1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/super.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * Big-endian to little-endian byte-swapping/bitmaps by
17 * David S. Miller (davem@caip.rutgers.edu), 1995
18 */
19
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/uaccess.h>
43 #include <linux/iversion.h>
44 #include <linux/unicode.h>
45 #include <linux/part_stat.h>
46 #include <linux/kthread.h>
47 #include <linux/freezer.h>
48 #include <linux/fsnotify.h>
49 #include <linux/fs_context.h>
50 #include <linux/fs_parser.h>
51
52 #include "ext4.h"
53 #include "ext4_extents.h" /* Needed for trace points definition */
54 #include "ext4_jbd2.h"
55 #include "xattr.h"
56 #include "acl.h"
57 #include "mballoc.h"
58 #include "fsmap.h"
59
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/ext4.h>
62
63 static struct ext4_lazy_init *ext4_li_info;
64 static DEFINE_MUTEX(ext4_li_mtx);
65 static struct ratelimit_state ext4_mount_msg_ratelimit;
66
67 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
68 unsigned long journal_devnum);
69 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
70 static void ext4_update_super(struct super_block *sb);
71 static int ext4_commit_super(struct super_block *sb);
72 static int ext4_mark_recovery_complete(struct super_block *sb,
73 struct ext4_super_block *es);
74 static int ext4_clear_journal_err(struct super_block *sb,
75 struct ext4_super_block *es);
76 static int ext4_sync_fs(struct super_block *sb, int wait);
77 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
78 static int ext4_unfreeze(struct super_block *sb);
79 static int ext4_freeze(struct super_block *sb);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static void ext4_destroy_lazyinit_thread(void);
83 static void ext4_unregister_li_request(struct super_block *sb);
84 static void ext4_clear_request_list(void);
85 static struct inode *ext4_get_journal_inode(struct super_block *sb,
86 unsigned int journal_inum);
87 static int ext4_validate_options(struct fs_context *fc);
88 static int ext4_check_opt_consistency(struct fs_context *fc,
89 struct super_block *sb);
90 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb);
91 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param);
92 static int ext4_get_tree(struct fs_context *fc);
93 static int ext4_reconfigure(struct fs_context *fc);
94 static void ext4_fc_free(struct fs_context *fc);
95 static int ext4_init_fs_context(struct fs_context *fc);
96 static const struct fs_parameter_spec ext4_param_specs[];
97
98 /*
99 * Lock ordering
100 *
101 * page fault path:
102 * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start
103 * -> page lock -> i_data_sem (rw)
104 *
105 * buffered write path:
106 * sb_start_write -> i_mutex -> mmap_lock
107 * sb_start_write -> i_mutex -> transaction start -> page lock ->
108 * i_data_sem (rw)
109 *
110 * truncate:
111 * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) ->
112 * page lock
113 * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start ->
114 * i_data_sem (rw)
115 *
116 * direct IO:
117 * sb_start_write -> i_mutex -> mmap_lock
118 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
119 *
120 * writepages:
121 * transaction start -> page lock(s) -> i_data_sem (rw)
122 */
123
124 static const struct fs_context_operations ext4_context_ops = {
125 .parse_param = ext4_parse_param,
126 .get_tree = ext4_get_tree,
127 .reconfigure = ext4_reconfigure,
128 .free = ext4_fc_free,
129 };
130
131
132 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
133 static struct file_system_type ext2_fs_type = {
134 .owner = THIS_MODULE,
135 .name = "ext2",
136 .init_fs_context = ext4_init_fs_context,
137 .parameters = ext4_param_specs,
138 .kill_sb = kill_block_super,
139 .fs_flags = FS_REQUIRES_DEV,
140 };
141 MODULE_ALIAS_FS("ext2");
142 MODULE_ALIAS("ext2");
143 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
144 #else
145 #define IS_EXT2_SB(sb) (0)
146 #endif
147
148
149 static struct file_system_type ext3_fs_type = {
150 .owner = THIS_MODULE,
151 .name = "ext3",
152 .init_fs_context = ext4_init_fs_context,
153 .parameters = ext4_param_specs,
154 .kill_sb = kill_block_super,
155 .fs_flags = FS_REQUIRES_DEV,
156 };
157 MODULE_ALIAS_FS("ext3");
158 MODULE_ALIAS("ext3");
159 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
160
161
__ext4_read_bh(struct buffer_head * bh,blk_opf_t op_flags,bh_end_io_t * end_io)162 static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
163 bh_end_io_t *end_io)
164 {
165 /*
166 * buffer's verified bit is no longer valid after reading from
167 * disk again due to write out error, clear it to make sure we
168 * recheck the buffer contents.
169 */
170 clear_buffer_verified(bh);
171
172 bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
173 get_bh(bh);
174 submit_bh(REQ_OP_READ | op_flags, bh);
175 }
176
ext4_read_bh_nowait(struct buffer_head * bh,blk_opf_t op_flags,bh_end_io_t * end_io)177 void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags,
178 bh_end_io_t *end_io)
179 {
180 BUG_ON(!buffer_locked(bh));
181
182 if (ext4_buffer_uptodate(bh)) {
183 unlock_buffer(bh);
184 return;
185 }
186 __ext4_read_bh(bh, op_flags, end_io);
187 }
188
ext4_read_bh(struct buffer_head * bh,blk_opf_t op_flags,bh_end_io_t * end_io)189 int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags, bh_end_io_t *end_io)
190 {
191 BUG_ON(!buffer_locked(bh));
192
193 if (ext4_buffer_uptodate(bh)) {
194 unlock_buffer(bh);
195 return 0;
196 }
197
198 __ext4_read_bh(bh, op_flags, end_io);
199
200 wait_on_buffer(bh);
201 if (buffer_uptodate(bh))
202 return 0;
203 return -EIO;
204 }
205
ext4_read_bh_lock(struct buffer_head * bh,blk_opf_t op_flags,bool wait)206 int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
207 {
208 lock_buffer(bh);
209 if (!wait) {
210 ext4_read_bh_nowait(bh, op_flags, NULL);
211 return 0;
212 }
213 return ext4_read_bh(bh, op_flags, NULL);
214 }
215
216 /*
217 * This works like __bread_gfp() except it uses ERR_PTR for error
218 * returns. Currently with sb_bread it's impossible to distinguish
219 * between ENOMEM and EIO situations (since both result in a NULL
220 * return.
221 */
__ext4_sb_bread_gfp(struct super_block * sb,sector_t block,blk_opf_t op_flags,gfp_t gfp)222 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
223 sector_t block,
224 blk_opf_t op_flags, gfp_t gfp)
225 {
226 struct buffer_head *bh;
227 int ret;
228
229 bh = sb_getblk_gfp(sb, block, gfp);
230 if (bh == NULL)
231 return ERR_PTR(-ENOMEM);
232 if (ext4_buffer_uptodate(bh))
233 return bh;
234
235 ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
236 if (ret) {
237 put_bh(bh);
238 return ERR_PTR(ret);
239 }
240 return bh;
241 }
242
ext4_sb_bread(struct super_block * sb,sector_t block,blk_opf_t op_flags)243 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
244 blk_opf_t op_flags)
245 {
246 return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE);
247 }
248
ext4_sb_bread_unmovable(struct super_block * sb,sector_t block)249 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
250 sector_t block)
251 {
252 return __ext4_sb_bread_gfp(sb, block, 0, 0);
253 }
254
ext4_sb_breadahead_unmovable(struct super_block * sb,sector_t block)255 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
256 {
257 struct buffer_head *bh = sb_getblk_gfp(sb, block, 0);
258
259 if (likely(bh)) {
260 if (trylock_buffer(bh))
261 ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL);
262 brelse(bh);
263 }
264 }
265
ext4_verify_csum_type(struct super_block * sb,struct ext4_super_block * es)266 static int ext4_verify_csum_type(struct super_block *sb,
267 struct ext4_super_block *es)
268 {
269 if (!ext4_has_feature_metadata_csum(sb))
270 return 1;
271
272 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
273 }
274
ext4_superblock_csum(struct super_block * sb,struct ext4_super_block * es)275 __le32 ext4_superblock_csum(struct super_block *sb,
276 struct ext4_super_block *es)
277 {
278 struct ext4_sb_info *sbi = EXT4_SB(sb);
279 int offset = offsetof(struct ext4_super_block, s_checksum);
280 __u32 csum;
281
282 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
283
284 return cpu_to_le32(csum);
285 }
286
ext4_superblock_csum_verify(struct super_block * sb,struct ext4_super_block * es)287 static int ext4_superblock_csum_verify(struct super_block *sb,
288 struct ext4_super_block *es)
289 {
290 if (!ext4_has_metadata_csum(sb))
291 return 1;
292
293 return es->s_checksum == ext4_superblock_csum(sb, es);
294 }
295
ext4_superblock_csum_set(struct super_block * sb)296 void ext4_superblock_csum_set(struct super_block *sb)
297 {
298 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
299
300 if (!ext4_has_metadata_csum(sb))
301 return;
302
303 es->s_checksum = ext4_superblock_csum(sb, es);
304 }
305
ext4_block_bitmap(struct super_block * sb,struct ext4_group_desc * bg)306 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
307 struct ext4_group_desc *bg)
308 {
309 return le32_to_cpu(bg->bg_block_bitmap_lo) |
310 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
311 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
312 }
313
ext4_inode_bitmap(struct super_block * sb,struct ext4_group_desc * bg)314 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
315 struct ext4_group_desc *bg)
316 {
317 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
318 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
319 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
320 }
321
ext4_inode_table(struct super_block * sb,struct ext4_group_desc * bg)322 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
323 struct ext4_group_desc *bg)
324 {
325 return le32_to_cpu(bg->bg_inode_table_lo) |
326 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
327 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
328 }
329
ext4_free_group_clusters(struct super_block * sb,struct ext4_group_desc * bg)330 __u32 ext4_free_group_clusters(struct super_block *sb,
331 struct ext4_group_desc *bg)
332 {
333 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
334 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
335 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
336 }
337
ext4_free_inodes_count(struct super_block * sb,struct ext4_group_desc * bg)338 __u32 ext4_free_inodes_count(struct super_block *sb,
339 struct ext4_group_desc *bg)
340 {
341 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
342 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
343 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
344 }
345
ext4_used_dirs_count(struct super_block * sb,struct ext4_group_desc * bg)346 __u32 ext4_used_dirs_count(struct super_block *sb,
347 struct ext4_group_desc *bg)
348 {
349 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
350 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
351 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
352 }
353
ext4_itable_unused_count(struct super_block * sb,struct ext4_group_desc * bg)354 __u32 ext4_itable_unused_count(struct super_block *sb,
355 struct ext4_group_desc *bg)
356 {
357 return le16_to_cpu(bg->bg_itable_unused_lo) |
358 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
359 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
360 }
361
ext4_block_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)362 void ext4_block_bitmap_set(struct super_block *sb,
363 struct ext4_group_desc *bg, ext4_fsblk_t blk)
364 {
365 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
366 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
367 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
368 }
369
ext4_inode_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)370 void ext4_inode_bitmap_set(struct super_block *sb,
371 struct ext4_group_desc *bg, ext4_fsblk_t blk)
372 {
373 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
374 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
375 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
376 }
377
ext4_inode_table_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)378 void ext4_inode_table_set(struct super_block *sb,
379 struct ext4_group_desc *bg, ext4_fsblk_t blk)
380 {
381 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
382 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
383 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
384 }
385
ext4_free_group_clusters_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)386 void ext4_free_group_clusters_set(struct super_block *sb,
387 struct ext4_group_desc *bg, __u32 count)
388 {
389 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
390 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
391 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
392 }
393
ext4_free_inodes_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)394 void ext4_free_inodes_set(struct super_block *sb,
395 struct ext4_group_desc *bg, __u32 count)
396 {
397 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
398 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
399 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
400 }
401
ext4_used_dirs_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)402 void ext4_used_dirs_set(struct super_block *sb,
403 struct ext4_group_desc *bg, __u32 count)
404 {
405 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
406 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
407 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
408 }
409
ext4_itable_unused_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)410 void ext4_itable_unused_set(struct super_block *sb,
411 struct ext4_group_desc *bg, __u32 count)
412 {
413 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
414 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
415 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
416 }
417
__ext4_update_tstamp(__le32 * lo,__u8 * hi,time64_t now)418 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
419 {
420 now = clamp_val(now, 0, (1ull << 40) - 1);
421
422 *lo = cpu_to_le32(lower_32_bits(now));
423 *hi = upper_32_bits(now);
424 }
425
__ext4_get_tstamp(__le32 * lo,__u8 * hi)426 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
427 {
428 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
429 }
430 #define ext4_update_tstamp(es, tstamp) \
431 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
432 ktime_get_real_seconds())
433 #define ext4_get_tstamp(es, tstamp) \
434 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
435
436 /*
437 * The del_gendisk() function uninitializes the disk-specific data
438 * structures, including the bdi structure, without telling anyone
439 * else. Once this happens, any attempt to call mark_buffer_dirty()
440 * (for example, by ext4_commit_super), will cause a kernel OOPS.
441 * This is a kludge to prevent these oops until we can put in a proper
442 * hook in del_gendisk() to inform the VFS and file system layers.
443 */
block_device_ejected(struct super_block * sb)444 static int block_device_ejected(struct super_block *sb)
445 {
446 struct inode *bd_inode = sb->s_bdev->bd_inode;
447 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
448
449 return bdi->dev == NULL;
450 }
451
ext4_journal_commit_callback(journal_t * journal,transaction_t * txn)452 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
453 {
454 struct super_block *sb = journal->j_private;
455 struct ext4_sb_info *sbi = EXT4_SB(sb);
456 int error = is_journal_aborted(journal);
457 struct ext4_journal_cb_entry *jce;
458
459 BUG_ON(txn->t_state == T_FINISHED);
460
461 ext4_process_freed_data(sb, txn->t_tid);
462
463 spin_lock(&sbi->s_md_lock);
464 while (!list_empty(&txn->t_private_list)) {
465 jce = list_entry(txn->t_private_list.next,
466 struct ext4_journal_cb_entry, jce_list);
467 list_del_init(&jce->jce_list);
468 spin_unlock(&sbi->s_md_lock);
469 jce->jce_func(sb, jce, error);
470 spin_lock(&sbi->s_md_lock);
471 }
472 spin_unlock(&sbi->s_md_lock);
473 }
474
475 /*
476 * This writepage callback for write_cache_pages()
477 * takes care of a few cases after page cleaning.
478 *
479 * write_cache_pages() already checks for dirty pages
480 * and calls clear_page_dirty_for_io(), which we want,
481 * to write protect the pages.
482 *
483 * However, we may have to redirty a page (see below.)
484 */
ext4_journalled_writepage_callback(struct page * page,struct writeback_control * wbc,void * data)485 static int ext4_journalled_writepage_callback(struct page *page,
486 struct writeback_control *wbc,
487 void *data)
488 {
489 transaction_t *transaction = (transaction_t *) data;
490 struct buffer_head *bh, *head;
491 struct journal_head *jh;
492
493 bh = head = page_buffers(page);
494 do {
495 /*
496 * We have to redirty a page in these cases:
497 * 1) If buffer is dirty, it means the page was dirty because it
498 * contains a buffer that needs checkpointing. So the dirty bit
499 * needs to be preserved so that checkpointing writes the buffer
500 * properly.
501 * 2) If buffer is not part of the committing transaction
502 * (we may have just accidentally come across this buffer because
503 * inode range tracking is not exact) or if the currently running
504 * transaction already contains this buffer as well, dirty bit
505 * needs to be preserved so that the buffer gets writeprotected
506 * properly on running transaction's commit.
507 */
508 jh = bh2jh(bh);
509 if (buffer_dirty(bh) ||
510 (jh && (jh->b_transaction != transaction ||
511 jh->b_next_transaction))) {
512 redirty_page_for_writepage(wbc, page);
513 goto out;
514 }
515 } while ((bh = bh->b_this_page) != head);
516
517 out:
518 return AOP_WRITEPAGE_ACTIVATE;
519 }
520
ext4_journalled_submit_inode_data_buffers(struct jbd2_inode * jinode)521 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
522 {
523 struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
524 struct writeback_control wbc = {
525 .sync_mode = WB_SYNC_ALL,
526 .nr_to_write = LONG_MAX,
527 .range_start = jinode->i_dirty_start,
528 .range_end = jinode->i_dirty_end,
529 };
530
531 return write_cache_pages(mapping, &wbc,
532 ext4_journalled_writepage_callback,
533 jinode->i_transaction);
534 }
535
ext4_journal_submit_inode_data_buffers(struct jbd2_inode * jinode)536 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
537 {
538 int ret;
539
540 if (ext4_should_journal_data(jinode->i_vfs_inode))
541 ret = ext4_journalled_submit_inode_data_buffers(jinode);
542 else
543 ret = jbd2_journal_submit_inode_data_buffers(jinode);
544
545 return ret;
546 }
547
ext4_journal_finish_inode_data_buffers(struct jbd2_inode * jinode)548 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
549 {
550 int ret = 0;
551
552 if (!ext4_should_journal_data(jinode->i_vfs_inode))
553 ret = jbd2_journal_finish_inode_data_buffers(jinode);
554
555 return ret;
556 }
557
system_going_down(void)558 static bool system_going_down(void)
559 {
560 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
561 || system_state == SYSTEM_RESTART;
562 }
563
564 struct ext4_err_translation {
565 int code;
566 int errno;
567 };
568
569 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
570
571 static struct ext4_err_translation err_translation[] = {
572 EXT4_ERR_TRANSLATE(EIO),
573 EXT4_ERR_TRANSLATE(ENOMEM),
574 EXT4_ERR_TRANSLATE(EFSBADCRC),
575 EXT4_ERR_TRANSLATE(EFSCORRUPTED),
576 EXT4_ERR_TRANSLATE(ENOSPC),
577 EXT4_ERR_TRANSLATE(ENOKEY),
578 EXT4_ERR_TRANSLATE(EROFS),
579 EXT4_ERR_TRANSLATE(EFBIG),
580 EXT4_ERR_TRANSLATE(EEXIST),
581 EXT4_ERR_TRANSLATE(ERANGE),
582 EXT4_ERR_TRANSLATE(EOVERFLOW),
583 EXT4_ERR_TRANSLATE(EBUSY),
584 EXT4_ERR_TRANSLATE(ENOTDIR),
585 EXT4_ERR_TRANSLATE(ENOTEMPTY),
586 EXT4_ERR_TRANSLATE(ESHUTDOWN),
587 EXT4_ERR_TRANSLATE(EFAULT),
588 };
589
ext4_errno_to_code(int errno)590 static int ext4_errno_to_code(int errno)
591 {
592 int i;
593
594 for (i = 0; i < ARRAY_SIZE(err_translation); i++)
595 if (err_translation[i].errno == errno)
596 return err_translation[i].code;
597 return EXT4_ERR_UNKNOWN;
598 }
599
save_error_info(struct super_block * sb,int error,__u32 ino,__u64 block,const char * func,unsigned int line)600 static void save_error_info(struct super_block *sb, int error,
601 __u32 ino, __u64 block,
602 const char *func, unsigned int line)
603 {
604 struct ext4_sb_info *sbi = EXT4_SB(sb);
605
606 /* We default to EFSCORRUPTED error... */
607 if (error == 0)
608 error = EFSCORRUPTED;
609
610 spin_lock(&sbi->s_error_lock);
611 sbi->s_add_error_count++;
612 sbi->s_last_error_code = error;
613 sbi->s_last_error_line = line;
614 sbi->s_last_error_ino = ino;
615 sbi->s_last_error_block = block;
616 sbi->s_last_error_func = func;
617 sbi->s_last_error_time = ktime_get_real_seconds();
618 if (!sbi->s_first_error_time) {
619 sbi->s_first_error_code = error;
620 sbi->s_first_error_line = line;
621 sbi->s_first_error_ino = ino;
622 sbi->s_first_error_block = block;
623 sbi->s_first_error_func = func;
624 sbi->s_first_error_time = sbi->s_last_error_time;
625 }
626 spin_unlock(&sbi->s_error_lock);
627 }
628
629 /* Deal with the reporting of failure conditions on a filesystem such as
630 * inconsistencies detected or read IO failures.
631 *
632 * On ext2, we can store the error state of the filesystem in the
633 * superblock. That is not possible on ext4, because we may have other
634 * write ordering constraints on the superblock which prevent us from
635 * writing it out straight away; and given that the journal is about to
636 * be aborted, we can't rely on the current, or future, transactions to
637 * write out the superblock safely.
638 *
639 * We'll just use the jbd2_journal_abort() error code to record an error in
640 * the journal instead. On recovery, the journal will complain about
641 * that error until we've noted it down and cleared it.
642 *
643 * If force_ro is set, we unconditionally force the filesystem into an
644 * ABORT|READONLY state, unless the error response on the fs has been set to
645 * panic in which case we take the easy way out and panic immediately. This is
646 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
647 * at a critical moment in log management.
648 */
ext4_handle_error(struct super_block * sb,bool force_ro,int error,__u32 ino,__u64 block,const char * func,unsigned int line)649 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
650 __u32 ino, __u64 block,
651 const char *func, unsigned int line)
652 {
653 journal_t *journal = EXT4_SB(sb)->s_journal;
654 bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
655
656 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
657 if (test_opt(sb, WARN_ON_ERROR))
658 WARN_ON_ONCE(1);
659
660 if (!continue_fs && !sb_rdonly(sb)) {
661 ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
662 if (journal)
663 jbd2_journal_abort(journal, -EIO);
664 }
665
666 if (!bdev_read_only(sb->s_bdev)) {
667 save_error_info(sb, error, ino, block, func, line);
668 /*
669 * In case the fs should keep running, we need to writeout
670 * superblock through the journal. Due to lock ordering
671 * constraints, it may not be safe to do it right here so we
672 * defer superblock flushing to a workqueue.
673 */
674 if (continue_fs && journal)
675 schedule_work(&EXT4_SB(sb)->s_error_work);
676 else
677 ext4_commit_super(sb);
678 }
679
680 /*
681 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
682 * could panic during 'reboot -f' as the underlying device got already
683 * disabled.
684 */
685 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
686 panic("EXT4-fs (device %s): panic forced after error\n",
687 sb->s_id);
688 }
689
690 if (sb_rdonly(sb) || continue_fs)
691 return;
692
693 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
694 /*
695 * Make sure updated value of ->s_mount_flags will be visible before
696 * ->s_flags update
697 */
698 smp_wmb();
699 sb->s_flags |= SB_RDONLY;
700 }
701
flush_stashed_error_work(struct work_struct * work)702 static void flush_stashed_error_work(struct work_struct *work)
703 {
704 struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
705 s_error_work);
706 journal_t *journal = sbi->s_journal;
707 handle_t *handle;
708
709 /*
710 * If the journal is still running, we have to write out superblock
711 * through the journal to avoid collisions of other journalled sb
712 * updates.
713 *
714 * We use directly jbd2 functions here to avoid recursing back into
715 * ext4 error handling code during handling of previous errors.
716 */
717 if (!sb_rdonly(sbi->s_sb) && journal) {
718 struct buffer_head *sbh = sbi->s_sbh;
719 handle = jbd2_journal_start(journal, 1);
720 if (IS_ERR(handle))
721 goto write_directly;
722 if (jbd2_journal_get_write_access(handle, sbh)) {
723 jbd2_journal_stop(handle);
724 goto write_directly;
725 }
726 ext4_update_super(sbi->s_sb);
727 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
728 ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
729 "superblock detected");
730 clear_buffer_write_io_error(sbh);
731 set_buffer_uptodate(sbh);
732 }
733
734 if (jbd2_journal_dirty_metadata(handle, sbh)) {
735 jbd2_journal_stop(handle);
736 goto write_directly;
737 }
738 jbd2_journal_stop(handle);
739 ext4_notify_error_sysfs(sbi);
740 return;
741 }
742 write_directly:
743 /*
744 * Write through journal failed. Write sb directly to get error info
745 * out and hope for the best.
746 */
747 ext4_commit_super(sbi->s_sb);
748 ext4_notify_error_sysfs(sbi);
749 }
750
751 #define ext4_error_ratelimit(sb) \
752 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
753 "EXT4-fs error")
754
__ext4_error(struct super_block * sb,const char * function,unsigned int line,bool force_ro,int error,__u64 block,const char * fmt,...)755 void __ext4_error(struct super_block *sb, const char *function,
756 unsigned int line, bool force_ro, int error, __u64 block,
757 const char *fmt, ...)
758 {
759 struct va_format vaf;
760 va_list args;
761
762 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
763 return;
764
765 trace_ext4_error(sb, function, line);
766 if (ext4_error_ratelimit(sb)) {
767 va_start(args, fmt);
768 vaf.fmt = fmt;
769 vaf.va = &args;
770 printk(KERN_CRIT
771 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
772 sb->s_id, function, line, current->comm, &vaf);
773 va_end(args);
774 }
775 fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED);
776
777 ext4_handle_error(sb, force_ro, error, 0, block, function, line);
778 }
779
__ext4_error_inode(struct inode * inode,const char * function,unsigned int line,ext4_fsblk_t block,int error,const char * fmt,...)780 void __ext4_error_inode(struct inode *inode, const char *function,
781 unsigned int line, ext4_fsblk_t block, int error,
782 const char *fmt, ...)
783 {
784 va_list args;
785 struct va_format vaf;
786
787 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
788 return;
789
790 trace_ext4_error(inode->i_sb, function, line);
791 if (ext4_error_ratelimit(inode->i_sb)) {
792 va_start(args, fmt);
793 vaf.fmt = fmt;
794 vaf.va = &args;
795 if (block)
796 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
797 "inode #%lu: block %llu: comm %s: %pV\n",
798 inode->i_sb->s_id, function, line, inode->i_ino,
799 block, current->comm, &vaf);
800 else
801 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
802 "inode #%lu: comm %s: %pV\n",
803 inode->i_sb->s_id, function, line, inode->i_ino,
804 current->comm, &vaf);
805 va_end(args);
806 }
807 fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED);
808
809 ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
810 function, line);
811 }
812
__ext4_error_file(struct file * file,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)813 void __ext4_error_file(struct file *file, const char *function,
814 unsigned int line, ext4_fsblk_t block,
815 const char *fmt, ...)
816 {
817 va_list args;
818 struct va_format vaf;
819 struct inode *inode = file_inode(file);
820 char pathname[80], *path;
821
822 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
823 return;
824
825 trace_ext4_error(inode->i_sb, function, line);
826 if (ext4_error_ratelimit(inode->i_sb)) {
827 path = file_path(file, pathname, sizeof(pathname));
828 if (IS_ERR(path))
829 path = "(unknown)";
830 va_start(args, fmt);
831 vaf.fmt = fmt;
832 vaf.va = &args;
833 if (block)
834 printk(KERN_CRIT
835 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
836 "block %llu: comm %s: path %s: %pV\n",
837 inode->i_sb->s_id, function, line, inode->i_ino,
838 block, current->comm, path, &vaf);
839 else
840 printk(KERN_CRIT
841 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
842 "comm %s: path %s: %pV\n",
843 inode->i_sb->s_id, function, line, inode->i_ino,
844 current->comm, path, &vaf);
845 va_end(args);
846 }
847 fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED);
848
849 ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
850 function, line);
851 }
852
ext4_decode_error(struct super_block * sb,int errno,char nbuf[16])853 const char *ext4_decode_error(struct super_block *sb, int errno,
854 char nbuf[16])
855 {
856 char *errstr = NULL;
857
858 switch (errno) {
859 case -EFSCORRUPTED:
860 errstr = "Corrupt filesystem";
861 break;
862 case -EFSBADCRC:
863 errstr = "Filesystem failed CRC";
864 break;
865 case -EIO:
866 errstr = "IO failure";
867 break;
868 case -ENOMEM:
869 errstr = "Out of memory";
870 break;
871 case -EROFS:
872 if (!sb || (EXT4_SB(sb)->s_journal &&
873 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
874 errstr = "Journal has aborted";
875 else
876 errstr = "Readonly filesystem";
877 break;
878 default:
879 /* If the caller passed in an extra buffer for unknown
880 * errors, textualise them now. Else we just return
881 * NULL. */
882 if (nbuf) {
883 /* Check for truncated error codes... */
884 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
885 errstr = nbuf;
886 }
887 break;
888 }
889
890 return errstr;
891 }
892
893 /* __ext4_std_error decodes expected errors from journaling functions
894 * automatically and invokes the appropriate error response. */
895
__ext4_std_error(struct super_block * sb,const char * function,unsigned int line,int errno)896 void __ext4_std_error(struct super_block *sb, const char *function,
897 unsigned int line, int errno)
898 {
899 char nbuf[16];
900 const char *errstr;
901
902 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
903 return;
904
905 /* Special case: if the error is EROFS, and we're not already
906 * inside a transaction, then there's really no point in logging
907 * an error. */
908 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
909 return;
910
911 if (ext4_error_ratelimit(sb)) {
912 errstr = ext4_decode_error(sb, errno, nbuf);
913 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
914 sb->s_id, function, line, errstr);
915 }
916 fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED);
917
918 ext4_handle_error(sb, false, -errno, 0, 0, function, line);
919 }
920
__ext4_msg(struct super_block * sb,const char * prefix,const char * fmt,...)921 void __ext4_msg(struct super_block *sb,
922 const char *prefix, const char *fmt, ...)
923 {
924 struct va_format vaf;
925 va_list args;
926
927 if (sb) {
928 atomic_inc(&EXT4_SB(sb)->s_msg_count);
929 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state),
930 "EXT4-fs"))
931 return;
932 }
933
934 va_start(args, fmt);
935 vaf.fmt = fmt;
936 vaf.va = &args;
937 if (sb)
938 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
939 else
940 printk("%sEXT4-fs: %pV\n", prefix, &vaf);
941 va_end(args);
942 }
943
ext4_warning_ratelimit(struct super_block * sb)944 static int ext4_warning_ratelimit(struct super_block *sb)
945 {
946 atomic_inc(&EXT4_SB(sb)->s_warning_count);
947 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
948 "EXT4-fs warning");
949 }
950
__ext4_warning(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)951 void __ext4_warning(struct super_block *sb, const char *function,
952 unsigned int line, const char *fmt, ...)
953 {
954 struct va_format vaf;
955 va_list args;
956
957 if (!ext4_warning_ratelimit(sb))
958 return;
959
960 va_start(args, fmt);
961 vaf.fmt = fmt;
962 vaf.va = &args;
963 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
964 sb->s_id, function, line, &vaf);
965 va_end(args);
966 }
967
__ext4_warning_inode(const struct inode * inode,const char * function,unsigned int line,const char * fmt,...)968 void __ext4_warning_inode(const struct inode *inode, const char *function,
969 unsigned int line, const char *fmt, ...)
970 {
971 struct va_format vaf;
972 va_list args;
973
974 if (!ext4_warning_ratelimit(inode->i_sb))
975 return;
976
977 va_start(args, fmt);
978 vaf.fmt = fmt;
979 vaf.va = &args;
980 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
981 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
982 function, line, inode->i_ino, current->comm, &vaf);
983 va_end(args);
984 }
985
__ext4_grp_locked_error(const char * function,unsigned int line,struct super_block * sb,ext4_group_t grp,unsigned long ino,ext4_fsblk_t block,const char * fmt,...)986 void __ext4_grp_locked_error(const char *function, unsigned int line,
987 struct super_block *sb, ext4_group_t grp,
988 unsigned long ino, ext4_fsblk_t block,
989 const char *fmt, ...)
990 __releases(bitlock)
991 __acquires(bitlock)
992 {
993 struct va_format vaf;
994 va_list args;
995
996 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
997 return;
998
999 trace_ext4_error(sb, function, line);
1000 if (ext4_error_ratelimit(sb)) {
1001 va_start(args, fmt);
1002 vaf.fmt = fmt;
1003 vaf.va = &args;
1004 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
1005 sb->s_id, function, line, grp);
1006 if (ino)
1007 printk(KERN_CONT "inode %lu: ", ino);
1008 if (block)
1009 printk(KERN_CONT "block %llu:",
1010 (unsigned long long) block);
1011 printk(KERN_CONT "%pV\n", &vaf);
1012 va_end(args);
1013 }
1014
1015 if (test_opt(sb, ERRORS_CONT)) {
1016 if (test_opt(sb, WARN_ON_ERROR))
1017 WARN_ON_ONCE(1);
1018 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
1019 if (!bdev_read_only(sb->s_bdev)) {
1020 save_error_info(sb, EFSCORRUPTED, ino, block, function,
1021 line);
1022 schedule_work(&EXT4_SB(sb)->s_error_work);
1023 }
1024 return;
1025 }
1026 ext4_unlock_group(sb, grp);
1027 ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
1028 /*
1029 * We only get here in the ERRORS_RO case; relocking the group
1030 * may be dangerous, but nothing bad will happen since the
1031 * filesystem will have already been marked read/only and the
1032 * journal has been aborted. We return 1 as a hint to callers
1033 * who might what to use the return value from
1034 * ext4_grp_locked_error() to distinguish between the
1035 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1036 * aggressively from the ext4 function in question, with a
1037 * more appropriate error code.
1038 */
1039 ext4_lock_group(sb, grp);
1040 return;
1041 }
1042
ext4_mark_group_bitmap_corrupted(struct super_block * sb,ext4_group_t group,unsigned int flags)1043 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1044 ext4_group_t group,
1045 unsigned int flags)
1046 {
1047 struct ext4_sb_info *sbi = EXT4_SB(sb);
1048 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1049 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1050 int ret;
1051
1052 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1053 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1054 &grp->bb_state);
1055 if (!ret)
1056 percpu_counter_sub(&sbi->s_freeclusters_counter,
1057 grp->bb_free);
1058 }
1059
1060 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1061 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1062 &grp->bb_state);
1063 if (!ret && gdp) {
1064 int count;
1065
1066 count = ext4_free_inodes_count(sb, gdp);
1067 percpu_counter_sub(&sbi->s_freeinodes_counter,
1068 count);
1069 }
1070 }
1071 }
1072
ext4_update_dynamic_rev(struct super_block * sb)1073 void ext4_update_dynamic_rev(struct super_block *sb)
1074 {
1075 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1076
1077 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1078 return;
1079
1080 ext4_warning(sb,
1081 "updating to rev %d because of new feature flag, "
1082 "running e2fsck is recommended",
1083 EXT4_DYNAMIC_REV);
1084
1085 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1086 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1087 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1088 /* leave es->s_feature_*compat flags alone */
1089 /* es->s_uuid will be set by e2fsck if empty */
1090
1091 /*
1092 * The rest of the superblock fields should be zero, and if not it
1093 * means they are likely already in use, so leave them alone. We
1094 * can leave it up to e2fsck to clean up any inconsistencies there.
1095 */
1096 }
1097
1098 /*
1099 * Open the external journal device
1100 */
ext4_blkdev_get(dev_t dev,struct super_block * sb)1101 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
1102 {
1103 struct block_device *bdev;
1104
1105 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
1106 if (IS_ERR(bdev))
1107 goto fail;
1108 return bdev;
1109
1110 fail:
1111 ext4_msg(sb, KERN_ERR,
1112 "failed to open journal device unknown-block(%u,%u) %ld",
1113 MAJOR(dev), MINOR(dev), PTR_ERR(bdev));
1114 return NULL;
1115 }
1116
1117 /*
1118 * Release the journal device
1119 */
ext4_blkdev_put(struct block_device * bdev)1120 static void ext4_blkdev_put(struct block_device *bdev)
1121 {
1122 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1123 }
1124
ext4_blkdev_remove(struct ext4_sb_info * sbi)1125 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
1126 {
1127 struct block_device *bdev;
1128 bdev = sbi->s_journal_bdev;
1129 if (bdev) {
1130 ext4_blkdev_put(bdev);
1131 sbi->s_journal_bdev = NULL;
1132 }
1133 }
1134
orphan_list_entry(struct list_head * l)1135 static inline struct inode *orphan_list_entry(struct list_head *l)
1136 {
1137 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1138 }
1139
dump_orphan_list(struct super_block * sb,struct ext4_sb_info * sbi)1140 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1141 {
1142 struct list_head *l;
1143
1144 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1145 le32_to_cpu(sbi->s_es->s_last_orphan));
1146
1147 printk(KERN_ERR "sb_info orphan list:\n");
1148 list_for_each(l, &sbi->s_orphan) {
1149 struct inode *inode = orphan_list_entry(l);
1150 printk(KERN_ERR " "
1151 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1152 inode->i_sb->s_id, inode->i_ino, inode,
1153 inode->i_mode, inode->i_nlink,
1154 NEXT_ORPHAN(inode));
1155 }
1156 }
1157
1158 #ifdef CONFIG_QUOTA
1159 static int ext4_quota_off(struct super_block *sb, int type);
1160
ext4_quota_off_umount(struct super_block * sb)1161 static inline void ext4_quota_off_umount(struct super_block *sb)
1162 {
1163 int type;
1164
1165 /* Use our quota_off function to clear inode flags etc. */
1166 for (type = 0; type < EXT4_MAXQUOTAS; type++)
1167 ext4_quota_off(sb, type);
1168 }
1169
1170 /*
1171 * This is a helper function which is used in the mount/remount
1172 * codepaths (which holds s_umount) to fetch the quota file name.
1173 */
get_qf_name(struct super_block * sb,struct ext4_sb_info * sbi,int type)1174 static inline char *get_qf_name(struct super_block *sb,
1175 struct ext4_sb_info *sbi,
1176 int type)
1177 {
1178 return rcu_dereference_protected(sbi->s_qf_names[type],
1179 lockdep_is_held(&sb->s_umount));
1180 }
1181 #else
ext4_quota_off_umount(struct super_block * sb)1182 static inline void ext4_quota_off_umount(struct super_block *sb)
1183 {
1184 }
1185 #endif
1186
ext4_put_super(struct super_block * sb)1187 static void ext4_put_super(struct super_block *sb)
1188 {
1189 struct ext4_sb_info *sbi = EXT4_SB(sb);
1190 struct ext4_super_block *es = sbi->s_es;
1191 struct buffer_head **group_desc;
1192 struct flex_groups **flex_groups;
1193 int aborted = 0;
1194 int i, err;
1195
1196 /*
1197 * Unregister sysfs before destroying jbd2 journal.
1198 * Since we could still access attr_journal_task attribute via sysfs
1199 * path which could have sbi->s_journal->j_task as NULL
1200 * Unregister sysfs before flush sbi->s_error_work.
1201 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If
1202 * read metadata verify failed then will queue error work.
1203 * flush_stashed_error_work will call start_this_handle may trigger
1204 * BUG_ON.
1205 */
1206 ext4_unregister_sysfs(sb);
1207
1208 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount"))
1209 ext4_msg(sb, KERN_INFO, "unmounting filesystem.");
1210
1211 ext4_unregister_li_request(sb);
1212 ext4_quota_off_umount(sb);
1213
1214 flush_work(&sbi->s_error_work);
1215 destroy_workqueue(sbi->rsv_conversion_wq);
1216 ext4_release_orphan_info(sb);
1217
1218 if (sbi->s_journal) {
1219 aborted = is_journal_aborted(sbi->s_journal);
1220 err = jbd2_journal_destroy(sbi->s_journal);
1221 sbi->s_journal = NULL;
1222 if ((err < 0) && !aborted) {
1223 ext4_abort(sb, -err, "Couldn't clean up the journal");
1224 }
1225 }
1226
1227 ext4_es_unregister_shrinker(sbi);
1228 del_timer_sync(&sbi->s_err_report);
1229 ext4_release_system_zone(sb);
1230 ext4_mb_release(sb);
1231 ext4_ext_release(sb);
1232
1233 if (!sb_rdonly(sb) && !aborted) {
1234 ext4_clear_feature_journal_needs_recovery(sb);
1235 ext4_clear_feature_orphan_present(sb);
1236 es->s_state = cpu_to_le16(sbi->s_mount_state);
1237 }
1238 if (!sb_rdonly(sb))
1239 ext4_commit_super(sb);
1240
1241 rcu_read_lock();
1242 group_desc = rcu_dereference(sbi->s_group_desc);
1243 for (i = 0; i < sbi->s_gdb_count; i++)
1244 brelse(group_desc[i]);
1245 kvfree(group_desc);
1246 flex_groups = rcu_dereference(sbi->s_flex_groups);
1247 if (flex_groups) {
1248 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1249 kvfree(flex_groups[i]);
1250 kvfree(flex_groups);
1251 }
1252 rcu_read_unlock();
1253 percpu_counter_destroy(&sbi->s_freeclusters_counter);
1254 percpu_counter_destroy(&sbi->s_freeinodes_counter);
1255 percpu_counter_destroy(&sbi->s_dirs_counter);
1256 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1257 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1258 percpu_free_rwsem(&sbi->s_writepages_rwsem);
1259 #ifdef CONFIG_QUOTA
1260 for (i = 0; i < EXT4_MAXQUOTAS; i++)
1261 kfree(get_qf_name(sb, sbi, i));
1262 #endif
1263
1264 /* Debugging code just in case the in-memory inode orphan list
1265 * isn't empty. The on-disk one can be non-empty if we've
1266 * detected an error and taken the fs readonly, but the
1267 * in-memory list had better be clean by this point. */
1268 if (!list_empty(&sbi->s_orphan))
1269 dump_orphan_list(sb, sbi);
1270 ASSERT(list_empty(&sbi->s_orphan));
1271
1272 sync_blockdev(sb->s_bdev);
1273 invalidate_bdev(sb->s_bdev);
1274 if (sbi->s_journal_bdev && sbi->s_journal_bdev != sb->s_bdev) {
1275 /*
1276 * Invalidate the journal device's buffers. We don't want them
1277 * floating about in memory - the physical journal device may
1278 * hotswapped, and it breaks the `ro-after' testing code.
1279 */
1280 sync_blockdev(sbi->s_journal_bdev);
1281 invalidate_bdev(sbi->s_journal_bdev);
1282 ext4_blkdev_remove(sbi);
1283 }
1284
1285 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1286 sbi->s_ea_inode_cache = NULL;
1287
1288 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1289 sbi->s_ea_block_cache = NULL;
1290
1291 ext4_stop_mmpd(sbi);
1292
1293 brelse(sbi->s_sbh);
1294 sb->s_fs_info = NULL;
1295 /*
1296 * Now that we are completely done shutting down the
1297 * superblock, we need to actually destroy the kobject.
1298 */
1299 kobject_put(&sbi->s_kobj);
1300 wait_for_completion(&sbi->s_kobj_unregister);
1301 if (sbi->s_chksum_driver)
1302 crypto_free_shash(sbi->s_chksum_driver);
1303 kfree(sbi->s_blockgroup_lock);
1304 fs_put_dax(sbi->s_daxdev, NULL);
1305 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1306 #if IS_ENABLED(CONFIG_UNICODE)
1307 utf8_unload(sb->s_encoding);
1308 #endif
1309 kfree(sbi);
1310 }
1311
1312 static struct kmem_cache *ext4_inode_cachep;
1313
1314 /*
1315 * Called inside transaction, so use GFP_NOFS
1316 */
ext4_alloc_inode(struct super_block * sb)1317 static struct inode *ext4_alloc_inode(struct super_block *sb)
1318 {
1319 struct ext4_inode_info *ei;
1320
1321 ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS);
1322 if (!ei)
1323 return NULL;
1324
1325 inode_set_iversion(&ei->vfs_inode, 1);
1326 ei->i_flags = 0;
1327 spin_lock_init(&ei->i_raw_lock);
1328 INIT_LIST_HEAD(&ei->i_prealloc_list);
1329 atomic_set(&ei->i_prealloc_active, 0);
1330 spin_lock_init(&ei->i_prealloc_lock);
1331 ext4_es_init_tree(&ei->i_es_tree);
1332 rwlock_init(&ei->i_es_lock);
1333 INIT_LIST_HEAD(&ei->i_es_list);
1334 ei->i_es_all_nr = 0;
1335 ei->i_es_shk_nr = 0;
1336 ei->i_es_shrink_lblk = 0;
1337 ei->i_reserved_data_blocks = 0;
1338 spin_lock_init(&(ei->i_block_reservation_lock));
1339 ext4_init_pending_tree(&ei->i_pending_tree);
1340 #ifdef CONFIG_QUOTA
1341 ei->i_reserved_quota = 0;
1342 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1343 #endif
1344 ei->jinode = NULL;
1345 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1346 spin_lock_init(&ei->i_completed_io_lock);
1347 ei->i_sync_tid = 0;
1348 ei->i_datasync_tid = 0;
1349 atomic_set(&ei->i_unwritten, 0);
1350 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1351 ext4_fc_init_inode(&ei->vfs_inode);
1352 mutex_init(&ei->i_fc_lock);
1353 return &ei->vfs_inode;
1354 }
1355
ext4_drop_inode(struct inode * inode)1356 static int ext4_drop_inode(struct inode *inode)
1357 {
1358 int drop = generic_drop_inode(inode);
1359
1360 if (!drop)
1361 drop = fscrypt_drop_inode(inode);
1362
1363 trace_ext4_drop_inode(inode, drop);
1364 return drop;
1365 }
1366
ext4_free_in_core_inode(struct inode * inode)1367 static void ext4_free_in_core_inode(struct inode *inode)
1368 {
1369 fscrypt_free_inode(inode);
1370 if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1371 pr_warn("%s: inode %ld still in fc list",
1372 __func__, inode->i_ino);
1373 }
1374 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1375 }
1376
ext4_destroy_inode(struct inode * inode)1377 static void ext4_destroy_inode(struct inode *inode)
1378 {
1379 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1380 ext4_msg(inode->i_sb, KERN_ERR,
1381 "Inode %lu (%p): orphan list check failed!",
1382 inode->i_ino, EXT4_I(inode));
1383 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1384 EXT4_I(inode), sizeof(struct ext4_inode_info),
1385 true);
1386 dump_stack();
1387 }
1388
1389 if (EXT4_I(inode)->i_reserved_data_blocks)
1390 ext4_msg(inode->i_sb, KERN_ERR,
1391 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1392 inode->i_ino, EXT4_I(inode),
1393 EXT4_I(inode)->i_reserved_data_blocks);
1394 }
1395
init_once(void * foo)1396 static void init_once(void *foo)
1397 {
1398 struct ext4_inode_info *ei = foo;
1399
1400 INIT_LIST_HEAD(&ei->i_orphan);
1401 init_rwsem(&ei->xattr_sem);
1402 init_rwsem(&ei->i_data_sem);
1403 inode_init_once(&ei->vfs_inode);
1404 ext4_fc_init_inode(&ei->vfs_inode);
1405 }
1406
init_inodecache(void)1407 static int __init init_inodecache(void)
1408 {
1409 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1410 sizeof(struct ext4_inode_info), 0,
1411 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1412 SLAB_ACCOUNT),
1413 offsetof(struct ext4_inode_info, i_data),
1414 sizeof_field(struct ext4_inode_info, i_data),
1415 init_once);
1416 if (ext4_inode_cachep == NULL)
1417 return -ENOMEM;
1418 return 0;
1419 }
1420
destroy_inodecache(void)1421 static void destroy_inodecache(void)
1422 {
1423 /*
1424 * Make sure all delayed rcu free inodes are flushed before we
1425 * destroy cache.
1426 */
1427 rcu_barrier();
1428 kmem_cache_destroy(ext4_inode_cachep);
1429 }
1430
ext4_clear_inode(struct inode * inode)1431 void ext4_clear_inode(struct inode *inode)
1432 {
1433 ext4_fc_del(inode);
1434 invalidate_inode_buffers(inode);
1435 clear_inode(inode);
1436 ext4_discard_preallocations(inode, 0);
1437 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1438 dquot_drop(inode);
1439 if (EXT4_I(inode)->jinode) {
1440 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1441 EXT4_I(inode)->jinode);
1442 jbd2_free_inode(EXT4_I(inode)->jinode);
1443 EXT4_I(inode)->jinode = NULL;
1444 }
1445 fscrypt_put_encryption_info(inode);
1446 fsverity_cleanup_inode(inode);
1447 }
1448
ext4_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)1449 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1450 u64 ino, u32 generation)
1451 {
1452 struct inode *inode;
1453
1454 /*
1455 * Currently we don't know the generation for parent directory, so
1456 * a generation of 0 means "accept any"
1457 */
1458 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1459 if (IS_ERR(inode))
1460 return ERR_CAST(inode);
1461 if (generation && inode->i_generation != generation) {
1462 iput(inode);
1463 return ERR_PTR(-ESTALE);
1464 }
1465
1466 return inode;
1467 }
1468
ext4_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1469 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1470 int fh_len, int fh_type)
1471 {
1472 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1473 ext4_nfs_get_inode);
1474 }
1475
ext4_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1476 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1477 int fh_len, int fh_type)
1478 {
1479 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1480 ext4_nfs_get_inode);
1481 }
1482
ext4_nfs_commit_metadata(struct inode * inode)1483 static int ext4_nfs_commit_metadata(struct inode *inode)
1484 {
1485 struct writeback_control wbc = {
1486 .sync_mode = WB_SYNC_ALL
1487 };
1488
1489 trace_ext4_nfs_commit_metadata(inode);
1490 return ext4_write_inode(inode, &wbc);
1491 }
1492
1493 #ifdef CONFIG_QUOTA
1494 static const char * const quotatypes[] = INITQFNAMES;
1495 #define QTYPE2NAME(t) (quotatypes[t])
1496
1497 static int ext4_write_dquot(struct dquot *dquot);
1498 static int ext4_acquire_dquot(struct dquot *dquot);
1499 static int ext4_release_dquot(struct dquot *dquot);
1500 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1501 static int ext4_write_info(struct super_block *sb, int type);
1502 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1503 const struct path *path);
1504 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1505 size_t len, loff_t off);
1506 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1507 const char *data, size_t len, loff_t off);
1508 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1509 unsigned int flags);
1510
ext4_get_dquots(struct inode * inode)1511 static struct dquot **ext4_get_dquots(struct inode *inode)
1512 {
1513 return EXT4_I(inode)->i_dquot;
1514 }
1515
1516 static const struct dquot_operations ext4_quota_operations = {
1517 .get_reserved_space = ext4_get_reserved_space,
1518 .write_dquot = ext4_write_dquot,
1519 .acquire_dquot = ext4_acquire_dquot,
1520 .release_dquot = ext4_release_dquot,
1521 .mark_dirty = ext4_mark_dquot_dirty,
1522 .write_info = ext4_write_info,
1523 .alloc_dquot = dquot_alloc,
1524 .destroy_dquot = dquot_destroy,
1525 .get_projid = ext4_get_projid,
1526 .get_inode_usage = ext4_get_inode_usage,
1527 .get_next_id = dquot_get_next_id,
1528 };
1529
1530 static const struct quotactl_ops ext4_qctl_operations = {
1531 .quota_on = ext4_quota_on,
1532 .quota_off = ext4_quota_off,
1533 .quota_sync = dquot_quota_sync,
1534 .get_state = dquot_get_state,
1535 .set_info = dquot_set_dqinfo,
1536 .get_dqblk = dquot_get_dqblk,
1537 .set_dqblk = dquot_set_dqblk,
1538 .get_nextdqblk = dquot_get_next_dqblk,
1539 };
1540 #endif
1541
1542 static const struct super_operations ext4_sops = {
1543 .alloc_inode = ext4_alloc_inode,
1544 .free_inode = ext4_free_in_core_inode,
1545 .destroy_inode = ext4_destroy_inode,
1546 .write_inode = ext4_write_inode,
1547 .dirty_inode = ext4_dirty_inode,
1548 .drop_inode = ext4_drop_inode,
1549 .evict_inode = ext4_evict_inode,
1550 .put_super = ext4_put_super,
1551 .sync_fs = ext4_sync_fs,
1552 .freeze_fs = ext4_freeze,
1553 .unfreeze_fs = ext4_unfreeze,
1554 .statfs = ext4_statfs,
1555 .show_options = ext4_show_options,
1556 #ifdef CONFIG_QUOTA
1557 .quota_read = ext4_quota_read,
1558 .quota_write = ext4_quota_write,
1559 .get_dquots = ext4_get_dquots,
1560 #endif
1561 };
1562
1563 static const struct export_operations ext4_export_ops = {
1564 .fh_to_dentry = ext4_fh_to_dentry,
1565 .fh_to_parent = ext4_fh_to_parent,
1566 .get_parent = ext4_get_parent,
1567 .commit_metadata = ext4_nfs_commit_metadata,
1568 };
1569
1570 enum {
1571 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1572 Opt_resgid, Opt_resuid, Opt_sb,
1573 Opt_nouid32, Opt_debug, Opt_removed,
1574 Opt_user_xattr, Opt_acl,
1575 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1576 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1577 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1578 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1579 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1580 Opt_inlinecrypt,
1581 Opt_usrjquota, Opt_grpjquota, Opt_quota,
1582 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1583 Opt_usrquota, Opt_grpquota, Opt_prjquota,
1584 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1585 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1586 Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize,
1587 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1588 Opt_inode_readahead_blks, Opt_journal_ioprio,
1589 Opt_dioread_nolock, Opt_dioread_lock,
1590 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1591 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1592 Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
1593 Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type,
1594 #ifdef CONFIG_EXT4_DEBUG
1595 Opt_fc_debug_max_replay, Opt_fc_debug_force
1596 #endif
1597 };
1598
1599 static const struct constant_table ext4_param_errors[] = {
1600 {"continue", EXT4_MOUNT_ERRORS_CONT},
1601 {"panic", EXT4_MOUNT_ERRORS_PANIC},
1602 {"remount-ro", EXT4_MOUNT_ERRORS_RO},
1603 {}
1604 };
1605
1606 static const struct constant_table ext4_param_data[] = {
1607 {"journal", EXT4_MOUNT_JOURNAL_DATA},
1608 {"ordered", EXT4_MOUNT_ORDERED_DATA},
1609 {"writeback", EXT4_MOUNT_WRITEBACK_DATA},
1610 {}
1611 };
1612
1613 static const struct constant_table ext4_param_data_err[] = {
1614 {"abort", Opt_data_err_abort},
1615 {"ignore", Opt_data_err_ignore},
1616 {}
1617 };
1618
1619 static const struct constant_table ext4_param_jqfmt[] = {
1620 {"vfsold", QFMT_VFS_OLD},
1621 {"vfsv0", QFMT_VFS_V0},
1622 {"vfsv1", QFMT_VFS_V1},
1623 {}
1624 };
1625
1626 static const struct constant_table ext4_param_dax[] = {
1627 {"always", Opt_dax_always},
1628 {"inode", Opt_dax_inode},
1629 {"never", Opt_dax_never},
1630 {}
1631 };
1632
1633 /* String parameter that allows empty argument */
1634 #define fsparam_string_empty(NAME, OPT) \
1635 __fsparam(fs_param_is_string, NAME, OPT, fs_param_can_be_empty, NULL)
1636
1637 /*
1638 * Mount option specification
1639 * We don't use fsparam_flag_no because of the way we set the
1640 * options and the way we show them in _ext4_show_options(). To
1641 * keep the changes to a minimum, let's keep the negative options
1642 * separate for now.
1643 */
1644 static const struct fs_parameter_spec ext4_param_specs[] = {
1645 fsparam_flag ("bsddf", Opt_bsd_df),
1646 fsparam_flag ("minixdf", Opt_minix_df),
1647 fsparam_flag ("grpid", Opt_grpid),
1648 fsparam_flag ("bsdgroups", Opt_grpid),
1649 fsparam_flag ("nogrpid", Opt_nogrpid),
1650 fsparam_flag ("sysvgroups", Opt_nogrpid),
1651 fsparam_u32 ("resgid", Opt_resgid),
1652 fsparam_u32 ("resuid", Opt_resuid),
1653 fsparam_u32 ("sb", Opt_sb),
1654 fsparam_enum ("errors", Opt_errors, ext4_param_errors),
1655 fsparam_flag ("nouid32", Opt_nouid32),
1656 fsparam_flag ("debug", Opt_debug),
1657 fsparam_flag ("oldalloc", Opt_removed),
1658 fsparam_flag ("orlov", Opt_removed),
1659 fsparam_flag ("user_xattr", Opt_user_xattr),
1660 fsparam_flag ("acl", Opt_acl),
1661 fsparam_flag ("norecovery", Opt_noload),
1662 fsparam_flag ("noload", Opt_noload),
1663 fsparam_flag ("bh", Opt_removed),
1664 fsparam_flag ("nobh", Opt_removed),
1665 fsparam_u32 ("commit", Opt_commit),
1666 fsparam_u32 ("min_batch_time", Opt_min_batch_time),
1667 fsparam_u32 ("max_batch_time", Opt_max_batch_time),
1668 fsparam_u32 ("journal_dev", Opt_journal_dev),
1669 fsparam_bdev ("journal_path", Opt_journal_path),
1670 fsparam_flag ("journal_checksum", Opt_journal_checksum),
1671 fsparam_flag ("nojournal_checksum", Opt_nojournal_checksum),
1672 fsparam_flag ("journal_async_commit",Opt_journal_async_commit),
1673 fsparam_flag ("abort", Opt_abort),
1674 fsparam_enum ("data", Opt_data, ext4_param_data),
1675 fsparam_enum ("data_err", Opt_data_err,
1676 ext4_param_data_err),
1677 fsparam_string_empty
1678 ("usrjquota", Opt_usrjquota),
1679 fsparam_string_empty
1680 ("grpjquota", Opt_grpjquota),
1681 fsparam_enum ("jqfmt", Opt_jqfmt, ext4_param_jqfmt),
1682 fsparam_flag ("grpquota", Opt_grpquota),
1683 fsparam_flag ("quota", Opt_quota),
1684 fsparam_flag ("noquota", Opt_noquota),
1685 fsparam_flag ("usrquota", Opt_usrquota),
1686 fsparam_flag ("prjquota", Opt_prjquota),
1687 fsparam_flag ("barrier", Opt_barrier),
1688 fsparam_u32 ("barrier", Opt_barrier),
1689 fsparam_flag ("nobarrier", Opt_nobarrier),
1690 fsparam_flag ("i_version", Opt_removed),
1691 fsparam_flag ("dax", Opt_dax),
1692 fsparam_enum ("dax", Opt_dax_type, ext4_param_dax),
1693 fsparam_u32 ("stripe", Opt_stripe),
1694 fsparam_flag ("delalloc", Opt_delalloc),
1695 fsparam_flag ("nodelalloc", Opt_nodelalloc),
1696 fsparam_flag ("warn_on_error", Opt_warn_on_error),
1697 fsparam_flag ("nowarn_on_error", Opt_nowarn_on_error),
1698 fsparam_u32 ("debug_want_extra_isize",
1699 Opt_debug_want_extra_isize),
1700 fsparam_flag ("mblk_io_submit", Opt_removed),
1701 fsparam_flag ("nomblk_io_submit", Opt_removed),
1702 fsparam_flag ("block_validity", Opt_block_validity),
1703 fsparam_flag ("noblock_validity", Opt_noblock_validity),
1704 fsparam_u32 ("inode_readahead_blks",
1705 Opt_inode_readahead_blks),
1706 fsparam_u32 ("journal_ioprio", Opt_journal_ioprio),
1707 fsparam_u32 ("auto_da_alloc", Opt_auto_da_alloc),
1708 fsparam_flag ("auto_da_alloc", Opt_auto_da_alloc),
1709 fsparam_flag ("noauto_da_alloc", Opt_noauto_da_alloc),
1710 fsparam_flag ("dioread_nolock", Opt_dioread_nolock),
1711 fsparam_flag ("nodioread_nolock", Opt_dioread_lock),
1712 fsparam_flag ("dioread_lock", Opt_dioread_lock),
1713 fsparam_flag ("discard", Opt_discard),
1714 fsparam_flag ("nodiscard", Opt_nodiscard),
1715 fsparam_u32 ("init_itable", Opt_init_itable),
1716 fsparam_flag ("init_itable", Opt_init_itable),
1717 fsparam_flag ("noinit_itable", Opt_noinit_itable),
1718 #ifdef CONFIG_EXT4_DEBUG
1719 fsparam_flag ("fc_debug_force", Opt_fc_debug_force),
1720 fsparam_u32 ("fc_debug_max_replay", Opt_fc_debug_max_replay),
1721 #endif
1722 fsparam_u32 ("max_dir_size_kb", Opt_max_dir_size_kb),
1723 fsparam_flag ("test_dummy_encryption",
1724 Opt_test_dummy_encryption),
1725 fsparam_string ("test_dummy_encryption",
1726 Opt_test_dummy_encryption),
1727 fsparam_flag ("inlinecrypt", Opt_inlinecrypt),
1728 fsparam_flag ("nombcache", Opt_nombcache),
1729 fsparam_flag ("no_mbcache", Opt_nombcache), /* for backward compatibility */
1730 fsparam_flag ("prefetch_block_bitmaps",
1731 Opt_removed),
1732 fsparam_flag ("no_prefetch_block_bitmaps",
1733 Opt_no_prefetch_block_bitmaps),
1734 fsparam_s32 ("mb_optimize_scan", Opt_mb_optimize_scan),
1735 fsparam_string ("check", Opt_removed), /* mount option from ext2/3 */
1736 fsparam_flag ("nocheck", Opt_removed), /* mount option from ext2/3 */
1737 fsparam_flag ("reservation", Opt_removed), /* mount option from ext2/3 */
1738 fsparam_flag ("noreservation", Opt_removed), /* mount option from ext2/3 */
1739 fsparam_u32 ("journal", Opt_removed), /* mount option from ext2/3 */
1740 {}
1741 };
1742
1743 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1744
1745 #define MOPT_SET 0x0001
1746 #define MOPT_CLEAR 0x0002
1747 #define MOPT_NOSUPPORT 0x0004
1748 #define MOPT_EXPLICIT 0x0008
1749 #ifdef CONFIG_QUOTA
1750 #define MOPT_Q 0
1751 #define MOPT_QFMT 0x0010
1752 #else
1753 #define MOPT_Q MOPT_NOSUPPORT
1754 #define MOPT_QFMT MOPT_NOSUPPORT
1755 #endif
1756 #define MOPT_NO_EXT2 0x0020
1757 #define MOPT_NO_EXT3 0x0040
1758 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1759 #define MOPT_SKIP 0x0080
1760 #define MOPT_2 0x0100
1761
1762 static const struct mount_opts {
1763 int token;
1764 int mount_opt;
1765 int flags;
1766 } ext4_mount_opts[] = {
1767 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1768 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1769 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1770 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1771 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1772 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1773 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1774 MOPT_EXT4_ONLY | MOPT_SET},
1775 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1776 MOPT_EXT4_ONLY | MOPT_CLEAR},
1777 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1778 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1779 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1780 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1781 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1782 MOPT_EXT4_ONLY | MOPT_CLEAR},
1783 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1784 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1785 {Opt_commit, 0, MOPT_NO_EXT2},
1786 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1787 MOPT_EXT4_ONLY | MOPT_CLEAR},
1788 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1789 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1790 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1791 EXT4_MOUNT_JOURNAL_CHECKSUM),
1792 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1793 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1794 {Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2},
1795 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1796 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1797 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1798 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1799 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1800 {Opt_dax_type, 0, MOPT_EXT4_ONLY},
1801 {Opt_journal_dev, 0, MOPT_NO_EXT2},
1802 {Opt_journal_path, 0, MOPT_NO_EXT2},
1803 {Opt_journal_ioprio, 0, MOPT_NO_EXT2},
1804 {Opt_data, 0, MOPT_NO_EXT2},
1805 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1806 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1807 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1808 #else
1809 {Opt_acl, 0, MOPT_NOSUPPORT},
1810 #endif
1811 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1812 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1813 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1814 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1815 MOPT_SET | MOPT_Q},
1816 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1817 MOPT_SET | MOPT_Q},
1818 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1819 MOPT_SET | MOPT_Q},
1820 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1821 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1822 MOPT_CLEAR | MOPT_Q},
1823 {Opt_usrjquota, 0, MOPT_Q},
1824 {Opt_grpjquota, 0, MOPT_Q},
1825 {Opt_jqfmt, 0, MOPT_QFMT},
1826 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1827 {Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
1828 MOPT_SET},
1829 #ifdef CONFIG_EXT4_DEBUG
1830 {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
1831 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
1832 #endif
1833 {Opt_err, 0, 0}
1834 };
1835
1836 #if IS_ENABLED(CONFIG_UNICODE)
1837 static const struct ext4_sb_encodings {
1838 __u16 magic;
1839 char *name;
1840 unsigned int version;
1841 } ext4_sb_encoding_map[] = {
1842 {EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
1843 };
1844
1845 static const struct ext4_sb_encodings *
ext4_sb_read_encoding(const struct ext4_super_block * es)1846 ext4_sb_read_encoding(const struct ext4_super_block *es)
1847 {
1848 __u16 magic = le16_to_cpu(es->s_encoding);
1849 int i;
1850
1851 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1852 if (magic == ext4_sb_encoding_map[i].magic)
1853 return &ext4_sb_encoding_map[i];
1854
1855 return NULL;
1856 }
1857 #endif
1858
1859 #define EXT4_SPEC_JQUOTA (1 << 0)
1860 #define EXT4_SPEC_JQFMT (1 << 1)
1861 #define EXT4_SPEC_DATAJ (1 << 2)
1862 #define EXT4_SPEC_SB_BLOCK (1 << 3)
1863 #define EXT4_SPEC_JOURNAL_DEV (1 << 4)
1864 #define EXT4_SPEC_JOURNAL_IOPRIO (1 << 5)
1865 #define EXT4_SPEC_s_want_extra_isize (1 << 7)
1866 #define EXT4_SPEC_s_max_batch_time (1 << 8)
1867 #define EXT4_SPEC_s_min_batch_time (1 << 9)
1868 #define EXT4_SPEC_s_inode_readahead_blks (1 << 10)
1869 #define EXT4_SPEC_s_li_wait_mult (1 << 11)
1870 #define EXT4_SPEC_s_max_dir_size_kb (1 << 12)
1871 #define EXT4_SPEC_s_stripe (1 << 13)
1872 #define EXT4_SPEC_s_resuid (1 << 14)
1873 #define EXT4_SPEC_s_resgid (1 << 15)
1874 #define EXT4_SPEC_s_commit_interval (1 << 16)
1875 #define EXT4_SPEC_s_fc_debug_max_replay (1 << 17)
1876 #define EXT4_SPEC_s_sb_block (1 << 18)
1877 #define EXT4_SPEC_mb_optimize_scan (1 << 19)
1878
1879 struct ext4_fs_context {
1880 char *s_qf_names[EXT4_MAXQUOTAS];
1881 struct fscrypt_dummy_policy dummy_enc_policy;
1882 int s_jquota_fmt; /* Format of quota to use */
1883 #ifdef CONFIG_EXT4_DEBUG
1884 int s_fc_debug_max_replay;
1885 #endif
1886 unsigned short qname_spec;
1887 unsigned long vals_s_flags; /* Bits to set in s_flags */
1888 unsigned long mask_s_flags; /* Bits changed in s_flags */
1889 unsigned long journal_devnum;
1890 unsigned long s_commit_interval;
1891 unsigned long s_stripe;
1892 unsigned int s_inode_readahead_blks;
1893 unsigned int s_want_extra_isize;
1894 unsigned int s_li_wait_mult;
1895 unsigned int s_max_dir_size_kb;
1896 unsigned int journal_ioprio;
1897 unsigned int vals_s_mount_opt;
1898 unsigned int mask_s_mount_opt;
1899 unsigned int vals_s_mount_opt2;
1900 unsigned int mask_s_mount_opt2;
1901 unsigned long vals_s_mount_flags;
1902 unsigned long mask_s_mount_flags;
1903 unsigned int opt_flags; /* MOPT flags */
1904 unsigned int spec;
1905 u32 s_max_batch_time;
1906 u32 s_min_batch_time;
1907 kuid_t s_resuid;
1908 kgid_t s_resgid;
1909 ext4_fsblk_t s_sb_block;
1910 };
1911
ext4_fc_free(struct fs_context * fc)1912 static void ext4_fc_free(struct fs_context *fc)
1913 {
1914 struct ext4_fs_context *ctx = fc->fs_private;
1915 int i;
1916
1917 if (!ctx)
1918 return;
1919
1920 for (i = 0; i < EXT4_MAXQUOTAS; i++)
1921 kfree(ctx->s_qf_names[i]);
1922
1923 fscrypt_free_dummy_policy(&ctx->dummy_enc_policy);
1924 kfree(ctx);
1925 }
1926
ext4_init_fs_context(struct fs_context * fc)1927 int ext4_init_fs_context(struct fs_context *fc)
1928 {
1929 struct ext4_fs_context *ctx;
1930
1931 ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
1932 if (!ctx)
1933 return -ENOMEM;
1934
1935 fc->fs_private = ctx;
1936 fc->ops = &ext4_context_ops;
1937
1938 return 0;
1939 }
1940
1941 #ifdef CONFIG_QUOTA
1942 /*
1943 * Note the name of the specified quota file.
1944 */
note_qf_name(struct fs_context * fc,int qtype,struct fs_parameter * param)1945 static int note_qf_name(struct fs_context *fc, int qtype,
1946 struct fs_parameter *param)
1947 {
1948 struct ext4_fs_context *ctx = fc->fs_private;
1949 char *qname;
1950
1951 if (param->size < 1) {
1952 ext4_msg(NULL, KERN_ERR, "Missing quota name");
1953 return -EINVAL;
1954 }
1955 if (strchr(param->string, '/')) {
1956 ext4_msg(NULL, KERN_ERR,
1957 "quotafile must be on filesystem root");
1958 return -EINVAL;
1959 }
1960 if (ctx->s_qf_names[qtype]) {
1961 if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) {
1962 ext4_msg(NULL, KERN_ERR,
1963 "%s quota file already specified",
1964 QTYPE2NAME(qtype));
1965 return -EINVAL;
1966 }
1967 return 0;
1968 }
1969
1970 qname = kmemdup_nul(param->string, param->size, GFP_KERNEL);
1971 if (!qname) {
1972 ext4_msg(NULL, KERN_ERR,
1973 "Not enough memory for storing quotafile name");
1974 return -ENOMEM;
1975 }
1976 ctx->s_qf_names[qtype] = qname;
1977 ctx->qname_spec |= 1 << qtype;
1978 ctx->spec |= EXT4_SPEC_JQUOTA;
1979 return 0;
1980 }
1981
1982 /*
1983 * Clear the name of the specified quota file.
1984 */
unnote_qf_name(struct fs_context * fc,int qtype)1985 static int unnote_qf_name(struct fs_context *fc, int qtype)
1986 {
1987 struct ext4_fs_context *ctx = fc->fs_private;
1988
1989 if (ctx->s_qf_names[qtype])
1990 kfree(ctx->s_qf_names[qtype]);
1991
1992 ctx->s_qf_names[qtype] = NULL;
1993 ctx->qname_spec |= 1 << qtype;
1994 ctx->spec |= EXT4_SPEC_JQUOTA;
1995 return 0;
1996 }
1997 #endif
1998
ext4_parse_test_dummy_encryption(const struct fs_parameter * param,struct ext4_fs_context * ctx)1999 static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param,
2000 struct ext4_fs_context *ctx)
2001 {
2002 int err;
2003
2004 if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) {
2005 ext4_msg(NULL, KERN_WARNING,
2006 "test_dummy_encryption option not supported");
2007 return -EINVAL;
2008 }
2009 err = fscrypt_parse_test_dummy_encryption(param,
2010 &ctx->dummy_enc_policy);
2011 if (err == -EINVAL) {
2012 ext4_msg(NULL, KERN_WARNING,
2013 "Value of option \"%s\" is unrecognized", param->key);
2014 } else if (err == -EEXIST) {
2015 ext4_msg(NULL, KERN_WARNING,
2016 "Conflicting test_dummy_encryption options");
2017 return -EINVAL;
2018 }
2019 return err;
2020 }
2021
2022 #define EXT4_SET_CTX(name) \
2023 static inline void ctx_set_##name(struct ext4_fs_context *ctx, \
2024 unsigned long flag) \
2025 { \
2026 ctx->mask_s_##name |= flag; \
2027 ctx->vals_s_##name |= flag; \
2028 }
2029
2030 #define EXT4_CLEAR_CTX(name) \
2031 static inline void ctx_clear_##name(struct ext4_fs_context *ctx, \
2032 unsigned long flag) \
2033 { \
2034 ctx->mask_s_##name |= flag; \
2035 ctx->vals_s_##name &= ~flag; \
2036 }
2037
2038 #define EXT4_TEST_CTX(name) \
2039 static inline unsigned long \
2040 ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag) \
2041 { \
2042 return (ctx->vals_s_##name & flag); \
2043 }
2044
2045 EXT4_SET_CTX(flags); /* set only */
2046 EXT4_SET_CTX(mount_opt);
2047 EXT4_CLEAR_CTX(mount_opt);
2048 EXT4_TEST_CTX(mount_opt);
2049 EXT4_SET_CTX(mount_opt2);
2050 EXT4_CLEAR_CTX(mount_opt2);
2051 EXT4_TEST_CTX(mount_opt2);
2052
ctx_set_mount_flag(struct ext4_fs_context * ctx,int bit)2053 static inline void ctx_set_mount_flag(struct ext4_fs_context *ctx, int bit)
2054 {
2055 set_bit(bit, &ctx->mask_s_mount_flags);
2056 set_bit(bit, &ctx->vals_s_mount_flags);
2057 }
2058
ext4_parse_param(struct fs_context * fc,struct fs_parameter * param)2059 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param)
2060 {
2061 struct ext4_fs_context *ctx = fc->fs_private;
2062 struct fs_parse_result result;
2063 const struct mount_opts *m;
2064 int is_remount;
2065 kuid_t uid;
2066 kgid_t gid;
2067 int token;
2068
2069 token = fs_parse(fc, ext4_param_specs, param, &result);
2070 if (token < 0)
2071 return token;
2072 is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2073
2074 for (m = ext4_mount_opts; m->token != Opt_err; m++)
2075 if (token == m->token)
2076 break;
2077
2078 ctx->opt_flags |= m->flags;
2079
2080 if (m->flags & MOPT_EXPLICIT) {
2081 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2082 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC);
2083 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2084 ctx_set_mount_opt2(ctx,
2085 EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM);
2086 } else
2087 return -EINVAL;
2088 }
2089
2090 if (m->flags & MOPT_NOSUPPORT) {
2091 ext4_msg(NULL, KERN_ERR, "%s option not supported",
2092 param->key);
2093 return 0;
2094 }
2095
2096 switch (token) {
2097 #ifdef CONFIG_QUOTA
2098 case Opt_usrjquota:
2099 if (!*param->string)
2100 return unnote_qf_name(fc, USRQUOTA);
2101 else
2102 return note_qf_name(fc, USRQUOTA, param);
2103 case Opt_grpjquota:
2104 if (!*param->string)
2105 return unnote_qf_name(fc, GRPQUOTA);
2106 else
2107 return note_qf_name(fc, GRPQUOTA, param);
2108 #endif
2109 case Opt_sb:
2110 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2111 ext4_msg(NULL, KERN_WARNING,
2112 "Ignoring %s option on remount", param->key);
2113 } else {
2114 ctx->s_sb_block = result.uint_32;
2115 ctx->spec |= EXT4_SPEC_s_sb_block;
2116 }
2117 return 0;
2118 case Opt_removed:
2119 ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option",
2120 param->key);
2121 return 0;
2122 case Opt_abort:
2123 ctx_set_mount_flag(ctx, EXT4_MF_FS_ABORTED);
2124 return 0;
2125 case Opt_inlinecrypt:
2126 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2127 ctx_set_flags(ctx, SB_INLINECRYPT);
2128 #else
2129 ext4_msg(NULL, KERN_ERR, "inline encryption not supported");
2130 #endif
2131 return 0;
2132 case Opt_errors:
2133 ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK);
2134 ctx_set_mount_opt(ctx, result.uint_32);
2135 return 0;
2136 #ifdef CONFIG_QUOTA
2137 case Opt_jqfmt:
2138 ctx->s_jquota_fmt = result.uint_32;
2139 ctx->spec |= EXT4_SPEC_JQFMT;
2140 return 0;
2141 #endif
2142 case Opt_data:
2143 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2144 ctx_set_mount_opt(ctx, result.uint_32);
2145 ctx->spec |= EXT4_SPEC_DATAJ;
2146 return 0;
2147 case Opt_commit:
2148 if (result.uint_32 == 0)
2149 ctx->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE;
2150 else if (result.uint_32 > INT_MAX / HZ) {
2151 ext4_msg(NULL, KERN_ERR,
2152 "Invalid commit interval %d, "
2153 "must be smaller than %d",
2154 result.uint_32, INT_MAX / HZ);
2155 return -EINVAL;
2156 }
2157 ctx->s_commit_interval = HZ * result.uint_32;
2158 ctx->spec |= EXT4_SPEC_s_commit_interval;
2159 return 0;
2160 case Opt_debug_want_extra_isize:
2161 if ((result.uint_32 & 1) || (result.uint_32 < 4)) {
2162 ext4_msg(NULL, KERN_ERR,
2163 "Invalid want_extra_isize %d", result.uint_32);
2164 return -EINVAL;
2165 }
2166 ctx->s_want_extra_isize = result.uint_32;
2167 ctx->spec |= EXT4_SPEC_s_want_extra_isize;
2168 return 0;
2169 case Opt_max_batch_time:
2170 ctx->s_max_batch_time = result.uint_32;
2171 ctx->spec |= EXT4_SPEC_s_max_batch_time;
2172 return 0;
2173 case Opt_min_batch_time:
2174 ctx->s_min_batch_time = result.uint_32;
2175 ctx->spec |= EXT4_SPEC_s_min_batch_time;
2176 return 0;
2177 case Opt_inode_readahead_blks:
2178 if (result.uint_32 &&
2179 (result.uint_32 > (1 << 30) ||
2180 !is_power_of_2(result.uint_32))) {
2181 ext4_msg(NULL, KERN_ERR,
2182 "EXT4-fs: inode_readahead_blks must be "
2183 "0 or a power of 2 smaller than 2^31");
2184 return -EINVAL;
2185 }
2186 ctx->s_inode_readahead_blks = result.uint_32;
2187 ctx->spec |= EXT4_SPEC_s_inode_readahead_blks;
2188 return 0;
2189 case Opt_init_itable:
2190 ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE);
2191 ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
2192 if (param->type == fs_value_is_string)
2193 ctx->s_li_wait_mult = result.uint_32;
2194 ctx->spec |= EXT4_SPEC_s_li_wait_mult;
2195 return 0;
2196 case Opt_max_dir_size_kb:
2197 ctx->s_max_dir_size_kb = result.uint_32;
2198 ctx->spec |= EXT4_SPEC_s_max_dir_size_kb;
2199 return 0;
2200 #ifdef CONFIG_EXT4_DEBUG
2201 case Opt_fc_debug_max_replay:
2202 ctx->s_fc_debug_max_replay = result.uint_32;
2203 ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay;
2204 return 0;
2205 #endif
2206 case Opt_stripe:
2207 ctx->s_stripe = result.uint_32;
2208 ctx->spec |= EXT4_SPEC_s_stripe;
2209 return 0;
2210 case Opt_resuid:
2211 uid = make_kuid(current_user_ns(), result.uint_32);
2212 if (!uid_valid(uid)) {
2213 ext4_msg(NULL, KERN_ERR, "Invalid uid value %d",
2214 result.uint_32);
2215 return -EINVAL;
2216 }
2217 ctx->s_resuid = uid;
2218 ctx->spec |= EXT4_SPEC_s_resuid;
2219 return 0;
2220 case Opt_resgid:
2221 gid = make_kgid(current_user_ns(), result.uint_32);
2222 if (!gid_valid(gid)) {
2223 ext4_msg(NULL, KERN_ERR, "Invalid gid value %d",
2224 result.uint_32);
2225 return -EINVAL;
2226 }
2227 ctx->s_resgid = gid;
2228 ctx->spec |= EXT4_SPEC_s_resgid;
2229 return 0;
2230 case Opt_journal_dev:
2231 if (is_remount) {
2232 ext4_msg(NULL, KERN_ERR,
2233 "Cannot specify journal on remount");
2234 return -EINVAL;
2235 }
2236 ctx->journal_devnum = result.uint_32;
2237 ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2238 return 0;
2239 case Opt_journal_path:
2240 {
2241 struct inode *journal_inode;
2242 struct path path;
2243 int error;
2244
2245 if (is_remount) {
2246 ext4_msg(NULL, KERN_ERR,
2247 "Cannot specify journal on remount");
2248 return -EINVAL;
2249 }
2250
2251 error = fs_lookup_param(fc, param, 1, LOOKUP_FOLLOW, &path);
2252 if (error) {
2253 ext4_msg(NULL, KERN_ERR, "error: could not find "
2254 "journal device path");
2255 return -EINVAL;
2256 }
2257
2258 journal_inode = d_inode(path.dentry);
2259 ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev);
2260 ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2261 path_put(&path);
2262 return 0;
2263 }
2264 case Opt_journal_ioprio:
2265 if (result.uint_32 > 7) {
2266 ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority"
2267 " (must be 0-7)");
2268 return -EINVAL;
2269 }
2270 ctx->journal_ioprio =
2271 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32);
2272 ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO;
2273 return 0;
2274 case Opt_test_dummy_encryption:
2275 return ext4_parse_test_dummy_encryption(param, ctx);
2276 case Opt_dax:
2277 case Opt_dax_type:
2278 #ifdef CONFIG_FS_DAX
2279 {
2280 int type = (token == Opt_dax) ?
2281 Opt_dax : result.uint_32;
2282
2283 switch (type) {
2284 case Opt_dax:
2285 case Opt_dax_always:
2286 ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2287 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2288 break;
2289 case Opt_dax_never:
2290 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2291 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2292 break;
2293 case Opt_dax_inode:
2294 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2295 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2296 /* Strictly for printing options */
2297 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE);
2298 break;
2299 }
2300 return 0;
2301 }
2302 #else
2303 ext4_msg(NULL, KERN_INFO, "dax option not supported");
2304 return -EINVAL;
2305 #endif
2306 case Opt_data_err:
2307 if (result.uint_32 == Opt_data_err_abort)
2308 ctx_set_mount_opt(ctx, m->mount_opt);
2309 else if (result.uint_32 == Opt_data_err_ignore)
2310 ctx_clear_mount_opt(ctx, m->mount_opt);
2311 return 0;
2312 case Opt_mb_optimize_scan:
2313 if (result.int_32 == 1) {
2314 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2315 ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2316 } else if (result.int_32 == 0) {
2317 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2318 ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2319 } else {
2320 ext4_msg(NULL, KERN_WARNING,
2321 "mb_optimize_scan should be set to 0 or 1.");
2322 return -EINVAL;
2323 }
2324 return 0;
2325 }
2326
2327 /*
2328 * At this point we should only be getting options requiring MOPT_SET,
2329 * or MOPT_CLEAR. Anything else is a bug
2330 */
2331 if (m->token == Opt_err) {
2332 ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s",
2333 param->key);
2334 WARN_ON(1);
2335 return -EINVAL;
2336 }
2337
2338 else {
2339 unsigned int set = 0;
2340
2341 if ((param->type == fs_value_is_flag) ||
2342 result.uint_32 > 0)
2343 set = 1;
2344
2345 if (m->flags & MOPT_CLEAR)
2346 set = !set;
2347 else if (unlikely(!(m->flags & MOPT_SET))) {
2348 ext4_msg(NULL, KERN_WARNING,
2349 "buggy handling of option %s",
2350 param->key);
2351 WARN_ON(1);
2352 return -EINVAL;
2353 }
2354 if (m->flags & MOPT_2) {
2355 if (set != 0)
2356 ctx_set_mount_opt2(ctx, m->mount_opt);
2357 else
2358 ctx_clear_mount_opt2(ctx, m->mount_opt);
2359 } else {
2360 if (set != 0)
2361 ctx_set_mount_opt(ctx, m->mount_opt);
2362 else
2363 ctx_clear_mount_opt(ctx, m->mount_opt);
2364 }
2365 }
2366
2367 return 0;
2368 }
2369
parse_options(struct fs_context * fc,char * options)2370 static int parse_options(struct fs_context *fc, char *options)
2371 {
2372 struct fs_parameter param;
2373 int ret;
2374 char *key;
2375
2376 if (!options)
2377 return 0;
2378
2379 while ((key = strsep(&options, ",")) != NULL) {
2380 if (*key) {
2381 size_t v_len = 0;
2382 char *value = strchr(key, '=');
2383
2384 param.type = fs_value_is_flag;
2385 param.string = NULL;
2386
2387 if (value) {
2388 if (value == key)
2389 continue;
2390
2391 *value++ = 0;
2392 v_len = strlen(value);
2393 param.string = kmemdup_nul(value, v_len,
2394 GFP_KERNEL);
2395 if (!param.string)
2396 return -ENOMEM;
2397 param.type = fs_value_is_string;
2398 }
2399
2400 param.key = key;
2401 param.size = v_len;
2402
2403 ret = ext4_parse_param(fc, ¶m);
2404 if (param.string)
2405 kfree(param.string);
2406 if (ret < 0)
2407 return ret;
2408 }
2409 }
2410
2411 ret = ext4_validate_options(fc);
2412 if (ret < 0)
2413 return ret;
2414
2415 return 0;
2416 }
2417
parse_apply_sb_mount_options(struct super_block * sb,struct ext4_fs_context * m_ctx)2418 static int parse_apply_sb_mount_options(struct super_block *sb,
2419 struct ext4_fs_context *m_ctx)
2420 {
2421 struct ext4_sb_info *sbi = EXT4_SB(sb);
2422 char *s_mount_opts = NULL;
2423 struct ext4_fs_context *s_ctx = NULL;
2424 struct fs_context *fc = NULL;
2425 int ret = -ENOMEM;
2426
2427 if (!sbi->s_es->s_mount_opts[0])
2428 return 0;
2429
2430 s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
2431 sizeof(sbi->s_es->s_mount_opts),
2432 GFP_KERNEL);
2433 if (!s_mount_opts)
2434 return ret;
2435
2436 fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL);
2437 if (!fc)
2438 goto out_free;
2439
2440 s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2441 if (!s_ctx)
2442 goto out_free;
2443
2444 fc->fs_private = s_ctx;
2445 fc->s_fs_info = sbi;
2446
2447 ret = parse_options(fc, s_mount_opts);
2448 if (ret < 0)
2449 goto parse_failed;
2450
2451 ret = ext4_check_opt_consistency(fc, sb);
2452 if (ret < 0) {
2453 parse_failed:
2454 ext4_msg(sb, KERN_WARNING,
2455 "failed to parse options in superblock: %s",
2456 s_mount_opts);
2457 ret = 0;
2458 goto out_free;
2459 }
2460
2461 if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV)
2462 m_ctx->journal_devnum = s_ctx->journal_devnum;
2463 if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)
2464 m_ctx->journal_ioprio = s_ctx->journal_ioprio;
2465
2466 ext4_apply_options(fc, sb);
2467 ret = 0;
2468
2469 out_free:
2470 if (fc) {
2471 ext4_fc_free(fc);
2472 kfree(fc);
2473 }
2474 kfree(s_mount_opts);
2475 return ret;
2476 }
2477
ext4_apply_quota_options(struct fs_context * fc,struct super_block * sb)2478 static void ext4_apply_quota_options(struct fs_context *fc,
2479 struct super_block *sb)
2480 {
2481 #ifdef CONFIG_QUOTA
2482 bool quota_feature = ext4_has_feature_quota(sb);
2483 struct ext4_fs_context *ctx = fc->fs_private;
2484 struct ext4_sb_info *sbi = EXT4_SB(sb);
2485 char *qname;
2486 int i;
2487
2488 if (quota_feature)
2489 return;
2490
2491 if (ctx->spec & EXT4_SPEC_JQUOTA) {
2492 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2493 if (!(ctx->qname_spec & (1 << i)))
2494 continue;
2495
2496 qname = ctx->s_qf_names[i]; /* May be NULL */
2497 if (qname)
2498 set_opt(sb, QUOTA);
2499 ctx->s_qf_names[i] = NULL;
2500 qname = rcu_replace_pointer(sbi->s_qf_names[i], qname,
2501 lockdep_is_held(&sb->s_umount));
2502 if (qname)
2503 kfree_rcu(qname);
2504 }
2505 }
2506
2507 if (ctx->spec & EXT4_SPEC_JQFMT)
2508 sbi->s_jquota_fmt = ctx->s_jquota_fmt;
2509 #endif
2510 }
2511
2512 /*
2513 * Check quota settings consistency.
2514 */
ext4_check_quota_consistency(struct fs_context * fc,struct super_block * sb)2515 static int ext4_check_quota_consistency(struct fs_context *fc,
2516 struct super_block *sb)
2517 {
2518 #ifdef CONFIG_QUOTA
2519 struct ext4_fs_context *ctx = fc->fs_private;
2520 struct ext4_sb_info *sbi = EXT4_SB(sb);
2521 bool quota_feature = ext4_has_feature_quota(sb);
2522 bool quota_loaded = sb_any_quota_loaded(sb);
2523 bool usr_qf_name, grp_qf_name, usrquota, grpquota;
2524 int quota_flags, i;
2525
2526 /*
2527 * We do the test below only for project quotas. 'usrquota' and
2528 * 'grpquota' mount options are allowed even without quota feature
2529 * to support legacy quotas in quota files.
2530 */
2531 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) &&
2532 !ext4_has_feature_project(sb)) {
2533 ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. "
2534 "Cannot enable project quota enforcement.");
2535 return -EINVAL;
2536 }
2537
2538 quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
2539 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA;
2540 if (quota_loaded &&
2541 ctx->mask_s_mount_opt & quota_flags &&
2542 !ctx_test_mount_opt(ctx, quota_flags))
2543 goto err_quota_change;
2544
2545 if (ctx->spec & EXT4_SPEC_JQUOTA) {
2546
2547 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2548 if (!(ctx->qname_spec & (1 << i)))
2549 continue;
2550
2551 if (quota_loaded &&
2552 !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i])
2553 goto err_jquota_change;
2554
2555 if (sbi->s_qf_names[i] && ctx->s_qf_names[i] &&
2556 strcmp(get_qf_name(sb, sbi, i),
2557 ctx->s_qf_names[i]) != 0)
2558 goto err_jquota_specified;
2559 }
2560
2561 if (quota_feature) {
2562 ext4_msg(NULL, KERN_INFO,
2563 "Journaled quota options ignored when "
2564 "QUOTA feature is enabled");
2565 return 0;
2566 }
2567 }
2568
2569 if (ctx->spec & EXT4_SPEC_JQFMT) {
2570 if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded)
2571 goto err_jquota_change;
2572 if (quota_feature) {
2573 ext4_msg(NULL, KERN_INFO, "Quota format mount options "
2574 "ignored when QUOTA feature is enabled");
2575 return 0;
2576 }
2577 }
2578
2579 /* Make sure we don't mix old and new quota format */
2580 usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) ||
2581 ctx->s_qf_names[USRQUOTA]);
2582 grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) ||
2583 ctx->s_qf_names[GRPQUOTA]);
2584
2585 usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2586 test_opt(sb, USRQUOTA));
2587
2588 grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) ||
2589 test_opt(sb, GRPQUOTA));
2590
2591 if (usr_qf_name) {
2592 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2593 usrquota = false;
2594 }
2595 if (grp_qf_name) {
2596 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2597 grpquota = false;
2598 }
2599
2600 if (usr_qf_name || grp_qf_name) {
2601 if (usrquota || grpquota) {
2602 ext4_msg(NULL, KERN_ERR, "old and new quota "
2603 "format mixing");
2604 return -EINVAL;
2605 }
2606
2607 if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) {
2608 ext4_msg(NULL, KERN_ERR, "journaled quota format "
2609 "not specified");
2610 return -EINVAL;
2611 }
2612 }
2613
2614 return 0;
2615
2616 err_quota_change:
2617 ext4_msg(NULL, KERN_ERR,
2618 "Cannot change quota options when quota turned on");
2619 return -EINVAL;
2620 err_jquota_change:
2621 ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota "
2622 "options when quota turned on");
2623 return -EINVAL;
2624 err_jquota_specified:
2625 ext4_msg(NULL, KERN_ERR, "%s quota file already specified",
2626 QTYPE2NAME(i));
2627 return -EINVAL;
2628 #else
2629 return 0;
2630 #endif
2631 }
2632
ext4_check_test_dummy_encryption(const struct fs_context * fc,struct super_block * sb)2633 static int ext4_check_test_dummy_encryption(const struct fs_context *fc,
2634 struct super_block *sb)
2635 {
2636 const struct ext4_fs_context *ctx = fc->fs_private;
2637 const struct ext4_sb_info *sbi = EXT4_SB(sb);
2638 int err;
2639
2640 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy))
2641 return 0;
2642
2643 if (!ext4_has_feature_encrypt(sb)) {
2644 ext4_msg(NULL, KERN_WARNING,
2645 "test_dummy_encryption requires encrypt feature");
2646 return -EINVAL;
2647 }
2648 /*
2649 * This mount option is just for testing, and it's not worthwhile to
2650 * implement the extra complexity (e.g. RCU protection) that would be
2651 * needed to allow it to be set or changed during remount. We do allow
2652 * it to be specified during remount, but only if there is no change.
2653 */
2654 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2655 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2656 &ctx->dummy_enc_policy))
2657 return 0;
2658 ext4_msg(NULL, KERN_WARNING,
2659 "Can't set or change test_dummy_encryption on remount");
2660 return -EINVAL;
2661 }
2662 /* Also make sure s_mount_opts didn't contain a conflicting value. */
2663 if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) {
2664 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2665 &ctx->dummy_enc_policy))
2666 return 0;
2667 ext4_msg(NULL, KERN_WARNING,
2668 "Conflicting test_dummy_encryption options");
2669 return -EINVAL;
2670 }
2671 /*
2672 * fscrypt_add_test_dummy_key() technically changes the super_block, so
2673 * technically it should be delayed until ext4_apply_options() like the
2674 * other changes. But since we never get here for remounts (see above),
2675 * and this is the last chance to report errors, we do it here.
2676 */
2677 err = fscrypt_add_test_dummy_key(sb, &ctx->dummy_enc_policy);
2678 if (err)
2679 ext4_msg(NULL, KERN_WARNING,
2680 "Error adding test dummy encryption key [%d]", err);
2681 return err;
2682 }
2683
ext4_apply_test_dummy_encryption(struct ext4_fs_context * ctx,struct super_block * sb)2684 static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx,
2685 struct super_block *sb)
2686 {
2687 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) ||
2688 /* if already set, it was already verified to be the same */
2689 fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy))
2690 return;
2691 EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy;
2692 memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy));
2693 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2694 }
2695
ext4_check_opt_consistency(struct fs_context * fc,struct super_block * sb)2696 static int ext4_check_opt_consistency(struct fs_context *fc,
2697 struct super_block *sb)
2698 {
2699 struct ext4_fs_context *ctx = fc->fs_private;
2700 struct ext4_sb_info *sbi = fc->s_fs_info;
2701 int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2702 int err;
2703
2704 if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2705 ext4_msg(NULL, KERN_ERR,
2706 "Mount option(s) incompatible with ext2");
2707 return -EINVAL;
2708 }
2709 if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2710 ext4_msg(NULL, KERN_ERR,
2711 "Mount option(s) incompatible with ext3");
2712 return -EINVAL;
2713 }
2714
2715 if (ctx->s_want_extra_isize >
2716 (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) {
2717 ext4_msg(NULL, KERN_ERR,
2718 "Invalid want_extra_isize %d",
2719 ctx->s_want_extra_isize);
2720 return -EINVAL;
2721 }
2722
2723 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DIOREAD_NOLOCK)) {
2724 int blocksize =
2725 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2726 if (blocksize < PAGE_SIZE)
2727 ext4_msg(NULL, KERN_WARNING, "Warning: mounting with an "
2728 "experimental mount option 'dioread_nolock' "
2729 "for blocksize < PAGE_SIZE");
2730 }
2731
2732 err = ext4_check_test_dummy_encryption(fc, sb);
2733 if (err)
2734 return err;
2735
2736 if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) {
2737 if (!sbi->s_journal) {
2738 ext4_msg(NULL, KERN_WARNING,
2739 "Remounting file system with no journal "
2740 "so ignoring journalled data option");
2741 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2742 } else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) !=
2743 test_opt(sb, DATA_FLAGS)) {
2744 ext4_msg(NULL, KERN_ERR, "Cannot change data mode "
2745 "on remount");
2746 return -EINVAL;
2747 }
2748 }
2749
2750 if (is_remount) {
2751 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2752 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
2753 ext4_msg(NULL, KERN_ERR, "can't mount with "
2754 "both data=journal and dax");
2755 return -EINVAL;
2756 }
2757
2758 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2759 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2760 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2761 fail_dax_change_remount:
2762 ext4_msg(NULL, KERN_ERR, "can't change "
2763 "dax mount option while remounting");
2764 return -EINVAL;
2765 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) &&
2766 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2767 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) {
2768 goto fail_dax_change_remount;
2769 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) &&
2770 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2771 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2772 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) {
2773 goto fail_dax_change_remount;
2774 }
2775 }
2776
2777 return ext4_check_quota_consistency(fc, sb);
2778 }
2779
ext4_apply_options(struct fs_context * fc,struct super_block * sb)2780 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb)
2781 {
2782 struct ext4_fs_context *ctx = fc->fs_private;
2783 struct ext4_sb_info *sbi = fc->s_fs_info;
2784
2785 sbi->s_mount_opt &= ~ctx->mask_s_mount_opt;
2786 sbi->s_mount_opt |= ctx->vals_s_mount_opt;
2787 sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2;
2788 sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2;
2789 sbi->s_mount_flags &= ~ctx->mask_s_mount_flags;
2790 sbi->s_mount_flags |= ctx->vals_s_mount_flags;
2791 sb->s_flags &= ~ctx->mask_s_flags;
2792 sb->s_flags |= ctx->vals_s_flags;
2793
2794 #define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; })
2795 APPLY(s_commit_interval);
2796 APPLY(s_stripe);
2797 APPLY(s_max_batch_time);
2798 APPLY(s_min_batch_time);
2799 APPLY(s_want_extra_isize);
2800 APPLY(s_inode_readahead_blks);
2801 APPLY(s_max_dir_size_kb);
2802 APPLY(s_li_wait_mult);
2803 APPLY(s_resgid);
2804 APPLY(s_resuid);
2805
2806 #ifdef CONFIG_EXT4_DEBUG
2807 APPLY(s_fc_debug_max_replay);
2808 #endif
2809
2810 ext4_apply_quota_options(fc, sb);
2811 ext4_apply_test_dummy_encryption(ctx, sb);
2812 }
2813
2814
ext4_validate_options(struct fs_context * fc)2815 static int ext4_validate_options(struct fs_context *fc)
2816 {
2817 #ifdef CONFIG_QUOTA
2818 struct ext4_fs_context *ctx = fc->fs_private;
2819 char *usr_qf_name, *grp_qf_name;
2820
2821 usr_qf_name = ctx->s_qf_names[USRQUOTA];
2822 grp_qf_name = ctx->s_qf_names[GRPQUOTA];
2823
2824 if (usr_qf_name || grp_qf_name) {
2825 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name)
2826 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2827
2828 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name)
2829 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2830
2831 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2832 ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) {
2833 ext4_msg(NULL, KERN_ERR, "old and new quota "
2834 "format mixing");
2835 return -EINVAL;
2836 }
2837 }
2838 #endif
2839 return 1;
2840 }
2841
ext4_show_quota_options(struct seq_file * seq,struct super_block * sb)2842 static inline void ext4_show_quota_options(struct seq_file *seq,
2843 struct super_block *sb)
2844 {
2845 #if defined(CONFIG_QUOTA)
2846 struct ext4_sb_info *sbi = EXT4_SB(sb);
2847 char *usr_qf_name, *grp_qf_name;
2848
2849 if (sbi->s_jquota_fmt) {
2850 char *fmtname = "";
2851
2852 switch (sbi->s_jquota_fmt) {
2853 case QFMT_VFS_OLD:
2854 fmtname = "vfsold";
2855 break;
2856 case QFMT_VFS_V0:
2857 fmtname = "vfsv0";
2858 break;
2859 case QFMT_VFS_V1:
2860 fmtname = "vfsv1";
2861 break;
2862 }
2863 seq_printf(seq, ",jqfmt=%s", fmtname);
2864 }
2865
2866 rcu_read_lock();
2867 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2868 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2869 if (usr_qf_name)
2870 seq_show_option(seq, "usrjquota", usr_qf_name);
2871 if (grp_qf_name)
2872 seq_show_option(seq, "grpjquota", grp_qf_name);
2873 rcu_read_unlock();
2874 #endif
2875 }
2876
token2str(int token)2877 static const char *token2str(int token)
2878 {
2879 const struct fs_parameter_spec *spec;
2880
2881 for (spec = ext4_param_specs; spec->name != NULL; spec++)
2882 if (spec->opt == token && !spec->type)
2883 break;
2884 return spec->name;
2885 }
2886
2887 /*
2888 * Show an option if
2889 * - it's set to a non-default value OR
2890 * - if the per-sb default is different from the global default
2891 */
_ext4_show_options(struct seq_file * seq,struct super_block * sb,int nodefs)2892 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2893 int nodefs)
2894 {
2895 struct ext4_sb_info *sbi = EXT4_SB(sb);
2896 struct ext4_super_block *es = sbi->s_es;
2897 int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2898 const struct mount_opts *m;
2899 char sep = nodefs ? '\n' : ',';
2900
2901 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2902 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2903
2904 if (sbi->s_sb_block != 1)
2905 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2906
2907 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2908 int want_set = m->flags & MOPT_SET;
2909 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2910 m->flags & MOPT_SKIP)
2911 continue;
2912 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2913 continue; /* skip if same as the default */
2914 if ((want_set &&
2915 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2916 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2917 continue; /* select Opt_noFoo vs Opt_Foo */
2918 SEQ_OPTS_PRINT("%s", token2str(m->token));
2919 }
2920
2921 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2922 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2923 SEQ_OPTS_PRINT("resuid=%u",
2924 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2925 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2926 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2927 SEQ_OPTS_PRINT("resgid=%u",
2928 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2929 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2930 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2931 SEQ_OPTS_PUTS("errors=remount-ro");
2932 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2933 SEQ_OPTS_PUTS("errors=continue");
2934 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2935 SEQ_OPTS_PUTS("errors=panic");
2936 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2937 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2938 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2939 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2940 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2941 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2942 if (nodefs || sbi->s_stripe)
2943 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2944 if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2945 (sbi->s_mount_opt ^ def_mount_opt)) {
2946 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2947 SEQ_OPTS_PUTS("data=journal");
2948 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2949 SEQ_OPTS_PUTS("data=ordered");
2950 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2951 SEQ_OPTS_PUTS("data=writeback");
2952 }
2953 if (nodefs ||
2954 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2955 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2956 sbi->s_inode_readahead_blks);
2957
2958 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2959 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2960 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2961 if (nodefs || sbi->s_max_dir_size_kb)
2962 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2963 if (test_opt(sb, DATA_ERR_ABORT))
2964 SEQ_OPTS_PUTS("data_err=abort");
2965
2966 fscrypt_show_test_dummy_encryption(seq, sep, sb);
2967
2968 if (sb->s_flags & SB_INLINECRYPT)
2969 SEQ_OPTS_PUTS("inlinecrypt");
2970
2971 if (test_opt(sb, DAX_ALWAYS)) {
2972 if (IS_EXT2_SB(sb))
2973 SEQ_OPTS_PUTS("dax");
2974 else
2975 SEQ_OPTS_PUTS("dax=always");
2976 } else if (test_opt2(sb, DAX_NEVER)) {
2977 SEQ_OPTS_PUTS("dax=never");
2978 } else if (test_opt2(sb, DAX_INODE)) {
2979 SEQ_OPTS_PUTS("dax=inode");
2980 }
2981
2982 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
2983 !test_opt2(sb, MB_OPTIMIZE_SCAN)) {
2984 SEQ_OPTS_PUTS("mb_optimize_scan=0");
2985 } else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
2986 test_opt2(sb, MB_OPTIMIZE_SCAN)) {
2987 SEQ_OPTS_PUTS("mb_optimize_scan=1");
2988 }
2989
2990 ext4_show_quota_options(seq, sb);
2991 return 0;
2992 }
2993
ext4_show_options(struct seq_file * seq,struct dentry * root)2994 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2995 {
2996 return _ext4_show_options(seq, root->d_sb, 0);
2997 }
2998
ext4_seq_options_show(struct seq_file * seq,void * offset)2999 int ext4_seq_options_show(struct seq_file *seq, void *offset)
3000 {
3001 struct super_block *sb = seq->private;
3002 int rc;
3003
3004 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
3005 rc = _ext4_show_options(seq, sb, 1);
3006 seq_puts(seq, "\n");
3007 return rc;
3008 }
3009
ext4_setup_super(struct super_block * sb,struct ext4_super_block * es,int read_only)3010 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
3011 int read_only)
3012 {
3013 struct ext4_sb_info *sbi = EXT4_SB(sb);
3014 int err = 0;
3015
3016 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
3017 ext4_msg(sb, KERN_ERR, "revision level too high, "
3018 "forcing read-only mode");
3019 err = -EROFS;
3020 goto done;
3021 }
3022 if (read_only)
3023 goto done;
3024 if (!(sbi->s_mount_state & EXT4_VALID_FS))
3025 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
3026 "running e2fsck is recommended");
3027 else if (sbi->s_mount_state & EXT4_ERROR_FS)
3028 ext4_msg(sb, KERN_WARNING,
3029 "warning: mounting fs with errors, "
3030 "running e2fsck is recommended");
3031 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
3032 le16_to_cpu(es->s_mnt_count) >=
3033 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
3034 ext4_msg(sb, KERN_WARNING,
3035 "warning: maximal mount count reached, "
3036 "running e2fsck is recommended");
3037 else if (le32_to_cpu(es->s_checkinterval) &&
3038 (ext4_get_tstamp(es, s_lastcheck) +
3039 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
3040 ext4_msg(sb, KERN_WARNING,
3041 "warning: checktime reached, "
3042 "running e2fsck is recommended");
3043 if (!sbi->s_journal)
3044 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
3045 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
3046 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
3047 le16_add_cpu(&es->s_mnt_count, 1);
3048 ext4_update_tstamp(es, s_mtime);
3049 if (sbi->s_journal) {
3050 ext4_set_feature_journal_needs_recovery(sb);
3051 if (ext4_has_feature_orphan_file(sb))
3052 ext4_set_feature_orphan_present(sb);
3053 }
3054
3055 err = ext4_commit_super(sb);
3056 done:
3057 if (test_opt(sb, DEBUG))
3058 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
3059 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
3060 sb->s_blocksize,
3061 sbi->s_groups_count,
3062 EXT4_BLOCKS_PER_GROUP(sb),
3063 EXT4_INODES_PER_GROUP(sb),
3064 sbi->s_mount_opt, sbi->s_mount_opt2);
3065 return err;
3066 }
3067
ext4_alloc_flex_bg_array(struct super_block * sb,ext4_group_t ngroup)3068 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
3069 {
3070 struct ext4_sb_info *sbi = EXT4_SB(sb);
3071 struct flex_groups **old_groups, **new_groups;
3072 int size, i, j;
3073
3074 if (!sbi->s_log_groups_per_flex)
3075 return 0;
3076
3077 size = ext4_flex_group(sbi, ngroup - 1) + 1;
3078 if (size <= sbi->s_flex_groups_allocated)
3079 return 0;
3080
3081 new_groups = kvzalloc(roundup_pow_of_two(size *
3082 sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
3083 if (!new_groups) {
3084 ext4_msg(sb, KERN_ERR,
3085 "not enough memory for %d flex group pointers", size);
3086 return -ENOMEM;
3087 }
3088 for (i = sbi->s_flex_groups_allocated; i < size; i++) {
3089 new_groups[i] = kvzalloc(roundup_pow_of_two(
3090 sizeof(struct flex_groups)),
3091 GFP_KERNEL);
3092 if (!new_groups[i]) {
3093 for (j = sbi->s_flex_groups_allocated; j < i; j++)
3094 kvfree(new_groups[j]);
3095 kvfree(new_groups);
3096 ext4_msg(sb, KERN_ERR,
3097 "not enough memory for %d flex groups", size);
3098 return -ENOMEM;
3099 }
3100 }
3101 rcu_read_lock();
3102 old_groups = rcu_dereference(sbi->s_flex_groups);
3103 if (old_groups)
3104 memcpy(new_groups, old_groups,
3105 (sbi->s_flex_groups_allocated *
3106 sizeof(struct flex_groups *)));
3107 rcu_read_unlock();
3108 rcu_assign_pointer(sbi->s_flex_groups, new_groups);
3109 sbi->s_flex_groups_allocated = size;
3110 if (old_groups)
3111 ext4_kvfree_array_rcu(old_groups);
3112 return 0;
3113 }
3114
ext4_fill_flex_info(struct super_block * sb)3115 static int ext4_fill_flex_info(struct super_block *sb)
3116 {
3117 struct ext4_sb_info *sbi = EXT4_SB(sb);
3118 struct ext4_group_desc *gdp = NULL;
3119 struct flex_groups *fg;
3120 ext4_group_t flex_group;
3121 int i, err;
3122
3123 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
3124 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
3125 sbi->s_log_groups_per_flex = 0;
3126 return 1;
3127 }
3128
3129 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
3130 if (err)
3131 goto failed;
3132
3133 for (i = 0; i < sbi->s_groups_count; i++) {
3134 gdp = ext4_get_group_desc(sb, i, NULL);
3135
3136 flex_group = ext4_flex_group(sbi, i);
3137 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
3138 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
3139 atomic64_add(ext4_free_group_clusters(sb, gdp),
3140 &fg->free_clusters);
3141 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
3142 }
3143
3144 return 1;
3145 failed:
3146 return 0;
3147 }
3148
ext4_group_desc_csum(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)3149 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
3150 struct ext4_group_desc *gdp)
3151 {
3152 int offset = offsetof(struct ext4_group_desc, bg_checksum);
3153 __u16 crc = 0;
3154 __le32 le_group = cpu_to_le32(block_group);
3155 struct ext4_sb_info *sbi = EXT4_SB(sb);
3156
3157 if (ext4_has_metadata_csum(sbi->s_sb)) {
3158 /* Use new metadata_csum algorithm */
3159 __u32 csum32;
3160 __u16 dummy_csum = 0;
3161
3162 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
3163 sizeof(le_group));
3164 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
3165 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
3166 sizeof(dummy_csum));
3167 offset += sizeof(dummy_csum);
3168 if (offset < sbi->s_desc_size)
3169 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
3170 sbi->s_desc_size - offset);
3171
3172 crc = csum32 & 0xFFFF;
3173 goto out;
3174 }
3175
3176 /* old crc16 code */
3177 if (!ext4_has_feature_gdt_csum(sb))
3178 return 0;
3179
3180 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
3181 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
3182 crc = crc16(crc, (__u8 *)gdp, offset);
3183 offset += sizeof(gdp->bg_checksum); /* skip checksum */
3184 /* for checksum of struct ext4_group_desc do the rest...*/
3185 if (ext4_has_feature_64bit(sb) &&
3186 offset < le16_to_cpu(sbi->s_es->s_desc_size))
3187 crc = crc16(crc, (__u8 *)gdp + offset,
3188 le16_to_cpu(sbi->s_es->s_desc_size) -
3189 offset);
3190
3191 out:
3192 return cpu_to_le16(crc);
3193 }
3194
ext4_group_desc_csum_verify(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)3195 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
3196 struct ext4_group_desc *gdp)
3197 {
3198 if (ext4_has_group_desc_csum(sb) &&
3199 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
3200 return 0;
3201
3202 return 1;
3203 }
3204
ext4_group_desc_csum_set(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)3205 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
3206 struct ext4_group_desc *gdp)
3207 {
3208 if (!ext4_has_group_desc_csum(sb))
3209 return;
3210 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
3211 }
3212
3213 /* Called at mount-time, super-block is locked */
ext4_check_descriptors(struct super_block * sb,ext4_fsblk_t sb_block,ext4_group_t * first_not_zeroed)3214 static int ext4_check_descriptors(struct super_block *sb,
3215 ext4_fsblk_t sb_block,
3216 ext4_group_t *first_not_zeroed)
3217 {
3218 struct ext4_sb_info *sbi = EXT4_SB(sb);
3219 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
3220 ext4_fsblk_t last_block;
3221 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
3222 ext4_fsblk_t block_bitmap;
3223 ext4_fsblk_t inode_bitmap;
3224 ext4_fsblk_t inode_table;
3225 int flexbg_flag = 0;
3226 ext4_group_t i, grp = sbi->s_groups_count;
3227
3228 if (ext4_has_feature_flex_bg(sb))
3229 flexbg_flag = 1;
3230
3231 ext4_debug("Checking group descriptors");
3232
3233 for (i = 0; i < sbi->s_groups_count; i++) {
3234 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
3235
3236 if (i == sbi->s_groups_count - 1 || flexbg_flag)
3237 last_block = ext4_blocks_count(sbi->s_es) - 1;
3238 else
3239 last_block = first_block +
3240 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
3241
3242 if ((grp == sbi->s_groups_count) &&
3243 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3244 grp = i;
3245
3246 block_bitmap = ext4_block_bitmap(sb, gdp);
3247 if (block_bitmap == sb_block) {
3248 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3249 "Block bitmap for group %u overlaps "
3250 "superblock", i);
3251 if (!sb_rdonly(sb))
3252 return 0;
3253 }
3254 if (block_bitmap >= sb_block + 1 &&
3255 block_bitmap <= last_bg_block) {
3256 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3257 "Block bitmap for group %u overlaps "
3258 "block group descriptors", i);
3259 if (!sb_rdonly(sb))
3260 return 0;
3261 }
3262 if (block_bitmap < first_block || block_bitmap > last_block) {
3263 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3264 "Block bitmap for group %u not in group "
3265 "(block %llu)!", i, block_bitmap);
3266 return 0;
3267 }
3268 inode_bitmap = ext4_inode_bitmap(sb, gdp);
3269 if (inode_bitmap == sb_block) {
3270 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3271 "Inode bitmap for group %u overlaps "
3272 "superblock", i);
3273 if (!sb_rdonly(sb))
3274 return 0;
3275 }
3276 if (inode_bitmap >= sb_block + 1 &&
3277 inode_bitmap <= last_bg_block) {
3278 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3279 "Inode bitmap for group %u overlaps "
3280 "block group descriptors", i);
3281 if (!sb_rdonly(sb))
3282 return 0;
3283 }
3284 if (inode_bitmap < first_block || inode_bitmap > last_block) {
3285 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3286 "Inode bitmap for group %u not in group "
3287 "(block %llu)!", i, inode_bitmap);
3288 return 0;
3289 }
3290 inode_table = ext4_inode_table(sb, gdp);
3291 if (inode_table == sb_block) {
3292 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3293 "Inode table for group %u overlaps "
3294 "superblock", i);
3295 if (!sb_rdonly(sb))
3296 return 0;
3297 }
3298 if (inode_table >= sb_block + 1 &&
3299 inode_table <= last_bg_block) {
3300 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3301 "Inode table for group %u overlaps "
3302 "block group descriptors", i);
3303 if (!sb_rdonly(sb))
3304 return 0;
3305 }
3306 if (inode_table < first_block ||
3307 inode_table + sbi->s_itb_per_group - 1 > last_block) {
3308 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3309 "Inode table for group %u not in group "
3310 "(block %llu)!", i, inode_table);
3311 return 0;
3312 }
3313 ext4_lock_group(sb, i);
3314 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
3315 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3316 "Checksum for group %u failed (%u!=%u)",
3317 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
3318 gdp)), le16_to_cpu(gdp->bg_checksum));
3319 if (!sb_rdonly(sb)) {
3320 ext4_unlock_group(sb, i);
3321 return 0;
3322 }
3323 }
3324 ext4_unlock_group(sb, i);
3325 if (!flexbg_flag)
3326 first_block += EXT4_BLOCKS_PER_GROUP(sb);
3327 }
3328 if (NULL != first_not_zeroed)
3329 *first_not_zeroed = grp;
3330 return 1;
3331 }
3332
3333 /*
3334 * Maximal extent format file size.
3335 * Resulting logical blkno at s_maxbytes must fit in our on-disk
3336 * extent format containers, within a sector_t, and within i_blocks
3337 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
3338 * so that won't be a limiting factor.
3339 *
3340 * However there is other limiting factor. We do store extents in the form
3341 * of starting block and length, hence the resulting length of the extent
3342 * covering maximum file size must fit into on-disk format containers as
3343 * well. Given that length is always by 1 unit bigger than max unit (because
3344 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3345 *
3346 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3347 */
ext4_max_size(int blkbits,int has_huge_files)3348 static loff_t ext4_max_size(int blkbits, int has_huge_files)
3349 {
3350 loff_t res;
3351 loff_t upper_limit = MAX_LFS_FILESIZE;
3352
3353 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3354
3355 if (!has_huge_files) {
3356 upper_limit = (1LL << 32) - 1;
3357
3358 /* total blocks in file system block size */
3359 upper_limit >>= (blkbits - 9);
3360 upper_limit <<= blkbits;
3361 }
3362
3363 /*
3364 * 32-bit extent-start container, ee_block. We lower the maxbytes
3365 * by one fs block, so ee_len can cover the extent of maximum file
3366 * size
3367 */
3368 res = (1LL << 32) - 1;
3369 res <<= blkbits;
3370
3371 /* Sanity check against vm- & vfs- imposed limits */
3372 if (res > upper_limit)
3373 res = upper_limit;
3374
3375 return res;
3376 }
3377
3378 /*
3379 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
3380 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3381 * We need to be 1 filesystem block less than the 2^48 sector limit.
3382 */
ext4_max_bitmap_size(int bits,int has_huge_files)3383 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3384 {
3385 loff_t upper_limit, res = EXT4_NDIR_BLOCKS;
3386 int meta_blocks;
3387 unsigned int ppb = 1 << (bits - 2);
3388
3389 /*
3390 * This is calculated to be the largest file size for a dense, block
3391 * mapped file such that the file's total number of 512-byte sectors,
3392 * including data and all indirect blocks, does not exceed (2^48 - 1).
3393 *
3394 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3395 * number of 512-byte sectors of the file.
3396 */
3397 if (!has_huge_files) {
3398 /*
3399 * !has_huge_files or implies that the inode i_block field
3400 * represents total file blocks in 2^32 512-byte sectors ==
3401 * size of vfs inode i_blocks * 8
3402 */
3403 upper_limit = (1LL << 32) - 1;
3404
3405 /* total blocks in file system block size */
3406 upper_limit >>= (bits - 9);
3407
3408 } else {
3409 /*
3410 * We use 48 bit ext4_inode i_blocks
3411 * With EXT4_HUGE_FILE_FL set the i_blocks
3412 * represent total number of blocks in
3413 * file system block size
3414 */
3415 upper_limit = (1LL << 48) - 1;
3416
3417 }
3418
3419 /* Compute how many blocks we can address by block tree */
3420 res += ppb;
3421 res += ppb * ppb;
3422 res += ((loff_t)ppb) * ppb * ppb;
3423 /* Compute how many metadata blocks are needed */
3424 meta_blocks = 1;
3425 meta_blocks += 1 + ppb;
3426 meta_blocks += 1 + ppb + ppb * ppb;
3427 /* Does block tree limit file size? */
3428 if (res + meta_blocks <= upper_limit)
3429 goto check_lfs;
3430
3431 res = upper_limit;
3432 /* How many metadata blocks are needed for addressing upper_limit? */
3433 upper_limit -= EXT4_NDIR_BLOCKS;
3434 /* indirect blocks */
3435 meta_blocks = 1;
3436 upper_limit -= ppb;
3437 /* double indirect blocks */
3438 if (upper_limit < ppb * ppb) {
3439 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb);
3440 res -= meta_blocks;
3441 goto check_lfs;
3442 }
3443 meta_blocks += 1 + ppb;
3444 upper_limit -= ppb * ppb;
3445 /* tripple indirect blocks for the rest */
3446 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) +
3447 DIV_ROUND_UP_ULL(upper_limit, ppb*ppb);
3448 res -= meta_blocks;
3449 check_lfs:
3450 res <<= bits;
3451 if (res > MAX_LFS_FILESIZE)
3452 res = MAX_LFS_FILESIZE;
3453
3454 return res;
3455 }
3456
descriptor_loc(struct super_block * sb,ext4_fsblk_t logical_sb_block,int nr)3457 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3458 ext4_fsblk_t logical_sb_block, int nr)
3459 {
3460 struct ext4_sb_info *sbi = EXT4_SB(sb);
3461 ext4_group_t bg, first_meta_bg;
3462 int has_super = 0;
3463
3464 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3465
3466 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3467 return logical_sb_block + nr + 1;
3468 bg = sbi->s_desc_per_block * nr;
3469 if (ext4_bg_has_super(sb, bg))
3470 has_super = 1;
3471
3472 /*
3473 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3474 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
3475 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3476 * compensate.
3477 */
3478 if (sb->s_blocksize == 1024 && nr == 0 &&
3479 le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3480 has_super++;
3481
3482 return (has_super + ext4_group_first_block_no(sb, bg));
3483 }
3484
3485 /**
3486 * ext4_get_stripe_size: Get the stripe size.
3487 * @sbi: In memory super block info
3488 *
3489 * If we have specified it via mount option, then
3490 * use the mount option value. If the value specified at mount time is
3491 * greater than the blocks per group use the super block value.
3492 * If the super block value is greater than blocks per group return 0.
3493 * Allocator needs it be less than blocks per group.
3494 *
3495 */
ext4_get_stripe_size(struct ext4_sb_info * sbi)3496 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3497 {
3498 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3499 unsigned long stripe_width =
3500 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3501 int ret;
3502
3503 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3504 ret = sbi->s_stripe;
3505 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3506 ret = stripe_width;
3507 else if (stride && stride <= sbi->s_blocks_per_group)
3508 ret = stride;
3509 else
3510 ret = 0;
3511
3512 /*
3513 * If the stripe width is 1, this makes no sense and
3514 * we set it to 0 to turn off stripe handling code.
3515 */
3516 if (ret <= 1)
3517 ret = 0;
3518
3519 return ret;
3520 }
3521
3522 /*
3523 * Check whether this filesystem can be mounted based on
3524 * the features present and the RDONLY/RDWR mount requested.
3525 * Returns 1 if this filesystem can be mounted as requested,
3526 * 0 if it cannot be.
3527 */
ext4_feature_set_ok(struct super_block * sb,int readonly)3528 int ext4_feature_set_ok(struct super_block *sb, int readonly)
3529 {
3530 if (ext4_has_unknown_ext4_incompat_features(sb)) {
3531 ext4_msg(sb, KERN_ERR,
3532 "Couldn't mount because of "
3533 "unsupported optional features (%x)",
3534 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3535 ~EXT4_FEATURE_INCOMPAT_SUPP));
3536 return 0;
3537 }
3538
3539 #if !IS_ENABLED(CONFIG_UNICODE)
3540 if (ext4_has_feature_casefold(sb)) {
3541 ext4_msg(sb, KERN_ERR,
3542 "Filesystem with casefold feature cannot be "
3543 "mounted without CONFIG_UNICODE");
3544 return 0;
3545 }
3546 #endif
3547
3548 if (readonly)
3549 return 1;
3550
3551 if (ext4_has_feature_readonly(sb)) {
3552 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3553 sb->s_flags |= SB_RDONLY;
3554 return 1;
3555 }
3556
3557 /* Check that feature set is OK for a read-write mount */
3558 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3559 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3560 "unsupported optional features (%x)",
3561 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3562 ~EXT4_FEATURE_RO_COMPAT_SUPP));
3563 return 0;
3564 }
3565 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3566 ext4_msg(sb, KERN_ERR,
3567 "Can't support bigalloc feature without "
3568 "extents feature\n");
3569 return 0;
3570 }
3571
3572 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3573 if (!readonly && (ext4_has_feature_quota(sb) ||
3574 ext4_has_feature_project(sb))) {
3575 ext4_msg(sb, KERN_ERR,
3576 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3577 return 0;
3578 }
3579 #endif /* CONFIG_QUOTA */
3580 return 1;
3581 }
3582
3583 /*
3584 * This function is called once a day if we have errors logged
3585 * on the file system
3586 */
print_daily_error_info(struct timer_list * t)3587 static void print_daily_error_info(struct timer_list *t)
3588 {
3589 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3590 struct super_block *sb = sbi->s_sb;
3591 struct ext4_super_block *es = sbi->s_es;
3592
3593 if (es->s_error_count)
3594 /* fsck newer than v1.41.13 is needed to clean this condition. */
3595 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3596 le32_to_cpu(es->s_error_count));
3597 if (es->s_first_error_time) {
3598 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3599 sb->s_id,
3600 ext4_get_tstamp(es, s_first_error_time),
3601 (int) sizeof(es->s_first_error_func),
3602 es->s_first_error_func,
3603 le32_to_cpu(es->s_first_error_line));
3604 if (es->s_first_error_ino)
3605 printk(KERN_CONT ": inode %u",
3606 le32_to_cpu(es->s_first_error_ino));
3607 if (es->s_first_error_block)
3608 printk(KERN_CONT ": block %llu", (unsigned long long)
3609 le64_to_cpu(es->s_first_error_block));
3610 printk(KERN_CONT "\n");
3611 }
3612 if (es->s_last_error_time) {
3613 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3614 sb->s_id,
3615 ext4_get_tstamp(es, s_last_error_time),
3616 (int) sizeof(es->s_last_error_func),
3617 es->s_last_error_func,
3618 le32_to_cpu(es->s_last_error_line));
3619 if (es->s_last_error_ino)
3620 printk(KERN_CONT ": inode %u",
3621 le32_to_cpu(es->s_last_error_ino));
3622 if (es->s_last_error_block)
3623 printk(KERN_CONT ": block %llu", (unsigned long long)
3624 le64_to_cpu(es->s_last_error_block));
3625 printk(KERN_CONT "\n");
3626 }
3627 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
3628 }
3629
3630 /* Find next suitable group and run ext4_init_inode_table */
ext4_run_li_request(struct ext4_li_request * elr)3631 static int ext4_run_li_request(struct ext4_li_request *elr)
3632 {
3633 struct ext4_group_desc *gdp = NULL;
3634 struct super_block *sb = elr->lr_super;
3635 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3636 ext4_group_t group = elr->lr_next_group;
3637 unsigned int prefetch_ios = 0;
3638 int ret = 0;
3639 u64 start_time;
3640
3641 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3642 elr->lr_next_group = ext4_mb_prefetch(sb, group,
3643 EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios);
3644 if (prefetch_ios)
3645 ext4_mb_prefetch_fini(sb, elr->lr_next_group,
3646 prefetch_ios);
3647 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group,
3648 prefetch_ios);
3649 if (group >= elr->lr_next_group) {
3650 ret = 1;
3651 if (elr->lr_first_not_zeroed != ngroups &&
3652 !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3653 elr->lr_next_group = elr->lr_first_not_zeroed;
3654 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3655 ret = 0;
3656 }
3657 }
3658 return ret;
3659 }
3660
3661 for (; group < ngroups; group++) {
3662 gdp = ext4_get_group_desc(sb, group, NULL);
3663 if (!gdp) {
3664 ret = 1;
3665 break;
3666 }
3667
3668 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3669 break;
3670 }
3671
3672 if (group >= ngroups)
3673 ret = 1;
3674
3675 if (!ret) {
3676 start_time = ktime_get_real_ns();
3677 ret = ext4_init_inode_table(sb, group,
3678 elr->lr_timeout ? 0 : 1);
3679 trace_ext4_lazy_itable_init(sb, group);
3680 if (elr->lr_timeout == 0) {
3681 elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) *
3682 EXT4_SB(elr->lr_super)->s_li_wait_mult);
3683 }
3684 elr->lr_next_sched = jiffies + elr->lr_timeout;
3685 elr->lr_next_group = group + 1;
3686 }
3687 return ret;
3688 }
3689
3690 /*
3691 * Remove lr_request from the list_request and free the
3692 * request structure. Should be called with li_list_mtx held
3693 */
ext4_remove_li_request(struct ext4_li_request * elr)3694 static void ext4_remove_li_request(struct ext4_li_request *elr)
3695 {
3696 if (!elr)
3697 return;
3698
3699 list_del(&elr->lr_request);
3700 EXT4_SB(elr->lr_super)->s_li_request = NULL;
3701 kfree(elr);
3702 }
3703
ext4_unregister_li_request(struct super_block * sb)3704 static void ext4_unregister_li_request(struct super_block *sb)
3705 {
3706 mutex_lock(&ext4_li_mtx);
3707 if (!ext4_li_info) {
3708 mutex_unlock(&ext4_li_mtx);
3709 return;
3710 }
3711
3712 mutex_lock(&ext4_li_info->li_list_mtx);
3713 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3714 mutex_unlock(&ext4_li_info->li_list_mtx);
3715 mutex_unlock(&ext4_li_mtx);
3716 }
3717
3718 static struct task_struct *ext4_lazyinit_task;
3719
3720 /*
3721 * This is the function where ext4lazyinit thread lives. It walks
3722 * through the request list searching for next scheduled filesystem.
3723 * When such a fs is found, run the lazy initialization request
3724 * (ext4_rn_li_request) and keep track of the time spend in this
3725 * function. Based on that time we compute next schedule time of
3726 * the request. When walking through the list is complete, compute
3727 * next waking time and put itself into sleep.
3728 */
ext4_lazyinit_thread(void * arg)3729 static int ext4_lazyinit_thread(void *arg)
3730 {
3731 struct ext4_lazy_init *eli = arg;
3732 struct list_head *pos, *n;
3733 struct ext4_li_request *elr;
3734 unsigned long next_wakeup, cur;
3735
3736 BUG_ON(NULL == eli);
3737 set_freezable();
3738
3739 cont_thread:
3740 while (true) {
3741 next_wakeup = MAX_JIFFY_OFFSET;
3742
3743 mutex_lock(&eli->li_list_mtx);
3744 if (list_empty(&eli->li_request_list)) {
3745 mutex_unlock(&eli->li_list_mtx);
3746 goto exit_thread;
3747 }
3748 list_for_each_safe(pos, n, &eli->li_request_list) {
3749 int err = 0;
3750 int progress = 0;
3751 elr = list_entry(pos, struct ext4_li_request,
3752 lr_request);
3753
3754 if (time_before(jiffies, elr->lr_next_sched)) {
3755 if (time_before(elr->lr_next_sched, next_wakeup))
3756 next_wakeup = elr->lr_next_sched;
3757 continue;
3758 }
3759 if (down_read_trylock(&elr->lr_super->s_umount)) {
3760 if (sb_start_write_trylock(elr->lr_super)) {
3761 progress = 1;
3762 /*
3763 * We hold sb->s_umount, sb can not
3764 * be removed from the list, it is
3765 * now safe to drop li_list_mtx
3766 */
3767 mutex_unlock(&eli->li_list_mtx);
3768 err = ext4_run_li_request(elr);
3769 sb_end_write(elr->lr_super);
3770 mutex_lock(&eli->li_list_mtx);
3771 n = pos->next;
3772 }
3773 up_read((&elr->lr_super->s_umount));
3774 }
3775 /* error, remove the lazy_init job */
3776 if (err) {
3777 ext4_remove_li_request(elr);
3778 continue;
3779 }
3780 if (!progress) {
3781 elr->lr_next_sched = jiffies +
3782 prandom_u32_max(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3783 }
3784 if (time_before(elr->lr_next_sched, next_wakeup))
3785 next_wakeup = elr->lr_next_sched;
3786 }
3787 mutex_unlock(&eli->li_list_mtx);
3788
3789 try_to_freeze();
3790
3791 cur = jiffies;
3792 if ((time_after_eq(cur, next_wakeup)) ||
3793 (MAX_JIFFY_OFFSET == next_wakeup)) {
3794 cond_resched();
3795 continue;
3796 }
3797
3798 schedule_timeout_interruptible(next_wakeup - cur);
3799
3800 if (kthread_should_stop()) {
3801 ext4_clear_request_list();
3802 goto exit_thread;
3803 }
3804 }
3805
3806 exit_thread:
3807 /*
3808 * It looks like the request list is empty, but we need
3809 * to check it under the li_list_mtx lock, to prevent any
3810 * additions into it, and of course we should lock ext4_li_mtx
3811 * to atomically free the list and ext4_li_info, because at
3812 * this point another ext4 filesystem could be registering
3813 * new one.
3814 */
3815 mutex_lock(&ext4_li_mtx);
3816 mutex_lock(&eli->li_list_mtx);
3817 if (!list_empty(&eli->li_request_list)) {
3818 mutex_unlock(&eli->li_list_mtx);
3819 mutex_unlock(&ext4_li_mtx);
3820 goto cont_thread;
3821 }
3822 mutex_unlock(&eli->li_list_mtx);
3823 kfree(ext4_li_info);
3824 ext4_li_info = NULL;
3825 mutex_unlock(&ext4_li_mtx);
3826
3827 return 0;
3828 }
3829
ext4_clear_request_list(void)3830 static void ext4_clear_request_list(void)
3831 {
3832 struct list_head *pos, *n;
3833 struct ext4_li_request *elr;
3834
3835 mutex_lock(&ext4_li_info->li_list_mtx);
3836 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3837 elr = list_entry(pos, struct ext4_li_request,
3838 lr_request);
3839 ext4_remove_li_request(elr);
3840 }
3841 mutex_unlock(&ext4_li_info->li_list_mtx);
3842 }
3843
ext4_run_lazyinit_thread(void)3844 static int ext4_run_lazyinit_thread(void)
3845 {
3846 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3847 ext4_li_info, "ext4lazyinit");
3848 if (IS_ERR(ext4_lazyinit_task)) {
3849 int err = PTR_ERR(ext4_lazyinit_task);
3850 ext4_clear_request_list();
3851 kfree(ext4_li_info);
3852 ext4_li_info = NULL;
3853 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3854 "initialization thread\n",
3855 err);
3856 return err;
3857 }
3858 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3859 return 0;
3860 }
3861
3862 /*
3863 * Check whether it make sense to run itable init. thread or not.
3864 * If there is at least one uninitialized inode table, return
3865 * corresponding group number, else the loop goes through all
3866 * groups and return total number of groups.
3867 */
ext4_has_uninit_itable(struct super_block * sb)3868 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3869 {
3870 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3871 struct ext4_group_desc *gdp = NULL;
3872
3873 if (!ext4_has_group_desc_csum(sb))
3874 return ngroups;
3875
3876 for (group = 0; group < ngroups; group++) {
3877 gdp = ext4_get_group_desc(sb, group, NULL);
3878 if (!gdp)
3879 continue;
3880
3881 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3882 break;
3883 }
3884
3885 return group;
3886 }
3887
ext4_li_info_new(void)3888 static int ext4_li_info_new(void)
3889 {
3890 struct ext4_lazy_init *eli = NULL;
3891
3892 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3893 if (!eli)
3894 return -ENOMEM;
3895
3896 INIT_LIST_HEAD(&eli->li_request_list);
3897 mutex_init(&eli->li_list_mtx);
3898
3899 eli->li_state |= EXT4_LAZYINIT_QUIT;
3900
3901 ext4_li_info = eli;
3902
3903 return 0;
3904 }
3905
ext4_li_request_new(struct super_block * sb,ext4_group_t start)3906 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3907 ext4_group_t start)
3908 {
3909 struct ext4_li_request *elr;
3910
3911 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3912 if (!elr)
3913 return NULL;
3914
3915 elr->lr_super = sb;
3916 elr->lr_first_not_zeroed = start;
3917 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
3918 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3919 elr->lr_next_group = start;
3920 } else {
3921 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3922 }
3923
3924 /*
3925 * Randomize first schedule time of the request to
3926 * spread the inode table initialization requests
3927 * better.
3928 */
3929 elr->lr_next_sched = jiffies + prandom_u32_max(
3930 EXT4_DEF_LI_MAX_START_DELAY * HZ);
3931 return elr;
3932 }
3933
ext4_register_li_request(struct super_block * sb,ext4_group_t first_not_zeroed)3934 int ext4_register_li_request(struct super_block *sb,
3935 ext4_group_t first_not_zeroed)
3936 {
3937 struct ext4_sb_info *sbi = EXT4_SB(sb);
3938 struct ext4_li_request *elr = NULL;
3939 ext4_group_t ngroups = sbi->s_groups_count;
3940 int ret = 0;
3941
3942 mutex_lock(&ext4_li_mtx);
3943 if (sbi->s_li_request != NULL) {
3944 /*
3945 * Reset timeout so it can be computed again, because
3946 * s_li_wait_mult might have changed.
3947 */
3948 sbi->s_li_request->lr_timeout = 0;
3949 goto out;
3950 }
3951
3952 if (sb_rdonly(sb) ||
3953 (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
3954 (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE))))
3955 goto out;
3956
3957 elr = ext4_li_request_new(sb, first_not_zeroed);
3958 if (!elr) {
3959 ret = -ENOMEM;
3960 goto out;
3961 }
3962
3963 if (NULL == ext4_li_info) {
3964 ret = ext4_li_info_new();
3965 if (ret)
3966 goto out;
3967 }
3968
3969 mutex_lock(&ext4_li_info->li_list_mtx);
3970 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3971 mutex_unlock(&ext4_li_info->li_list_mtx);
3972
3973 sbi->s_li_request = elr;
3974 /*
3975 * set elr to NULL here since it has been inserted to
3976 * the request_list and the removal and free of it is
3977 * handled by ext4_clear_request_list from now on.
3978 */
3979 elr = NULL;
3980
3981 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3982 ret = ext4_run_lazyinit_thread();
3983 if (ret)
3984 goto out;
3985 }
3986 out:
3987 mutex_unlock(&ext4_li_mtx);
3988 if (ret)
3989 kfree(elr);
3990 return ret;
3991 }
3992
3993 /*
3994 * We do not need to lock anything since this is called on
3995 * module unload.
3996 */
ext4_destroy_lazyinit_thread(void)3997 static void ext4_destroy_lazyinit_thread(void)
3998 {
3999 /*
4000 * If thread exited earlier
4001 * there's nothing to be done.
4002 */
4003 if (!ext4_li_info || !ext4_lazyinit_task)
4004 return;
4005
4006 kthread_stop(ext4_lazyinit_task);
4007 }
4008
set_journal_csum_feature_set(struct super_block * sb)4009 static int set_journal_csum_feature_set(struct super_block *sb)
4010 {
4011 int ret = 1;
4012 int compat, incompat;
4013 struct ext4_sb_info *sbi = EXT4_SB(sb);
4014
4015 if (ext4_has_metadata_csum(sb)) {
4016 /* journal checksum v3 */
4017 compat = 0;
4018 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
4019 } else {
4020 /* journal checksum v1 */
4021 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
4022 incompat = 0;
4023 }
4024
4025 jbd2_journal_clear_features(sbi->s_journal,
4026 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
4027 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
4028 JBD2_FEATURE_INCOMPAT_CSUM_V2);
4029 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4030 ret = jbd2_journal_set_features(sbi->s_journal,
4031 compat, 0,
4032 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
4033 incompat);
4034 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
4035 ret = jbd2_journal_set_features(sbi->s_journal,
4036 compat, 0,
4037 incompat);
4038 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4039 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4040 } else {
4041 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4042 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4043 }
4044
4045 return ret;
4046 }
4047
4048 /*
4049 * Note: calculating the overhead so we can be compatible with
4050 * historical BSD practice is quite difficult in the face of
4051 * clusters/bigalloc. This is because multiple metadata blocks from
4052 * different block group can end up in the same allocation cluster.
4053 * Calculating the exact overhead in the face of clustered allocation
4054 * requires either O(all block bitmaps) in memory or O(number of block
4055 * groups**2) in time. We will still calculate the superblock for
4056 * older file systems --- and if we come across with a bigalloc file
4057 * system with zero in s_overhead_clusters the estimate will be close to
4058 * correct especially for very large cluster sizes --- but for newer
4059 * file systems, it's better to calculate this figure once at mkfs
4060 * time, and store it in the superblock. If the superblock value is
4061 * present (even for non-bigalloc file systems), we will use it.
4062 */
count_overhead(struct super_block * sb,ext4_group_t grp,char * buf)4063 static int count_overhead(struct super_block *sb, ext4_group_t grp,
4064 char *buf)
4065 {
4066 struct ext4_sb_info *sbi = EXT4_SB(sb);
4067 struct ext4_group_desc *gdp;
4068 ext4_fsblk_t first_block, last_block, b;
4069 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4070 int s, j, count = 0;
4071 int has_super = ext4_bg_has_super(sb, grp);
4072
4073 if (!ext4_has_feature_bigalloc(sb))
4074 return (has_super + ext4_bg_num_gdb(sb, grp) +
4075 (has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) +
4076 sbi->s_itb_per_group + 2);
4077
4078 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
4079 (grp * EXT4_BLOCKS_PER_GROUP(sb));
4080 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
4081 for (i = 0; i < ngroups; i++) {
4082 gdp = ext4_get_group_desc(sb, i, NULL);
4083 b = ext4_block_bitmap(sb, gdp);
4084 if (b >= first_block && b <= last_block) {
4085 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4086 count++;
4087 }
4088 b = ext4_inode_bitmap(sb, gdp);
4089 if (b >= first_block && b <= last_block) {
4090 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4091 count++;
4092 }
4093 b = ext4_inode_table(sb, gdp);
4094 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
4095 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
4096 int c = EXT4_B2C(sbi, b - first_block);
4097 ext4_set_bit(c, buf);
4098 count++;
4099 }
4100 if (i != grp)
4101 continue;
4102 s = 0;
4103 if (ext4_bg_has_super(sb, grp)) {
4104 ext4_set_bit(s++, buf);
4105 count++;
4106 }
4107 j = ext4_bg_num_gdb(sb, grp);
4108 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
4109 ext4_error(sb, "Invalid number of block group "
4110 "descriptor blocks: %d", j);
4111 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
4112 }
4113 count += j;
4114 for (; j > 0; j--)
4115 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
4116 }
4117 if (!count)
4118 return 0;
4119 return EXT4_CLUSTERS_PER_GROUP(sb) -
4120 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
4121 }
4122
4123 /*
4124 * Compute the overhead and stash it in sbi->s_overhead
4125 */
ext4_calculate_overhead(struct super_block * sb)4126 int ext4_calculate_overhead(struct super_block *sb)
4127 {
4128 struct ext4_sb_info *sbi = EXT4_SB(sb);
4129 struct ext4_super_block *es = sbi->s_es;
4130 struct inode *j_inode;
4131 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
4132 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4133 ext4_fsblk_t overhead = 0;
4134 char *buf = (char *) get_zeroed_page(GFP_NOFS);
4135
4136 if (!buf)
4137 return -ENOMEM;
4138
4139 /*
4140 * Compute the overhead (FS structures). This is constant
4141 * for a given filesystem unless the number of block groups
4142 * changes so we cache the previous value until it does.
4143 */
4144
4145 /*
4146 * All of the blocks before first_data_block are overhead
4147 */
4148 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
4149
4150 /*
4151 * Add the overhead found in each block group
4152 */
4153 for (i = 0; i < ngroups; i++) {
4154 int blks;
4155
4156 blks = count_overhead(sb, i, buf);
4157 overhead += blks;
4158 if (blks)
4159 memset(buf, 0, PAGE_SIZE);
4160 cond_resched();
4161 }
4162
4163 /*
4164 * Add the internal journal blocks whether the journal has been
4165 * loaded or not
4166 */
4167 if (sbi->s_journal && !sbi->s_journal_bdev)
4168 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
4169 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
4170 /* j_inum for internal journal is non-zero */
4171 j_inode = ext4_get_journal_inode(sb, j_inum);
4172 if (j_inode) {
4173 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
4174 overhead += EXT4_NUM_B2C(sbi, j_blocks);
4175 iput(j_inode);
4176 } else {
4177 ext4_msg(sb, KERN_ERR, "can't get journal size");
4178 }
4179 }
4180 sbi->s_overhead = overhead;
4181 smp_wmb();
4182 free_page((unsigned long) buf);
4183 return 0;
4184 }
4185
ext4_set_resv_clusters(struct super_block * sb)4186 static void ext4_set_resv_clusters(struct super_block *sb)
4187 {
4188 ext4_fsblk_t resv_clusters;
4189 struct ext4_sb_info *sbi = EXT4_SB(sb);
4190
4191 /*
4192 * There's no need to reserve anything when we aren't using extents.
4193 * The space estimates are exact, there are no unwritten extents,
4194 * hole punching doesn't need new metadata... This is needed especially
4195 * to keep ext2/3 backward compatibility.
4196 */
4197 if (!ext4_has_feature_extents(sb))
4198 return;
4199 /*
4200 * By default we reserve 2% or 4096 clusters, whichever is smaller.
4201 * This should cover the situations where we can not afford to run
4202 * out of space like for example punch hole, or converting
4203 * unwritten extents in delalloc path. In most cases such
4204 * allocation would require 1, or 2 blocks, higher numbers are
4205 * very rare.
4206 */
4207 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
4208 sbi->s_cluster_bits);
4209
4210 do_div(resv_clusters, 50);
4211 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
4212
4213 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
4214 }
4215
ext4_quota_mode(struct super_block * sb)4216 static const char *ext4_quota_mode(struct super_block *sb)
4217 {
4218 #ifdef CONFIG_QUOTA
4219 if (!ext4_quota_capable(sb))
4220 return "none";
4221
4222 if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
4223 return "journalled";
4224 else
4225 return "writeback";
4226 #else
4227 return "disabled";
4228 #endif
4229 }
4230
ext4_setup_csum_trigger(struct super_block * sb,enum ext4_journal_trigger_type type,void (* trigger)(struct jbd2_buffer_trigger_type * type,struct buffer_head * bh,void * mapped_data,size_t size))4231 static void ext4_setup_csum_trigger(struct super_block *sb,
4232 enum ext4_journal_trigger_type type,
4233 void (*trigger)(
4234 struct jbd2_buffer_trigger_type *type,
4235 struct buffer_head *bh,
4236 void *mapped_data,
4237 size_t size))
4238 {
4239 struct ext4_sb_info *sbi = EXT4_SB(sb);
4240
4241 sbi->s_journal_triggers[type].sb = sb;
4242 sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger;
4243 }
4244
ext4_free_sbi(struct ext4_sb_info * sbi)4245 static void ext4_free_sbi(struct ext4_sb_info *sbi)
4246 {
4247 if (!sbi)
4248 return;
4249
4250 kfree(sbi->s_blockgroup_lock);
4251 fs_put_dax(sbi->s_daxdev, NULL);
4252 kfree(sbi);
4253 }
4254
ext4_alloc_sbi(struct super_block * sb)4255 static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb)
4256 {
4257 struct ext4_sb_info *sbi;
4258
4259 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4260 if (!sbi)
4261 return NULL;
4262
4263 sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off,
4264 NULL, NULL);
4265
4266 sbi->s_blockgroup_lock =
4267 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4268
4269 if (!sbi->s_blockgroup_lock)
4270 goto err_out;
4271
4272 sb->s_fs_info = sbi;
4273 sbi->s_sb = sb;
4274 return sbi;
4275 err_out:
4276 fs_put_dax(sbi->s_daxdev, NULL);
4277 kfree(sbi);
4278 return NULL;
4279 }
4280
ext4_set_def_opts(struct super_block * sb,struct ext4_super_block * es)4281 static void ext4_set_def_opts(struct super_block *sb,
4282 struct ext4_super_block *es)
4283 {
4284 unsigned long def_mount_opts;
4285
4286 /* Set defaults before we parse the mount options */
4287 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4288 set_opt(sb, INIT_INODE_TABLE);
4289 if (def_mount_opts & EXT4_DEFM_DEBUG)
4290 set_opt(sb, DEBUG);
4291 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4292 set_opt(sb, GRPID);
4293 if (def_mount_opts & EXT4_DEFM_UID16)
4294 set_opt(sb, NO_UID32);
4295 /* xattr user namespace & acls are now defaulted on */
4296 set_opt(sb, XATTR_USER);
4297 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4298 set_opt(sb, POSIX_ACL);
4299 #endif
4300 if (ext4_has_feature_fast_commit(sb))
4301 set_opt2(sb, JOURNAL_FAST_COMMIT);
4302 /* don't forget to enable journal_csum when metadata_csum is enabled. */
4303 if (ext4_has_metadata_csum(sb))
4304 set_opt(sb, JOURNAL_CHECKSUM);
4305
4306 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4307 set_opt(sb, JOURNAL_DATA);
4308 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4309 set_opt(sb, ORDERED_DATA);
4310 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4311 set_opt(sb, WRITEBACK_DATA);
4312
4313 if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_PANIC)
4314 set_opt(sb, ERRORS_PANIC);
4315 else if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_CONTINUE)
4316 set_opt(sb, ERRORS_CONT);
4317 else
4318 set_opt(sb, ERRORS_RO);
4319 /* block_validity enabled by default; disable with noblock_validity */
4320 set_opt(sb, BLOCK_VALIDITY);
4321 if (def_mount_opts & EXT4_DEFM_DISCARD)
4322 set_opt(sb, DISCARD);
4323
4324 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4325 set_opt(sb, BARRIER);
4326
4327 /*
4328 * enable delayed allocation by default
4329 * Use -o nodelalloc to turn it off
4330 */
4331 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4332 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4333 set_opt(sb, DELALLOC);
4334
4335 if (sb->s_blocksize == PAGE_SIZE)
4336 set_opt(sb, DIOREAD_NOLOCK);
4337 }
4338
ext4_handle_clustersize(struct super_block * sb)4339 static int ext4_handle_clustersize(struct super_block *sb)
4340 {
4341 struct ext4_sb_info *sbi = EXT4_SB(sb);
4342 struct ext4_super_block *es = sbi->s_es;
4343 int clustersize;
4344
4345 /* Handle clustersize */
4346 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4347 if (ext4_has_feature_bigalloc(sb)) {
4348 if (clustersize < sb->s_blocksize) {
4349 ext4_msg(sb, KERN_ERR,
4350 "cluster size (%d) smaller than "
4351 "block size (%lu)", clustersize, sb->s_blocksize);
4352 return -EINVAL;
4353 }
4354 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4355 le32_to_cpu(es->s_log_block_size);
4356 sbi->s_clusters_per_group =
4357 le32_to_cpu(es->s_clusters_per_group);
4358 if (sbi->s_clusters_per_group > sb->s_blocksize * 8) {
4359 ext4_msg(sb, KERN_ERR,
4360 "#clusters per group too big: %lu",
4361 sbi->s_clusters_per_group);
4362 return -EINVAL;
4363 }
4364 if (sbi->s_blocks_per_group !=
4365 (sbi->s_clusters_per_group * (clustersize / sb->s_blocksize))) {
4366 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4367 "clusters per group (%lu) inconsistent",
4368 sbi->s_blocks_per_group,
4369 sbi->s_clusters_per_group);
4370 return -EINVAL;
4371 }
4372 } else {
4373 if (clustersize != sb->s_blocksize) {
4374 ext4_msg(sb, KERN_ERR,
4375 "fragment/cluster size (%d) != "
4376 "block size (%lu)", clustersize, sb->s_blocksize);
4377 return -EINVAL;
4378 }
4379 if (sbi->s_blocks_per_group > sb->s_blocksize * 8) {
4380 ext4_msg(sb, KERN_ERR,
4381 "#blocks per group too big: %lu",
4382 sbi->s_blocks_per_group);
4383 return -EINVAL;
4384 }
4385 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4386 sbi->s_cluster_bits = 0;
4387 }
4388 sbi->s_cluster_ratio = clustersize / sb->s_blocksize;
4389
4390 /* Do we have standard group size of clustersize * 8 blocks ? */
4391 if (sbi->s_blocks_per_group == clustersize << 3)
4392 set_opt2(sb, STD_GROUP_SIZE);
4393
4394 return 0;
4395 }
4396
ext4_fast_commit_init(struct super_block * sb)4397 static void ext4_fast_commit_init(struct super_block *sb)
4398 {
4399 struct ext4_sb_info *sbi = EXT4_SB(sb);
4400
4401 /* Initialize fast commit stuff */
4402 atomic_set(&sbi->s_fc_subtid, 0);
4403 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4404 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4405 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4406 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4407 sbi->s_fc_bytes = 0;
4408 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4409 sbi->s_fc_ineligible_tid = 0;
4410 spin_lock_init(&sbi->s_fc_lock);
4411 memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4412 sbi->s_fc_replay_state.fc_regions = NULL;
4413 sbi->s_fc_replay_state.fc_regions_size = 0;
4414 sbi->s_fc_replay_state.fc_regions_used = 0;
4415 sbi->s_fc_replay_state.fc_regions_valid = 0;
4416 sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4417 sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4418 sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4419 }
4420
ext4_inode_info_init(struct super_block * sb,struct ext4_super_block * es)4421 static int ext4_inode_info_init(struct super_block *sb,
4422 struct ext4_super_block *es)
4423 {
4424 struct ext4_sb_info *sbi = EXT4_SB(sb);
4425
4426 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4427 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4428 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4429 } else {
4430 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4431 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4432 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4433 ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4434 sbi->s_first_ino);
4435 return -EINVAL;
4436 }
4437 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4438 (!is_power_of_2(sbi->s_inode_size)) ||
4439 (sbi->s_inode_size > sb->s_blocksize)) {
4440 ext4_msg(sb, KERN_ERR,
4441 "unsupported inode size: %d",
4442 sbi->s_inode_size);
4443 ext4_msg(sb, KERN_ERR, "blocksize: %lu", sb->s_blocksize);
4444 return -EINVAL;
4445 }
4446 /*
4447 * i_atime_extra is the last extra field available for
4448 * [acm]times in struct ext4_inode. Checking for that
4449 * field should suffice to ensure we have extra space
4450 * for all three.
4451 */
4452 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4453 sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4454 sb->s_time_gran = 1;
4455 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4456 } else {
4457 sb->s_time_gran = NSEC_PER_SEC;
4458 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4459 }
4460 sb->s_time_min = EXT4_TIMESTAMP_MIN;
4461 }
4462
4463 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4464 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4465 EXT4_GOOD_OLD_INODE_SIZE;
4466 if (ext4_has_feature_extra_isize(sb)) {
4467 unsigned v, max = (sbi->s_inode_size -
4468 EXT4_GOOD_OLD_INODE_SIZE);
4469
4470 v = le16_to_cpu(es->s_want_extra_isize);
4471 if (v > max) {
4472 ext4_msg(sb, KERN_ERR,
4473 "bad s_want_extra_isize: %d", v);
4474 return -EINVAL;
4475 }
4476 if (sbi->s_want_extra_isize < v)
4477 sbi->s_want_extra_isize = v;
4478
4479 v = le16_to_cpu(es->s_min_extra_isize);
4480 if (v > max) {
4481 ext4_msg(sb, KERN_ERR,
4482 "bad s_min_extra_isize: %d", v);
4483 return -EINVAL;
4484 }
4485 if (sbi->s_want_extra_isize < v)
4486 sbi->s_want_extra_isize = v;
4487 }
4488 }
4489
4490 return 0;
4491 }
4492
4493 #if IS_ENABLED(CONFIG_UNICODE)
ext4_encoding_init(struct super_block * sb,struct ext4_super_block * es)4494 static int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4495 {
4496 const struct ext4_sb_encodings *encoding_info;
4497 struct unicode_map *encoding;
4498 __u16 encoding_flags = le16_to_cpu(es->s_encoding_flags);
4499
4500 if (!ext4_has_feature_casefold(sb) || sb->s_encoding)
4501 return 0;
4502
4503 encoding_info = ext4_sb_read_encoding(es);
4504 if (!encoding_info) {
4505 ext4_msg(sb, KERN_ERR,
4506 "Encoding requested by superblock is unknown");
4507 return -EINVAL;
4508 }
4509
4510 encoding = utf8_load(encoding_info->version);
4511 if (IS_ERR(encoding)) {
4512 ext4_msg(sb, KERN_ERR,
4513 "can't mount with superblock charset: %s-%u.%u.%u "
4514 "not supported by the kernel. flags: 0x%x.",
4515 encoding_info->name,
4516 unicode_major(encoding_info->version),
4517 unicode_minor(encoding_info->version),
4518 unicode_rev(encoding_info->version),
4519 encoding_flags);
4520 return -EINVAL;
4521 }
4522 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4523 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
4524 unicode_major(encoding_info->version),
4525 unicode_minor(encoding_info->version),
4526 unicode_rev(encoding_info->version),
4527 encoding_flags);
4528
4529 sb->s_encoding = encoding;
4530 sb->s_encoding_flags = encoding_flags;
4531
4532 return 0;
4533 }
4534 #else
ext4_encoding_init(struct super_block * sb,struct ext4_super_block * es)4535 static inline int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4536 {
4537 return 0;
4538 }
4539 #endif
4540
ext4_init_metadata_csum(struct super_block * sb,struct ext4_super_block * es)4541 static int ext4_init_metadata_csum(struct super_block *sb, struct ext4_super_block *es)
4542 {
4543 struct ext4_sb_info *sbi = EXT4_SB(sb);
4544
4545 /* Warn if metadata_csum and gdt_csum are both set. */
4546 if (ext4_has_feature_metadata_csum(sb) &&
4547 ext4_has_feature_gdt_csum(sb))
4548 ext4_warning(sb, "metadata_csum and uninit_bg are "
4549 "redundant flags; please run fsck.");
4550
4551 /* Check for a known checksum algorithm */
4552 if (!ext4_verify_csum_type(sb, es)) {
4553 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4554 "unknown checksum algorithm.");
4555 return -EINVAL;
4556 }
4557 ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE,
4558 ext4_orphan_file_block_trigger);
4559
4560 /* Load the checksum driver */
4561 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
4562 if (IS_ERR(sbi->s_chksum_driver)) {
4563 int ret = PTR_ERR(sbi->s_chksum_driver);
4564 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
4565 sbi->s_chksum_driver = NULL;
4566 return ret;
4567 }
4568
4569 /* Check superblock checksum */
4570 if (!ext4_superblock_csum_verify(sb, es)) {
4571 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4572 "invalid superblock checksum. Run e2fsck?");
4573 return -EFSBADCRC;
4574 }
4575
4576 /* Precompute checksum seed for all metadata */
4577 if (ext4_has_feature_csum_seed(sb))
4578 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4579 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4580 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4581 sizeof(es->s_uuid));
4582 return 0;
4583 }
4584
ext4_check_feature_compatibility(struct super_block * sb,struct ext4_super_block * es,int silent)4585 static int ext4_check_feature_compatibility(struct super_block *sb,
4586 struct ext4_super_block *es,
4587 int silent)
4588 {
4589 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4590 (ext4_has_compat_features(sb) ||
4591 ext4_has_ro_compat_features(sb) ||
4592 ext4_has_incompat_features(sb)))
4593 ext4_msg(sb, KERN_WARNING,
4594 "feature flags set on rev 0 fs, "
4595 "running e2fsck is recommended");
4596
4597 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4598 set_opt2(sb, HURD_COMPAT);
4599 if (ext4_has_feature_64bit(sb)) {
4600 ext4_msg(sb, KERN_ERR,
4601 "The Hurd can't support 64-bit file systems");
4602 return -EINVAL;
4603 }
4604
4605 /*
4606 * ea_inode feature uses l_i_version field which is not
4607 * available in HURD_COMPAT mode.
4608 */
4609 if (ext4_has_feature_ea_inode(sb)) {
4610 ext4_msg(sb, KERN_ERR,
4611 "ea_inode feature is not supported for Hurd");
4612 return -EINVAL;
4613 }
4614 }
4615
4616 if (IS_EXT2_SB(sb)) {
4617 if (ext2_feature_set_ok(sb))
4618 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4619 "using the ext4 subsystem");
4620 else {
4621 /*
4622 * If we're probing be silent, if this looks like
4623 * it's actually an ext[34] filesystem.
4624 */
4625 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4626 return -EINVAL;
4627 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4628 "to feature incompatibilities");
4629 return -EINVAL;
4630 }
4631 }
4632
4633 if (IS_EXT3_SB(sb)) {
4634 if (ext3_feature_set_ok(sb))
4635 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4636 "using the ext4 subsystem");
4637 else {
4638 /*
4639 * If we're probing be silent, if this looks like
4640 * it's actually an ext4 filesystem.
4641 */
4642 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4643 return -EINVAL;
4644 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4645 "to feature incompatibilities");
4646 return -EINVAL;
4647 }
4648 }
4649
4650 /*
4651 * Check feature flags regardless of the revision level, since we
4652 * previously didn't change the revision level when setting the flags,
4653 * so there is a chance incompat flags are set on a rev 0 filesystem.
4654 */
4655 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4656 return -EINVAL;
4657
4658 return 0;
4659 }
4660
ext4_geometry_check(struct super_block * sb,struct ext4_super_block * es)4661 static int ext4_geometry_check(struct super_block *sb,
4662 struct ext4_super_block *es)
4663 {
4664 struct ext4_sb_info *sbi = EXT4_SB(sb);
4665 __u64 blocks_count;
4666
4667 /* check blocks count against device size */
4668 blocks_count = sb_bdev_nr_blocks(sb);
4669 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4670 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4671 "exceeds size of device (%llu blocks)",
4672 ext4_blocks_count(es), blocks_count);
4673 return -EINVAL;
4674 }
4675
4676 /*
4677 * It makes no sense for the first data block to be beyond the end
4678 * of the filesystem.
4679 */
4680 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4681 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4682 "block %u is beyond end of filesystem (%llu)",
4683 le32_to_cpu(es->s_first_data_block),
4684 ext4_blocks_count(es));
4685 return -EINVAL;
4686 }
4687 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4688 (sbi->s_cluster_ratio == 1)) {
4689 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4690 "block is 0 with a 1k block and cluster size");
4691 return -EINVAL;
4692 }
4693
4694 blocks_count = (ext4_blocks_count(es) -
4695 le32_to_cpu(es->s_first_data_block) +
4696 EXT4_BLOCKS_PER_GROUP(sb) - 1);
4697 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4698 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4699 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4700 "(block count %llu, first data block %u, "
4701 "blocks per group %lu)", blocks_count,
4702 ext4_blocks_count(es),
4703 le32_to_cpu(es->s_first_data_block),
4704 EXT4_BLOCKS_PER_GROUP(sb));
4705 return -EINVAL;
4706 }
4707 sbi->s_groups_count = blocks_count;
4708 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4709 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4710 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4711 le32_to_cpu(es->s_inodes_count)) {
4712 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4713 le32_to_cpu(es->s_inodes_count),
4714 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4715 return -EINVAL;
4716 }
4717
4718 return 0;
4719 }
4720
ext4_group_desc_free(struct ext4_sb_info * sbi)4721 static void ext4_group_desc_free(struct ext4_sb_info *sbi)
4722 {
4723 struct buffer_head **group_desc;
4724 int i;
4725
4726 rcu_read_lock();
4727 group_desc = rcu_dereference(sbi->s_group_desc);
4728 for (i = 0; i < sbi->s_gdb_count; i++)
4729 brelse(group_desc[i]);
4730 kvfree(group_desc);
4731 rcu_read_unlock();
4732 }
4733
ext4_group_desc_init(struct super_block * sb,struct ext4_super_block * es,ext4_fsblk_t logical_sb_block,ext4_group_t * first_not_zeroed)4734 static int ext4_group_desc_init(struct super_block *sb,
4735 struct ext4_super_block *es,
4736 ext4_fsblk_t logical_sb_block,
4737 ext4_group_t *first_not_zeroed)
4738 {
4739 struct ext4_sb_info *sbi = EXT4_SB(sb);
4740 unsigned int db_count;
4741 ext4_fsblk_t block;
4742 int ret;
4743 int i;
4744
4745 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4746 EXT4_DESC_PER_BLOCK(sb);
4747 if (ext4_has_feature_meta_bg(sb)) {
4748 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4749 ext4_msg(sb, KERN_WARNING,
4750 "first meta block group too large: %u "
4751 "(group descriptor block count %u)",
4752 le32_to_cpu(es->s_first_meta_bg), db_count);
4753 return -EINVAL;
4754 }
4755 }
4756 rcu_assign_pointer(sbi->s_group_desc,
4757 kvmalloc_array(db_count,
4758 sizeof(struct buffer_head *),
4759 GFP_KERNEL));
4760 if (sbi->s_group_desc == NULL) {
4761 ext4_msg(sb, KERN_ERR, "not enough memory");
4762 return -ENOMEM;
4763 }
4764
4765 bgl_lock_init(sbi->s_blockgroup_lock);
4766
4767 /* Pre-read the descriptors into the buffer cache */
4768 for (i = 0; i < db_count; i++) {
4769 block = descriptor_loc(sb, logical_sb_block, i);
4770 ext4_sb_breadahead_unmovable(sb, block);
4771 }
4772
4773 for (i = 0; i < db_count; i++) {
4774 struct buffer_head *bh;
4775
4776 block = descriptor_loc(sb, logical_sb_block, i);
4777 bh = ext4_sb_bread_unmovable(sb, block);
4778 if (IS_ERR(bh)) {
4779 ext4_msg(sb, KERN_ERR,
4780 "can't read group descriptor %d", i);
4781 sbi->s_gdb_count = i;
4782 ret = PTR_ERR(bh);
4783 goto out;
4784 }
4785 rcu_read_lock();
4786 rcu_dereference(sbi->s_group_desc)[i] = bh;
4787 rcu_read_unlock();
4788 }
4789 sbi->s_gdb_count = db_count;
4790 if (!ext4_check_descriptors(sb, logical_sb_block, first_not_zeroed)) {
4791 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4792 ret = -EFSCORRUPTED;
4793 goto out;
4794 }
4795 return 0;
4796 out:
4797 ext4_group_desc_free(sbi);
4798 return ret;
4799 }
4800
ext4_load_and_init_journal(struct super_block * sb,struct ext4_super_block * es,struct ext4_fs_context * ctx)4801 static int ext4_load_and_init_journal(struct super_block *sb,
4802 struct ext4_super_block *es,
4803 struct ext4_fs_context *ctx)
4804 {
4805 struct ext4_sb_info *sbi = EXT4_SB(sb);
4806 int err;
4807
4808 err = ext4_load_journal(sb, es, ctx->journal_devnum);
4809 if (err)
4810 return err;
4811
4812 if (ext4_has_feature_64bit(sb) &&
4813 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4814 JBD2_FEATURE_INCOMPAT_64BIT)) {
4815 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4816 goto out;
4817 }
4818
4819 if (!set_journal_csum_feature_set(sb)) {
4820 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4821 "feature set");
4822 goto out;
4823 }
4824
4825 if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4826 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4827 JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4828 ext4_msg(sb, KERN_ERR,
4829 "Failed to set fast commit journal feature");
4830 goto out;
4831 }
4832
4833 /* We have now updated the journal if required, so we can
4834 * validate the data journaling mode. */
4835 switch (test_opt(sb, DATA_FLAGS)) {
4836 case 0:
4837 /* No mode set, assume a default based on the journal
4838 * capabilities: ORDERED_DATA if the journal can
4839 * cope, else JOURNAL_DATA
4840 */
4841 if (jbd2_journal_check_available_features
4842 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4843 set_opt(sb, ORDERED_DATA);
4844 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4845 } else {
4846 set_opt(sb, JOURNAL_DATA);
4847 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4848 }
4849 break;
4850
4851 case EXT4_MOUNT_ORDERED_DATA:
4852 case EXT4_MOUNT_WRITEBACK_DATA:
4853 if (!jbd2_journal_check_available_features
4854 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4855 ext4_msg(sb, KERN_ERR, "Journal does not support "
4856 "requested data journaling mode");
4857 goto out;
4858 }
4859 break;
4860 default:
4861 break;
4862 }
4863
4864 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4865 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4866 ext4_msg(sb, KERN_ERR, "can't mount with "
4867 "journal_async_commit in data=ordered mode");
4868 goto out;
4869 }
4870
4871 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
4872
4873 sbi->s_journal->j_submit_inode_data_buffers =
4874 ext4_journal_submit_inode_data_buffers;
4875 sbi->s_journal->j_finish_inode_data_buffers =
4876 ext4_journal_finish_inode_data_buffers;
4877
4878 return 0;
4879
4880 out:
4881 /* flush s_error_work before journal destroy. */
4882 flush_work(&sbi->s_error_work);
4883 jbd2_journal_destroy(sbi->s_journal);
4884 sbi->s_journal = NULL;
4885 return -EINVAL;
4886 }
4887
ext4_journal_data_mode_check(struct super_block * sb)4888 static int ext4_journal_data_mode_check(struct super_block *sb)
4889 {
4890 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4891 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with "
4892 "data=journal disables delayed allocation, "
4893 "dioread_nolock, O_DIRECT and fast_commit support!\n");
4894 /* can't mount with both data=journal and dioread_nolock. */
4895 clear_opt(sb, DIOREAD_NOLOCK);
4896 clear_opt2(sb, JOURNAL_FAST_COMMIT);
4897 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4898 ext4_msg(sb, KERN_ERR, "can't mount with "
4899 "both data=journal and delalloc");
4900 return -EINVAL;
4901 }
4902 if (test_opt(sb, DAX_ALWAYS)) {
4903 ext4_msg(sb, KERN_ERR, "can't mount with "
4904 "both data=journal and dax");
4905 return -EINVAL;
4906 }
4907 if (ext4_has_feature_encrypt(sb)) {
4908 ext4_msg(sb, KERN_WARNING,
4909 "encrypted files will use data=ordered "
4910 "instead of data journaling mode");
4911 }
4912 if (test_opt(sb, DELALLOC))
4913 clear_opt(sb, DELALLOC);
4914 } else {
4915 sb->s_iflags |= SB_I_CGROUPWB;
4916 }
4917
4918 return 0;
4919 }
4920
ext4_load_super(struct super_block * sb,ext4_fsblk_t * lsb,int silent)4921 static int ext4_load_super(struct super_block *sb, ext4_fsblk_t *lsb,
4922 int silent)
4923 {
4924 struct ext4_sb_info *sbi = EXT4_SB(sb);
4925 struct ext4_super_block *es;
4926 ext4_fsblk_t logical_sb_block;
4927 unsigned long offset = 0;
4928 struct buffer_head *bh;
4929 int ret = -EINVAL;
4930 int blocksize;
4931
4932 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
4933 if (!blocksize) {
4934 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
4935 return -EINVAL;
4936 }
4937
4938 /*
4939 * The ext4 superblock will not be buffer aligned for other than 1kB
4940 * block sizes. We need to calculate the offset from buffer start.
4941 */
4942 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
4943 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
4944 offset = do_div(logical_sb_block, blocksize);
4945 } else {
4946 logical_sb_block = sbi->s_sb_block;
4947 }
4948
4949 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4950 if (IS_ERR(bh)) {
4951 ext4_msg(sb, KERN_ERR, "unable to read superblock");
4952 return PTR_ERR(bh);
4953 }
4954 /*
4955 * Note: s_es must be initialized as soon as possible because
4956 * some ext4 macro-instructions depend on its value
4957 */
4958 es = (struct ext4_super_block *) (bh->b_data + offset);
4959 sbi->s_es = es;
4960 sb->s_magic = le16_to_cpu(es->s_magic);
4961 if (sb->s_magic != EXT4_SUPER_MAGIC) {
4962 if (!silent)
4963 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4964 goto out;
4965 }
4966
4967 if (le32_to_cpu(es->s_log_block_size) >
4968 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4969 ext4_msg(sb, KERN_ERR,
4970 "Invalid log block size: %u",
4971 le32_to_cpu(es->s_log_block_size));
4972 goto out;
4973 }
4974 if (le32_to_cpu(es->s_log_cluster_size) >
4975 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4976 ext4_msg(sb, KERN_ERR,
4977 "Invalid log cluster size: %u",
4978 le32_to_cpu(es->s_log_cluster_size));
4979 goto out;
4980 }
4981
4982 blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
4983
4984 /*
4985 * If the default block size is not the same as the real block size,
4986 * we need to reload it.
4987 */
4988 if (sb->s_blocksize == blocksize) {
4989 *lsb = logical_sb_block;
4990 sbi->s_sbh = bh;
4991 return 0;
4992 }
4993
4994 /*
4995 * bh must be released before kill_bdev(), otherwise
4996 * it won't be freed and its page also. kill_bdev()
4997 * is called by sb_set_blocksize().
4998 */
4999 brelse(bh);
5000 /* Validate the filesystem blocksize */
5001 if (!sb_set_blocksize(sb, blocksize)) {
5002 ext4_msg(sb, KERN_ERR, "bad block size %d",
5003 blocksize);
5004 bh = NULL;
5005 goto out;
5006 }
5007
5008 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5009 offset = do_div(logical_sb_block, blocksize);
5010 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5011 if (IS_ERR(bh)) {
5012 ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try");
5013 ret = PTR_ERR(bh);
5014 bh = NULL;
5015 goto out;
5016 }
5017 es = (struct ext4_super_block *)(bh->b_data + offset);
5018 sbi->s_es = es;
5019 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
5020 ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!");
5021 goto out;
5022 }
5023 *lsb = logical_sb_block;
5024 sbi->s_sbh = bh;
5025 return 0;
5026 out:
5027 brelse(bh);
5028 return ret;
5029 }
5030
__ext4_fill_super(struct fs_context * fc,struct super_block * sb)5031 static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb)
5032 {
5033 struct ext4_super_block *es = NULL;
5034 struct ext4_sb_info *sbi = EXT4_SB(sb);
5035 struct flex_groups **flex_groups;
5036 ext4_fsblk_t block;
5037 ext4_fsblk_t logical_sb_block;
5038 struct inode *root;
5039 int ret = -ENOMEM;
5040 unsigned int i;
5041 int needs_recovery, has_huge_files;
5042 int err = 0;
5043 ext4_group_t first_not_zeroed;
5044 struct ext4_fs_context *ctx = fc->fs_private;
5045 int silent = fc->sb_flags & SB_SILENT;
5046
5047 /* Set defaults for the variables that will be set during parsing */
5048 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO))
5049 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5050
5051 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
5052 sbi->s_sectors_written_start =
5053 part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
5054
5055 /* -EINVAL is default */
5056 ret = -EINVAL;
5057 err = ext4_load_super(sb, &logical_sb_block, silent);
5058 if (err)
5059 goto out_fail;
5060
5061 es = sbi->s_es;
5062 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
5063
5064 err = ext4_init_metadata_csum(sb, es);
5065 if (err)
5066 goto failed_mount;
5067
5068 ext4_set_def_opts(sb, es);
5069
5070 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
5071 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
5072 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
5073 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
5074 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
5075
5076 /*
5077 * set default s_li_wait_mult for lazyinit, for the case there is
5078 * no mount option specified.
5079 */
5080 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
5081
5082 if (ext4_inode_info_init(sb, es))
5083 goto failed_mount;
5084
5085 err = parse_apply_sb_mount_options(sb, ctx);
5086 if (err < 0)
5087 goto failed_mount;
5088
5089 sbi->s_def_mount_opt = sbi->s_mount_opt;
5090
5091 err = ext4_check_opt_consistency(fc, sb);
5092 if (err < 0)
5093 goto failed_mount;
5094
5095 ext4_apply_options(fc, sb);
5096
5097 if (ext4_encoding_init(sb, es))
5098 goto failed_mount;
5099
5100 if (ext4_journal_data_mode_check(sb))
5101 goto failed_mount;
5102
5103 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5104 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5105
5106 /* i_version is always enabled now */
5107 sb->s_flags |= SB_I_VERSION;
5108
5109 if (ext4_check_feature_compatibility(sb, es, silent))
5110 goto failed_mount;
5111
5112 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (sb->s_blocksize / 4)) {
5113 ext4_msg(sb, KERN_ERR,
5114 "Number of reserved GDT blocks insanely large: %d",
5115 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
5116 goto failed_mount;
5117 }
5118
5119 if (sbi->s_daxdev) {
5120 if (sb->s_blocksize == PAGE_SIZE)
5121 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
5122 else
5123 ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n");
5124 }
5125
5126 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
5127 if (ext4_has_feature_inline_data(sb)) {
5128 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
5129 " that may contain inline data");
5130 goto failed_mount;
5131 }
5132 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
5133 ext4_msg(sb, KERN_ERR,
5134 "DAX unsupported by block device.");
5135 goto failed_mount;
5136 }
5137 }
5138
5139 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
5140 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
5141 es->s_encryption_level);
5142 goto failed_mount;
5143 }
5144
5145 has_huge_files = ext4_has_feature_huge_file(sb);
5146 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
5147 has_huge_files);
5148 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
5149
5150 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
5151 if (ext4_has_feature_64bit(sb)) {
5152 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
5153 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
5154 !is_power_of_2(sbi->s_desc_size)) {
5155 ext4_msg(sb, KERN_ERR,
5156 "unsupported descriptor size %lu",
5157 sbi->s_desc_size);
5158 goto failed_mount;
5159 }
5160 } else
5161 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
5162
5163 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
5164 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
5165
5166 sbi->s_inodes_per_block = sb->s_blocksize / EXT4_INODE_SIZE(sb);
5167 if (sbi->s_inodes_per_block == 0 || sbi->s_blocks_per_group == 0) {
5168 if (!silent)
5169 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5170 goto failed_mount;
5171 }
5172 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
5173 sbi->s_inodes_per_group > sb->s_blocksize * 8) {
5174 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
5175 sbi->s_inodes_per_group);
5176 goto failed_mount;
5177 }
5178 sbi->s_itb_per_group = sbi->s_inodes_per_group /
5179 sbi->s_inodes_per_block;
5180 sbi->s_desc_per_block = sb->s_blocksize / EXT4_DESC_SIZE(sb);
5181 sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY;
5182 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
5183 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
5184
5185 for (i = 0; i < 4; i++)
5186 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
5187 sbi->s_def_hash_version = es->s_def_hash_version;
5188 if (ext4_has_feature_dir_index(sb)) {
5189 i = le32_to_cpu(es->s_flags);
5190 if (i & EXT2_FLAGS_UNSIGNED_HASH)
5191 sbi->s_hash_unsigned = 3;
5192 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
5193 #ifdef __CHAR_UNSIGNED__
5194 if (!sb_rdonly(sb))
5195 es->s_flags |=
5196 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
5197 sbi->s_hash_unsigned = 3;
5198 #else
5199 if (!sb_rdonly(sb))
5200 es->s_flags |=
5201 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
5202 #endif
5203 }
5204 }
5205
5206 if (ext4_handle_clustersize(sb))
5207 goto failed_mount;
5208
5209 /*
5210 * Test whether we have more sectors than will fit in sector_t,
5211 * and whether the max offset is addressable by the page cache.
5212 */
5213 err = generic_check_addressable(sb->s_blocksize_bits,
5214 ext4_blocks_count(es));
5215 if (err) {
5216 ext4_msg(sb, KERN_ERR, "filesystem"
5217 " too large to mount safely on this system");
5218 goto failed_mount;
5219 }
5220
5221 if (ext4_geometry_check(sb, es))
5222 goto failed_mount;
5223
5224 err = ext4_group_desc_init(sb, es, logical_sb_block, &first_not_zeroed);
5225 if (err)
5226 goto failed_mount;
5227
5228 timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
5229 spin_lock_init(&sbi->s_error_lock);
5230 INIT_WORK(&sbi->s_error_work, flush_stashed_error_work);
5231
5232 /* Register extent status tree shrinker */
5233 if (ext4_es_register_shrinker(sbi))
5234 goto failed_mount3;
5235
5236 sbi->s_stripe = ext4_get_stripe_size(sbi);
5237 sbi->s_extent_max_zeroout_kb = 32;
5238
5239 /*
5240 * set up enough so that it can read an inode
5241 */
5242 sb->s_op = &ext4_sops;
5243 sb->s_export_op = &ext4_export_ops;
5244 sb->s_xattr = ext4_xattr_handlers;
5245 #ifdef CONFIG_FS_ENCRYPTION
5246 sb->s_cop = &ext4_cryptops;
5247 #endif
5248 #ifdef CONFIG_FS_VERITY
5249 sb->s_vop = &ext4_verityops;
5250 #endif
5251 #ifdef CONFIG_QUOTA
5252 sb->dq_op = &ext4_quota_operations;
5253 if (ext4_has_feature_quota(sb))
5254 sb->s_qcop = &dquot_quotactl_sysfile_ops;
5255 else
5256 sb->s_qcop = &ext4_qctl_operations;
5257 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
5258 #endif
5259 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
5260
5261 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
5262 mutex_init(&sbi->s_orphan_lock);
5263
5264 ext4_fast_commit_init(sb);
5265
5266 sb->s_root = NULL;
5267
5268 needs_recovery = (es->s_last_orphan != 0 ||
5269 ext4_has_feature_orphan_present(sb) ||
5270 ext4_has_feature_journal_needs_recovery(sb));
5271
5272 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
5273 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
5274 goto failed_mount3a;
5275
5276 /*
5277 * The first inode we look at is the journal inode. Don't try
5278 * root first: it may be modified in the journal!
5279 */
5280 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
5281 err = ext4_load_and_init_journal(sb, es, ctx);
5282 if (err)
5283 goto failed_mount3a;
5284 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
5285 ext4_has_feature_journal_needs_recovery(sb)) {
5286 ext4_msg(sb, KERN_ERR, "required journal recovery "
5287 "suppressed and not mounted read-only");
5288 goto failed_mount3a;
5289 } else {
5290 /* Nojournal mode, all journal mount options are illegal */
5291 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5292 ext4_msg(sb, KERN_ERR, "can't mount with "
5293 "journal_async_commit, fs mounted w/o journal");
5294 goto failed_mount3a;
5295 }
5296
5297 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
5298 ext4_msg(sb, KERN_ERR, "can't mount with "
5299 "journal_checksum, fs mounted w/o journal");
5300 goto failed_mount3a;
5301 }
5302 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
5303 ext4_msg(sb, KERN_ERR, "can't mount with "
5304 "commit=%lu, fs mounted w/o journal",
5305 sbi->s_commit_interval / HZ);
5306 goto failed_mount3a;
5307 }
5308 if (EXT4_MOUNT_DATA_FLAGS &
5309 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
5310 ext4_msg(sb, KERN_ERR, "can't mount with "
5311 "data=, fs mounted w/o journal");
5312 goto failed_mount3a;
5313 }
5314 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
5315 clear_opt(sb, JOURNAL_CHECKSUM);
5316 clear_opt(sb, DATA_FLAGS);
5317 clear_opt2(sb, JOURNAL_FAST_COMMIT);
5318 sbi->s_journal = NULL;
5319 needs_recovery = 0;
5320 }
5321
5322 if (!test_opt(sb, NO_MBCACHE)) {
5323 sbi->s_ea_block_cache = ext4_xattr_create_cache();
5324 if (!sbi->s_ea_block_cache) {
5325 ext4_msg(sb, KERN_ERR,
5326 "Failed to create ea_block_cache");
5327 goto failed_mount_wq;
5328 }
5329
5330 if (ext4_has_feature_ea_inode(sb)) {
5331 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
5332 if (!sbi->s_ea_inode_cache) {
5333 ext4_msg(sb, KERN_ERR,
5334 "Failed to create ea_inode_cache");
5335 goto failed_mount_wq;
5336 }
5337 }
5338 }
5339
5340 if (ext4_has_feature_verity(sb) && sb->s_blocksize != PAGE_SIZE) {
5341 ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity");
5342 goto failed_mount_wq;
5343 }
5344
5345 /*
5346 * Get the # of file system overhead blocks from the
5347 * superblock if present.
5348 */
5349 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
5350 /* ignore the precalculated value if it is ridiculous */
5351 if (sbi->s_overhead > ext4_blocks_count(es))
5352 sbi->s_overhead = 0;
5353 /*
5354 * If the bigalloc feature is not enabled recalculating the
5355 * overhead doesn't take long, so we might as well just redo
5356 * it to make sure we are using the correct value.
5357 */
5358 if (!ext4_has_feature_bigalloc(sb))
5359 sbi->s_overhead = 0;
5360 if (sbi->s_overhead == 0) {
5361 err = ext4_calculate_overhead(sb);
5362 if (err)
5363 goto failed_mount_wq;
5364 }
5365
5366 /*
5367 * The maximum number of concurrent works can be high and
5368 * concurrency isn't really necessary. Limit it to 1.
5369 */
5370 EXT4_SB(sb)->rsv_conversion_wq =
5371 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
5372 if (!EXT4_SB(sb)->rsv_conversion_wq) {
5373 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
5374 ret = -ENOMEM;
5375 goto failed_mount4;
5376 }
5377
5378 /*
5379 * The jbd2_journal_load will have done any necessary log recovery,
5380 * so we can safely mount the rest of the filesystem now.
5381 */
5382
5383 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
5384 if (IS_ERR(root)) {
5385 ext4_msg(sb, KERN_ERR, "get root inode failed");
5386 ret = PTR_ERR(root);
5387 root = NULL;
5388 goto failed_mount4;
5389 }
5390 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
5391 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
5392 iput(root);
5393 goto failed_mount4;
5394 }
5395
5396 sb->s_root = d_make_root(root);
5397 if (!sb->s_root) {
5398 ext4_msg(sb, KERN_ERR, "get root dentry failed");
5399 ret = -ENOMEM;
5400 goto failed_mount4;
5401 }
5402
5403 ret = ext4_setup_super(sb, es, sb_rdonly(sb));
5404 if (ret == -EROFS) {
5405 sb->s_flags |= SB_RDONLY;
5406 ret = 0;
5407 } else if (ret)
5408 goto failed_mount4a;
5409
5410 ext4_set_resv_clusters(sb);
5411
5412 if (test_opt(sb, BLOCK_VALIDITY)) {
5413 err = ext4_setup_system_zone(sb);
5414 if (err) {
5415 ext4_msg(sb, KERN_ERR, "failed to initialize system "
5416 "zone (%d)", err);
5417 goto failed_mount4a;
5418 }
5419 }
5420 ext4_fc_replay_cleanup(sb);
5421
5422 ext4_ext_init(sb);
5423
5424 /*
5425 * Enable optimize_scan if number of groups is > threshold. This can be
5426 * turned off by passing "mb_optimize_scan=0". This can also be
5427 * turned on forcefully by passing "mb_optimize_scan=1".
5428 */
5429 if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) {
5430 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
5431 set_opt2(sb, MB_OPTIMIZE_SCAN);
5432 else
5433 clear_opt2(sb, MB_OPTIMIZE_SCAN);
5434 }
5435
5436 err = ext4_mb_init(sb);
5437 if (err) {
5438 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
5439 err);
5440 goto failed_mount5;
5441 }
5442
5443 /*
5444 * We can only set up the journal commit callback once
5445 * mballoc is initialized
5446 */
5447 if (sbi->s_journal)
5448 sbi->s_journal->j_commit_callback =
5449 ext4_journal_commit_callback;
5450
5451 block = ext4_count_free_clusters(sb);
5452 ext4_free_blocks_count_set(sbi->s_es,
5453 EXT4_C2B(sbi, block));
5454 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
5455 GFP_KERNEL);
5456 if (!err) {
5457 unsigned long freei = ext4_count_free_inodes(sb);
5458 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
5459 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
5460 GFP_KERNEL);
5461 }
5462 if (!err)
5463 err = percpu_counter_init(&sbi->s_dirs_counter,
5464 ext4_count_dirs(sb), GFP_KERNEL);
5465 if (!err)
5466 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
5467 GFP_KERNEL);
5468 if (!err)
5469 err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
5470 GFP_KERNEL);
5471 if (!err)
5472 err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
5473
5474 if (err) {
5475 ext4_msg(sb, KERN_ERR, "insufficient memory");
5476 goto failed_mount6;
5477 }
5478
5479 if (ext4_has_feature_flex_bg(sb))
5480 if (!ext4_fill_flex_info(sb)) {
5481 ext4_msg(sb, KERN_ERR,
5482 "unable to initialize "
5483 "flex_bg meta info!");
5484 ret = -ENOMEM;
5485 goto failed_mount6;
5486 }
5487
5488 err = ext4_register_li_request(sb, first_not_zeroed);
5489 if (err)
5490 goto failed_mount6;
5491
5492 err = ext4_register_sysfs(sb);
5493 if (err)
5494 goto failed_mount7;
5495
5496 err = ext4_init_orphan_info(sb);
5497 if (err)
5498 goto failed_mount8;
5499 #ifdef CONFIG_QUOTA
5500 /* Enable quota usage during mount. */
5501 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5502 err = ext4_enable_quotas(sb);
5503 if (err)
5504 goto failed_mount9;
5505 }
5506 #endif /* CONFIG_QUOTA */
5507
5508 /*
5509 * Save the original bdev mapping's wb_err value which could be
5510 * used to detect the metadata async write error.
5511 */
5512 spin_lock_init(&sbi->s_bdev_wb_lock);
5513 errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
5514 &sbi->s_bdev_wb_err);
5515 sb->s_bdev->bd_super = sb;
5516 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5517 ext4_orphan_cleanup(sb, es);
5518 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5519 /*
5520 * Update the checksum after updating free space/inode counters and
5521 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect
5522 * checksum in the buffer cache until it is written out and
5523 * e2fsprogs programs trying to open a file system immediately
5524 * after it is mounted can fail.
5525 */
5526 ext4_superblock_csum_set(sb);
5527 if (needs_recovery) {
5528 ext4_msg(sb, KERN_INFO, "recovery complete");
5529 err = ext4_mark_recovery_complete(sb, es);
5530 if (err)
5531 goto failed_mount9;
5532 }
5533
5534 if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev))
5535 ext4_msg(sb, KERN_WARNING,
5536 "mounting with \"discard\" option, but the device does not support discard");
5537
5538 if (es->s_error_count)
5539 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5540
5541 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5542 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5543 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5544 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5545 atomic_set(&sbi->s_warning_count, 0);
5546 atomic_set(&sbi->s_msg_count, 0);
5547
5548 return 0;
5549
5550 failed_mount9:
5551 ext4_release_orphan_info(sb);
5552 failed_mount8:
5553 ext4_unregister_sysfs(sb);
5554 kobject_put(&sbi->s_kobj);
5555 failed_mount7:
5556 ext4_unregister_li_request(sb);
5557 failed_mount6:
5558 ext4_mb_release(sb);
5559 rcu_read_lock();
5560 flex_groups = rcu_dereference(sbi->s_flex_groups);
5561 if (flex_groups) {
5562 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
5563 kvfree(flex_groups[i]);
5564 kvfree(flex_groups);
5565 }
5566 rcu_read_unlock();
5567 percpu_counter_destroy(&sbi->s_freeclusters_counter);
5568 percpu_counter_destroy(&sbi->s_freeinodes_counter);
5569 percpu_counter_destroy(&sbi->s_dirs_counter);
5570 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
5571 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
5572 percpu_free_rwsem(&sbi->s_writepages_rwsem);
5573 failed_mount5:
5574 ext4_ext_release(sb);
5575 ext4_release_system_zone(sb);
5576 failed_mount4a:
5577 dput(sb->s_root);
5578 sb->s_root = NULL;
5579 failed_mount4:
5580 ext4_msg(sb, KERN_ERR, "mount failed");
5581 if (EXT4_SB(sb)->rsv_conversion_wq)
5582 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5583 failed_mount_wq:
5584 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5585 sbi->s_ea_inode_cache = NULL;
5586
5587 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5588 sbi->s_ea_block_cache = NULL;
5589
5590 if (sbi->s_journal) {
5591 /* flush s_error_work before journal destroy. */
5592 flush_work(&sbi->s_error_work);
5593 jbd2_journal_destroy(sbi->s_journal);
5594 sbi->s_journal = NULL;
5595 }
5596 failed_mount3a:
5597 ext4_es_unregister_shrinker(sbi);
5598 failed_mount3:
5599 /* flush s_error_work before sbi destroy */
5600 flush_work(&sbi->s_error_work);
5601 del_timer_sync(&sbi->s_err_report);
5602 ext4_stop_mmpd(sbi);
5603 ext4_group_desc_free(sbi);
5604 failed_mount:
5605 if (sbi->s_chksum_driver)
5606 crypto_free_shash(sbi->s_chksum_driver);
5607
5608 #if IS_ENABLED(CONFIG_UNICODE)
5609 utf8_unload(sb->s_encoding);
5610 #endif
5611
5612 #ifdef CONFIG_QUOTA
5613 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5614 kfree(get_qf_name(sb, sbi, i));
5615 #endif
5616 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5617 /* ext4_blkdev_remove() calls kill_bdev(), release bh before it. */
5618 brelse(sbi->s_sbh);
5619 ext4_blkdev_remove(sbi);
5620 out_fail:
5621 sb->s_fs_info = NULL;
5622 return err ? err : ret;
5623 }
5624
ext4_fill_super(struct super_block * sb,struct fs_context * fc)5625 static int ext4_fill_super(struct super_block *sb, struct fs_context *fc)
5626 {
5627 struct ext4_fs_context *ctx = fc->fs_private;
5628 struct ext4_sb_info *sbi;
5629 const char *descr;
5630 int ret;
5631
5632 sbi = ext4_alloc_sbi(sb);
5633 if (!sbi)
5634 return -ENOMEM;
5635
5636 fc->s_fs_info = sbi;
5637
5638 /* Cleanup superblock name */
5639 strreplace(sb->s_id, '/', '!');
5640
5641 sbi->s_sb_block = 1; /* Default super block location */
5642 if (ctx->spec & EXT4_SPEC_s_sb_block)
5643 sbi->s_sb_block = ctx->s_sb_block;
5644
5645 ret = __ext4_fill_super(fc, sb);
5646 if (ret < 0)
5647 goto free_sbi;
5648
5649 if (sbi->s_journal) {
5650 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5651 descr = " journalled data mode";
5652 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5653 descr = " ordered data mode";
5654 else
5655 descr = " writeback data mode";
5656 } else
5657 descr = "out journal";
5658
5659 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5660 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
5661 "Quota mode: %s.", descr, ext4_quota_mode(sb));
5662
5663 /* Update the s_overhead_clusters if necessary */
5664 ext4_update_overhead(sb, false);
5665 return 0;
5666
5667 free_sbi:
5668 ext4_free_sbi(sbi);
5669 fc->s_fs_info = NULL;
5670 return ret;
5671 }
5672
ext4_get_tree(struct fs_context * fc)5673 static int ext4_get_tree(struct fs_context *fc)
5674 {
5675 return get_tree_bdev(fc, ext4_fill_super);
5676 }
5677
5678 /*
5679 * Setup any per-fs journal parameters now. We'll do this both on
5680 * initial mount, once the journal has been initialised but before we've
5681 * done any recovery; and again on any subsequent remount.
5682 */
ext4_init_journal_params(struct super_block * sb,journal_t * journal)5683 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5684 {
5685 struct ext4_sb_info *sbi = EXT4_SB(sb);
5686
5687 journal->j_commit_interval = sbi->s_commit_interval;
5688 journal->j_min_batch_time = sbi->s_min_batch_time;
5689 journal->j_max_batch_time = sbi->s_max_batch_time;
5690 ext4_fc_init(sb, journal);
5691
5692 write_lock(&journal->j_state_lock);
5693 if (test_opt(sb, BARRIER))
5694 journal->j_flags |= JBD2_BARRIER;
5695 else
5696 journal->j_flags &= ~JBD2_BARRIER;
5697 if (test_opt(sb, DATA_ERR_ABORT))
5698 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5699 else
5700 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5701 write_unlock(&journal->j_state_lock);
5702 }
5703
ext4_get_journal_inode(struct super_block * sb,unsigned int journal_inum)5704 static struct inode *ext4_get_journal_inode(struct super_block *sb,
5705 unsigned int journal_inum)
5706 {
5707 struct inode *journal_inode;
5708
5709 /*
5710 * Test for the existence of a valid inode on disk. Bad things
5711 * happen if we iget() an unused inode, as the subsequent iput()
5712 * will try to delete it.
5713 */
5714 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5715 if (IS_ERR(journal_inode)) {
5716 ext4_msg(sb, KERN_ERR, "no journal found");
5717 return NULL;
5718 }
5719 if (!journal_inode->i_nlink) {
5720 make_bad_inode(journal_inode);
5721 iput(journal_inode);
5722 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5723 return NULL;
5724 }
5725
5726 ext4_debug("Journal inode found at %p: %lld bytes\n",
5727 journal_inode, journal_inode->i_size);
5728 if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) {
5729 ext4_msg(sb, KERN_ERR, "invalid journal inode");
5730 iput(journal_inode);
5731 return NULL;
5732 }
5733 return journal_inode;
5734 }
5735
ext4_get_journal(struct super_block * sb,unsigned int journal_inum)5736 static journal_t *ext4_get_journal(struct super_block *sb,
5737 unsigned int journal_inum)
5738 {
5739 struct inode *journal_inode;
5740 journal_t *journal;
5741
5742 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5743 return NULL;
5744
5745 journal_inode = ext4_get_journal_inode(sb, journal_inum);
5746 if (!journal_inode)
5747 return NULL;
5748
5749 journal = jbd2_journal_init_inode(journal_inode);
5750 if (!journal) {
5751 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5752 iput(journal_inode);
5753 return NULL;
5754 }
5755 journal->j_private = sb;
5756 ext4_init_journal_params(sb, journal);
5757 return journal;
5758 }
5759
ext4_get_dev_journal(struct super_block * sb,dev_t j_dev)5760 static journal_t *ext4_get_dev_journal(struct super_block *sb,
5761 dev_t j_dev)
5762 {
5763 struct buffer_head *bh;
5764 journal_t *journal;
5765 ext4_fsblk_t start;
5766 ext4_fsblk_t len;
5767 int hblock, blocksize;
5768 ext4_fsblk_t sb_block;
5769 unsigned long offset;
5770 struct ext4_super_block *es;
5771 struct block_device *bdev;
5772
5773 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5774 return NULL;
5775
5776 bdev = ext4_blkdev_get(j_dev, sb);
5777 if (bdev == NULL)
5778 return NULL;
5779
5780 blocksize = sb->s_blocksize;
5781 hblock = bdev_logical_block_size(bdev);
5782 if (blocksize < hblock) {
5783 ext4_msg(sb, KERN_ERR,
5784 "blocksize too small for journal device");
5785 goto out_bdev;
5786 }
5787
5788 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5789 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5790 set_blocksize(bdev, blocksize);
5791 if (!(bh = __bread(bdev, sb_block, blocksize))) {
5792 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5793 "external journal");
5794 goto out_bdev;
5795 }
5796
5797 es = (struct ext4_super_block *) (bh->b_data + offset);
5798 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5799 !(le32_to_cpu(es->s_feature_incompat) &
5800 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5801 ext4_msg(sb, KERN_ERR, "external journal has "
5802 "bad superblock");
5803 brelse(bh);
5804 goto out_bdev;
5805 }
5806
5807 if ((le32_to_cpu(es->s_feature_ro_compat) &
5808 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5809 es->s_checksum != ext4_superblock_csum(sb, es)) {
5810 ext4_msg(sb, KERN_ERR, "external journal has "
5811 "corrupt superblock");
5812 brelse(bh);
5813 goto out_bdev;
5814 }
5815
5816 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5817 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5818 brelse(bh);
5819 goto out_bdev;
5820 }
5821
5822 len = ext4_blocks_count(es);
5823 start = sb_block + 1;
5824 brelse(bh); /* we're done with the superblock */
5825
5826 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
5827 start, len, blocksize);
5828 if (!journal) {
5829 ext4_msg(sb, KERN_ERR, "failed to create device journal");
5830 goto out_bdev;
5831 }
5832 journal->j_private = sb;
5833 if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) {
5834 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
5835 goto out_journal;
5836 }
5837 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5838 ext4_msg(sb, KERN_ERR, "External journal has more than one "
5839 "user (unsupported) - %d",
5840 be32_to_cpu(journal->j_superblock->s_nr_users));
5841 goto out_journal;
5842 }
5843 EXT4_SB(sb)->s_journal_bdev = bdev;
5844 ext4_init_journal_params(sb, journal);
5845 return journal;
5846
5847 out_journal:
5848 jbd2_journal_destroy(journal);
5849 out_bdev:
5850 ext4_blkdev_put(bdev);
5851 return NULL;
5852 }
5853
ext4_load_journal(struct super_block * sb,struct ext4_super_block * es,unsigned long journal_devnum)5854 static int ext4_load_journal(struct super_block *sb,
5855 struct ext4_super_block *es,
5856 unsigned long journal_devnum)
5857 {
5858 journal_t *journal;
5859 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5860 dev_t journal_dev;
5861 int err = 0;
5862 int really_read_only;
5863 int journal_dev_ro;
5864
5865 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5866 return -EFSCORRUPTED;
5867
5868 if (journal_devnum &&
5869 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5870 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5871 "numbers have changed");
5872 journal_dev = new_decode_dev(journal_devnum);
5873 } else
5874 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5875
5876 if (journal_inum && journal_dev) {
5877 ext4_msg(sb, KERN_ERR,
5878 "filesystem has both journal inode and journal device!");
5879 return -EINVAL;
5880 }
5881
5882 if (journal_inum) {
5883 journal = ext4_get_journal(sb, journal_inum);
5884 if (!journal)
5885 return -EINVAL;
5886 } else {
5887 journal = ext4_get_dev_journal(sb, journal_dev);
5888 if (!journal)
5889 return -EINVAL;
5890 }
5891
5892 journal_dev_ro = bdev_read_only(journal->j_dev);
5893 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
5894
5895 if (journal_dev_ro && !sb_rdonly(sb)) {
5896 ext4_msg(sb, KERN_ERR,
5897 "journal device read-only, try mounting with '-o ro'");
5898 err = -EROFS;
5899 goto err_out;
5900 }
5901
5902 /*
5903 * Are we loading a blank journal or performing recovery after a
5904 * crash? For recovery, we need to check in advance whether we
5905 * can get read-write access to the device.
5906 */
5907 if (ext4_has_feature_journal_needs_recovery(sb)) {
5908 if (sb_rdonly(sb)) {
5909 ext4_msg(sb, KERN_INFO, "INFO: recovery "
5910 "required on readonly filesystem");
5911 if (really_read_only) {
5912 ext4_msg(sb, KERN_ERR, "write access "
5913 "unavailable, cannot proceed "
5914 "(try mounting with noload)");
5915 err = -EROFS;
5916 goto err_out;
5917 }
5918 ext4_msg(sb, KERN_INFO, "write access will "
5919 "be enabled during recovery");
5920 }
5921 }
5922
5923 if (!(journal->j_flags & JBD2_BARRIER))
5924 ext4_msg(sb, KERN_INFO, "barriers disabled");
5925
5926 if (!ext4_has_feature_journal_needs_recovery(sb))
5927 err = jbd2_journal_wipe(journal, !really_read_only);
5928 if (!err) {
5929 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
5930 if (save)
5931 memcpy(save, ((char *) es) +
5932 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
5933 err = jbd2_journal_load(journal);
5934 if (save)
5935 memcpy(((char *) es) + EXT4_S_ERR_START,
5936 save, EXT4_S_ERR_LEN);
5937 kfree(save);
5938 }
5939
5940 if (err) {
5941 ext4_msg(sb, KERN_ERR, "error loading journal");
5942 goto err_out;
5943 }
5944
5945 EXT4_SB(sb)->s_journal = journal;
5946 err = ext4_clear_journal_err(sb, es);
5947 if (err) {
5948 EXT4_SB(sb)->s_journal = NULL;
5949 jbd2_journal_destroy(journal);
5950 return err;
5951 }
5952
5953 if (!really_read_only && journal_devnum &&
5954 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5955 es->s_journal_dev = cpu_to_le32(journal_devnum);
5956
5957 /* Make sure we flush the recovery flag to disk. */
5958 ext4_commit_super(sb);
5959 }
5960
5961 return 0;
5962
5963 err_out:
5964 jbd2_journal_destroy(journal);
5965 return err;
5966 }
5967
5968 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
ext4_update_super(struct super_block * sb)5969 static void ext4_update_super(struct super_block *sb)
5970 {
5971 struct ext4_sb_info *sbi = EXT4_SB(sb);
5972 struct ext4_super_block *es = sbi->s_es;
5973 struct buffer_head *sbh = sbi->s_sbh;
5974
5975 lock_buffer(sbh);
5976 /*
5977 * If the file system is mounted read-only, don't update the
5978 * superblock write time. This avoids updating the superblock
5979 * write time when we are mounting the root file system
5980 * read/only but we need to replay the journal; at that point,
5981 * for people who are east of GMT and who make their clock
5982 * tick in localtime for Windows bug-for-bug compatibility,
5983 * the clock is set in the future, and this will cause e2fsck
5984 * to complain and force a full file system check.
5985 */
5986 if (!(sb->s_flags & SB_RDONLY))
5987 ext4_update_tstamp(es, s_wtime);
5988 es->s_kbytes_written =
5989 cpu_to_le64(sbi->s_kbytes_written +
5990 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
5991 sbi->s_sectors_written_start) >> 1));
5992 if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
5993 ext4_free_blocks_count_set(es,
5994 EXT4_C2B(sbi, percpu_counter_sum_positive(
5995 &sbi->s_freeclusters_counter)));
5996 if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
5997 es->s_free_inodes_count =
5998 cpu_to_le32(percpu_counter_sum_positive(
5999 &sbi->s_freeinodes_counter));
6000 /* Copy error information to the on-disk superblock */
6001 spin_lock(&sbi->s_error_lock);
6002 if (sbi->s_add_error_count > 0) {
6003 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6004 if (!es->s_first_error_time && !es->s_first_error_time_hi) {
6005 __ext4_update_tstamp(&es->s_first_error_time,
6006 &es->s_first_error_time_hi,
6007 sbi->s_first_error_time);
6008 strncpy(es->s_first_error_func, sbi->s_first_error_func,
6009 sizeof(es->s_first_error_func));
6010 es->s_first_error_line =
6011 cpu_to_le32(sbi->s_first_error_line);
6012 es->s_first_error_ino =
6013 cpu_to_le32(sbi->s_first_error_ino);
6014 es->s_first_error_block =
6015 cpu_to_le64(sbi->s_first_error_block);
6016 es->s_first_error_errcode =
6017 ext4_errno_to_code(sbi->s_first_error_code);
6018 }
6019 __ext4_update_tstamp(&es->s_last_error_time,
6020 &es->s_last_error_time_hi,
6021 sbi->s_last_error_time);
6022 strncpy(es->s_last_error_func, sbi->s_last_error_func,
6023 sizeof(es->s_last_error_func));
6024 es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
6025 es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
6026 es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
6027 es->s_last_error_errcode =
6028 ext4_errno_to_code(sbi->s_last_error_code);
6029 /*
6030 * Start the daily error reporting function if it hasn't been
6031 * started already
6032 */
6033 if (!es->s_error_count)
6034 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
6035 le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
6036 sbi->s_add_error_count = 0;
6037 }
6038 spin_unlock(&sbi->s_error_lock);
6039
6040 ext4_superblock_csum_set(sb);
6041 unlock_buffer(sbh);
6042 }
6043
ext4_commit_super(struct super_block * sb)6044 static int ext4_commit_super(struct super_block *sb)
6045 {
6046 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
6047
6048 if (!sbh)
6049 return -EINVAL;
6050 if (block_device_ejected(sb))
6051 return -ENODEV;
6052
6053 ext4_update_super(sb);
6054
6055 lock_buffer(sbh);
6056 /* Buffer got discarded which means block device got invalidated */
6057 if (!buffer_mapped(sbh)) {
6058 unlock_buffer(sbh);
6059 return -EIO;
6060 }
6061
6062 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
6063 /*
6064 * Oh, dear. A previous attempt to write the
6065 * superblock failed. This could happen because the
6066 * USB device was yanked out. Or it could happen to
6067 * be a transient write error and maybe the block will
6068 * be remapped. Nothing we can do but to retry the
6069 * write and hope for the best.
6070 */
6071 ext4_msg(sb, KERN_ERR, "previous I/O error to "
6072 "superblock detected");
6073 clear_buffer_write_io_error(sbh);
6074 set_buffer_uptodate(sbh);
6075 }
6076 get_bh(sbh);
6077 /* Clear potential dirty bit if it was journalled update */
6078 clear_buffer_dirty(sbh);
6079 sbh->b_end_io = end_buffer_write_sync;
6080 submit_bh(REQ_OP_WRITE | REQ_SYNC |
6081 (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh);
6082 wait_on_buffer(sbh);
6083 if (buffer_write_io_error(sbh)) {
6084 ext4_msg(sb, KERN_ERR, "I/O error while writing "
6085 "superblock");
6086 clear_buffer_write_io_error(sbh);
6087 set_buffer_uptodate(sbh);
6088 return -EIO;
6089 }
6090 return 0;
6091 }
6092
6093 /*
6094 * Have we just finished recovery? If so, and if we are mounting (or
6095 * remounting) the filesystem readonly, then we will end up with a
6096 * consistent fs on disk. Record that fact.
6097 */
ext4_mark_recovery_complete(struct super_block * sb,struct ext4_super_block * es)6098 static int ext4_mark_recovery_complete(struct super_block *sb,
6099 struct ext4_super_block *es)
6100 {
6101 int err;
6102 journal_t *journal = EXT4_SB(sb)->s_journal;
6103
6104 if (!ext4_has_feature_journal(sb)) {
6105 if (journal != NULL) {
6106 ext4_error(sb, "Journal got removed while the fs was "
6107 "mounted!");
6108 return -EFSCORRUPTED;
6109 }
6110 return 0;
6111 }
6112 jbd2_journal_lock_updates(journal);
6113 err = jbd2_journal_flush(journal, 0);
6114 if (err < 0)
6115 goto out;
6116
6117 if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) ||
6118 ext4_has_feature_orphan_present(sb))) {
6119 if (!ext4_orphan_file_empty(sb)) {
6120 ext4_error(sb, "Orphan file not empty on read-only fs.");
6121 err = -EFSCORRUPTED;
6122 goto out;
6123 }
6124 ext4_clear_feature_journal_needs_recovery(sb);
6125 ext4_clear_feature_orphan_present(sb);
6126 ext4_commit_super(sb);
6127 }
6128 out:
6129 jbd2_journal_unlock_updates(journal);
6130 return err;
6131 }
6132
6133 /*
6134 * If we are mounting (or read-write remounting) a filesystem whose journal
6135 * has recorded an error from a previous lifetime, move that error to the
6136 * main filesystem now.
6137 */
ext4_clear_journal_err(struct super_block * sb,struct ext4_super_block * es)6138 static int ext4_clear_journal_err(struct super_block *sb,
6139 struct ext4_super_block *es)
6140 {
6141 journal_t *journal;
6142 int j_errno;
6143 const char *errstr;
6144
6145 if (!ext4_has_feature_journal(sb)) {
6146 ext4_error(sb, "Journal got removed while the fs was mounted!");
6147 return -EFSCORRUPTED;
6148 }
6149
6150 journal = EXT4_SB(sb)->s_journal;
6151
6152 /*
6153 * Now check for any error status which may have been recorded in the
6154 * journal by a prior ext4_error() or ext4_abort()
6155 */
6156
6157 j_errno = jbd2_journal_errno(journal);
6158 if (j_errno) {
6159 char nbuf[16];
6160
6161 errstr = ext4_decode_error(sb, j_errno, nbuf);
6162 ext4_warning(sb, "Filesystem error recorded "
6163 "from previous mount: %s", errstr);
6164 ext4_warning(sb, "Marking fs in need of filesystem check.");
6165
6166 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
6167 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6168 ext4_commit_super(sb);
6169
6170 jbd2_journal_clear_err(journal);
6171 jbd2_journal_update_sb_errno(journal);
6172 }
6173 return 0;
6174 }
6175
6176 /*
6177 * Force the running and committing transactions to commit,
6178 * and wait on the commit.
6179 */
ext4_force_commit(struct super_block * sb)6180 int ext4_force_commit(struct super_block *sb)
6181 {
6182 journal_t *journal;
6183
6184 if (sb_rdonly(sb))
6185 return 0;
6186
6187 journal = EXT4_SB(sb)->s_journal;
6188 return ext4_journal_force_commit(journal);
6189 }
6190
ext4_sync_fs(struct super_block * sb,int wait)6191 static int ext4_sync_fs(struct super_block *sb, int wait)
6192 {
6193 int ret = 0;
6194 tid_t target;
6195 bool needs_barrier = false;
6196 struct ext4_sb_info *sbi = EXT4_SB(sb);
6197
6198 if (unlikely(ext4_forced_shutdown(sbi)))
6199 return 0;
6200
6201 trace_ext4_sync_fs(sb, wait);
6202 flush_workqueue(sbi->rsv_conversion_wq);
6203 /*
6204 * Writeback quota in non-journalled quota case - journalled quota has
6205 * no dirty dquots
6206 */
6207 dquot_writeback_dquots(sb, -1);
6208 /*
6209 * Data writeback is possible w/o journal transaction, so barrier must
6210 * being sent at the end of the function. But we can skip it if
6211 * transaction_commit will do it for us.
6212 */
6213 if (sbi->s_journal) {
6214 target = jbd2_get_latest_transaction(sbi->s_journal);
6215 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
6216 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
6217 needs_barrier = true;
6218
6219 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
6220 if (wait)
6221 ret = jbd2_log_wait_commit(sbi->s_journal,
6222 target);
6223 }
6224 } else if (wait && test_opt(sb, BARRIER))
6225 needs_barrier = true;
6226 if (needs_barrier) {
6227 int err;
6228 err = blkdev_issue_flush(sb->s_bdev);
6229 if (!ret)
6230 ret = err;
6231 }
6232
6233 return ret;
6234 }
6235
6236 /*
6237 * LVM calls this function before a (read-only) snapshot is created. This
6238 * gives us a chance to flush the journal completely and mark the fs clean.
6239 *
6240 * Note that only this function cannot bring a filesystem to be in a clean
6241 * state independently. It relies on upper layer to stop all data & metadata
6242 * modifications.
6243 */
ext4_freeze(struct super_block * sb)6244 static int ext4_freeze(struct super_block *sb)
6245 {
6246 int error = 0;
6247 journal_t *journal;
6248
6249 if (sb_rdonly(sb))
6250 return 0;
6251
6252 journal = EXT4_SB(sb)->s_journal;
6253
6254 if (journal) {
6255 /* Now we set up the journal barrier. */
6256 jbd2_journal_lock_updates(journal);
6257
6258 /*
6259 * Don't clear the needs_recovery flag if we failed to
6260 * flush the journal.
6261 */
6262 error = jbd2_journal_flush(journal, 0);
6263 if (error < 0)
6264 goto out;
6265
6266 /* Journal blocked and flushed, clear needs_recovery flag. */
6267 ext4_clear_feature_journal_needs_recovery(sb);
6268 if (ext4_orphan_file_empty(sb))
6269 ext4_clear_feature_orphan_present(sb);
6270 }
6271
6272 error = ext4_commit_super(sb);
6273 out:
6274 if (journal)
6275 /* we rely on upper layer to stop further updates */
6276 jbd2_journal_unlock_updates(journal);
6277 return error;
6278 }
6279
6280 /*
6281 * Called by LVM after the snapshot is done. We need to reset the RECOVER
6282 * flag here, even though the filesystem is not technically dirty yet.
6283 */
ext4_unfreeze(struct super_block * sb)6284 static int ext4_unfreeze(struct super_block *sb)
6285 {
6286 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
6287 return 0;
6288
6289 if (EXT4_SB(sb)->s_journal) {
6290 /* Reset the needs_recovery flag before the fs is unlocked. */
6291 ext4_set_feature_journal_needs_recovery(sb);
6292 if (ext4_has_feature_orphan_file(sb))
6293 ext4_set_feature_orphan_present(sb);
6294 }
6295
6296 ext4_commit_super(sb);
6297 return 0;
6298 }
6299
6300 /*
6301 * Structure to save mount options for ext4_remount's benefit
6302 */
6303 struct ext4_mount_options {
6304 unsigned long s_mount_opt;
6305 unsigned long s_mount_opt2;
6306 kuid_t s_resuid;
6307 kgid_t s_resgid;
6308 unsigned long s_commit_interval;
6309 u32 s_min_batch_time, s_max_batch_time;
6310 #ifdef CONFIG_QUOTA
6311 int s_jquota_fmt;
6312 char *s_qf_names[EXT4_MAXQUOTAS];
6313 #endif
6314 };
6315
__ext4_remount(struct fs_context * fc,struct super_block * sb)6316 static int __ext4_remount(struct fs_context *fc, struct super_block *sb)
6317 {
6318 struct ext4_fs_context *ctx = fc->fs_private;
6319 struct ext4_super_block *es;
6320 struct ext4_sb_info *sbi = EXT4_SB(sb);
6321 unsigned long old_sb_flags;
6322 struct ext4_mount_options old_opts;
6323 ext4_group_t g;
6324 int err = 0;
6325 #ifdef CONFIG_QUOTA
6326 int enable_quota = 0;
6327 int i, j;
6328 char *to_free[EXT4_MAXQUOTAS];
6329 #endif
6330
6331
6332 /* Store the original options */
6333 old_sb_flags = sb->s_flags;
6334 old_opts.s_mount_opt = sbi->s_mount_opt;
6335 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
6336 old_opts.s_resuid = sbi->s_resuid;
6337 old_opts.s_resgid = sbi->s_resgid;
6338 old_opts.s_commit_interval = sbi->s_commit_interval;
6339 old_opts.s_min_batch_time = sbi->s_min_batch_time;
6340 old_opts.s_max_batch_time = sbi->s_max_batch_time;
6341 #ifdef CONFIG_QUOTA
6342 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
6343 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6344 if (sbi->s_qf_names[i]) {
6345 char *qf_name = get_qf_name(sb, sbi, i);
6346
6347 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
6348 if (!old_opts.s_qf_names[i]) {
6349 for (j = 0; j < i; j++)
6350 kfree(old_opts.s_qf_names[j]);
6351 return -ENOMEM;
6352 }
6353 } else
6354 old_opts.s_qf_names[i] = NULL;
6355 #endif
6356 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) {
6357 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
6358 ctx->journal_ioprio =
6359 sbi->s_journal->j_task->io_context->ioprio;
6360 else
6361 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
6362
6363 }
6364
6365 ext4_apply_options(fc, sb);
6366
6367 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
6368 test_opt(sb, JOURNAL_CHECKSUM)) {
6369 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
6370 "during remount not supported; ignoring");
6371 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
6372 }
6373
6374 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
6375 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
6376 ext4_msg(sb, KERN_ERR, "can't mount with "
6377 "both data=journal and delalloc");
6378 err = -EINVAL;
6379 goto restore_opts;
6380 }
6381 if (test_opt(sb, DIOREAD_NOLOCK)) {
6382 ext4_msg(sb, KERN_ERR, "can't mount with "
6383 "both data=journal and dioread_nolock");
6384 err = -EINVAL;
6385 goto restore_opts;
6386 }
6387 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
6388 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
6389 ext4_msg(sb, KERN_ERR, "can't mount with "
6390 "journal_async_commit in data=ordered mode");
6391 err = -EINVAL;
6392 goto restore_opts;
6393 }
6394 }
6395
6396 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
6397 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
6398 err = -EINVAL;
6399 goto restore_opts;
6400 }
6401
6402 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
6403 ext4_abort(sb, ESHUTDOWN, "Abort forced by user");
6404
6405 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
6406 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
6407
6408 es = sbi->s_es;
6409
6410 if (sbi->s_journal) {
6411 ext4_init_journal_params(sb, sbi->s_journal);
6412 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
6413 }
6414
6415 /* Flush outstanding errors before changing fs state */
6416 flush_work(&sbi->s_error_work);
6417
6418 if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) {
6419 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) {
6420 err = -EROFS;
6421 goto restore_opts;
6422 }
6423
6424 if (fc->sb_flags & SB_RDONLY) {
6425 err = sync_filesystem(sb);
6426 if (err < 0)
6427 goto restore_opts;
6428 err = dquot_suspend(sb, -1);
6429 if (err < 0)
6430 goto restore_opts;
6431
6432 /*
6433 * First of all, the unconditional stuff we have to do
6434 * to disable replay of the journal when we next remount
6435 */
6436 sb->s_flags |= SB_RDONLY;
6437
6438 /*
6439 * OK, test if we are remounting a valid rw partition
6440 * readonly, and if so set the rdonly flag and then
6441 * mark the partition as valid again.
6442 */
6443 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
6444 (sbi->s_mount_state & EXT4_VALID_FS))
6445 es->s_state = cpu_to_le16(sbi->s_mount_state);
6446
6447 if (sbi->s_journal) {
6448 /*
6449 * We let remount-ro finish even if marking fs
6450 * as clean failed...
6451 */
6452 ext4_mark_recovery_complete(sb, es);
6453 }
6454 } else {
6455 /* Make sure we can mount this feature set readwrite */
6456 if (ext4_has_feature_readonly(sb) ||
6457 !ext4_feature_set_ok(sb, 0)) {
6458 err = -EROFS;
6459 goto restore_opts;
6460 }
6461 /*
6462 * Make sure the group descriptor checksums
6463 * are sane. If they aren't, refuse to remount r/w.
6464 */
6465 for (g = 0; g < sbi->s_groups_count; g++) {
6466 struct ext4_group_desc *gdp =
6467 ext4_get_group_desc(sb, g, NULL);
6468
6469 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
6470 ext4_msg(sb, KERN_ERR,
6471 "ext4_remount: Checksum for group %u failed (%u!=%u)",
6472 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
6473 le16_to_cpu(gdp->bg_checksum));
6474 err = -EFSBADCRC;
6475 goto restore_opts;
6476 }
6477 }
6478
6479 /*
6480 * If we have an unprocessed orphan list hanging
6481 * around from a previously readonly bdev mount,
6482 * require a full umount/remount for now.
6483 */
6484 if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) {
6485 ext4_msg(sb, KERN_WARNING, "Couldn't "
6486 "remount RDWR because of unprocessed "
6487 "orphan inode list. Please "
6488 "umount/remount instead");
6489 err = -EINVAL;
6490 goto restore_opts;
6491 }
6492
6493 /*
6494 * Mounting a RDONLY partition read-write, so reread
6495 * and store the current valid flag. (It may have
6496 * been changed by e2fsck since we originally mounted
6497 * the partition.)
6498 */
6499 if (sbi->s_journal) {
6500 err = ext4_clear_journal_err(sb, es);
6501 if (err)
6502 goto restore_opts;
6503 }
6504 sbi->s_mount_state = (le16_to_cpu(es->s_state) &
6505 ~EXT4_FC_REPLAY);
6506
6507 err = ext4_setup_super(sb, es, 0);
6508 if (err)
6509 goto restore_opts;
6510
6511 sb->s_flags &= ~SB_RDONLY;
6512 if (ext4_has_feature_mmp(sb))
6513 if (ext4_multi_mount_protect(sb,
6514 le64_to_cpu(es->s_mmp_block))) {
6515 err = -EROFS;
6516 goto restore_opts;
6517 }
6518 #ifdef CONFIG_QUOTA
6519 enable_quota = 1;
6520 #endif
6521 }
6522 }
6523
6524 /*
6525 * Reinitialize lazy itable initialization thread based on
6526 * current settings
6527 */
6528 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6529 ext4_unregister_li_request(sb);
6530 else {
6531 ext4_group_t first_not_zeroed;
6532 first_not_zeroed = ext4_has_uninit_itable(sb);
6533 ext4_register_li_request(sb, first_not_zeroed);
6534 }
6535
6536 /*
6537 * Handle creation of system zone data early because it can fail.
6538 * Releasing of existing data is done when we are sure remount will
6539 * succeed.
6540 */
6541 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6542 err = ext4_setup_system_zone(sb);
6543 if (err)
6544 goto restore_opts;
6545 }
6546
6547 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6548 err = ext4_commit_super(sb);
6549 if (err)
6550 goto restore_opts;
6551 }
6552
6553 #ifdef CONFIG_QUOTA
6554 /* Release old quota file names */
6555 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6556 kfree(old_opts.s_qf_names[i]);
6557 if (enable_quota) {
6558 if (sb_any_quota_suspended(sb))
6559 dquot_resume(sb, -1);
6560 else if (ext4_has_feature_quota(sb)) {
6561 err = ext4_enable_quotas(sb);
6562 if (err)
6563 goto restore_opts;
6564 }
6565 }
6566 #endif
6567 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6568 ext4_release_system_zone(sb);
6569
6570 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6571 ext4_stop_mmpd(sbi);
6572
6573 return 0;
6574
6575 restore_opts:
6576 sb->s_flags = old_sb_flags;
6577 sbi->s_mount_opt = old_opts.s_mount_opt;
6578 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6579 sbi->s_resuid = old_opts.s_resuid;
6580 sbi->s_resgid = old_opts.s_resgid;
6581 sbi->s_commit_interval = old_opts.s_commit_interval;
6582 sbi->s_min_batch_time = old_opts.s_min_batch_time;
6583 sbi->s_max_batch_time = old_opts.s_max_batch_time;
6584 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6585 ext4_release_system_zone(sb);
6586 #ifdef CONFIG_QUOTA
6587 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6588 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6589 to_free[i] = get_qf_name(sb, sbi, i);
6590 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6591 }
6592 synchronize_rcu();
6593 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6594 kfree(to_free[i]);
6595 #endif
6596 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6597 ext4_stop_mmpd(sbi);
6598 return err;
6599 }
6600
ext4_reconfigure(struct fs_context * fc)6601 static int ext4_reconfigure(struct fs_context *fc)
6602 {
6603 struct super_block *sb = fc->root->d_sb;
6604 int ret;
6605
6606 fc->s_fs_info = EXT4_SB(sb);
6607
6608 ret = ext4_check_opt_consistency(fc, sb);
6609 if (ret < 0)
6610 return ret;
6611
6612 ret = __ext4_remount(fc, sb);
6613 if (ret < 0)
6614 return ret;
6615
6616 ext4_msg(sb, KERN_INFO, "re-mounted. Quota mode: %s.",
6617 ext4_quota_mode(sb));
6618
6619 return 0;
6620 }
6621
6622 #ifdef CONFIG_QUOTA
ext4_statfs_project(struct super_block * sb,kprojid_t projid,struct kstatfs * buf)6623 static int ext4_statfs_project(struct super_block *sb,
6624 kprojid_t projid, struct kstatfs *buf)
6625 {
6626 struct kqid qid;
6627 struct dquot *dquot;
6628 u64 limit;
6629 u64 curblock;
6630
6631 qid = make_kqid_projid(projid);
6632 dquot = dqget(sb, qid);
6633 if (IS_ERR(dquot))
6634 return PTR_ERR(dquot);
6635 spin_lock(&dquot->dq_dqb_lock);
6636
6637 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6638 dquot->dq_dqb.dqb_bhardlimit);
6639 limit >>= sb->s_blocksize_bits;
6640
6641 if (limit && buf->f_blocks > limit) {
6642 curblock = (dquot->dq_dqb.dqb_curspace +
6643 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6644 buf->f_blocks = limit;
6645 buf->f_bfree = buf->f_bavail =
6646 (buf->f_blocks > curblock) ?
6647 (buf->f_blocks - curblock) : 0;
6648 }
6649
6650 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6651 dquot->dq_dqb.dqb_ihardlimit);
6652 if (limit && buf->f_files > limit) {
6653 buf->f_files = limit;
6654 buf->f_ffree =
6655 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6656 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6657 }
6658
6659 spin_unlock(&dquot->dq_dqb_lock);
6660 dqput(dquot);
6661 return 0;
6662 }
6663 #endif
6664
ext4_statfs(struct dentry * dentry,struct kstatfs * buf)6665 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6666 {
6667 struct super_block *sb = dentry->d_sb;
6668 struct ext4_sb_info *sbi = EXT4_SB(sb);
6669 struct ext4_super_block *es = sbi->s_es;
6670 ext4_fsblk_t overhead = 0, resv_blocks;
6671 s64 bfree;
6672 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6673
6674 if (!test_opt(sb, MINIX_DF))
6675 overhead = sbi->s_overhead;
6676
6677 buf->f_type = EXT4_SUPER_MAGIC;
6678 buf->f_bsize = sb->s_blocksize;
6679 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6680 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6681 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6682 /* prevent underflow in case that few free space is available */
6683 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6684 buf->f_bavail = buf->f_bfree -
6685 (ext4_r_blocks_count(es) + resv_blocks);
6686 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6687 buf->f_bavail = 0;
6688 buf->f_files = le32_to_cpu(es->s_inodes_count);
6689 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6690 buf->f_namelen = EXT4_NAME_LEN;
6691 buf->f_fsid = uuid_to_fsid(es->s_uuid);
6692
6693 #ifdef CONFIG_QUOTA
6694 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6695 sb_has_quota_limits_enabled(sb, PRJQUOTA))
6696 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6697 #endif
6698 return 0;
6699 }
6700
6701
6702 #ifdef CONFIG_QUOTA
6703
6704 /*
6705 * Helper functions so that transaction is started before we acquire dqio_sem
6706 * to keep correct lock ordering of transaction > dqio_sem
6707 */
dquot_to_inode(struct dquot * dquot)6708 static inline struct inode *dquot_to_inode(struct dquot *dquot)
6709 {
6710 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6711 }
6712
ext4_write_dquot(struct dquot * dquot)6713 static int ext4_write_dquot(struct dquot *dquot)
6714 {
6715 int ret, err;
6716 handle_t *handle;
6717 struct inode *inode;
6718
6719 inode = dquot_to_inode(dquot);
6720 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6721 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6722 if (IS_ERR(handle))
6723 return PTR_ERR(handle);
6724 ret = dquot_commit(dquot);
6725 err = ext4_journal_stop(handle);
6726 if (!ret)
6727 ret = err;
6728 return ret;
6729 }
6730
ext4_acquire_dquot(struct dquot * dquot)6731 static int ext4_acquire_dquot(struct dquot *dquot)
6732 {
6733 int ret, err;
6734 handle_t *handle;
6735
6736 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6737 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6738 if (IS_ERR(handle))
6739 return PTR_ERR(handle);
6740 ret = dquot_acquire(dquot);
6741 err = ext4_journal_stop(handle);
6742 if (!ret)
6743 ret = err;
6744 return ret;
6745 }
6746
ext4_release_dquot(struct dquot * dquot)6747 static int ext4_release_dquot(struct dquot *dquot)
6748 {
6749 int ret, err;
6750 handle_t *handle;
6751
6752 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6753 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6754 if (IS_ERR(handle)) {
6755 /* Release dquot anyway to avoid endless cycle in dqput() */
6756 dquot_release(dquot);
6757 return PTR_ERR(handle);
6758 }
6759 ret = dquot_release(dquot);
6760 err = ext4_journal_stop(handle);
6761 if (!ret)
6762 ret = err;
6763 return ret;
6764 }
6765
ext4_mark_dquot_dirty(struct dquot * dquot)6766 static int ext4_mark_dquot_dirty(struct dquot *dquot)
6767 {
6768 struct super_block *sb = dquot->dq_sb;
6769
6770 if (ext4_is_quota_journalled(sb)) {
6771 dquot_mark_dquot_dirty(dquot);
6772 return ext4_write_dquot(dquot);
6773 } else {
6774 return dquot_mark_dquot_dirty(dquot);
6775 }
6776 }
6777
ext4_write_info(struct super_block * sb,int type)6778 static int ext4_write_info(struct super_block *sb, int type)
6779 {
6780 int ret, err;
6781 handle_t *handle;
6782
6783 /* Data block + inode block */
6784 handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2);
6785 if (IS_ERR(handle))
6786 return PTR_ERR(handle);
6787 ret = dquot_commit_info(sb, type);
6788 err = ext4_journal_stop(handle);
6789 if (!ret)
6790 ret = err;
6791 return ret;
6792 }
6793
lockdep_set_quota_inode(struct inode * inode,int subclass)6794 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6795 {
6796 struct ext4_inode_info *ei = EXT4_I(inode);
6797
6798 /* The first argument of lockdep_set_subclass has to be
6799 * *exactly* the same as the argument to init_rwsem() --- in
6800 * this case, in init_once() --- or lockdep gets unhappy
6801 * because the name of the lock is set using the
6802 * stringification of the argument to init_rwsem().
6803 */
6804 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
6805 lockdep_set_subclass(&ei->i_data_sem, subclass);
6806 }
6807
6808 /*
6809 * Standard function to be called on quota_on
6810 */
ext4_quota_on(struct super_block * sb,int type,int format_id,const struct path * path)6811 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
6812 const struct path *path)
6813 {
6814 int err;
6815
6816 if (!test_opt(sb, QUOTA))
6817 return -EINVAL;
6818
6819 /* Quotafile not on the same filesystem? */
6820 if (path->dentry->d_sb != sb)
6821 return -EXDEV;
6822
6823 /* Quota already enabled for this file? */
6824 if (IS_NOQUOTA(d_inode(path->dentry)))
6825 return -EBUSY;
6826
6827 /* Journaling quota? */
6828 if (EXT4_SB(sb)->s_qf_names[type]) {
6829 /* Quotafile not in fs root? */
6830 if (path->dentry->d_parent != sb->s_root)
6831 ext4_msg(sb, KERN_WARNING,
6832 "Quota file not on filesystem root. "
6833 "Journaled quota will not work");
6834 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
6835 } else {
6836 /*
6837 * Clear the flag just in case mount options changed since
6838 * last time.
6839 */
6840 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
6841 }
6842
6843 /*
6844 * When we journal data on quota file, we have to flush journal to see
6845 * all updates to the file when we bypass pagecache...
6846 */
6847 if (EXT4_SB(sb)->s_journal &&
6848 ext4_should_journal_data(d_inode(path->dentry))) {
6849 /*
6850 * We don't need to lock updates but journal_flush() could
6851 * otherwise be livelocked...
6852 */
6853 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
6854 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal, 0);
6855 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
6856 if (err)
6857 return err;
6858 }
6859
6860 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
6861 err = dquot_quota_on(sb, type, format_id, path);
6862 if (!err) {
6863 struct inode *inode = d_inode(path->dentry);
6864 handle_t *handle;
6865
6866 /*
6867 * Set inode flags to prevent userspace from messing with quota
6868 * files. If this fails, we return success anyway since quotas
6869 * are already enabled and this is not a hard failure.
6870 */
6871 inode_lock(inode);
6872 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6873 if (IS_ERR(handle))
6874 goto unlock_inode;
6875 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
6876 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
6877 S_NOATIME | S_IMMUTABLE);
6878 err = ext4_mark_inode_dirty(handle, inode);
6879 ext4_journal_stop(handle);
6880 unlock_inode:
6881 inode_unlock(inode);
6882 if (err)
6883 dquot_quota_off(sb, type);
6884 }
6885 if (err)
6886 lockdep_set_quota_inode(path->dentry->d_inode,
6887 I_DATA_SEM_NORMAL);
6888 return err;
6889 }
6890
ext4_check_quota_inum(int type,unsigned long qf_inum)6891 static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum)
6892 {
6893 switch (type) {
6894 case USRQUOTA:
6895 return qf_inum == EXT4_USR_QUOTA_INO;
6896 case GRPQUOTA:
6897 return qf_inum == EXT4_GRP_QUOTA_INO;
6898 case PRJQUOTA:
6899 return qf_inum >= EXT4_GOOD_OLD_FIRST_INO;
6900 default:
6901 BUG();
6902 }
6903 }
6904
ext4_quota_enable(struct super_block * sb,int type,int format_id,unsigned int flags)6905 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
6906 unsigned int flags)
6907 {
6908 int err;
6909 struct inode *qf_inode;
6910 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6911 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6912 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6913 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6914 };
6915
6916 BUG_ON(!ext4_has_feature_quota(sb));
6917
6918 if (!qf_inums[type])
6919 return -EPERM;
6920
6921 if (!ext4_check_quota_inum(type, qf_inums[type])) {
6922 ext4_error(sb, "Bad quota inum: %lu, type: %d",
6923 qf_inums[type], type);
6924 return -EUCLEAN;
6925 }
6926
6927 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
6928 if (IS_ERR(qf_inode)) {
6929 ext4_error(sb, "Bad quota inode: %lu, type: %d",
6930 qf_inums[type], type);
6931 return PTR_ERR(qf_inode);
6932 }
6933
6934 /* Don't account quota for quota files to avoid recursion */
6935 qf_inode->i_flags |= S_NOQUOTA;
6936 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
6937 err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
6938 if (err)
6939 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
6940 iput(qf_inode);
6941
6942 return err;
6943 }
6944
6945 /* Enable usage tracking for all quota types. */
ext4_enable_quotas(struct super_block * sb)6946 int ext4_enable_quotas(struct super_block *sb)
6947 {
6948 int type, err = 0;
6949 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6950 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6951 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6952 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6953 };
6954 bool quota_mopt[EXT4_MAXQUOTAS] = {
6955 test_opt(sb, USRQUOTA),
6956 test_opt(sb, GRPQUOTA),
6957 test_opt(sb, PRJQUOTA),
6958 };
6959
6960 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
6961 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
6962 if (qf_inums[type]) {
6963 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
6964 DQUOT_USAGE_ENABLED |
6965 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
6966 if (err) {
6967 ext4_warning(sb,
6968 "Failed to enable quota tracking "
6969 "(type=%d, err=%d, ino=%lu). "
6970 "Please run e2fsck to fix.", type,
6971 err, qf_inums[type]);
6972 for (type--; type >= 0; type--) {
6973 struct inode *inode;
6974
6975 inode = sb_dqopt(sb)->files[type];
6976 if (inode)
6977 inode = igrab(inode);
6978 dquot_quota_off(sb, type);
6979 if (inode) {
6980 lockdep_set_quota_inode(inode,
6981 I_DATA_SEM_NORMAL);
6982 iput(inode);
6983 }
6984 }
6985
6986 return err;
6987 }
6988 }
6989 }
6990 return 0;
6991 }
6992
ext4_quota_off(struct super_block * sb,int type)6993 static int ext4_quota_off(struct super_block *sb, int type)
6994 {
6995 struct inode *inode = sb_dqopt(sb)->files[type];
6996 handle_t *handle;
6997 int err;
6998
6999 /* Force all delayed allocation blocks to be allocated.
7000 * Caller already holds s_umount sem */
7001 if (test_opt(sb, DELALLOC))
7002 sync_filesystem(sb);
7003
7004 if (!inode || !igrab(inode))
7005 goto out;
7006
7007 err = dquot_quota_off(sb, type);
7008 if (err || ext4_has_feature_quota(sb))
7009 goto out_put;
7010
7011 inode_lock(inode);
7012 /*
7013 * Update modification times of quota files when userspace can
7014 * start looking at them. If we fail, we return success anyway since
7015 * this is not a hard failure and quotas are already disabled.
7016 */
7017 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7018 if (IS_ERR(handle)) {
7019 err = PTR_ERR(handle);
7020 goto out_unlock;
7021 }
7022 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
7023 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
7024 inode->i_mtime = inode->i_ctime = current_time(inode);
7025 err = ext4_mark_inode_dirty(handle, inode);
7026 ext4_journal_stop(handle);
7027 out_unlock:
7028 inode_unlock(inode);
7029 out_put:
7030 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
7031 iput(inode);
7032 return err;
7033 out:
7034 return dquot_quota_off(sb, type);
7035 }
7036
7037 /* Read data from quotafile - avoid pagecache and such because we cannot afford
7038 * acquiring the locks... As quota files are never truncated and quota code
7039 * itself serializes the operations (and no one else should touch the files)
7040 * we don't have to be afraid of races */
ext4_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)7041 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
7042 size_t len, loff_t off)
7043 {
7044 struct inode *inode = sb_dqopt(sb)->files[type];
7045 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7046 int offset = off & (sb->s_blocksize - 1);
7047 int tocopy;
7048 size_t toread;
7049 struct buffer_head *bh;
7050 loff_t i_size = i_size_read(inode);
7051
7052 if (off > i_size)
7053 return 0;
7054 if (off+len > i_size)
7055 len = i_size-off;
7056 toread = len;
7057 while (toread > 0) {
7058 tocopy = sb->s_blocksize - offset < toread ?
7059 sb->s_blocksize - offset : toread;
7060 bh = ext4_bread(NULL, inode, blk, 0);
7061 if (IS_ERR(bh))
7062 return PTR_ERR(bh);
7063 if (!bh) /* A hole? */
7064 memset(data, 0, tocopy);
7065 else
7066 memcpy(data, bh->b_data+offset, tocopy);
7067 brelse(bh);
7068 offset = 0;
7069 toread -= tocopy;
7070 data += tocopy;
7071 blk++;
7072 }
7073 return len;
7074 }
7075
7076 /* Write to quotafile (we know the transaction is already started and has
7077 * enough credits) */
ext4_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)7078 static ssize_t ext4_quota_write(struct super_block *sb, int type,
7079 const char *data, size_t len, loff_t off)
7080 {
7081 struct inode *inode = sb_dqopt(sb)->files[type];
7082 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7083 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
7084 int retries = 0;
7085 struct buffer_head *bh;
7086 handle_t *handle = journal_current_handle();
7087
7088 if (!handle) {
7089 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7090 " cancelled because transaction is not started",
7091 (unsigned long long)off, (unsigned long long)len);
7092 return -EIO;
7093 }
7094 /*
7095 * Since we account only one data block in transaction credits,
7096 * then it is impossible to cross a block boundary.
7097 */
7098 if (sb->s_blocksize - offset < len) {
7099 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7100 " cancelled because not block aligned",
7101 (unsigned long long)off, (unsigned long long)len);
7102 return -EIO;
7103 }
7104
7105 do {
7106 bh = ext4_bread(handle, inode, blk,
7107 EXT4_GET_BLOCKS_CREATE |
7108 EXT4_GET_BLOCKS_METADATA_NOFAIL);
7109 } while (PTR_ERR(bh) == -ENOSPC &&
7110 ext4_should_retry_alloc(inode->i_sb, &retries));
7111 if (IS_ERR(bh))
7112 return PTR_ERR(bh);
7113 if (!bh)
7114 goto out;
7115 BUFFER_TRACE(bh, "get write access");
7116 err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE);
7117 if (err) {
7118 brelse(bh);
7119 return err;
7120 }
7121 lock_buffer(bh);
7122 memcpy(bh->b_data+offset, data, len);
7123 flush_dcache_page(bh->b_page);
7124 unlock_buffer(bh);
7125 err = ext4_handle_dirty_metadata(handle, NULL, bh);
7126 brelse(bh);
7127 out:
7128 if (inode->i_size < off + len) {
7129 i_size_write(inode, off + len);
7130 EXT4_I(inode)->i_disksize = inode->i_size;
7131 err2 = ext4_mark_inode_dirty(handle, inode);
7132 if (unlikely(err2 && !err))
7133 err = err2;
7134 }
7135 return err ? err : len;
7136 }
7137 #endif
7138
7139 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
register_as_ext2(void)7140 static inline void register_as_ext2(void)
7141 {
7142 int err = register_filesystem(&ext2_fs_type);
7143 if (err)
7144 printk(KERN_WARNING
7145 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
7146 }
7147
unregister_as_ext2(void)7148 static inline void unregister_as_ext2(void)
7149 {
7150 unregister_filesystem(&ext2_fs_type);
7151 }
7152
ext2_feature_set_ok(struct super_block * sb)7153 static inline int ext2_feature_set_ok(struct super_block *sb)
7154 {
7155 if (ext4_has_unknown_ext2_incompat_features(sb))
7156 return 0;
7157 if (sb_rdonly(sb))
7158 return 1;
7159 if (ext4_has_unknown_ext2_ro_compat_features(sb))
7160 return 0;
7161 return 1;
7162 }
7163 #else
register_as_ext2(void)7164 static inline void register_as_ext2(void) { }
unregister_as_ext2(void)7165 static inline void unregister_as_ext2(void) { }
ext2_feature_set_ok(struct super_block * sb)7166 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
7167 #endif
7168
register_as_ext3(void)7169 static inline void register_as_ext3(void)
7170 {
7171 int err = register_filesystem(&ext3_fs_type);
7172 if (err)
7173 printk(KERN_WARNING
7174 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
7175 }
7176
unregister_as_ext3(void)7177 static inline void unregister_as_ext3(void)
7178 {
7179 unregister_filesystem(&ext3_fs_type);
7180 }
7181
ext3_feature_set_ok(struct super_block * sb)7182 static inline int ext3_feature_set_ok(struct super_block *sb)
7183 {
7184 if (ext4_has_unknown_ext3_incompat_features(sb))
7185 return 0;
7186 if (!ext4_has_feature_journal(sb))
7187 return 0;
7188 if (sb_rdonly(sb))
7189 return 1;
7190 if (ext4_has_unknown_ext3_ro_compat_features(sb))
7191 return 0;
7192 return 1;
7193 }
7194
7195 static struct file_system_type ext4_fs_type = {
7196 .owner = THIS_MODULE,
7197 .name = "ext4",
7198 .init_fs_context = ext4_init_fs_context,
7199 .parameters = ext4_param_specs,
7200 .kill_sb = kill_block_super,
7201 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
7202 };
7203 MODULE_ALIAS_FS("ext4");
7204
7205 /* Shared across all ext4 file systems */
7206 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
7207
ext4_init_fs(void)7208 static int __init ext4_init_fs(void)
7209 {
7210 int i, err;
7211
7212 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
7213 ext4_li_info = NULL;
7214
7215 /* Build-time check for flags consistency */
7216 ext4_check_flag_values();
7217
7218 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
7219 init_waitqueue_head(&ext4__ioend_wq[i]);
7220
7221 err = ext4_init_es();
7222 if (err)
7223 return err;
7224
7225 err = ext4_init_pending();
7226 if (err)
7227 goto out7;
7228
7229 err = ext4_init_post_read_processing();
7230 if (err)
7231 goto out6;
7232
7233 err = ext4_init_pageio();
7234 if (err)
7235 goto out5;
7236
7237 err = ext4_init_system_zone();
7238 if (err)
7239 goto out4;
7240
7241 err = ext4_init_sysfs();
7242 if (err)
7243 goto out3;
7244
7245 err = ext4_init_mballoc();
7246 if (err)
7247 goto out2;
7248 err = init_inodecache();
7249 if (err)
7250 goto out1;
7251
7252 err = ext4_fc_init_dentry_cache();
7253 if (err)
7254 goto out05;
7255
7256 register_as_ext3();
7257 register_as_ext2();
7258 err = register_filesystem(&ext4_fs_type);
7259 if (err)
7260 goto out;
7261
7262 return 0;
7263 out:
7264 unregister_as_ext2();
7265 unregister_as_ext3();
7266 ext4_fc_destroy_dentry_cache();
7267 out05:
7268 destroy_inodecache();
7269 out1:
7270 ext4_exit_mballoc();
7271 out2:
7272 ext4_exit_sysfs();
7273 out3:
7274 ext4_exit_system_zone();
7275 out4:
7276 ext4_exit_pageio();
7277 out5:
7278 ext4_exit_post_read_processing();
7279 out6:
7280 ext4_exit_pending();
7281 out7:
7282 ext4_exit_es();
7283
7284 return err;
7285 }
7286
ext4_exit_fs(void)7287 static void __exit ext4_exit_fs(void)
7288 {
7289 ext4_destroy_lazyinit_thread();
7290 unregister_as_ext2();
7291 unregister_as_ext3();
7292 unregister_filesystem(&ext4_fs_type);
7293 ext4_fc_destroy_dentry_cache();
7294 destroy_inodecache();
7295 ext4_exit_mballoc();
7296 ext4_exit_sysfs();
7297 ext4_exit_system_zone();
7298 ext4_exit_pageio();
7299 ext4_exit_post_read_processing();
7300 ext4_exit_es();
7301 ext4_exit_pending();
7302 }
7303
7304 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
7305 MODULE_DESCRIPTION("Fourth Extended Filesystem");
7306 MODULE_LICENSE("GPL");
7307 MODULE_SOFTDEP("pre: crc32c");
7308 module_init(ext4_init_fs)
7309 module_exit(ext4_exit_fs)
7310