1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3 
4 #include <linux/sched.h>
5 #include <linux/errno.h>
6 
7 #ifdef __KERNEL__
8 
9 #include <linux/config.h>
10 #include <linux/string.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/swap.h>
14 #include <linux/rbtree.h>
15 
16 extern unsigned long max_mapnr;
17 extern unsigned long num_physpages;
18 extern unsigned long num_mappedpages;
19 extern void * high_memory;
20 extern int page_cluster;
21 /* The inactive_clean lists are per zone. */
22 extern struct list_head active_list;
23 extern struct list_head inactive_list;
24 
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <asm/atomic.h>
28 
29 /*
30  * Linux kernel virtual memory manager primitives.
31  * The idea being to have a "virtual" mm in the same way
32  * we have a virtual fs - giving a cleaner interface to the
33  * mm details, and allowing different kinds of memory mappings
34  * (from shared memory to executable loading to arbitrary
35  * mmap() functions).
36  */
37 
38 /*
39  * This struct defines a memory VMM memory area. There is one of these
40  * per VM-area/task.  A VM area is any part of the process virtual memory
41  * space that has a special rule for the page-fault handlers (ie a shared
42  * library, the executable area etc).
43  */
44 struct vm_area_struct {
45 	struct mm_struct * vm_mm;	/* The address space we belong to. */
46 	unsigned long vm_start;		/* Our start address within vm_mm. */
47 	unsigned long vm_end;		/* The first byte after our end address
48 					   within vm_mm. */
49 
50 	/* linked list of VM areas per task, sorted by address */
51 	struct vm_area_struct *vm_next;
52 
53 	pgprot_t vm_page_prot;		/* Access permissions of this VMA. */
54 	unsigned long vm_flags;		/* Flags, listed below. */
55 
56 	rb_node_t vm_rb;
57 
58 	/*
59 	 * For areas with an address space and backing store,
60 	 * one of the address_space->i_mmap{,shared} lists,
61 	 * for shm areas, the list of attaches, otherwise unused.
62 	 */
63 	struct vm_area_struct *vm_next_share;
64 	struct vm_area_struct **vm_pprev_share;
65 
66 	/* Function pointers to deal with this struct. */
67 	struct vm_operations_struct * vm_ops;
68 
69 	/* Information about our backing store: */
70 	unsigned long vm_pgoff;		/* Offset (within vm_file) in PAGE_SIZE
71 					   units, *not* PAGE_CACHE_SIZE */
72 	struct file * vm_file;		/* File we map to (can be NULL). */
73 	unsigned long vm_raend;		/* XXX: put full readahead info here. */
74 	void * vm_private_data;		/* was vm_pte (shared mem) */
75 };
76 
77 /*
78  * vm_flags..
79  */
80 #define VM_READ		0x00000001	/* currently active flags */
81 #define VM_WRITE	0x00000002
82 #define VM_EXEC		0x00000004
83 #define VM_SHARED	0x00000008
84 
85 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
86 #define VM_MAYWRITE	0x00000020
87 #define VM_MAYEXEC	0x00000040
88 #define VM_MAYSHARE	0x00000080
89 
90 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
91 #define VM_GROWSUP	0x00000200
92 #define VM_SHM		0x00000400	/* shared memory area, don't swap out */
93 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
94 
95 #define VM_EXECUTABLE	0x00001000
96 #define VM_LOCKED	0x00002000
97 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
98 
99 					/* Used by sys_madvise() */
100 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
101 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
102 
103 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
104 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
105 #define VM_RESERVED	0x00080000	/* Don't unmap it from swap_out */
106 
107 #ifndef VM_STACK_FLAGS
108 #define VM_STACK_FLAGS	0x00000177
109 #endif
110 
111 #define VM_READHINTMASK			(VM_SEQ_READ | VM_RAND_READ)
112 #define VM_ClearReadHint(v)		(v)->vm_flags &= ~VM_READHINTMASK
113 #define VM_NormalReadHint(v)		(!((v)->vm_flags & VM_READHINTMASK))
114 #define VM_SequentialReadHint(v)	((v)->vm_flags & VM_SEQ_READ)
115 #define VM_RandomReadHint(v)		((v)->vm_flags & VM_RAND_READ)
116 
117 /* read ahead limits */
118 extern int vm_min_readahead;
119 extern int vm_max_readahead;
120 extern unsigned long mmap_min_addr;
121 
122 /*
123  * mapping from the currently active vm_flags protection bits (the
124  * low four bits) to a page protection mask..
125  */
126 extern pgprot_t protection_map[16];
127 
128 
129 /*
130  * These are the virtual MM functions - opening of an area, closing and
131  * unmapping it (needed to keep files on disk up-to-date etc), pointer
132  * to the functions called when a no-page or a wp-page exception occurs.
133  */
134 struct vm_operations_struct {
135 	void (*open)(struct vm_area_struct * area);
136 	void (*close)(struct vm_area_struct * area);
137 	struct page * (*nopage)(struct vm_area_struct * area, unsigned long address, int unused);
138 };
139 
140 /*
141  * Each physical page in the system has a struct page associated with
142  * it to keep track of whatever it is we are using the page for at the
143  * moment. Note that we have no way to track which tasks are using
144  * a page.
145  *
146  * Try to keep the most commonly accessed fields in single cache lines
147  * here (16 bytes or greater).  This ordering should be particularly
148  * beneficial on 32-bit processors.
149  *
150  * The first line is data used in page cache lookup, the second line
151  * is used for linear searches (eg. clock algorithm scans).
152  *
153  * TODO: make this structure smaller, it could be as small as 32 bytes.
154  */
155 typedef struct page {
156 	struct list_head list;		/* ->mapping has some page lists. */
157 	struct address_space *mapping;	/* The inode (or ...) we belong to. */
158 	unsigned long index;		/* Our offset within mapping. */
159 	struct page *next_hash;		/* Next page sharing our hash bucket in
160 					   the pagecache hash table. */
161 	atomic_t count;			/* Usage count, see below. */
162 	unsigned long flags;		/* atomic flags, some possibly
163 					   updated asynchronously */
164 	struct list_head lru;		/* Pageout list, eg. active_list;
165 					   protected by pagemap_lru_lock !! */
166 	struct page **pprev_hash;	/* Complement to *next_hash. */
167 	struct buffer_head * buffers;	/* Buffer maps us to a disk block. */
168 
169 	/*
170 	 * On machines where all RAM is mapped into kernel address space,
171 	 * we can simply calculate the virtual address. On machines with
172 	 * highmem some memory is mapped into kernel virtual memory
173 	 * dynamically, so we need a place to store that address.
174 	 * Note that this field could be 16 bits on x86 ... ;)
175 	 *
176 	 * Architectures with slow multiplication can define
177 	 * WANT_PAGE_VIRTUAL in asm/page.h
178 	 */
179 #if defined(CONFIG_HIGHMEM) || defined(WANT_PAGE_VIRTUAL)
180 	void *virtual;			/* Kernel virtual address (NULL if
181 					   not kmapped, ie. highmem) */
182 #endif /* CONFIG_HIGMEM || WANT_PAGE_VIRTUAL */
183 } mem_map_t;
184 
185 /*
186  * Methods to modify the page usage count.
187  *
188  * What counts for a page usage:
189  * - cache mapping   (page->mapping)
190  * - disk mapping    (page->buffers)
191  * - page mapped in a task's page tables, each mapping
192  *   is counted separately
193  *
194  * Also, many kernel routines increase the page count before a critical
195  * routine so they can be sure the page doesn't go away from under them.
196  */
197 #define get_page(p)		atomic_inc(&(p)->count)
198 #define put_page(p)		__free_page(p)
199 #define put_page_testzero(p) 	atomic_dec_and_test(&(p)->count)
200 #define page_count(p)		atomic_read(&(p)->count)
201 #define set_page_count(p,v) 	atomic_set(&(p)->count, v)
202 
nth_page(struct page * page,int n)203 static inline struct page *nth_page(struct page *page, int n)
204 {
205 	return page + n;
206 }
207 
208 /*
209  * Various page->flags bits:
210  *
211  * PG_reserved is set for special pages, which can never be swapped
212  * out. Some of them might not even exist (eg empty_bad_page)...
213  *
214  * Multiple processes may "see" the same page. E.g. for untouched
215  * mappings of /dev/null, all processes see the same page full of
216  * zeroes, and text pages of executables and shared libraries have
217  * only one copy in memory, at most, normally.
218  *
219  * For the non-reserved pages, page->count denotes a reference count.
220  *   page->count == 0 means the page is free.
221  *   page->count == 1 means the page is used for exactly one purpose
222  *   (e.g. a private data page of one process).
223  *
224  * A page may be used for kmalloc() or anyone else who does a
225  * __get_free_page(). In this case the page->count is at least 1, and
226  * all other fields are unused but should be 0 or NULL. The
227  * management of this page is the responsibility of the one who uses
228  * it.
229  *
230  * The other pages (we may call them "process pages") are completely
231  * managed by the Linux memory manager: I/O, buffers, swapping etc.
232  * The following discussion applies only to them.
233  *
234  * A page may belong to an inode's memory mapping. In this case,
235  * page->mapping is the pointer to the inode, and page->index is the
236  * file offset of the page, in units of PAGE_CACHE_SIZE.
237  *
238  * A page may have buffers allocated to it. In this case,
239  * page->buffers is a circular list of these buffer heads. Else,
240  * page->buffers == NULL.
241  *
242  * For pages belonging to inodes, the page->count is the number of
243  * attaches, plus 1 if buffers are allocated to the page, plus one
244  * for the page cache itself.
245  *
246  * All pages belonging to an inode are in these doubly linked lists:
247  * mapping->clean_pages, mapping->dirty_pages and mapping->locked_pages;
248  * using the page->list list_head. These fields are also used for
249  * freelist managemet (when page->count==0).
250  *
251  * There is also a hash table mapping (mapping,index) to the page
252  * in memory if present. The lists for this hash table use the fields
253  * page->next_hash and page->pprev_hash.
254  *
255  * All process pages can do I/O:
256  * - inode pages may need to be read from disk,
257  * - inode pages which have been modified and are MAP_SHARED may need
258  *   to be written to disk,
259  * - private pages which have been modified may need to be swapped out
260  *   to swap space and (later) to be read back into memory.
261  * During disk I/O, PG_locked is used. This bit is set before I/O
262  * and reset when I/O completes. page_waitqueue(page) is a wait queue of all
263  * tasks waiting for the I/O on this page to complete.
264  * PG_uptodate tells whether the page's contents is valid.
265  * When a read completes, the page becomes uptodate, unless a disk I/O
266  * error happened.
267  *
268  * For choosing which pages to swap out, inode pages carry a
269  * PG_referenced bit, which is set any time the system accesses
270  * that page through the (mapping,index) hash table. This referenced
271  * bit, together with the referenced bit in the page tables, is used
272  * to manipulate page->age and move the page across the active,
273  * inactive_dirty and inactive_clean lists.
274  *
275  * Note that the referenced bit, the page->lru list_head and the
276  * active, inactive_dirty and inactive_clean lists are protected by
277  * the pagemap_lru_lock, and *NOT* by the usual PG_locked bit!
278  *
279  * PG_skip is used on sparc/sparc64 architectures to "skip" certain
280  * parts of the address space.
281  *
282  * PG_error is set to indicate that an I/O error occurred on this page.
283  *
284  * PG_arch_1 is an architecture specific page state bit.  The generic
285  * code guarantees that this bit is cleared for a page when it first
286  * is entered into the page cache.
287  *
288  * PG_highmem pages are not permanently mapped into the kernel virtual
289  * address space, they need to be kmapped separately for doing IO on
290  * the pages. The struct page (these bits with information) are always
291  * mapped into kernel address space...
292  */
293 #define PG_locked		 0	/* Page is locked. Don't touch. */
294 #define PG_error		 1
295 #define PG_referenced		 2
296 #define PG_uptodate		 3
297 #define PG_dirty		 4
298 #define PG_unused		 5
299 #define PG_lru			 6
300 #define PG_active		 7
301 #define PG_slab			 8
302 #define PG_skip			10
303 #define PG_highmem		11
304 #define PG_checked		12	/* kill me in 2.5.<early>. */
305 #define PG_arch_1		13
306 #define PG_reserved		14
307 #define PG_launder		15	/* written out by VM pressure.. */
308 #define PG_fs_1			16	/* Filesystem specific */
309 
310 #ifndef arch_set_page_uptodate
311 #define arch_set_page_uptodate(page)
312 #endif
313 
314 /* Make it prettier to test the above... */
315 #define UnlockPage(page)	unlock_page(page)
316 #define Page_Uptodate(page)	test_bit(PG_uptodate, &(page)->flags)
317 #ifndef SetPageUptodate
318 #define SetPageUptodate(page)	set_bit(PG_uptodate, &(page)->flags)
319 #endif
320 #define ClearPageUptodate(page)	clear_bit(PG_uptodate, &(page)->flags)
321 #define PageDirty(page)		test_bit(PG_dirty, &(page)->flags)
322 #define SetPageDirty(page)	set_bit(PG_dirty, &(page)->flags)
323 #define ClearPageDirty(page)	clear_bit(PG_dirty, &(page)->flags)
324 #define PageLocked(page)	test_bit(PG_locked, &(page)->flags)
325 #define LockPage(page)		set_bit(PG_locked, &(page)->flags)
326 #define TryLockPage(page)	test_and_set_bit(PG_locked, &(page)->flags)
327 #define PageChecked(page)	test_bit(PG_checked, &(page)->flags)
328 #define SetPageChecked(page)	set_bit(PG_checked, &(page)->flags)
329 #define ClearPageChecked(page)	clear_bit(PG_checked, &(page)->flags)
330 #define PageLaunder(page)	test_bit(PG_launder, &(page)->flags)
331 #define SetPageLaunder(page)	set_bit(PG_launder, &(page)->flags)
332 #define ClearPageLaunder(page)	clear_bit(PG_launder, &(page)->flags)
333 #define ClearPageArch1(page)	clear_bit(PG_arch_1, &(page)->flags)
334 
335 /*
336  * The zone field is never updated after free_area_init_core()
337  * sets it, so none of the operations on it need to be atomic.
338  */
339 #define NODE_SHIFT 4
340 #define ZONE_SHIFT (BITS_PER_LONG - 8)
341 
342 struct zone_struct;
343 extern struct zone_struct *zone_table[];
344 
page_zone(struct page * page)345 static inline zone_t *page_zone(struct page *page)
346 {
347 	return zone_table[page->flags >> ZONE_SHIFT];
348 }
349 
set_page_zone(struct page * page,unsigned long zone_num)350 static inline void set_page_zone(struct page *page, unsigned long zone_num)
351 {
352 	page->flags &= ~(~0UL << ZONE_SHIFT);
353 	page->flags |= zone_num << ZONE_SHIFT;
354 }
355 
356 /*
357  * In order to avoid #ifdefs within C code itself, we define
358  * set_page_address to a noop for non-highmem machines, where
359  * the field isn't useful.
360  * The same is true for page_address() in arch-dependent code.
361  */
362 #if defined(CONFIG_HIGHMEM) || defined(WANT_PAGE_VIRTUAL)
363 
364 #define set_page_address(page, address)			\
365 	do {						\
366 		(page)->virtual = (address);		\
367 	} while(0)
368 
369 #else /* CONFIG_HIGHMEM || WANT_PAGE_VIRTUAL */
370 #define set_page_address(page, address)  do { } while(0)
371 #endif /* CONFIG_HIGHMEM || WANT_PAGE_VIRTUAL */
372 
373 /*
374  * Permanent address of a page. Obviously must never be
375  * called on a highmem page.
376  */
377 #if defined(CONFIG_HIGHMEM) || defined(WANT_PAGE_VIRTUAL)
378 
379 #define page_address(page) ((page)->virtual)
380 
381 #else /* CONFIG_HIGHMEM || WANT_PAGE_VIRTUAL */
382 
383 #define page_address(page)						\
384 	__va( (((page) - page_zone(page)->zone_mem_map) << PAGE_SHIFT)	\
385 			+ page_zone(page)->zone_start_paddr)
386 
387 #endif /* CONFIG_HIGHMEM || WANT_PAGE_VIRTUAL */
388 
389 extern void FASTCALL(set_page_dirty(struct page *));
390 
391 /*
392  * The first mb is necessary to safely close the critical section opened by the
393  * TryLockPage(), the second mb is necessary to enforce ordering between
394  * the clear_bit and the read of the waitqueue (to avoid SMP races with a
395  * parallel wait_on_page).
396  */
397 #define PageError(page)		test_bit(PG_error, &(page)->flags)
398 #define SetPageError(page)	set_bit(PG_error, &(page)->flags)
399 #define ClearPageError(page)	clear_bit(PG_error, &(page)->flags)
400 #define PageReferenced(page)	test_bit(PG_referenced, &(page)->flags)
401 #define SetPageReferenced(page)	set_bit(PG_referenced, &(page)->flags)
402 #define ClearPageReferenced(page)	clear_bit(PG_referenced, &(page)->flags)
403 #define PageTestandClearReferenced(page)	test_and_clear_bit(PG_referenced, &(page)->flags)
404 #define PageSlab(page)		test_bit(PG_slab, &(page)->flags)
405 #define PageSetSlab(page)	set_bit(PG_slab, &(page)->flags)
406 #define PageClearSlab(page)	clear_bit(PG_slab, &(page)->flags)
407 #define PageReserved(page)	test_bit(PG_reserved, &(page)->flags)
408 
409 #define PageActive(page)	test_bit(PG_active, &(page)->flags)
410 #define SetPageActive(page)	set_bit(PG_active, &(page)->flags)
411 #define ClearPageActive(page)	clear_bit(PG_active, &(page)->flags)
412 
413 #define PageLRU(page)		test_bit(PG_lru, &(page)->flags)
414 #define TestSetPageLRU(page)	test_and_set_bit(PG_lru, &(page)->flags)
415 #define TestClearPageLRU(page)	test_and_clear_bit(PG_lru, &(page)->flags)
416 
417 #ifdef CONFIG_HIGHMEM
418 #define PageHighMem(page)		test_bit(PG_highmem, &(page)->flags)
419 #else
420 #define PageHighMem(page)		0 /* needed to optimize away at compile time */
421 #endif
422 
423 #define SetPageReserved(page)		set_bit(PG_reserved, &(page)->flags)
424 #define ClearPageReserved(page)		clear_bit(PG_reserved, &(page)->flags)
425 
426 /*
427  * Error return values for the *_nopage functions
428  */
429 #define NOPAGE_SIGBUS	(NULL)
430 #define NOPAGE_OOM	((struct page *) (-1))
431 
432 /* The array of struct pages */
433 extern mem_map_t * mem_map;
434 
435 /*
436  * There is only one page-allocator function, and two main namespaces to
437  * it. The alloc_page*() variants return 'struct page *' and as such
438  * can allocate highmem pages, the *get*page*() variants return
439  * virtual kernel addresses to the allocated page(s).
440  */
441 extern struct page * FASTCALL(_alloc_pages(unsigned int gfp_mask, unsigned int order));
442 extern struct page * FASTCALL(__alloc_pages(unsigned int gfp_mask, unsigned int order, zonelist_t *zonelist));
443 extern struct page * alloc_pages_node(int nid, unsigned int gfp_mask, unsigned int order);
444 
alloc_pages(unsigned int gfp_mask,unsigned int order)445 static inline struct page * alloc_pages(unsigned int gfp_mask, unsigned int order)
446 {
447 	/*
448 	 * Gets optimized away by the compiler.
449 	 */
450 	if (order >= MAX_ORDER)
451 		return NULL;
452 	return _alloc_pages(gfp_mask, order);
453 }
454 
455 #define alloc_page(gfp_mask) alloc_pages(gfp_mask, 0)
456 
457 extern unsigned long FASTCALL(__get_free_pages(unsigned int gfp_mask, unsigned int order));
458 extern unsigned long FASTCALL(get_zeroed_page(unsigned int gfp_mask));
459 
460 #define __get_free_page(gfp_mask) \
461 		__get_free_pages((gfp_mask),0)
462 
463 #define __get_dma_pages(gfp_mask, order) \
464 		__get_free_pages((gfp_mask) | GFP_DMA,(order))
465 
466 /*
467  * The old interface name will be removed in 2.5:
468  */
469 #define get_free_page get_zeroed_page
470 
471 /*
472  * There is only one 'core' page-freeing function.
473  */
474 extern void FASTCALL(__free_pages(struct page *page, unsigned int order));
475 extern void FASTCALL(free_pages(unsigned long addr, unsigned int order));
476 
477 #define __free_page(page) __free_pages((page), 0)
478 #define free_page(addr) free_pages((addr),0)
479 
480 extern void show_free_areas(void);
481 extern void show_free_areas_node(pg_data_t *pgdat);
482 
483 extern void clear_page_tables(struct mm_struct *, unsigned long, int);
484 
485 extern int fail_writepage(struct page *);
486 struct page * shmem_nopage(struct vm_area_struct * vma, unsigned long address, int unused);
487 struct file *shmem_file_setup(char * name, loff_t size);
488 extern void shmem_lock(struct file * file, int lock);
489 extern int shmem_zero_setup(struct vm_area_struct *);
490 
491 extern void zap_page_range(struct mm_struct *mm, unsigned long address, unsigned long size);
492 extern int copy_page_range(struct mm_struct *dst, struct mm_struct *src, struct vm_area_struct *vma);
493 extern int remap_page_range(unsigned long from, unsigned long to, unsigned long size, pgprot_t prot);
494 extern int zeromap_page_range(unsigned long from, unsigned long size, pgprot_t prot);
495 
496 extern int vmtruncate(struct inode * inode, loff_t offset);
497 extern pmd_t *FASTCALL(__pmd_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address));
498 extern pte_t *FASTCALL(pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address));
499 extern int handle_mm_fault(struct mm_struct *mm,struct vm_area_struct *vma, unsigned long address, int write_access);
500 extern int make_pages_present(unsigned long addr, unsigned long end);
501 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
502 extern int ptrace_readdata(struct task_struct *tsk, unsigned long src, char *dst, int len);
503 extern int ptrace_writedata(struct task_struct *tsk, char * src, unsigned long dst, int len);
504 extern int ptrace_attach(struct task_struct *tsk);
505 extern int ptrace_detach(struct task_struct *, unsigned int);
506 extern void ptrace_disable(struct task_struct *);
507 extern int ptrace_check_attach(struct task_struct *task, int kill);
508 
509 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
510 		int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
511 
512 /*
513  * On a two-level page table, this ends up being trivial. Thus the
514  * inlining and the symmetry break with pte_alloc() that does all
515  * of this out-of-line.
516  */
pmd_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)517 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
518 {
519 	if (pgd_none(*pgd))
520 		return __pmd_alloc(mm, pgd, address);
521 	return pmd_offset(pgd, address);
522 }
523 
524 extern int pgt_cache_water[2];
525 extern int check_pgt_cache(void);
526 
527 extern void free_area_init(unsigned long * zones_size);
528 extern void free_area_init_node(int nid, pg_data_t *pgdat, struct page *pmap,
529 	unsigned long * zones_size, unsigned long zone_start_paddr,
530 	unsigned long *zholes_size);
531 extern void mem_init(void);
532 extern void show_mem(void);
533 extern void si_meminfo(struct sysinfo * val);
534 extern void swapin_readahead(swp_entry_t);
535 
536 extern struct address_space swapper_space;
537 #define PageSwapCache(page) ((page)->mapping == &swapper_space)
538 
is_page_cache_freeable(struct page * page)539 static inline int is_page_cache_freeable(struct page * page)
540 {
541 	return page_count(page) - !!page->buffers == 1;
542 }
543 
544 extern int FASTCALL(can_share_swap_page(struct page *));
545 extern int FASTCALL(remove_exclusive_swap_page(struct page *));
546 
547 extern void __free_pte(pte_t);
548 
549 /* mmap.c */
550 extern void lock_vma_mappings(struct vm_area_struct *);
551 extern void unlock_vma_mappings(struct vm_area_struct *);
552 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
553 extern void __insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
554 extern void build_mmap_rb(struct mm_struct *);
555 extern void exit_mmap(struct mm_struct *);
556 
557 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
558 
559 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
560 	unsigned long len, unsigned long prot,
561 	unsigned long flag, unsigned long pgoff);
562 
do_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flag,unsigned long offset)563 static inline unsigned long do_mmap(struct file *file, unsigned long addr,
564 	unsigned long len, unsigned long prot,
565 	unsigned long flag, unsigned long offset)
566 {
567 	unsigned long ret = -EINVAL;
568 	if ((offset + PAGE_ALIGN(len)) < offset)
569 		goto out;
570 	if (!(offset & ~PAGE_MASK))
571 		ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
572 out:
573 	return ret;
574 }
575 
576 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
577 
578 extern unsigned long do_brk(unsigned long, unsigned long);
579 
__vma_unlink(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev)580 static inline void __vma_unlink(struct mm_struct * mm, struct vm_area_struct * vma, struct vm_area_struct * prev)
581 {
582 	prev->vm_next = vma->vm_next;
583 	rb_erase(&vma->vm_rb, &mm->mm_rb);
584 	if (mm->mmap_cache == vma)
585 		mm->mmap_cache = prev;
586 }
587 
can_vma_merge(struct vm_area_struct * vma,unsigned long vm_flags)588 static inline int can_vma_merge(struct vm_area_struct * vma, unsigned long vm_flags)
589 {
590 	if (!vma->vm_file && vma->vm_flags == vm_flags)
591 		return 1;
592 	else
593 		return 0;
594 }
595 
596 struct zone_t;
597 /* filemap.c */
598 extern void remove_inode_page(struct page *);
599 extern unsigned long page_unuse(struct page *);
600 extern void truncate_inode_pages(struct address_space *, loff_t);
601 
602 /* generic vm_area_ops exported for stackable file systems */
603 extern int filemap_sync(struct vm_area_struct *, unsigned long,	size_t, unsigned int);
604 extern struct page *filemap_nopage(struct vm_area_struct *, unsigned long, int);
605 
606 /*
607  * GFP bitmasks..
608  */
609 /* Zone modifiers in GFP_ZONEMASK (see linux/mmzone.h - low four bits) */
610 #define __GFP_DMA	0x01
611 #define __GFP_HIGHMEM	0x02
612 
613 /* Action modifiers - doesn't change the zoning */
614 #define __GFP_WAIT	0x10	/* Can wait and reschedule? */
615 #define __GFP_HIGH	0x20	/* Should access emergency pools? */
616 #define __GFP_IO	0x40	/* Can start low memory physical IO? */
617 #define __GFP_HIGHIO	0x80	/* Can start high mem physical IO? */
618 #define __GFP_FS	0x100	/* Can call down to low-level FS? */
619 
620 #define GFP_NOHIGHIO	(__GFP_HIGH | __GFP_WAIT | __GFP_IO)
621 #define GFP_NOIO	(__GFP_HIGH | __GFP_WAIT)
622 #define GFP_NOFS	(__GFP_HIGH | __GFP_WAIT | __GFP_IO | __GFP_HIGHIO)
623 #define GFP_ATOMIC	(__GFP_HIGH)
624 #define GFP_USER	(             __GFP_WAIT | __GFP_IO | __GFP_HIGHIO | __GFP_FS)
625 #define GFP_HIGHUSER	(             __GFP_WAIT | __GFP_IO | __GFP_HIGHIO | __GFP_FS | __GFP_HIGHMEM)
626 #define GFP_KERNEL	(__GFP_HIGH | __GFP_WAIT | __GFP_IO | __GFP_HIGHIO | __GFP_FS)
627 #define GFP_NFS		(__GFP_HIGH | __GFP_WAIT | __GFP_IO | __GFP_HIGHIO | __GFP_FS)
628 #define GFP_KSWAPD	(             __GFP_WAIT | __GFP_IO | __GFP_HIGHIO | __GFP_FS)
629 
630 /* Flag - indicates that the buffer will be suitable for DMA.  Ignored on some
631    platforms, used as appropriate on others */
632 
633 #define GFP_DMA		__GFP_DMA
634 
pf_gfp_mask(unsigned int gfp_mask)635 static inline unsigned int pf_gfp_mask(unsigned int gfp_mask)
636 {
637 	/* avoid all memory balancing I/O methods if this task cannot block on I/O */
638 	if (current->flags & PF_NOIO)
639 		gfp_mask &= ~(__GFP_IO | __GFP_HIGHIO | __GFP_FS);
640 
641 	return gfp_mask;
642 }
643 
644 /* vma is the first one with  address < vma->vm_end,
645  * and even  address < vma->vm_start. Have to extend vma. */
expand_stack(struct vm_area_struct * vma,unsigned long address)646 static inline int expand_stack(struct vm_area_struct * vma, unsigned long address)
647 {
648 	unsigned long grow;
649 
650 	/*
651 	 * vma->vm_start/vm_end cannot change under us because the caller
652 	 * is required to hold the mmap_sem in read mode.  We need the
653 	 * page_table_lock lock to serialize against concurrent expand_stacks.
654 	 */
655 	address &= PAGE_MASK;
656 
657 	/* ensure a non-privileged process is not trying to mmap lower pages */
658 	if (address < mmap_min_addr && !capable(CAP_SYS_RAWIO))
659 		return -EPERM;
660 
661  	spin_lock(&vma->vm_mm->page_table_lock);
662 
663 	/* already expanded while we were spinning? */
664 	if (vma->vm_start <= address) {
665 		spin_unlock(&vma->vm_mm->page_table_lock);
666 		return 0;
667 	}
668 
669 	grow = (vma->vm_start - address) >> PAGE_SHIFT;
670 	if (vma->vm_end - address > current->rlim[RLIMIT_STACK].rlim_cur ||
671 	    ((vma->vm_mm->total_vm + grow) << PAGE_SHIFT) > current->rlim[RLIMIT_AS].rlim_cur) {
672 		spin_unlock(&vma->vm_mm->page_table_lock);
673 		return -ENOMEM;
674 	}
675 
676 	if ((vma->vm_flags & VM_LOCKED) &&
677       	    ((vma->vm_mm->locked_vm + grow) << PAGE_SHIFT) > current->rlim[RLIMIT_MEMLOCK].rlim_cur) {
678 		spin_unlock(&vma->vm_mm->page_table_lock);
679 		return -ENOMEM;
680 	}
681 
682 
683 	vma->vm_start = address;
684 	vma->vm_pgoff -= grow;
685 	vma->vm_mm->total_vm += grow;
686 	if (vma->vm_flags & VM_LOCKED)
687 		vma->vm_mm->locked_vm += grow;
688 	spin_unlock(&vma->vm_mm->page_table_lock);
689 	return 0;
690 }
691 
692 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
693 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
694 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
695 					     struct vm_area_struct **pprev);
696 
697 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
698    NULL if none.  Assume start_addr < end_addr. */
find_vma_intersection(struct mm_struct * mm,unsigned long start_addr,unsigned long end_addr)699 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
700 {
701 	struct vm_area_struct * vma = find_vma(mm,start_addr);
702 
703 	if (vma && end_addr <= vma->vm_start)
704 		vma = NULL;
705 	return vma;
706 }
707 
708 extern struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr);
709 
710 extern struct page * vmalloc_to_page(void *addr);
711 
712 #endif /* __KERNEL__ */
713 
714 #endif
715