1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * BlueZ - Bluetooth protocol stack for Linux
4 *
5 * Copyright (C) 2021 Intel Corporation
6 * Copyright 2023 NXP
7 */
8
9 #include <linux/property.h>
10
11 #include <net/bluetooth/bluetooth.h>
12 #include <net/bluetooth/hci_core.h>
13 #include <net/bluetooth/mgmt.h>
14
15 #include "hci_request.h"
16 #include "hci_codec.h"
17 #include "hci_debugfs.h"
18 #include "smp.h"
19 #include "eir.h"
20 #include "msft.h"
21 #include "aosp.h"
22 #include "leds.h"
23
hci_cmd_sync_complete(struct hci_dev * hdev,u8 result,u16 opcode,struct sk_buff * skb)24 static void hci_cmd_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
25 struct sk_buff *skb)
26 {
27 bt_dev_dbg(hdev, "result 0x%2.2x", result);
28
29 if (hdev->req_status != HCI_REQ_PEND)
30 return;
31
32 hdev->req_result = result;
33 hdev->req_status = HCI_REQ_DONE;
34
35 if (skb) {
36 struct sock *sk = hci_skb_sk(skb);
37
38 /* Drop sk reference if set */
39 if (sk)
40 sock_put(sk);
41
42 hdev->req_skb = skb_get(skb);
43 }
44
45 wake_up_interruptible(&hdev->req_wait_q);
46 }
47
hci_cmd_sync_alloc(struct hci_dev * hdev,u16 opcode,u32 plen,const void * param,struct sock * sk)48 static struct sk_buff *hci_cmd_sync_alloc(struct hci_dev *hdev, u16 opcode,
49 u32 plen, const void *param,
50 struct sock *sk)
51 {
52 int len = HCI_COMMAND_HDR_SIZE + plen;
53 struct hci_command_hdr *hdr;
54 struct sk_buff *skb;
55
56 skb = bt_skb_alloc(len, GFP_ATOMIC);
57 if (!skb)
58 return NULL;
59
60 hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE);
61 hdr->opcode = cpu_to_le16(opcode);
62 hdr->plen = plen;
63
64 if (plen)
65 skb_put_data(skb, param, plen);
66
67 bt_dev_dbg(hdev, "skb len %d", skb->len);
68
69 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
70 hci_skb_opcode(skb) = opcode;
71
72 /* Grab a reference if command needs to be associated with a sock (e.g.
73 * likely mgmt socket that initiated the command).
74 */
75 if (sk) {
76 hci_skb_sk(skb) = sk;
77 sock_hold(sk);
78 }
79
80 return skb;
81 }
82
hci_cmd_sync_add(struct hci_request * req,u16 opcode,u32 plen,const void * param,u8 event,struct sock * sk)83 static void hci_cmd_sync_add(struct hci_request *req, u16 opcode, u32 plen,
84 const void *param, u8 event, struct sock *sk)
85 {
86 struct hci_dev *hdev = req->hdev;
87 struct sk_buff *skb;
88
89 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
90
91 /* If an error occurred during request building, there is no point in
92 * queueing the HCI command. We can simply return.
93 */
94 if (req->err)
95 return;
96
97 skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, sk);
98 if (!skb) {
99 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
100 opcode);
101 req->err = -ENOMEM;
102 return;
103 }
104
105 if (skb_queue_empty(&req->cmd_q))
106 bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
107
108 hci_skb_event(skb) = event;
109
110 skb_queue_tail(&req->cmd_q, skb);
111 }
112
hci_cmd_sync_run(struct hci_request * req)113 static int hci_cmd_sync_run(struct hci_request *req)
114 {
115 struct hci_dev *hdev = req->hdev;
116 struct sk_buff *skb;
117 unsigned long flags;
118
119 bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q));
120
121 /* If an error occurred during request building, remove all HCI
122 * commands queued on the HCI request queue.
123 */
124 if (req->err) {
125 skb_queue_purge(&req->cmd_q);
126 return req->err;
127 }
128
129 /* Do not allow empty requests */
130 if (skb_queue_empty(&req->cmd_q))
131 return -ENODATA;
132
133 skb = skb_peek_tail(&req->cmd_q);
134 bt_cb(skb)->hci.req_complete_skb = hci_cmd_sync_complete;
135 bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
136
137 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
138 skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
139 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
140
141 queue_work(hdev->workqueue, &hdev->cmd_work);
142
143 return 0;
144 }
145
146 /* This function requires the caller holds hdev->req_lock. */
__hci_cmd_sync_sk(struct hci_dev * hdev,u16 opcode,u32 plen,const void * param,u8 event,u32 timeout,struct sock * sk)147 struct sk_buff *__hci_cmd_sync_sk(struct hci_dev *hdev, u16 opcode, u32 plen,
148 const void *param, u8 event, u32 timeout,
149 struct sock *sk)
150 {
151 struct hci_request req;
152 struct sk_buff *skb;
153 int err = 0;
154
155 bt_dev_dbg(hdev, "Opcode 0x%4.4x", opcode);
156
157 hci_req_init(&req, hdev);
158
159 hci_cmd_sync_add(&req, opcode, plen, param, event, sk);
160
161 hdev->req_status = HCI_REQ_PEND;
162
163 err = hci_cmd_sync_run(&req);
164 if (err < 0)
165 return ERR_PTR(err);
166
167 err = wait_event_interruptible_timeout(hdev->req_wait_q,
168 hdev->req_status != HCI_REQ_PEND,
169 timeout);
170
171 if (err == -ERESTARTSYS)
172 return ERR_PTR(-EINTR);
173
174 switch (hdev->req_status) {
175 case HCI_REQ_DONE:
176 err = -bt_to_errno(hdev->req_result);
177 break;
178
179 case HCI_REQ_CANCELED:
180 err = -hdev->req_result;
181 break;
182
183 default:
184 err = -ETIMEDOUT;
185 break;
186 }
187
188 hdev->req_status = 0;
189 hdev->req_result = 0;
190 skb = hdev->req_skb;
191 hdev->req_skb = NULL;
192
193 bt_dev_dbg(hdev, "end: err %d", err);
194
195 if (err < 0) {
196 kfree_skb(skb);
197 return ERR_PTR(err);
198 }
199
200 return skb;
201 }
202 EXPORT_SYMBOL(__hci_cmd_sync_sk);
203
204 /* This function requires the caller holds hdev->req_lock. */
__hci_cmd_sync(struct hci_dev * hdev,u16 opcode,u32 plen,const void * param,u32 timeout)205 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
206 const void *param, u32 timeout)
207 {
208 return __hci_cmd_sync_sk(hdev, opcode, plen, param, 0, timeout, NULL);
209 }
210 EXPORT_SYMBOL(__hci_cmd_sync);
211
212 /* Send HCI command and wait for command complete event */
hci_cmd_sync(struct hci_dev * hdev,u16 opcode,u32 plen,const void * param,u32 timeout)213 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
214 const void *param, u32 timeout)
215 {
216 struct sk_buff *skb;
217
218 if (!test_bit(HCI_UP, &hdev->flags))
219 return ERR_PTR(-ENETDOWN);
220
221 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
222
223 hci_req_sync_lock(hdev);
224 skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
225 hci_req_sync_unlock(hdev);
226
227 return skb;
228 }
229 EXPORT_SYMBOL(hci_cmd_sync);
230
231 /* This function requires the caller holds hdev->req_lock. */
__hci_cmd_sync_ev(struct hci_dev * hdev,u16 opcode,u32 plen,const void * param,u8 event,u32 timeout)232 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
233 const void *param, u8 event, u32 timeout)
234 {
235 return __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout,
236 NULL);
237 }
238 EXPORT_SYMBOL(__hci_cmd_sync_ev);
239
240 /* This function requires the caller holds hdev->req_lock. */
__hci_cmd_sync_status_sk(struct hci_dev * hdev,u16 opcode,u32 plen,const void * param,u8 event,u32 timeout,struct sock * sk)241 int __hci_cmd_sync_status_sk(struct hci_dev *hdev, u16 opcode, u32 plen,
242 const void *param, u8 event, u32 timeout,
243 struct sock *sk)
244 {
245 struct sk_buff *skb;
246 u8 status;
247
248 skb = __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, sk);
249 if (IS_ERR(skb)) {
250 if (!event)
251 bt_dev_err(hdev, "Opcode 0x%4.4x failed: %ld", opcode,
252 PTR_ERR(skb));
253 return PTR_ERR(skb);
254 }
255
256 /* If command return a status event skb will be set to NULL as there are
257 * no parameters, in case of failure IS_ERR(skb) would have be set to
258 * the actual error would be found with PTR_ERR(skb).
259 */
260 if (!skb)
261 return 0;
262
263 status = skb->data[0];
264
265 kfree_skb(skb);
266
267 return status;
268 }
269 EXPORT_SYMBOL(__hci_cmd_sync_status_sk);
270
__hci_cmd_sync_status(struct hci_dev * hdev,u16 opcode,u32 plen,const void * param,u32 timeout)271 int __hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen,
272 const void *param, u32 timeout)
273 {
274 return __hci_cmd_sync_status_sk(hdev, opcode, plen, param, 0, timeout,
275 NULL);
276 }
277 EXPORT_SYMBOL(__hci_cmd_sync_status);
278
hci_cmd_sync_work(struct work_struct * work)279 static void hci_cmd_sync_work(struct work_struct *work)
280 {
281 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_work);
282
283 bt_dev_dbg(hdev, "");
284
285 /* Dequeue all entries and run them */
286 while (1) {
287 struct hci_cmd_sync_work_entry *entry;
288
289 mutex_lock(&hdev->cmd_sync_work_lock);
290 entry = list_first_entry_or_null(&hdev->cmd_sync_work_list,
291 struct hci_cmd_sync_work_entry,
292 list);
293 if (entry)
294 list_del(&entry->list);
295 mutex_unlock(&hdev->cmd_sync_work_lock);
296
297 if (!entry)
298 break;
299
300 bt_dev_dbg(hdev, "entry %p", entry);
301
302 if (entry->func) {
303 int err;
304
305 hci_req_sync_lock(hdev);
306 err = entry->func(hdev, entry->data);
307 if (entry->destroy)
308 entry->destroy(hdev, entry->data, err);
309 hci_req_sync_unlock(hdev);
310 }
311
312 kfree(entry);
313 }
314 }
315
hci_cmd_sync_cancel_work(struct work_struct * work)316 static void hci_cmd_sync_cancel_work(struct work_struct *work)
317 {
318 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_cancel_work);
319
320 cancel_delayed_work_sync(&hdev->cmd_timer);
321 cancel_delayed_work_sync(&hdev->ncmd_timer);
322 atomic_set(&hdev->cmd_cnt, 1);
323
324 wake_up_interruptible(&hdev->req_wait_q);
325 }
326
327 static int hci_scan_disable_sync(struct hci_dev *hdev);
scan_disable_sync(struct hci_dev * hdev,void * data)328 static int scan_disable_sync(struct hci_dev *hdev, void *data)
329 {
330 return hci_scan_disable_sync(hdev);
331 }
332
333 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length);
interleaved_inquiry_sync(struct hci_dev * hdev,void * data)334 static int interleaved_inquiry_sync(struct hci_dev *hdev, void *data)
335 {
336 return hci_inquiry_sync(hdev, DISCOV_INTERLEAVED_INQUIRY_LEN);
337 }
338
le_scan_disable(struct work_struct * work)339 static void le_scan_disable(struct work_struct *work)
340 {
341 struct hci_dev *hdev = container_of(work, struct hci_dev,
342 le_scan_disable.work);
343 int status;
344
345 bt_dev_dbg(hdev, "");
346 hci_dev_lock(hdev);
347
348 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
349 goto _return;
350
351 cancel_delayed_work(&hdev->le_scan_restart);
352
353 status = hci_cmd_sync_queue(hdev, scan_disable_sync, NULL, NULL);
354 if (status) {
355 bt_dev_err(hdev, "failed to disable LE scan: %d", status);
356 goto _return;
357 }
358
359 hdev->discovery.scan_start = 0;
360
361 /* If we were running LE only scan, change discovery state. If
362 * we were running both LE and BR/EDR inquiry simultaneously,
363 * and BR/EDR inquiry is already finished, stop discovery,
364 * otherwise BR/EDR inquiry will stop discovery when finished.
365 * If we will resolve remote device name, do not change
366 * discovery state.
367 */
368
369 if (hdev->discovery.type == DISCOV_TYPE_LE)
370 goto discov_stopped;
371
372 if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
373 goto _return;
374
375 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) {
376 if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
377 hdev->discovery.state != DISCOVERY_RESOLVING)
378 goto discov_stopped;
379
380 goto _return;
381 }
382
383 status = hci_cmd_sync_queue(hdev, interleaved_inquiry_sync, NULL, NULL);
384 if (status) {
385 bt_dev_err(hdev, "inquiry failed: status %d", status);
386 goto discov_stopped;
387 }
388
389 goto _return;
390
391 discov_stopped:
392 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
393
394 _return:
395 hci_dev_unlock(hdev);
396 }
397
398 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val,
399 u8 filter_dup);
hci_le_scan_restart_sync(struct hci_dev * hdev)400 static int hci_le_scan_restart_sync(struct hci_dev *hdev)
401 {
402 /* If controller is not scanning we are done. */
403 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
404 return 0;
405
406 if (hdev->scanning_paused) {
407 bt_dev_dbg(hdev, "Scanning is paused for suspend");
408 return 0;
409 }
410
411 hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00);
412 return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE,
413 LE_SCAN_FILTER_DUP_ENABLE);
414 }
415
le_scan_restart(struct work_struct * work)416 static void le_scan_restart(struct work_struct *work)
417 {
418 struct hci_dev *hdev = container_of(work, struct hci_dev,
419 le_scan_restart.work);
420 unsigned long timeout, duration, scan_start, now;
421 int status;
422
423 bt_dev_dbg(hdev, "");
424
425 status = hci_le_scan_restart_sync(hdev);
426 if (status) {
427 bt_dev_err(hdev, "failed to restart LE scan: status %d",
428 status);
429 return;
430 }
431
432 hci_dev_lock(hdev);
433
434 if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) ||
435 !hdev->discovery.scan_start)
436 goto unlock;
437
438 /* When the scan was started, hdev->le_scan_disable has been queued
439 * after duration from scan_start. During scan restart this job
440 * has been canceled, and we need to queue it again after proper
441 * timeout, to make sure that scan does not run indefinitely.
442 */
443 duration = hdev->discovery.scan_duration;
444 scan_start = hdev->discovery.scan_start;
445 now = jiffies;
446 if (now - scan_start <= duration) {
447 int elapsed;
448
449 if (now >= scan_start)
450 elapsed = now - scan_start;
451 else
452 elapsed = ULONG_MAX - scan_start + now;
453
454 timeout = duration - elapsed;
455 } else {
456 timeout = 0;
457 }
458
459 queue_delayed_work(hdev->req_workqueue,
460 &hdev->le_scan_disable, timeout);
461
462 unlock:
463 hci_dev_unlock(hdev);
464 }
465
reenable_adv_sync(struct hci_dev * hdev,void * data)466 static int reenable_adv_sync(struct hci_dev *hdev, void *data)
467 {
468 bt_dev_dbg(hdev, "");
469
470 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
471 list_empty(&hdev->adv_instances))
472 return 0;
473
474 if (hdev->cur_adv_instance) {
475 return hci_schedule_adv_instance_sync(hdev,
476 hdev->cur_adv_instance,
477 true);
478 } else {
479 if (ext_adv_capable(hdev)) {
480 hci_start_ext_adv_sync(hdev, 0x00);
481 } else {
482 hci_update_adv_data_sync(hdev, 0x00);
483 hci_update_scan_rsp_data_sync(hdev, 0x00);
484 hci_enable_advertising_sync(hdev);
485 }
486 }
487
488 return 0;
489 }
490
reenable_adv(struct work_struct * work)491 static void reenable_adv(struct work_struct *work)
492 {
493 struct hci_dev *hdev = container_of(work, struct hci_dev,
494 reenable_adv_work);
495 int status;
496
497 bt_dev_dbg(hdev, "");
498
499 hci_dev_lock(hdev);
500
501 status = hci_cmd_sync_queue(hdev, reenable_adv_sync, NULL, NULL);
502 if (status)
503 bt_dev_err(hdev, "failed to reenable ADV: %d", status);
504
505 hci_dev_unlock(hdev);
506 }
507
cancel_adv_timeout(struct hci_dev * hdev)508 static void cancel_adv_timeout(struct hci_dev *hdev)
509 {
510 if (hdev->adv_instance_timeout) {
511 hdev->adv_instance_timeout = 0;
512 cancel_delayed_work(&hdev->adv_instance_expire);
513 }
514 }
515
516 /* For a single instance:
517 * - force == true: The instance will be removed even when its remaining
518 * lifetime is not zero.
519 * - force == false: the instance will be deactivated but kept stored unless
520 * the remaining lifetime is zero.
521 *
522 * For instance == 0x00:
523 * - force == true: All instances will be removed regardless of their timeout
524 * setting.
525 * - force == false: Only instances that have a timeout will be removed.
526 */
hci_clear_adv_instance_sync(struct hci_dev * hdev,struct sock * sk,u8 instance,bool force)527 int hci_clear_adv_instance_sync(struct hci_dev *hdev, struct sock *sk,
528 u8 instance, bool force)
529 {
530 struct adv_info *adv_instance, *n, *next_instance = NULL;
531 int err;
532 u8 rem_inst;
533
534 /* Cancel any timeout concerning the removed instance(s). */
535 if (!instance || hdev->cur_adv_instance == instance)
536 cancel_adv_timeout(hdev);
537
538 /* Get the next instance to advertise BEFORE we remove
539 * the current one. This can be the same instance again
540 * if there is only one instance.
541 */
542 if (instance && hdev->cur_adv_instance == instance)
543 next_instance = hci_get_next_instance(hdev, instance);
544
545 if (instance == 0x00) {
546 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances,
547 list) {
548 if (!(force || adv_instance->timeout))
549 continue;
550
551 rem_inst = adv_instance->instance;
552 err = hci_remove_adv_instance(hdev, rem_inst);
553 if (!err)
554 mgmt_advertising_removed(sk, hdev, rem_inst);
555 }
556 } else {
557 adv_instance = hci_find_adv_instance(hdev, instance);
558
559 if (force || (adv_instance && adv_instance->timeout &&
560 !adv_instance->remaining_time)) {
561 /* Don't advertise a removed instance. */
562 if (next_instance &&
563 next_instance->instance == instance)
564 next_instance = NULL;
565
566 err = hci_remove_adv_instance(hdev, instance);
567 if (!err)
568 mgmt_advertising_removed(sk, hdev, instance);
569 }
570 }
571
572 if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING))
573 return 0;
574
575 if (next_instance && !ext_adv_capable(hdev))
576 return hci_schedule_adv_instance_sync(hdev,
577 next_instance->instance,
578 false);
579
580 return 0;
581 }
582
adv_timeout_expire_sync(struct hci_dev * hdev,void * data)583 static int adv_timeout_expire_sync(struct hci_dev *hdev, void *data)
584 {
585 u8 instance = *(u8 *)data;
586
587 kfree(data);
588
589 hci_clear_adv_instance_sync(hdev, NULL, instance, false);
590
591 if (list_empty(&hdev->adv_instances))
592 return hci_disable_advertising_sync(hdev);
593
594 return 0;
595 }
596
adv_timeout_expire(struct work_struct * work)597 static void adv_timeout_expire(struct work_struct *work)
598 {
599 u8 *inst_ptr;
600 struct hci_dev *hdev = container_of(work, struct hci_dev,
601 adv_instance_expire.work);
602
603 bt_dev_dbg(hdev, "");
604
605 hci_dev_lock(hdev);
606
607 hdev->adv_instance_timeout = 0;
608
609 if (hdev->cur_adv_instance == 0x00)
610 goto unlock;
611
612 inst_ptr = kmalloc(1, GFP_KERNEL);
613 if (!inst_ptr)
614 goto unlock;
615
616 *inst_ptr = hdev->cur_adv_instance;
617 hci_cmd_sync_queue(hdev, adv_timeout_expire_sync, inst_ptr, NULL);
618
619 unlock:
620 hci_dev_unlock(hdev);
621 }
622
hci_cmd_sync_init(struct hci_dev * hdev)623 void hci_cmd_sync_init(struct hci_dev *hdev)
624 {
625 INIT_WORK(&hdev->cmd_sync_work, hci_cmd_sync_work);
626 INIT_LIST_HEAD(&hdev->cmd_sync_work_list);
627 mutex_init(&hdev->cmd_sync_work_lock);
628 mutex_init(&hdev->unregister_lock);
629
630 INIT_WORK(&hdev->cmd_sync_cancel_work, hci_cmd_sync_cancel_work);
631 INIT_WORK(&hdev->reenable_adv_work, reenable_adv);
632 INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable);
633 INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart);
634 INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire);
635 }
636
hci_cmd_sync_clear(struct hci_dev * hdev)637 void hci_cmd_sync_clear(struct hci_dev *hdev)
638 {
639 struct hci_cmd_sync_work_entry *entry, *tmp;
640
641 cancel_work_sync(&hdev->cmd_sync_work);
642 cancel_work_sync(&hdev->reenable_adv_work);
643
644 mutex_lock(&hdev->cmd_sync_work_lock);
645 list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) {
646 if (entry->destroy)
647 entry->destroy(hdev, entry->data, -ECANCELED);
648
649 list_del(&entry->list);
650 kfree(entry);
651 }
652 mutex_unlock(&hdev->cmd_sync_work_lock);
653 }
654
__hci_cmd_sync_cancel(struct hci_dev * hdev,int err)655 void __hci_cmd_sync_cancel(struct hci_dev *hdev, int err)
656 {
657 bt_dev_dbg(hdev, "err 0x%2.2x", err);
658
659 if (hdev->req_status == HCI_REQ_PEND) {
660 hdev->req_result = err;
661 hdev->req_status = HCI_REQ_CANCELED;
662
663 cancel_delayed_work_sync(&hdev->cmd_timer);
664 cancel_delayed_work_sync(&hdev->ncmd_timer);
665 atomic_set(&hdev->cmd_cnt, 1);
666
667 wake_up_interruptible(&hdev->req_wait_q);
668 }
669 }
670
hci_cmd_sync_cancel(struct hci_dev * hdev,int err)671 void hci_cmd_sync_cancel(struct hci_dev *hdev, int err)
672 {
673 bt_dev_dbg(hdev, "err 0x%2.2x", err);
674
675 if (hdev->req_status == HCI_REQ_PEND) {
676 hdev->req_result = err;
677 hdev->req_status = HCI_REQ_CANCELED;
678
679 queue_work(hdev->workqueue, &hdev->cmd_sync_cancel_work);
680 }
681 }
682 EXPORT_SYMBOL(hci_cmd_sync_cancel);
683
684 /* Submit HCI command to be run in as cmd_sync_work:
685 *
686 * - hdev must _not_ be unregistered
687 */
hci_cmd_sync_submit(struct hci_dev * hdev,hci_cmd_sync_work_func_t func,void * data,hci_cmd_sync_work_destroy_t destroy)688 int hci_cmd_sync_submit(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
689 void *data, hci_cmd_sync_work_destroy_t destroy)
690 {
691 struct hci_cmd_sync_work_entry *entry;
692 int err = 0;
693
694 mutex_lock(&hdev->unregister_lock);
695 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
696 err = -ENODEV;
697 goto unlock;
698 }
699
700 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
701 if (!entry) {
702 err = -ENOMEM;
703 goto unlock;
704 }
705 entry->func = func;
706 entry->data = data;
707 entry->destroy = destroy;
708
709 mutex_lock(&hdev->cmd_sync_work_lock);
710 list_add_tail(&entry->list, &hdev->cmd_sync_work_list);
711 mutex_unlock(&hdev->cmd_sync_work_lock);
712
713 queue_work(hdev->req_workqueue, &hdev->cmd_sync_work);
714
715 unlock:
716 mutex_unlock(&hdev->unregister_lock);
717 return err;
718 }
719 EXPORT_SYMBOL(hci_cmd_sync_submit);
720
721 /* Queue HCI command:
722 *
723 * - hdev must be running
724 */
hci_cmd_sync_queue(struct hci_dev * hdev,hci_cmd_sync_work_func_t func,void * data,hci_cmd_sync_work_destroy_t destroy)725 int hci_cmd_sync_queue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
726 void *data, hci_cmd_sync_work_destroy_t destroy)
727 {
728 /* Only queue command if hdev is running which means it had been opened
729 * and is either on init phase or is already up.
730 */
731 if (!test_bit(HCI_RUNNING, &hdev->flags))
732 return -ENETDOWN;
733
734 return hci_cmd_sync_submit(hdev, func, data, destroy);
735 }
736 EXPORT_SYMBOL(hci_cmd_sync_queue);
737
hci_update_eir_sync(struct hci_dev * hdev)738 int hci_update_eir_sync(struct hci_dev *hdev)
739 {
740 struct hci_cp_write_eir cp;
741
742 bt_dev_dbg(hdev, "");
743
744 if (!hdev_is_powered(hdev))
745 return 0;
746
747 if (!lmp_ext_inq_capable(hdev))
748 return 0;
749
750 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
751 return 0;
752
753 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
754 return 0;
755
756 memset(&cp, 0, sizeof(cp));
757
758 eir_create(hdev, cp.data);
759
760 if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
761 return 0;
762
763 memcpy(hdev->eir, cp.data, sizeof(cp.data));
764
765 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp,
766 HCI_CMD_TIMEOUT);
767 }
768
get_service_classes(struct hci_dev * hdev)769 static u8 get_service_classes(struct hci_dev *hdev)
770 {
771 struct bt_uuid *uuid;
772 u8 val = 0;
773
774 list_for_each_entry(uuid, &hdev->uuids, list)
775 val |= uuid->svc_hint;
776
777 return val;
778 }
779
hci_update_class_sync(struct hci_dev * hdev)780 int hci_update_class_sync(struct hci_dev *hdev)
781 {
782 u8 cod[3];
783
784 bt_dev_dbg(hdev, "");
785
786 if (!hdev_is_powered(hdev))
787 return 0;
788
789 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
790 return 0;
791
792 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
793 return 0;
794
795 cod[0] = hdev->minor_class;
796 cod[1] = hdev->major_class;
797 cod[2] = get_service_classes(hdev);
798
799 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
800 cod[1] |= 0x20;
801
802 if (memcmp(cod, hdev->dev_class, 3) == 0)
803 return 0;
804
805 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CLASS_OF_DEV,
806 sizeof(cod), cod, HCI_CMD_TIMEOUT);
807 }
808
is_advertising_allowed(struct hci_dev * hdev,bool connectable)809 static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable)
810 {
811 /* If there is no connection we are OK to advertise. */
812 if (hci_conn_num(hdev, LE_LINK) == 0)
813 return true;
814
815 /* Check le_states if there is any connection in peripheral role. */
816 if (hdev->conn_hash.le_num_peripheral > 0) {
817 /* Peripheral connection state and non connectable mode
818 * bit 20.
819 */
820 if (!connectable && !(hdev->le_states[2] & 0x10))
821 return false;
822
823 /* Peripheral connection state and connectable mode bit 38
824 * and scannable bit 21.
825 */
826 if (connectable && (!(hdev->le_states[4] & 0x40) ||
827 !(hdev->le_states[2] & 0x20)))
828 return false;
829 }
830
831 /* Check le_states if there is any connection in central role. */
832 if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) {
833 /* Central connection state and non connectable mode bit 18. */
834 if (!connectable && !(hdev->le_states[2] & 0x02))
835 return false;
836
837 /* Central connection state and connectable mode bit 35 and
838 * scannable 19.
839 */
840 if (connectable && (!(hdev->le_states[4] & 0x08) ||
841 !(hdev->le_states[2] & 0x08)))
842 return false;
843 }
844
845 return true;
846 }
847
adv_use_rpa(struct hci_dev * hdev,uint32_t flags)848 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
849 {
850 /* If privacy is not enabled don't use RPA */
851 if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
852 return false;
853
854 /* If basic privacy mode is enabled use RPA */
855 if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
856 return true;
857
858 /* If limited privacy mode is enabled don't use RPA if we're
859 * both discoverable and bondable.
860 */
861 if ((flags & MGMT_ADV_FLAG_DISCOV) &&
862 hci_dev_test_flag(hdev, HCI_BONDABLE))
863 return false;
864
865 /* We're neither bondable nor discoverable in the limited
866 * privacy mode, therefore use RPA.
867 */
868 return true;
869 }
870
hci_set_random_addr_sync(struct hci_dev * hdev,bdaddr_t * rpa)871 static int hci_set_random_addr_sync(struct hci_dev *hdev, bdaddr_t *rpa)
872 {
873 /* If we're advertising or initiating an LE connection we can't
874 * go ahead and change the random address at this time. This is
875 * because the eventual initiator address used for the
876 * subsequently created connection will be undefined (some
877 * controllers use the new address and others the one we had
878 * when the operation started).
879 *
880 * In this kind of scenario skip the update and let the random
881 * address be updated at the next cycle.
882 */
883 if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
884 hci_lookup_le_connect(hdev)) {
885 bt_dev_dbg(hdev, "Deferring random address update");
886 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
887 return 0;
888 }
889
890 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RANDOM_ADDR,
891 6, rpa, HCI_CMD_TIMEOUT);
892 }
893
hci_update_random_address_sync(struct hci_dev * hdev,bool require_privacy,bool rpa,u8 * own_addr_type)894 int hci_update_random_address_sync(struct hci_dev *hdev, bool require_privacy,
895 bool rpa, u8 *own_addr_type)
896 {
897 int err;
898
899 /* If privacy is enabled use a resolvable private address. If
900 * current RPA has expired or there is something else than
901 * the current RPA in use, then generate a new one.
902 */
903 if (rpa) {
904 /* If Controller supports LL Privacy use own address type is
905 * 0x03
906 */
907 if (use_ll_privacy(hdev))
908 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
909 else
910 *own_addr_type = ADDR_LE_DEV_RANDOM;
911
912 /* Check if RPA is valid */
913 if (rpa_valid(hdev))
914 return 0;
915
916 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
917 if (err < 0) {
918 bt_dev_err(hdev, "failed to generate new RPA");
919 return err;
920 }
921
922 err = hci_set_random_addr_sync(hdev, &hdev->rpa);
923 if (err)
924 return err;
925
926 return 0;
927 }
928
929 /* In case of required privacy without resolvable private address,
930 * use an non-resolvable private address. This is useful for active
931 * scanning and non-connectable advertising.
932 */
933 if (require_privacy) {
934 bdaddr_t nrpa;
935
936 while (true) {
937 /* The non-resolvable private address is generated
938 * from random six bytes with the two most significant
939 * bits cleared.
940 */
941 get_random_bytes(&nrpa, 6);
942 nrpa.b[5] &= 0x3f;
943
944 /* The non-resolvable private address shall not be
945 * equal to the public address.
946 */
947 if (bacmp(&hdev->bdaddr, &nrpa))
948 break;
949 }
950
951 *own_addr_type = ADDR_LE_DEV_RANDOM;
952
953 return hci_set_random_addr_sync(hdev, &nrpa);
954 }
955
956 /* If forcing static address is in use or there is no public
957 * address use the static address as random address (but skip
958 * the HCI command if the current random address is already the
959 * static one.
960 *
961 * In case BR/EDR has been disabled on a dual-mode controller
962 * and a static address has been configured, then use that
963 * address instead of the public BR/EDR address.
964 */
965 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
966 !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
967 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
968 bacmp(&hdev->static_addr, BDADDR_ANY))) {
969 *own_addr_type = ADDR_LE_DEV_RANDOM;
970 if (bacmp(&hdev->static_addr, &hdev->random_addr))
971 return hci_set_random_addr_sync(hdev,
972 &hdev->static_addr);
973 return 0;
974 }
975
976 /* Neither privacy nor static address is being used so use a
977 * public address.
978 */
979 *own_addr_type = ADDR_LE_DEV_PUBLIC;
980
981 return 0;
982 }
983
hci_disable_ext_adv_instance_sync(struct hci_dev * hdev,u8 instance)984 static int hci_disable_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance)
985 {
986 struct hci_cp_le_set_ext_adv_enable *cp;
987 struct hci_cp_ext_adv_set *set;
988 u8 data[sizeof(*cp) + sizeof(*set) * 1];
989 u8 size;
990
991 /* If request specifies an instance that doesn't exist, fail */
992 if (instance > 0) {
993 struct adv_info *adv;
994
995 adv = hci_find_adv_instance(hdev, instance);
996 if (!adv)
997 return -EINVAL;
998
999 /* If not enabled there is nothing to do */
1000 if (!adv->enabled)
1001 return 0;
1002 }
1003
1004 memset(data, 0, sizeof(data));
1005
1006 cp = (void *)data;
1007 set = (void *)cp->data;
1008
1009 /* Instance 0x00 indicates all advertising instances will be disabled */
1010 cp->num_of_sets = !!instance;
1011 cp->enable = 0x00;
1012
1013 set->handle = instance;
1014
1015 size = sizeof(*cp) + sizeof(*set) * cp->num_of_sets;
1016
1017 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE,
1018 size, data, HCI_CMD_TIMEOUT);
1019 }
1020
hci_set_adv_set_random_addr_sync(struct hci_dev * hdev,u8 instance,bdaddr_t * random_addr)1021 static int hci_set_adv_set_random_addr_sync(struct hci_dev *hdev, u8 instance,
1022 bdaddr_t *random_addr)
1023 {
1024 struct hci_cp_le_set_adv_set_rand_addr cp;
1025 int err;
1026
1027 if (!instance) {
1028 /* Instance 0x00 doesn't have an adv_info, instead it uses
1029 * hdev->random_addr to track its address so whenever it needs
1030 * to be updated this also set the random address since
1031 * hdev->random_addr is shared with scan state machine.
1032 */
1033 err = hci_set_random_addr_sync(hdev, random_addr);
1034 if (err)
1035 return err;
1036 }
1037
1038 memset(&cp, 0, sizeof(cp));
1039
1040 cp.handle = instance;
1041 bacpy(&cp.bdaddr, random_addr);
1042
1043 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
1044 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1045 }
1046
hci_setup_ext_adv_instance_sync(struct hci_dev * hdev,u8 instance)1047 int hci_setup_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance)
1048 {
1049 struct hci_cp_le_set_ext_adv_params cp;
1050 bool connectable;
1051 u32 flags;
1052 bdaddr_t random_addr;
1053 u8 own_addr_type;
1054 int err;
1055 struct adv_info *adv;
1056 bool secondary_adv;
1057
1058 if (instance > 0) {
1059 adv = hci_find_adv_instance(hdev, instance);
1060 if (!adv)
1061 return -EINVAL;
1062 } else {
1063 adv = NULL;
1064 }
1065
1066 /* Updating parameters of an active instance will return a
1067 * Command Disallowed error, so we must first disable the
1068 * instance if it is active.
1069 */
1070 if (adv && !adv->pending) {
1071 err = hci_disable_ext_adv_instance_sync(hdev, instance);
1072 if (err)
1073 return err;
1074 }
1075
1076 flags = hci_adv_instance_flags(hdev, instance);
1077
1078 /* If the "connectable" instance flag was not set, then choose between
1079 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1080 */
1081 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1082 mgmt_get_connectable(hdev);
1083
1084 if (!is_advertising_allowed(hdev, connectable))
1085 return -EPERM;
1086
1087 /* Set require_privacy to true only when non-connectable
1088 * advertising is used. In that case it is fine to use a
1089 * non-resolvable private address.
1090 */
1091 err = hci_get_random_address(hdev, !connectable,
1092 adv_use_rpa(hdev, flags), adv,
1093 &own_addr_type, &random_addr);
1094 if (err < 0)
1095 return err;
1096
1097 memset(&cp, 0, sizeof(cp));
1098
1099 if (adv) {
1100 hci_cpu_to_le24(adv->min_interval, cp.min_interval);
1101 hci_cpu_to_le24(adv->max_interval, cp.max_interval);
1102 cp.tx_power = adv->tx_power;
1103 } else {
1104 hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval);
1105 hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval);
1106 cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE;
1107 }
1108
1109 secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK);
1110
1111 if (connectable) {
1112 if (secondary_adv)
1113 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND);
1114 else
1115 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND);
1116 } else if (hci_adv_instance_is_scannable(hdev, instance) ||
1117 (flags & MGMT_ADV_PARAM_SCAN_RSP)) {
1118 if (secondary_adv)
1119 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND);
1120 else
1121 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND);
1122 } else {
1123 if (secondary_adv)
1124 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND);
1125 else
1126 cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND);
1127 }
1128
1129 /* If Own_Address_Type equals 0x02 or 0x03, the Peer_Address parameter
1130 * contains the peer’s Identity Address and the Peer_Address_Type
1131 * parameter contains the peer’s Identity Type (i.e., 0x00 or 0x01).
1132 * These parameters are used to locate the corresponding local IRK in
1133 * the resolving list; this IRK is used to generate their own address
1134 * used in the advertisement.
1135 */
1136 if (own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED)
1137 hci_copy_identity_address(hdev, &cp.peer_addr,
1138 &cp.peer_addr_type);
1139
1140 cp.own_addr_type = own_addr_type;
1141 cp.channel_map = hdev->le_adv_channel_map;
1142 cp.handle = instance;
1143
1144 if (flags & MGMT_ADV_FLAG_SEC_2M) {
1145 cp.primary_phy = HCI_ADV_PHY_1M;
1146 cp.secondary_phy = HCI_ADV_PHY_2M;
1147 } else if (flags & MGMT_ADV_FLAG_SEC_CODED) {
1148 cp.primary_phy = HCI_ADV_PHY_CODED;
1149 cp.secondary_phy = HCI_ADV_PHY_CODED;
1150 } else {
1151 /* In all other cases use 1M */
1152 cp.primary_phy = HCI_ADV_PHY_1M;
1153 cp.secondary_phy = HCI_ADV_PHY_1M;
1154 }
1155
1156 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS,
1157 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1158 if (err)
1159 return err;
1160
1161 if ((own_addr_type == ADDR_LE_DEV_RANDOM ||
1162 own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) &&
1163 bacmp(&random_addr, BDADDR_ANY)) {
1164 /* Check if random address need to be updated */
1165 if (adv) {
1166 if (!bacmp(&random_addr, &adv->random_addr))
1167 return 0;
1168 } else {
1169 if (!bacmp(&random_addr, &hdev->random_addr))
1170 return 0;
1171 }
1172
1173 return hci_set_adv_set_random_addr_sync(hdev, instance,
1174 &random_addr);
1175 }
1176
1177 return 0;
1178 }
1179
hci_set_ext_scan_rsp_data_sync(struct hci_dev * hdev,u8 instance)1180 static int hci_set_ext_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
1181 {
1182 struct {
1183 struct hci_cp_le_set_ext_scan_rsp_data cp;
1184 u8 data[HCI_MAX_EXT_AD_LENGTH];
1185 } pdu;
1186 u8 len;
1187 struct adv_info *adv = NULL;
1188 int err;
1189
1190 memset(&pdu, 0, sizeof(pdu));
1191
1192 if (instance) {
1193 adv = hci_find_adv_instance(hdev, instance);
1194 if (!adv || !adv->scan_rsp_changed)
1195 return 0;
1196 }
1197
1198 len = eir_create_scan_rsp(hdev, instance, pdu.data);
1199
1200 pdu.cp.handle = instance;
1201 pdu.cp.length = len;
1202 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1203 pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1204
1205 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA,
1206 sizeof(pdu.cp) + len, &pdu.cp,
1207 HCI_CMD_TIMEOUT);
1208 if (err)
1209 return err;
1210
1211 if (adv) {
1212 adv->scan_rsp_changed = false;
1213 } else {
1214 memcpy(hdev->scan_rsp_data, pdu.data, len);
1215 hdev->scan_rsp_data_len = len;
1216 }
1217
1218 return 0;
1219 }
1220
__hci_set_scan_rsp_data_sync(struct hci_dev * hdev,u8 instance)1221 static int __hci_set_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
1222 {
1223 struct hci_cp_le_set_scan_rsp_data cp;
1224 u8 len;
1225
1226 memset(&cp, 0, sizeof(cp));
1227
1228 len = eir_create_scan_rsp(hdev, instance, cp.data);
1229
1230 if (hdev->scan_rsp_data_len == len &&
1231 !memcmp(cp.data, hdev->scan_rsp_data, len))
1232 return 0;
1233
1234 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
1235 hdev->scan_rsp_data_len = len;
1236
1237 cp.length = len;
1238
1239 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_RSP_DATA,
1240 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1241 }
1242
hci_update_scan_rsp_data_sync(struct hci_dev * hdev,u8 instance)1243 int hci_update_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
1244 {
1245 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1246 return 0;
1247
1248 if (ext_adv_capable(hdev))
1249 return hci_set_ext_scan_rsp_data_sync(hdev, instance);
1250
1251 return __hci_set_scan_rsp_data_sync(hdev, instance);
1252 }
1253
hci_enable_ext_advertising_sync(struct hci_dev * hdev,u8 instance)1254 int hci_enable_ext_advertising_sync(struct hci_dev *hdev, u8 instance)
1255 {
1256 struct hci_cp_le_set_ext_adv_enable *cp;
1257 struct hci_cp_ext_adv_set *set;
1258 u8 data[sizeof(*cp) + sizeof(*set) * 1];
1259 struct adv_info *adv;
1260
1261 if (instance > 0) {
1262 adv = hci_find_adv_instance(hdev, instance);
1263 if (!adv)
1264 return -EINVAL;
1265 /* If already enabled there is nothing to do */
1266 if (adv->enabled)
1267 return 0;
1268 } else {
1269 adv = NULL;
1270 }
1271
1272 cp = (void *)data;
1273 set = (void *)cp->data;
1274
1275 memset(cp, 0, sizeof(*cp));
1276
1277 cp->enable = 0x01;
1278 cp->num_of_sets = 0x01;
1279
1280 memset(set, 0, sizeof(*set));
1281
1282 set->handle = instance;
1283
1284 /* Set duration per instance since controller is responsible for
1285 * scheduling it.
1286 */
1287 if (adv && adv->timeout) {
1288 u16 duration = adv->timeout * MSEC_PER_SEC;
1289
1290 /* Time = N * 10 ms */
1291 set->duration = cpu_to_le16(duration / 10);
1292 }
1293
1294 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE,
1295 sizeof(*cp) +
1296 sizeof(*set) * cp->num_of_sets,
1297 data, HCI_CMD_TIMEOUT);
1298 }
1299
hci_start_ext_adv_sync(struct hci_dev * hdev,u8 instance)1300 int hci_start_ext_adv_sync(struct hci_dev *hdev, u8 instance)
1301 {
1302 int err;
1303
1304 err = hci_setup_ext_adv_instance_sync(hdev, instance);
1305 if (err)
1306 return err;
1307
1308 err = hci_set_ext_scan_rsp_data_sync(hdev, instance);
1309 if (err)
1310 return err;
1311
1312 return hci_enable_ext_advertising_sync(hdev, instance);
1313 }
1314
hci_disable_per_advertising_sync(struct hci_dev * hdev,u8 instance)1315 static int hci_disable_per_advertising_sync(struct hci_dev *hdev, u8 instance)
1316 {
1317 struct hci_cp_le_set_per_adv_enable cp;
1318 struct adv_info *adv = NULL;
1319
1320 /* If periodic advertising already disabled there is nothing to do. */
1321 adv = hci_find_adv_instance(hdev, instance);
1322 if (!adv || !adv->periodic || !adv->enabled)
1323 return 0;
1324
1325 memset(&cp, 0, sizeof(cp));
1326
1327 cp.enable = 0x00;
1328 cp.handle = instance;
1329
1330 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE,
1331 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1332 }
1333
hci_set_per_adv_params_sync(struct hci_dev * hdev,u8 instance,u16 min_interval,u16 max_interval)1334 static int hci_set_per_adv_params_sync(struct hci_dev *hdev, u8 instance,
1335 u16 min_interval, u16 max_interval)
1336 {
1337 struct hci_cp_le_set_per_adv_params cp;
1338
1339 memset(&cp, 0, sizeof(cp));
1340
1341 if (!min_interval)
1342 min_interval = DISCOV_LE_PER_ADV_INT_MIN;
1343
1344 if (!max_interval)
1345 max_interval = DISCOV_LE_PER_ADV_INT_MAX;
1346
1347 cp.handle = instance;
1348 cp.min_interval = cpu_to_le16(min_interval);
1349 cp.max_interval = cpu_to_le16(max_interval);
1350 cp.periodic_properties = 0x0000;
1351
1352 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_PARAMS,
1353 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1354 }
1355
hci_set_per_adv_data_sync(struct hci_dev * hdev,u8 instance)1356 static int hci_set_per_adv_data_sync(struct hci_dev *hdev, u8 instance)
1357 {
1358 struct {
1359 struct hci_cp_le_set_per_adv_data cp;
1360 u8 data[HCI_MAX_PER_AD_LENGTH];
1361 } pdu;
1362 u8 len;
1363
1364 memset(&pdu, 0, sizeof(pdu));
1365
1366 if (instance) {
1367 struct adv_info *adv = hci_find_adv_instance(hdev, instance);
1368
1369 if (!adv || !adv->periodic)
1370 return 0;
1371 }
1372
1373 len = eir_create_per_adv_data(hdev, instance, pdu.data);
1374
1375 pdu.cp.length = len;
1376 pdu.cp.handle = instance;
1377 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1378
1379 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_DATA,
1380 sizeof(pdu.cp) + len, &pdu,
1381 HCI_CMD_TIMEOUT);
1382 }
1383
hci_enable_per_advertising_sync(struct hci_dev * hdev,u8 instance)1384 static int hci_enable_per_advertising_sync(struct hci_dev *hdev, u8 instance)
1385 {
1386 struct hci_cp_le_set_per_adv_enable cp;
1387 struct adv_info *adv = NULL;
1388
1389 /* If periodic advertising already enabled there is nothing to do. */
1390 adv = hci_find_adv_instance(hdev, instance);
1391 if (adv && adv->periodic && adv->enabled)
1392 return 0;
1393
1394 memset(&cp, 0, sizeof(cp));
1395
1396 cp.enable = 0x01;
1397 cp.handle = instance;
1398
1399 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE,
1400 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1401 }
1402
1403 /* Checks if periodic advertising data contains a Basic Announcement and if it
1404 * does generates a Broadcast ID and add Broadcast Announcement.
1405 */
hci_adv_bcast_annoucement(struct hci_dev * hdev,struct adv_info * adv)1406 static int hci_adv_bcast_annoucement(struct hci_dev *hdev, struct adv_info *adv)
1407 {
1408 u8 bid[3];
1409 u8 ad[4 + 3];
1410
1411 /* Skip if NULL adv as instance 0x00 is used for general purpose
1412 * advertising so it cannot used for the likes of Broadcast Announcement
1413 * as it can be overwritten at any point.
1414 */
1415 if (!adv)
1416 return 0;
1417
1418 /* Check if PA data doesn't contains a Basic Audio Announcement then
1419 * there is nothing to do.
1420 */
1421 if (!eir_get_service_data(adv->per_adv_data, adv->per_adv_data_len,
1422 0x1851, NULL))
1423 return 0;
1424
1425 /* Check if advertising data already has a Broadcast Announcement since
1426 * the process may want to control the Broadcast ID directly and in that
1427 * case the kernel shall no interfere.
1428 */
1429 if (eir_get_service_data(adv->adv_data, adv->adv_data_len, 0x1852,
1430 NULL))
1431 return 0;
1432
1433 /* Generate Broadcast ID */
1434 get_random_bytes(bid, sizeof(bid));
1435 eir_append_service_data(ad, 0, 0x1852, bid, sizeof(bid));
1436 hci_set_adv_instance_data(hdev, adv->instance, sizeof(ad), ad, 0, NULL);
1437
1438 return hci_update_adv_data_sync(hdev, adv->instance);
1439 }
1440
hci_start_per_adv_sync(struct hci_dev * hdev,u8 instance,u8 data_len,u8 * data,u32 flags,u16 min_interval,u16 max_interval,u16 sync_interval)1441 int hci_start_per_adv_sync(struct hci_dev *hdev, u8 instance, u8 data_len,
1442 u8 *data, u32 flags, u16 min_interval,
1443 u16 max_interval, u16 sync_interval)
1444 {
1445 struct adv_info *adv = NULL;
1446 int err;
1447 bool added = false;
1448
1449 hci_disable_per_advertising_sync(hdev, instance);
1450
1451 if (instance) {
1452 adv = hci_find_adv_instance(hdev, instance);
1453 /* Create an instance if that could not be found */
1454 if (!adv) {
1455 adv = hci_add_per_instance(hdev, instance, flags,
1456 data_len, data,
1457 sync_interval,
1458 sync_interval);
1459 if (IS_ERR(adv))
1460 return PTR_ERR(adv);
1461 adv->pending = false;
1462 added = true;
1463 }
1464 }
1465
1466 /* Start advertising */
1467 err = hci_start_ext_adv_sync(hdev, instance);
1468 if (err < 0)
1469 goto fail;
1470
1471 err = hci_adv_bcast_annoucement(hdev, adv);
1472 if (err < 0)
1473 goto fail;
1474
1475 err = hci_set_per_adv_params_sync(hdev, instance, min_interval,
1476 max_interval);
1477 if (err < 0)
1478 goto fail;
1479
1480 err = hci_set_per_adv_data_sync(hdev, instance);
1481 if (err < 0)
1482 goto fail;
1483
1484 err = hci_enable_per_advertising_sync(hdev, instance);
1485 if (err < 0)
1486 goto fail;
1487
1488 return 0;
1489
1490 fail:
1491 if (added)
1492 hci_remove_adv_instance(hdev, instance);
1493
1494 return err;
1495 }
1496
hci_start_adv_sync(struct hci_dev * hdev,u8 instance)1497 static int hci_start_adv_sync(struct hci_dev *hdev, u8 instance)
1498 {
1499 int err;
1500
1501 if (ext_adv_capable(hdev))
1502 return hci_start_ext_adv_sync(hdev, instance);
1503
1504 err = hci_update_adv_data_sync(hdev, instance);
1505 if (err)
1506 return err;
1507
1508 err = hci_update_scan_rsp_data_sync(hdev, instance);
1509 if (err)
1510 return err;
1511
1512 return hci_enable_advertising_sync(hdev);
1513 }
1514
hci_enable_advertising_sync(struct hci_dev * hdev)1515 int hci_enable_advertising_sync(struct hci_dev *hdev)
1516 {
1517 struct adv_info *adv_instance;
1518 struct hci_cp_le_set_adv_param cp;
1519 u8 own_addr_type, enable = 0x01;
1520 bool connectable;
1521 u16 adv_min_interval, adv_max_interval;
1522 u32 flags;
1523 u8 status;
1524
1525 if (ext_adv_capable(hdev))
1526 return hci_enable_ext_advertising_sync(hdev,
1527 hdev->cur_adv_instance);
1528
1529 flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance);
1530 adv_instance = hci_find_adv_instance(hdev, hdev->cur_adv_instance);
1531
1532 /* If the "connectable" instance flag was not set, then choose between
1533 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1534 */
1535 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1536 mgmt_get_connectable(hdev);
1537
1538 if (!is_advertising_allowed(hdev, connectable))
1539 return -EINVAL;
1540
1541 status = hci_disable_advertising_sync(hdev);
1542 if (status)
1543 return status;
1544
1545 /* Clear the HCI_LE_ADV bit temporarily so that the
1546 * hci_update_random_address knows that it's safe to go ahead
1547 * and write a new random address. The flag will be set back on
1548 * as soon as the SET_ADV_ENABLE HCI command completes.
1549 */
1550 hci_dev_clear_flag(hdev, HCI_LE_ADV);
1551
1552 /* Set require_privacy to true only when non-connectable
1553 * advertising is used. In that case it is fine to use a
1554 * non-resolvable private address.
1555 */
1556 status = hci_update_random_address_sync(hdev, !connectable,
1557 adv_use_rpa(hdev, flags),
1558 &own_addr_type);
1559 if (status)
1560 return status;
1561
1562 memset(&cp, 0, sizeof(cp));
1563
1564 if (adv_instance) {
1565 adv_min_interval = adv_instance->min_interval;
1566 adv_max_interval = adv_instance->max_interval;
1567 } else {
1568 adv_min_interval = hdev->le_adv_min_interval;
1569 adv_max_interval = hdev->le_adv_max_interval;
1570 }
1571
1572 if (connectable) {
1573 cp.type = LE_ADV_IND;
1574 } else {
1575 if (hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance))
1576 cp.type = LE_ADV_SCAN_IND;
1577 else
1578 cp.type = LE_ADV_NONCONN_IND;
1579
1580 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) ||
1581 hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
1582 adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN;
1583 adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX;
1584 }
1585 }
1586
1587 cp.min_interval = cpu_to_le16(adv_min_interval);
1588 cp.max_interval = cpu_to_le16(adv_max_interval);
1589 cp.own_address_type = own_addr_type;
1590 cp.channel_map = hdev->le_adv_channel_map;
1591
1592 status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM,
1593 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1594 if (status)
1595 return status;
1596
1597 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
1598 sizeof(enable), &enable, HCI_CMD_TIMEOUT);
1599 }
1600
enable_advertising_sync(struct hci_dev * hdev,void * data)1601 static int enable_advertising_sync(struct hci_dev *hdev, void *data)
1602 {
1603 return hci_enable_advertising_sync(hdev);
1604 }
1605
hci_enable_advertising(struct hci_dev * hdev)1606 int hci_enable_advertising(struct hci_dev *hdev)
1607 {
1608 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1609 list_empty(&hdev->adv_instances))
1610 return 0;
1611
1612 return hci_cmd_sync_queue(hdev, enable_advertising_sync, NULL, NULL);
1613 }
1614
hci_remove_ext_adv_instance_sync(struct hci_dev * hdev,u8 instance,struct sock * sk)1615 int hci_remove_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance,
1616 struct sock *sk)
1617 {
1618 int err;
1619
1620 if (!ext_adv_capable(hdev))
1621 return 0;
1622
1623 err = hci_disable_ext_adv_instance_sync(hdev, instance);
1624 if (err)
1625 return err;
1626
1627 /* If request specifies an instance that doesn't exist, fail */
1628 if (instance > 0 && !hci_find_adv_instance(hdev, instance))
1629 return -EINVAL;
1630
1631 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_REMOVE_ADV_SET,
1632 sizeof(instance), &instance, 0,
1633 HCI_CMD_TIMEOUT, sk);
1634 }
1635
remove_ext_adv_sync(struct hci_dev * hdev,void * data)1636 static int remove_ext_adv_sync(struct hci_dev *hdev, void *data)
1637 {
1638 struct adv_info *adv = data;
1639 u8 instance = 0;
1640
1641 if (adv)
1642 instance = adv->instance;
1643
1644 return hci_remove_ext_adv_instance_sync(hdev, instance, NULL);
1645 }
1646
hci_remove_ext_adv_instance(struct hci_dev * hdev,u8 instance)1647 int hci_remove_ext_adv_instance(struct hci_dev *hdev, u8 instance)
1648 {
1649 struct adv_info *adv = NULL;
1650
1651 if (instance) {
1652 adv = hci_find_adv_instance(hdev, instance);
1653 if (!adv)
1654 return -EINVAL;
1655 }
1656
1657 return hci_cmd_sync_queue(hdev, remove_ext_adv_sync, adv, NULL);
1658 }
1659
hci_le_terminate_big_sync(struct hci_dev * hdev,u8 handle,u8 reason)1660 int hci_le_terminate_big_sync(struct hci_dev *hdev, u8 handle, u8 reason)
1661 {
1662 struct hci_cp_le_term_big cp;
1663
1664 memset(&cp, 0, sizeof(cp));
1665 cp.handle = handle;
1666 cp.reason = reason;
1667
1668 return __hci_cmd_sync_status(hdev, HCI_OP_LE_TERM_BIG,
1669 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1670 }
1671
hci_set_ext_adv_data_sync(struct hci_dev * hdev,u8 instance)1672 static int hci_set_ext_adv_data_sync(struct hci_dev *hdev, u8 instance)
1673 {
1674 struct {
1675 struct hci_cp_le_set_ext_adv_data cp;
1676 u8 data[HCI_MAX_EXT_AD_LENGTH];
1677 } pdu;
1678 u8 len;
1679 struct adv_info *adv = NULL;
1680 int err;
1681
1682 memset(&pdu, 0, sizeof(pdu));
1683
1684 if (instance) {
1685 adv = hci_find_adv_instance(hdev, instance);
1686 if (!adv || !adv->adv_data_changed)
1687 return 0;
1688 }
1689
1690 len = eir_create_adv_data(hdev, instance, pdu.data);
1691
1692 pdu.cp.length = len;
1693 pdu.cp.handle = instance;
1694 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1695 pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1696
1697 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_DATA,
1698 sizeof(pdu.cp) + len, &pdu.cp,
1699 HCI_CMD_TIMEOUT);
1700 if (err)
1701 return err;
1702
1703 /* Update data if the command succeed */
1704 if (adv) {
1705 adv->adv_data_changed = false;
1706 } else {
1707 memcpy(hdev->adv_data, pdu.data, len);
1708 hdev->adv_data_len = len;
1709 }
1710
1711 return 0;
1712 }
1713
hci_set_adv_data_sync(struct hci_dev * hdev,u8 instance)1714 static int hci_set_adv_data_sync(struct hci_dev *hdev, u8 instance)
1715 {
1716 struct hci_cp_le_set_adv_data cp;
1717 u8 len;
1718
1719 memset(&cp, 0, sizeof(cp));
1720
1721 len = eir_create_adv_data(hdev, instance, cp.data);
1722
1723 /* There's nothing to do if the data hasn't changed */
1724 if (hdev->adv_data_len == len &&
1725 memcmp(cp.data, hdev->adv_data, len) == 0)
1726 return 0;
1727
1728 memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1729 hdev->adv_data_len = len;
1730
1731 cp.length = len;
1732
1733 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_DATA,
1734 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1735 }
1736
hci_update_adv_data_sync(struct hci_dev * hdev,u8 instance)1737 int hci_update_adv_data_sync(struct hci_dev *hdev, u8 instance)
1738 {
1739 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1740 return 0;
1741
1742 if (ext_adv_capable(hdev))
1743 return hci_set_ext_adv_data_sync(hdev, instance);
1744
1745 return hci_set_adv_data_sync(hdev, instance);
1746 }
1747
hci_schedule_adv_instance_sync(struct hci_dev * hdev,u8 instance,bool force)1748 int hci_schedule_adv_instance_sync(struct hci_dev *hdev, u8 instance,
1749 bool force)
1750 {
1751 struct adv_info *adv = NULL;
1752 u16 timeout;
1753
1754 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) && !ext_adv_capable(hdev))
1755 return -EPERM;
1756
1757 if (hdev->adv_instance_timeout)
1758 return -EBUSY;
1759
1760 adv = hci_find_adv_instance(hdev, instance);
1761 if (!adv)
1762 return -ENOENT;
1763
1764 /* A zero timeout means unlimited advertising. As long as there is
1765 * only one instance, duration should be ignored. We still set a timeout
1766 * in case further instances are being added later on.
1767 *
1768 * If the remaining lifetime of the instance is more than the duration
1769 * then the timeout corresponds to the duration, otherwise it will be
1770 * reduced to the remaining instance lifetime.
1771 */
1772 if (adv->timeout == 0 || adv->duration <= adv->remaining_time)
1773 timeout = adv->duration;
1774 else
1775 timeout = adv->remaining_time;
1776
1777 /* The remaining time is being reduced unless the instance is being
1778 * advertised without time limit.
1779 */
1780 if (adv->timeout)
1781 adv->remaining_time = adv->remaining_time - timeout;
1782
1783 /* Only use work for scheduling instances with legacy advertising */
1784 if (!ext_adv_capable(hdev)) {
1785 hdev->adv_instance_timeout = timeout;
1786 queue_delayed_work(hdev->req_workqueue,
1787 &hdev->adv_instance_expire,
1788 msecs_to_jiffies(timeout * 1000));
1789 }
1790
1791 /* If we're just re-scheduling the same instance again then do not
1792 * execute any HCI commands. This happens when a single instance is
1793 * being advertised.
1794 */
1795 if (!force && hdev->cur_adv_instance == instance &&
1796 hci_dev_test_flag(hdev, HCI_LE_ADV))
1797 return 0;
1798
1799 hdev->cur_adv_instance = instance;
1800
1801 return hci_start_adv_sync(hdev, instance);
1802 }
1803
hci_clear_adv_sets_sync(struct hci_dev * hdev,struct sock * sk)1804 static int hci_clear_adv_sets_sync(struct hci_dev *hdev, struct sock *sk)
1805 {
1806 int err;
1807
1808 if (!ext_adv_capable(hdev))
1809 return 0;
1810
1811 /* Disable instance 0x00 to disable all instances */
1812 err = hci_disable_ext_adv_instance_sync(hdev, 0x00);
1813 if (err)
1814 return err;
1815
1816 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CLEAR_ADV_SETS,
1817 0, NULL, 0, HCI_CMD_TIMEOUT, sk);
1818 }
1819
hci_clear_adv_sync(struct hci_dev * hdev,struct sock * sk,bool force)1820 static int hci_clear_adv_sync(struct hci_dev *hdev, struct sock *sk, bool force)
1821 {
1822 struct adv_info *adv, *n;
1823 int err = 0;
1824
1825 if (ext_adv_capable(hdev))
1826 /* Remove all existing sets */
1827 err = hci_clear_adv_sets_sync(hdev, sk);
1828 if (ext_adv_capable(hdev))
1829 return err;
1830
1831 /* This is safe as long as there is no command send while the lock is
1832 * held.
1833 */
1834 hci_dev_lock(hdev);
1835
1836 /* Cleanup non-ext instances */
1837 list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) {
1838 u8 instance = adv->instance;
1839 int err;
1840
1841 if (!(force || adv->timeout))
1842 continue;
1843
1844 err = hci_remove_adv_instance(hdev, instance);
1845 if (!err)
1846 mgmt_advertising_removed(sk, hdev, instance);
1847 }
1848
1849 hci_dev_unlock(hdev);
1850
1851 return 0;
1852 }
1853
hci_remove_adv_sync(struct hci_dev * hdev,u8 instance,struct sock * sk)1854 static int hci_remove_adv_sync(struct hci_dev *hdev, u8 instance,
1855 struct sock *sk)
1856 {
1857 int err = 0;
1858
1859 /* If we use extended advertising, instance has to be removed first. */
1860 if (ext_adv_capable(hdev))
1861 err = hci_remove_ext_adv_instance_sync(hdev, instance, sk);
1862 if (ext_adv_capable(hdev))
1863 return err;
1864
1865 /* This is safe as long as there is no command send while the lock is
1866 * held.
1867 */
1868 hci_dev_lock(hdev);
1869
1870 err = hci_remove_adv_instance(hdev, instance);
1871 if (!err)
1872 mgmt_advertising_removed(sk, hdev, instance);
1873
1874 hci_dev_unlock(hdev);
1875
1876 return err;
1877 }
1878
1879 /* For a single instance:
1880 * - force == true: The instance will be removed even when its remaining
1881 * lifetime is not zero.
1882 * - force == false: the instance will be deactivated but kept stored unless
1883 * the remaining lifetime is zero.
1884 *
1885 * For instance == 0x00:
1886 * - force == true: All instances will be removed regardless of their timeout
1887 * setting.
1888 * - force == false: Only instances that have a timeout will be removed.
1889 */
hci_remove_advertising_sync(struct hci_dev * hdev,struct sock * sk,u8 instance,bool force)1890 int hci_remove_advertising_sync(struct hci_dev *hdev, struct sock *sk,
1891 u8 instance, bool force)
1892 {
1893 struct adv_info *next = NULL;
1894 int err;
1895
1896 /* Cancel any timeout concerning the removed instance(s). */
1897 if (!instance || hdev->cur_adv_instance == instance)
1898 cancel_adv_timeout(hdev);
1899
1900 /* Get the next instance to advertise BEFORE we remove
1901 * the current one. This can be the same instance again
1902 * if there is only one instance.
1903 */
1904 if (hdev->cur_adv_instance == instance)
1905 next = hci_get_next_instance(hdev, instance);
1906
1907 if (!instance) {
1908 err = hci_clear_adv_sync(hdev, sk, force);
1909 if (err)
1910 return err;
1911 } else {
1912 struct adv_info *adv = hci_find_adv_instance(hdev, instance);
1913
1914 if (force || (adv && adv->timeout && !adv->remaining_time)) {
1915 /* Don't advertise a removed instance. */
1916 if (next && next->instance == instance)
1917 next = NULL;
1918
1919 err = hci_remove_adv_sync(hdev, instance, sk);
1920 if (err)
1921 return err;
1922 }
1923 }
1924
1925 if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING))
1926 return 0;
1927
1928 if (next && !ext_adv_capable(hdev))
1929 hci_schedule_adv_instance_sync(hdev, next->instance, false);
1930
1931 return 0;
1932 }
1933
hci_read_rssi_sync(struct hci_dev * hdev,__le16 handle)1934 int hci_read_rssi_sync(struct hci_dev *hdev, __le16 handle)
1935 {
1936 struct hci_cp_read_rssi cp;
1937
1938 cp.handle = handle;
1939 return __hci_cmd_sync_status(hdev, HCI_OP_READ_RSSI,
1940 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1941 }
1942
hci_read_clock_sync(struct hci_dev * hdev,struct hci_cp_read_clock * cp)1943 int hci_read_clock_sync(struct hci_dev *hdev, struct hci_cp_read_clock *cp)
1944 {
1945 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLOCK,
1946 sizeof(*cp), cp, HCI_CMD_TIMEOUT);
1947 }
1948
hci_read_tx_power_sync(struct hci_dev * hdev,__le16 handle,u8 type)1949 int hci_read_tx_power_sync(struct hci_dev *hdev, __le16 handle, u8 type)
1950 {
1951 struct hci_cp_read_tx_power cp;
1952
1953 cp.handle = handle;
1954 cp.type = type;
1955 return __hci_cmd_sync_status(hdev, HCI_OP_READ_TX_POWER,
1956 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1957 }
1958
hci_disable_advertising_sync(struct hci_dev * hdev)1959 int hci_disable_advertising_sync(struct hci_dev *hdev)
1960 {
1961 u8 enable = 0x00;
1962 int err = 0;
1963
1964 /* If controller is not advertising we are done. */
1965 if (!hci_dev_test_flag(hdev, HCI_LE_ADV))
1966 return 0;
1967
1968 if (ext_adv_capable(hdev))
1969 err = hci_disable_ext_adv_instance_sync(hdev, 0x00);
1970 if (ext_adv_capable(hdev))
1971 return err;
1972
1973 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
1974 sizeof(enable), &enable, HCI_CMD_TIMEOUT);
1975 }
1976
hci_le_set_ext_scan_enable_sync(struct hci_dev * hdev,u8 val,u8 filter_dup)1977 static int hci_le_set_ext_scan_enable_sync(struct hci_dev *hdev, u8 val,
1978 u8 filter_dup)
1979 {
1980 struct hci_cp_le_set_ext_scan_enable cp;
1981
1982 memset(&cp, 0, sizeof(cp));
1983 cp.enable = val;
1984
1985 if (hci_dev_test_flag(hdev, HCI_MESH))
1986 cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
1987 else
1988 cp.filter_dup = filter_dup;
1989
1990 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
1991 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1992 }
1993
hci_le_set_scan_enable_sync(struct hci_dev * hdev,u8 val,u8 filter_dup)1994 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val,
1995 u8 filter_dup)
1996 {
1997 struct hci_cp_le_set_scan_enable cp;
1998
1999 if (use_ext_scan(hdev))
2000 return hci_le_set_ext_scan_enable_sync(hdev, val, filter_dup);
2001
2002 memset(&cp, 0, sizeof(cp));
2003 cp.enable = val;
2004
2005 if (val && hci_dev_test_flag(hdev, HCI_MESH))
2006 cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
2007 else
2008 cp.filter_dup = filter_dup;
2009
2010 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_ENABLE,
2011 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2012 }
2013
hci_le_set_addr_resolution_enable_sync(struct hci_dev * hdev,u8 val)2014 static int hci_le_set_addr_resolution_enable_sync(struct hci_dev *hdev, u8 val)
2015 {
2016 if (!use_ll_privacy(hdev))
2017 return 0;
2018
2019 /* If controller is not/already resolving we are done. */
2020 if (val == hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION))
2021 return 0;
2022
2023 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE,
2024 sizeof(val), &val, HCI_CMD_TIMEOUT);
2025 }
2026
hci_scan_disable_sync(struct hci_dev * hdev)2027 static int hci_scan_disable_sync(struct hci_dev *hdev)
2028 {
2029 int err;
2030
2031 /* If controller is not scanning we are done. */
2032 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
2033 return 0;
2034
2035 if (hdev->scanning_paused) {
2036 bt_dev_dbg(hdev, "Scanning is paused for suspend");
2037 return 0;
2038 }
2039
2040 err = hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00);
2041 if (err) {
2042 bt_dev_err(hdev, "Unable to disable scanning: %d", err);
2043 return err;
2044 }
2045
2046 return err;
2047 }
2048
scan_use_rpa(struct hci_dev * hdev)2049 static bool scan_use_rpa(struct hci_dev *hdev)
2050 {
2051 return hci_dev_test_flag(hdev, HCI_PRIVACY);
2052 }
2053
hci_start_interleave_scan(struct hci_dev * hdev)2054 static void hci_start_interleave_scan(struct hci_dev *hdev)
2055 {
2056 hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER;
2057 queue_delayed_work(hdev->req_workqueue,
2058 &hdev->interleave_scan, 0);
2059 }
2060
is_interleave_scanning(struct hci_dev * hdev)2061 static bool is_interleave_scanning(struct hci_dev *hdev)
2062 {
2063 return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE;
2064 }
2065
cancel_interleave_scan(struct hci_dev * hdev)2066 static void cancel_interleave_scan(struct hci_dev *hdev)
2067 {
2068 bt_dev_dbg(hdev, "cancelling interleave scan");
2069
2070 cancel_delayed_work_sync(&hdev->interleave_scan);
2071
2072 hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE;
2073 }
2074
2075 /* Return true if interleave_scan wasn't started until exiting this function,
2076 * otherwise, return false
2077 */
hci_update_interleaved_scan_sync(struct hci_dev * hdev)2078 static bool hci_update_interleaved_scan_sync(struct hci_dev *hdev)
2079 {
2080 /* Do interleaved scan only if all of the following are true:
2081 * - There is at least one ADV monitor
2082 * - At least one pending LE connection or one device to be scanned for
2083 * - Monitor offloading is not supported
2084 * If so, we should alternate between allowlist scan and one without
2085 * any filters to save power.
2086 */
2087 bool use_interleaving = hci_is_adv_monitoring(hdev) &&
2088 !(list_empty(&hdev->pend_le_conns) &&
2089 list_empty(&hdev->pend_le_reports)) &&
2090 hci_get_adv_monitor_offload_ext(hdev) ==
2091 HCI_ADV_MONITOR_EXT_NONE;
2092 bool is_interleaving = is_interleave_scanning(hdev);
2093
2094 if (use_interleaving && !is_interleaving) {
2095 hci_start_interleave_scan(hdev);
2096 bt_dev_dbg(hdev, "starting interleave scan");
2097 return true;
2098 }
2099
2100 if (!use_interleaving && is_interleaving)
2101 cancel_interleave_scan(hdev);
2102
2103 return false;
2104 }
2105
2106 /* Removes connection to resolve list if needed.*/
hci_le_del_resolve_list_sync(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 bdaddr_type)2107 static int hci_le_del_resolve_list_sync(struct hci_dev *hdev,
2108 bdaddr_t *bdaddr, u8 bdaddr_type)
2109 {
2110 struct hci_cp_le_del_from_resolv_list cp;
2111 struct bdaddr_list_with_irk *entry;
2112
2113 if (!use_ll_privacy(hdev))
2114 return 0;
2115
2116 /* Check if the IRK has been programmed */
2117 entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, bdaddr,
2118 bdaddr_type);
2119 if (!entry)
2120 return 0;
2121
2122 cp.bdaddr_type = bdaddr_type;
2123 bacpy(&cp.bdaddr, bdaddr);
2124
2125 return __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_RESOLV_LIST,
2126 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2127 }
2128
hci_le_del_accept_list_sync(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 bdaddr_type)2129 static int hci_le_del_accept_list_sync(struct hci_dev *hdev,
2130 bdaddr_t *bdaddr, u8 bdaddr_type)
2131 {
2132 struct hci_cp_le_del_from_accept_list cp;
2133 int err;
2134
2135 /* Check if device is on accept list before removing it */
2136 if (!hci_bdaddr_list_lookup(&hdev->le_accept_list, bdaddr, bdaddr_type))
2137 return 0;
2138
2139 cp.bdaddr_type = bdaddr_type;
2140 bacpy(&cp.bdaddr, bdaddr);
2141
2142 /* Ignore errors when removing from resolving list as that is likely
2143 * that the device was never added.
2144 */
2145 hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type);
2146
2147 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_ACCEPT_LIST,
2148 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2149 if (err) {
2150 bt_dev_err(hdev, "Unable to remove from allow list: %d", err);
2151 return err;
2152 }
2153
2154 bt_dev_dbg(hdev, "Remove %pMR (0x%x) from allow list", &cp.bdaddr,
2155 cp.bdaddr_type);
2156
2157 return 0;
2158 }
2159
2160 struct conn_params {
2161 bdaddr_t addr;
2162 u8 addr_type;
2163 hci_conn_flags_t flags;
2164 u8 privacy_mode;
2165 };
2166
2167 /* Adds connection to resolve list if needed.
2168 * Setting params to NULL programs local hdev->irk
2169 */
hci_le_add_resolve_list_sync(struct hci_dev * hdev,struct conn_params * params)2170 static int hci_le_add_resolve_list_sync(struct hci_dev *hdev,
2171 struct conn_params *params)
2172 {
2173 struct hci_cp_le_add_to_resolv_list cp;
2174 struct smp_irk *irk;
2175 struct bdaddr_list_with_irk *entry;
2176 struct hci_conn_params *p;
2177
2178 if (!use_ll_privacy(hdev))
2179 return 0;
2180
2181 /* Attempt to program local identity address, type and irk if params is
2182 * NULL.
2183 */
2184 if (!params) {
2185 if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
2186 return 0;
2187
2188 hci_copy_identity_address(hdev, &cp.bdaddr, &cp.bdaddr_type);
2189 memcpy(cp.peer_irk, hdev->irk, 16);
2190 goto done;
2191 }
2192
2193 irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type);
2194 if (!irk)
2195 return 0;
2196
2197 /* Check if the IK has _not_ been programmed yet. */
2198 entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list,
2199 ¶ms->addr,
2200 params->addr_type);
2201 if (entry)
2202 return 0;
2203
2204 cp.bdaddr_type = params->addr_type;
2205 bacpy(&cp.bdaddr, ¶ms->addr);
2206 memcpy(cp.peer_irk, irk->val, 16);
2207
2208 /* Default privacy mode is always Network */
2209 params->privacy_mode = HCI_NETWORK_PRIVACY;
2210
2211 rcu_read_lock();
2212 p = hci_pend_le_action_lookup(&hdev->pend_le_conns,
2213 ¶ms->addr, params->addr_type);
2214 if (!p)
2215 p = hci_pend_le_action_lookup(&hdev->pend_le_reports,
2216 ¶ms->addr, params->addr_type);
2217 if (p)
2218 WRITE_ONCE(p->privacy_mode, HCI_NETWORK_PRIVACY);
2219 rcu_read_unlock();
2220
2221 done:
2222 if (hci_dev_test_flag(hdev, HCI_PRIVACY))
2223 memcpy(cp.local_irk, hdev->irk, 16);
2224 else
2225 memset(cp.local_irk, 0, 16);
2226
2227 return __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_RESOLV_LIST,
2228 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2229 }
2230
2231 /* Set Device Privacy Mode. */
hci_le_set_privacy_mode_sync(struct hci_dev * hdev,struct conn_params * params)2232 static int hci_le_set_privacy_mode_sync(struct hci_dev *hdev,
2233 struct conn_params *params)
2234 {
2235 struct hci_cp_le_set_privacy_mode cp;
2236 struct smp_irk *irk;
2237
2238 /* If device privacy mode has already been set there is nothing to do */
2239 if (params->privacy_mode == HCI_DEVICE_PRIVACY)
2240 return 0;
2241
2242 /* Check if HCI_CONN_FLAG_DEVICE_PRIVACY has been set as it also
2243 * indicates that LL Privacy has been enabled and
2244 * HCI_OP_LE_SET_PRIVACY_MODE is supported.
2245 */
2246 if (!(params->flags & HCI_CONN_FLAG_DEVICE_PRIVACY))
2247 return 0;
2248
2249 irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type);
2250 if (!irk)
2251 return 0;
2252
2253 memset(&cp, 0, sizeof(cp));
2254 cp.bdaddr_type = irk->addr_type;
2255 bacpy(&cp.bdaddr, &irk->bdaddr);
2256 cp.mode = HCI_DEVICE_PRIVACY;
2257
2258 /* Note: params->privacy_mode is not updated since it is a copy */
2259
2260 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PRIVACY_MODE,
2261 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2262 }
2263
2264 /* Adds connection to allow list if needed, if the device uses RPA (has IRK)
2265 * this attempts to program the device in the resolving list as well and
2266 * properly set the privacy mode.
2267 */
hci_le_add_accept_list_sync(struct hci_dev * hdev,struct conn_params * params,u8 * num_entries)2268 static int hci_le_add_accept_list_sync(struct hci_dev *hdev,
2269 struct conn_params *params,
2270 u8 *num_entries)
2271 {
2272 struct hci_cp_le_add_to_accept_list cp;
2273 int err;
2274
2275 /* During suspend, only wakeable devices can be in acceptlist */
2276 if (hdev->suspended &&
2277 !(params->flags & HCI_CONN_FLAG_REMOTE_WAKEUP)) {
2278 hci_le_del_accept_list_sync(hdev, ¶ms->addr,
2279 params->addr_type);
2280 return 0;
2281 }
2282
2283 /* Select filter policy to accept all advertising */
2284 if (*num_entries >= hdev->le_accept_list_size)
2285 return -ENOSPC;
2286
2287 /* Accept list can not be used with RPAs */
2288 if (!use_ll_privacy(hdev) &&
2289 hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type))
2290 return -EINVAL;
2291
2292 /* Attempt to program the device in the resolving list first to avoid
2293 * having to rollback in case it fails since the resolving list is
2294 * dynamic it can probably be smaller than the accept list.
2295 */
2296 err = hci_le_add_resolve_list_sync(hdev, params);
2297 if (err) {
2298 bt_dev_err(hdev, "Unable to add to resolve list: %d", err);
2299 return err;
2300 }
2301
2302 /* Set Privacy Mode */
2303 err = hci_le_set_privacy_mode_sync(hdev, params);
2304 if (err) {
2305 bt_dev_err(hdev, "Unable to set privacy mode: %d", err);
2306 return err;
2307 }
2308
2309 /* Check if already in accept list */
2310 if (hci_bdaddr_list_lookup(&hdev->le_accept_list, ¶ms->addr,
2311 params->addr_type))
2312 return 0;
2313
2314 *num_entries += 1;
2315 cp.bdaddr_type = params->addr_type;
2316 bacpy(&cp.bdaddr, ¶ms->addr);
2317
2318 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST,
2319 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2320 if (err) {
2321 bt_dev_err(hdev, "Unable to add to allow list: %d", err);
2322 /* Rollback the device from the resolving list */
2323 hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type);
2324 return err;
2325 }
2326
2327 bt_dev_dbg(hdev, "Add %pMR (0x%x) to allow list", &cp.bdaddr,
2328 cp.bdaddr_type);
2329
2330 return 0;
2331 }
2332
2333 /* This function disables/pause all advertising instances */
hci_pause_advertising_sync(struct hci_dev * hdev)2334 static int hci_pause_advertising_sync(struct hci_dev *hdev)
2335 {
2336 int err;
2337 int old_state;
2338
2339 /* If already been paused there is nothing to do. */
2340 if (hdev->advertising_paused)
2341 return 0;
2342
2343 bt_dev_dbg(hdev, "Pausing directed advertising");
2344
2345 /* Stop directed advertising */
2346 old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING);
2347 if (old_state) {
2348 /* When discoverable timeout triggers, then just make sure
2349 * the limited discoverable flag is cleared. Even in the case
2350 * of a timeout triggered from general discoverable, it is
2351 * safe to unconditionally clear the flag.
2352 */
2353 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
2354 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
2355 hdev->discov_timeout = 0;
2356 }
2357
2358 bt_dev_dbg(hdev, "Pausing advertising instances");
2359
2360 /* Call to disable any advertisements active on the controller.
2361 * This will succeed even if no advertisements are configured.
2362 */
2363 err = hci_disable_advertising_sync(hdev);
2364 if (err)
2365 return err;
2366
2367 /* If we are using software rotation, pause the loop */
2368 if (!ext_adv_capable(hdev))
2369 cancel_adv_timeout(hdev);
2370
2371 hdev->advertising_paused = true;
2372 hdev->advertising_old_state = old_state;
2373
2374 return 0;
2375 }
2376
2377 /* This function enables all user advertising instances */
hci_resume_advertising_sync(struct hci_dev * hdev)2378 static int hci_resume_advertising_sync(struct hci_dev *hdev)
2379 {
2380 struct adv_info *adv, *tmp;
2381 int err;
2382
2383 /* If advertising has not been paused there is nothing to do. */
2384 if (!hdev->advertising_paused)
2385 return 0;
2386
2387 /* Resume directed advertising */
2388 hdev->advertising_paused = false;
2389 if (hdev->advertising_old_state) {
2390 hci_dev_set_flag(hdev, HCI_ADVERTISING);
2391 hdev->advertising_old_state = 0;
2392 }
2393
2394 bt_dev_dbg(hdev, "Resuming advertising instances");
2395
2396 if (ext_adv_capable(hdev)) {
2397 /* Call for each tracked instance to be re-enabled */
2398 list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) {
2399 err = hci_enable_ext_advertising_sync(hdev,
2400 adv->instance);
2401 if (!err)
2402 continue;
2403
2404 /* If the instance cannot be resumed remove it */
2405 hci_remove_ext_adv_instance_sync(hdev, adv->instance,
2406 NULL);
2407 }
2408 } else {
2409 /* Schedule for most recent instance to be restarted and begin
2410 * the software rotation loop
2411 */
2412 err = hci_schedule_adv_instance_sync(hdev,
2413 hdev->cur_adv_instance,
2414 true);
2415 }
2416
2417 hdev->advertising_paused = false;
2418
2419 return err;
2420 }
2421
hci_pause_addr_resolution(struct hci_dev * hdev)2422 static int hci_pause_addr_resolution(struct hci_dev *hdev)
2423 {
2424 int err;
2425
2426 if (!use_ll_privacy(hdev))
2427 return 0;
2428
2429 if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION))
2430 return 0;
2431
2432 /* Cannot disable addr resolution if scanning is enabled or
2433 * when initiating an LE connection.
2434 */
2435 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) ||
2436 hci_lookup_le_connect(hdev)) {
2437 bt_dev_err(hdev, "Command not allowed when scan/LE connect");
2438 return -EPERM;
2439 }
2440
2441 /* Cannot disable addr resolution if advertising is enabled. */
2442 err = hci_pause_advertising_sync(hdev);
2443 if (err) {
2444 bt_dev_err(hdev, "Pause advertising failed: %d", err);
2445 return err;
2446 }
2447
2448 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00);
2449 if (err)
2450 bt_dev_err(hdev, "Unable to disable Address Resolution: %d",
2451 err);
2452
2453 /* Return if address resolution is disabled and RPA is not used. */
2454 if (!err && scan_use_rpa(hdev))
2455 return 0;
2456
2457 hci_resume_advertising_sync(hdev);
2458 return err;
2459 }
2460
hci_read_local_oob_data_sync(struct hci_dev * hdev,bool extended,struct sock * sk)2461 struct sk_buff *hci_read_local_oob_data_sync(struct hci_dev *hdev,
2462 bool extended, struct sock *sk)
2463 {
2464 u16 opcode = extended ? HCI_OP_READ_LOCAL_OOB_EXT_DATA :
2465 HCI_OP_READ_LOCAL_OOB_DATA;
2466
2467 return __hci_cmd_sync_sk(hdev, opcode, 0, NULL, 0, HCI_CMD_TIMEOUT, sk);
2468 }
2469
conn_params_copy(struct list_head * list,size_t * n)2470 static struct conn_params *conn_params_copy(struct list_head *list, size_t *n)
2471 {
2472 struct hci_conn_params *params;
2473 struct conn_params *p;
2474 size_t i;
2475
2476 rcu_read_lock();
2477
2478 i = 0;
2479 list_for_each_entry_rcu(params, list, action)
2480 ++i;
2481 *n = i;
2482
2483 rcu_read_unlock();
2484
2485 p = kvcalloc(*n, sizeof(struct conn_params), GFP_KERNEL);
2486 if (!p)
2487 return NULL;
2488
2489 rcu_read_lock();
2490
2491 i = 0;
2492 list_for_each_entry_rcu(params, list, action) {
2493 /* Racing adds are handled in next scan update */
2494 if (i >= *n)
2495 break;
2496
2497 /* No hdev->lock, but: addr, addr_type are immutable.
2498 * privacy_mode is only written by us or in
2499 * hci_cc_le_set_privacy_mode that we wait for.
2500 * We should be idempotent so MGMT updating flags
2501 * while we are processing is OK.
2502 */
2503 bacpy(&p[i].addr, ¶ms->addr);
2504 p[i].addr_type = params->addr_type;
2505 p[i].flags = READ_ONCE(params->flags);
2506 p[i].privacy_mode = READ_ONCE(params->privacy_mode);
2507 ++i;
2508 }
2509
2510 rcu_read_unlock();
2511
2512 *n = i;
2513 return p;
2514 }
2515
2516 /* Device must not be scanning when updating the accept list.
2517 *
2518 * Update is done using the following sequence:
2519 *
2520 * use_ll_privacy((Disable Advertising) -> Disable Resolving List) ->
2521 * Remove Devices From Accept List ->
2522 * (has IRK && use_ll_privacy(Remove Devices From Resolving List))->
2523 * Add Devices to Accept List ->
2524 * (has IRK && use_ll_privacy(Remove Devices From Resolving List)) ->
2525 * use_ll_privacy(Enable Resolving List -> (Enable Advertising)) ->
2526 * Enable Scanning
2527 *
2528 * In case of failure advertising shall be restored to its original state and
2529 * return would disable accept list since either accept or resolving list could
2530 * not be programmed.
2531 *
2532 */
hci_update_accept_list_sync(struct hci_dev * hdev)2533 static u8 hci_update_accept_list_sync(struct hci_dev *hdev)
2534 {
2535 struct conn_params *params;
2536 struct bdaddr_list *b, *t;
2537 u8 num_entries = 0;
2538 bool pend_conn, pend_report;
2539 u8 filter_policy;
2540 size_t i, n;
2541 int err;
2542
2543 /* Pause advertising if resolving list can be used as controllers
2544 * cannot accept resolving list modifications while advertising.
2545 */
2546 if (use_ll_privacy(hdev)) {
2547 err = hci_pause_advertising_sync(hdev);
2548 if (err) {
2549 bt_dev_err(hdev, "pause advertising failed: %d", err);
2550 return 0x00;
2551 }
2552 }
2553
2554 /* Disable address resolution while reprogramming accept list since
2555 * devices that do have an IRK will be programmed in the resolving list
2556 * when LL Privacy is enabled.
2557 */
2558 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00);
2559 if (err) {
2560 bt_dev_err(hdev, "Unable to disable LL privacy: %d", err);
2561 goto done;
2562 }
2563
2564 /* Go through the current accept list programmed into the
2565 * controller one by one and check if that address is connected or is
2566 * still in the list of pending connections or list of devices to
2567 * report. If not present in either list, then remove it from
2568 * the controller.
2569 */
2570 list_for_each_entry_safe(b, t, &hdev->le_accept_list, list) {
2571 if (hci_conn_hash_lookup_le(hdev, &b->bdaddr, b->bdaddr_type))
2572 continue;
2573
2574 /* Pointers not dereferenced, no locks needed */
2575 pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns,
2576 &b->bdaddr,
2577 b->bdaddr_type);
2578 pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports,
2579 &b->bdaddr,
2580 b->bdaddr_type);
2581
2582 /* If the device is not likely to connect or report,
2583 * remove it from the acceptlist.
2584 */
2585 if (!pend_conn && !pend_report) {
2586 hci_le_del_accept_list_sync(hdev, &b->bdaddr,
2587 b->bdaddr_type);
2588 continue;
2589 }
2590
2591 num_entries++;
2592 }
2593
2594 /* Since all no longer valid accept list entries have been
2595 * removed, walk through the list of pending connections
2596 * and ensure that any new device gets programmed into
2597 * the controller.
2598 *
2599 * If the list of the devices is larger than the list of
2600 * available accept list entries in the controller, then
2601 * just abort and return filer policy value to not use the
2602 * accept list.
2603 *
2604 * The list and params may be mutated while we wait for events,
2605 * so make a copy and iterate it.
2606 */
2607
2608 params = conn_params_copy(&hdev->pend_le_conns, &n);
2609 if (!params) {
2610 err = -ENOMEM;
2611 goto done;
2612 }
2613
2614 for (i = 0; i < n; ++i) {
2615 err = hci_le_add_accept_list_sync(hdev, ¶ms[i],
2616 &num_entries);
2617 if (err) {
2618 kvfree(params);
2619 goto done;
2620 }
2621 }
2622
2623 kvfree(params);
2624
2625 /* After adding all new pending connections, walk through
2626 * the list of pending reports and also add these to the
2627 * accept list if there is still space. Abort if space runs out.
2628 */
2629
2630 params = conn_params_copy(&hdev->pend_le_reports, &n);
2631 if (!params) {
2632 err = -ENOMEM;
2633 goto done;
2634 }
2635
2636 for (i = 0; i < n; ++i) {
2637 err = hci_le_add_accept_list_sync(hdev, ¶ms[i],
2638 &num_entries);
2639 if (err) {
2640 kvfree(params);
2641 goto done;
2642 }
2643 }
2644
2645 kvfree(params);
2646
2647 /* Use the allowlist unless the following conditions are all true:
2648 * - We are not currently suspending
2649 * - There are 1 or more ADV monitors registered and it's not offloaded
2650 * - Interleaved scanning is not currently using the allowlist
2651 */
2652 if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended &&
2653 hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE &&
2654 hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST)
2655 err = -EINVAL;
2656
2657 done:
2658 filter_policy = err ? 0x00 : 0x01;
2659
2660 /* Enable address resolution when LL Privacy is enabled. */
2661 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x01);
2662 if (err)
2663 bt_dev_err(hdev, "Unable to enable LL privacy: %d", err);
2664
2665 /* Resume advertising if it was paused */
2666 if (use_ll_privacy(hdev))
2667 hci_resume_advertising_sync(hdev);
2668
2669 /* Select filter policy to use accept list */
2670 return filter_policy;
2671 }
2672
hci_le_set_ext_scan_param_sync(struct hci_dev * hdev,u8 type,u16 interval,u16 window,u8 own_addr_type,u8 filter_policy)2673 static int hci_le_set_ext_scan_param_sync(struct hci_dev *hdev, u8 type,
2674 u16 interval, u16 window,
2675 u8 own_addr_type, u8 filter_policy)
2676 {
2677 struct hci_cp_le_set_ext_scan_params *cp;
2678 struct hci_cp_le_scan_phy_params *phy;
2679 u8 data[sizeof(*cp) + sizeof(*phy) * 2];
2680 u8 num_phy = 0;
2681
2682 cp = (void *)data;
2683 phy = (void *)cp->data;
2684
2685 memset(data, 0, sizeof(data));
2686
2687 cp->own_addr_type = own_addr_type;
2688 cp->filter_policy = filter_policy;
2689
2690 if (scan_1m(hdev) || scan_2m(hdev)) {
2691 cp->scanning_phys |= LE_SCAN_PHY_1M;
2692
2693 phy->type = type;
2694 phy->interval = cpu_to_le16(interval);
2695 phy->window = cpu_to_le16(window);
2696
2697 num_phy++;
2698 phy++;
2699 }
2700
2701 if (scan_coded(hdev)) {
2702 cp->scanning_phys |= LE_SCAN_PHY_CODED;
2703
2704 phy->type = type;
2705 phy->interval = cpu_to_le16(interval);
2706 phy->window = cpu_to_le16(window);
2707
2708 num_phy++;
2709 phy++;
2710 }
2711
2712 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_PARAMS,
2713 sizeof(*cp) + sizeof(*phy) * num_phy,
2714 data, HCI_CMD_TIMEOUT);
2715 }
2716
hci_le_set_scan_param_sync(struct hci_dev * hdev,u8 type,u16 interval,u16 window,u8 own_addr_type,u8 filter_policy)2717 static int hci_le_set_scan_param_sync(struct hci_dev *hdev, u8 type,
2718 u16 interval, u16 window,
2719 u8 own_addr_type, u8 filter_policy)
2720 {
2721 struct hci_cp_le_set_scan_param cp;
2722
2723 if (use_ext_scan(hdev))
2724 return hci_le_set_ext_scan_param_sync(hdev, type, interval,
2725 window, own_addr_type,
2726 filter_policy);
2727
2728 memset(&cp, 0, sizeof(cp));
2729 cp.type = type;
2730 cp.interval = cpu_to_le16(interval);
2731 cp.window = cpu_to_le16(window);
2732 cp.own_address_type = own_addr_type;
2733 cp.filter_policy = filter_policy;
2734
2735 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_PARAM,
2736 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2737 }
2738
hci_start_scan_sync(struct hci_dev * hdev,u8 type,u16 interval,u16 window,u8 own_addr_type,u8 filter_policy,u8 filter_dup)2739 static int hci_start_scan_sync(struct hci_dev *hdev, u8 type, u16 interval,
2740 u16 window, u8 own_addr_type, u8 filter_policy,
2741 u8 filter_dup)
2742 {
2743 int err;
2744
2745 if (hdev->scanning_paused) {
2746 bt_dev_dbg(hdev, "Scanning is paused for suspend");
2747 return 0;
2748 }
2749
2750 err = hci_le_set_scan_param_sync(hdev, type, interval, window,
2751 own_addr_type, filter_policy);
2752 if (err)
2753 return err;
2754
2755 return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, filter_dup);
2756 }
2757
hci_passive_scan_sync(struct hci_dev * hdev)2758 static int hci_passive_scan_sync(struct hci_dev *hdev)
2759 {
2760 u8 own_addr_type;
2761 u8 filter_policy;
2762 u16 window, interval;
2763 u8 filter_dups = LE_SCAN_FILTER_DUP_ENABLE;
2764 int err;
2765
2766 if (hdev->scanning_paused) {
2767 bt_dev_dbg(hdev, "Scanning is paused for suspend");
2768 return 0;
2769 }
2770
2771 err = hci_scan_disable_sync(hdev);
2772 if (err) {
2773 bt_dev_err(hdev, "disable scanning failed: %d", err);
2774 return err;
2775 }
2776
2777 /* Set require_privacy to false since no SCAN_REQ are send
2778 * during passive scanning. Not using an non-resolvable address
2779 * here is important so that peer devices using direct
2780 * advertising with our address will be correctly reported
2781 * by the controller.
2782 */
2783 if (hci_update_random_address_sync(hdev, false, scan_use_rpa(hdev),
2784 &own_addr_type))
2785 return 0;
2786
2787 if (hdev->enable_advmon_interleave_scan &&
2788 hci_update_interleaved_scan_sync(hdev))
2789 return 0;
2790
2791 bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state);
2792
2793 /* Adding or removing entries from the accept list must
2794 * happen before enabling scanning. The controller does
2795 * not allow accept list modification while scanning.
2796 */
2797 filter_policy = hci_update_accept_list_sync(hdev);
2798
2799 /* When the controller is using random resolvable addresses and
2800 * with that having LE privacy enabled, then controllers with
2801 * Extended Scanner Filter Policies support can now enable support
2802 * for handling directed advertising.
2803 *
2804 * So instead of using filter polices 0x00 (no acceptlist)
2805 * and 0x01 (acceptlist enabled) use the new filter policies
2806 * 0x02 (no acceptlist) and 0x03 (acceptlist enabled).
2807 */
2808 if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
2809 (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
2810 filter_policy |= 0x02;
2811
2812 if (hdev->suspended) {
2813 window = hdev->le_scan_window_suspend;
2814 interval = hdev->le_scan_int_suspend;
2815 } else if (hci_is_le_conn_scanning(hdev)) {
2816 window = hdev->le_scan_window_connect;
2817 interval = hdev->le_scan_int_connect;
2818 } else if (hci_is_adv_monitoring(hdev)) {
2819 window = hdev->le_scan_window_adv_monitor;
2820 interval = hdev->le_scan_int_adv_monitor;
2821 } else {
2822 window = hdev->le_scan_window;
2823 interval = hdev->le_scan_interval;
2824 }
2825
2826 /* Disable all filtering for Mesh */
2827 if (hci_dev_test_flag(hdev, HCI_MESH)) {
2828 filter_policy = 0;
2829 filter_dups = LE_SCAN_FILTER_DUP_DISABLE;
2830 }
2831
2832 bt_dev_dbg(hdev, "LE passive scan with acceptlist = %d", filter_policy);
2833
2834 return hci_start_scan_sync(hdev, LE_SCAN_PASSIVE, interval, window,
2835 own_addr_type, filter_policy, filter_dups);
2836 }
2837
2838 /* This function controls the passive scanning based on hdev->pend_le_conns
2839 * list. If there are pending LE connection we start the background scanning,
2840 * otherwise we stop it in the following sequence:
2841 *
2842 * If there are devices to scan:
2843 *
2844 * Disable Scanning -> Update Accept List ->
2845 * use_ll_privacy((Disable Advertising) -> Disable Resolving List ->
2846 * Update Resolving List -> Enable Resolving List -> (Enable Advertising)) ->
2847 * Enable Scanning
2848 *
2849 * Otherwise:
2850 *
2851 * Disable Scanning
2852 */
hci_update_passive_scan_sync(struct hci_dev * hdev)2853 int hci_update_passive_scan_sync(struct hci_dev *hdev)
2854 {
2855 int err;
2856
2857 if (!test_bit(HCI_UP, &hdev->flags) ||
2858 test_bit(HCI_INIT, &hdev->flags) ||
2859 hci_dev_test_flag(hdev, HCI_SETUP) ||
2860 hci_dev_test_flag(hdev, HCI_CONFIG) ||
2861 hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
2862 hci_dev_test_flag(hdev, HCI_UNREGISTER))
2863 return 0;
2864
2865 /* No point in doing scanning if LE support hasn't been enabled */
2866 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
2867 return 0;
2868
2869 /* If discovery is active don't interfere with it */
2870 if (hdev->discovery.state != DISCOVERY_STOPPED)
2871 return 0;
2872
2873 /* Reset RSSI and UUID filters when starting background scanning
2874 * since these filters are meant for service discovery only.
2875 *
2876 * The Start Discovery and Start Service Discovery operations
2877 * ensure to set proper values for RSSI threshold and UUID
2878 * filter list. So it is safe to just reset them here.
2879 */
2880 hci_discovery_filter_clear(hdev);
2881
2882 bt_dev_dbg(hdev, "ADV monitoring is %s",
2883 hci_is_adv_monitoring(hdev) ? "on" : "off");
2884
2885 if (!hci_dev_test_flag(hdev, HCI_MESH) &&
2886 list_empty(&hdev->pend_le_conns) &&
2887 list_empty(&hdev->pend_le_reports) &&
2888 !hci_is_adv_monitoring(hdev) &&
2889 !hci_dev_test_flag(hdev, HCI_PA_SYNC)) {
2890 /* If there is no pending LE connections or devices
2891 * to be scanned for or no ADV monitors, we should stop the
2892 * background scanning.
2893 */
2894
2895 bt_dev_dbg(hdev, "stopping background scanning");
2896
2897 err = hci_scan_disable_sync(hdev);
2898 if (err)
2899 bt_dev_err(hdev, "stop background scanning failed: %d",
2900 err);
2901 } else {
2902 /* If there is at least one pending LE connection, we should
2903 * keep the background scan running.
2904 */
2905
2906 /* If controller is connecting, we should not start scanning
2907 * since some controllers are not able to scan and connect at
2908 * the same time.
2909 */
2910 if (hci_lookup_le_connect(hdev))
2911 return 0;
2912
2913 bt_dev_dbg(hdev, "start background scanning");
2914
2915 err = hci_passive_scan_sync(hdev);
2916 if (err)
2917 bt_dev_err(hdev, "start background scanning failed: %d",
2918 err);
2919 }
2920
2921 return err;
2922 }
2923
update_scan_sync(struct hci_dev * hdev,void * data)2924 static int update_scan_sync(struct hci_dev *hdev, void *data)
2925 {
2926 return hci_update_scan_sync(hdev);
2927 }
2928
hci_update_scan(struct hci_dev * hdev)2929 int hci_update_scan(struct hci_dev *hdev)
2930 {
2931 return hci_cmd_sync_queue(hdev, update_scan_sync, NULL, NULL);
2932 }
2933
update_passive_scan_sync(struct hci_dev * hdev,void * data)2934 static int update_passive_scan_sync(struct hci_dev *hdev, void *data)
2935 {
2936 return hci_update_passive_scan_sync(hdev);
2937 }
2938
hci_update_passive_scan(struct hci_dev * hdev)2939 int hci_update_passive_scan(struct hci_dev *hdev)
2940 {
2941 /* Only queue if it would have any effect */
2942 if (!test_bit(HCI_UP, &hdev->flags) ||
2943 test_bit(HCI_INIT, &hdev->flags) ||
2944 hci_dev_test_flag(hdev, HCI_SETUP) ||
2945 hci_dev_test_flag(hdev, HCI_CONFIG) ||
2946 hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
2947 hci_dev_test_flag(hdev, HCI_UNREGISTER))
2948 return 0;
2949
2950 return hci_cmd_sync_queue(hdev, update_passive_scan_sync, NULL, NULL);
2951 }
2952
hci_write_sc_support_sync(struct hci_dev * hdev,u8 val)2953 int hci_write_sc_support_sync(struct hci_dev *hdev, u8 val)
2954 {
2955 int err;
2956
2957 if (!bredr_sc_enabled(hdev) || lmp_host_sc_capable(hdev))
2958 return 0;
2959
2960 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT,
2961 sizeof(val), &val, HCI_CMD_TIMEOUT);
2962
2963 if (!err) {
2964 if (val) {
2965 hdev->features[1][0] |= LMP_HOST_SC;
2966 hci_dev_set_flag(hdev, HCI_SC_ENABLED);
2967 } else {
2968 hdev->features[1][0] &= ~LMP_HOST_SC;
2969 hci_dev_clear_flag(hdev, HCI_SC_ENABLED);
2970 }
2971 }
2972
2973 return err;
2974 }
2975
hci_write_ssp_mode_sync(struct hci_dev * hdev,u8 mode)2976 int hci_write_ssp_mode_sync(struct hci_dev *hdev, u8 mode)
2977 {
2978 int err;
2979
2980 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) ||
2981 lmp_host_ssp_capable(hdev))
2982 return 0;
2983
2984 if (!mode && hci_dev_test_flag(hdev, HCI_USE_DEBUG_KEYS)) {
2985 __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE,
2986 sizeof(mode), &mode, HCI_CMD_TIMEOUT);
2987 }
2988
2989 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE,
2990 sizeof(mode), &mode, HCI_CMD_TIMEOUT);
2991 if (err)
2992 return err;
2993
2994 return hci_write_sc_support_sync(hdev, 0x01);
2995 }
2996
hci_write_le_host_supported_sync(struct hci_dev * hdev,u8 le,u8 simul)2997 int hci_write_le_host_supported_sync(struct hci_dev *hdev, u8 le, u8 simul)
2998 {
2999 struct hci_cp_write_le_host_supported cp;
3000
3001 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED) ||
3002 !lmp_bredr_capable(hdev))
3003 return 0;
3004
3005 /* Check first if we already have the right host state
3006 * (host features set)
3007 */
3008 if (le == lmp_host_le_capable(hdev) &&
3009 simul == lmp_host_le_br_capable(hdev))
3010 return 0;
3011
3012 memset(&cp, 0, sizeof(cp));
3013
3014 cp.le = le;
3015 cp.simul = simul;
3016
3017 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED,
3018 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3019 }
3020
hci_powered_update_adv_sync(struct hci_dev * hdev)3021 static int hci_powered_update_adv_sync(struct hci_dev *hdev)
3022 {
3023 struct adv_info *adv, *tmp;
3024 int err;
3025
3026 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
3027 return 0;
3028
3029 /* If RPA Resolution has not been enable yet it means the
3030 * resolving list is empty and we should attempt to program the
3031 * local IRK in order to support using own_addr_type
3032 * ADDR_LE_DEV_RANDOM_RESOLVED (0x03).
3033 */
3034 if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) {
3035 hci_le_add_resolve_list_sync(hdev, NULL);
3036 hci_le_set_addr_resolution_enable_sync(hdev, 0x01);
3037 }
3038
3039 /* Make sure the controller has a good default for
3040 * advertising data. This also applies to the case
3041 * where BR/EDR was toggled during the AUTO_OFF phase.
3042 */
3043 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
3044 list_empty(&hdev->adv_instances)) {
3045 if (ext_adv_capable(hdev)) {
3046 err = hci_setup_ext_adv_instance_sync(hdev, 0x00);
3047 if (!err)
3048 hci_update_scan_rsp_data_sync(hdev, 0x00);
3049 } else {
3050 err = hci_update_adv_data_sync(hdev, 0x00);
3051 if (!err)
3052 hci_update_scan_rsp_data_sync(hdev, 0x00);
3053 }
3054
3055 if (hci_dev_test_flag(hdev, HCI_ADVERTISING))
3056 hci_enable_advertising_sync(hdev);
3057 }
3058
3059 /* Call for each tracked instance to be scheduled */
3060 list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list)
3061 hci_schedule_adv_instance_sync(hdev, adv->instance, true);
3062
3063 return 0;
3064 }
3065
hci_write_auth_enable_sync(struct hci_dev * hdev)3066 static int hci_write_auth_enable_sync(struct hci_dev *hdev)
3067 {
3068 u8 link_sec;
3069
3070 link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
3071 if (link_sec == test_bit(HCI_AUTH, &hdev->flags))
3072 return 0;
3073
3074 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE,
3075 sizeof(link_sec), &link_sec,
3076 HCI_CMD_TIMEOUT);
3077 }
3078
hci_write_fast_connectable_sync(struct hci_dev * hdev,bool enable)3079 int hci_write_fast_connectable_sync(struct hci_dev *hdev, bool enable)
3080 {
3081 struct hci_cp_write_page_scan_activity cp;
3082 u8 type;
3083 int err = 0;
3084
3085 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
3086 return 0;
3087
3088 if (hdev->hci_ver < BLUETOOTH_VER_1_2)
3089 return 0;
3090
3091 memset(&cp, 0, sizeof(cp));
3092
3093 if (enable) {
3094 type = PAGE_SCAN_TYPE_INTERLACED;
3095
3096 /* 160 msec page scan interval */
3097 cp.interval = cpu_to_le16(0x0100);
3098 } else {
3099 type = hdev->def_page_scan_type;
3100 cp.interval = cpu_to_le16(hdev->def_page_scan_int);
3101 }
3102
3103 cp.window = cpu_to_le16(hdev->def_page_scan_window);
3104
3105 if (__cpu_to_le16(hdev->page_scan_interval) != cp.interval ||
3106 __cpu_to_le16(hdev->page_scan_window) != cp.window) {
3107 err = __hci_cmd_sync_status(hdev,
3108 HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
3109 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3110 if (err)
3111 return err;
3112 }
3113
3114 if (hdev->page_scan_type != type)
3115 err = __hci_cmd_sync_status(hdev,
3116 HCI_OP_WRITE_PAGE_SCAN_TYPE,
3117 sizeof(type), &type,
3118 HCI_CMD_TIMEOUT);
3119
3120 return err;
3121 }
3122
disconnected_accept_list_entries(struct hci_dev * hdev)3123 static bool disconnected_accept_list_entries(struct hci_dev *hdev)
3124 {
3125 struct bdaddr_list *b;
3126
3127 list_for_each_entry(b, &hdev->accept_list, list) {
3128 struct hci_conn *conn;
3129
3130 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
3131 if (!conn)
3132 return true;
3133
3134 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3135 return true;
3136 }
3137
3138 return false;
3139 }
3140
hci_write_scan_enable_sync(struct hci_dev * hdev,u8 val)3141 static int hci_write_scan_enable_sync(struct hci_dev *hdev, u8 val)
3142 {
3143 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE,
3144 sizeof(val), &val,
3145 HCI_CMD_TIMEOUT);
3146 }
3147
hci_update_scan_sync(struct hci_dev * hdev)3148 int hci_update_scan_sync(struct hci_dev *hdev)
3149 {
3150 u8 scan;
3151
3152 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
3153 return 0;
3154
3155 if (!hdev_is_powered(hdev))
3156 return 0;
3157
3158 if (mgmt_powering_down(hdev))
3159 return 0;
3160
3161 if (hdev->scanning_paused)
3162 return 0;
3163
3164 if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
3165 disconnected_accept_list_entries(hdev))
3166 scan = SCAN_PAGE;
3167 else
3168 scan = SCAN_DISABLED;
3169
3170 if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
3171 scan |= SCAN_INQUIRY;
3172
3173 if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
3174 test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
3175 return 0;
3176
3177 return hci_write_scan_enable_sync(hdev, scan);
3178 }
3179
hci_update_name_sync(struct hci_dev * hdev)3180 int hci_update_name_sync(struct hci_dev *hdev)
3181 {
3182 struct hci_cp_write_local_name cp;
3183
3184 memset(&cp, 0, sizeof(cp));
3185
3186 memcpy(cp.name, hdev->dev_name, sizeof(cp.name));
3187
3188 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LOCAL_NAME,
3189 sizeof(cp), &cp,
3190 HCI_CMD_TIMEOUT);
3191 }
3192
3193 /* This function perform powered update HCI command sequence after the HCI init
3194 * sequence which end up resetting all states, the sequence is as follows:
3195 *
3196 * HCI_SSP_ENABLED(Enable SSP)
3197 * HCI_LE_ENABLED(Enable LE)
3198 * HCI_LE_ENABLED(use_ll_privacy(Add local IRK to Resolving List) ->
3199 * Update adv data)
3200 * Enable Authentication
3201 * lmp_bredr_capable(Set Fast Connectable -> Set Scan Type -> Set Class ->
3202 * Set Name -> Set EIR)
3203 * HCI_FORCE_STATIC_ADDR | BDADDR_ANY && !HCI_BREDR_ENABLED (Set Static Address)
3204 */
hci_powered_update_sync(struct hci_dev * hdev)3205 int hci_powered_update_sync(struct hci_dev *hdev)
3206 {
3207 int err;
3208
3209 /* Register the available SMP channels (BR/EDR and LE) only when
3210 * successfully powering on the controller. This late
3211 * registration is required so that LE SMP can clearly decide if
3212 * the public address or static address is used.
3213 */
3214 smp_register(hdev);
3215
3216 err = hci_write_ssp_mode_sync(hdev, 0x01);
3217 if (err)
3218 return err;
3219
3220 err = hci_write_le_host_supported_sync(hdev, 0x01, 0x00);
3221 if (err)
3222 return err;
3223
3224 err = hci_powered_update_adv_sync(hdev);
3225 if (err)
3226 return err;
3227
3228 err = hci_write_auth_enable_sync(hdev);
3229 if (err)
3230 return err;
3231
3232 if (lmp_bredr_capable(hdev)) {
3233 if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
3234 hci_write_fast_connectable_sync(hdev, true);
3235 else
3236 hci_write_fast_connectable_sync(hdev, false);
3237 hci_update_scan_sync(hdev);
3238 hci_update_class_sync(hdev);
3239 hci_update_name_sync(hdev);
3240 hci_update_eir_sync(hdev);
3241 }
3242
3243 /* If forcing static address is in use or there is no public
3244 * address use the static address as random address (but skip
3245 * the HCI command if the current random address is already the
3246 * static one.
3247 *
3248 * In case BR/EDR has been disabled on a dual-mode controller
3249 * and a static address has been configured, then use that
3250 * address instead of the public BR/EDR address.
3251 */
3252 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
3253 (!bacmp(&hdev->bdaddr, BDADDR_ANY) &&
3254 !hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))) {
3255 if (bacmp(&hdev->static_addr, BDADDR_ANY))
3256 return hci_set_random_addr_sync(hdev,
3257 &hdev->static_addr);
3258 }
3259
3260 return 0;
3261 }
3262
3263 /**
3264 * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address
3265 * (BD_ADDR) for a HCI device from
3266 * a firmware node property.
3267 * @hdev: The HCI device
3268 *
3269 * Search the firmware node for 'local-bd-address'.
3270 *
3271 * All-zero BD addresses are rejected, because those could be properties
3272 * that exist in the firmware tables, but were not updated by the firmware. For
3273 * example, the DTS could define 'local-bd-address', with zero BD addresses.
3274 */
hci_dev_get_bd_addr_from_property(struct hci_dev * hdev)3275 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev)
3276 {
3277 struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent);
3278 bdaddr_t ba;
3279 int ret;
3280
3281 ret = fwnode_property_read_u8_array(fwnode, "local-bd-address",
3282 (u8 *)&ba, sizeof(ba));
3283 if (ret < 0 || !bacmp(&ba, BDADDR_ANY))
3284 return;
3285
3286 bacpy(&hdev->public_addr, &ba);
3287 }
3288
3289 struct hci_init_stage {
3290 int (*func)(struct hci_dev *hdev);
3291 };
3292
3293 /* Run init stage NULL terminated function table */
hci_init_stage_sync(struct hci_dev * hdev,const struct hci_init_stage * stage)3294 static int hci_init_stage_sync(struct hci_dev *hdev,
3295 const struct hci_init_stage *stage)
3296 {
3297 size_t i;
3298
3299 for (i = 0; stage[i].func; i++) {
3300 int err;
3301
3302 err = stage[i].func(hdev);
3303 if (err)
3304 return err;
3305 }
3306
3307 return 0;
3308 }
3309
3310 /* Read Local Version */
hci_read_local_version_sync(struct hci_dev * hdev)3311 static int hci_read_local_version_sync(struct hci_dev *hdev)
3312 {
3313 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_VERSION,
3314 0, NULL, HCI_CMD_TIMEOUT);
3315 }
3316
3317 /* Read BD Address */
hci_read_bd_addr_sync(struct hci_dev * hdev)3318 static int hci_read_bd_addr_sync(struct hci_dev *hdev)
3319 {
3320 return __hci_cmd_sync_status(hdev, HCI_OP_READ_BD_ADDR,
3321 0, NULL, HCI_CMD_TIMEOUT);
3322 }
3323
3324 #define HCI_INIT(_func) \
3325 { \
3326 .func = _func, \
3327 }
3328
3329 static const struct hci_init_stage hci_init0[] = {
3330 /* HCI_OP_READ_LOCAL_VERSION */
3331 HCI_INIT(hci_read_local_version_sync),
3332 /* HCI_OP_READ_BD_ADDR */
3333 HCI_INIT(hci_read_bd_addr_sync),
3334 {}
3335 };
3336
hci_reset_sync(struct hci_dev * hdev)3337 int hci_reset_sync(struct hci_dev *hdev)
3338 {
3339 int err;
3340
3341 set_bit(HCI_RESET, &hdev->flags);
3342
3343 err = __hci_cmd_sync_status(hdev, HCI_OP_RESET, 0, NULL,
3344 HCI_CMD_TIMEOUT);
3345 if (err)
3346 return err;
3347
3348 return 0;
3349 }
3350
hci_init0_sync(struct hci_dev * hdev)3351 static int hci_init0_sync(struct hci_dev *hdev)
3352 {
3353 int err;
3354
3355 bt_dev_dbg(hdev, "");
3356
3357 /* Reset */
3358 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
3359 err = hci_reset_sync(hdev);
3360 if (err)
3361 return err;
3362 }
3363
3364 return hci_init_stage_sync(hdev, hci_init0);
3365 }
3366
hci_unconf_init_sync(struct hci_dev * hdev)3367 static int hci_unconf_init_sync(struct hci_dev *hdev)
3368 {
3369 int err;
3370
3371 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3372 return 0;
3373
3374 err = hci_init0_sync(hdev);
3375 if (err < 0)
3376 return err;
3377
3378 if (hci_dev_test_flag(hdev, HCI_SETUP))
3379 hci_debugfs_create_basic(hdev);
3380
3381 return 0;
3382 }
3383
3384 /* Read Local Supported Features. */
hci_read_local_features_sync(struct hci_dev * hdev)3385 static int hci_read_local_features_sync(struct hci_dev *hdev)
3386 {
3387 /* Not all AMP controllers support this command */
3388 if (hdev->dev_type == HCI_AMP && !(hdev->commands[14] & 0x20))
3389 return 0;
3390
3391 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_FEATURES,
3392 0, NULL, HCI_CMD_TIMEOUT);
3393 }
3394
3395 /* BR Controller init stage 1 command sequence */
3396 static const struct hci_init_stage br_init1[] = {
3397 /* HCI_OP_READ_LOCAL_FEATURES */
3398 HCI_INIT(hci_read_local_features_sync),
3399 /* HCI_OP_READ_LOCAL_VERSION */
3400 HCI_INIT(hci_read_local_version_sync),
3401 /* HCI_OP_READ_BD_ADDR */
3402 HCI_INIT(hci_read_bd_addr_sync),
3403 {}
3404 };
3405
3406 /* Read Local Commands */
hci_read_local_cmds_sync(struct hci_dev * hdev)3407 static int hci_read_local_cmds_sync(struct hci_dev *hdev)
3408 {
3409 /* All Bluetooth 1.2 and later controllers should support the
3410 * HCI command for reading the local supported commands.
3411 *
3412 * Unfortunately some controllers indicate Bluetooth 1.2 support,
3413 * but do not have support for this command. If that is the case,
3414 * the driver can quirk the behavior and skip reading the local
3415 * supported commands.
3416 */
3417 if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
3418 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
3419 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_COMMANDS,
3420 0, NULL, HCI_CMD_TIMEOUT);
3421
3422 return 0;
3423 }
3424
3425 /* Read Local AMP Info */
hci_read_local_amp_info_sync(struct hci_dev * hdev)3426 static int hci_read_local_amp_info_sync(struct hci_dev *hdev)
3427 {
3428 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_AMP_INFO,
3429 0, NULL, HCI_CMD_TIMEOUT);
3430 }
3431
3432 /* Read Data Blk size */
hci_read_data_block_size_sync(struct hci_dev * hdev)3433 static int hci_read_data_block_size_sync(struct hci_dev *hdev)
3434 {
3435 return __hci_cmd_sync_status(hdev, HCI_OP_READ_DATA_BLOCK_SIZE,
3436 0, NULL, HCI_CMD_TIMEOUT);
3437 }
3438
3439 /* Read Flow Control Mode */
hci_read_flow_control_mode_sync(struct hci_dev * hdev)3440 static int hci_read_flow_control_mode_sync(struct hci_dev *hdev)
3441 {
3442 return __hci_cmd_sync_status(hdev, HCI_OP_READ_FLOW_CONTROL_MODE,
3443 0, NULL, HCI_CMD_TIMEOUT);
3444 }
3445
3446 /* Read Location Data */
hci_read_location_data_sync(struct hci_dev * hdev)3447 static int hci_read_location_data_sync(struct hci_dev *hdev)
3448 {
3449 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCATION_DATA,
3450 0, NULL, HCI_CMD_TIMEOUT);
3451 }
3452
3453 /* AMP Controller init stage 1 command sequence */
3454 static const struct hci_init_stage amp_init1[] = {
3455 /* HCI_OP_READ_LOCAL_VERSION */
3456 HCI_INIT(hci_read_local_version_sync),
3457 /* HCI_OP_READ_LOCAL_COMMANDS */
3458 HCI_INIT(hci_read_local_cmds_sync),
3459 /* HCI_OP_READ_LOCAL_AMP_INFO */
3460 HCI_INIT(hci_read_local_amp_info_sync),
3461 /* HCI_OP_READ_DATA_BLOCK_SIZE */
3462 HCI_INIT(hci_read_data_block_size_sync),
3463 /* HCI_OP_READ_FLOW_CONTROL_MODE */
3464 HCI_INIT(hci_read_flow_control_mode_sync),
3465 /* HCI_OP_READ_LOCATION_DATA */
3466 HCI_INIT(hci_read_location_data_sync),
3467 {}
3468 };
3469
hci_init1_sync(struct hci_dev * hdev)3470 static int hci_init1_sync(struct hci_dev *hdev)
3471 {
3472 int err;
3473
3474 bt_dev_dbg(hdev, "");
3475
3476 /* Reset */
3477 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
3478 err = hci_reset_sync(hdev);
3479 if (err)
3480 return err;
3481 }
3482
3483 switch (hdev->dev_type) {
3484 case HCI_PRIMARY:
3485 hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
3486 return hci_init_stage_sync(hdev, br_init1);
3487 case HCI_AMP:
3488 hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
3489 return hci_init_stage_sync(hdev, amp_init1);
3490 default:
3491 bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type);
3492 break;
3493 }
3494
3495 return 0;
3496 }
3497
3498 /* AMP Controller init stage 2 command sequence */
3499 static const struct hci_init_stage amp_init2[] = {
3500 /* HCI_OP_READ_LOCAL_FEATURES */
3501 HCI_INIT(hci_read_local_features_sync),
3502 {}
3503 };
3504
3505 /* Read Buffer Size (ACL mtu, max pkt, etc.) */
hci_read_buffer_size_sync(struct hci_dev * hdev)3506 static int hci_read_buffer_size_sync(struct hci_dev *hdev)
3507 {
3508 return __hci_cmd_sync_status(hdev, HCI_OP_READ_BUFFER_SIZE,
3509 0, NULL, HCI_CMD_TIMEOUT);
3510 }
3511
3512 /* Read Class of Device */
hci_read_dev_class_sync(struct hci_dev * hdev)3513 static int hci_read_dev_class_sync(struct hci_dev *hdev)
3514 {
3515 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLASS_OF_DEV,
3516 0, NULL, HCI_CMD_TIMEOUT);
3517 }
3518
3519 /* Read Local Name */
hci_read_local_name_sync(struct hci_dev * hdev)3520 static int hci_read_local_name_sync(struct hci_dev *hdev)
3521 {
3522 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_NAME,
3523 0, NULL, HCI_CMD_TIMEOUT);
3524 }
3525
3526 /* Read Voice Setting */
hci_read_voice_setting_sync(struct hci_dev * hdev)3527 static int hci_read_voice_setting_sync(struct hci_dev *hdev)
3528 {
3529 return __hci_cmd_sync_status(hdev, HCI_OP_READ_VOICE_SETTING,
3530 0, NULL, HCI_CMD_TIMEOUT);
3531 }
3532
3533 /* Read Number of Supported IAC */
hci_read_num_supported_iac_sync(struct hci_dev * hdev)3534 static int hci_read_num_supported_iac_sync(struct hci_dev *hdev)
3535 {
3536 return __hci_cmd_sync_status(hdev, HCI_OP_READ_NUM_SUPPORTED_IAC,
3537 0, NULL, HCI_CMD_TIMEOUT);
3538 }
3539
3540 /* Read Current IAC LAP */
hci_read_current_iac_lap_sync(struct hci_dev * hdev)3541 static int hci_read_current_iac_lap_sync(struct hci_dev *hdev)
3542 {
3543 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CURRENT_IAC_LAP,
3544 0, NULL, HCI_CMD_TIMEOUT);
3545 }
3546
hci_set_event_filter_sync(struct hci_dev * hdev,u8 flt_type,u8 cond_type,bdaddr_t * bdaddr,u8 auto_accept)3547 static int hci_set_event_filter_sync(struct hci_dev *hdev, u8 flt_type,
3548 u8 cond_type, bdaddr_t *bdaddr,
3549 u8 auto_accept)
3550 {
3551 struct hci_cp_set_event_filter cp;
3552
3553 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
3554 return 0;
3555
3556 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
3557 return 0;
3558
3559 memset(&cp, 0, sizeof(cp));
3560 cp.flt_type = flt_type;
3561
3562 if (flt_type != HCI_FLT_CLEAR_ALL) {
3563 cp.cond_type = cond_type;
3564 bacpy(&cp.addr_conn_flt.bdaddr, bdaddr);
3565 cp.addr_conn_flt.auto_accept = auto_accept;
3566 }
3567
3568 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_FLT,
3569 flt_type == HCI_FLT_CLEAR_ALL ?
3570 sizeof(cp.flt_type) : sizeof(cp), &cp,
3571 HCI_CMD_TIMEOUT);
3572 }
3573
hci_clear_event_filter_sync(struct hci_dev * hdev)3574 static int hci_clear_event_filter_sync(struct hci_dev *hdev)
3575 {
3576 if (!hci_dev_test_flag(hdev, HCI_EVENT_FILTER_CONFIGURED))
3577 return 0;
3578
3579 /* In theory the state machine should not reach here unless
3580 * a hci_set_event_filter_sync() call succeeds, but we do
3581 * the check both for parity and as a future reminder.
3582 */
3583 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
3584 return 0;
3585
3586 return hci_set_event_filter_sync(hdev, HCI_FLT_CLEAR_ALL, 0x00,
3587 BDADDR_ANY, 0x00);
3588 }
3589
3590 /* Connection accept timeout ~20 secs */
hci_write_ca_timeout_sync(struct hci_dev * hdev)3591 static int hci_write_ca_timeout_sync(struct hci_dev *hdev)
3592 {
3593 __le16 param = cpu_to_le16(0x7d00);
3594
3595 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CA_TIMEOUT,
3596 sizeof(param), ¶m, HCI_CMD_TIMEOUT);
3597 }
3598
3599 /* BR Controller init stage 2 command sequence */
3600 static const struct hci_init_stage br_init2[] = {
3601 /* HCI_OP_READ_BUFFER_SIZE */
3602 HCI_INIT(hci_read_buffer_size_sync),
3603 /* HCI_OP_READ_CLASS_OF_DEV */
3604 HCI_INIT(hci_read_dev_class_sync),
3605 /* HCI_OP_READ_LOCAL_NAME */
3606 HCI_INIT(hci_read_local_name_sync),
3607 /* HCI_OP_READ_VOICE_SETTING */
3608 HCI_INIT(hci_read_voice_setting_sync),
3609 /* HCI_OP_READ_NUM_SUPPORTED_IAC */
3610 HCI_INIT(hci_read_num_supported_iac_sync),
3611 /* HCI_OP_READ_CURRENT_IAC_LAP */
3612 HCI_INIT(hci_read_current_iac_lap_sync),
3613 /* HCI_OP_SET_EVENT_FLT */
3614 HCI_INIT(hci_clear_event_filter_sync),
3615 /* HCI_OP_WRITE_CA_TIMEOUT */
3616 HCI_INIT(hci_write_ca_timeout_sync),
3617 {}
3618 };
3619
hci_write_ssp_mode_1_sync(struct hci_dev * hdev)3620 static int hci_write_ssp_mode_1_sync(struct hci_dev *hdev)
3621 {
3622 u8 mode = 0x01;
3623
3624 if (!lmp_ssp_capable(hdev) || !hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
3625 return 0;
3626
3627 /* When SSP is available, then the host features page
3628 * should also be available as well. However some
3629 * controllers list the max_page as 0 as long as SSP
3630 * has not been enabled. To achieve proper debugging
3631 * output, force the minimum max_page to 1 at least.
3632 */
3633 hdev->max_page = 0x01;
3634
3635 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE,
3636 sizeof(mode), &mode, HCI_CMD_TIMEOUT);
3637 }
3638
hci_write_eir_sync(struct hci_dev * hdev)3639 static int hci_write_eir_sync(struct hci_dev *hdev)
3640 {
3641 struct hci_cp_write_eir cp;
3642
3643 if (!lmp_ssp_capable(hdev) || hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
3644 return 0;
3645
3646 memset(hdev->eir, 0, sizeof(hdev->eir));
3647 memset(&cp, 0, sizeof(cp));
3648
3649 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp,
3650 HCI_CMD_TIMEOUT);
3651 }
3652
hci_write_inquiry_mode_sync(struct hci_dev * hdev)3653 static int hci_write_inquiry_mode_sync(struct hci_dev *hdev)
3654 {
3655 u8 mode;
3656
3657 if (!lmp_inq_rssi_capable(hdev) &&
3658 !test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
3659 return 0;
3660
3661 /* If Extended Inquiry Result events are supported, then
3662 * they are clearly preferred over Inquiry Result with RSSI
3663 * events.
3664 */
3665 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
3666
3667 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_INQUIRY_MODE,
3668 sizeof(mode), &mode, HCI_CMD_TIMEOUT);
3669 }
3670
hci_read_inq_rsp_tx_power_sync(struct hci_dev * hdev)3671 static int hci_read_inq_rsp_tx_power_sync(struct hci_dev *hdev)
3672 {
3673 if (!lmp_inq_tx_pwr_capable(hdev))
3674 return 0;
3675
3676 return __hci_cmd_sync_status(hdev, HCI_OP_READ_INQ_RSP_TX_POWER,
3677 0, NULL, HCI_CMD_TIMEOUT);
3678 }
3679
hci_read_local_ext_features_sync(struct hci_dev * hdev,u8 page)3680 static int hci_read_local_ext_features_sync(struct hci_dev *hdev, u8 page)
3681 {
3682 struct hci_cp_read_local_ext_features cp;
3683
3684 if (!lmp_ext_feat_capable(hdev))
3685 return 0;
3686
3687 memset(&cp, 0, sizeof(cp));
3688 cp.page = page;
3689
3690 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_EXT_FEATURES,
3691 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3692 }
3693
hci_read_local_ext_features_1_sync(struct hci_dev * hdev)3694 static int hci_read_local_ext_features_1_sync(struct hci_dev *hdev)
3695 {
3696 return hci_read_local_ext_features_sync(hdev, 0x01);
3697 }
3698
3699 /* HCI Controller init stage 2 command sequence */
3700 static const struct hci_init_stage hci_init2[] = {
3701 /* HCI_OP_READ_LOCAL_COMMANDS */
3702 HCI_INIT(hci_read_local_cmds_sync),
3703 /* HCI_OP_WRITE_SSP_MODE */
3704 HCI_INIT(hci_write_ssp_mode_1_sync),
3705 /* HCI_OP_WRITE_EIR */
3706 HCI_INIT(hci_write_eir_sync),
3707 /* HCI_OP_WRITE_INQUIRY_MODE */
3708 HCI_INIT(hci_write_inquiry_mode_sync),
3709 /* HCI_OP_READ_INQ_RSP_TX_POWER */
3710 HCI_INIT(hci_read_inq_rsp_tx_power_sync),
3711 /* HCI_OP_READ_LOCAL_EXT_FEATURES */
3712 HCI_INIT(hci_read_local_ext_features_1_sync),
3713 /* HCI_OP_WRITE_AUTH_ENABLE */
3714 HCI_INIT(hci_write_auth_enable_sync),
3715 {}
3716 };
3717
3718 /* Read LE Buffer Size */
hci_le_read_buffer_size_sync(struct hci_dev * hdev)3719 static int hci_le_read_buffer_size_sync(struct hci_dev *hdev)
3720 {
3721 /* Use Read LE Buffer Size V2 if supported */
3722 if (iso_capable(hdev) && hdev->commands[41] & 0x20)
3723 return __hci_cmd_sync_status(hdev,
3724 HCI_OP_LE_READ_BUFFER_SIZE_V2,
3725 0, NULL, HCI_CMD_TIMEOUT);
3726
3727 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_BUFFER_SIZE,
3728 0, NULL, HCI_CMD_TIMEOUT);
3729 }
3730
3731 /* Read LE Local Supported Features */
hci_le_read_local_features_sync(struct hci_dev * hdev)3732 static int hci_le_read_local_features_sync(struct hci_dev *hdev)
3733 {
3734 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_LOCAL_FEATURES,
3735 0, NULL, HCI_CMD_TIMEOUT);
3736 }
3737
3738 /* Read LE Supported States */
hci_le_read_supported_states_sync(struct hci_dev * hdev)3739 static int hci_le_read_supported_states_sync(struct hci_dev *hdev)
3740 {
3741 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_SUPPORTED_STATES,
3742 0, NULL, HCI_CMD_TIMEOUT);
3743 }
3744
3745 /* LE Controller init stage 2 command sequence */
3746 static const struct hci_init_stage le_init2[] = {
3747 /* HCI_OP_LE_READ_LOCAL_FEATURES */
3748 HCI_INIT(hci_le_read_local_features_sync),
3749 /* HCI_OP_LE_READ_BUFFER_SIZE */
3750 HCI_INIT(hci_le_read_buffer_size_sync),
3751 /* HCI_OP_LE_READ_SUPPORTED_STATES */
3752 HCI_INIT(hci_le_read_supported_states_sync),
3753 {}
3754 };
3755
hci_init2_sync(struct hci_dev * hdev)3756 static int hci_init2_sync(struct hci_dev *hdev)
3757 {
3758 int err;
3759
3760 bt_dev_dbg(hdev, "");
3761
3762 if (hdev->dev_type == HCI_AMP)
3763 return hci_init_stage_sync(hdev, amp_init2);
3764
3765 err = hci_init_stage_sync(hdev, hci_init2);
3766 if (err)
3767 return err;
3768
3769 if (lmp_bredr_capable(hdev)) {
3770 err = hci_init_stage_sync(hdev, br_init2);
3771 if (err)
3772 return err;
3773 } else {
3774 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
3775 }
3776
3777 if (lmp_le_capable(hdev)) {
3778 err = hci_init_stage_sync(hdev, le_init2);
3779 if (err)
3780 return err;
3781 /* LE-only controllers have LE implicitly enabled */
3782 if (!lmp_bredr_capable(hdev))
3783 hci_dev_set_flag(hdev, HCI_LE_ENABLED);
3784 }
3785
3786 return 0;
3787 }
3788
hci_set_event_mask_sync(struct hci_dev * hdev)3789 static int hci_set_event_mask_sync(struct hci_dev *hdev)
3790 {
3791 /* The second byte is 0xff instead of 0x9f (two reserved bits
3792 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
3793 * command otherwise.
3794 */
3795 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
3796
3797 /* CSR 1.1 dongles does not accept any bitfield so don't try to set
3798 * any event mask for pre 1.2 devices.
3799 */
3800 if (hdev->hci_ver < BLUETOOTH_VER_1_2)
3801 return 0;
3802
3803 if (lmp_bredr_capable(hdev)) {
3804 events[4] |= 0x01; /* Flow Specification Complete */
3805
3806 /* Don't set Disconnect Complete and mode change when
3807 * suspended as that would wakeup the host when disconnecting
3808 * due to suspend.
3809 */
3810 if (hdev->suspended) {
3811 events[0] &= 0xef;
3812 events[2] &= 0xf7;
3813 }
3814 } else {
3815 /* Use a different default for LE-only devices */
3816 memset(events, 0, sizeof(events));
3817 events[1] |= 0x20; /* Command Complete */
3818 events[1] |= 0x40; /* Command Status */
3819 events[1] |= 0x80; /* Hardware Error */
3820
3821 /* If the controller supports the Disconnect command, enable
3822 * the corresponding event. In addition enable packet flow
3823 * control related events.
3824 */
3825 if (hdev->commands[0] & 0x20) {
3826 /* Don't set Disconnect Complete when suspended as that
3827 * would wakeup the host when disconnecting due to
3828 * suspend.
3829 */
3830 if (!hdev->suspended)
3831 events[0] |= 0x10; /* Disconnection Complete */
3832 events[2] |= 0x04; /* Number of Completed Packets */
3833 events[3] |= 0x02; /* Data Buffer Overflow */
3834 }
3835
3836 /* If the controller supports the Read Remote Version
3837 * Information command, enable the corresponding event.
3838 */
3839 if (hdev->commands[2] & 0x80)
3840 events[1] |= 0x08; /* Read Remote Version Information
3841 * Complete
3842 */
3843
3844 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
3845 events[0] |= 0x80; /* Encryption Change */
3846 events[5] |= 0x80; /* Encryption Key Refresh Complete */
3847 }
3848 }
3849
3850 if (lmp_inq_rssi_capable(hdev) ||
3851 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
3852 events[4] |= 0x02; /* Inquiry Result with RSSI */
3853
3854 if (lmp_ext_feat_capable(hdev))
3855 events[4] |= 0x04; /* Read Remote Extended Features Complete */
3856
3857 if (lmp_esco_capable(hdev)) {
3858 events[5] |= 0x08; /* Synchronous Connection Complete */
3859 events[5] |= 0x10; /* Synchronous Connection Changed */
3860 }
3861
3862 if (lmp_sniffsubr_capable(hdev))
3863 events[5] |= 0x20; /* Sniff Subrating */
3864
3865 if (lmp_pause_enc_capable(hdev))
3866 events[5] |= 0x80; /* Encryption Key Refresh Complete */
3867
3868 if (lmp_ext_inq_capable(hdev))
3869 events[5] |= 0x40; /* Extended Inquiry Result */
3870
3871 if (lmp_no_flush_capable(hdev))
3872 events[7] |= 0x01; /* Enhanced Flush Complete */
3873
3874 if (lmp_lsto_capable(hdev))
3875 events[6] |= 0x80; /* Link Supervision Timeout Changed */
3876
3877 if (lmp_ssp_capable(hdev)) {
3878 events[6] |= 0x01; /* IO Capability Request */
3879 events[6] |= 0x02; /* IO Capability Response */
3880 events[6] |= 0x04; /* User Confirmation Request */
3881 events[6] |= 0x08; /* User Passkey Request */
3882 events[6] |= 0x10; /* Remote OOB Data Request */
3883 events[6] |= 0x20; /* Simple Pairing Complete */
3884 events[7] |= 0x04; /* User Passkey Notification */
3885 events[7] |= 0x08; /* Keypress Notification */
3886 events[7] |= 0x10; /* Remote Host Supported
3887 * Features Notification
3888 */
3889 }
3890
3891 if (lmp_le_capable(hdev))
3892 events[7] |= 0x20; /* LE Meta-Event */
3893
3894 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK,
3895 sizeof(events), events, HCI_CMD_TIMEOUT);
3896 }
3897
hci_read_stored_link_key_sync(struct hci_dev * hdev)3898 static int hci_read_stored_link_key_sync(struct hci_dev *hdev)
3899 {
3900 struct hci_cp_read_stored_link_key cp;
3901
3902 if (!(hdev->commands[6] & 0x20) ||
3903 test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks))
3904 return 0;
3905
3906 memset(&cp, 0, sizeof(cp));
3907 bacpy(&cp.bdaddr, BDADDR_ANY);
3908 cp.read_all = 0x01;
3909
3910 return __hci_cmd_sync_status(hdev, HCI_OP_READ_STORED_LINK_KEY,
3911 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3912 }
3913
hci_setup_link_policy_sync(struct hci_dev * hdev)3914 static int hci_setup_link_policy_sync(struct hci_dev *hdev)
3915 {
3916 struct hci_cp_write_def_link_policy cp;
3917 u16 link_policy = 0;
3918
3919 if (!(hdev->commands[5] & 0x10))
3920 return 0;
3921
3922 memset(&cp, 0, sizeof(cp));
3923
3924 if (lmp_rswitch_capable(hdev))
3925 link_policy |= HCI_LP_RSWITCH;
3926 if (lmp_hold_capable(hdev))
3927 link_policy |= HCI_LP_HOLD;
3928 if (lmp_sniff_capable(hdev))
3929 link_policy |= HCI_LP_SNIFF;
3930 if (lmp_park_capable(hdev))
3931 link_policy |= HCI_LP_PARK;
3932
3933 cp.policy = cpu_to_le16(link_policy);
3934
3935 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY,
3936 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3937 }
3938
hci_read_page_scan_activity_sync(struct hci_dev * hdev)3939 static int hci_read_page_scan_activity_sync(struct hci_dev *hdev)
3940 {
3941 if (!(hdev->commands[8] & 0x01))
3942 return 0;
3943
3944 return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_ACTIVITY,
3945 0, NULL, HCI_CMD_TIMEOUT);
3946 }
3947
hci_read_def_err_data_reporting_sync(struct hci_dev * hdev)3948 static int hci_read_def_err_data_reporting_sync(struct hci_dev *hdev)
3949 {
3950 if (!(hdev->commands[18] & 0x04) ||
3951 !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) ||
3952 test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks))
3953 return 0;
3954
3955 return __hci_cmd_sync_status(hdev, HCI_OP_READ_DEF_ERR_DATA_REPORTING,
3956 0, NULL, HCI_CMD_TIMEOUT);
3957 }
3958
hci_read_page_scan_type_sync(struct hci_dev * hdev)3959 static int hci_read_page_scan_type_sync(struct hci_dev *hdev)
3960 {
3961 /* Some older Broadcom based Bluetooth 1.2 controllers do not
3962 * support the Read Page Scan Type command. Check support for
3963 * this command in the bit mask of supported commands.
3964 */
3965 if (!(hdev->commands[13] & 0x01))
3966 return 0;
3967
3968 return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_TYPE,
3969 0, NULL, HCI_CMD_TIMEOUT);
3970 }
3971
3972 /* Read features beyond page 1 if available */
hci_read_local_ext_features_all_sync(struct hci_dev * hdev)3973 static int hci_read_local_ext_features_all_sync(struct hci_dev *hdev)
3974 {
3975 u8 page;
3976 int err;
3977
3978 if (!lmp_ext_feat_capable(hdev))
3979 return 0;
3980
3981 for (page = 2; page < HCI_MAX_PAGES && page <= hdev->max_page;
3982 page++) {
3983 err = hci_read_local_ext_features_sync(hdev, page);
3984 if (err)
3985 return err;
3986 }
3987
3988 return 0;
3989 }
3990
3991 /* HCI Controller init stage 3 command sequence */
3992 static const struct hci_init_stage hci_init3[] = {
3993 /* HCI_OP_SET_EVENT_MASK */
3994 HCI_INIT(hci_set_event_mask_sync),
3995 /* HCI_OP_READ_STORED_LINK_KEY */
3996 HCI_INIT(hci_read_stored_link_key_sync),
3997 /* HCI_OP_WRITE_DEF_LINK_POLICY */
3998 HCI_INIT(hci_setup_link_policy_sync),
3999 /* HCI_OP_READ_PAGE_SCAN_ACTIVITY */
4000 HCI_INIT(hci_read_page_scan_activity_sync),
4001 /* HCI_OP_READ_DEF_ERR_DATA_REPORTING */
4002 HCI_INIT(hci_read_def_err_data_reporting_sync),
4003 /* HCI_OP_READ_PAGE_SCAN_TYPE */
4004 HCI_INIT(hci_read_page_scan_type_sync),
4005 /* HCI_OP_READ_LOCAL_EXT_FEATURES */
4006 HCI_INIT(hci_read_local_ext_features_all_sync),
4007 {}
4008 };
4009
hci_le_set_event_mask_sync(struct hci_dev * hdev)4010 static int hci_le_set_event_mask_sync(struct hci_dev *hdev)
4011 {
4012 u8 events[8];
4013
4014 if (!lmp_le_capable(hdev))
4015 return 0;
4016
4017 memset(events, 0, sizeof(events));
4018
4019 if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
4020 events[0] |= 0x10; /* LE Long Term Key Request */
4021
4022 /* If controller supports the Connection Parameters Request
4023 * Link Layer Procedure, enable the corresponding event.
4024 */
4025 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
4026 /* LE Remote Connection Parameter Request */
4027 events[0] |= 0x20;
4028
4029 /* If the controller supports the Data Length Extension
4030 * feature, enable the corresponding event.
4031 */
4032 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
4033 events[0] |= 0x40; /* LE Data Length Change */
4034
4035 /* If the controller supports LL Privacy feature or LE Extended Adv,
4036 * enable the corresponding event.
4037 */
4038 if (use_enhanced_conn_complete(hdev))
4039 events[1] |= 0x02; /* LE Enhanced Connection Complete */
4040
4041 /* If the controller supports Extended Scanner Filter
4042 * Policies, enable the corresponding event.
4043 */
4044 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
4045 events[1] |= 0x04; /* LE Direct Advertising Report */
4046
4047 /* If the controller supports Channel Selection Algorithm #2
4048 * feature, enable the corresponding event.
4049 */
4050 if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
4051 events[2] |= 0x08; /* LE Channel Selection Algorithm */
4052
4053 /* If the controller supports the LE Set Scan Enable command,
4054 * enable the corresponding advertising report event.
4055 */
4056 if (hdev->commands[26] & 0x08)
4057 events[0] |= 0x02; /* LE Advertising Report */
4058
4059 /* If the controller supports the LE Create Connection
4060 * command, enable the corresponding event.
4061 */
4062 if (hdev->commands[26] & 0x10)
4063 events[0] |= 0x01; /* LE Connection Complete */
4064
4065 /* If the controller supports the LE Connection Update
4066 * command, enable the corresponding event.
4067 */
4068 if (hdev->commands[27] & 0x04)
4069 events[0] |= 0x04; /* LE Connection Update Complete */
4070
4071 /* If the controller supports the LE Read Remote Used Features
4072 * command, enable the corresponding event.
4073 */
4074 if (hdev->commands[27] & 0x20)
4075 /* LE Read Remote Used Features Complete */
4076 events[0] |= 0x08;
4077
4078 /* If the controller supports the LE Read Local P-256
4079 * Public Key command, enable the corresponding event.
4080 */
4081 if (hdev->commands[34] & 0x02)
4082 /* LE Read Local P-256 Public Key Complete */
4083 events[0] |= 0x80;
4084
4085 /* If the controller supports the LE Generate DHKey
4086 * command, enable the corresponding event.
4087 */
4088 if (hdev->commands[34] & 0x04)
4089 events[1] |= 0x01; /* LE Generate DHKey Complete */
4090
4091 /* If the controller supports the LE Set Default PHY or
4092 * LE Set PHY commands, enable the corresponding event.
4093 */
4094 if (hdev->commands[35] & (0x20 | 0x40))
4095 events[1] |= 0x08; /* LE PHY Update Complete */
4096
4097 /* If the controller supports LE Set Extended Scan Parameters
4098 * and LE Set Extended Scan Enable commands, enable the
4099 * corresponding event.
4100 */
4101 if (use_ext_scan(hdev))
4102 events[1] |= 0x10; /* LE Extended Advertising Report */
4103
4104 /* If the controller supports the LE Extended Advertising
4105 * command, enable the corresponding event.
4106 */
4107 if (ext_adv_capable(hdev))
4108 events[2] |= 0x02; /* LE Advertising Set Terminated */
4109
4110 if (cis_capable(hdev)) {
4111 events[3] |= 0x01; /* LE CIS Established */
4112 if (cis_peripheral_capable(hdev))
4113 events[3] |= 0x02; /* LE CIS Request */
4114 }
4115
4116 if (bis_capable(hdev)) {
4117 events[1] |= 0x20; /* LE PA Report */
4118 events[1] |= 0x40; /* LE PA Sync Established */
4119 events[3] |= 0x04; /* LE Create BIG Complete */
4120 events[3] |= 0x08; /* LE Terminate BIG Complete */
4121 events[3] |= 0x10; /* LE BIG Sync Established */
4122 events[3] |= 0x20; /* LE BIG Sync Loss */
4123 events[4] |= 0x02; /* LE BIG Info Advertising Report */
4124 }
4125
4126 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EVENT_MASK,
4127 sizeof(events), events, HCI_CMD_TIMEOUT);
4128 }
4129
4130 /* Read LE Advertising Channel TX Power */
hci_le_read_adv_tx_power_sync(struct hci_dev * hdev)4131 static int hci_le_read_adv_tx_power_sync(struct hci_dev *hdev)
4132 {
4133 if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) {
4134 /* HCI TS spec forbids mixing of legacy and extended
4135 * advertising commands wherein READ_ADV_TX_POWER is
4136 * also included. So do not call it if extended adv
4137 * is supported otherwise controller will return
4138 * COMMAND_DISALLOWED for extended commands.
4139 */
4140 return __hci_cmd_sync_status(hdev,
4141 HCI_OP_LE_READ_ADV_TX_POWER,
4142 0, NULL, HCI_CMD_TIMEOUT);
4143 }
4144
4145 return 0;
4146 }
4147
4148 /* Read LE Min/Max Tx Power*/
hci_le_read_tx_power_sync(struct hci_dev * hdev)4149 static int hci_le_read_tx_power_sync(struct hci_dev *hdev)
4150 {
4151 if (!(hdev->commands[38] & 0x80) ||
4152 test_bit(HCI_QUIRK_BROKEN_READ_TRANSMIT_POWER, &hdev->quirks))
4153 return 0;
4154
4155 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_TRANSMIT_POWER,
4156 0, NULL, HCI_CMD_TIMEOUT);
4157 }
4158
4159 /* Read LE Accept List Size */
hci_le_read_accept_list_size_sync(struct hci_dev * hdev)4160 static int hci_le_read_accept_list_size_sync(struct hci_dev *hdev)
4161 {
4162 if (!(hdev->commands[26] & 0x40))
4163 return 0;
4164
4165 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_ACCEPT_LIST_SIZE,
4166 0, NULL, HCI_CMD_TIMEOUT);
4167 }
4168
4169 /* Clear LE Accept List */
hci_le_clear_accept_list_sync(struct hci_dev * hdev)4170 static int hci_le_clear_accept_list_sync(struct hci_dev *hdev)
4171 {
4172 if (!(hdev->commands[26] & 0x80))
4173 return 0;
4174
4175 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL,
4176 HCI_CMD_TIMEOUT);
4177 }
4178
4179 /* Read LE Resolving List Size */
hci_le_read_resolv_list_size_sync(struct hci_dev * hdev)4180 static int hci_le_read_resolv_list_size_sync(struct hci_dev *hdev)
4181 {
4182 if (!(hdev->commands[34] & 0x40))
4183 return 0;
4184
4185 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_RESOLV_LIST_SIZE,
4186 0, NULL, HCI_CMD_TIMEOUT);
4187 }
4188
4189 /* Clear LE Resolving List */
hci_le_clear_resolv_list_sync(struct hci_dev * hdev)4190 static int hci_le_clear_resolv_list_sync(struct hci_dev *hdev)
4191 {
4192 if (!(hdev->commands[34] & 0x20))
4193 return 0;
4194
4195 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL,
4196 HCI_CMD_TIMEOUT);
4197 }
4198
4199 /* Set RPA timeout */
hci_le_set_rpa_timeout_sync(struct hci_dev * hdev)4200 static int hci_le_set_rpa_timeout_sync(struct hci_dev *hdev)
4201 {
4202 __le16 timeout = cpu_to_le16(hdev->rpa_timeout);
4203
4204 if (!(hdev->commands[35] & 0x04) ||
4205 test_bit(HCI_QUIRK_BROKEN_SET_RPA_TIMEOUT, &hdev->quirks))
4206 return 0;
4207
4208 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RPA_TIMEOUT,
4209 sizeof(timeout), &timeout,
4210 HCI_CMD_TIMEOUT);
4211 }
4212
4213 /* Read LE Maximum Data Length */
hci_le_read_max_data_len_sync(struct hci_dev * hdev)4214 static int hci_le_read_max_data_len_sync(struct hci_dev *hdev)
4215 {
4216 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
4217 return 0;
4218
4219 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL,
4220 HCI_CMD_TIMEOUT);
4221 }
4222
4223 /* Read LE Suggested Default Data Length */
hci_le_read_def_data_len_sync(struct hci_dev * hdev)4224 static int hci_le_read_def_data_len_sync(struct hci_dev *hdev)
4225 {
4226 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
4227 return 0;
4228
4229 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL,
4230 HCI_CMD_TIMEOUT);
4231 }
4232
4233 /* Read LE Number of Supported Advertising Sets */
hci_le_read_num_support_adv_sets_sync(struct hci_dev * hdev)4234 static int hci_le_read_num_support_adv_sets_sync(struct hci_dev *hdev)
4235 {
4236 if (!ext_adv_capable(hdev))
4237 return 0;
4238
4239 return __hci_cmd_sync_status(hdev,
4240 HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS,
4241 0, NULL, HCI_CMD_TIMEOUT);
4242 }
4243
4244 /* Write LE Host Supported */
hci_set_le_support_sync(struct hci_dev * hdev)4245 static int hci_set_le_support_sync(struct hci_dev *hdev)
4246 {
4247 struct hci_cp_write_le_host_supported cp;
4248
4249 /* LE-only devices do not support explicit enablement */
4250 if (!lmp_bredr_capable(hdev))
4251 return 0;
4252
4253 memset(&cp, 0, sizeof(cp));
4254
4255 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
4256 cp.le = 0x01;
4257 cp.simul = 0x00;
4258 }
4259
4260 if (cp.le == lmp_host_le_capable(hdev))
4261 return 0;
4262
4263 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED,
4264 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4265 }
4266
4267 /* LE Set Host Feature */
hci_le_set_host_feature_sync(struct hci_dev * hdev)4268 static int hci_le_set_host_feature_sync(struct hci_dev *hdev)
4269 {
4270 struct hci_cp_le_set_host_feature cp;
4271
4272 if (!iso_capable(hdev))
4273 return 0;
4274
4275 memset(&cp, 0, sizeof(cp));
4276
4277 /* Isochronous Channels (Host Support) */
4278 cp.bit_number = 32;
4279 cp.bit_value = 1;
4280
4281 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_HOST_FEATURE,
4282 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4283 }
4284
4285 /* LE Controller init stage 3 command sequence */
4286 static const struct hci_init_stage le_init3[] = {
4287 /* HCI_OP_LE_SET_EVENT_MASK */
4288 HCI_INIT(hci_le_set_event_mask_sync),
4289 /* HCI_OP_LE_READ_ADV_TX_POWER */
4290 HCI_INIT(hci_le_read_adv_tx_power_sync),
4291 /* HCI_OP_LE_READ_TRANSMIT_POWER */
4292 HCI_INIT(hci_le_read_tx_power_sync),
4293 /* HCI_OP_LE_READ_ACCEPT_LIST_SIZE */
4294 HCI_INIT(hci_le_read_accept_list_size_sync),
4295 /* HCI_OP_LE_CLEAR_ACCEPT_LIST */
4296 HCI_INIT(hci_le_clear_accept_list_sync),
4297 /* HCI_OP_LE_READ_RESOLV_LIST_SIZE */
4298 HCI_INIT(hci_le_read_resolv_list_size_sync),
4299 /* HCI_OP_LE_CLEAR_RESOLV_LIST */
4300 HCI_INIT(hci_le_clear_resolv_list_sync),
4301 /* HCI_OP_LE_SET_RPA_TIMEOUT */
4302 HCI_INIT(hci_le_set_rpa_timeout_sync),
4303 /* HCI_OP_LE_READ_MAX_DATA_LEN */
4304 HCI_INIT(hci_le_read_max_data_len_sync),
4305 /* HCI_OP_LE_READ_DEF_DATA_LEN */
4306 HCI_INIT(hci_le_read_def_data_len_sync),
4307 /* HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS */
4308 HCI_INIT(hci_le_read_num_support_adv_sets_sync),
4309 /* HCI_OP_WRITE_LE_HOST_SUPPORTED */
4310 HCI_INIT(hci_set_le_support_sync),
4311 /* HCI_OP_LE_SET_HOST_FEATURE */
4312 HCI_INIT(hci_le_set_host_feature_sync),
4313 {}
4314 };
4315
hci_init3_sync(struct hci_dev * hdev)4316 static int hci_init3_sync(struct hci_dev *hdev)
4317 {
4318 int err;
4319
4320 bt_dev_dbg(hdev, "");
4321
4322 err = hci_init_stage_sync(hdev, hci_init3);
4323 if (err)
4324 return err;
4325
4326 if (lmp_le_capable(hdev))
4327 return hci_init_stage_sync(hdev, le_init3);
4328
4329 return 0;
4330 }
4331
hci_delete_stored_link_key_sync(struct hci_dev * hdev)4332 static int hci_delete_stored_link_key_sync(struct hci_dev *hdev)
4333 {
4334 struct hci_cp_delete_stored_link_key cp;
4335
4336 /* Some Broadcom based Bluetooth controllers do not support the
4337 * Delete Stored Link Key command. They are clearly indicating its
4338 * absence in the bit mask of supported commands.
4339 *
4340 * Check the supported commands and only if the command is marked
4341 * as supported send it. If not supported assume that the controller
4342 * does not have actual support for stored link keys which makes this
4343 * command redundant anyway.
4344 *
4345 * Some controllers indicate that they support handling deleting
4346 * stored link keys, but they don't. The quirk lets a driver
4347 * just disable this command.
4348 */
4349 if (!(hdev->commands[6] & 0x80) ||
4350 test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks))
4351 return 0;
4352
4353 memset(&cp, 0, sizeof(cp));
4354 bacpy(&cp.bdaddr, BDADDR_ANY);
4355 cp.delete_all = 0x01;
4356
4357 return __hci_cmd_sync_status(hdev, HCI_OP_DELETE_STORED_LINK_KEY,
4358 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4359 }
4360
hci_set_event_mask_page_2_sync(struct hci_dev * hdev)4361 static int hci_set_event_mask_page_2_sync(struct hci_dev *hdev)
4362 {
4363 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
4364 bool changed = false;
4365
4366 /* Set event mask page 2 if the HCI command for it is supported */
4367 if (!(hdev->commands[22] & 0x04))
4368 return 0;
4369
4370 /* If Connectionless Peripheral Broadcast central role is supported
4371 * enable all necessary events for it.
4372 */
4373 if (lmp_cpb_central_capable(hdev)) {
4374 events[1] |= 0x40; /* Triggered Clock Capture */
4375 events[1] |= 0x80; /* Synchronization Train Complete */
4376 events[2] |= 0x08; /* Truncated Page Complete */
4377 events[2] |= 0x20; /* CPB Channel Map Change */
4378 changed = true;
4379 }
4380
4381 /* If Connectionless Peripheral Broadcast peripheral role is supported
4382 * enable all necessary events for it.
4383 */
4384 if (lmp_cpb_peripheral_capable(hdev)) {
4385 events[2] |= 0x01; /* Synchronization Train Received */
4386 events[2] |= 0x02; /* CPB Receive */
4387 events[2] |= 0x04; /* CPB Timeout */
4388 events[2] |= 0x10; /* Peripheral Page Response Timeout */
4389 changed = true;
4390 }
4391
4392 /* Enable Authenticated Payload Timeout Expired event if supported */
4393 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
4394 events[2] |= 0x80;
4395 changed = true;
4396 }
4397
4398 /* Some Broadcom based controllers indicate support for Set Event
4399 * Mask Page 2 command, but then actually do not support it. Since
4400 * the default value is all bits set to zero, the command is only
4401 * required if the event mask has to be changed. In case no change
4402 * to the event mask is needed, skip this command.
4403 */
4404 if (!changed)
4405 return 0;
4406
4407 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK_PAGE_2,
4408 sizeof(events), events, HCI_CMD_TIMEOUT);
4409 }
4410
4411 /* Read local codec list if the HCI command is supported */
hci_read_local_codecs_sync(struct hci_dev * hdev)4412 static int hci_read_local_codecs_sync(struct hci_dev *hdev)
4413 {
4414 if (hdev->commands[45] & 0x04)
4415 hci_read_supported_codecs_v2(hdev);
4416 else if (hdev->commands[29] & 0x20)
4417 hci_read_supported_codecs(hdev);
4418
4419 return 0;
4420 }
4421
4422 /* Read local pairing options if the HCI command is supported */
hci_read_local_pairing_opts_sync(struct hci_dev * hdev)4423 static int hci_read_local_pairing_opts_sync(struct hci_dev *hdev)
4424 {
4425 if (!(hdev->commands[41] & 0x08))
4426 return 0;
4427
4428 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_PAIRING_OPTS,
4429 0, NULL, HCI_CMD_TIMEOUT);
4430 }
4431
4432 /* Get MWS transport configuration if the HCI command is supported */
hci_get_mws_transport_config_sync(struct hci_dev * hdev)4433 static int hci_get_mws_transport_config_sync(struct hci_dev *hdev)
4434 {
4435 if (!mws_transport_config_capable(hdev))
4436 return 0;
4437
4438 return __hci_cmd_sync_status(hdev, HCI_OP_GET_MWS_TRANSPORT_CONFIG,
4439 0, NULL, HCI_CMD_TIMEOUT);
4440 }
4441
4442 /* Check for Synchronization Train support */
hci_read_sync_train_params_sync(struct hci_dev * hdev)4443 static int hci_read_sync_train_params_sync(struct hci_dev *hdev)
4444 {
4445 if (!lmp_sync_train_capable(hdev))
4446 return 0;
4447
4448 return __hci_cmd_sync_status(hdev, HCI_OP_READ_SYNC_TRAIN_PARAMS,
4449 0, NULL, HCI_CMD_TIMEOUT);
4450 }
4451
4452 /* Enable Secure Connections if supported and configured */
hci_write_sc_support_1_sync(struct hci_dev * hdev)4453 static int hci_write_sc_support_1_sync(struct hci_dev *hdev)
4454 {
4455 u8 support = 0x01;
4456
4457 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) ||
4458 !bredr_sc_enabled(hdev))
4459 return 0;
4460
4461 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT,
4462 sizeof(support), &support,
4463 HCI_CMD_TIMEOUT);
4464 }
4465
4466 /* Set erroneous data reporting if supported to the wideband speech
4467 * setting value
4468 */
hci_set_err_data_report_sync(struct hci_dev * hdev)4469 static int hci_set_err_data_report_sync(struct hci_dev *hdev)
4470 {
4471 struct hci_cp_write_def_err_data_reporting cp;
4472 bool enabled = hci_dev_test_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED);
4473
4474 if (!(hdev->commands[18] & 0x08) ||
4475 !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) ||
4476 test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks))
4477 return 0;
4478
4479 if (enabled == hdev->err_data_reporting)
4480 return 0;
4481
4482 memset(&cp, 0, sizeof(cp));
4483 cp.err_data_reporting = enabled ? ERR_DATA_REPORTING_ENABLED :
4484 ERR_DATA_REPORTING_DISABLED;
4485
4486 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING,
4487 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4488 }
4489
4490 static const struct hci_init_stage hci_init4[] = {
4491 /* HCI_OP_DELETE_STORED_LINK_KEY */
4492 HCI_INIT(hci_delete_stored_link_key_sync),
4493 /* HCI_OP_SET_EVENT_MASK_PAGE_2 */
4494 HCI_INIT(hci_set_event_mask_page_2_sync),
4495 /* HCI_OP_READ_LOCAL_CODECS */
4496 HCI_INIT(hci_read_local_codecs_sync),
4497 /* HCI_OP_READ_LOCAL_PAIRING_OPTS */
4498 HCI_INIT(hci_read_local_pairing_opts_sync),
4499 /* HCI_OP_GET_MWS_TRANSPORT_CONFIG */
4500 HCI_INIT(hci_get_mws_transport_config_sync),
4501 /* HCI_OP_READ_SYNC_TRAIN_PARAMS */
4502 HCI_INIT(hci_read_sync_train_params_sync),
4503 /* HCI_OP_WRITE_SC_SUPPORT */
4504 HCI_INIT(hci_write_sc_support_1_sync),
4505 /* HCI_OP_WRITE_DEF_ERR_DATA_REPORTING */
4506 HCI_INIT(hci_set_err_data_report_sync),
4507 {}
4508 };
4509
4510 /* Set Suggested Default Data Length to maximum if supported */
hci_le_set_write_def_data_len_sync(struct hci_dev * hdev)4511 static int hci_le_set_write_def_data_len_sync(struct hci_dev *hdev)
4512 {
4513 struct hci_cp_le_write_def_data_len cp;
4514
4515 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
4516 return 0;
4517
4518 memset(&cp, 0, sizeof(cp));
4519 cp.tx_len = cpu_to_le16(hdev->le_max_tx_len);
4520 cp.tx_time = cpu_to_le16(hdev->le_max_tx_time);
4521
4522 return __hci_cmd_sync_status(hdev, HCI_OP_LE_WRITE_DEF_DATA_LEN,
4523 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4524 }
4525
4526 /* Set Default PHY parameters if command is supported, enables all supported
4527 * PHYs according to the LE Features bits.
4528 */
hci_le_set_default_phy_sync(struct hci_dev * hdev)4529 static int hci_le_set_default_phy_sync(struct hci_dev *hdev)
4530 {
4531 struct hci_cp_le_set_default_phy cp;
4532
4533 if (!(hdev->commands[35] & 0x20)) {
4534 /* If the command is not supported it means only 1M PHY is
4535 * supported.
4536 */
4537 hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
4538 hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
4539 return 0;
4540 }
4541
4542 memset(&cp, 0, sizeof(cp));
4543 cp.all_phys = 0x00;
4544 cp.tx_phys = HCI_LE_SET_PHY_1M;
4545 cp.rx_phys = HCI_LE_SET_PHY_1M;
4546
4547 /* Enables 2M PHY if supported */
4548 if (le_2m_capable(hdev)) {
4549 cp.tx_phys |= HCI_LE_SET_PHY_2M;
4550 cp.rx_phys |= HCI_LE_SET_PHY_2M;
4551 }
4552
4553 /* Enables Coded PHY if supported */
4554 if (le_coded_capable(hdev)) {
4555 cp.tx_phys |= HCI_LE_SET_PHY_CODED;
4556 cp.rx_phys |= HCI_LE_SET_PHY_CODED;
4557 }
4558
4559 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_DEFAULT_PHY,
4560 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4561 }
4562
4563 static const struct hci_init_stage le_init4[] = {
4564 /* HCI_OP_LE_WRITE_DEF_DATA_LEN */
4565 HCI_INIT(hci_le_set_write_def_data_len_sync),
4566 /* HCI_OP_LE_SET_DEFAULT_PHY */
4567 HCI_INIT(hci_le_set_default_phy_sync),
4568 {}
4569 };
4570
hci_init4_sync(struct hci_dev * hdev)4571 static int hci_init4_sync(struct hci_dev *hdev)
4572 {
4573 int err;
4574
4575 bt_dev_dbg(hdev, "");
4576
4577 err = hci_init_stage_sync(hdev, hci_init4);
4578 if (err)
4579 return err;
4580
4581 if (lmp_le_capable(hdev))
4582 return hci_init_stage_sync(hdev, le_init4);
4583
4584 return 0;
4585 }
4586
hci_init_sync(struct hci_dev * hdev)4587 static int hci_init_sync(struct hci_dev *hdev)
4588 {
4589 int err;
4590
4591 err = hci_init1_sync(hdev);
4592 if (err < 0)
4593 return err;
4594
4595 if (hci_dev_test_flag(hdev, HCI_SETUP))
4596 hci_debugfs_create_basic(hdev);
4597
4598 err = hci_init2_sync(hdev);
4599 if (err < 0)
4600 return err;
4601
4602 /* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
4603 * BR/EDR/LE type controllers. AMP controllers only need the
4604 * first two stages of init.
4605 */
4606 if (hdev->dev_type != HCI_PRIMARY)
4607 return 0;
4608
4609 err = hci_init3_sync(hdev);
4610 if (err < 0)
4611 return err;
4612
4613 err = hci_init4_sync(hdev);
4614 if (err < 0)
4615 return err;
4616
4617 /* This function is only called when the controller is actually in
4618 * configured state. When the controller is marked as unconfigured,
4619 * this initialization procedure is not run.
4620 *
4621 * It means that it is possible that a controller runs through its
4622 * setup phase and then discovers missing settings. If that is the
4623 * case, then this function will not be called. It then will only
4624 * be called during the config phase.
4625 *
4626 * So only when in setup phase or config phase, create the debugfs
4627 * entries and register the SMP channels.
4628 */
4629 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
4630 !hci_dev_test_flag(hdev, HCI_CONFIG))
4631 return 0;
4632
4633 if (hci_dev_test_and_set_flag(hdev, HCI_DEBUGFS_CREATED))
4634 return 0;
4635
4636 hci_debugfs_create_common(hdev);
4637
4638 if (lmp_bredr_capable(hdev))
4639 hci_debugfs_create_bredr(hdev);
4640
4641 if (lmp_le_capable(hdev))
4642 hci_debugfs_create_le(hdev);
4643
4644 return 0;
4645 }
4646
4647 #define HCI_QUIRK_BROKEN(_quirk, _desc) { HCI_QUIRK_BROKEN_##_quirk, _desc }
4648
4649 static const struct {
4650 unsigned long quirk;
4651 const char *desc;
4652 } hci_broken_table[] = {
4653 HCI_QUIRK_BROKEN(LOCAL_COMMANDS,
4654 "HCI Read Local Supported Commands not supported"),
4655 HCI_QUIRK_BROKEN(STORED_LINK_KEY,
4656 "HCI Delete Stored Link Key command is advertised, "
4657 "but not supported."),
4658 HCI_QUIRK_BROKEN(ERR_DATA_REPORTING,
4659 "HCI Read Default Erroneous Data Reporting command is "
4660 "advertised, but not supported."),
4661 HCI_QUIRK_BROKEN(READ_TRANSMIT_POWER,
4662 "HCI Read Transmit Power Level command is advertised, "
4663 "but not supported."),
4664 HCI_QUIRK_BROKEN(FILTER_CLEAR_ALL,
4665 "HCI Set Event Filter command not supported."),
4666 HCI_QUIRK_BROKEN(ENHANCED_SETUP_SYNC_CONN,
4667 "HCI Enhanced Setup Synchronous Connection command is "
4668 "advertised, but not supported."),
4669 HCI_QUIRK_BROKEN(SET_RPA_TIMEOUT,
4670 "HCI LE Set Random Private Address Timeout command is "
4671 "advertised, but not supported."),
4672 HCI_QUIRK_BROKEN(LE_CODED,
4673 "HCI LE Coded PHY feature bit is set, "
4674 "but its usage is not supported.")
4675 };
4676
4677 /* This function handles hdev setup stage:
4678 *
4679 * Calls hdev->setup
4680 * Setup address if HCI_QUIRK_USE_BDADDR_PROPERTY is set.
4681 */
hci_dev_setup_sync(struct hci_dev * hdev)4682 static int hci_dev_setup_sync(struct hci_dev *hdev)
4683 {
4684 int ret = 0;
4685 bool invalid_bdaddr;
4686 size_t i;
4687
4688 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
4689 !test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks))
4690 return 0;
4691
4692 bt_dev_dbg(hdev, "");
4693
4694 hci_sock_dev_event(hdev, HCI_DEV_SETUP);
4695
4696 if (hdev->setup)
4697 ret = hdev->setup(hdev);
4698
4699 for (i = 0; i < ARRAY_SIZE(hci_broken_table); i++) {
4700 if (test_bit(hci_broken_table[i].quirk, &hdev->quirks))
4701 bt_dev_warn(hdev, "%s", hci_broken_table[i].desc);
4702 }
4703
4704 /* The transport driver can set the quirk to mark the
4705 * BD_ADDR invalid before creating the HCI device or in
4706 * its setup callback.
4707 */
4708 invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks) ||
4709 test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks);
4710 if (!ret) {
4711 if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks) &&
4712 !bacmp(&hdev->public_addr, BDADDR_ANY))
4713 hci_dev_get_bd_addr_from_property(hdev);
4714
4715 if (invalid_bdaddr && bacmp(&hdev->public_addr, BDADDR_ANY) &&
4716 hdev->set_bdaddr) {
4717 ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
4718 if (!ret)
4719 invalid_bdaddr = false;
4720 }
4721 }
4722
4723 /* The transport driver can set these quirks before
4724 * creating the HCI device or in its setup callback.
4725 *
4726 * For the invalid BD_ADDR quirk it is possible that
4727 * it becomes a valid address if the bootloader does
4728 * provide it (see above).
4729 *
4730 * In case any of them is set, the controller has to
4731 * start up as unconfigured.
4732 */
4733 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
4734 invalid_bdaddr)
4735 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
4736
4737 /* For an unconfigured controller it is required to
4738 * read at least the version information provided by
4739 * the Read Local Version Information command.
4740 *
4741 * If the set_bdaddr driver callback is provided, then
4742 * also the original Bluetooth public device address
4743 * will be read using the Read BD Address command.
4744 */
4745 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
4746 return hci_unconf_init_sync(hdev);
4747
4748 return ret;
4749 }
4750
4751 /* This function handles hdev init stage:
4752 *
4753 * Calls hci_dev_setup_sync to perform setup stage
4754 * Calls hci_init_sync to perform HCI command init sequence
4755 */
hci_dev_init_sync(struct hci_dev * hdev)4756 static int hci_dev_init_sync(struct hci_dev *hdev)
4757 {
4758 int ret;
4759
4760 bt_dev_dbg(hdev, "");
4761
4762 atomic_set(&hdev->cmd_cnt, 1);
4763 set_bit(HCI_INIT, &hdev->flags);
4764
4765 ret = hci_dev_setup_sync(hdev);
4766
4767 if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
4768 /* If public address change is configured, ensure that
4769 * the address gets programmed. If the driver does not
4770 * support changing the public address, fail the power
4771 * on procedure.
4772 */
4773 if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
4774 hdev->set_bdaddr)
4775 ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
4776 else
4777 ret = -EADDRNOTAVAIL;
4778 }
4779
4780 if (!ret) {
4781 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
4782 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4783 ret = hci_init_sync(hdev);
4784 if (!ret && hdev->post_init)
4785 ret = hdev->post_init(hdev);
4786 }
4787 }
4788
4789 /* If the HCI Reset command is clearing all diagnostic settings,
4790 * then they need to be reprogrammed after the init procedure
4791 * completed.
4792 */
4793 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
4794 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4795 hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
4796 ret = hdev->set_diag(hdev, true);
4797
4798 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4799 msft_do_open(hdev);
4800 aosp_do_open(hdev);
4801 }
4802
4803 clear_bit(HCI_INIT, &hdev->flags);
4804
4805 return ret;
4806 }
4807
hci_dev_open_sync(struct hci_dev * hdev)4808 int hci_dev_open_sync(struct hci_dev *hdev)
4809 {
4810 int ret;
4811
4812 bt_dev_dbg(hdev, "");
4813
4814 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
4815 ret = -ENODEV;
4816 goto done;
4817 }
4818
4819 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
4820 !hci_dev_test_flag(hdev, HCI_CONFIG)) {
4821 /* Check for rfkill but allow the HCI setup stage to
4822 * proceed (which in itself doesn't cause any RF activity).
4823 */
4824 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
4825 ret = -ERFKILL;
4826 goto done;
4827 }
4828
4829 /* Check for valid public address or a configured static
4830 * random address, but let the HCI setup proceed to
4831 * be able to determine if there is a public address
4832 * or not.
4833 *
4834 * In case of user channel usage, it is not important
4835 * if a public address or static random address is
4836 * available.
4837 *
4838 * This check is only valid for BR/EDR controllers
4839 * since AMP controllers do not have an address.
4840 */
4841 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4842 hdev->dev_type == HCI_PRIMARY &&
4843 !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
4844 !bacmp(&hdev->static_addr, BDADDR_ANY)) {
4845 ret = -EADDRNOTAVAIL;
4846 goto done;
4847 }
4848 }
4849
4850 if (test_bit(HCI_UP, &hdev->flags)) {
4851 ret = -EALREADY;
4852 goto done;
4853 }
4854
4855 if (hdev->open(hdev)) {
4856 ret = -EIO;
4857 goto done;
4858 }
4859
4860 hci_devcd_reset(hdev);
4861
4862 set_bit(HCI_RUNNING, &hdev->flags);
4863 hci_sock_dev_event(hdev, HCI_DEV_OPEN);
4864
4865 ret = hci_dev_init_sync(hdev);
4866 if (!ret) {
4867 hci_dev_hold(hdev);
4868 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
4869 hci_adv_instances_set_rpa_expired(hdev, true);
4870 set_bit(HCI_UP, &hdev->flags);
4871 hci_sock_dev_event(hdev, HCI_DEV_UP);
4872 hci_leds_update_powered(hdev, true);
4873 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
4874 !hci_dev_test_flag(hdev, HCI_CONFIG) &&
4875 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
4876 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4877 hci_dev_test_flag(hdev, HCI_MGMT) &&
4878 hdev->dev_type == HCI_PRIMARY) {
4879 ret = hci_powered_update_sync(hdev);
4880 mgmt_power_on(hdev, ret);
4881 }
4882 } else {
4883 /* Init failed, cleanup */
4884 flush_work(&hdev->tx_work);
4885
4886 /* Since hci_rx_work() is possible to awake new cmd_work
4887 * it should be flushed first to avoid unexpected call of
4888 * hci_cmd_work()
4889 */
4890 flush_work(&hdev->rx_work);
4891 flush_work(&hdev->cmd_work);
4892
4893 skb_queue_purge(&hdev->cmd_q);
4894 skb_queue_purge(&hdev->rx_q);
4895
4896 if (hdev->flush)
4897 hdev->flush(hdev);
4898
4899 if (hdev->sent_cmd) {
4900 cancel_delayed_work_sync(&hdev->cmd_timer);
4901 kfree_skb(hdev->sent_cmd);
4902 hdev->sent_cmd = NULL;
4903 }
4904
4905 clear_bit(HCI_RUNNING, &hdev->flags);
4906 hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
4907
4908 hdev->close(hdev);
4909 hdev->flags &= BIT(HCI_RAW);
4910 }
4911
4912 done:
4913 return ret;
4914 }
4915
4916 /* This function requires the caller holds hdev->lock */
hci_pend_le_actions_clear(struct hci_dev * hdev)4917 static void hci_pend_le_actions_clear(struct hci_dev *hdev)
4918 {
4919 struct hci_conn_params *p;
4920
4921 list_for_each_entry(p, &hdev->le_conn_params, list) {
4922 hci_pend_le_list_del_init(p);
4923 if (p->conn) {
4924 hci_conn_drop(p->conn);
4925 hci_conn_put(p->conn);
4926 p->conn = NULL;
4927 }
4928 }
4929
4930 BT_DBG("All LE pending actions cleared");
4931 }
4932
hci_dev_shutdown(struct hci_dev * hdev)4933 static int hci_dev_shutdown(struct hci_dev *hdev)
4934 {
4935 int err = 0;
4936 /* Similar to how we first do setup and then set the exclusive access
4937 * bit for userspace, we must first unset userchannel and then clean up.
4938 * Otherwise, the kernel can't properly use the hci channel to clean up
4939 * the controller (some shutdown routines require sending additional
4940 * commands to the controller for example).
4941 */
4942 bool was_userchannel =
4943 hci_dev_test_and_clear_flag(hdev, HCI_USER_CHANNEL);
4944
4945 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
4946 test_bit(HCI_UP, &hdev->flags)) {
4947 /* Execute vendor specific shutdown routine */
4948 if (hdev->shutdown)
4949 err = hdev->shutdown(hdev);
4950 }
4951
4952 if (was_userchannel)
4953 hci_dev_set_flag(hdev, HCI_USER_CHANNEL);
4954
4955 return err;
4956 }
4957
hci_dev_close_sync(struct hci_dev * hdev)4958 int hci_dev_close_sync(struct hci_dev *hdev)
4959 {
4960 bool auto_off;
4961 int err = 0;
4962
4963 bt_dev_dbg(hdev, "");
4964
4965 cancel_delayed_work(&hdev->power_off);
4966 cancel_delayed_work(&hdev->ncmd_timer);
4967 cancel_delayed_work(&hdev->le_scan_disable);
4968 cancel_delayed_work(&hdev->le_scan_restart);
4969
4970 hci_request_cancel_all(hdev);
4971
4972 if (hdev->adv_instance_timeout) {
4973 cancel_delayed_work_sync(&hdev->adv_instance_expire);
4974 hdev->adv_instance_timeout = 0;
4975 }
4976
4977 err = hci_dev_shutdown(hdev);
4978
4979 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
4980 cancel_delayed_work_sync(&hdev->cmd_timer);
4981 return err;
4982 }
4983
4984 hci_leds_update_powered(hdev, false);
4985
4986 /* Flush RX and TX works */
4987 flush_work(&hdev->tx_work);
4988 flush_work(&hdev->rx_work);
4989
4990 if (hdev->discov_timeout > 0) {
4991 hdev->discov_timeout = 0;
4992 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
4993 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
4994 }
4995
4996 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
4997 cancel_delayed_work(&hdev->service_cache);
4998
4999 if (hci_dev_test_flag(hdev, HCI_MGMT)) {
5000 struct adv_info *adv_instance;
5001
5002 cancel_delayed_work_sync(&hdev->rpa_expired);
5003
5004 list_for_each_entry(adv_instance, &hdev->adv_instances, list)
5005 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
5006 }
5007
5008 /* Avoid potential lockdep warnings from the *_flush() calls by
5009 * ensuring the workqueue is empty up front.
5010 */
5011 drain_workqueue(hdev->workqueue);
5012
5013 hci_dev_lock(hdev);
5014
5015 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
5016
5017 auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
5018
5019 if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
5020 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
5021 hci_dev_test_flag(hdev, HCI_MGMT))
5022 __mgmt_power_off(hdev);
5023
5024 hci_inquiry_cache_flush(hdev);
5025 hci_pend_le_actions_clear(hdev);
5026 hci_conn_hash_flush(hdev);
5027 /* Prevent data races on hdev->smp_data or hdev->smp_bredr_data */
5028 smp_unregister(hdev);
5029 hci_dev_unlock(hdev);
5030
5031 hci_sock_dev_event(hdev, HCI_DEV_DOWN);
5032
5033 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
5034 aosp_do_close(hdev);
5035 msft_do_close(hdev);
5036 }
5037
5038 if (hdev->flush)
5039 hdev->flush(hdev);
5040
5041 /* Reset device */
5042 skb_queue_purge(&hdev->cmd_q);
5043 atomic_set(&hdev->cmd_cnt, 1);
5044 if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
5045 !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
5046 set_bit(HCI_INIT, &hdev->flags);
5047 hci_reset_sync(hdev);
5048 clear_bit(HCI_INIT, &hdev->flags);
5049 }
5050
5051 /* flush cmd work */
5052 flush_work(&hdev->cmd_work);
5053
5054 /* Drop queues */
5055 skb_queue_purge(&hdev->rx_q);
5056 skb_queue_purge(&hdev->cmd_q);
5057 skb_queue_purge(&hdev->raw_q);
5058
5059 /* Drop last sent command */
5060 if (hdev->sent_cmd) {
5061 cancel_delayed_work_sync(&hdev->cmd_timer);
5062 kfree_skb(hdev->sent_cmd);
5063 hdev->sent_cmd = NULL;
5064 }
5065
5066 clear_bit(HCI_RUNNING, &hdev->flags);
5067 hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
5068
5069 /* After this point our queues are empty and no tasks are scheduled. */
5070 hdev->close(hdev);
5071
5072 /* Clear flags */
5073 hdev->flags &= BIT(HCI_RAW);
5074 hci_dev_clear_volatile_flags(hdev);
5075
5076 /* Controller radio is available but is currently powered down */
5077 hdev->amp_status = AMP_STATUS_POWERED_DOWN;
5078
5079 memset(hdev->eir, 0, sizeof(hdev->eir));
5080 memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
5081 bacpy(&hdev->random_addr, BDADDR_ANY);
5082 hci_codec_list_clear(&hdev->local_codecs);
5083
5084 hci_dev_put(hdev);
5085 return err;
5086 }
5087
5088 /* This function perform power on HCI command sequence as follows:
5089 *
5090 * If controller is already up (HCI_UP) performs hci_powered_update_sync
5091 * sequence otherwise run hci_dev_open_sync which will follow with
5092 * hci_powered_update_sync after the init sequence is completed.
5093 */
hci_power_on_sync(struct hci_dev * hdev)5094 static int hci_power_on_sync(struct hci_dev *hdev)
5095 {
5096 int err;
5097
5098 if (test_bit(HCI_UP, &hdev->flags) &&
5099 hci_dev_test_flag(hdev, HCI_MGMT) &&
5100 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
5101 cancel_delayed_work(&hdev->power_off);
5102 return hci_powered_update_sync(hdev);
5103 }
5104
5105 err = hci_dev_open_sync(hdev);
5106 if (err < 0)
5107 return err;
5108
5109 /* During the HCI setup phase, a few error conditions are
5110 * ignored and they need to be checked now. If they are still
5111 * valid, it is important to return the device back off.
5112 */
5113 if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
5114 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
5115 (hdev->dev_type == HCI_PRIMARY &&
5116 !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
5117 !bacmp(&hdev->static_addr, BDADDR_ANY))) {
5118 hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
5119 hci_dev_close_sync(hdev);
5120 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
5121 queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
5122 HCI_AUTO_OFF_TIMEOUT);
5123 }
5124
5125 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
5126 /* For unconfigured devices, set the HCI_RAW flag
5127 * so that userspace can easily identify them.
5128 */
5129 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
5130 set_bit(HCI_RAW, &hdev->flags);
5131
5132 /* For fully configured devices, this will send
5133 * the Index Added event. For unconfigured devices,
5134 * it will send Unconfigued Index Added event.
5135 *
5136 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
5137 * and no event will be send.
5138 */
5139 mgmt_index_added(hdev);
5140 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
5141 /* When the controller is now configured, then it
5142 * is important to clear the HCI_RAW flag.
5143 */
5144 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
5145 clear_bit(HCI_RAW, &hdev->flags);
5146
5147 /* Powering on the controller with HCI_CONFIG set only
5148 * happens with the transition from unconfigured to
5149 * configured. This will send the Index Added event.
5150 */
5151 mgmt_index_added(hdev);
5152 }
5153
5154 return 0;
5155 }
5156
hci_remote_name_cancel_sync(struct hci_dev * hdev,bdaddr_t * addr)5157 static int hci_remote_name_cancel_sync(struct hci_dev *hdev, bdaddr_t *addr)
5158 {
5159 struct hci_cp_remote_name_req_cancel cp;
5160
5161 memset(&cp, 0, sizeof(cp));
5162 bacpy(&cp.bdaddr, addr);
5163
5164 return __hci_cmd_sync_status(hdev, HCI_OP_REMOTE_NAME_REQ_CANCEL,
5165 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5166 }
5167
hci_stop_discovery_sync(struct hci_dev * hdev)5168 int hci_stop_discovery_sync(struct hci_dev *hdev)
5169 {
5170 struct discovery_state *d = &hdev->discovery;
5171 struct inquiry_entry *e;
5172 int err;
5173
5174 bt_dev_dbg(hdev, "state %u", hdev->discovery.state);
5175
5176 if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
5177 if (test_bit(HCI_INQUIRY, &hdev->flags)) {
5178 err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL,
5179 0, NULL, HCI_CMD_TIMEOUT);
5180 if (err)
5181 return err;
5182 }
5183
5184 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
5185 cancel_delayed_work(&hdev->le_scan_disable);
5186 cancel_delayed_work(&hdev->le_scan_restart);
5187
5188 err = hci_scan_disable_sync(hdev);
5189 if (err)
5190 return err;
5191 }
5192
5193 } else {
5194 err = hci_scan_disable_sync(hdev);
5195 if (err)
5196 return err;
5197 }
5198
5199 /* Resume advertising if it was paused */
5200 if (use_ll_privacy(hdev))
5201 hci_resume_advertising_sync(hdev);
5202
5203 /* No further actions needed for LE-only discovery */
5204 if (d->type == DISCOV_TYPE_LE)
5205 return 0;
5206
5207 if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
5208 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
5209 NAME_PENDING);
5210 if (!e)
5211 return 0;
5212
5213 return hci_remote_name_cancel_sync(hdev, &e->data.bdaddr);
5214 }
5215
5216 return 0;
5217 }
5218
hci_disconnect_phy_link_sync(struct hci_dev * hdev,u16 handle,u8 reason)5219 static int hci_disconnect_phy_link_sync(struct hci_dev *hdev, u16 handle,
5220 u8 reason)
5221 {
5222 struct hci_cp_disconn_phy_link cp;
5223
5224 memset(&cp, 0, sizeof(cp));
5225 cp.phy_handle = HCI_PHY_HANDLE(handle);
5226 cp.reason = reason;
5227
5228 return __hci_cmd_sync_status(hdev, HCI_OP_DISCONN_PHY_LINK,
5229 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5230 }
5231
hci_disconnect_sync(struct hci_dev * hdev,struct hci_conn * conn,u8 reason)5232 static int hci_disconnect_sync(struct hci_dev *hdev, struct hci_conn *conn,
5233 u8 reason)
5234 {
5235 struct hci_cp_disconnect cp;
5236
5237 if (conn->type == AMP_LINK)
5238 return hci_disconnect_phy_link_sync(hdev, conn->handle, reason);
5239
5240 memset(&cp, 0, sizeof(cp));
5241 cp.handle = cpu_to_le16(conn->handle);
5242 cp.reason = reason;
5243
5244 /* Wait for HCI_EV_DISCONN_COMPLETE, not HCI_EV_CMD_STATUS, when the
5245 * reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is
5246 * used when suspending or powering off, where we don't want to wait
5247 * for the peer's response.
5248 */
5249 if (reason != HCI_ERROR_REMOTE_POWER_OFF)
5250 return __hci_cmd_sync_status_sk(hdev, HCI_OP_DISCONNECT,
5251 sizeof(cp), &cp,
5252 HCI_EV_DISCONN_COMPLETE,
5253 HCI_CMD_TIMEOUT, NULL);
5254
5255 return __hci_cmd_sync_status(hdev, HCI_OP_DISCONNECT, sizeof(cp), &cp,
5256 HCI_CMD_TIMEOUT);
5257 }
5258
hci_le_connect_cancel_sync(struct hci_dev * hdev,struct hci_conn * conn,u8 reason)5259 static int hci_le_connect_cancel_sync(struct hci_dev *hdev,
5260 struct hci_conn *conn, u8 reason)
5261 {
5262 /* Return reason if scanning since the connection shall probably be
5263 * cleanup directly.
5264 */
5265 if (test_bit(HCI_CONN_SCANNING, &conn->flags))
5266 return reason;
5267
5268 if (conn->role == HCI_ROLE_SLAVE ||
5269 test_and_set_bit(HCI_CONN_CANCEL, &conn->flags))
5270 return 0;
5271
5272 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CREATE_CONN_CANCEL,
5273 0, NULL, HCI_CMD_TIMEOUT);
5274 }
5275
hci_connect_cancel_sync(struct hci_dev * hdev,struct hci_conn * conn,u8 reason)5276 static int hci_connect_cancel_sync(struct hci_dev *hdev, struct hci_conn *conn,
5277 u8 reason)
5278 {
5279 if (conn->type == LE_LINK)
5280 return hci_le_connect_cancel_sync(hdev, conn, reason);
5281
5282 if (conn->type == ISO_LINK) {
5283 /* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E
5284 * page 1857:
5285 *
5286 * If this command is issued for a CIS on the Central and the
5287 * CIS is successfully terminated before being established,
5288 * then an HCI_LE_CIS_Established event shall also be sent for
5289 * this CIS with the Status Operation Cancelled by Host (0x44).
5290 */
5291 if (test_bit(HCI_CONN_CREATE_CIS, &conn->flags))
5292 return hci_disconnect_sync(hdev, conn, reason);
5293
5294 /* CIS with no Create CIS sent have nothing to cancel */
5295 if (bacmp(&conn->dst, BDADDR_ANY))
5296 return HCI_ERROR_LOCAL_HOST_TERM;
5297
5298 /* There is no way to cancel a BIS without terminating the BIG
5299 * which is done later on connection cleanup.
5300 */
5301 return 0;
5302 }
5303
5304 if (hdev->hci_ver < BLUETOOTH_VER_1_2)
5305 return 0;
5306
5307 /* Wait for HCI_EV_CONN_COMPLETE, not HCI_EV_CMD_STATUS, when the
5308 * reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is
5309 * used when suspending or powering off, where we don't want to wait
5310 * for the peer's response.
5311 */
5312 if (reason != HCI_ERROR_REMOTE_POWER_OFF)
5313 return __hci_cmd_sync_status_sk(hdev, HCI_OP_CREATE_CONN_CANCEL,
5314 6, &conn->dst,
5315 HCI_EV_CONN_COMPLETE,
5316 HCI_CMD_TIMEOUT, NULL);
5317
5318 return __hci_cmd_sync_status(hdev, HCI_OP_CREATE_CONN_CANCEL,
5319 6, &conn->dst, HCI_CMD_TIMEOUT);
5320 }
5321
hci_reject_sco_sync(struct hci_dev * hdev,struct hci_conn * conn,u8 reason)5322 static int hci_reject_sco_sync(struct hci_dev *hdev, struct hci_conn *conn,
5323 u8 reason)
5324 {
5325 struct hci_cp_reject_sync_conn_req cp;
5326
5327 memset(&cp, 0, sizeof(cp));
5328 bacpy(&cp.bdaddr, &conn->dst);
5329 cp.reason = reason;
5330
5331 /* SCO rejection has its own limited set of
5332 * allowed error values (0x0D-0x0F).
5333 */
5334 if (reason < 0x0d || reason > 0x0f)
5335 cp.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
5336
5337 return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_SYNC_CONN_REQ,
5338 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5339 }
5340
hci_le_reject_cis_sync(struct hci_dev * hdev,struct hci_conn * conn,u8 reason)5341 static int hci_le_reject_cis_sync(struct hci_dev *hdev, struct hci_conn *conn,
5342 u8 reason)
5343 {
5344 struct hci_cp_le_reject_cis cp;
5345
5346 memset(&cp, 0, sizeof(cp));
5347 cp.handle = cpu_to_le16(conn->handle);
5348 cp.reason = reason;
5349
5350 return __hci_cmd_sync_status(hdev, HCI_OP_LE_REJECT_CIS,
5351 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5352 }
5353
hci_reject_conn_sync(struct hci_dev * hdev,struct hci_conn * conn,u8 reason)5354 static int hci_reject_conn_sync(struct hci_dev *hdev, struct hci_conn *conn,
5355 u8 reason)
5356 {
5357 struct hci_cp_reject_conn_req cp;
5358
5359 if (conn->type == ISO_LINK)
5360 return hci_le_reject_cis_sync(hdev, conn, reason);
5361
5362 if (conn->type == SCO_LINK || conn->type == ESCO_LINK)
5363 return hci_reject_sco_sync(hdev, conn, reason);
5364
5365 memset(&cp, 0, sizeof(cp));
5366 bacpy(&cp.bdaddr, &conn->dst);
5367 cp.reason = reason;
5368
5369 return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_CONN_REQ,
5370 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5371 }
5372
hci_abort_conn_sync(struct hci_dev * hdev,struct hci_conn * conn,u8 reason)5373 int hci_abort_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, u8 reason)
5374 {
5375 int err = 0;
5376 u16 handle = conn->handle;
5377 bool disconnect = false;
5378 struct hci_conn *c;
5379
5380 switch (conn->state) {
5381 case BT_CONNECTED:
5382 case BT_CONFIG:
5383 err = hci_disconnect_sync(hdev, conn, reason);
5384 break;
5385 case BT_CONNECT:
5386 err = hci_connect_cancel_sync(hdev, conn, reason);
5387 break;
5388 case BT_CONNECT2:
5389 err = hci_reject_conn_sync(hdev, conn, reason);
5390 break;
5391 case BT_OPEN:
5392 hci_dev_lock(hdev);
5393
5394 /* Cleanup bis or pa sync connections */
5395 if (test_and_clear_bit(HCI_CONN_BIG_SYNC_FAILED, &conn->flags) ||
5396 test_and_clear_bit(HCI_CONN_PA_SYNC_FAILED, &conn->flags)) {
5397 hci_conn_failed(conn, reason);
5398 } else if (test_bit(HCI_CONN_PA_SYNC, &conn->flags) ||
5399 test_bit(HCI_CONN_BIG_SYNC, &conn->flags)) {
5400 conn->state = BT_CLOSED;
5401 hci_disconn_cfm(conn, reason);
5402 hci_conn_del(conn);
5403 }
5404
5405 hci_dev_unlock(hdev);
5406 return 0;
5407 case BT_BOUND:
5408 break;
5409 default:
5410 disconnect = true;
5411 break;
5412 }
5413
5414 hci_dev_lock(hdev);
5415
5416 /* Check if the connection has been cleaned up concurrently */
5417 c = hci_conn_hash_lookup_handle(hdev, handle);
5418 if (!c || c != conn) {
5419 err = 0;
5420 goto unlock;
5421 }
5422
5423 /* Cleanup hci_conn object if it cannot be cancelled as it
5424 * likelly means the controller and host stack are out of sync
5425 * or in case of LE it was still scanning so it can be cleanup
5426 * safely.
5427 */
5428 if (disconnect) {
5429 conn->state = BT_CLOSED;
5430 hci_disconn_cfm(conn, reason);
5431 hci_conn_del(conn);
5432 } else {
5433 hci_conn_failed(conn, reason);
5434 }
5435
5436 unlock:
5437 hci_dev_unlock(hdev);
5438 return err;
5439 }
5440
hci_disconnect_all_sync(struct hci_dev * hdev,u8 reason)5441 static int hci_disconnect_all_sync(struct hci_dev *hdev, u8 reason)
5442 {
5443 struct list_head *head = &hdev->conn_hash.list;
5444 struct hci_conn *conn;
5445
5446 rcu_read_lock();
5447 while ((conn = list_first_or_null_rcu(head, struct hci_conn, list))) {
5448 /* Make sure the connection is not freed while unlocking */
5449 conn = hci_conn_get(conn);
5450 rcu_read_unlock();
5451 /* Disregard possible errors since hci_conn_del shall have been
5452 * called even in case of errors had occurred since it would
5453 * then cause hci_conn_failed to be called which calls
5454 * hci_conn_del internally.
5455 */
5456 hci_abort_conn_sync(hdev, conn, reason);
5457 hci_conn_put(conn);
5458 rcu_read_lock();
5459 }
5460 rcu_read_unlock();
5461
5462 return 0;
5463 }
5464
5465 /* This function perform power off HCI command sequence as follows:
5466 *
5467 * Clear Advertising
5468 * Stop Discovery
5469 * Disconnect all connections
5470 * hci_dev_close_sync
5471 */
hci_power_off_sync(struct hci_dev * hdev)5472 static int hci_power_off_sync(struct hci_dev *hdev)
5473 {
5474 int err;
5475
5476 /* If controller is already down there is nothing to do */
5477 if (!test_bit(HCI_UP, &hdev->flags))
5478 return 0;
5479
5480 if (test_bit(HCI_ISCAN, &hdev->flags) ||
5481 test_bit(HCI_PSCAN, &hdev->flags)) {
5482 err = hci_write_scan_enable_sync(hdev, 0x00);
5483 if (err)
5484 return err;
5485 }
5486
5487 err = hci_clear_adv_sync(hdev, NULL, false);
5488 if (err)
5489 return err;
5490
5491 err = hci_stop_discovery_sync(hdev);
5492 if (err)
5493 return err;
5494
5495 /* Terminated due to Power Off */
5496 err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF);
5497 if (err)
5498 return err;
5499
5500 return hci_dev_close_sync(hdev);
5501 }
5502
hci_set_powered_sync(struct hci_dev * hdev,u8 val)5503 int hci_set_powered_sync(struct hci_dev *hdev, u8 val)
5504 {
5505 if (val)
5506 return hci_power_on_sync(hdev);
5507
5508 return hci_power_off_sync(hdev);
5509 }
5510
hci_write_iac_sync(struct hci_dev * hdev)5511 static int hci_write_iac_sync(struct hci_dev *hdev)
5512 {
5513 struct hci_cp_write_current_iac_lap cp;
5514
5515 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
5516 return 0;
5517
5518 memset(&cp, 0, sizeof(cp));
5519
5520 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
5521 /* Limited discoverable mode */
5522 cp.num_iac = min_t(u8, hdev->num_iac, 2);
5523 cp.iac_lap[0] = 0x00; /* LIAC */
5524 cp.iac_lap[1] = 0x8b;
5525 cp.iac_lap[2] = 0x9e;
5526 cp.iac_lap[3] = 0x33; /* GIAC */
5527 cp.iac_lap[4] = 0x8b;
5528 cp.iac_lap[5] = 0x9e;
5529 } else {
5530 /* General discoverable mode */
5531 cp.num_iac = 1;
5532 cp.iac_lap[0] = 0x33; /* GIAC */
5533 cp.iac_lap[1] = 0x8b;
5534 cp.iac_lap[2] = 0x9e;
5535 }
5536
5537 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CURRENT_IAC_LAP,
5538 (cp.num_iac * 3) + 1, &cp,
5539 HCI_CMD_TIMEOUT);
5540 }
5541
hci_update_discoverable_sync(struct hci_dev * hdev)5542 int hci_update_discoverable_sync(struct hci_dev *hdev)
5543 {
5544 int err = 0;
5545
5546 if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
5547 err = hci_write_iac_sync(hdev);
5548 if (err)
5549 return err;
5550
5551 err = hci_update_scan_sync(hdev);
5552 if (err)
5553 return err;
5554
5555 err = hci_update_class_sync(hdev);
5556 if (err)
5557 return err;
5558 }
5559
5560 /* Advertising instances don't use the global discoverable setting, so
5561 * only update AD if advertising was enabled using Set Advertising.
5562 */
5563 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
5564 err = hci_update_adv_data_sync(hdev, 0x00);
5565 if (err)
5566 return err;
5567
5568 /* Discoverable mode affects the local advertising
5569 * address in limited privacy mode.
5570 */
5571 if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) {
5572 if (ext_adv_capable(hdev))
5573 err = hci_start_ext_adv_sync(hdev, 0x00);
5574 else
5575 err = hci_enable_advertising_sync(hdev);
5576 }
5577 }
5578
5579 return err;
5580 }
5581
update_discoverable_sync(struct hci_dev * hdev,void * data)5582 static int update_discoverable_sync(struct hci_dev *hdev, void *data)
5583 {
5584 return hci_update_discoverable_sync(hdev);
5585 }
5586
hci_update_discoverable(struct hci_dev * hdev)5587 int hci_update_discoverable(struct hci_dev *hdev)
5588 {
5589 /* Only queue if it would have any effect */
5590 if (hdev_is_powered(hdev) &&
5591 hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
5592 hci_dev_test_flag(hdev, HCI_DISCOVERABLE) &&
5593 hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
5594 return hci_cmd_sync_queue(hdev, update_discoverable_sync, NULL,
5595 NULL);
5596
5597 return 0;
5598 }
5599
hci_update_connectable_sync(struct hci_dev * hdev)5600 int hci_update_connectable_sync(struct hci_dev *hdev)
5601 {
5602 int err;
5603
5604 err = hci_update_scan_sync(hdev);
5605 if (err)
5606 return err;
5607
5608 /* If BR/EDR is not enabled and we disable advertising as a
5609 * by-product of disabling connectable, we need to update the
5610 * advertising flags.
5611 */
5612 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
5613 err = hci_update_adv_data_sync(hdev, hdev->cur_adv_instance);
5614
5615 /* Update the advertising parameters if necessary */
5616 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
5617 !list_empty(&hdev->adv_instances)) {
5618 if (ext_adv_capable(hdev))
5619 err = hci_start_ext_adv_sync(hdev,
5620 hdev->cur_adv_instance);
5621 else
5622 err = hci_enable_advertising_sync(hdev);
5623
5624 if (err)
5625 return err;
5626 }
5627
5628 return hci_update_passive_scan_sync(hdev);
5629 }
5630
hci_inquiry_sync(struct hci_dev * hdev,u8 length)5631 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length)
5632 {
5633 const u8 giac[3] = { 0x33, 0x8b, 0x9e };
5634 const u8 liac[3] = { 0x00, 0x8b, 0x9e };
5635 struct hci_cp_inquiry cp;
5636
5637 bt_dev_dbg(hdev, "");
5638
5639 if (test_bit(HCI_INQUIRY, &hdev->flags))
5640 return 0;
5641
5642 hci_dev_lock(hdev);
5643 hci_inquiry_cache_flush(hdev);
5644 hci_dev_unlock(hdev);
5645
5646 memset(&cp, 0, sizeof(cp));
5647
5648 if (hdev->discovery.limited)
5649 memcpy(&cp.lap, liac, sizeof(cp.lap));
5650 else
5651 memcpy(&cp.lap, giac, sizeof(cp.lap));
5652
5653 cp.length = length;
5654
5655 return __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY,
5656 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5657 }
5658
hci_active_scan_sync(struct hci_dev * hdev,uint16_t interval)5659 static int hci_active_scan_sync(struct hci_dev *hdev, uint16_t interval)
5660 {
5661 u8 own_addr_type;
5662 /* Accept list is not used for discovery */
5663 u8 filter_policy = 0x00;
5664 /* Default is to enable duplicates filter */
5665 u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
5666 int err;
5667
5668 bt_dev_dbg(hdev, "");
5669
5670 /* If controller is scanning, it means the passive scanning is
5671 * running. Thus, we should temporarily stop it in order to set the
5672 * discovery scanning parameters.
5673 */
5674 err = hci_scan_disable_sync(hdev);
5675 if (err) {
5676 bt_dev_err(hdev, "Unable to disable scanning: %d", err);
5677 return err;
5678 }
5679
5680 cancel_interleave_scan(hdev);
5681
5682 /* Pause address resolution for active scan and stop advertising if
5683 * privacy is enabled.
5684 */
5685 err = hci_pause_addr_resolution(hdev);
5686 if (err)
5687 goto failed;
5688
5689 /* All active scans will be done with either a resolvable private
5690 * address (when privacy feature has been enabled) or non-resolvable
5691 * private address.
5692 */
5693 err = hci_update_random_address_sync(hdev, true, scan_use_rpa(hdev),
5694 &own_addr_type);
5695 if (err < 0)
5696 own_addr_type = ADDR_LE_DEV_PUBLIC;
5697
5698 if (hci_is_adv_monitoring(hdev)) {
5699 /* Duplicate filter should be disabled when some advertisement
5700 * monitor is activated, otherwise AdvMon can only receive one
5701 * advertisement for one peer(*) during active scanning, and
5702 * might report loss to these peers.
5703 *
5704 * Note that different controllers have different meanings of
5705 * |duplicate|. Some of them consider packets with the same
5706 * address as duplicate, and others consider packets with the
5707 * same address and the same RSSI as duplicate. Although in the
5708 * latter case we don't need to disable duplicate filter, but
5709 * it is common to have active scanning for a short period of
5710 * time, the power impact should be neglectable.
5711 */
5712 filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
5713 }
5714
5715 err = hci_start_scan_sync(hdev, LE_SCAN_ACTIVE, interval,
5716 hdev->le_scan_window_discovery,
5717 own_addr_type, filter_policy, filter_dup);
5718 if (!err)
5719 return err;
5720
5721 failed:
5722 /* Resume advertising if it was paused */
5723 if (use_ll_privacy(hdev))
5724 hci_resume_advertising_sync(hdev);
5725
5726 /* Resume passive scanning */
5727 hci_update_passive_scan_sync(hdev);
5728 return err;
5729 }
5730
hci_start_interleaved_discovery_sync(struct hci_dev * hdev)5731 static int hci_start_interleaved_discovery_sync(struct hci_dev *hdev)
5732 {
5733 int err;
5734
5735 bt_dev_dbg(hdev, "");
5736
5737 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery * 2);
5738 if (err)
5739 return err;
5740
5741 return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN);
5742 }
5743
hci_start_discovery_sync(struct hci_dev * hdev)5744 int hci_start_discovery_sync(struct hci_dev *hdev)
5745 {
5746 unsigned long timeout;
5747 int err;
5748
5749 bt_dev_dbg(hdev, "type %u", hdev->discovery.type);
5750
5751 switch (hdev->discovery.type) {
5752 case DISCOV_TYPE_BREDR:
5753 return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN);
5754 case DISCOV_TYPE_INTERLEAVED:
5755 /* When running simultaneous discovery, the LE scanning time
5756 * should occupy the whole discovery time sine BR/EDR inquiry
5757 * and LE scanning are scheduled by the controller.
5758 *
5759 * For interleaving discovery in comparison, BR/EDR inquiry
5760 * and LE scanning are done sequentially with separate
5761 * timeouts.
5762 */
5763 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
5764 &hdev->quirks)) {
5765 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
5766 /* During simultaneous discovery, we double LE scan
5767 * interval. We must leave some time for the controller
5768 * to do BR/EDR inquiry.
5769 */
5770 err = hci_start_interleaved_discovery_sync(hdev);
5771 break;
5772 }
5773
5774 timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
5775 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery);
5776 break;
5777 case DISCOV_TYPE_LE:
5778 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
5779 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery);
5780 break;
5781 default:
5782 return -EINVAL;
5783 }
5784
5785 if (err)
5786 return err;
5787
5788 bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout));
5789
5790 /* When service discovery is used and the controller has a
5791 * strict duplicate filter, it is important to remember the
5792 * start and duration of the scan. This is required for
5793 * restarting scanning during the discovery phase.
5794 */
5795 if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
5796 hdev->discovery.result_filtering) {
5797 hdev->discovery.scan_start = jiffies;
5798 hdev->discovery.scan_duration = timeout;
5799 }
5800
5801 queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
5802 timeout);
5803 return 0;
5804 }
5805
hci_suspend_monitor_sync(struct hci_dev * hdev)5806 static void hci_suspend_monitor_sync(struct hci_dev *hdev)
5807 {
5808 switch (hci_get_adv_monitor_offload_ext(hdev)) {
5809 case HCI_ADV_MONITOR_EXT_MSFT:
5810 msft_suspend_sync(hdev);
5811 break;
5812 default:
5813 return;
5814 }
5815 }
5816
5817 /* This function disables discovery and mark it as paused */
hci_pause_discovery_sync(struct hci_dev * hdev)5818 static int hci_pause_discovery_sync(struct hci_dev *hdev)
5819 {
5820 int old_state = hdev->discovery.state;
5821 int err;
5822
5823 /* If discovery already stopped/stopping/paused there nothing to do */
5824 if (old_state == DISCOVERY_STOPPED || old_state == DISCOVERY_STOPPING ||
5825 hdev->discovery_paused)
5826 return 0;
5827
5828 hci_discovery_set_state(hdev, DISCOVERY_STOPPING);
5829 err = hci_stop_discovery_sync(hdev);
5830 if (err)
5831 return err;
5832
5833 hdev->discovery_paused = true;
5834 hdev->discovery_old_state = old_state;
5835 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
5836
5837 return 0;
5838 }
5839
hci_update_event_filter_sync(struct hci_dev * hdev)5840 static int hci_update_event_filter_sync(struct hci_dev *hdev)
5841 {
5842 struct bdaddr_list_with_flags *b;
5843 u8 scan = SCAN_DISABLED;
5844 bool scanning = test_bit(HCI_PSCAN, &hdev->flags);
5845 int err;
5846
5847 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
5848 return 0;
5849
5850 /* Some fake CSR controllers lock up after setting this type of
5851 * filter, so avoid sending the request altogether.
5852 */
5853 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
5854 return 0;
5855
5856 /* Always clear event filter when starting */
5857 hci_clear_event_filter_sync(hdev);
5858
5859 list_for_each_entry(b, &hdev->accept_list, list) {
5860 if (!(b->flags & HCI_CONN_FLAG_REMOTE_WAKEUP))
5861 continue;
5862
5863 bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr);
5864
5865 err = hci_set_event_filter_sync(hdev, HCI_FLT_CONN_SETUP,
5866 HCI_CONN_SETUP_ALLOW_BDADDR,
5867 &b->bdaddr,
5868 HCI_CONN_SETUP_AUTO_ON);
5869 if (err)
5870 bt_dev_dbg(hdev, "Failed to set event filter for %pMR",
5871 &b->bdaddr);
5872 else
5873 scan = SCAN_PAGE;
5874 }
5875
5876 if (scan && !scanning)
5877 hci_write_scan_enable_sync(hdev, scan);
5878 else if (!scan && scanning)
5879 hci_write_scan_enable_sync(hdev, scan);
5880
5881 return 0;
5882 }
5883
5884 /* This function disables scan (BR and LE) and mark it as paused */
hci_pause_scan_sync(struct hci_dev * hdev)5885 static int hci_pause_scan_sync(struct hci_dev *hdev)
5886 {
5887 if (hdev->scanning_paused)
5888 return 0;
5889
5890 /* Disable page scan if enabled */
5891 if (test_bit(HCI_PSCAN, &hdev->flags))
5892 hci_write_scan_enable_sync(hdev, SCAN_DISABLED);
5893
5894 hci_scan_disable_sync(hdev);
5895
5896 hdev->scanning_paused = true;
5897
5898 return 0;
5899 }
5900
5901 /* This function performs the HCI suspend procedures in the follow order:
5902 *
5903 * Pause discovery (active scanning/inquiry)
5904 * Pause Directed Advertising/Advertising
5905 * Pause Scanning (passive scanning in case discovery was not active)
5906 * Disconnect all connections
5907 * Set suspend_status to BT_SUSPEND_DISCONNECT if hdev cannot wakeup
5908 * otherwise:
5909 * Update event mask (only set events that are allowed to wake up the host)
5910 * Update event filter (with devices marked with HCI_CONN_FLAG_REMOTE_WAKEUP)
5911 * Update passive scanning (lower duty cycle)
5912 * Set suspend_status to BT_SUSPEND_CONFIGURE_WAKE
5913 */
hci_suspend_sync(struct hci_dev * hdev)5914 int hci_suspend_sync(struct hci_dev *hdev)
5915 {
5916 int err;
5917
5918 /* If marked as suspended there nothing to do */
5919 if (hdev->suspended)
5920 return 0;
5921
5922 /* Mark device as suspended */
5923 hdev->suspended = true;
5924
5925 /* Pause discovery if not already stopped */
5926 hci_pause_discovery_sync(hdev);
5927
5928 /* Pause other advertisements */
5929 hci_pause_advertising_sync(hdev);
5930
5931 /* Suspend monitor filters */
5932 hci_suspend_monitor_sync(hdev);
5933
5934 /* Prevent disconnects from causing scanning to be re-enabled */
5935 hci_pause_scan_sync(hdev);
5936
5937 if (hci_conn_count(hdev)) {
5938 /* Soft disconnect everything (power off) */
5939 err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF);
5940 if (err) {
5941 /* Set state to BT_RUNNING so resume doesn't notify */
5942 hdev->suspend_state = BT_RUNNING;
5943 hci_resume_sync(hdev);
5944 return err;
5945 }
5946
5947 /* Update event mask so only the allowed event can wakeup the
5948 * host.
5949 */
5950 hci_set_event_mask_sync(hdev);
5951 }
5952
5953 /* Only configure accept list if disconnect succeeded and wake
5954 * isn't being prevented.
5955 */
5956 if (!hdev->wakeup || !hdev->wakeup(hdev)) {
5957 hdev->suspend_state = BT_SUSPEND_DISCONNECT;
5958 return 0;
5959 }
5960
5961 /* Unpause to take care of updating scanning params */
5962 hdev->scanning_paused = false;
5963
5964 /* Enable event filter for paired devices */
5965 hci_update_event_filter_sync(hdev);
5966
5967 /* Update LE passive scan if enabled */
5968 hci_update_passive_scan_sync(hdev);
5969
5970 /* Pause scan changes again. */
5971 hdev->scanning_paused = true;
5972
5973 hdev->suspend_state = BT_SUSPEND_CONFIGURE_WAKE;
5974
5975 return 0;
5976 }
5977
5978 /* This function resumes discovery */
hci_resume_discovery_sync(struct hci_dev * hdev)5979 static int hci_resume_discovery_sync(struct hci_dev *hdev)
5980 {
5981 int err;
5982
5983 /* If discovery not paused there nothing to do */
5984 if (!hdev->discovery_paused)
5985 return 0;
5986
5987 hdev->discovery_paused = false;
5988
5989 hci_discovery_set_state(hdev, DISCOVERY_STARTING);
5990
5991 err = hci_start_discovery_sync(hdev);
5992
5993 hci_discovery_set_state(hdev, err ? DISCOVERY_STOPPED :
5994 DISCOVERY_FINDING);
5995
5996 return err;
5997 }
5998
hci_resume_monitor_sync(struct hci_dev * hdev)5999 static void hci_resume_monitor_sync(struct hci_dev *hdev)
6000 {
6001 switch (hci_get_adv_monitor_offload_ext(hdev)) {
6002 case HCI_ADV_MONITOR_EXT_MSFT:
6003 msft_resume_sync(hdev);
6004 break;
6005 default:
6006 return;
6007 }
6008 }
6009
6010 /* This function resume scan and reset paused flag */
hci_resume_scan_sync(struct hci_dev * hdev)6011 static int hci_resume_scan_sync(struct hci_dev *hdev)
6012 {
6013 if (!hdev->scanning_paused)
6014 return 0;
6015
6016 hdev->scanning_paused = false;
6017
6018 hci_update_scan_sync(hdev);
6019
6020 /* Reset passive scanning to normal */
6021 hci_update_passive_scan_sync(hdev);
6022
6023 return 0;
6024 }
6025
6026 /* This function performs the HCI suspend procedures in the follow order:
6027 *
6028 * Restore event mask
6029 * Clear event filter
6030 * Update passive scanning (normal duty cycle)
6031 * Resume Directed Advertising/Advertising
6032 * Resume discovery (active scanning/inquiry)
6033 */
hci_resume_sync(struct hci_dev * hdev)6034 int hci_resume_sync(struct hci_dev *hdev)
6035 {
6036 /* If not marked as suspended there nothing to do */
6037 if (!hdev->suspended)
6038 return 0;
6039
6040 hdev->suspended = false;
6041
6042 /* Restore event mask */
6043 hci_set_event_mask_sync(hdev);
6044
6045 /* Clear any event filters and restore scan state */
6046 hci_clear_event_filter_sync(hdev);
6047
6048 /* Resume scanning */
6049 hci_resume_scan_sync(hdev);
6050
6051 /* Resume monitor filters */
6052 hci_resume_monitor_sync(hdev);
6053
6054 /* Resume other advertisements */
6055 hci_resume_advertising_sync(hdev);
6056
6057 /* Resume discovery */
6058 hci_resume_discovery_sync(hdev);
6059
6060 return 0;
6061 }
6062
conn_use_rpa(struct hci_conn * conn)6063 static bool conn_use_rpa(struct hci_conn *conn)
6064 {
6065 struct hci_dev *hdev = conn->hdev;
6066
6067 return hci_dev_test_flag(hdev, HCI_PRIVACY);
6068 }
6069
hci_le_ext_directed_advertising_sync(struct hci_dev * hdev,struct hci_conn * conn)6070 static int hci_le_ext_directed_advertising_sync(struct hci_dev *hdev,
6071 struct hci_conn *conn)
6072 {
6073 struct hci_cp_le_set_ext_adv_params cp;
6074 int err;
6075 bdaddr_t random_addr;
6076 u8 own_addr_type;
6077
6078 err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
6079 &own_addr_type);
6080 if (err)
6081 return err;
6082
6083 /* Set require_privacy to false so that the remote device has a
6084 * chance of identifying us.
6085 */
6086 err = hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL,
6087 &own_addr_type, &random_addr);
6088 if (err)
6089 return err;
6090
6091 memset(&cp, 0, sizeof(cp));
6092
6093 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND);
6094 cp.channel_map = hdev->le_adv_channel_map;
6095 cp.tx_power = HCI_TX_POWER_INVALID;
6096 cp.primary_phy = HCI_ADV_PHY_1M;
6097 cp.secondary_phy = HCI_ADV_PHY_1M;
6098 cp.handle = 0x00; /* Use instance 0 for directed adv */
6099 cp.own_addr_type = own_addr_type;
6100 cp.peer_addr_type = conn->dst_type;
6101 bacpy(&cp.peer_addr, &conn->dst);
6102
6103 /* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for
6104 * advertising_event_property LE_LEGACY_ADV_DIRECT_IND
6105 * does not supports advertising data when the advertising set already
6106 * contains some, the controller shall return erroc code 'Invalid
6107 * HCI Command Parameters(0x12).
6108 * So it is required to remove adv set for handle 0x00. since we use
6109 * instance 0 for directed adv.
6110 */
6111 err = hci_remove_ext_adv_instance_sync(hdev, cp.handle, NULL);
6112 if (err)
6113 return err;
6114
6115 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS,
6116 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
6117 if (err)
6118 return err;
6119
6120 /* Check if random address need to be updated */
6121 if (own_addr_type == ADDR_LE_DEV_RANDOM &&
6122 bacmp(&random_addr, BDADDR_ANY) &&
6123 bacmp(&random_addr, &hdev->random_addr)) {
6124 err = hci_set_adv_set_random_addr_sync(hdev, 0x00,
6125 &random_addr);
6126 if (err)
6127 return err;
6128 }
6129
6130 return hci_enable_ext_advertising_sync(hdev, 0x00);
6131 }
6132
hci_le_directed_advertising_sync(struct hci_dev * hdev,struct hci_conn * conn)6133 static int hci_le_directed_advertising_sync(struct hci_dev *hdev,
6134 struct hci_conn *conn)
6135 {
6136 struct hci_cp_le_set_adv_param cp;
6137 u8 status;
6138 u8 own_addr_type;
6139 u8 enable;
6140
6141 if (ext_adv_capable(hdev))
6142 return hci_le_ext_directed_advertising_sync(hdev, conn);
6143
6144 /* Clear the HCI_LE_ADV bit temporarily so that the
6145 * hci_update_random_address knows that it's safe to go ahead
6146 * and write a new random address. The flag will be set back on
6147 * as soon as the SET_ADV_ENABLE HCI command completes.
6148 */
6149 hci_dev_clear_flag(hdev, HCI_LE_ADV);
6150
6151 /* Set require_privacy to false so that the remote device has a
6152 * chance of identifying us.
6153 */
6154 status = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
6155 &own_addr_type);
6156 if (status)
6157 return status;
6158
6159 memset(&cp, 0, sizeof(cp));
6160
6161 /* Some controllers might reject command if intervals are not
6162 * within range for undirected advertising.
6163 * BCM20702A0 is known to be affected by this.
6164 */
6165 cp.min_interval = cpu_to_le16(0x0020);
6166 cp.max_interval = cpu_to_le16(0x0020);
6167
6168 cp.type = LE_ADV_DIRECT_IND;
6169 cp.own_address_type = own_addr_type;
6170 cp.direct_addr_type = conn->dst_type;
6171 bacpy(&cp.direct_addr, &conn->dst);
6172 cp.channel_map = hdev->le_adv_channel_map;
6173
6174 status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM,
6175 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
6176 if (status)
6177 return status;
6178
6179 enable = 0x01;
6180
6181 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
6182 sizeof(enable), &enable, HCI_CMD_TIMEOUT);
6183 }
6184
set_ext_conn_params(struct hci_conn * conn,struct hci_cp_le_ext_conn_param * p)6185 static void set_ext_conn_params(struct hci_conn *conn,
6186 struct hci_cp_le_ext_conn_param *p)
6187 {
6188 struct hci_dev *hdev = conn->hdev;
6189
6190 memset(p, 0, sizeof(*p));
6191
6192 p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
6193 p->scan_window = cpu_to_le16(hdev->le_scan_window_connect);
6194 p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
6195 p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
6196 p->conn_latency = cpu_to_le16(conn->le_conn_latency);
6197 p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
6198 p->min_ce_len = cpu_to_le16(0x0000);
6199 p->max_ce_len = cpu_to_le16(0x0000);
6200 }
6201
hci_le_ext_create_conn_sync(struct hci_dev * hdev,struct hci_conn * conn,u8 own_addr_type)6202 static int hci_le_ext_create_conn_sync(struct hci_dev *hdev,
6203 struct hci_conn *conn, u8 own_addr_type)
6204 {
6205 struct hci_cp_le_ext_create_conn *cp;
6206 struct hci_cp_le_ext_conn_param *p;
6207 u8 data[sizeof(*cp) + sizeof(*p) * 3];
6208 u32 plen;
6209
6210 cp = (void *)data;
6211 p = (void *)cp->data;
6212
6213 memset(cp, 0, sizeof(*cp));
6214
6215 bacpy(&cp->peer_addr, &conn->dst);
6216 cp->peer_addr_type = conn->dst_type;
6217 cp->own_addr_type = own_addr_type;
6218
6219 plen = sizeof(*cp);
6220
6221 if (scan_1m(hdev)) {
6222 cp->phys |= LE_SCAN_PHY_1M;
6223 set_ext_conn_params(conn, p);
6224
6225 p++;
6226 plen += sizeof(*p);
6227 }
6228
6229 if (scan_2m(hdev)) {
6230 cp->phys |= LE_SCAN_PHY_2M;
6231 set_ext_conn_params(conn, p);
6232
6233 p++;
6234 plen += sizeof(*p);
6235 }
6236
6237 if (scan_coded(hdev)) {
6238 cp->phys |= LE_SCAN_PHY_CODED;
6239 set_ext_conn_params(conn, p);
6240
6241 plen += sizeof(*p);
6242 }
6243
6244 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_EXT_CREATE_CONN,
6245 plen, data,
6246 HCI_EV_LE_ENHANCED_CONN_COMPLETE,
6247 conn->conn_timeout, NULL);
6248 }
6249
hci_le_create_conn_sync(struct hci_dev * hdev,struct hci_conn * conn)6250 int hci_le_create_conn_sync(struct hci_dev *hdev, struct hci_conn *conn)
6251 {
6252 struct hci_cp_le_create_conn cp;
6253 struct hci_conn_params *params;
6254 u8 own_addr_type;
6255 int err;
6256
6257 /* If requested to connect as peripheral use directed advertising */
6258 if (conn->role == HCI_ROLE_SLAVE) {
6259 /* If we're active scanning and simultaneous roles is not
6260 * enabled simply reject the attempt.
6261 */
6262 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) &&
6263 hdev->le_scan_type == LE_SCAN_ACTIVE &&
6264 !hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) {
6265 hci_conn_del(conn);
6266 return -EBUSY;
6267 }
6268
6269 /* Pause advertising while doing directed advertising. */
6270 hci_pause_advertising_sync(hdev);
6271
6272 err = hci_le_directed_advertising_sync(hdev, conn);
6273 goto done;
6274 }
6275
6276 /* Disable advertising if simultaneous roles is not in use. */
6277 if (!hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES))
6278 hci_pause_advertising_sync(hdev);
6279
6280 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
6281 if (params) {
6282 conn->le_conn_min_interval = params->conn_min_interval;
6283 conn->le_conn_max_interval = params->conn_max_interval;
6284 conn->le_conn_latency = params->conn_latency;
6285 conn->le_supv_timeout = params->supervision_timeout;
6286 } else {
6287 conn->le_conn_min_interval = hdev->le_conn_min_interval;
6288 conn->le_conn_max_interval = hdev->le_conn_max_interval;
6289 conn->le_conn_latency = hdev->le_conn_latency;
6290 conn->le_supv_timeout = hdev->le_supv_timeout;
6291 }
6292
6293 /* If controller is scanning, we stop it since some controllers are
6294 * not able to scan and connect at the same time. Also set the
6295 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete
6296 * handler for scan disabling knows to set the correct discovery
6297 * state.
6298 */
6299 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
6300 hci_scan_disable_sync(hdev);
6301 hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED);
6302 }
6303
6304 /* Update random address, but set require_privacy to false so
6305 * that we never connect with an non-resolvable address.
6306 */
6307 err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
6308 &own_addr_type);
6309 if (err)
6310 goto done;
6311
6312 if (use_ext_conn(hdev)) {
6313 err = hci_le_ext_create_conn_sync(hdev, conn, own_addr_type);
6314 goto done;
6315 }
6316
6317 memset(&cp, 0, sizeof(cp));
6318
6319 cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
6320 cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect);
6321
6322 bacpy(&cp.peer_addr, &conn->dst);
6323 cp.peer_addr_type = conn->dst_type;
6324 cp.own_address_type = own_addr_type;
6325 cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
6326 cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
6327 cp.conn_latency = cpu_to_le16(conn->le_conn_latency);
6328 cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
6329 cp.min_ce_len = cpu_to_le16(0x0000);
6330 cp.max_ce_len = cpu_to_le16(0x0000);
6331
6332 /* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E page 2261:
6333 *
6334 * If this event is unmasked and the HCI_LE_Connection_Complete event
6335 * is unmasked, only the HCI_LE_Enhanced_Connection_Complete event is
6336 * sent when a new connection has been created.
6337 */
6338 err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CONN,
6339 sizeof(cp), &cp,
6340 use_enhanced_conn_complete(hdev) ?
6341 HCI_EV_LE_ENHANCED_CONN_COMPLETE :
6342 HCI_EV_LE_CONN_COMPLETE,
6343 conn->conn_timeout, NULL);
6344
6345 done:
6346 if (err == -ETIMEDOUT)
6347 hci_le_connect_cancel_sync(hdev, conn, 0x00);
6348
6349 /* Re-enable advertising after the connection attempt is finished. */
6350 hci_resume_advertising_sync(hdev);
6351 return err;
6352 }
6353
hci_le_create_cis_sync(struct hci_dev * hdev)6354 int hci_le_create_cis_sync(struct hci_dev *hdev)
6355 {
6356 struct {
6357 struct hci_cp_le_create_cis cp;
6358 struct hci_cis cis[0x1f];
6359 } cmd;
6360 struct hci_conn *conn;
6361 u8 cig = BT_ISO_QOS_CIG_UNSET;
6362
6363 /* The spec allows only one pending LE Create CIS command at a time. If
6364 * the command is pending now, don't do anything. We check for pending
6365 * connections after each CIS Established event.
6366 *
6367 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E
6368 * page 2566:
6369 *
6370 * If the Host issues this command before all the
6371 * HCI_LE_CIS_Established events from the previous use of the
6372 * command have been generated, the Controller shall return the
6373 * error code Command Disallowed (0x0C).
6374 *
6375 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E
6376 * page 2567:
6377 *
6378 * When the Controller receives the HCI_LE_Create_CIS command, the
6379 * Controller sends the HCI_Command_Status event to the Host. An
6380 * HCI_LE_CIS_Established event will be generated for each CIS when it
6381 * is established or if it is disconnected or considered lost before
6382 * being established; until all the events are generated, the command
6383 * remains pending.
6384 */
6385
6386 memset(&cmd, 0, sizeof(cmd));
6387
6388 hci_dev_lock(hdev);
6389
6390 rcu_read_lock();
6391
6392 /* Wait until previous Create CIS has completed */
6393 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) {
6394 if (test_bit(HCI_CONN_CREATE_CIS, &conn->flags))
6395 goto done;
6396 }
6397
6398 /* Find CIG with all CIS ready */
6399 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) {
6400 struct hci_conn *link;
6401
6402 if (hci_conn_check_create_cis(conn))
6403 continue;
6404
6405 cig = conn->iso_qos.ucast.cig;
6406
6407 list_for_each_entry_rcu(link, &hdev->conn_hash.list, list) {
6408 if (hci_conn_check_create_cis(link) > 0 &&
6409 link->iso_qos.ucast.cig == cig &&
6410 link->state != BT_CONNECTED) {
6411 cig = BT_ISO_QOS_CIG_UNSET;
6412 break;
6413 }
6414 }
6415
6416 if (cig != BT_ISO_QOS_CIG_UNSET)
6417 break;
6418 }
6419
6420 if (cig == BT_ISO_QOS_CIG_UNSET)
6421 goto done;
6422
6423 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) {
6424 struct hci_cis *cis = &cmd.cis[cmd.cp.num_cis];
6425
6426 if (hci_conn_check_create_cis(conn) ||
6427 conn->iso_qos.ucast.cig != cig)
6428 continue;
6429
6430 set_bit(HCI_CONN_CREATE_CIS, &conn->flags);
6431 cis->acl_handle = cpu_to_le16(conn->parent->handle);
6432 cis->cis_handle = cpu_to_le16(conn->handle);
6433 cmd.cp.num_cis++;
6434
6435 if (cmd.cp.num_cis >= ARRAY_SIZE(cmd.cis))
6436 break;
6437 }
6438
6439 done:
6440 rcu_read_unlock();
6441
6442 hci_dev_unlock(hdev);
6443
6444 if (!cmd.cp.num_cis)
6445 return 0;
6446
6447 /* Wait for HCI_LE_CIS_Established */
6448 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CIS,
6449 sizeof(cmd.cp) + sizeof(cmd.cis[0]) *
6450 cmd.cp.num_cis, &cmd,
6451 HCI_EVT_LE_CIS_ESTABLISHED,
6452 conn->conn_timeout, NULL);
6453 }
6454
hci_le_remove_cig_sync(struct hci_dev * hdev,u8 handle)6455 int hci_le_remove_cig_sync(struct hci_dev *hdev, u8 handle)
6456 {
6457 struct hci_cp_le_remove_cig cp;
6458
6459 memset(&cp, 0, sizeof(cp));
6460 cp.cig_id = handle;
6461
6462 return __hci_cmd_sync_status(hdev, HCI_OP_LE_REMOVE_CIG, sizeof(cp),
6463 &cp, HCI_CMD_TIMEOUT);
6464 }
6465
hci_le_big_terminate_sync(struct hci_dev * hdev,u8 handle)6466 int hci_le_big_terminate_sync(struct hci_dev *hdev, u8 handle)
6467 {
6468 struct hci_cp_le_big_term_sync cp;
6469
6470 memset(&cp, 0, sizeof(cp));
6471 cp.handle = handle;
6472
6473 return __hci_cmd_sync_status(hdev, HCI_OP_LE_BIG_TERM_SYNC,
6474 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
6475 }
6476
hci_le_pa_terminate_sync(struct hci_dev * hdev,u16 handle)6477 int hci_le_pa_terminate_sync(struct hci_dev *hdev, u16 handle)
6478 {
6479 struct hci_cp_le_pa_term_sync cp;
6480
6481 memset(&cp, 0, sizeof(cp));
6482 cp.handle = cpu_to_le16(handle);
6483
6484 return __hci_cmd_sync_status(hdev, HCI_OP_LE_PA_TERM_SYNC,
6485 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
6486 }
6487
hci_get_random_address(struct hci_dev * hdev,bool require_privacy,bool use_rpa,struct adv_info * adv_instance,u8 * own_addr_type,bdaddr_t * rand_addr)6488 int hci_get_random_address(struct hci_dev *hdev, bool require_privacy,
6489 bool use_rpa, struct adv_info *adv_instance,
6490 u8 *own_addr_type, bdaddr_t *rand_addr)
6491 {
6492 int err;
6493
6494 bacpy(rand_addr, BDADDR_ANY);
6495
6496 /* If privacy is enabled use a resolvable private address. If
6497 * current RPA has expired then generate a new one.
6498 */
6499 if (use_rpa) {
6500 /* If Controller supports LL Privacy use own address type is
6501 * 0x03
6502 */
6503 if (use_ll_privacy(hdev))
6504 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
6505 else
6506 *own_addr_type = ADDR_LE_DEV_RANDOM;
6507
6508 if (adv_instance) {
6509 if (adv_rpa_valid(adv_instance))
6510 return 0;
6511 } else {
6512 if (rpa_valid(hdev))
6513 return 0;
6514 }
6515
6516 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
6517 if (err < 0) {
6518 bt_dev_err(hdev, "failed to generate new RPA");
6519 return err;
6520 }
6521
6522 bacpy(rand_addr, &hdev->rpa);
6523
6524 return 0;
6525 }
6526
6527 /* In case of required privacy without resolvable private address,
6528 * use an non-resolvable private address. This is useful for
6529 * non-connectable advertising.
6530 */
6531 if (require_privacy) {
6532 bdaddr_t nrpa;
6533
6534 while (true) {
6535 /* The non-resolvable private address is generated
6536 * from random six bytes with the two most significant
6537 * bits cleared.
6538 */
6539 get_random_bytes(&nrpa, 6);
6540 nrpa.b[5] &= 0x3f;
6541
6542 /* The non-resolvable private address shall not be
6543 * equal to the public address.
6544 */
6545 if (bacmp(&hdev->bdaddr, &nrpa))
6546 break;
6547 }
6548
6549 *own_addr_type = ADDR_LE_DEV_RANDOM;
6550 bacpy(rand_addr, &nrpa);
6551
6552 return 0;
6553 }
6554
6555 /* No privacy so use a public address. */
6556 *own_addr_type = ADDR_LE_DEV_PUBLIC;
6557
6558 return 0;
6559 }
6560
_update_adv_data_sync(struct hci_dev * hdev,void * data)6561 static int _update_adv_data_sync(struct hci_dev *hdev, void *data)
6562 {
6563 u8 instance = PTR_UINT(data);
6564
6565 return hci_update_adv_data_sync(hdev, instance);
6566 }
6567
hci_update_adv_data(struct hci_dev * hdev,u8 instance)6568 int hci_update_adv_data(struct hci_dev *hdev, u8 instance)
6569 {
6570 return hci_cmd_sync_queue(hdev, _update_adv_data_sync,
6571 UINT_PTR(instance), NULL);
6572 }
6573