci_remove_adv_sync(struct hci_dev *hdev, u8 instance,
1283 struct sock *sk)
1284 {
1285 int err;
1286
1287 /* If we use extended advertising, instance has to be removed first. */
1288 if (ext_adv_capable(hdev))
1289 return hci_remove_ext_adv_instance_sync(hdev, instance, sk);
1290
1291 /* This is safe as long as there is no command send while the lock is
1292 * held.
1293 */
1294 hci_dev_lock(hdev);
1295
1296 err = hci_remove_adv_instance(hdev, instance);
1297 if (!err)
1298 mgmt_advertising_removed(sk, hdev, instance);
1299
1300 hci_dev_unlock(hdev);
1301
1302 return err;
1303 }
1304
1305 /* For a single instance:
1306 * - force == true: The instance will be removed even when its remaining
1307 * lifetime is not zero.
1308 * - force == false: the instance will be deactivated but kept stored unless
1309 * the remaining lifetime is zero.
1310 *
1311 * For instance == 0x00:
1312 * - force == true: All instances will be removed regardless of their timeout
1313 * setting.
1314 * - force == false: Only instances that have a timeout will be removed.
1315 */
hci_remove_advertising_sync(struct hci_dev * hdev,struct sock * sk,u8 instance,bool force)1316 int hci_remove_advertising_sync(struct hci_dev *hdev, struct sock *sk,
1317 u8 instance, bool force)
1318 {
1319 struct adv_info *next = NULL;
1320 int err;
1321
1322 /* Cancel any timeout concerning the removed instance(s). */
1323 if (!instance || hdev->cur_adv_instance == instance)
1324 cancel_adv_timeout(hdev);
1325
1326 /* Get the next instance to advertise BEFORE we remove
1327 * the current one. This can be the same instance again
1328 * if there is only one instance.
1329 */
1330 if (hdev->cur_adv_instance == instance)
1331 next = hci_get_next_instance(hdev, instance);
1332
1333 if (!instance) {
1334 err = hci_clear_adv_sync(hdev, sk, force);
1335 if (err)
1336 return err;
1337 } else {
1338 struct adv_info *adv = hci_find_adv_instance(hdev, instance);
1339
1340 if (force || (adv && adv->timeout && !adv->remaining_time)) {
1341 /* Don't advertise a removed instance. */
1342 if (next && next->instance == instance)
1343 next = NULL;
1344
1345 err = hci_remove_adv_sync(hdev, instance, sk);
1346 if (err)
1347 return err;
1348 }
1349 }
1350
1351 if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING))
1352 return 0;
1353
1354 if (next && !ext_adv_capable(hdev))
1355 hci_schedule_adv_instance_sync(hdev, next->instance, false);
1356
1357 return 0;
1358 }
1359
hci_read_rssi_sync(struct hci_dev * hdev,__le16 handle)1360 int hci_read_rssi_sync(struct hci_dev *hdev, __le16 handle)
1361 {
1362 struct hci_cp_read_rssi cp;
1363
1364 cp.handle = handle;
1365 return __hci_cmd_sync_status(hdev, HCI_OP_READ_RSSI,
1366 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1367 }
1368
hci_read_clock_sync(struct hci_dev * hdev,struct hci_cp_read_clock * cp)1369 int hci_read_clock_sync(struct hci_dev *hdev, struct hci_cp_read_clock *cp)
1370 {
1371 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLOCK,
1372 sizeof(*cp), cp, HCI_CMD_TIMEOUT);
1373 }
1374
hci_read_tx_power_sync(struct hci_dev * hdev,__le16 handle,u8 type)1375 int hci_read_tx_power_sync(struct hci_dev *hdev, __le16 handle, u8 type)
1376 {
1377 struct hci_cp_read_tx_power cp;
1378
1379 cp.handle = handle;
1380 cp.type = type;
1381 return __hci_cmd_sync_status(hdev, HCI_OP_READ_TX_POWER,
1382 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1383 }
1384
hci_disable_advertising_sync(struct hci_dev * hdev)1385 int hci_disable_advertising_sync(struct hci_dev *hdev)
1386 {
1387 u8 enable = 0x00;
1388
1389 /* If controller is not advertising we are done. */
1390 if (!hci_dev_test_flag(hdev, HCI_LE_ADV))
1391 return 0;
1392
1393 if (ext_adv_capable(hdev))
1394 return hci_disable_ext_adv_instance_sync(hdev, 0x00);
1395
1396 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
1397 sizeof(enable), &enable, HCI_CMD_TIMEOUT);
1398 }
1399
hci_le_set_ext_scan_enable_sync(struct hci_dev * hdev,u8 val,u8 filter_dup)1400 static int hci_le_set_ext_scan_enable_sync(struct hci_dev *hdev, u8 val,
1401 u8 filter_dup)
1402 {
1403 struct hci_cp_le_set_ext_scan_enable cp;
1404
1405 memset(&cp, 0, sizeof(cp));
1406 cp.enable = val;
1407 cp.filter_dup = filter_dup;
1408
1409 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
1410 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1411 }
1412
hci_le_set_scan_enable_sync(struct hci_dev * hdev,u8 val,u8 filter_dup)1413 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val,
1414 u8 filter_dup)
1415 {
1416 struct hci_cp_le_set_scan_enable cp;
1417
1418 if (use_ext_scan(hdev))
1419 return hci_le_set_ext_scan_enable_sync(hdev, val, filter_dup);
1420
1421 memset(&cp, 0, sizeof(cp));
1422 cp.enable = val;
1423 cp.filter_dup = filter_dup;
1424
1425 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_ENABLE,
1426 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1427 }
1428
hci_le_set_addr_resolution_enable_sync(struct hci_dev * hdev,u8 val)1429 static int hci_le_set_addr_resolution_enable_sync(struct hci_dev *hdev, u8 val)
1430 {
1431 if (!use_ll_privacy(hdev))
1432 return 0;
1433
1434 /* If controller is not/already resolving we are done. */
1435 if (val == hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION))
1436 return 0;
1437
1438 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE,
1439 sizeof(val), &val, HCI_CMD_TIMEOUT);
1440 }
1441
hci_scan_disable_sync(struct hci_dev * hdev)1442 static int hci_scan_disable_sync(struct hci_dev *hdev)
1443 {
1444 int err;
1445
1446 /* If controller is not scanning we are done. */
1447 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
1448 return 0;
1449
1450 if (hdev->scanning_paused) {
1451 bt_dev_dbg(hdev, "Scanning is paused for suspend");
1452 return 0;
1453 }
1454
1455 err = hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00);
1456 if (err) {
1457 bt_dev_err(hdev, "Unable to disable scanning: %d", err);
1458 return err;
1459 }
1460
1461 return err;
1462 }
1463
scan_use_rpa(struct hci_dev * hdev)1464 static bool scan_use_rpa(struct hci_dev *hdev)
1465 {
1466 return hci_dev_test_flag(hdev, HCI_PRIVACY);
1467 }
1468
hci_start_interleave_scan(struct hci_dev * hdev)1469 static void hci_start_interleave_scan(struct hci_dev *hdev)
1470 {
1471 hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER;
1472 queue_delayed_work(hdev->req_workqueue,
1473 &hdev->interleave_scan, 0);
1474 }
1475
is_interleave_scanning(struct hci_dev * hdev)1476 static bool is_interleave_scanning(struct hci_dev *hdev)
1477 {
1478 return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE;
1479 }
1480
cancel_interleave_scan(struct hci_dev * hdev)1481 static void cancel_interleave_scan(struct hci_dev *hdev)
1482 {
1483 bt_dev_dbg(hdev, "cancelling interleave scan");
1484
1485 cancel_delayed_work_sync(&hdev->interleave_scan);
1486
1487 hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE;
1488 }
1489
1490 /* Return true if interleave_scan wasn't started until exiting this function,
1491 * otherwise, return false
1492 */
hci_update_interleaved_scan_sync(struct hci_dev * hdev)1493 static bool hci_update_interleaved_scan_sync(struct hci_dev *hdev)
1494 {
1495 /* Do interleaved scan only if all of the following are true:
1496 * - There is at least one ADV monitor
1497 * - At least one pending LE connection or one device to be scanned for
1498 * - Monitor offloading is not supported
1499 * If so, we should alternate between allowlist scan and one without
1500 * any filters to save power.
1501 */
1502 bool use_interleaving = hci_is_adv_monitoring(hdev) &&
1503 !(list_empty(&hdev->pend_le_conns) &&
1504 list_empty(&hdev->pend_le_reports)) &&
1505 hci_get_adv_monitor_offload_ext(hdev) ==
1506 HCI_ADV_MONITOR_EXT_NONE;
1507 bool is_interleaving = is_interleave_scanning(hdev);
1508
1509 if (use_interleaving && !is_interleaving) {
1510 hci_start_interleave_scan(hdev);
1511 bt_dev_dbg(hdev, "starting interleave scan");
1512 return true;
1513 }
1514
1515 if (!use_interleaving && is_interleaving)
1516 cancel_interleave_scan(hdev);
1517
1518 return false;
1519 }
1520
1521 /* Removes connection to resolve list if needed.*/
hci_le_del_resolve_list_sync(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 bdaddr_type)1522 static int hci_le_del_resolve_list_sync(struct hci_dev *hdev,
1523 bdaddr_t *bdaddr, u8 bdaddr_type)
1524 {
1525 struct hci_cp_le_del_from_resolv_list cp;
1526 struct bdaddr_list_with_irk *entry;
1527
1528 if (!use_ll_privacy(hdev))
1529 return 0;
1530
1531 /* Check if the IRK has been programmed */
1532 entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, bdaddr,
1533 bdaddr_type);
1534 if (!entry)
1535 return 0;
1536
1537 cp.bdaddr_type = bdaddr_type;
1538 bacpy(&cp.bdaddr, bdaddr);
1539
1540 return __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_RESOLV_LIST,
1541 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1542 }
1543
hci_le_del_accept_list_sync(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 bdaddr_type)1544 static int hci_le_del_accept_list_sync(struct hci_dev *hdev,
1545 bdaddr_t *bdaddr, u8 bdaddr_type)
1546 {
1547 struct hci_cp_le_del_from_accept_list cp;
1548 int err;
1549
1550 /* Check if device is on accept list before removing it */
1551 if (!hci_bdaddr_list_lookup(&hdev->le_accept_list, bdaddr, bdaddr_type))
1552 return 0;
1553
1554 cp.bdaddr_type = bdaddr_type;
1555 bacpy(&cp.bdaddr, bdaddr);
1556
1557 /* Ignore errors when removing from resolving list as that is likely
1558 * that the device was never added.
1559 */
1560 hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type);
1561
1562 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_ACCEPT_LIST,
1563 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1564 if (err) {
1565 bt_dev_err(hdev, "Unable to remove from allow list: %d", err);
1566 return err;
1567 }
1568
1569 bt_dev_dbg(hdev, "Remove %pMR (0x%x) from allow list", &cp.bdaddr,
1570 cp.bdaddr_type);
1571
1572 return 0;
1573 }
1574
1575 /* Adds connection to resolve list if needed.
1576 * Setting params to NULL programs local hdev->irk
1577 */
hci_le_add_resolve_list_sync(struct hci_dev * hdev,struct hci_conn_params * params)1578 static int hci_le_add_resolve_list_sync(struct hci_dev *hdev,
1579 struct hci_conn_params *params)
1580 {
1581 struct hci_cp_le_add_to_resolv_list cp;
1582 struct smp_irk *irk;
1583 struct bdaddr_list_with_irk *entry;
1584
1585 if (!use_ll_privacy(hdev))
1586 return 0;
1587
1588 /* Attempt to program local identity address, type and irk if params is
1589 * NULL.
1590 */
1591 if (!params) {
1592 if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
1593 return 0;
1594
1595 hci_copy_identity_address(hdev, &cp.bdaddr, &cp.bdaddr_type);
1596 memcpy(cp.peer_irk, hdev->irk, 16);
1597 goto done;
1598 }
1599
1600 irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type);
1601 if (!irk)
1602 return 0;
1603
1604 /* Check if the IK has _not_ been programmed yet. */
1605 entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list,
1606 ¶ms->addr,
1607 params->addr_type);
1608 if (entry)
1609 return 0;
1610
1611 cp.bdaddr_type = params->addr_type;
1612 bacpy(&cp.bdaddr, ¶ms->addr);
1613 memcpy(cp.peer_irk, irk->val, 16);
1614
1615 /* Default privacy mode is always Network */
1616 params->privacy_mode = HCI_NETWORK_PRIVACY;
1617
1618 done:
1619 if (hci_dev_test_flag(hdev, HCI_PRIVACY))
1620 memcpy(cp.local_irk, hdev->irk, 16);
1621 else
1622 memset(cp.local_irk, 0, 16);
1623
1624 return __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_RESOLV_LIST,
1625 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1626 }
1627
1628 /* Set Device Privacy Mode. */
hci_le_set_privacy_mode_sync(struct hci_dev * hdev,struct hci_conn_params * params)1629 static int hci_le_set_privacy_mode_sync(struct hci_dev *hdev,
1630 struct hci_conn_params *params)
1631 {
1632 struct hci_cp_le_set_privacy_mode cp;
1633 struct smp_irk *irk;
1634
1635 /* If device privacy mode has already been set there is nothing to do */
1636 if (params->privacy_mode == HCI_DEVICE_PRIVACY)
1637 return 0;
1638
1639 /* Check if HCI_CONN_FLAG_DEVICE_PRIVACY has been set as it also
1640 * indicates that LL Privacy has been enabled and
1641 * HCI_OP_LE_SET_PRIVACY_MODE is supported.
1642 */
1643 if (!(params->flags & HCI_CONN_FLAG_DEVICE_PRIVACY))
1644 return 0;
1645
1646 irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type);
1647 if (!irk)
1648 return 0;
1649
1650 memset(&cp, 0, sizeof(cp));
1651 cp.bdaddr_type = irk->addr_type;
1652 bacpy(&cp.bdaddr, &irk->bdaddr);
1653 cp.mode = HCI_DEVICE_PRIVACY;
1654
1655 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PRIVACY_MODE,
1656 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1657 }
1658
1659 /* Adds connection to allow list if needed, if the device uses RPA (has IRK)
1660 * this attempts to program the device in the resolving list as well and
1661 * properly set the privacy mode.
1662 */
hci_le_add_accept_list_sync(struct hci_dev * hdev,struct hci_conn_params * params,u8 * num_entries)1663 static int hci_le_add_accept_list_sync(struct hci_dev *hdev,
1664 struct hci_conn_params *params,
1665 u8 *num_entries)
1666 {
1667 struct hci_cp_le_add_to_accept_list cp;
1668 int err;
1669
1670 /* During suspend, only wakeable devices can be in acceptlist */
1671 if (hdev->suspended &&
1672 !(params->flags & HCI_CONN_FLAG_REMOTE_WAKEUP))
1673 return 0;
1674
1675 /* Select filter policy to accept all advertising */
1676 if (*num_entries >= hdev->le_accept_list_size)
1677 return -ENOSPC;
1678
1679 /* Accept list can not be used with RPAs */
1680 if (!use_ll_privacy(hdev) &&
1681 hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type))
1682 return -EINVAL;
1683
1684 /* Attempt to program the device in the resolving list first to avoid
1685 * having to rollback in case it fails since the resolving list is
1686 * dynamic it can probably be smaller than the accept list.
1687 */
1688 err = hci_le_add_resolve_list_sync(hdev, params);
1689 if (err) {
1690 bt_dev_err(hdev, "Unable to add to resolve list: %d", err);
1691 return err;
1692 }
1693
1694 /* Set Privacy Mode */
1695 err = hci_le_set_privacy_mode_sync(hdev, params);
1696 if (err) {
1697 bt_dev_err(hdev, "Unable to set privacy mode: %d", err);
1698 return err;
1699 }
1700
1701 /* Check if already in accept list */
1702 if (hci_bdaddr_list_lookup(&hdev->le_accept_list, ¶ms->addr,
1703 params->addr_type))
1704 return 0;
1705
1706 *num_entries += 1;
1707 cp.bdaddr_type = params->addr_type;
1708 bacpy(&cp.bdaddr, ¶ms->addr);
1709
1710 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST,
1711 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1712 if (err) {
1713 bt_dev_err(hdev, "Unable to add to allow list: %d", err);
1714 /* Rollback the device from the resolving list */
1715 hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type);
1716 return err;
1717 }
1718
1719 bt_dev_dbg(hdev, "Add %pMR (0x%x) to allow list", &cp.bdaddr,
1720 cp.bdaddr_type);
1721
1722 return 0;
1723 }
1724
1725 /* This function disables/pause all advertising instances */
hci_pause_advertising_sync(struct hci_dev * hdev)1726 static int hci_pause_advertising_sync(struct hci_dev *hdev)
1727 {
1728 int err;
1729 int old_state;
1730
1731 /* If already been paused there is nothing to do. */
1732 if (hdev->advertising_paused)
1733 return 0;
1734
1735 bt_dev_dbg(hdev, "Pausing directed advertising");
1736
1737 /* Stop directed advertising */
1738 old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING);
1739 if (old_state) {
1740 /* When discoverable timeout triggers, then just make sure
1741 * the limited discoverable flag is cleared. Even in the case
1742 * of a timeout triggered from general discoverable, it is
1743 * safe to unconditionally clear the flag.
1744 */
1745 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1746 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1747 hdev->discov_timeout = 0;
1748 }
1749
1750 bt_dev_dbg(hdev, "Pausing advertising instances");
1751
1752 /* Call to disable any advertisements active on the controller.
1753 * This will succeed even if no advertisements are configured.
1754 */
1755 err = hci_disable_advertising_sync(hdev);
1756 if (err)
1757 return err;
1758
1759 /* If we are using software rotation, pause the loop */
1760 if (!ext_adv_capable(hdev))
1761 cancel_adv_timeout(hdev);
1762
1763 hdev->advertising_paused = true;
1764 hdev->advertising_old_state = old_state;
1765
1766 return 0;
1767 }
1768
1769 /* This function enables all user advertising instances */
hci_resume_advertising_sync(struct hci_dev * hdev)1770 static int hci_resume_advertising_sync(struct hci_dev *hdev)
1771 {
1772 struct adv_info *adv, *tmp;
1773 int err;
1774
1775 /* If advertising has not been paused there is nothing to do. */
1776 if (!hdev->advertising_paused)
1777 return 0;
1778
1779 /* Resume directed advertising */
1780 hdev->advertising_paused = false;
1781 if (hdev->advertising_old_state) {
1782 hci_dev_set_flag(hdev, HCI_ADVERTISING);
1783 hdev->advertising_old_state = 0;
1784 }
1785
1786 bt_dev_dbg(hdev, "Resuming advertising instances");
1787
1788 if (ext_adv_capable(hdev)) {
1789 /* Call for each tracked instance to be re-enabled */
1790 list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) {
1791 err = hci_enable_ext_advertising_sync(hdev,
1792 adv->instance);
1793 if (!err)
1794 continue;
1795
1796 /* If the instance cannot be resumed remove it */
1797 hci_remove_ext_adv_instance_sync(hdev, adv->instance,
1798 NULL);
1799 }
1800 } else {
1801 /* Schedule for most recent instance to be restarted and begin
1802 * the software rotation loop
1803 */
1804 err = hci_schedule_adv_instance_sync(hdev,
1805 hdev->cur_adv_instance,
1806 true);
1807 }
1808
1809 hdev->advertising_paused = false;
1810
1811 return err;
1812 }
1813
hci_read_local_oob_data_sync(struct hci_dev * hdev,bool extended,struct sock * sk)1814 struct sk_buff *hci_read_local_oob_data_sync(struct hci_dev *hdev,
1815 bool extended, struct sock *sk)
1816 {
1817 u16 opcode = extended ? HCI_OP_READ_LOCAL_OOB_EXT_DATA :
1818 HCI_OP_READ_LOCAL_OOB_DATA;
1819
1820 return __hci_cmd_sync_sk(hdev, opcode, 0, NULL, 0, HCI_CMD_TIMEOUT, sk);
1821 }
1822
1823 /* Device must not be scanning when updating the accept list.
1824 *
1825 * Update is done using the following sequence:
1826 *
1827 * use_ll_privacy((Disable Advertising) -> Disable Resolving List) ->
1828 * Remove Devices From Accept List ->
1829 * (has IRK && use_ll_privacy(Remove Devices From Resolving List))->
1830 * Add Devices to Accept List ->
1831 * (has IRK && use_ll_privacy(Remove Devices From Resolving List)) ->
1832 * use_ll_privacy(Enable Resolving List -> (Enable Advertising)) ->
1833 * Enable Scanning
1834 *
1835 * In case of failure advertising shall be restored to its original state and
1836 * return would disable accept list since either accept or resolving list could
1837 * not be programmed.
1838 *
1839 */
hci_update_accept_list_sync(struct hci_dev * hdev)1840 static u8 hci_update_accept_list_sync(struct hci_dev *hdev)
1841 {
1842 struct hci_conn_params *params;
1843 struct bdaddr_list *b, *t;
1844 u8 num_entries = 0;
1845 bool pend_conn, pend_report;
1846 u8 filter_policy;
1847 int err;
1848
1849 /* Pause advertising if resolving list can be used as controllers are
1850 * cannot accept resolving list modifications while advertising.
1851 */
1852 if (use_ll_privacy(hdev)) {
1853 err = hci_pause_advertising_sync(hdev);
1854 if (err) {
1855 bt_dev_err(hdev, "pause advertising failed: %d", err);
1856 return 0x00;
1857 }
1858 }
1859
1860 /* Disable address resolution while reprogramming accept list since
1861 * devices that do have an IRK will be programmed in the resolving list
1862 * when LL Privacy is enabled.
1863 */
1864 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00);
1865 if (err) {
1866 bt_dev_err(hdev, "Unable to disable LL privacy: %d", err);
1867 goto done;
1868 }
1869
1870 /* Go through the current accept list programmed into the
1871 * controller one by one and check if that address is still
1872 * in the list of pending connections or list of devices to
1873 * report. If not present in either list, then remove it from
1874 * the controller.
1875 */
1876 list_for_each_entry_safe(b, t, &hdev->le_accept_list, list) {
1877 pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns,
1878 &b->bdaddr,
1879 b->bdaddr_type);
1880 pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports,
1881 &b->bdaddr,
1882 b->bdaddr_type);
1883
1884 /* If the device is not likely to connect or report,
1885 * remove it from the acceptlist.
1886 */
1887 if (!pend_conn && !pend_report) {
1888 hci_le_del_accept_list_sync(hdev, &b->bdaddr,
1889 b->bdaddr_type);
1890 continue;
1891 }
1892
1893 num_entries++;
1894 }
1895
1896 /* Since all no longer valid accept list entries have been
1897 * removed, walk through the list of pending connections
1898 * and ensure that any new device gets programmed into
1899 * the controller.
1900 *
1901 * If the list of the devices is larger than the list of
1902 * available accept list entries in the controller, then
1903 * just abort and return filer policy value to not use the
1904 * accept list.
1905 */
1906 list_for_each_entry(params, &hdev->pend_le_conns, action) {
1907 err = hci_le_add_accept_list_sync(hdev, params, &num_entries);
1908 if (err)
1909 goto done;
1910 }
1911
1912 /* After adding all new pending connections, walk through
1913 * the list of pending reports and also add these to the
1914 * accept list if there is still space. Abort if space runs out.
1915 */
1916 list_for_each_entry(params, &hdev->pend_le_reports, action) {
1917 err = hci_le_add_accept_list_sync(hdev, params, &num_entries);
1918 if (err)
1919 goto done;
1920 }
1921
1922 /* Use the allowlist unless the following conditions are all true:
1923 * - We are not currently suspending
1924 * - There are 1 or more ADV monitors registered and it's not offloaded
1925 * - Interleaved scanning is not currently using the allowlist
1926 */
1927 if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended &&
1928 hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE &&
1929 hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST)
1930 err = -EINVAL;
1931
1932 done:
1933 filter_policy = err ? 0x00 : 0x01;
1934
1935 /* Enable address resolution when LL Privacy is enabled. */
1936 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x01);
1937 if (err)
1938 bt_dev_err(hdev, "Unable to enable LL privacy: %d", err);
1939
1940 /* Resume advertising if it was paused */
1941 if (use_ll_privacy(hdev))
1942 hci_resume_advertising_sync(hdev);
1943
1944 /* Select filter policy to use accept list */
1945 return filter_policy;
1946 }
1947
1948 /* Returns true if an le connection is in the scanning state */
hci_is_le_conn_scanning(struct hci_dev * hdev)1949 static inline bool hci_is_le_conn_scanning(struct hci_dev *hdev)
1950 {
1951 struct hci_conn_hash *h = &hdev->conn_hash;
1952 struct hci_conn *c;
1953
1954 rcu_read_lock();
1955
1956 list_for_each_entry_rcu(c, &h->list, list) {
1957 if (c->type == LE_LINK && c->state == BT_CONNECT &&
1958 test_bit(HCI_CONN_SCANNING, &c->flags)) {
1959 rcu_read_unlock();
1960 return true;
1961 }
1962 }
1963
1964 rcu_read_unlock();
1965
1966 return false;
1967 }
1968
hci_le_set_ext_scan_param_sync(struct hci_dev * hdev,u8 type,u16 interval,u16 window,u8 own_addr_type,u8 filter_policy)1969 static int hci_le_set_ext_scan_param_sync(struct hci_dev *hdev, u8 type,
1970 u16 interval, u16 window,
1971 u8 own_addr_type, u8 filter_policy)
1972 {
1973 struct hci_cp_le_set_ext_scan_params *cp;
1974 struct hci_cp_le_scan_phy_params *phy;
1975 u8 data[sizeof(*cp) + sizeof(*phy) * 2];
1976 u8 num_phy = 0;
1977
1978 cp = (void *)data;
1979 phy = (void *)cp->data;
1980
1981 memset(data, 0, sizeof(data));
1982
1983 cp->own_addr_type = own_addr_type;
1984 cp->filter_policy = filter_policy;
1985
1986 if (scan_1m(hdev) || scan_2m(hdev)) {
1987 cp->scanning_phys |= LE_SCAN_PHY_1M;
1988
1989 phy->type = type;
1990 phy->interval = cpu_to_le16(interval);
1991 phy->window = cpu_to_le16(window);
1992
1993 num_phy++;
1994 phy++;
1995 }
1996
1997 if (scan_coded(hdev)) {
1998 cp->scanning_phys |= LE_SCAN_PHY_CODED;
1999
2000 phy->type = type;
2001 phy->interval = cpu_to_le16(interval);
2002 phy->window = cpu_to_le16(window);
2003
2004 num_phy++;
2005 phy++;
2006 }
2007
2008 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_PARAMS,
2009 sizeof(*cp) + sizeof(*phy) * num_phy,
2010 data, HCI_CMD_TIMEOUT);
2011 }
2012
hci_le_set_scan_param_sync(struct hci_dev * hdev,u8 type,u16 interval,u16 window,u8 own_addr_type,u8 filter_policy)2013 static int hci_le_set_scan_param_sync(struct hci_dev *hdev, u8 type,
2014 u16 interval, u16 window,
2015 u8 own_addr_type, u8 filter_policy)
2016 {
2017 struct hci_cp_le_set_scan_param cp;
2018
2019 if (use_ext_scan(hdev))
2020 return hci_le_set_ext_scan_param_sync(hdev, type, interval,
2021 window, own_addr_type,
2022 filter_policy);
2023
2024 memset(&cp, 0, sizeof(cp));
2025 cp.type = type;
2026 cp.interval = cpu_to_le16(interval);
2027 cp.window = cpu_to_le16(window);
2028 cp.own_address_type = own_addr_type;
2029 cp.filter_policy = filter_policy;
2030
2031 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_PARAM,
2032 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2033 }
2034
hci_start_scan_sync(struct hci_dev * hdev,u8 type,u16 interval,u16 window,u8 own_addr_type,u8 filter_policy,u8 filter_dup)2035 static int hci_start_scan_sync(struct hci_dev *hdev, u8 type, u16 interval,
2036 u16 window, u8 own_addr_type, u8 filter_policy,
2037 u8 filter_dup)
2038 {
2039 int err;
2040
2041 if (hdev->scanning_paused) {
2042 bt_dev_dbg(hdev, "Scanning is paused for suspend");
2043 return 0;
2044 }
2045
2046 err = hci_le_set_scan_param_sync(hdev, type, interval, window,
2047 own_addr_type, filter_policy);
2048 if (err)
2049 return err;
2050
2051 return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, filter_dup);
2052 }
2053
hci_passive_scan_sync(struct hci_dev * hdev)2054 static int hci_passive_scan_sync(struct hci_dev *hdev)
2055 {
2056 u8 own_addr_type;
2057 u8 filter_policy;
2058 u16 window, interval;
2059 int err;
2060
2061 if (hdev->scanning_paused) {
2062 bt_dev_dbg(hdev, "Scanning is paused for suspend");
2063 return 0;
2064 }
2065
2066 err = hci_scan_disable_sync(hdev);
2067 if (err) {
2068 bt_dev_err(hdev, "disable scanning failed: %d", err);
2069 return err;
2070 }
2071
2072 /* Set require_privacy to false since no SCAN_REQ are send
2073 * during passive scanning. Not using an non-resolvable address
2074 * here is important so that peer devices using direct
2075 * advertising with our address will be correctly reported
2076 * by the controller.
2077 */
2078 if (hci_update_random_address_sync(hdev, false, scan_use_rpa(hdev),
2079 &own_addr_type))
2080 return 0;
2081
2082 if (hdev->enable_advmon_interleave_scan &&
2083 hci_update_interleaved_scan_sync(hdev))
2084 return 0;
2085
2086 bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state);
2087
2088 /* Adding or removing entries from the accept list must
2089 * happen before enabling scanning. The controller does
2090 * not allow accept list modification while scanning.
2091 */
2092 filter_policy = hci_update_accept_list_sync(hdev);
2093
2094 /* When the controller is using random resolvable addresses and
2095 * with that having LE privacy enabled, then controllers with
2096 * Extended Scanner Filter Policies support can now enable support
2097 * for handling directed advertising.
2098 *
2099 * So instead of using filter polices 0x00 (no acceptlist)
2100 * and 0x01 (acceptlist enabled) use the new filter policies
2101 * 0x02 (no acceptlist) and 0x03 (acceptlist enabled).
2102 */
2103 if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
2104 (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
2105 filter_policy |= 0x02;
2106
2107 if (hdev->suspended) {
2108 window = hdev->le_scan_window_suspend;
2109 interval = hdev->le_scan_int_suspend;
2110 } else if (hci_is_le_conn_scanning(hdev)) {
2111 window = hdev->le_scan_window_connect;
2112 interval = hdev->le_scan_int_connect;
2113 } else if (hci_is_adv_monitoring(hdev)) {
2114 window = hdev->le_scan_window_adv_monitor;
2115 interval = hdev->le_scan_int_adv_monitor;
2116 } else {
2117 window = hdev->le_scan_window;
2118 interval = hdev->le_scan_interval;
2119 }
2120
2121 bt_dev_dbg(hdev, "LE passive scan with acceptlist = %d", filter_policy);
2122
2123 return hci_start_scan_sync(hdev, LE_SCAN_PASSIVE, interval, window,
2124 own_addr_type, filter_policy,
2125 LE_SCAN_FILTER_DUP_ENABLE);
2126 }
2127
2128 /* This function controls the passive scanning based on hdev->pend_le_conns
2129 * list. If there are pending LE connection we start the background scanning,
2130 * otherwise we stop it in the following sequence:
2131 *
2132 * If there are devices to scan:
2133 *
2134 * Disable Scanning -> Update Accept List ->
2135 * use_ll_privacy((Disable Advertising) -> Disable Resolving List ->
2136 * Update Resolving List -> Enable Resolving List -> (Enable Advertising)) ->
2137 * Enable Scanning
2138 *
2139 * Otherwise:
2140 *
2141 * Disable Scanning
2142 */
hci_update_passive_scan_sync(struct hci_dev * hdev)2143 int hci_update_passive_scan_sync(struct hci_dev *hdev)
2144 {
2145 int err;
2146
2147 if (!test_bit(HCI_UP, &hdev->flags) ||
2148 test_bit(HCI_INIT, &hdev->flags) ||
2149 hci_dev_test_flag(hdev, HCI_SETUP) ||
2150 hci_dev_test_flag(hdev, HCI_CONFIG) ||
2151 hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
2152 hci_dev_test_flag(hdev, HCI_UNREGISTER))
2153 return 0;
2154
2155 /* No point in doing scanning if LE support hasn't been enabled */
2156 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
2157 return 0;
2158
2159 /* If discovery is active don't interfere with it */
2160 if (hdev->discovery.state != DISCOVERY_STOPPED)
2161 return 0;
2162
2163 /* Reset RSSI and UUID filters when starting background scanning
2164 * since these filters are meant for service discovery only.
2165 *
2166 * The Start Discovery and Start Service Discovery operations
2167 * ensure to set proper values for RSSI threshold and UUID
2168 * filter list. So it is safe to just reset them here.
2169 */
2170 hci_discovery_filter_clear(hdev);
2171
2172 bt_dev_dbg(hdev, "ADV monitoring is %s",
2173 hci_is_adv_monitoring(hdev) ? "on" : "off");
2174
2175 if (list_empty(&hdev->pend_le_conns) &&
2176 list_empty(&hdev->pend_le_reports) &&
2177 !hci_is_adv_monitoring(hdev)) {
2178 /* If there is no pending LE connections or devices
2179 * to be scanned for or no ADV monitors, we should stop the
2180 * background scanning.
2181 */
2182
2183 bt_dev_dbg(hdev, "stopping background scanning");
2184
2185 err = hci_scan_disable_sync(hdev);
2186 if (err)
2187 bt_dev_err(hdev, "stop background scanning failed: %d",
2188 err);
2189 } else {
2190 /* If there is at least one pending LE connection, we should
2191 * keep the background scan running.
2192 */
2193
2194 /* If controller is connecting, we should not start scanning
2195 * since some controllers are not able to scan and connect at
2196 * the same time.
2197 */
2198 if (hci_lookup_le_connect(hdev))
2199 return 0;
2200
2201 bt_dev_dbg(hdev, "start background scanning");
2202
2203 err = hci_passive_scan_sync(hdev);
2204 if (err)
2205 bt_dev_err(hdev, "start background scanning failed: %d",
2206 err);
2207 }
2208
2209 return err;
2210 }
2211
update_passive_scan_sync(struct hci_dev * hdev,void * data)2212 static int update_passive_scan_sync(struct hci_dev *hdev, void *data)
2213 {
2214 return hci_update_passive_scan_sync(hdev);
2215 }
2216
hci_update_passive_scan(struct hci_dev * hdev)2217 int hci_update_passive_scan(struct hci_dev *hdev)
2218 {
2219 /* Only queue if it would have any effect */
2220 if (!test_bit(HCI_UP, &hdev->flags) ||
2221 test_bit(HCI_INIT, &hdev->flags) ||
2222 hci_dev_test_flag(hdev, HCI_SETUP) ||
2223 hci_dev_test_flag(hdev, HCI_CONFIG) ||
2224 hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
2225 hci_dev_test_flag(hdev, HCI_UNREGISTER))
2226 return 0;
2227
2228 return hci_cmd_sync_queue(hdev, update_passive_scan_sync, NULL, NULL);
2229 }
2230
hci_write_sc_support_sync(struct hci_dev * hdev,u8 val)2231 int hci_write_sc_support_sync(struct hci_dev *hdev, u8 val)
2232 {
2233 int err;
2234
2235 if (!bredr_sc_enabled(hdev) || lmp_host_sc_capable(hdev))
2236 return 0;
2237
2238 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT,
2239 sizeof(val), &val, HCI_CMD_TIMEOUT);
2240
2241 if (!err) {
2242 if (val) {
2243 hdev->features[1][0] |= LMP_HOST_SC;
2244 hci_dev_set_flag(hdev, HCI_SC_ENABLED);
2245 } else {
2246 hdev->features[1][0] &= ~LMP_HOST_SC;
2247 hci_dev_clear_flag(hdev, HCI_SC_ENABLED);
2248 }
2249 }
2250
2251 return err;
2252 }
2253
hci_write_ssp_mode_sync(struct hci_dev * hdev,u8 mode)2254 int hci_write_ssp_mode_sync(struct hci_dev *hdev, u8 mode)
2255 {
2256 int err;
2257
2258 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) ||
2259 lmp_host_ssp_capable(hdev))
2260 return 0;
2261
2262 if (!mode && hci_dev_test_flag(hdev, HCI_USE_DEBUG_KEYS)) {
2263 __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE,
2264 sizeof(mode), &mode, HCI_CMD_TIMEOUT);
2265 }
2266
2267 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE,
2268 sizeof(mode), &mode, HCI_CMD_TIMEOUT);
2269 if (err)
2270 return err;
2271
2272 return hci_write_sc_support_sync(hdev, 0x01);
2273 }
2274
hci_write_le_host_supported_sync(struct hci_dev * hdev,u8 le,u8 simul)2275 int hci_write_le_host_supported_sync(struct hci_dev *hdev, u8 le, u8 simul)
2276 {
2277 struct hci_cp_write_le_host_supported cp;
2278
2279 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED) ||
2280 !lmp_bredr_capable(hdev))
2281 return 0;
2282
2283 /* Check first if we already have the right host state
2284 * (host features set)
2285 */
2286 if (le == lmp_host_le_capable(hdev) &&
2287 simul == lmp_host_le_br_capable(hdev))
2288 return 0;
2289
2290 memset(&cp, 0, sizeof(cp));
2291
2292 cp.le = le;
2293 cp.simul = simul;
2294
2295 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED,
2296 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2297 }
2298
hci_powered_update_adv_sync(struct hci_dev * hdev)2299 static int hci_powered_update_adv_sync(struct hci_dev *hdev)
2300 {
2301 struct adv_info *adv, *tmp;
2302 int err;
2303
2304 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
2305 return 0;
2306
2307 /* If RPA Resolution has not been enable yet it means the
2308 * resolving list is empty and we should attempt to program the
2309 * local IRK in order to support using own_addr_type
2310 * ADDR_LE_DEV_RANDOM_RESOLVED (0x03).
2311 */
2312 if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) {
2313 hci_le_add_resolve_list_sync(hdev, NULL);
2314 hci_le_set_addr_resolution_enable_sync(hdev, 0x01);
2315 }
2316
2317 /* Make sure the controller has a good default for
2318 * advertising data. This also applies to the case
2319 * where BR/EDR was toggled during the AUTO_OFF phase.
2320 */
2321 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2322 list_empty(&hdev->adv_instances)) {
2323 if (ext_adv_capable(hdev)) {
2324 err = hci_setup_ext_adv_instance_sync(hdev, 0x00);
2325 if (!err)
2326 hci_update_scan_rsp_data_sync(hdev, 0x00);
2327 } else {
2328 err = hci_update_adv_data_sync(hdev, 0x00);
2329 if (!err)
2330 hci_update_scan_rsp_data_sync(hdev, 0x00);
2331 }
2332
2333 if (hci_dev_test_flag(hdev, HCI_ADVERTISING))
2334 hci_enable_advertising_sync(hdev);
2335 }
2336
2337 /* Call for each tracked instance to be scheduled */
2338 list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list)
2339 hci_schedule_adv_instance_sync(hdev, adv->instance, true);
2340
2341 return 0;
2342 }
2343
hci_write_auth_enable_sync(struct hci_dev * hdev)2344 static int hci_write_auth_enable_sync(struct hci_dev *hdev)
2345 {
2346 u8 link_sec;
2347
2348 link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
2349 if (link_sec == test_bit(HCI_AUTH, &hdev->flags))
2350 return 0;
2351
2352 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE,
2353 sizeof(link_sec), &link_sec,
2354 HCI_CMD_TIMEOUT);
2355 }
2356
hci_write_fast_connectable_sync(struct hci_dev * hdev,bool enable)2357 int hci_write_fast_connectable_sync(struct hci_dev *hdev, bool enable)
2358 {
2359 struct hci_cp_write_page_scan_activity cp;
2360 u8 type;
2361 int err = 0;
2362
2363 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2364 return 0;
2365
2366 if (hdev->hci_ver < BLUETOOTH_VER_1_2)
2367 return 0;
2368
2369 memset(&cp, 0, sizeof(cp));
2370
2371 if (enable) {
2372 type = PAGE_SCAN_TYPE_INTERLACED;
2373
2374 /* 160 msec page scan interval */
2375 cp.interval = cpu_to_le16(0x0100);
2376 } else {
2377 type = hdev->def_page_scan_type;
2378 cp.interval = cpu_to_le16(hdev->def_page_scan_int);
2379 }
2380
2381 cp.window = cpu_to_le16(hdev->def_page_scan_window);
2382
2383 if (__cpu_to_le16(hdev->page_scan_interval) != cp.interval ||
2384 __cpu_to_le16(hdev->page_scan_window) != cp.window) {
2385 err = __hci_cmd_sync_status(hdev,
2386 HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
2387 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2388 if (err)
2389 return err;
2390 }
2391
2392 if (hdev->page_scan_type != type)
2393 err = __hci_cmd_sync_status(hdev,
2394 HCI_OP_WRITE_PAGE_SCAN_TYPE,
2395 sizeof(type), &type,
2396 HCI_CMD_TIMEOUT);
2397
2398 return err;
2399 }
2400
disconnected_accept_list_entries(struct hci_dev * hdev)2401 static bool disconnected_accept_list_entries(struct hci_dev *hdev)
2402 {
2403 struct bdaddr_list *b;
2404
2405 list_for_each_entry(b, &hdev->accept_list, list) {
2406 struct hci_conn *conn;
2407
2408 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
2409 if (!conn)
2410 return true;
2411
2412 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
2413 return true;
2414 }
2415
2416 return false;
2417 }
2418
hci_write_scan_enable_sync(struct hci_dev * hdev,u8 val)2419 static int hci_write_scan_enable_sync(struct hci_dev *hdev, u8 val)
2420 {
2421 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE,
2422 sizeof(val), &val,
2423 HCI_CMD_TIMEOUT);
2424 }
2425
hci_update_scan_sync(struct hci_dev * hdev)2426 int hci_update_scan_sync(struct hci_dev *hdev)
2427 {
2428 u8 scan;
2429
2430 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2431 return 0;
2432
2433 if (!hdev_is_powered(hdev))
2434 return 0;
2435
2436 if (mgmt_powering_down(hdev))
2437 return 0;
2438
2439 if (hdev->scanning_paused)
2440 return 0;
2441
2442 if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
2443 disconnected_accept_list_entries(hdev))
2444 scan = SCAN_PAGE;
2445 else
2446 scan = SCAN_DISABLED;
2447
2448 if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
2449 scan |= SCAN_INQUIRY;
2450
2451 if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
2452 test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
2453 return 0;
2454
2455 return hci_write_scan_enable_sync(hdev, scan);
2456 }
2457
hci_update_name_sync(struct hci_dev * hdev)2458 int hci_update_name_sync(struct hci_dev *hdev)
2459 {
2460 struct hci_cp_write_local_name cp;
2461
2462 memset(&cp, 0, sizeof(cp));
2463
2464 memcpy(cp.name, hdev->dev_name, sizeof(cp.name));
2465
2466 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LOCAL_NAME,
2467 sizeof(cp), &cp,
2468 HCI_CMD_TIMEOUT);
2469 }
2470
2471 /* This function perform powered update HCI command sequence after the HCI init
2472 * sequence which end up resetting all states, the sequence is as follows:
2473 *
2474 * HCI_SSP_ENABLED(Enable SSP)
2475 * HCI_LE_ENABLED(Enable LE)
2476 * HCI_LE_ENABLED(use_ll_privacy(Add local IRK to Resolving List) ->
2477 * Update adv data)
2478 * Enable Authentication
2479 * lmp_bredr_capable(Set Fast Connectable -> Set Scan Type -> Set Class ->
2480 * Set Name -> Set EIR)
2481 */
hci_powered_update_sync(struct hci_dev * hdev)2482 int hci_powered_update_sync(struct hci_dev *hdev)
2483 {
2484 int err;
2485
2486 /* Register the available SMP channels (BR/EDR and LE) only when
2487 * successfully powering on the controller. This late
2488 * registration is required so that LE SMP can clearly decide if
2489 * the public address or static address is used.
2490 */
2491 smp_register(hdev);
2492
2493 err = hci_write_ssp_mode_sync(hdev, 0x01);
2494 if (err)
2495 return err;
2496
2497 err = hci_write_le_host_supported_sync(hdev, 0x01, 0x00);
2498 if (err)
2499 return err;
2500
2501 err = hci_powered_update_adv_sync(hdev);
2502 if (err)
2503 return err;
2504
2505 err = hci_write_auth_enable_sync(hdev);
2506 if (err)
2507 return err;
2508
2509 if (lmp_bredr_capable(hdev)) {
2510 if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
2511 hci_write_fast_connectable_sync(hdev, true);
2512 else
2513 hci_write_fast_connectable_sync(hdev, false);
2514 hci_update_scan_sync(hdev);
2515 hci_update_class_sync(hdev);
2516 hci_update_name_sync(hdev);
2517 hci_update_eir_sync(hdev);
2518 }
2519
2520 return 0;
2521 }
2522
2523 /**
2524 * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address
2525 * (BD_ADDR) for a HCI device from
2526 * a firmware node property.
2527 * @hdev: The HCI device
2528 *
2529 * Search the firmware node for 'local-bd-address'.
2530 *
2531 * All-zero BD addresses are rejected, because those could be properties
2532 * that exist in the firmware tables, but were not updated by the firmware. For
2533 * example, the DTS could define 'local-bd-address', with zero BD addresses.
2534 */
hci_dev_get_bd_addr_from_property(struct hci_dev * hdev)2535 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev)
2536 {
2537 struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent);
2538 bdaddr_t ba;
2539 int ret;
2540
2541 ret = fwnode_property_read_u8_array(fwnode, "local-bd-address",
2542 (u8 *)&ba, sizeof(ba));
2543 if (ret < 0 || !bacmp(&ba, BDADDR_ANY))
2544 return;
2545
2546 bacpy(&hdev->public_addr, &ba);
2547 }
2548
2549 struct hci_init_stage {
2550 int (*func)(struct hci_dev *hdev);
2551 };
2552
2553 /* Run init stage NULL terminated function table */
hci_init_stage_sync(struct hci_dev * hdev,const struct hci_init_stage * stage)2554 static int hci_init_stage_sync(struct hci_dev *hdev,
2555 const struct hci_init_stage *stage)
2556 {
2557 size_t i;
2558
2559 for (i = 0; stage[i].func; i++) {
2560 int err;
2561
2562 err = stage[i].func(hdev);
2563 if (err)
2564 return err;
2565 }
2566
2567 return 0;
2568 }
2569
2570 /* Read Local Version */
hci_read_local_version_sync(struct hci_dev * hdev)2571 static int hci_read_local_version_sync(struct hci_dev *hdev)
2572 {
2573 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_VERSION,
2574 0, NULL, HCI_CMD_TIMEOUT);
2575 }
2576
2577 /* Read BD Address */
hci_read_bd_addr_sync(struct hci_dev * hdev)2578 static int hci_read_bd_addr_sync(struct hci_dev *hdev)
2579 {
2580 return __hci_cmd_sync_status(hdev, HCI_OP_READ_BD_ADDR,
2581 0, NULL, HCI_CMD_TIMEOUT);
2582 }
2583
2584 #define HCI_INIT(_func) \
2585 { \
2586 .func = _func, \
2587 }
2588
2589 static const struct hci_init_stage hci_init0[] = {
2590 /* HCI_OP_READ_LOCAL_VERSION */
2591 HCI_INIT(hci_read_local_version_sync),
2592 /* HCI_OP_READ_BD_ADDR */
2593 HCI_INIT(hci_read_bd_addr_sync),
2594 {}
2595 };
2596
hci_reset_sync(struct hci_dev * hdev)2597 int hci_reset_sync(struct hci_dev *hdev)
2598 {
2599 int err;
2600
2601 set_bit(HCI_RESET, &hdev->flags);
2602
2603 err = __hci_cmd_sync_status(hdev, HCI_OP_RESET, 0, NULL,
2604 HCI_CMD_TIMEOUT);
2605 if (err)
2606 return err;
2607
2608 return 0;
2609 }
2610
hci_init0_sync(struct hci_dev * hdev)2611 static int hci_init0_sync(struct hci_dev *hdev)
2612 {
2613 int err;
2614
2615 bt_dev_dbg(hdev, "");
2616
2617 /* Reset */
2618 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
2619 err = hci_reset_sync(hdev);
2620 if (err)
2621 return err;
2622 }
2623
2624 return hci_init_stage_sync(hdev, hci_init0);
2625 }
2626
hci_unconf_init_sync(struct hci_dev * hdev)2627 static int hci_unconf_init_sync(struct hci_dev *hdev)
2628 {
2629 int err;
2630
2631 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
2632 return 0;
2633
2634 err = hci_init0_sync(hdev);
2635 if (err < 0)
2636 return err;
2637
2638 if (hci_dev_test_flag(hdev, HCI_SETUP))
2639 hci_debugfs_create_basic(hdev);
2640
2641 return 0;
2642 }
2643
2644 /* Read Local Supported Features. */
hci_read_local_features_sync(struct hci_dev * hdev)2645 static int hci_read_local_features_sync(struct hci_dev *hdev)
2646 {
2647 /* Not all AMP controllers support this command */
2648 if (hdev->dev_type == HCI_AMP && !(hdev->commands[14] & 0x20))
2649 return 0;
2650
2651 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_FEATURES,
2652 0, NULL, HCI_CMD_TIMEOUT);
2653 }
2654
2655 /* BR Controller init stage 1 command sequence */
2656 static const struct hci_init_stage br_init1[] = {
2657 /* HCI_OP_READ_LOCAL_FEATURES */
2658 HCI_INIT(hci_read_local_features_sync),
2659 /* HCI_OP_READ_LOCAL_VERSION */
2660 HCI_INIT(hci_read_local_version_sync),
2661 /* HCI_OP_READ_BD_ADDR */
2662 HCI_INIT(hci_read_bd_addr_sync),
2663 {}
2664 };
2665
2666 /* Read Local Commands */
hci_read_local_cmds_sync(struct hci_dev * hdev)2667 static int hci_read_local_cmds_sync(struct hci_dev *hdev)
2668 {
2669 /* All Bluetooth 1.2 and later controllers should support the
2670 * HCI command for reading the local supported commands.
2671 *
2672 * Unfortunately some controllers indicate Bluetooth 1.2 support,
2673 * but do not have support for this command. If that is the case,
2674 * the driver can quirk the behavior and skip reading the local
2675 * supported commands.
2676 */
2677 if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
2678 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
2679 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_COMMANDS,
2680 0, NULL, HCI_CMD_TIMEOUT);
2681
2682 return 0;
2683 }
2684
2685 /* Read Local AMP Info */
hci_read_local_amp_info_sync(struct hci_dev * hdev)2686 static int hci_read_local_amp_info_sync(struct hci_dev *hdev)
2687 {
2688 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_AMP_INFO,
2689 0, NULL, HCI_CMD_TIMEOUT);
2690 }
2691
2692 /* Read Data Blk size */
hci_read_data_block_size_sync(struct hci_dev * hdev)2693 static int hci_read_data_block_size_sync(struct hci_dev *hdev)
2694 {
2695 return __hci_cmd_sync_status(hdev, HCI_OP_READ_DATA_BLOCK_SIZE,
2696 0, NULL, HCI_CMD_TIMEOUT);
2697 }
2698
2699 /* Read Flow Control Mode */
hci_read_flow_control_mode_sync(struct hci_dev * hdev)2700 static int hci_read_flow_control_mode_sync(struct hci_dev *hdev)
2701 {
2702 return __hci_cmd_sync_status(hdev, HCI_OP_READ_FLOW_CONTROL_MODE,
2703 0, NULL, HCI_CMD_TIMEOUT);
2704 }
2705
2706 /* Read Location Data */
hci_read_location_data_sync(struct hci_dev * hdev)2707 static int hci_read_location_data_sync(struct hci_dev *hdev)
2708 {
2709 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCATION_DATA,
2710 0, NULL, HCI_CMD_TIMEOUT);
2711 }
2712
2713 /* AMP Controller init stage 1 command sequence */
2714 static const struct hci_init_stage amp_init1[] = {
2715 /* HCI_OP_READ_LOCAL_VERSION */
2716 HCI_INIT(hci_read_local_version_sync),
2717 /* HCI_OP_READ_LOCAL_COMMANDS */
2718 HCI_INIT(hci_read_local_cmds_sync),
2719 /* HCI_OP_READ_LOCAL_AMP_INFO */
2720 HCI_INIT(hci_read_local_amp_info_sync),
2721 /* HCI_OP_READ_DATA_BLOCK_SIZE */
2722 HCI_INIT(hci_read_data_block_size_sync),
2723 /* HCI_OP_READ_FLOW_CONTROL_MODE */
2724 HCI_INIT(hci_read_flow_control_mode_sync),
2725 /* HCI_OP_READ_LOCATION_DATA */
2726 HCI_INIT(hci_read_location_data_sync),
2727 };
2728
hci_init1_sync(struct hci_dev * hdev)2729 static int hci_init1_sync(struct hci_dev *hdev)
2730 {
2731 int err;
2732
2733 bt_dev_dbg(hdev, "");
2734
2735 /* Reset */
2736 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
2737 err = hci_reset_sync(hdev);
2738 if (err)
2739 return err;
2740 }
2741
2742 switch (hdev->dev_type) {
2743 case HCI_PRIMARY:
2744 hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
2745 return hci_init_stage_sync(hdev, br_init1);
2746 case HCI_AMP:
2747 hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
2748 return hci_init_stage_sync(hdev, amp_init1);
2749 default:
2750 bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type);
2751 break;
2752 }
2753
2754 return 0;
2755 }
2756
2757 /* AMP Controller init stage 2 command sequence */
2758 static const struct hci_init_stage amp_init2[] = {
2759 /* HCI_OP_READ_LOCAL_FEATURES */
2760 HCI_INIT(hci_read_local_features_sync),
2761 };
2762
2763 /* Read Buffer Size (ACL mtu, max pkt, etc.) */
hci_read_buffer_size_sync(struct hci_dev * hdev)2764 static int hci_read_buffer_size_sync(struct hci_dev *hdev)
2765 {
2766 return __hci_cmd_sync_status(hdev, HCI_OP_READ_BUFFER_SIZE,
2767 0, NULL, HCI_CMD_TIMEOUT);
2768 }
2769
2770 /* Read Class of Device */
hci_read_dev_class_sync(struct hci_dev * hdev)2771 static int hci_read_dev_class_sync(struct hci_dev *hdev)
2772 {
2773 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLASS_OF_DEV,
2774 0, NULL, HCI_CMD_TIMEOUT);
2775 }
2776
2777 /* Read Local Name */
hci_read_local_name_sync(struct hci_dev * hdev)2778 static int hci_read_local_name_sync(struct hci_dev *hdev)
2779 {
2780 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_NAME,
2781 0, NULL, HCI_CMD_TIMEOUT);
2782 }
2783
2784 /* Read Voice Setting */
hci_read_voice_setting_sync(struct hci_dev * hdev)2785 static int hci_read_voice_setting_sync(struct hci_dev *hdev)
2786 {
2787 return __hci_cmd_sync_status(hdev, HCI_OP_READ_VOICE_SETTING,
2788 0, NULL, HCI_CMD_TIMEOUT);
2789 }
2790
2791 /* Read Number of Supported IAC */
hci_read_num_supported_iac_sync(struct hci_dev * hdev)2792 static int hci_read_num_supported_iac_sync(struct hci_dev *hdev)
2793 {
2794 return __hci_cmd_sync_status(hdev, HCI_OP_READ_NUM_SUPPORTED_IAC,
2795 0, NULL, HCI_CMD_TIMEOUT);
2796 }
2797
2798 /* Read Current IAC LAP */
hci_read_current_iac_lap_sync(struct hci_dev * hdev)2799 static int hci_read_current_iac_lap_sync(struct hci_dev *hdev)
2800 {
2801 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CURRENT_IAC_LAP,
2802 0, NULL, HCI_CMD_TIMEOUT);
2803 }
2804
hci_set_event_filter_sync(struct hci_dev * hdev,u8 flt_type,u8 cond_type,bdaddr_t * bdaddr,u8 auto_accept)2805 static int hci_set_event_filter_sync(struct hci_dev *hdev, u8 flt_type,
2806 u8 cond_type, bdaddr_t *bdaddr,
2807 u8 auto_accept)
2808 {
2809 struct hci_cp_set_event_filter cp;
2810
2811 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2812 return 0;
2813
2814 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
2815 return 0;
2816
2817 memset(&cp, 0, sizeof(cp));
2818 cp.flt_type = flt_type;
2819
2820 if (flt_type != HCI_FLT_CLEAR_ALL) {
2821 cp.cond_type = cond_type;
2822 bacpy(&cp.addr_conn_flt.bdaddr, bdaddr);
2823 cp.addr_conn_flt.auto_accept = auto_accept;
2824 }
2825
2826 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_FLT,
2827 flt_type == HCI_FLT_CLEAR_ALL ?
2828 sizeof(cp.flt_type) : sizeof(cp), &cp,
2829 HCI_CMD_TIMEOUT);
2830 }
2831
hci_clear_event_filter_sync(struct hci_dev * hdev)2832 static int hci_clear_event_filter_sync(struct hci_dev *hdev)
2833 {
2834 if (!hci_dev_test_flag(hdev, HCI_EVENT_FILTER_CONFIGURED))
2835 return 0;
2836
2837 /* In theory the state machine should not reach here unless
2838 * a hci_set_event_filter_sync() call succeeds, but we do
2839 * the check both for parity and as a future reminder.
2840 */
2841 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
2842 return 0;
2843
2844 return hci_set_event_filter_sync(hdev, HCI_FLT_CLEAR_ALL, 0x00,
2845 BDADDR_ANY, 0x00);
2846 }
2847
2848 /* Connection accept timeout ~20 secs */
hci_write_ca_timeout_sync(struct hci_dev * hdev)2849 static int hci_write_ca_timeout_sync(struct hci_dev *hdev)
2850 {
2851 __le16 param = cpu_to_le16(0x7d00);
2852
2853 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CA_TIMEOUT,
2854 sizeof(param), ¶m, HCI_CMD_TIMEOUT);
2855 }
2856
2857 /* BR Controller init stage 2 command sequence */
2858 static const struct hci_init_stage br_init2[] = {
2859 /* HCI_OP_READ_BUFFER_SIZE */
2860 HCI_INIT(hci_read_buffer_size_sync),
2861 /* HCI_OP_READ_CLASS_OF_DEV */
2862 HCI_INIT(hci_read_dev_class_sync),
2863 /* HCI_OP_READ_LOCAL_NAME */
2864 HCI_INIT(hci_read_local_name_sync),
2865 /* HCI_OP_READ_VOICE_SETTING */
2866 HCI_INIT(hci_read_voice_setting_sync),
2867 /* HCI_OP_READ_NUM_SUPPORTED_IAC */
2868 HCI_INIT(hci_read_num_supported_iac_sync),
2869 /* HCI_OP_READ_CURRENT_IAC_LAP */
2870 HCI_INIT(hci_read_current_iac_lap_sync),
2871 /* HCI_OP_SET_EVENT_FLT */
2872 HCI_INIT(hci_clear_event_filter_sync),
2873 /* HCI_OP_WRITE_CA_TIMEOUT */
2874 HCI_INIT(hci_write_ca_timeout_sync),
2875 {}
2876 };
2877
hci_write_ssp_mode_1_sync(struct hci_dev * hdev)2878 static int hci_write_ssp_mode_1_sync(struct hci_dev *hdev)
2879 {
2880 u8 mode = 0x01;
2881
2882 if (!lmp_ssp_capable(hdev) || !hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
2883 return 0;
2884
2885 /* When SSP is available, then the host features page
2886 * should also be available as well. However some
2887 * controllers list the max_page as 0 as long as SSP
2888 * has not been enabled. To achieve proper debugging
2889 * output, force the minimum max_page to 1 at least.
2890 */
2891 hdev->max_page = 0x01;
2892
2893 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE,
2894 sizeof(mode), &mode, HCI_CMD_TIMEOUT);
2895 }
2896
hci_write_eir_sync(struct hci_dev * hdev)2897 static int hci_write_eir_sync(struct hci_dev *hdev)
2898 {
2899 struct hci_cp_write_eir cp;
2900
2901 if (!lmp_ssp_capable(hdev) || hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
2902 return 0;
2903
2904 memset(hdev->eir, 0, sizeof(hdev->eir));
2905 memset(&cp, 0, sizeof(cp));
2906
2907 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp,
2908 HCI_CMD_TIMEOUT);
2909 }
2910
hci_write_inquiry_mode_sync(struct hci_dev * hdev)2911 static int hci_write_inquiry_mode_sync(struct hci_dev *hdev)
2912 {
2913 u8 mode;
2914
2915 if (!lmp_inq_rssi_capable(hdev) &&
2916 !test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
2917 return 0;
2918
2919 /* If Extended Inquiry Result events are supported, then
2920 * they are clearly preferred over Inquiry Result with RSSI
2921 * events.
2922 */
2923 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
2924
2925 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_INQUIRY_MODE,
2926 sizeof(mode), &mode, HCI_CMD_TIMEOUT);
2927 }
2928
hci_read_inq_rsp_tx_power_sync(struct hci_dev * hdev)2929 static int hci_read_inq_rsp_tx_power_sync(struct hci_dev *hdev)
2930 {
2931 if (!lmp_inq_tx_pwr_capable(hdev))
2932 return 0;
2933
2934 return __hci_cmd_sync_status(hdev, HCI_OP_READ_INQ_RSP_TX_POWER,
2935 0, NULL, HCI_CMD_TIMEOUT);
2936 }
2937
hci_read_local_ext_features_sync(struct hci_dev * hdev,u8 page)2938 static int hci_read_local_ext_features_sync(struct hci_dev *hdev, u8 page)
2939 {
2940 struct hci_cp_read_local_ext_features cp;
2941
2942 if (!lmp_ext_feat_capable(hdev))
2943 return 0;
2944
2945 memset(&cp, 0, sizeof(cp));
2946 cp.page = page;
2947
2948 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_EXT_FEATURES,
2949 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2950 }
2951
hci_read_local_ext_features_1_sync(struct hci_dev * hdev)2952 static int hci_read_local_ext_features_1_sync(struct hci_dev *hdev)
2953 {
2954 return hci_read_local_ext_features_sync(hdev, 0x01);
2955 }
2956
2957 /* HCI Controller init stage 2 command sequence */
2958 static const struct hci_init_stage hci_init2[] = {
2959 /* HCI_OP_READ_LOCAL_COMMANDS */
2960 HCI_INIT(hci_read_local_cmds_sync),
2961 /* HCI_OP_WRITE_SSP_MODE */
2962 HCI_INIT(hci_write_ssp_mode_1_sync),
2963 /* HCI_OP_WRITE_EIR */
2964 HCI_INIT(hci_write_eir_sync),
2965 /* HCI_OP_WRITE_INQUIRY_MODE */
2966 HCI_INIT(hci_write_inquiry_mode_sync),
2967 /* HCI_OP_READ_INQ_RSP_TX_POWER */
2968 HCI_INIT(hci_read_inq_rsp_tx_power_sync),
2969 /* HCI_OP_READ_LOCAL_EXT_FEATURES */
2970 HCI_INIT(hci_read_local_ext_features_1_sync),
2971 /* HCI_OP_WRITE_AUTH_ENABLE */
2972 HCI_INIT(hci_write_auth_enable_sync),
2973 {}
2974 };
2975
2976 /* Read LE Buffer Size */
hci_le_read_buffer_size_sync(struct hci_dev * hdev)2977 static int hci_le_read_buffer_size_sync(struct hci_dev *hdev)
2978 {
2979 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_BUFFER_SIZE,
2980 0, NULL, HCI_CMD_TIMEOUT);
2981 }
2982
2983 /* Read LE Local Supported Features */
hci_le_read_local_features_sync(struct hci_dev * hdev)2984 static int hci_le_read_local_features_sync(struct hci_dev *hdev)
2985 {
2986 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_LOCAL_FEATURES,
2987 0, NULL, HCI_CMD_TIMEOUT);
2988 }
2989
2990 /* Read LE Supported States */
hci_le_read_supported_states_sync(struct hci_dev * hdev)2991 static int hci_le_read_supported_states_sync(struct hci_dev *hdev)
2992 {
2993 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_SUPPORTED_STATES,
2994 0, NULL, HCI_CMD_TIMEOUT);
2995 }
2996
2997 /* LE Controller init stage 2 command sequence */
2998 static const struct hci_init_stage le_init2[] = {
2999 /* HCI_OP_LE_READ_BUFFER_SIZE */
3000 HCI_INIT(hci_le_read_buffer_size_sync),
3001 /* HCI_OP_LE_READ_LOCAL_FEATURES */
3002 HCI_INIT(hci_le_read_local_features_sync),
3003 /* HCI_OP_LE_READ_SUPPORTED_STATES */
3004 HCI_INIT(hci_le_read_supported_states_sync),
3005 {}
3006 };
3007
hci_init2_sync(struct hci_dev * hdev)3008 static int hci_init2_sync(struct hci_dev *hdev)
3009 {
3010 int err;
3011
3012 bt_dev_dbg(hdev, "");
3013
3014 if (hdev->dev_type == HCI_AMP)
3015 return hci_init_stage_sync(hdev, amp_init2);
3016
3017 if (lmp_bredr_capable(hdev)) {
3018 err = hci_init_stage_sync(hdev, br_init2);
3019 if (err)
3020 return err;
3021 } else {
3022 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
3023 }
3024
3025 if (lmp_le_capable(hdev)) {
3026 err = hci_init_stage_sync(hdev, le_init2);
3027 if (err)
3028 return err;
3029 /* LE-only controllers have LE implicitly enabled */
3030 if (!lmp_bredr_capable(hdev))
3031 hci_dev_set_flag(hdev, HCI_LE_ENABLED);
3032 }
3033
3034 return hci_init_stage_sync(hdev, hci_init2);
3035 }
3036
hci_set_event_mask_sync(struct hci_dev * hdev)3037 static int hci_set_event_mask_sync(struct hci_dev *hdev)
3038 {
3039 /* The second byte is 0xff instead of 0x9f (two reserved bits
3040 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
3041 * command otherwise.
3042 */
3043 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
3044
3045 /* CSR 1.1 dongles does not accept any bitfield so don't try to set
3046 * any event mask for pre 1.2 devices.
3047 */
3048 if (hdev->hci_ver < BLUETOOTH_VER_1_2)
3049 return 0;
3050
3051 if (lmp_bredr_capable(hdev)) {
3052 events[4] |= 0x01; /* Flow Specification Complete */
3053
3054 /* Don't set Disconnect Complete when suspended as that
3055 * would wakeup the host when disconnecting due to
3056 * suspend.
3057 */
3058 if (hdev->suspended)
3059 events[0] &= 0xef;
3060 } else {
3061 /* Use a different default for LE-only devices */
3062 memset(events, 0, sizeof(events));
3063 events[1] |= 0x20; /* Command Complete */
3064 events[1] |= 0x40; /* Command Status */
3065 events[1] |= 0x80; /* Hardware Error */
3066
3067 /* If the controller supports the Disconnect command, enable
3068 * the corresponding event. In addition enable packet flow
3069 * control related events.
3070 */
3071 if (hdev->commands[0] & 0x20) {
3072 /* Don't set Disconnect Complete when suspended as that
3073 * would wakeup the host when disconnecting due to
3074 * suspend.
3075 */
3076 if (!hdev->suspended)
3077 events[0] |= 0x10; /* Disconnection Complete */
3078 events[2] |= 0x04; /* Number of Completed Packets */
3079 events[3] |= 0x02; /* Data Buffer Overflow */
3080 }
3081
3082 /* If the controller supports the Read Remote Version
3083 * Information command, enable the corresponding event.
3084 */
3085 if (hdev->commands[2] & 0x80)
3086 events[1] |= 0x08; /* Read Remote Version Information
3087 * Complete
3088 */
3089
3090 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
3091 events[0] |= 0x80; /* Encryption Change */
3092 events[5] |= 0x80; /* Encryption Key Refresh Complete */
3093 }
3094 }
3095
3096 if (lmp_inq_rssi_capable(hdev) ||
3097 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
3098 events[4] |= 0x02; /* Inquiry Result with RSSI */
3099
3100 if (lmp_ext_feat_capable(hdev))
3101 events[4] |= 0x04; /* Read Remote Extended Features Complete */
3102
3103 if (lmp_esco_capable(hdev)) {
3104 events[5] |= 0x08; /* Synchronous Connection Complete */
3105 events[5] |= 0x10; /* Synchronous Connection Changed */
3106 }
3107
3108 if (lmp_sniffsubr_capable(hdev))
3109 events[5] |= 0x20; /* Sniff Subrating */
3110
3111 if (lmp_pause_enc_capable(hdev))
3112 events[5] |= 0x80; /* Encryption Key Refresh Complete */
3113
3114 if (lmp_ext_inq_capable(hdev))
3115 events[5] |= 0x40; /* Extended Inquiry Result */
3116
3117 if (lmp_no_flush_capable(hdev))
3118 events[7] |= 0x01; /* Enhanced Flush Complete */
3119
3120 if (lmp_lsto_capable(hdev))
3121 events[6] |= 0x80; /* Link Supervision Timeout Changed */
3122
3123 if (lmp_ssp_capable(hdev)) {
3124 events[6] |= 0x01; /* IO Capability Request */
3125 events[6] |= 0x02; /* IO Capability Response */
3126 events[6] |= 0x04; /* User Confirmation Request */
3127 events[6] |= 0x08; /* User Passkey Request */
3128 events[6] |= 0x10; /* Remote OOB Data Request */
3129 events[6] |= 0x20; /* Simple Pairing Complete */
3130 events[7] |= 0x04; /* User Passkey Notification */
3131 events[7] |= 0x08; /* Keypress Notification */
3132 events[7] |= 0x10; /* Remote Host Supported
3133 * Features Notification
3134 */
3135 }
3136
3137 if (lmp_le_capable(hdev))
3138 events[7] |= 0x20; /* LE Meta-Event */
3139
3140 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK,
3141 sizeof(events), events, HCI_CMD_TIMEOUT);
3142 }
3143
hci_read_stored_link_key_sync(struct hci_dev * hdev)3144 static int hci_read_stored_link_key_sync(struct hci_dev *hdev)
3145 {
3146 struct hci_cp_read_stored_link_key cp;
3147
3148 if (!(hdev->commands[6] & 0x20) ||
3149 test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks))
3150 return 0;
3151
3152 memset(&cp, 0, sizeof(cp));
3153 bacpy(&cp.bdaddr, BDADDR_ANY);
3154 cp.read_all = 0x01;
3155
3156 return __hci_cmd_sync_status(hdev, HCI_OP_READ_STORED_LINK_KEY,
3157 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3158 }
3159
hci_setup_link_policy_sync(struct hci_dev * hdev)3160 static int hci_setup_link_policy_sync(struct hci_dev *hdev)
3161 {
3162 struct hci_cp_write_def_link_policy cp;
3163 u16 link_policy = 0;
3164
3165 if (!(hdev->commands[5] & 0x10))
3166 return 0;
3167
3168 memset(&cp, 0, sizeof(cp));
3169
3170 if (lmp_rswitch_capable(hdev))
3171 link_policy |= HCI_LP_RSWITCH;
3172 if (lmp_hold_capable(hdev))
3173 link_policy |= HCI_LP_HOLD;
3174 if (lmp_sniff_capable(hdev))
3175 link_policy |= HCI_LP_SNIFF;
3176 if (lmp_park_capable(hdev))
3177 link_policy |= HCI_LP_PARK;
3178
3179 cp.policy = cpu_to_le16(link_policy);
3180
3181 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY,
3182 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3183 }
3184
hci_read_page_scan_activity_sync(struct hci_dev * hdev)3185 static int hci_read_page_scan_activity_sync(struct hci_dev *hdev)
3186 {
3187 if (!(hdev->commands[8] & 0x01))
3188 return 0;
3189
3190 return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_ACTIVITY,
3191 0, NULL, HCI_CMD_TIMEOUT);
3192 }
3193
hci_read_def_err_data_reporting_sync(struct hci_dev * hdev)3194 static int hci_read_def_err_data_reporting_sync(struct hci_dev *hdev)
3195 {
3196 if (!(hdev->commands[18] & 0x04) ||
3197 test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks))
3198 return 0;
3199
3200 return __hci_cmd_sync_status(hdev, HCI_OP_READ_DEF_ERR_DATA_REPORTING,
3201 0, NULL, HCI_CMD_TIMEOUT);
3202 }
3203
hci_read_page_scan_type_sync(struct hci_dev * hdev)3204 static int hci_read_page_scan_type_sync(struct hci_dev *hdev)
3205 {
3206 /* Some older Broadcom based Bluetooth 1.2 controllers do not
3207 * support the Read Page Scan Type command. Check support for
3208 * this command in the bit mask of supported commands.
3209 */
3210 if (!(hdev->commands[13] & 0x01))
3211 return 0;
3212
3213 return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_TYPE,
3214 0, NULL, HCI_CMD_TIMEOUT);
3215 }
3216
3217 /* Read features beyond page 1 if available */
hci_read_local_ext_features_all_sync(struct hci_dev * hdev)3218 static int hci_read_local_ext_features_all_sync(struct hci_dev *hdev)
3219 {
3220 u8 page;
3221 int err;
3222
3223 if (!lmp_ext_feat_capable(hdev))
3224 return 0;
3225
3226 for (page = 2; page < HCI_MAX_PAGES && page <= hdev->max_page;
3227 page++) {
3228 err = hci_read_local_ext_features_sync(hdev, page);
3229 if (err)
3230 return err;
3231 }
3232
3233 return 0;
3234 }
3235
3236 /* HCI Controller init stage 3 command sequence */
3237 static const struct hci_init_stage hci_init3[] = {
3238 /* HCI_OP_SET_EVENT_MASK */
3239 HCI_INIT(hci_set_event_mask_sync),
3240 /* HCI_OP_READ_STORED_LINK_KEY */
3241 HCI_INIT(hci_read_stored_link_key_sync),
3242 /* HCI_OP_WRITE_DEF_LINK_POLICY */
3243 HCI_INIT(hci_setup_link_policy_sync),
3244 /* HCI_OP_READ_PAGE_SCAN_ACTIVITY */
3245 HCI_INIT(hci_read_page_scan_activity_sync),
3246 /* HCI_OP_READ_DEF_ERR_DATA_REPORTING */
3247 HCI_INIT(hci_read_def_err_data_reporting_sync),
3248 /* HCI_OP_READ_PAGE_SCAN_TYPE */
3249 HCI_INIT(hci_read_page_scan_type_sync),
3250 /* HCI_OP_READ_LOCAL_EXT_FEATURES */
3251 HCI_INIT(hci_read_local_ext_features_all_sync),
3252 {}
3253 };
3254
hci_le_set_event_mask_sync(struct hci_dev * hdev)3255 static int hci_le_set_event_mask_sync(struct hci_dev *hdev)
3256 {
3257 u8 events[8];
3258
3259 if (!lmp_le_capable(hdev))
3260 return 0;
3261
3262 memset(events, 0, sizeof(events));
3263
3264 if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
3265 events[0] |= 0x10; /* LE Long Term Key Request */
3266
3267 /* If controller supports the Connection Parameters Request
3268 * Link Layer Procedure, enable the corresponding event.
3269 */
3270 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
3271 /* LE Remote Connection Parameter Request */
3272 events[0] |= 0x20;
3273
3274 /* If the controller supports the Data Length Extension
3275 * feature, enable the corresponding event.
3276 */
3277 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
3278 events[0] |= 0x40; /* LE Data Length Change */
3279
3280 /* If the controller supports LL Privacy feature or LE Extended Adv,
3281 * enable the corresponding event.
3282 */
3283 if (use_enhanced_conn_complete(hdev))
3284 events[1] |= 0x02; /* LE Enhanced Connection Complete */
3285
3286 /* If the controller supports Extended Scanner Filter
3287 * Policies, enable the corresponding event.
3288 */
3289 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
3290 events[1] |= 0x04; /* LE Direct Advertising Report */
3291
3292 /* If the controller supports Channel Selection Algorithm #2
3293 * feature, enable the corresponding event.
3294 */
3295 if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
3296 events[2] |= 0x08; /* LE Channel Selection Algorithm */
3297
3298 /* If the controller supports the LE Set Scan Enable command,
3299 * enable the corresponding advertising report event.
3300 */
3301 if (hdev->commands[26] & 0x08)
3302 events[0] |= 0x02; /* LE Advertising Report */
3303
3304 /* If the controller supports the LE Create Connection
3305 * command, enable the corresponding event.
3306 */
3307 if (hdev->commands[26] & 0x10)
3308 events[0] |= 0x01; /* LE Connection Complete */
3309
3310 /* If the controller supports the LE Connection Update
3311 * command, enable the corresponding event.
3312 */
3313 if (hdev->commands[27] & 0x04)
3314 events[0] |= 0x04; /* LE Connection Update Complete */
3315
3316 /* If the controller supports the LE Read Remote Used Features
3317 * command, enable the corresponding event.
3318 */
3319 if (hdev->commands[27] & 0x20)
3320 /* LE Read Remote Used Features Complete */
3321 events[0] |= 0x08;
3322
3323 /* If the controller supports the LE Read Local P-256
3324 * Public Key command, enable the corresponding event.
3325 */
3326 if (hdev->commands[34] & 0x02)
3327 /* LE Read Local P-256 Public Key Complete */
3328 events[0] |= 0x80;
3329
3330 /* If the controller supports the LE Generate DHKey
3331 * command, enable the corresponding event.
3332 */
3333 if (hdev->commands[34] & 0x04)
3334 events[1] |= 0x01; /* LE Generate DHKey Complete */
3335
3336 /* If the controller supports the LE Set Default PHY or
3337 * LE Set PHY commands, enable the corresponding event.
3338 */
3339 if (hdev->commands[35] & (0x20 | 0x40))
3340 events[1] |= 0x08; /* LE PHY Update Complete */
3341
3342 /* If the controller supports LE Set Extended Scan Parameters
3343 * and LE Set Extended Scan Enable commands, enable the
3344 * corresponding event.
3345 */
3346 if (use_ext_scan(hdev))
3347 events[1] |= 0x10; /* LE Extended Advertising Report */
3348
3349 /* If the controller supports the LE Extended Advertising
3350 * command, enable the corresponding event.
3351 */
3352 if (ext_adv_capable(hdev))
3353 events[2] |= 0x02; /* LE Advertising Set Terminated */
3354
3355 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EVENT_MASK,
3356 sizeof(events), events, HCI_CMD_TIMEOUT);
3357 }
3358
3359 /* Read LE Advertising Channel TX Power */
hci_le_read_adv_tx_power_sync(struct hci_dev * hdev)3360 static int hci_le_read_adv_tx_power_sync(struct hci_dev *hdev)
3361 {
3362 if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) {
3363 /* HCI TS spec forbids mixing of legacy and extended
3364 * advertising commands wherein READ_ADV_TX_POWER is
3365 * also included. So do not call it if extended adv
3366 * is supported otherwise controller will return
3367 * COMMAND_DISALLOWED for extended commands.
3368 */
3369 return __hci_cmd_sync_status(hdev,
3370 HCI_OP_LE_READ_ADV_TX_POWER,
3371 0, NULL, HCI_CMD_TIMEOUT);
3372 }
3373
3374 return 0;
3375 }
3376
3377 /* Read LE Min/Max Tx Power*/
hci_le_read_tx_power_sync(struct hci_dev * hdev)3378 static int hci_le_read_tx_power_sync(struct hci_dev *hdev)
3379 {
3380 if (!(hdev->commands[38] & 0x80) ||
3381 test_bit(HCI_QUIRK_BROKEN_READ_TRANSMIT_POWER, &hdev->quirks))
3382 return 0;
3383
3384 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_TRANSMIT_POWER,
3385 0, NULL, HCI_CMD_TIMEOUT);
3386 }
3387
3388 /* Read LE Accept List Size */
hci_le_read_accept_list_size_sync(struct hci_dev * hdev)3389 static int hci_le_read_accept_list_size_sync(struct hci_dev *hdev)
3390 {
3391 if (!(hdev->commands[26] & 0x40))
3392 return 0;
3393
3394 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_ACCEPT_LIST_SIZE,
3395 0, NULL, HCI_CMD_TIMEOUT);
3396 }
3397
3398 /* Clear LE Accept List */
hci_le_clear_accept_list_sync(struct hci_dev * hdev)3399 static int hci_le_clear_accept_list_sync(struct hci_dev *hdev)
3400 {
3401 if (!(hdev->commands[26] & 0x80))
3402 return 0;
3403
3404 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL,
3405 HCI_CMD_TIMEOUT);
3406 }
3407
3408 /* Read LE Resolving List Size */
hci_le_read_resolv_list_size_sync(struct hci_dev * hdev)3409 static int hci_le_read_resolv_list_size_sync(struct hci_dev *hdev)
3410 {
3411 if (!(hdev->commands[34] & 0x40))
3412 return 0;
3413
3414 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_RESOLV_LIST_SIZE,
3415 0, NULL, HCI_CMD_TIMEOUT);
3416 }
3417
3418 /* Clear LE Resolving List */
hci_le_clear_resolv_list_sync(struct hci_dev * hdev)3419 static int hci_le_clear_resolv_list_sync(struct hci_dev *hdev)
3420 {
3421 if (!(hdev->commands[34] & 0x20))
3422 return 0;
3423
3424 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL,
3425 HCI_CMD_TIMEOUT);
3426 }
3427
3428 /* Set RPA timeout */
hci_le_set_rpa_timeout_sync(struct hci_dev * hdev)3429 static int hci_le_set_rpa_timeout_sync(struct hci_dev *hdev)
3430 {
3431 __le16 timeout = cpu_to_le16(hdev->rpa_timeout);
3432
3433 if (!(hdev->commands[35] & 0x04))
3434 return 0;
3435
3436 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RPA_TIMEOUT,
3437 sizeof(timeout), &timeout,
3438 HCI_CMD_TIMEOUT);
3439 }
3440
3441 /* Read LE Maximum Data Length */
hci_le_read_max_data_len_sync(struct hci_dev * hdev)3442 static int hci_le_read_max_data_len_sync(struct hci_dev *hdev)
3443 {
3444 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
3445 return 0;
3446
3447 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL,
3448 HCI_CMD_TIMEOUT);
3449 }
3450
3451 /* Read LE Suggested Default Data Length */
hci_le_read_def_data_len_sync(struct hci_dev * hdev)3452 static int hci_le_read_def_data_len_sync(struct hci_dev *hdev)
3453 {
3454 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
3455 return 0;
3456
3457 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL,
3458 HCI_CMD_TIMEOUT);
3459 }
3460
3461 /* Read LE Number of Supported Advertising Sets */
hci_le_read_num_support_adv_sets_sync(struct hci_dev * hdev)3462 static int hci_le_read_num_support_adv_sets_sync(struct hci_dev *hdev)
3463 {
3464 if (!ext_adv_capable(hdev))
3465 return 0;
3466
3467 return __hci_cmd_sync_status(hdev,
3468 HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS,
3469 0, NULL, HCI_CMD_TIMEOUT);
3470 }
3471
3472 /* Write LE Host Supported */
hci_set_le_support_sync(struct hci_dev * hdev)3473 static int hci_set_le_support_sync(struct hci_dev *hdev)
3474 {
3475 struct hci_cp_write_le_host_supported cp;
3476
3477 /* LE-only devices do not support explicit enablement */
3478 if (!lmp_bredr_capable(hdev))
3479 return 0;
3480
3481 memset(&cp, 0, sizeof(cp));
3482
3483 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
3484 cp.le = 0x01;
3485 cp.simul = 0x00;
3486 }
3487
3488 if (cp.le == lmp_host_le_capable(hdev))
3489 return 0;
3490
3491 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED,
3492 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3493 }
3494
3495 /* LE Controller init stage 3 command sequence */
3496 static const struct hci_init_stage le_init3[] = {
3497 /* HCI_OP_LE_SET_EVENT_MASK */
3498 HCI_INIT(hci_le_set_event_mask_sync),
3499 /* HCI_OP_LE_READ_ADV_TX_POWER */
3500 HCI_INIT(hci_le_read_adv_tx_power_sync),
3501 /* HCI_OP_LE_READ_TRANSMIT_POWER */
3502 HCI_INIT(hci_le_read_tx_power_sync),
3503 /* HCI_OP_LE_READ_ACCEPT_LIST_SIZE */
3504 HCI_INIT(hci_le_read_accept_list_size_sync),
3505 /* HCI_OP_LE_CLEAR_ACCEPT_LIST */
3506 HCI_INIT(hci_le_clear_accept_list_sync),
3507 /* HCI_OP_LE_READ_RESOLV_LIST_SIZE */
3508 HCI_INIT(hci_le_read_resolv_list_size_sync),
3509 /* HCI_OP_LE_CLEAR_RESOLV_LIST */
3510 HCI_INIT(hci_le_clear_resolv_list_sync),
3511 /* HCI_OP_LE_SET_RPA_TIMEOUT */
3512 HCI_INIT(hci_le_set_rpa_timeout_sync),
3513 /* HCI_OP_LE_READ_MAX_DATA_LEN */
3514 HCI_INIT(hci_le_read_max_data_len_sync),
3515 /* HCI_OP_LE_READ_DEF_DATA_LEN */
3516 HCI_INIT(hci_le_read_def_data_len_sync),
3517 /* HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS */
3518 HCI_INIT(hci_le_read_num_support_adv_sets_sync),
3519 /* HCI_OP_WRITE_LE_HOST_SUPPORTED */
3520 HCI_INIT(hci_set_le_support_sync),
3521 {}
3522 };
3523
hci_init3_sync(struct hci_dev * hdev)3524 static int hci_init3_sync(struct hci_dev *hdev)
3525 {
3526 int err;
3527
3528 bt_dev_dbg(hdev, "");
3529
3530 err = hci_init_stage_sync(hdev, hci_init3);
3531 if (err)
3532 return err;
3533
3534 if (lmp_le_capable(hdev))
3535 return hci_init_stage_sync(hdev, le_init3);
3536
3537 return 0;
3538 }
3539
hci_delete_stored_link_key_sync(struct hci_dev * hdev)3540 static int hci_delete_stored_link_key_sync(struct hci_dev *hdev)
3541 {
3542 struct hci_cp_delete_stored_link_key cp;
3543
3544 /* Some Broadcom based Bluetooth controllers do not support the
3545 * Delete Stored Link Key command. They are clearly indicating its
3546 * absence in the bit mask of supported commands.
3547 *
3548 * Check the supported commands and only if the command is marked
3549 * as supported send it. If not supported assume that the controller
3550 * does not have actual support for stored link keys which makes this
3551 * command redundant anyway.
3552 *
3553 * Some controllers indicate that they support handling deleting
3554 * stored link keys, but they don't. The quirk lets a driver
3555 * just disable this command.
3556 */
3557 if (!(hdev->commands[6] & 0x80) ||
3558 test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks))
3559 return 0;
3560
3561 memset(&cp, 0, sizeof(cp));
3562 bacpy(&cp.bdaddr, BDADDR_ANY);
3563 cp.delete_all = 0x01;
3564
3565 return __hci_cmd_sync_status(hdev, HCI_OP_DELETE_STORED_LINK_KEY,
3566 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3567 }
3568
hci_set_event_mask_page_2_sync(struct hci_dev * hdev)3569 static int hci_set_event_mask_page_2_sync(struct hci_dev *hdev)
3570 {
3571 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
3572 bool changed = false;
3573
3574 /* Set event mask page 2 if the HCI command for it is supported */
3575 if (!(hdev->commands[22] & 0x04))
3576 return 0;
3577
3578 /* If Connectionless Peripheral Broadcast central role is supported
3579 * enable all necessary events for it.
3580 */
3581 if (lmp_cpb_central_capable(hdev)) {
3582 events[1] |= 0x40; /* Triggered Clock Capture */
3583 events[1] |= 0x80; /* Synchronization Train Complete */
3584 events[2] |= 0x10; /* Peripheral Page Response Timeout */
3585 events[2] |= 0x20; /* CPB Channel Map Change */
3586 changed = true;
3587 }
3588
3589 /* If Connectionless Peripheral Broadcast peripheral role is supported
3590 * enable all necessary events for it.
3591 */
3592 if (lmp_cpb_peripheral_capable(hdev)) {
3593 events[2] |= 0x01; /* Synchronization Train Received */
3594 events[2] |= 0x02; /* CPB Receive */
3595 events[2] |= 0x04; /* CPB Timeout */
3596 events[2] |= 0x08; /* Truncated Page Complete */
3597 changed = true;
3598 }
3599
3600 /* Enable Authenticated Payload Timeout Expired event if supported */
3601 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
3602 events[2] |= 0x80;
3603 changed = true;
3604 }
3605
3606 /* Some Broadcom based controllers indicate support for Set Event
3607 * Mask Page 2 command, but then actually do not support it. Since
3608 * the default value is all bits set to zero, the command is only
3609 * required if the event mask has to be changed. In case no change
3610 * to the event mask is needed, skip this command.
3611 */
3612 if (!changed)
3613 return 0;
3614
3615 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK_PAGE_2,
3616 sizeof(events), events, HCI_CMD_TIMEOUT);
3617 }
3618
3619 /* Read local codec list if the HCI command is supported */
hci_read_local_codecs_sync(struct hci_dev * hdev)3620 static int hci_read_local_codecs_sync(struct hci_dev *hdev)
3621 {
3622 if (!(hdev->commands[29] & 0x20))
3623 return 0;
3624
3625 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_CODECS, 0, NULL,
3626 HCI_CMD_TIMEOUT);
3627 }
3628
3629 /* Read local pairing options if the HCI command is supported */
hci_read_local_pairing_opts_sync(struct hci_dev * hdev)3630 static int hci_read_local_pairing_opts_sync(struct hci_dev *hdev)
3631 {
3632 if (!(hdev->commands[41] & 0x08))
3633 return 0;
3634
3635 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_PAIRING_OPTS,
3636 0, NULL, HCI_CMD_TIMEOUT);
3637 }
3638
3639 /* Get MWS transport configuration if the HCI command is supported */
hci_get_mws_transport_config_sync(struct hci_dev * hdev)3640 static int hci_get_mws_transport_config_sync(struct hci_dev *hdev)
3641 {
3642 if (!(hdev->commands[30] & 0x08))
3643 return 0;
3644
3645 return __hci_cmd_sync_status(hdev, HCI_OP_GET_MWS_TRANSPORT_CONFIG,
3646 0, NULL, HCI_CMD_TIMEOUT);
3647 }
3648
3649 /* Check for Synchronization Train support */
hci_read_sync_train_params_sync(struct hci_dev * hdev)3650 static int hci_read_sync_train_params_sync(struct hci_dev *hdev)
3651 {
3652 if (!lmp_sync_train_capable(hdev))
3653 return 0;
3654
3655 return __hci_cmd_sync_status(hdev, HCI_OP_READ_SYNC_TRAIN_PARAMS,
3656 0, NULL, HCI_CMD_TIMEOUT);
3657 }
3658
3659 /* Enable Secure Connections if supported and configured */
hci_write_sc_support_1_sync(struct hci_dev * hdev)3660 static int hci_write_sc_support_1_sync(struct hci_dev *hdev)
3661 {
3662 u8 support = 0x01;
3663
3664 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) ||
3665 !bredr_sc_enabled(hdev))
3666 return 0;
3667
3668 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT,
3669 sizeof(support), &support,
3670 HCI_CMD_TIMEOUT);
3671 }
3672
3673 /* Set erroneous data reporting if supported to the wideband speech
3674 * setting value
3675 */
hci_set_err_data_report_sync(struct hci_dev * hdev)3676 static int hci_set_err_data_report_sync(struct hci_dev *hdev)
3677 {
3678 struct hci_cp_write_def_err_data_reporting cp;
3679 bool enabled = hci_dev_test_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED);
3680
3681 if (!(hdev->commands[18] & 0x08) ||
3682 test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks))
3683 return 0;
3684
3685 if (enabled == hdev->err_data_reporting)
3686 return 0;
3687
3688 memset(&cp, 0, sizeof(cp));
3689 cp.err_data_reporting = enabled ? ERR_DATA_REPORTING_ENABLED :
3690 ERR_DATA_REPORTING_DISABLED;
3691
3692 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING,
3693 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3694 }
3695
3696 static const struct hci_init_stage hci_init4[] = {
3697 /* HCI_OP_DELETE_STORED_LINK_KEY */
3698 HCI_INIT(hci_delete_stored_link_key_sync),
3699 /* HCI_OP_SET_EVENT_MASK_PAGE_2 */
3700 HCI_INIT(hci_set_event_mask_page_2_sync),
3701 /* HCI_OP_READ_LOCAL_CODECS */
3702 HCI_INIT(hci_read_local_codecs_sync),
3703 /* HCI_OP_READ_LOCAL_PAIRING_OPTS */
3704 HCI_INIT(hci_read_local_pairing_opts_sync),
3705 /* HCI_OP_GET_MWS_TRANSPORT_CONFIG */
3706 HCI_INIT(hci_get_mws_transport_config_sync),
3707 /* HCI_OP_READ_SYNC_TRAIN_PARAMS */
3708 HCI_INIT(hci_read_sync_train_params_sync),
3709 /* HCI_OP_WRITE_SC_SUPPORT */
3710 HCI_INIT(hci_write_sc_support_1_sync),
3711 /* HCI_OP_WRITE_DEF_ERR_DATA_REPORTING */
3712 HCI_INIT(hci_set_err_data_report_sync),
3713 {}
3714 };
3715
3716 /* Set Suggested Default Data Length to maximum if supported */
hci_le_set_write_def_data_len_sync(struct hci_dev * hdev)3717 static int hci_le_set_write_def_data_len_sync(struct hci_dev *hdev)
3718 {
3719 struct hci_cp_le_write_def_data_len cp;
3720
3721 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
3722 return 0;
3723
3724 memset(&cp, 0, sizeof(cp));
3725 cp.tx_len = cpu_to_le16(hdev->le_max_tx_len);
3726 cp.tx_time = cpu_to_le16(hdev->le_max_tx_time);
3727
3728 return __hci_cmd_sync_status(hdev, HCI_OP_LE_WRITE_DEF_DATA_LEN,
3729 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3730 }
3731
3732 /* Set Default PHY parameters if command is supported */
hci_le_set_default_phy_sync(struct hci_dev * hdev)3733 static int hci_le_set_default_phy_sync(struct hci_dev *hdev)
3734 {
3735 struct hci_cp_le_set_default_phy cp;
3736
3737 if (!(hdev->commands[35] & 0x20))
3738 return 0;
3739
3740 memset(&cp, 0, sizeof(cp));
3741 cp.all_phys = 0x00;
3742 cp.tx_phys = hdev->le_tx_def_phys;
3743 cp.rx_phys = hdev->le_rx_def_phys;
3744
3745 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_DEFAULT_PHY,
3746 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3747 }
3748
3749 static const struct hci_init_stage le_init4[] = {
3750 /* HCI_OP_LE_WRITE_DEF_DATA_LEN */
3751 HCI_INIT(hci_le_set_write_def_data_len_sync),
3752 /* HCI_OP_LE_SET_DEFAULT_PHY */
3753 HCI_INIT(hci_le_set_default_phy_sync),
3754 {}
3755 };
3756
hci_init4_sync(struct hci_dev * hdev)3757 static int hci_init4_sync(struct hci_dev *hdev)
3758 {
3759 int err;
3760
3761 bt_dev_dbg(hdev, "");
3762
3763 err = hci_init_stage_sync(hdev, hci_init4);
3764 if (err)
3765 return err;
3766
3767 if (lmp_le_capable(hdev))
3768 return hci_init_stage_sync(hdev, le_init4);
3769
3770 return 0;
3771 }
3772
hci_init_sync(struct hci_dev * hdev)3773 static int hci_init_sync(struct hci_dev *hdev)
3774 {
3775 int err;
3776
3777 err = hci_init1_sync(hdev);
3778 if (err < 0)
3779 return err;
3780
3781 if (hci_dev_test_flag(hdev, HCI_SETUP))
3782 hci_debugfs_create_basic(hdev);
3783
3784 err = hci_init2_sync(hdev);
3785 if (err < 0)
3786 return err;
3787
3788 /* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
3789 * BR/EDR/LE type controllers. AMP controllers only need the
3790 * first two stages of init.
3791 */
3792 if (hdev->dev_type != HCI_PRIMARY)
3793 return 0;
3794
3795 err = hci_init3_sync(hdev);
3796 if (err < 0)
3797 return err;
3798
3799 err = hci_init4_sync(hdev);
3800 if (err < 0)
3801 return err;
3802
3803 /* This function is only called when the controller is actually in
3804 * configured state. When the controller is marked as unconfigured,
3805 * this initialization procedure is not run.
3806 *
3807 * It means that it is possible that a controller runs through its
3808 * setup phase and then discovers missing settings. If that is the
3809 * case, then this function will not be called. It then will only
3810 * be called during the config phase.
3811 *
3812 * So only when in setup phase or config phase, create the debugfs
3813 * entries and register the SMP channels.
3814 */
3815 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
3816 !hci_dev_test_flag(hdev, HCI_CONFIG))
3817 return 0;
3818
3819 hci_debugfs_create_common(hdev);
3820
3821 if (lmp_bredr_capable(hdev))
3822 hci_debugfs_create_bredr(hdev);
3823
3824 if (lmp_le_capable(hdev))
3825 hci_debugfs_create_le(hdev);
3826
3827 return 0;
3828 }
3829
3830 #define HCI_QUIRK_BROKEN(_quirk, _desc) { HCI_QUIRK_BROKEN_##_quirk, _desc }
3831
3832 static const struct {
3833 unsigned long quirk;
3834 const char *desc;
3835 } hci_broken_table[] = {
3836 HCI_QUIRK_BROKEN(LOCAL_COMMANDS,
3837 "HCI Read Local Supported Commands not supported"),
3838 HCI_QUIRK_BROKEN(STORED_LINK_KEY,
3839 "HCI Delete Stored Link Key command is advertised, "
3840 "but not supported."),
3841 HCI_QUIRK_BROKEN(ERR_DATA_REPORTING,
3842 "HCI Read Default Erroneous Data Reporting command is "
3843 "advertised, but not supported."),
3844 HCI_QUIRK_BROKEN(READ_TRANSMIT_POWER,
3845 "HCI Read Transmit Power Level command is advertised, "
3846 "but not supported."),
3847 HCI_QUIRK_BROKEN(FILTER_CLEAR_ALL,
3848 "HCI Set Event Filter command not supported."),
3849 HCI_QUIRK_BROKEN(ENHANCED_SETUP_SYNC_CONN,
3850 "HCI Enhanced Setup Synchronous Connection command is "
3851 "advertised, but not supported.")
3852 };
3853
hci_dev_open_sync(struct hci_dev * hdev)3854 int hci_dev_open_sync(struct hci_dev *hdev)
3855 {
3856 int ret = 0;
3857
3858 bt_dev_dbg(hdev, "");
3859
3860 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
3861 ret = -ENODEV;
3862 goto done;
3863 }
3864
3865 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
3866 !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3867 /* Check for rfkill but allow the HCI setup stage to
3868 * proceed (which in itself doesn't cause any RF activity).
3869 */
3870 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
3871 ret = -ERFKILL;
3872 goto done;
3873 }
3874
3875 /* Check for valid public address or a configured static
3876 * random address, but let the HCI setup proceed to
3877 * be able to determine if there is a public address
3878 * or not.
3879 *
3880 * In case of user channel usage, it is not important
3881 * if a public address or static random address is
3882 * available.
3883 *
3884 * This check is only valid for BR/EDR controllers
3885 * since AMP controllers do not have an address.
3886 */
3887 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
3888 hdev->dev_type == HCI_PRIMARY &&
3889 !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
3890 !bacmp(&hdev->static_addr, BDADDR_ANY)) {
3891 ret = -EADDRNOTAVAIL;
3892 goto done;
3893 }
3894 }
3895
3896 if (test_bit(HCI_UP, &hdev->flags)) {
3897 ret = -EALREADY;
3898 goto done;
3899 }
3900
3901 if (hdev->open(hdev)) {
3902 ret = -EIO;
3903 goto done;
3904 }
3905
3906 set_bit(HCI_RUNNING, &hdev->flags);
3907 hci_sock_dev_event(hdev, HCI_DEV_OPEN);
3908
3909 atomic_set(&hdev->cmd_cnt, 1);
3910 set_bit(HCI_INIT, &hdev->flags);
3911
3912 if (hci_dev_test_flag(hdev, HCI_SETUP) ||
3913 test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) {
3914 bool invalid_bdaddr;
3915 size_t i;
3916
3917 hci_sock_dev_event(hdev, HCI_DEV_SETUP);
3918
3919 if (hdev->setup)
3920 ret = hdev->setup(hdev);
3921
3922 for (i = 0; i < ARRAY_SIZE(hci_broken_table); i++) {
3923 if (test_bit(hci_broken_table[i].quirk, &hdev->quirks))
3924 bt_dev_warn(hdev, "%s",
3925 hci_broken_table[i].desc);
3926 }
3927
3928 /* The transport driver can set the quirk to mark the
3929 * BD_ADDR invalid before creating the HCI device or in
3930 * its setup callback.
3931 */
3932 invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR,
3933 &hdev->quirks);
3934
3935 if (ret)
3936 goto setup_failed;
3937
3938 if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) {
3939 if (!bacmp(&hdev->public_addr, BDADDR_ANY))
3940 hci_dev_get_bd_addr_from_property(hdev);
3941
3942 if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
3943 hdev->set_bdaddr) {
3944 ret = hdev->set_bdaddr(hdev,
3945 &hdev->public_addr);
3946
3947 /* If setting of the BD_ADDR from the device
3948 * property succeeds, then treat the address
3949 * as valid even if the invalid BD_ADDR
3950 * quirk indicates otherwise.
3951 */
3952 if (!ret)
3953 invalid_bdaddr = false;
3954 }
3955 }
3956
3957 setup_failed:
3958 /* The transport driver can set these quirks before
3959 * creating the HCI device or in its setup callback.
3960 *
3961 * For the invalid BD_ADDR quirk it is possible that
3962 * it becomes a valid address if the bootloader does
3963 * provide it (see above).
3964 *
3965 * In case any of them is set, the controller has to
3966 * start up as unconfigured.
3967 */
3968 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
3969 invalid_bdaddr)
3970 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3971
3972 /* For an unconfigured controller it is required to
3973 * read at least the version information provided by
3974 * the Read Local Version Information command.
3975 *
3976 * If the set_bdaddr driver callback is provided, then
3977 * also the original Bluetooth public device address
3978 * will be read using the Read BD Address command.
3979 */
3980 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
3981 ret = hci_unconf_init_sync(hdev);
3982 }
3983
3984 if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
3985 /* If public address change is configured, ensure that
3986 * the address gets programmed. If the driver does not
3987 * support changing the public address, fail the power
3988 * on procedure.
3989 */
3990 if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
3991 hdev->set_bdaddr)
3992 ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
3993 else
3994 ret = -EADDRNOTAVAIL;
3995 }
3996
3997 if (!ret) {
3998 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
3999 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4000 ret = hci_init_sync(hdev);
4001 if (!ret && hdev->post_init)
4002 ret = hdev->post_init(hdev);
4003 }
4004 }
4005
4006 /* If the HCI Reset command is clearing all diagnostic settings,
4007 * then they need to be reprogrammed after the init procedure
4008 * completed.
4009 */
4010 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
4011 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4012 hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
4013 ret = hdev->set_diag(hdev, true);
4014
4015 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4016 msft_do_open(hdev);
4017 aosp_do_open(hdev);
4018 }
4019
4020 clear_bit(HCI_INIT, &hdev->flags);
4021
4022 if (!ret) {
4023 hci_dev_hold(hdev);
4024 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
4025 hci_adv_instances_set_rpa_expired(hdev, true);
4026 set_bit(HCI_UP, &hdev->flags);
4027 hci_sock_dev_event(hdev, HCI_DEV_UP);
4028 hci_leds_update_powered(hdev, true);
4029 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
4030 !hci_dev_test_flag(hdev, HCI_CONFIG) &&
4031 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
4032 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4033 hci_dev_test_flag(hdev, HCI_MGMT) &&
4034 hdev->dev_type == HCI_PRIMARY) {
4035 ret = hci_powered_update_sync(hdev);
4036 }
4037 } else {
4038 /* Init failed, cleanup */
4039 flush_work(&hdev->tx_work);
4040
4041 /* Since hci_rx_work() is possible to awake new cmd_work
4042 * it should be flushed first to avoid unexpected call of
4043 * hci_cmd_work()
4044 */
4045 flush_work(&hdev->rx_work);
4046 flush_work(&hdev->cmd_work);
4047
4048 skb_queue_purge(&hdev->cmd_q);
4049 skb_queue_purge(&hdev->rx_q);
4050
4051 if (hdev->flush)
4052 hdev->flush(hdev);
4053
4054 if (hdev->sent_cmd) {
4055 kfree_skb(hdev->sent_cmd);
4056 hdev->sent_cmd = NULL;
4057 }
4058
4059 clear_bit(HCI_RUNNING, &hdev->flags);
4060 hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
4061
4062 hdev->close(hdev);
4063 hdev->flags &= BIT(HCI_RAW);
4064 }
4065
4066 done:
4067 return ret;
4068 }
4069
4070 /* This function requires the caller holds hdev->lock */
hci_pend_le_actions_clear(struct hci_dev * hdev)4071 static void hci_pend_le_actions_clear(struct hci_dev *hdev)
4072 {
4073 struct hci_conn_params *p;
4074
4075 list_for_each_entry(p, &hdev->le_conn_params, list) {
4076 if (p->conn) {
4077 hci_conn_drop(p->conn);
4078 hci_conn_put(p->conn);
4079 p->conn = NULL;
4080 }
4081 list_del_init(&p->action);
4082 }
4083
4084 BT_DBG("All LE pending actions cleared");
4085 }
4086
hci_dev_close_sync(struct hci_dev * hdev)4087 int hci_dev_close_sync(struct hci_dev *hdev)
4088 {
4089 bool auto_off;
4090 int err = 0;
4091
4092 bt_dev_dbg(hdev, "");
4093
4094 cancel_delayed_work(&hdev->power_off);
4095 cancel_delayed_work(&hdev->ncmd_timer);
4096
4097 hci_request_cancel_all(hdev);
4098
4099 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
4100 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4101 test_bit(HCI_UP, &hdev->flags)) {
4102 /* Execute vendor specific shutdown routine */
4103 if (hdev->shutdown)
4104 err = hdev->shutdown(hdev);
4105 }
4106
4107 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
4108 cancel_delayed_work_sync(&hdev->cmd_timer);
4109 return err;
4110 }
4111
4112 hci_leds_update_powered(hdev, false);
4113
4114 /* Flush RX and TX works */
4115 flush_work(&hdev->tx_work);
4116 flush_work(&hdev->rx_work);
4117
4118 if (hdev->discov_timeout > 0) {
4119 hdev->discov_timeout = 0;
4120 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
4121 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
4122 }
4123
4124 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
4125 cancel_delayed_work(&hdev->service_cache);
4126
4127 if (hci_dev_test_flag(hdev, HCI_MGMT)) {
4128 struct adv_info *adv_instance;
4129
4130 cancel_delayed_work_sync(&hdev->rpa_expired);
4131
4132 list_for_each_entry(adv_instance, &hdev->adv_instances, list)
4133 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
4134 }
4135
4136 /* Avoid potential lockdep warnings from the *_flush() calls by
4137 * ensuring the workqueue is empty up front.
4138 */
4139 drain_workqueue(hdev->workqueue);
4140
4141 hci_dev_lock(hdev);
4142
4143 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
4144
4145 auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
4146
4147 if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
4148 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4149 hci_dev_test_flag(hdev, HCI_MGMT))
4150 __mgmt_power_off(hdev);
4151
4152 hci_inquiry_cache_flush(hdev);
4153 hci_pend_le_actions_clear(hdev);
4154 hci_conn_hash_flush(hdev);
4155 /* Prevent data races on hdev->smp_data or hdev->smp_bredr_data */
4156 smp_unregister(hdev);
4157 hci_dev_unlock(hdev);
4158
4159 hci_sock_dev_event(hdev, HCI_DEV_DOWN);
4160
4161 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4162 aosp_do_close(hdev);
4163 msft_do_close(hdev);
4164 }
4165
4166 if (hdev->flush)
4167 hdev->flush(hdev);
4168
4169 /* Reset device */
4170 skb_queue_purge(&hdev->cmd_q);
4171 atomic_set(&hdev->cmd_cnt, 1);
4172 if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
4173 !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
4174 set_bit(HCI_INIT, &hdev->flags);
4175 hci_reset_sync(hdev);
4176 clear_bit(HCI_INIT, &hdev->flags);
4177 }
4178
4179 /* flush cmd work */
4180 flush_work(&hdev->cmd_work);
4181
4182 /* Drop queues */
4183 skb_queue_purge(&hdev->rx_q);
4184 skb_queue_purge(&hdev->cmd_q);
4185 skb_queue_purge(&hdev->raw_q);
4186
4187 /* Drop last sent command */
4188 if (hdev->sent_cmd) {
4189 cancel_delayed_work_sync(&hdev->cmd_timer);
4190 kfree_skb(hdev->sent_cmd);
4191 hdev->sent_cmd = NULL;
4192 }
4193
4194 clear_bit(HCI_RUNNING, &hdev->flags);
4195 hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
4196
4197 /* After this point our queues are empty and no tasks are scheduled. */
4198 hdev->close(hdev);
4199
4200 /* Clear flags */
4201 hdev->flags &= BIT(HCI_RAW);
4202 hci_dev_clear_volatile_flags(hdev);
4203
4204 /* Controller radio is available but is currently powered down */
4205 hdev->amp_status = AMP_STATUS_POWERED_DOWN;
4206
4207 memset(hdev->eir, 0, sizeof(hdev->eir));
4208 memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
4209 bacpy(&hdev->random_addr, BDADDR_ANY);
4210
4211 hci_dev_put(hdev);
4212 return err;
4213 }
4214
4215 /* This function perform power on HCI command sequence as follows:
4216 *
4217 * If controller is already up (HCI_UP) performs hci_powered_update_sync
4218 * sequence otherwise run hci_dev_open_sync which will follow with
4219 * hci_powered_update_sync after the init sequence is completed.
4220 */
hci_power_on_sync(struct hci_dev * hdev)4221 static int hci_power_on_sync(struct hci_dev *hdev)
4222 {
4223 int err;
4224
4225 if (test_bit(HCI_UP, &hdev->flags) &&
4226 hci_dev_test_flag(hdev, HCI_MGMT) &&
4227 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
4228 cancel_delayed_work(&hdev->power_off);
4229 return hci_powered_update_sync(hdev);
4230 }
4231
4232 err = hci_dev_open_sync(hdev);
4233 if (err < 0)
4234 return err;
4235
4236 /* During the HCI setup phase, a few error conditions are
4237 * ignored and they need to be checked now. If they are still
4238 * valid, it is important to return the device back off.
4239 */
4240 if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
4241 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
4242 (hdev->dev_type == HCI_PRIMARY &&
4243 !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
4244 !bacmp(&hdev->static_addr, BDADDR_ANY))) {
4245 hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
4246 hci_dev_close_sync(hdev);
4247 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
4248 queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
4249 HCI_AUTO_OFF_TIMEOUT);
4250 }
4251
4252 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
4253 /* For unconfigured devices, set the HCI_RAW flag
4254 * so that userspace can easily identify them.
4255 */
4256 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
4257 set_bit(HCI_RAW, &hdev->flags);
4258
4259 /* For fully configured devices, this will send
4260 * the Index Added event. For unconfigured devices,
4261 * it will send Unconfigued Index Added event.
4262 *
4263 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
4264 * and no event will be send.
4265 */
4266 mgmt_index_added(hdev);
4267 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
4268 /* When the controller is now configured, then it
4269 * is important to clear the HCI_RAW flag.
4270 */
4271 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
4272 clear_bit(HCI_RAW, &hdev->flags);
4273
4274 /* Powering on the controller with HCI_CONFIG set only
4275 * happens with the transition from unconfigured to
4276 * configured. This will send the Index Added event.
4277 */
4278 mgmt_index_added(hdev);
4279 }
4280
4281 return 0;
4282 }
4283
hci_remote_name_cancel_sync(struct hci_dev * hdev,bdaddr_t * addr)4284 static int hci_remote_name_cancel_sync(struct hci_dev *hdev, bdaddr_t *addr)
4285 {
4286 struct hci_cp_remote_name_req_cancel cp;
4287
4288 memset(&cp, 0, sizeof(cp));
4289 bacpy(&cp.bdaddr, addr);
4290
4291 return __hci_cmd_sync_status(hdev, HCI_OP_REMOTE_NAME_REQ_CANCEL,
4292 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4293 }
4294
hci_stop_discovery_sync(struct hci_dev * hdev)4295 int hci_stop_discovery_sync(struct hci_dev *hdev)
4296 {
4297 struct discovery_state *d = &hdev->discovery;
4298 struct inquiry_entry *e;
4299 int err;
4300
4301 bt_dev_dbg(hdev, "state %u", hdev->discovery.state);
4302
4303 if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
4304 if (test_bit(HCI_INQUIRY, &hdev->flags)) {
4305 err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL,
4306 0, NULL, HCI_CMD_TIMEOUT);
4307 if (err)
4308 return err;
4309 }
4310
4311 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
4312 cancel_delayed_work(&hdev->le_scan_disable);
4313 cancel_delayed_work(&hdev->le_scan_restart);
4314
4315 err = hci_scan_disable_sync(hdev);
4316 if (err)
4317 return err;
4318 }
4319
4320 } else {
4321 err = hci_scan_disable_sync(hdev);
4322 if (err)
4323 return err;
4324 }
4325
4326 /* Resume advertising if it was paused */
4327 if (use_ll_privacy(hdev))
4328 hci_resume_advertising_sync(hdev);
4329
4330 /* No further actions needed for LE-only discovery */
4331 if (d->type == DISCOV_TYPE_LE)
4332 return 0;
4333
4334 if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
4335 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
4336 NAME_PENDING);
4337 if (!e)
4338 return 0;
4339
4340 return hci_remote_name_cancel_sync(hdev, &e->data.bdaddr);
4341 }
4342
4343 return 0;
4344 }
4345
hci_disconnect_phy_link_sync(struct hci_dev * hdev,u16 handle,u8 reason)4346 static int hci_disconnect_phy_link_sync(struct hci_dev *hdev, u16 handle,
4347 u8 reason)
4348 {
4349 struct hci_cp_disconn_phy_link cp;
4350
4351 memset(&cp, 0, sizeof(cp));
4352 cp.phy_handle = HCI_PHY_HANDLE(handle);
4353 cp.reason = reason;
4354
4355 return __hci_cmd_sync_status(hdev, HCI_OP_DISCONN_PHY_LINK,
4356 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4357 }
4358
hci_disconnect_sync(struct hci_dev * hdev,struct hci_conn * conn,u8 reason)4359 static int hci_disconnect_sync(struct hci_dev *hdev, struct hci_conn *conn,
4360 u8 reason)
4361 {
4362 struct hci_cp_disconnect cp;
4363
4364 if (conn->type == AMP_LINK)
4365 return hci_disconnect_phy_link_sync(hdev, conn->handle, reason);
4366
4367 memset(&cp, 0, sizeof(cp));
4368 cp.handle = cpu_to_le16(conn->handle);
4369 cp.reason = reason;
4370
4371 /* Wait for HCI_EV_DISCONN_COMPLETE not HCI_EV_CMD_STATUS when not
4372 * suspending.
4373 */
4374 if (!hdev->suspended)
4375 return __hci_cmd_sync_status_sk(hdev, HCI_OP_DISCONNECT,
4376 sizeof(cp), &cp,
4377 HCI_EV_DISCONN_COMPLETE,
4378 HCI_CMD_TIMEOUT, NULL);
4379
4380 return __hci_cmd_sync_status(hdev, HCI_OP_DISCONNECT, sizeof(cp), &cp,
4381 HCI_CMD_TIMEOUT);
4382 }
4383
hci_le_connect_cancel_sync(struct hci_dev * hdev,struct hci_conn * conn)4384 static int hci_le_connect_cancel_sync(struct hci_dev *hdev,
4385 struct hci_conn *conn)
4386 {
4387 if (test_bit(HCI_CONN_SCANNING, &conn->flags))
4388 return 0;
4389
4390 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CREATE_CONN_CANCEL,
4391 6, &conn->dst, HCI_CMD_TIMEOUT);
4392 }
4393
hci_connect_cancel_sync(struct hci_dev * hdev,struct hci_conn * conn)4394 static int hci_connect_cancel_sync(struct hci_dev *hdev, struct hci_conn *conn)
4395 {
4396 if (conn->type == LE_LINK)
4397 return hci_le_connect_cancel_sync(hdev, conn);
4398
4399 if (hdev->hci_ver < BLUETOOTH_VER_1_2)
4400 return 0;
4401
4402 return __hci_cmd_sync_status(hdev, HCI_OP_CREATE_CONN_CANCEL,
4403 6, &conn->dst, HCI_CMD_TIMEOUT);
4404 }
4405
hci_reject_sco_sync(struct hci_dev * hdev,struct hci_conn * conn,u8 reason)4406 static int hci_reject_sco_sync(struct hci_dev *hdev, struct hci_conn *conn,
4407 u8 reason)
4408 {
4409 struct hci_cp_reject_sync_conn_req cp;
4410
4411 memset(&cp, 0, sizeof(cp));
4412 bacpy(&cp.bdaddr, &conn->dst);
4413 cp.reason = reason;
4414
4415 /* SCO rejection has its own limited set of
4416 * allowed error values (0x0D-0x0F).
4417 */
4418 if (reason < 0x0d || reason > 0x0f)
4419 cp.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
4420
4421 return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_SYNC_CONN_REQ,
4422 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4423 }
4424
hci_reject_conn_sync(struct hci_dev * hdev,struct hci_conn * conn,u8 reason)4425 static int hci_reject_conn_sync(struct hci_dev *hdev, struct hci_conn *conn,
4426 u8 reason)
4427 {
4428 struct hci_cp_reject_conn_req cp;
4429
4430 if (conn->type == SCO_LINK || conn->type == ESCO_LINK)
4431 return hci_reject_sco_sync(hdev, conn, reason);
4432
4433 memset(&cp, 0, sizeof(cp));
4434 bacpy(&cp.bdaddr, &conn->dst);
4435 cp.reason = reason;
4436
4437 return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_CONN_REQ,
4438 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4439 }
4440
hci_abort_conn_sync(struct hci_dev * hdev,struct hci_conn * conn,u8 reason)4441 static int hci_abort_conn_sync(struct hci_dev *hdev, struct hci_conn *conn,
4442 u8 reason)
4443 {
4444 int err;
4445
4446 switch (conn->state) {
4447 case BT_CONNECTED:
4448 case BT_CONFIG:
4449 return hci_disconnect_sync(hdev, conn, reason);
4450 case BT_CONNECT:
4451 err = hci_connect_cancel_sync(hdev, conn);
4452 /* Cleanup hci_conn object if it cannot be cancelled as it
4453 * likelly means the controller and host stack are out of sync.
4454 */
4455 if (err) {
4456 hci_dev_lock(hdev);
4457 hci_conn_failed(conn, err);
4458 hci_dev_unlock(hdev);
4459 }
4460 return err;
4461 case BT_CONNECT2:
4462 return hci_reject_conn_sync(hdev, conn, reason);
4463 default:
4464 conn->state = BT_CLOSED;
4465 break;
4466 }
4467
4468 return 0;
4469 }
4470
hci_disconnect_all_sync(struct hci_dev * hdev,u8 reason)4471 static int hci_disconnect_all_sync(struct hci_dev *hdev, u8 reason)
4472 {
4473 struct hci_conn *conn, *tmp;
4474 int err;
4475
4476 list_for_each_entry_safe(conn, tmp, &hdev->conn_hash.list, list) {
4477 err = hci_abort_conn_sync(hdev, conn, reason);
4478 if (err)
4479 return err;
4480 }
4481
4482 return 0;
4483 }
4484
4485 /* This function perform power off HCI command sequence as follows:
4486 *
4487 * Clear Advertising
4488 * Stop Discovery
4489 * Disconnect all connections
4490 * hci_dev_close_sync
4491 */
hci_power_off_sync(struct hci_dev * hdev)4492 static int hci_power_off_sync(struct hci_dev *hdev)
4493 {
4494 int err;
4495
4496 /* If controller is already down there is nothing to do */
4497 if (!test_bit(HCI_UP, &hdev->flags))
4498 return 0;
4499
4500 if (test_bit(HCI_ISCAN, &hdev->flags) ||
4501 test_bit(HCI_PSCAN, &hdev->flags)) {
4502 err = hci_write_scan_enable_sync(hdev, 0x00);
4503 if (err)
4504 return err;
4505 }
4506
4507 err = hci_clear_adv_sync(hdev, NULL, false);
4508 if (err)
4509 return err;
4510
4511 err = hci_stop_discovery_sync(hdev);
4512 if (err)
4513 return err;
4514
4515 /* Terminated due to Power Off */
4516 err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF);
4517 if (err)
4518 return err;
4519
4520 return hci_dev_close_sync(hdev);
4521 }
4522
hci_set_powered_sync(struct hci_dev * hdev,u8 val)4523 int hci_set_powered_sync(struct hci_dev *hdev, u8 val)
4524 {
4525 if (val)
4526 return hci_power_on_sync(hdev);
4527
4528 return hci_power_off_sync(hdev);
4529 }
4530
hci_write_iac_sync(struct hci_dev * hdev)4531 static int hci_write_iac_sync(struct hci_dev *hdev)
4532 {
4533 struct hci_cp_write_current_iac_lap cp;
4534
4535 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
4536 return 0;
4537
4538 memset(&cp, 0, sizeof(cp));
4539
4540 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
4541 /* Limited discoverable mode */
4542 cp.num_iac = min_t(u8, hdev->num_iac, 2);
4543 cp.iac_lap[0] = 0x00; /* LIAC */
4544 cp.iac_lap[1] = 0x8b;
4545 cp.iac_lap[2] = 0x9e;
4546 cp.iac_lap[3] = 0x33; /* GIAC */
4547 cp.iac_lap[4] = 0x8b;
4548 cp.iac_lap[5] = 0x9e;
4549 } else {
4550 /* General discoverable mode */
4551 cp.num_iac = 1;
4552 cp.iac_lap[0] = 0x33; /* GIAC */
4553 cp.iac_lap[1] = 0x8b;
4554 cp.iac_lap[2] = 0x9e;
4555 }
4556
4557 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CURRENT_IAC_LAP,
4558 (cp.num_iac * 3) + 1, &cp,
4559 HCI_CMD_TIMEOUT);
4560 }
4561
hci_update_discoverable_sync(struct hci_dev * hdev)4562 int hci_update_discoverable_sync(struct hci_dev *hdev)
4563 {
4564 int err = 0;
4565
4566 if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
4567 err = hci_write_iac_sync(hdev);
4568 if (err)
4569 return err;
4570
4571 err = hci_update_scan_sync(hdev);
4572 if (err)
4573 return err;
4574
4575 err = hci_update_class_sync(hdev);
4576 if (err)
4577 return err;
4578 }
4579
4580 /* Advertising instances don't use the global discoverable setting, so
4581 * only update AD if advertising was enabled using Set Advertising.
4582 */
4583 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
4584 err = hci_update_adv_data_sync(hdev, 0x00);
4585 if (err)
4586 return err;
4587
4588 /* Discoverable mode affects the local advertising
4589 * address in limited privacy mode.
4590 */
4591 if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) {
4592 if (ext_adv_capable(hdev))
4593 err = hci_start_ext_adv_sync(hdev, 0x00);
4594 else
4595 err = hci_enable_advertising_sync(hdev);
4596 }
4597 }
4598
4599 return err;
4600 }
4601
update_discoverable_sync(struct hci_dev * hdev,void * data)4602 static int update_discoverable_sync(struct hci_dev *hdev, void *data)
4603 {
4604 return hci_update_discoverable_sync(hdev);
4605 }
4606
hci_update_discoverable(struct hci_dev * hdev)4607 int hci_update_discoverable(struct hci_dev *hdev)
4608 {
4609 /* Only queue if it would have any effect */
4610 if (hdev_is_powered(hdev) &&
4611 hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
4612 hci_dev_test_flag(hdev, HCI_DISCOVERABLE) &&
4613 hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
4614 return hci_cmd_sync_queue(hdev, update_discoverable_sync, NULL,
4615 NULL);
4616
4617 return 0;
4618 }
4619
hci_update_connectable_sync(struct hci_dev * hdev)4620 int hci_update_connectable_sync(struct hci_dev *hdev)
4621 {
4622 int err;
4623
4624 err = hci_update_scan_sync(hdev);
4625 if (err)
4626 return err;
4627
4628 /* If BR/EDR is not enabled and we disable advertising as a
4629 * by-product of disabling connectable, we need to update the
4630 * advertising flags.
4631 */
4632 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
4633 err = hci_update_adv_data_sync(hdev, hdev->cur_adv_instance);
4634
4635 /* Update the advertising parameters if necessary */
4636 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
4637 !list_empty(&hdev->adv_instances)) {
4638 if (ext_adv_capable(hdev))
4639 err = hci_start_ext_adv_sync(hdev,
4640 hdev->cur_adv_instance);
4641 else
4642 err = hci_enable_advertising_sync(hdev);
4643
4644 if (err)
4645 return err;
4646 }
4647
4648 return hci_update_passive_scan_sync(hdev);
4649 }
4650
hci_inquiry_sync(struct hci_dev * hdev,u8 length)4651 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length)
4652 {
4653 const u8 giac[3] = { 0x33, 0x8b, 0x9e };
4654 const u8 liac[3] = { 0x00, 0x8b, 0x9e };
4655 struct hci_cp_inquiry cp;
4656
4657 bt_dev_dbg(hdev, "");
4658
4659 if (hci_dev_test_flag(hdev, HCI_INQUIRY))
4660 return 0;
4661
4662 hci_dev_lock(hdev);
4663 hci_inquiry_cache_flush(hdev);
4664 hci_dev_unlock(hdev);
4665
4666 memset(&cp, 0, sizeof(cp));
4667
4668 if (hdev->discovery.limited)
4669 memcpy(&cp.lap, liac, sizeof(cp.lap));
4670 else
4671 memcpy(&cp.lap, giac, sizeof(cp.lap));
4672
4673 cp.length = length;
4674
4675 return __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY,
4676 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4677 }
4678
hci_active_scan_sync(struct hci_dev * hdev,uint16_t interval)4679 static int hci_active_scan_sync(struct hci_dev *hdev, uint16_t interval)
4680 {
4681 u8 own_addr_type;
4682 /* Accept list is not used for discovery */
4683 u8 filter_policy = 0x00;
4684 /* Default is to enable duplicates filter */
4685 u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
4686 int err;
4687
4688 bt_dev_dbg(hdev, "");
4689
4690 /* If controller is scanning, it means the passive scanning is
4691 * running. Thus, we should temporarily stop it in order to set the
4692 * discovery scanning parameters.
4693 */
4694 err = hci_scan_disable_sync(hdev);
4695 if (err) {
4696 bt_dev_err(hdev, "Unable to disable scanning: %d", err);
4697 return err;
4698 }
4699
4700 cancel_interleave_scan(hdev);
4701
4702 /* Pause advertising since active scanning disables address resolution
4703 * which advertising depend on in order to generate its RPAs.
4704 */
4705 if (use_ll_privacy(hdev)) {
4706 err = hci_pause_advertising_sync(hdev);
4707 if (err) {
4708 bt_dev_err(hdev, "pause advertising failed: %d", err);
4709 goto failed;
4710 }
4711 }
4712
4713 /* Disable address resolution while doing active scanning since the
4714 * accept list shall not be used and all reports shall reach the host
4715 * anyway.
4716 */
4717 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00);
4718 if (err) {
4719 bt_dev_err(hdev, "Unable to disable Address Resolution: %d",
4720 err);
4721 goto failed;
4722 }
4723
4724 /* All active scans will be done with either a resolvable private
4725 * address (when privacy feature has been enabled) or non-resolvable
4726 * private address.
4727 */
4728 err = hci_update_random_address_sync(hdev, true, scan_use_rpa(hdev),
4729 &own_addr_type);
4730 if (err < 0)
4731 own_addr_type = ADDR_LE_DEV_PUBLIC;
4732
4733 if (hci_is_adv_monitoring(hdev)) {
4734 /* Duplicate filter should be disabled when some advertisement
4735 * monitor is activated, otherwise AdvMon can only receive one
4736 * advertisement for one peer(*) during active scanning, and
4737 * might report loss to these peers.
4738 *
4739 * Note that different controllers have different meanings of
4740 * |duplicate|. Some of them consider packets with the same
4741 * address as duplicate, and others consider packets with the
4742 * same address and the same RSSI as duplicate. Although in the
4743 * latter case we don't need to disable duplicate filter, but
4744 * it is common to have active scanning for a short period of
4745 * time, the power impact should be neglectable.
4746 */
4747 filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
4748 }
4749
4750 err = hci_start_scan_sync(hdev, LE_SCAN_ACTIVE, interval,
4751 hdev->le_scan_window_discovery,
4752 own_addr_type, filter_policy, filter_dup);
4753 if (!err)
4754 return err;
4755
4756 failed:
4757 /* Resume advertising if it was paused */
4758 if (use_ll_privacy(hdev))
4759 hci_resume_advertising_sync(hdev);
4760
4761 /* Resume passive scanning */
4762 hci_update_passive_scan_sync(hdev);
4763 return err;
4764 }
4765
hci_start_interleaved_discovery_sync(struct hci_dev * hdev)4766 static int hci_start_interleaved_discovery_sync(struct hci_dev *hdev)
4767 {
4768 int err;
4769
4770 bt_dev_dbg(hdev, "");
4771
4772 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery * 2);
4773 if (err)
4774 return err;
4775
4776 return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN);
4777 }
4778
hci_start_discovery_sync(struct hci_dev * hdev)4779 int hci_start_discovery_sync(struct hci_dev *hdev)
4780 {
4781 unsigned long timeout;
4782 int err;
4783
4784 bt_dev_dbg(hdev, "type %u", hdev->discovery.type);
4785
4786 switch (hdev->discovery.type) {
4787 case DISCOV_TYPE_BREDR:
4788 return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN);
4789 case DISCOV_TYPE_INTERLEAVED:
4790 /* When running simultaneous discovery, the LE scanning time
4791 * should occupy the whole discovery time sine BR/EDR inquiry
4792 * and LE scanning are scheduled by the controller.
4793 *
4794 * For interleaving discovery in comparison, BR/EDR inquiry
4795 * and LE scanning are done sequentially with separate
4796 * timeouts.
4797 */
4798 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
4799 &hdev->quirks)) {
4800 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
4801 /* During simultaneous discovery, we double LE scan
4802 * interval. We must leave some time for the controller
4803 * to do BR/EDR inquiry.
4804 */
4805 err = hci_start_interleaved_discovery_sync(hdev);
4806 break;
4807 }
4808
4809 timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
4810 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery);
4811 break;
4812 case DISCOV_TYPE_LE:
4813 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
4814 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery);
4815 break;
4816 default:
4817 return -EINVAL;
4818 }
4819
4820 if (err)
4821 return err;
4822
4823 bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout));
4824
4825 /* When service discovery is used and the controller has a
4826 * strict duplicate filter, it is important to remember the
4827 * start and duration of the scan. This is required for
4828 * restarting scanning during the discovery phase.
4829 */
4830 if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
4831 hdev->discovery.result_filtering) {
4832 hdev->discovery.scan_start = jiffies;
4833 hdev->discovery.scan_duration = timeout;
4834 }
4835
4836 queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
4837 timeout);
4838 return 0;
4839 }
4840
hci_suspend_monitor_sync(struct hci_dev * hdev)4841 static void hci_suspend_monitor_sync(struct hci_dev *hdev)
4842 {
4843 switch (hci_get_adv_monitor_offload_ext(hdev)) {
4844 case HCI_ADV_MONITOR_EXT_MSFT:
4845 msft_suspend_sync(hdev);
4846 break;
4847 default:
4848 return;
4849 }
4850 }
4851
4852 /* This function disables discovery and mark it as paused */
hci_pause_discovery_sync(struct hci_dev * hdev)4853 static int hci_pause_discovery_sync(struct hci_dev *hdev)
4854 {
4855 int old_state = hdev->discovery.state;
4856 int err;
4857
4858 /* If discovery already stopped/stopping/paused there nothing to do */
4859 if (old_state == DISCOVERY_STOPPED || old_state == DISCOVERY_STOPPING ||
4860 hdev->discovery_paused)
4861 return 0;
4862
4863 hci_discovery_set_state(hdev, DISCOVERY_STOPPING);
4864 err = hci_stop_discovery_sync(hdev);
4865 if (err)
4866 return err;
4867
4868 hdev->discovery_paused = true;
4869 hdev->discovery_old_state = old_state;
4870 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
4871
4872 return 0;
4873 }
4874
hci_update_event_filter_sync(struct hci_dev * hdev)4875 static int hci_update_event_filter_sync(struct hci_dev *hdev)
4876 {
4877 struct bdaddr_list_with_flags *b;
4878 u8 scan = SCAN_DISABLED;
4879 bool scanning = test_bit(HCI_PSCAN, &hdev->flags);
4880 int err;
4881
4882 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
4883 return 0;
4884
4885 /* Some fake CSR controllers lock up after setting this type of
4886 * filter, so avoid sending the request altogether.
4887 */
4888 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
4889 return 0;
4890
4891 /* Always clear event filter when starting */
4892 hci_clear_event_filter_sync(hdev);
4893
4894 list_for_each_entry(b, &hdev->accept_list, list) {
4895 if (!(b->flags & HCI_CONN_FLAG_REMOTE_WAKEUP))
4896 continue;
4897
4898 bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr);
4899
4900 err = hci_set_event_filter_sync(hdev, HCI_FLT_CONN_SETUP,
4901 HCI_CONN_SETUP_ALLOW_BDADDR,
4902 &b->bdaddr,
4903 HCI_CONN_SETUP_AUTO_ON);
4904 if (err)
4905 bt_dev_dbg(hdev, "Failed to set event filter for %pMR",
4906 &b->bdaddr);
4907 else
4908 scan = SCAN_PAGE;
4909 }
4910
4911 if (scan && !scanning)
4912 hci_write_scan_enable_sync(hdev, scan);
4913 else if (!scan && scanning)
4914 hci_write_scan_enable_sync(hdev, scan);
4915
4916 return 0;
4917 }
4918
4919 /* This function disables scan (BR and LE) and mark it as paused */
hci_pause_scan_sync(struct hci_dev * hdev)4920 static int hci_pause_scan_sync(struct hci_dev *hdev)
4921 {
4922 if (hdev->scanning_paused)
4923 return 0;
4924
4925 /* Disable page scan if enabled */
4926 if (test_bit(HCI_PSCAN, &hdev->flags))
4927 hci_write_scan_enable_sync(hdev, SCAN_DISABLED);
4928
4929 hci_scan_disable_sync(hdev);
4930
4931 hdev->scanning_paused = true;
4932
4933 return 0;
4934 }
4935
4936 /* This function performs the HCI suspend procedures in the follow order:
4937 *
4938 * Pause discovery (active scanning/inquiry)
4939 * Pause Directed Advertising/Advertising
4940 * Pause Scanning (passive scanning in case discovery was not active)
4941 * Disconnect all connections
4942 * Set suspend_status to BT_SUSPEND_DISCONNECT if hdev cannot wakeup
4943 * otherwise:
4944 * Update event mask (only set events that are allowed to wake up the host)
4945 * Update event filter (with devices marked with HCI_CONN_FLAG_REMOTE_WAKEUP)
4946 * Update passive scanning (lower duty cycle)
4947 * Set suspend_status to BT_SUSPEND_CONFIGURE_WAKE
4948 */
hci_suspend_sync(struct hci_dev * hdev)4949 int hci_suspend_sync(struct hci_dev *hdev)
4950 {
4951 int err;
4952
4953 /* If marked as suspended there nothing to do */
4954 if (hdev->suspended)
4955 return 0;
4956
4957 /* Mark device as suspended */
4958 hdev->suspended = true;
4959
4960 /* Pause discovery if not already stopped */
4961 hci_pause_discovery_sync(hdev);
4962
4963 /* Pause other advertisements */
4964 hci_pause_advertising_sync(hdev);
4965
4966 /* Suspend monitor filters */
4967 hci_suspend_monitor_sync(hdev);
4968
4969 /* Prevent disconnects from causing scanning to be re-enabled */
4970 hci_pause_scan_sync(hdev);
4971
4972 if (hci_conn_count(hdev)) {
4973 /* Soft disconnect everything (power off) */
4974 err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF);
4975 if (err) {
4976 /* Set state to BT_RUNNING so resume doesn't notify */
4977 hdev->suspend_state = BT_RUNNING;
4978 hci_resume_sync(hdev);
4979 return err;
4980 }
4981
4982 /* Update event mask so only the allowed event can wakeup the
4983 * host.
4984 */
4985 hci_set_event_mask_sync(hdev);
4986 }
4987
4988 /* Only configure accept list if disconnect succeeded and wake
4989 * isn't being prevented.
4990 */
4991 if (!hdev->wakeup || !hdev->wakeup(hdev)) {
4992 hdev->suspend_state = BT_SUSPEND_DISCONNECT;
4993 return 0;
4994 }
4995
4996 /* Unpause to take care of updating scanning params */
4997 hdev->scanning_paused = false;
4998
4999 /* Enable event filter for paired devices */
5000 hci_update_event_filter_sync(hdev);
5001
5002 /* Update LE passive scan if enabled */
5003 hci_update_passive_scan_sync(hdev);
5004
5005 /* Pause scan changes again. */
5006 hdev->scanning_paused = true;
5007
5008 hdev->suspend_state = BT_SUSPEND_CONFIGURE_WAKE;
5009
5010 return 0;
5011 }
5012
5013 /* This function resumes discovery */
hci_resume_discovery_sync(struct hci_dev * hdev)5014 static int hci_resume_discovery_sync(struct hci_dev *hdev)
5015 {
5016 int err;
5017
5018 /* If discovery not paused there nothing to do */
5019 if (!hdev->discovery_paused)
5020 return 0;
5021
5022 hdev->discovery_paused = false;
5023
5024 hci_discovery_set_state(hdev, DISCOVERY_STARTING);
5025
5026 err = hci_start_discovery_sync(hdev);
5027
5028 hci_discovery_set_state(hdev, err ? DISCOVERY_STOPPED :
5029 DISCOVERY_FINDING);
5030
5031 return err;
5032 }
5033
hci_resume_monitor_sync(struct hci_dev * hdev)5034 static void hci_resume_monitor_sync(struct hci_dev *hdev)
5035 {
5036 switch (hci_get_adv_monitor_offload_ext(hdev)) {
5037 case HCI_ADV_MONITOR_EXT_MSFT:
5038 msft_resume_sync(hdev);
5039 break;
5040 default:
5041 return;
5042 }
5043 }
5044
5045 /* This function resume scan and reset paused flag */
hci_resume_scan_sync(struct hci_dev * hdev)5046 static int hci_resume_scan_sync(struct hci_dev *hdev)
5047 {
5048 if (!hdev->scanning_paused)
5049 return 0;
5050
5051 hdev->scanning_paused = false;
5052
5053 hci_update_scan_sync(hdev);
5054
5055 /* Reset passive scanning to normal */
5056 hci_update_passive_scan_sync(hdev);
5057
5058 return 0;
5059 }
5060
5061 /* This function performs the HCI suspend procedures in the follow order:
5062 *
5063 * Restore event mask
5064 * Clear event filter
5065 * Update passive scanning (normal duty cycle)
5066 * Resume Directed Advertising/Advertising
5067 * Resume discovery (active scanning/inquiry)
5068 */
hci_resume_sync(struct hci_dev * hdev)5069 int hci_resume_sync(struct hci_dev *hdev)
5070 {
5071 /* If not marked as suspended there nothing to do */
5072 if (!hdev->suspended)
5073 return 0;
5074
5075 hdev->suspended = false;
5076
5077 /* Restore event mask */
5078 hci_set_event_mask_sync(hdev);
5079
5080 /* Clear any event filters and restore scan state */
5081 hci_clear_event_filter_sync(hdev);
5082
5083 /* Resume scanning */
5084 hci_resume_scan_sync(hdev);
5085
5086 /* Resume monitor filters */
5087 hci_resume_monitor_sync(hdev);
5088
5089 /* Resume other advertisements */
5090 hci_resume_advertising_sync(hdev);
5091
5092 /* Resume discovery */
5093 hci_resume_discovery_sync(hdev);
5094
5095 return 0;
5096 }
5097
conn_use_rpa(struct hci_conn * conn)5098 static bool conn_use_rpa(struct hci_conn *conn)
5099 {
5100 struct hci_dev *hdev = conn->hdev;
5101
5102 return hci_dev_test_flag(hdev, HCI_PRIVACY);
5103 }
5104
hci_le_ext_directed_advertising_sync(struct hci_dev * hdev,struct hci_conn * conn)5105 static int hci_le_ext_directed_advertising_sync(struct hci_dev *hdev,
5106 struct hci_conn *conn)
5107 {
5108 struct hci_cp_le_set_ext_adv_params cp;
5109 int err;
5110 bdaddr_t random_addr;
5111 u8 own_addr_type;
5112
5113 err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
5114 &own_addr_type);
5115 if (err)
5116 return err;
5117
5118 /* Set require_privacy to false so that the remote device has a
5119 * chance of identifying us.
5120 */
5121 err = hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL,
5122 &own_addr_type, &random_addr);
5123 if (err)
5124 return err;
5125
5126 memset(&cp, 0, sizeof(cp));
5127
5128 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND);
5129 cp.own_addr_type = own_addr_type;
5130 cp.channel_map = hdev->le_adv_channel_map;
5131 cp.tx_power = HCI_TX_POWER_INVALID;
5132 cp.primary_phy = HCI_ADV_PHY_1M;
5133 cp.secondary_phy = HCI_ADV_PHY_1M;
5134 cp.handle = 0x00; /* Use instance 0 for directed adv */
5135 cp.own_addr_type = own_addr_type;
5136 cp.peer_addr_type = conn->dst_type;
5137 bacpy(&cp.peer_addr, &conn->dst);
5138
5139 /* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for
5140 * advertising_event_property LE_LEGACY_ADV_DIRECT_IND
5141 * does not supports advertising data when the advertising set already
5142 * contains some, the controller shall return erroc code 'Invalid
5143 * HCI Command Parameters(0x12).
5144 * So it is required to remove adv set for handle 0x00. since we use
5145 * instance 0 for directed adv.
5146 */
5147 err = hci_remove_ext_adv_instance_sync(hdev, cp.handle, NULL);
5148 if (err)
5149 return err;
5150
5151 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS,
5152 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5153 if (err)
5154 return err;
5155
5156 /* Check if random address need to be updated */
5157 if (own_addr_type == ADDR_LE_DEV_RANDOM &&
5158 bacmp(&random_addr, BDADDR_ANY) &&
5159 bacmp(&random_addr, &hdev->random_addr)) {
5160 err = hci_set_adv_set_random_addr_sync(hdev, 0x00,
5161 &random_addr);
5162 if (err)
5163 return err;
5164 }
5165
5166 return hci_enable_ext_advertising_sync(hdev, 0x00);
5167 }
5168
hci_le_directed_advertising_sync(struct hci_dev * hdev,struct hci_conn * conn)5169 static int hci_le_directed_advertising_sync(struct hci_dev *hdev,
5170 struct hci_conn *conn)
5171 {
5172 struct hci_cp_le_set_adv_param cp;
5173 u8 status;
5174 u8 own_addr_type;
5175 u8 enable;
5176
5177 if (ext_adv_capable(hdev))
5178 return hci_le_ext_directed_advertising_sync(hdev, conn);
5179
5180 /* Clear the HCI_LE_ADV bit temporarily so that the
5181 * hci_update_random_address knows that it's safe to go ahead
5182 * and write a new random address. The flag will be set back on
5183 * as soon as the SET_ADV_ENABLE HCI command completes.
5184 */
5185 hci_dev_clear_flag(hdev, HCI_LE_ADV);
5186
5187 /* Set require_privacy to false so that the remote device has a
5188 * chance of identifying us.
5189 */
5190 status = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
5191 &own_addr_type);
5192 if (status)
5193 return status;
5194
5195 memset(&cp, 0, sizeof(cp));
5196
5197 /* Some controllers might reject command if intervals are not
5198 * within range for undirected advertising.
5199 * BCM20702A0 is known to be affected by this.
5200 */
5201 cp.min_interval = cpu_to_le16(0x0020);
5202 cp.max_interval = cpu_to_le16(0x0020);
5203
5204 cp.type = LE_ADV_DIRECT_IND;
5205 cp.own_address_type = own_addr_type;
5206 cp.direct_addr_type = conn->dst_type;
5207 bacpy(&cp.direct_addr, &conn->dst);
5208 cp.channel_map = hdev->le_adv_channel_map;
5209
5210 status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM,
5211 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5212 if (status)
5213 return status;
5214
5215 enable = 0x01;
5216
5217 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
5218 sizeof(enable), &enable, HCI_CMD_TIMEOUT);
5219 }
5220
set_ext_conn_params(struct hci_conn * conn,struct hci_cp_le_ext_conn_param * p)5221 static void set_ext_conn_params(struct hci_conn *conn,
5222 struct hci_cp_le_ext_conn_param *p)
5223 {
5224 struct hci_dev *hdev = conn->hdev;
5225
5226 memset(p, 0, sizeof(*p));
5227
5228 p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
5229 p->scan_window = cpu_to_le16(hdev->le_scan_window_connect);
5230 p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
5231 p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
5232 p->conn_latency = cpu_to_le16(conn->le_conn_latency);
5233 p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
5234 p->min_ce_len = cpu_to_le16(0x0000);
5235 p->max_ce_len = cpu_to_le16(0x0000);
5236 }
5237
hci_le_ext_create_conn_sync(struct hci_dev * hdev,struct hci_conn * conn,u8 own_addr_type)5238 static int hci_le_ext_create_conn_sync(struct hci_dev *hdev,
5239 struct hci_conn *conn, u8 own_addr_type)
5240 {
5241 struct hci_cp_le_ext_create_conn *cp;
5242 struct hci_cp_le_ext_conn_param *p;
5243 u8 data[sizeof(*cp) + sizeof(*p) * 3];
5244 u32 plen;
5245
5246 cp = (void *)data;
5247 p = (void *)cp->data;
5248
5249 memset(cp, 0, sizeof(*cp));
5250
5251 bacpy(&cp->peer_addr, &conn->dst);
5252 cp->peer_addr_type = conn->dst_type;
5253 cp->own_addr_type = own_addr_type;
5254
5255 plen = sizeof(*cp);
5256
5257 if (scan_1m(hdev)) {
5258 cp->phys |= LE_SCAN_PHY_1M;
5259 set_ext_conn_params(conn, p);
5260
5261 p++;
5262 plen += sizeof(*p);
5263 }
5264
5265 if (scan_2m(hdev)) {
5266 cp->phys |= LE_SCAN_PHY_2M;
5267 set_ext_conn_params(conn, p);
5268
5269 p++;
5270 plen += sizeof(*p);
5271 }
5272
5273 if (scan_coded(hdev)) {
5274 cp->phys |= LE_SCAN_PHY_CODED;
5275 set_ext_conn_params(conn, p);
5276
5277 plen += sizeof(*p);
5278 }
5279
5280 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_EXT_CREATE_CONN,
5281 plen, data,
5282 HCI_EV_LE_ENHANCED_CONN_COMPLETE,
5283 conn->conn_timeout, NULL);
5284 }
5285
hci_le_create_conn_sync(struct hci_dev * hdev,struct hci_conn * conn)5286 int hci_le_create_conn_sync(struct hci_dev *hdev, struct hci_conn *conn)
5287 {
5288 struct hci_cp_le_create_conn cp;
5289 struct hci_conn_params *params;
5290 u8 own_addr_type;
5291 int err;
5292
5293 /* If requested to connect as peripheral use directed advertising */
5294 if (conn->role == HCI_ROLE_SLAVE) {
5295 /* If we're active scanning and simultaneous roles is not
5296 * enabled simply reject the attempt.
5297 */
5298 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) &&
5299 hdev->le_scan_type == LE_SCAN_ACTIVE &&
5300 !hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) {
5301 hci_conn_del(conn);
5302 return -EBUSY;
5303 }
5304
5305 /* Pause advertising while doing directed advertising. */
5306 hci_pause_advertising_sync(hdev);
5307
5308 err = hci_le_directed_advertising_sync(hdev, conn);
5309 goto done;
5310 }
5311
5312 /* Disable advertising if simultaneous roles is not in use. */
5313 if (!hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES))
5314 hci_pause_advertising_sync(hdev);
5315
5316 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
5317 if (params) {
5318 conn->le_conn_min_interval = params->conn_min_interval;
5319 conn->le_conn_max_interval = params->conn_max_interval;
5320 conn->le_conn_latency = params->conn_latency;
5321 conn->le_supv_timeout = params->supervision_timeout;
5322 } else {
5323 conn->le_conn_min_interval = hdev->le_conn_min_interval;
5324 conn->le_conn_max_interval = hdev->le_conn_max_interval;
5325 conn->le_conn_latency = hdev->le_conn_latency;
5326 conn->le_supv_timeout = hdev->le_supv_timeout;
5327 }
5328
5329 /* If controller is scanning, we stop it since some controllers are
5330 * not able to scan and connect at the same time. Also set the
5331 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete
5332 * handler for scan disabling knows to set the correct discovery
5333 * state.
5334 */
5335 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
5336 hci_scan_disable_sync(hdev);
5337 hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED);
5338 }
5339
5340 /* Update random address, but set require_privacy to false so
5341 * that we never connect with an non-resolvable address.
5342 */
5343 err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
5344 &own_addr_type);
5345 if (err)
5346 goto done;
5347
5348 if (use_ext_conn(hdev)) {
5349 err = hci_le_ext_create_conn_sync(hdev, conn, own_addr_type);
5350 goto done;
5351 }
5352
5353 memset(&cp, 0, sizeof(cp));
5354
5355 cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
5356 cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect);
5357
5358 bacpy(&cp.peer_addr, &conn->dst);
5359 cp.peer_addr_type = conn->dst_type;
5360 cp.own_address_type = own_addr_type;
5361 cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
5362 cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
5363 cp.conn_latency = cpu_to_le16(conn->le_conn_latency);
5364 cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
5365 cp.min_ce_len = cpu_to_le16(0x0000);
5366 cp.max_ce_len = cpu_to_le16(0x0000);
5367
5368 /* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E page 2261:
5369 *
5370 * If this event is unmasked and the HCI_LE_Connection_Complete event
5371 * is unmasked, only the HCI_LE_Enhanced_Connection_Complete event is
5372 * sent when a new connection has been created.
5373 */
5374 err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CONN,
5375 sizeof(cp), &cp,
5376 use_enhanced_conn_complete(hdev) ?
5377 HCI_EV_LE_ENHANCED_CONN_COMPLETE :
5378 HCI_EV_LE_CONN_COMPLETE,
5379 conn->conn_timeout, NULL);
5380
5381 done:
5382 /* Re-enable advertising after the connection attempt is finished. */
5383 hci_resume_advertising_sync(hdev);
5384 return err;
5385 }
5386