1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/super.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * Big-endian to little-endian byte-swapping/bitmaps by
17 * David S. Miller (davem@caip.rutgers.edu), 1995
18 */
19
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/uaccess.h>
43 #include <linux/iversion.h>
44 #include <linux/unicode.h>
45 #include <linux/part_stat.h>
46 #include <linux/kthread.h>
47 #include <linux/freezer.h>
48 #include <linux/fsnotify.h>
49 #include <linux/fs_context.h>
50 #include <linux/fs_parser.h>
51
52 #include "ext4.h"
53 #include "ext4_extents.h" /* Needed for trace points definition */
54 #include "ext4_jbd2.h"
55 #include "xattr.h"
56 #include "acl.h"
57 #include "mballoc.h"
58 #include "fsmap.h"
59
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/ext4.h>
62
63 static struct ext4_lazy_init *ext4_li_info;
64 static DEFINE_MUTEX(ext4_li_mtx);
65 static struct ratelimit_state ext4_mount_msg_ratelimit;
66
67 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
68 unsigned long journal_devnum);
69 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
70 static void ext4_update_super(struct super_block *sb);
71 static int ext4_commit_super(struct super_block *sb);
72 static int ext4_mark_recovery_complete(struct super_block *sb,
73 struct ext4_super_block *es);
74 static int ext4_clear_journal_err(struct super_block *sb,
75 struct ext4_super_block *es);
76 static int ext4_sync_fs(struct super_block *sb, int wait);
77 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
78 static int ext4_unfreeze(struct super_block *sb);
79 static int ext4_freeze(struct super_block *sb);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static void ext4_destroy_lazyinit_thread(void);
83 static void ext4_unregister_li_request(struct super_block *sb);
84 static void ext4_clear_request_list(void);
85 static struct inode *ext4_get_journal_inode(struct super_block *sb,
86 unsigned int journal_inum);
87 static int ext4_validate_options(struct fs_context *fc);
88 static int ext4_check_opt_consistency(struct fs_context *fc,
89 struct super_block *sb);
90 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb);
91 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param);
92 static int ext4_get_tree(struct fs_context *fc);
93 static int ext4_reconfigure(struct fs_context *fc);
94 static void ext4_fc_free(struct fs_context *fc);
95 static int ext4_init_fs_context(struct fs_context *fc);
96 static const struct fs_parameter_spec ext4_param_specs[];
97
98 /*
99 * Lock ordering
100 *
101 * page fault path:
102 * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start
103 * -> page lock -> i_data_sem (rw)
104 *
105 * buffered write path:
106 * sb_start_write -> i_mutex -> mmap_lock
107 * sb_start_write -> i_mutex -> transaction start -> page lock ->
108 * i_data_sem (rw)
109 *
110 * truncate:
111 * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) ->
112 * page lock
113 * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start ->
114 * i_data_sem (rw)
115 *
116 * direct IO:
117 * sb_start_write -> i_mutex -> mmap_lock
118 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
119 *
120 * writepages:
121 * transaction start -> page lock(s) -> i_data_sem (rw)
122 */
123
124 static const struct fs_context_operations ext4_context_ops = {
125 .parse_param = ext4_parse_param,
126 .get_tree = ext4_get_tree,
127 .reconfigure = ext4_reconfigure,
128 .free = ext4_fc_free,
129 };
130
131
132 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
133 static struct file_system_type ext2_fs_type = {
134 .owner = THIS_MODULE,
135 .name = "ext2",
136 .init_fs_context = ext4_init_fs_context,
137 .parameters = ext4_param_specs,
138 .kill_sb = kill_block_super,
139 .fs_flags = FS_REQUIRES_DEV,
140 };
141 MODULE_ALIAS_FS("ext2");
142 MODULE_ALIAS("ext2");
143 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
144 #else
145 #define IS_EXT2_SB(sb) (0)
146 #endif
147
148
149 static struct file_system_type ext3_fs_type = {
150 .owner = THIS_MODULE,
151 .name = "ext3",
152 .init_fs_context = ext4_init_fs_context,
153 .parameters = ext4_param_specs,
154 .kill_sb = kill_block_super,
155 .fs_flags = FS_REQUIRES_DEV,
156 };
157 MODULE_ALIAS_FS("ext3");
158 MODULE_ALIAS("ext3");
159 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
160
161
__ext4_read_bh(struct buffer_head * bh,int op_flags,bh_end_io_t * end_io)162 static inline void __ext4_read_bh(struct buffer_head *bh, int op_flags,
163 bh_end_io_t *end_io)
164 {
165 /*
166 * buffer's verified bit is no longer valid after reading from
167 * disk again due to write out error, clear it to make sure we
168 * recheck the buffer contents.
169 */
170 clear_buffer_verified(bh);
171
172 bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
173 get_bh(bh);
174 submit_bh(REQ_OP_READ, op_flags, bh);
175 }
176
ext4_read_bh_nowait(struct buffer_head * bh,int op_flags,bh_end_io_t * end_io)177 void ext4_read_bh_nowait(struct buffer_head *bh, int op_flags,
178 bh_end_io_t *end_io)
179 {
180 BUG_ON(!buffer_locked(bh));
181
182 if (ext4_buffer_uptodate(bh)) {
183 unlock_buffer(bh);
184 return;
185 }
186 __ext4_read_bh(bh, op_flags, end_io);
187 }
188
ext4_read_bh(struct buffer_head * bh,int op_flags,bh_end_io_t * end_io)189 int ext4_read_bh(struct buffer_head *bh, int op_flags, bh_end_io_t *end_io)
190 {
191 BUG_ON(!buffer_locked(bh));
192
193 if (ext4_buffer_uptodate(bh)) {
194 unlock_buffer(bh);
195 return 0;
196 }
197
198 __ext4_read_bh(bh, op_flags, end_io);
199
200 wait_on_buffer(bh);
201 if (buffer_uptodate(bh))
202 return 0;
203 return -EIO;
204 }
205
ext4_read_bh_lock(struct buffer_head * bh,int op_flags,bool wait)206 int ext4_read_bh_lock(struct buffer_head *bh, int op_flags, bool wait)
207 {
208 if (trylock_buffer(bh)) {
209 if (wait)
210 return ext4_read_bh(bh, op_flags, NULL);
211 ext4_read_bh_nowait(bh, op_flags, NULL);
212 return 0;
213 }
214 if (wait) {
215 wait_on_buffer(bh);
216 if (buffer_uptodate(bh))
217 return 0;
218 return -EIO;
219 }
220 return 0;
221 }
222
223 /*
224 * This works like __bread_gfp() except it uses ERR_PTR for error
225 * returns. Currently with sb_bread it's impossible to distinguish
226 * between ENOMEM and EIO situations (since both result in a NULL
227 * return.
228 */
__ext4_sb_bread_gfp(struct super_block * sb,sector_t block,int op_flags,gfp_t gfp)229 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
230 sector_t block, int op_flags,
231 gfp_t gfp)
232 {
233 struct buffer_head *bh;
234 int ret;
235
236 bh = sb_getblk_gfp(sb, block, gfp);
237 if (bh == NULL)
238 return ERR_PTR(-ENOMEM);
239 if (ext4_buffer_uptodate(bh))
240 return bh;
241
242 ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
243 if (ret) {
244 put_bh(bh);
245 return ERR_PTR(ret);
246 }
247 return bh;
248 }
249
ext4_sb_bread(struct super_block * sb,sector_t block,int op_flags)250 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
251 int op_flags)
252 {
253 return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE);
254 }
255
ext4_sb_bread_unmovable(struct super_block * sb,sector_t block)256 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
257 sector_t block)
258 {
259 return __ext4_sb_bread_gfp(sb, block, 0, 0);
260 }
261
ext4_sb_breadahead_unmovable(struct super_block * sb,sector_t block)262 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
263 {
264 struct buffer_head *bh = sb_getblk_gfp(sb, block, 0);
265
266 if (likely(bh)) {
267 ext4_read_bh_lock(bh, REQ_RAHEAD, false);
268 brelse(bh);
269 }
270 }
271
ext4_verify_csum_type(struct super_block * sb,struct ext4_super_block * es)272 static int ext4_verify_csum_type(struct super_block *sb,
273 struct ext4_super_block *es)
274 {
275 if (!ext4_has_feature_metadata_csum(sb))
276 return 1;
277
278 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
279 }
280
ext4_superblock_csum(struct super_block * sb,struct ext4_super_block * es)281 __le32 ext4_superblock_csum(struct super_block *sb,
282 struct ext4_super_block *es)
283 {
284 struct ext4_sb_info *sbi = EXT4_SB(sb);
285 int offset = offsetof(struct ext4_super_block, s_checksum);
286 __u32 csum;
287
288 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
289
290 return cpu_to_le32(csum);
291 }
292
ext4_superblock_csum_verify(struct super_block * sb,struct ext4_super_block * es)293 static int ext4_superblock_csum_verify(struct super_block *sb,
294 struct ext4_super_block *es)
295 {
296 if (!ext4_has_metadata_csum(sb))
297 return 1;
298
299 return es->s_checksum == ext4_superblock_csum(sb, es);
300 }
301
ext4_superblock_csum_set(struct super_block * sb)302 void ext4_superblock_csum_set(struct super_block *sb)
303 {
304 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
305
306 if (!ext4_has_metadata_csum(sb))
307 return;
308
309 es->s_checksum = ext4_superblock_csum(sb, es);
310 }
311
ext4_block_bitmap(struct super_block * sb,struct ext4_group_desc * bg)312 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
313 struct ext4_group_desc *bg)
314 {
315 return le32_to_cpu(bg->bg_block_bitmap_lo) |
316 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
317 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
318 }
319
ext4_inode_bitmap(struct super_block * sb,struct ext4_group_desc * bg)320 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
321 struct ext4_group_desc *bg)
322 {
323 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
324 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
325 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
326 }
327
ext4_inode_table(struct super_block * sb,struct ext4_group_desc * bg)328 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
329 struct ext4_group_desc *bg)
330 {
331 return le32_to_cpu(bg->bg_inode_table_lo) |
332 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
333 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
334 }
335
ext4_free_group_clusters(struct super_block * sb,struct ext4_group_desc * bg)336 __u32 ext4_free_group_clusters(struct super_block *sb,
337 struct ext4_group_desc *bg)
338 {
339 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
340 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
341 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
342 }
343
ext4_free_inodes_count(struct super_block * sb,struct ext4_group_desc * bg)344 __u32 ext4_free_inodes_count(struct super_block *sb,
345 struct ext4_group_desc *bg)
346 {
347 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
348 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
349 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
350 }
351
ext4_used_dirs_count(struct super_block * sb,struct ext4_group_desc * bg)352 __u32 ext4_used_dirs_count(struct super_block *sb,
353 struct ext4_group_desc *bg)
354 {
355 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
356 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
357 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
358 }
359
ext4_itable_unused_count(struct super_block * sb,struct ext4_group_desc * bg)360 __u32 ext4_itable_unused_count(struct super_block *sb,
361 struct ext4_group_desc *bg)
362 {
363 return le16_to_cpu(bg->bg_itable_unused_lo) |
364 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
365 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
366 }
367
ext4_block_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)368 void ext4_block_bitmap_set(struct super_block *sb,
369 struct ext4_group_desc *bg, ext4_fsblk_t blk)
370 {
371 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
372 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
373 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
374 }
375
ext4_inode_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)376 void ext4_inode_bitmap_set(struct super_block *sb,
377 struct ext4_group_desc *bg, ext4_fsblk_t blk)
378 {
379 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
380 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
381 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
382 }
383
ext4_inode_table_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)384 void ext4_inode_table_set(struct super_block *sb,
385 struct ext4_group_desc *bg, ext4_fsblk_t blk)
386 {
387 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
388 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
389 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
390 }
391
ext4_free_group_clusters_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)392 void ext4_free_group_clusters_set(struct super_block *sb,
393 struct ext4_group_desc *bg, __u32 count)
394 {
395 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
396 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
397 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
398 }
399
ext4_free_inodes_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)400 void ext4_free_inodes_set(struct super_block *sb,
401 struct ext4_group_desc *bg, __u32 count)
402 {
403 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
404 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
405 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
406 }
407
ext4_used_dirs_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)408 void ext4_used_dirs_set(struct super_block *sb,
409 struct ext4_group_desc *bg, __u32 count)
410 {
411 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
412 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
413 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
414 }
415
ext4_itable_unused_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)416 void ext4_itable_unused_set(struct super_block *sb,
417 struct ext4_group_desc *bg, __u32 count)
418 {
419 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
420 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
421 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
422 }
423
__ext4_update_tstamp(__le32 * lo,__u8 * hi,time64_t now)424 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
425 {
426 now = clamp_val(now, 0, (1ull << 40) - 1);
427
428 *lo = cpu_to_le32(lower_32_bits(now));
429 *hi = upper_32_bits(now);
430 }
431
__ext4_get_tstamp(__le32 * lo,__u8 * hi)432 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
433 {
434 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
435 }
436 #define ext4_update_tstamp(es, tstamp) \
437 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
438 ktime_get_real_seconds())
439 #define ext4_get_tstamp(es, tstamp) \
440 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
441
442 /*
443 * The del_gendisk() function uninitializes the disk-specific data
444 * structures, including the bdi structure, without telling anyone
445 * else. Once this happens, any attempt to call mark_buffer_dirty()
446 * (for example, by ext4_commit_super), will cause a kernel OOPS.
447 * This is a kludge to prevent these oops until we can put in a proper
448 * hook in del_gendisk() to inform the VFS and file system layers.
449 */
block_device_ejected(struct super_block * sb)450 static int block_device_ejected(struct super_block *sb)
451 {
452 struct inode *bd_inode = sb->s_bdev->bd_inode;
453 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
454
455 return bdi->dev == NULL;
456 }
457
ext4_journal_commit_callback(journal_t * journal,transaction_t * txn)458 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
459 {
460 struct super_block *sb = journal->j_private;
461 struct ext4_sb_info *sbi = EXT4_SB(sb);
462 int error = is_journal_aborted(journal);
463 struct ext4_journal_cb_entry *jce;
464
465 BUG_ON(txn->t_state == T_FINISHED);
466
467 ext4_process_freed_data(sb, txn->t_tid);
468
469 spin_lock(&sbi->s_md_lock);
470 while (!list_empty(&txn->t_private_list)) {
471 jce = list_entry(txn->t_private_list.next,
472 struct ext4_journal_cb_entry, jce_list);
473 list_del_init(&jce->jce_list);
474 spin_unlock(&sbi->s_md_lock);
475 jce->jce_func(sb, jce, error);
476 spin_lock(&sbi->s_md_lock);
477 }
478 spin_unlock(&sbi->s_md_lock);
479 }
480
481 /*
482 * This writepage callback for write_cache_pages()
483 * takes care of a few cases after page cleaning.
484 *
485 * write_cache_pages() already checks for dirty pages
486 * and calls clear_page_dirty_for_io(), which we want,
487 * to write protect the pages.
488 *
489 * However, we may have to redirty a page (see below.)
490 */
ext4_journalled_writepage_callback(struct page * page,struct writeback_control * wbc,void * data)491 static int ext4_journalled_writepage_callback(struct page *page,
492 struct writeback_control *wbc,
493 void *data)
494 {
495 transaction_t *transaction = (transaction_t *) data;
496 struct buffer_head *bh, *head;
497 struct journal_head *jh;
498
499 bh = head = page_buffers(page);
500 do {
501 /*
502 * We have to redirty a page in these cases:
503 * 1) If buffer is dirty, it means the page was dirty because it
504 * contains a buffer that needs checkpointing. So the dirty bit
505 * needs to be preserved so that checkpointing writes the buffer
506 * properly.
507 * 2) If buffer is not part of the committing transaction
508 * (we may have just accidentally come across this buffer because
509 * inode range tracking is not exact) or if the currently running
510 * transaction already contains this buffer as well, dirty bit
511 * needs to be preserved so that the buffer gets writeprotected
512 * properly on running transaction's commit.
513 */
514 jh = bh2jh(bh);
515 if (buffer_dirty(bh) ||
516 (jh && (jh->b_transaction != transaction ||
517 jh->b_next_transaction))) {
518 redirty_page_for_writepage(wbc, page);
519 goto out;
520 }
521 } while ((bh = bh->b_this_page) != head);
522
523 out:
524 return AOP_WRITEPAGE_ACTIVATE;
525 }
526
ext4_journalled_submit_inode_data_buffers(struct jbd2_inode * jinode)527 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
528 {
529 struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
530 struct writeback_control wbc = {
531 .sync_mode = WB_SYNC_ALL,
532 .nr_to_write = LONG_MAX,
533 .range_start = jinode->i_dirty_start,
534 .range_end = jinode->i_dirty_end,
535 };
536
537 return write_cache_pages(mapping, &wbc,
538 ext4_journalled_writepage_callback,
539 jinode->i_transaction);
540 }
541
ext4_journal_submit_inode_data_buffers(struct jbd2_inode * jinode)542 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
543 {
544 int ret;
545
546 if (ext4_should_journal_data(jinode->i_vfs_inode))
547 ret = ext4_journalled_submit_inode_data_buffers(jinode);
548 else
549 ret = jbd2_journal_submit_inode_data_buffers(jinode);
550
551 return ret;
552 }
553
ext4_journal_finish_inode_data_buffers(struct jbd2_inode * jinode)554 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
555 {
556 int ret = 0;
557
558 if (!ext4_should_journal_data(jinode->i_vfs_inode))
559 ret = jbd2_journal_finish_inode_data_buffers(jinode);
560
561 return ret;
562 }
563
system_going_down(void)564 static bool system_going_down(void)
565 {
566 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
567 || system_state == SYSTEM_RESTART;
568 }
569
570 struct ext4_err_translation {
571 int code;
572 int errno;
573 };
574
575 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
576
577 static struct ext4_err_translation err_translation[] = {
578 EXT4_ERR_TRANSLATE(EIO),
579 EXT4_ERR_TRANSLATE(ENOMEM),
580 EXT4_ERR_TRANSLATE(EFSBADCRC),
581 EXT4_ERR_TRANSLATE(EFSCORRUPTED),
582 EXT4_ERR_TRANSLATE(ENOSPC),
583 EXT4_ERR_TRANSLATE(ENOKEY),
584 EXT4_ERR_TRANSLATE(EROFS),
585 EXT4_ERR_TRANSLATE(EFBIG),
586 EXT4_ERR_TRANSLATE(EEXIST),
587 EXT4_ERR_TRANSLATE(ERANGE),
588 EXT4_ERR_TRANSLATE(EOVERFLOW),
589 EXT4_ERR_TRANSLATE(EBUSY),
590 EXT4_ERR_TRANSLATE(ENOTDIR),
591 EXT4_ERR_TRANSLATE(ENOTEMPTY),
592 EXT4_ERR_TRANSLATE(ESHUTDOWN),
593 EXT4_ERR_TRANSLATE(EFAULT),
594 };
595
ext4_errno_to_code(int errno)596 static int ext4_errno_to_code(int errno)
597 {
598 int i;
599
600 for (i = 0; i < ARRAY_SIZE(err_translation); i++)
601 if (err_translation[i].errno == errno)
602 return err_translation[i].code;
603 return EXT4_ERR_UNKNOWN;
604 }
605
save_error_info(struct super_block * sb,int error,__u32 ino,__u64 block,const char * func,unsigned int line)606 static void save_error_info(struct super_block *sb, int error,
607 __u32 ino, __u64 block,
608 const char *func, unsigned int line)
609 {
610 struct ext4_sb_info *sbi = EXT4_SB(sb);
611
612 /* We default to EFSCORRUPTED error... */
613 if (error == 0)
614 error = EFSCORRUPTED;
615
616 spin_lock(&sbi->s_error_lock);
617 sbi->s_add_error_count++;
618 sbi->s_last_error_code = error;
619 sbi->s_last_error_line = line;
620 sbi->s_last_error_ino = ino;
621 sbi->s_last_error_block = block;
622 sbi->s_last_error_func = func;
623 sbi->s_last_error_time = ktime_get_real_seconds();
624 if (!sbi->s_first_error_time) {
625 sbi->s_first_error_code = error;
626 sbi->s_first_error_line = line;
627 sbi->s_first_error_ino = ino;
628 sbi->s_first_error_block = block;
629 sbi->s_first_error_func = func;
630 sbi->s_first_error_time = sbi->s_last_error_time;
631 }
632 spin_unlock(&sbi->s_error_lock);
633 }
634
635 /* Deal with the reporting of failure conditions on a filesystem such as
636 * inconsistencies detected or read IO failures.
637 *
638 * On ext2, we can store the error state of the filesystem in the
639 * superblock. That is not possible on ext4, because we may have other
640 * write ordering constraints on the superblock which prevent us from
641 * writing it out straight away; and given that the journal is about to
642 * be aborted, we can't rely on the current, or future, transactions to
643 * write out the superblock safely.
644 *
645 * We'll just use the jbd2_journal_abort() error code to record an error in
646 * the journal instead. On recovery, the journal will complain about
647 * that error until we've noted it down and cleared it.
648 *
649 * If force_ro is set, we unconditionally force the filesystem into an
650 * ABORT|READONLY state, unless the error response on the fs has been set to
651 * panic in which case we take the easy way out and panic immediately. This is
652 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
653 * at a critical moment in log management.
654 */
ext4_handle_error(struct super_block * sb,bool force_ro,int error,__u32 ino,__u64 block,const char * func,unsigned int line)655 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
656 __u32 ino, __u64 block,
657 const char *func, unsigned int line)
658 {
659 journal_t *journal = EXT4_SB(sb)->s_journal;
660 bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
661
662 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
663 if (test_opt(sb, WARN_ON_ERROR))
664 WARN_ON_ONCE(1);
665
666 if (!continue_fs && !sb_rdonly(sb)) {
667 ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
668 if (journal)
669 jbd2_journal_abort(journal, -EIO);
670 }
671
672 if (!bdev_read_only(sb->s_bdev)) {
673 save_error_info(sb, error, ino, block, func, line);
674 /*
675 * In case the fs should keep running, we need to writeout
676 * superblock through the journal. Due to lock ordering
677 * constraints, it may not be safe to do it right here so we
678 * defer superblock flushing to a workqueue.
679 */
680 if (continue_fs && journal)
681 schedule_work(&EXT4_SB(sb)->s_error_work);
682 else
683 ext4_commit_super(sb);
684 }
685
686 /*
687 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
688 * could panic during 'reboot -f' as the underlying device got already
689 * disabled.
690 */
691 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
692 panic("EXT4-fs (device %s): panic forced after error\n",
693 sb->s_id);
694 }
695
696 if (sb_rdonly(sb) || continue_fs)
697 return;
698
699 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
700 /*
701 * Make sure updated value of ->s_mount_flags will be visible before
702 * ->s_flags update
703 */
704 smp_wmb();
705 sb->s_flags |= SB_RDONLY;
706 }
707
flush_stashed_error_work(struct work_struct * work)708 static void flush_stashed_error_work(struct work_struct *work)
709 {
710 struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
711 s_error_work);
712 journal_t *journal = sbi->s_journal;
713 handle_t *handle;
714
715 /*
716 * If the journal is still running, we have to write out superblock
717 * through the journal to avoid collisions of other journalled sb
718 * updates.
719 *
720 * We use directly jbd2 functions here to avoid recursing back into
721 * ext4 error handling code during handling of previous errors.
722 */
723 if (!sb_rdonly(sbi->s_sb) && journal) {
724 struct buffer_head *sbh = sbi->s_sbh;
725 handle = jbd2_journal_start(journal, 1);
726 if (IS_ERR(handle))
727 goto write_directly;
728 if (jbd2_journal_get_write_access(handle, sbh)) {
729 jbd2_journal_stop(handle);
730 goto write_directly;
731 }
732 ext4_update_super(sbi->s_sb);
733 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
734 ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
735 "superblock detected");
736 clear_buffer_write_io_error(sbh);
737 set_buffer_uptodate(sbh);
738 }
739
740 if (jbd2_journal_dirty_metadata(handle, sbh)) {
741 jbd2_journal_stop(handle);
742 goto write_directly;
743 }
744 jbd2_journal_stop(handle);
745 ext4_notify_error_sysfs(sbi);
746 return;
747 }
748 write_directly:
749 /*
750 * Write through journal failed. Write sb directly to get error info
751 * out and hope for the best.
752 */
753 ext4_commit_super(sbi->s_sb);
754 ext4_notify_error_sysfs(sbi);
755 }
756
757 #define ext4_error_ratelimit(sb) \
758 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
759 "EXT4-fs error")
760
__ext4_error(struct super_block * sb,const char * function,unsigned int line,bool force_ro,int error,__u64 block,const char * fmt,...)761 void __ext4_error(struct super_block *sb, const char *function,
762 unsigned int line, bool force_ro, int error, __u64 block,
763 const char *fmt, ...)
764 {
765 struct va_format vaf;
766 va_list args;
767
768 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
769 return;
770
771 trace_ext4_error(sb, function, line);
772 if (ext4_error_ratelimit(sb)) {
773 va_start(args, fmt);
774 vaf.fmt = fmt;
775 vaf.va = &args;
776 printk(KERN_CRIT
777 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
778 sb->s_id, function, line, current->comm, &vaf);
779 va_end(args);
780 }
781 fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED);
782
783 ext4_handle_error(sb, force_ro, error, 0, block, function, line);
784 }
785
__ext4_error_inode(struct inode * inode,const char * function,unsigned int line,ext4_fsblk_t block,int error,const char * fmt,...)786 void __ext4_error_inode(struct inode *inode, const char *function,
787 unsigned int line, ext4_fsblk_t block, int error,
788 const char *fmt, ...)
789 {
790 va_list args;
791 struct va_format vaf;
792
793 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
794 return;
795
796 trace_ext4_error(inode->i_sb, function, line);
797 if (ext4_error_ratelimit(inode->i_sb)) {
798 va_start(args, fmt);
799 vaf.fmt = fmt;
800 vaf.va = &args;
801 if (block)
802 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
803 "inode #%lu: block %llu: comm %s: %pV\n",
804 inode->i_sb->s_id, function, line, inode->i_ino,
805 block, current->comm, &vaf);
806 else
807 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
808 "inode #%lu: comm %s: %pV\n",
809 inode->i_sb->s_id, function, line, inode->i_ino,
810 current->comm, &vaf);
811 va_end(args);
812 }
813 fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED);
814
815 ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
816 function, line);
817 }
818
__ext4_error_file(struct file * file,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)819 void __ext4_error_file(struct file *file, const char *function,
820 unsigned int line, ext4_fsblk_t block,
821 const char *fmt, ...)
822 {
823 va_list args;
824 struct va_format vaf;
825 struct inode *inode = file_inode(file);
826 char pathname[80], *path;
827
828 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
829 return;
830
831 trace_ext4_error(inode->i_sb, function, line);
832 if (ext4_error_ratelimit(inode->i_sb)) {
833 path = file_path(file, pathname, sizeof(pathname));
834 if (IS_ERR(path))
835 path = "(unknown)";
836 va_start(args, fmt);
837 vaf.fmt = fmt;
838 vaf.va = &args;
839 if (block)
840 printk(KERN_CRIT
841 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
842 "block %llu: comm %s: path %s: %pV\n",
843 inode->i_sb->s_id, function, line, inode->i_ino,
844 block, current->comm, path, &vaf);
845 else
846 printk(KERN_CRIT
847 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
848 "comm %s: path %s: %pV\n",
849 inode->i_sb->s_id, function, line, inode->i_ino,
850 current->comm, path, &vaf);
851 va_end(args);
852 }
853 fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED);
854
855 ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
856 function, line);
857 }
858
ext4_decode_error(struct super_block * sb,int errno,char nbuf[16])859 const char *ext4_decode_error(struct super_block *sb, int errno,
860 char nbuf[16])
861 {
862 char *errstr = NULL;
863
864 switch (errno) {
865 case -EFSCORRUPTED:
866 errstr = "Corrupt filesystem";
867 break;
868 case -EFSBADCRC:
869 errstr = "Filesystem failed CRC";
870 break;
871 case -EIO:
872 errstr = "IO failure";
873 break;
874 case -ENOMEM:
875 errstr = "Out of memory";
876 break;
877 case -EROFS:
878 if (!sb || (EXT4_SB(sb)->s_journal &&
879 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
880 errstr = "Journal has aborted";
881 else
882 errstr = "Readonly filesystem";
883 break;
884 default:
885 /* If the caller passed in an extra buffer for unknown
886 * errors, textualise them now. Else we just return
887 * NULL. */
888 if (nbuf) {
889 /* Check for truncated error codes... */
890 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
891 errstr = nbuf;
892 }
893 break;
894 }
895
896 return errstr;
897 }
898
899 /* __ext4_std_error decodes expected errors from journaling functions
900 * automatically and invokes the appropriate error response. */
901
__ext4_std_error(struct super_block * sb,const char * function,unsigned int line,int errno)902 void __ext4_std_error(struct super_block *sb, const char *function,
903 unsigned int line, int errno)
904 {
905 char nbuf[16];
906 const char *errstr;
907
908 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
909 return;
910
911 /* Special case: if the error is EROFS, and we're not already
912 * inside a transaction, then there's really no point in logging
913 * an error. */
914 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
915 return;
916
917 if (ext4_error_ratelimit(sb)) {
918 errstr = ext4_decode_error(sb, errno, nbuf);
919 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
920 sb->s_id, function, line, errstr);
921 }
922 fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED);
923
924 ext4_handle_error(sb, false, -errno, 0, 0, function, line);
925 }
926
__ext4_msg(struct super_block * sb,const char * prefix,const char * fmt,...)927 void __ext4_msg(struct super_block *sb,
928 const char *prefix, const char *fmt, ...)
929 {
930 struct va_format vaf;
931 va_list args;
932
933 if (sb) {
934 atomic_inc(&EXT4_SB(sb)->s_msg_count);
935 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state),
936 "EXT4-fs"))
937 return;
938 }
939
940 va_start(args, fmt);
941 vaf.fmt = fmt;
942 vaf.va = &args;
943 if (sb)
944 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
945 else
946 printk("%sEXT4-fs: %pV\n", prefix, &vaf);
947 va_end(args);
948 }
949
ext4_warning_ratelimit(struct super_block * sb)950 static int ext4_warning_ratelimit(struct super_block *sb)
951 {
952 atomic_inc(&EXT4_SB(sb)->s_warning_count);
953 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
954 "EXT4-fs warning");
955 }
956
__ext4_warning(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)957 void __ext4_warning(struct super_block *sb, const char *function,
958 unsigned int line, const char *fmt, ...)
959 {
960 struct va_format vaf;
961 va_list args;
962
963 if (!ext4_warning_ratelimit(sb))
964 return;
965
966 va_start(args, fmt);
967 vaf.fmt = fmt;
968 vaf.va = &args;
969 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
970 sb->s_id, function, line, &vaf);
971 va_end(args);
972 }
973
__ext4_warning_inode(const struct inode * inode,const char * function,unsigned int line,const char * fmt,...)974 void __ext4_warning_inode(const struct inode *inode, const char *function,
975 unsigned int line, const char *fmt, ...)
976 {
977 struct va_format vaf;
978 va_list args;
979
980 if (!ext4_warning_ratelimit(inode->i_sb))
981 return;
982
983 va_start(args, fmt);
984 vaf.fmt = fmt;
985 vaf.va = &args;
986 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
987 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
988 function, line, inode->i_ino, current->comm, &vaf);
989 va_end(args);
990 }
991
__ext4_grp_locked_error(const char * function,unsigned int line,struct super_block * sb,ext4_group_t grp,unsigned long ino,ext4_fsblk_t block,const char * fmt,...)992 void __ext4_grp_locked_error(const char *function, unsigned int line,
993 struct super_block *sb, ext4_group_t grp,
994 unsigned long ino, ext4_fsblk_t block,
995 const char *fmt, ...)
996 __releases(bitlock)
997 __acquires(bitlock)
998 {
999 struct va_format vaf;
1000 va_list args;
1001
1002 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
1003 return;
1004
1005 trace_ext4_error(sb, function, line);
1006 if (ext4_error_ratelimit(sb)) {
1007 va_start(args, fmt);
1008 vaf.fmt = fmt;
1009 vaf.va = &args;
1010 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
1011 sb->s_id, function, line, grp);
1012 if (ino)
1013 printk(KERN_CONT "inode %lu: ", ino);
1014 if (block)
1015 printk(KERN_CONT "block %llu:",
1016 (unsigned long long) block);
1017 printk(KERN_CONT "%pV\n", &vaf);
1018 va_end(args);
1019 }
1020
1021 if (test_opt(sb, ERRORS_CONT)) {
1022 if (test_opt(sb, WARN_ON_ERROR))
1023 WARN_ON_ONCE(1);
1024 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
1025 if (!bdev_read_only(sb->s_bdev)) {
1026 save_error_info(sb, EFSCORRUPTED, ino, block, function,
1027 line);
1028 schedule_work(&EXT4_SB(sb)->s_error_work);
1029 }
1030 return;
1031 }
1032 ext4_unlock_group(sb, grp);
1033 ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
1034 /*
1035 * We only get here in the ERRORS_RO case; relocking the group
1036 * may be dangerous, but nothing bad will happen since the
1037 * filesystem will have already been marked read/only and the
1038 * journal has been aborted. We return 1 as a hint to callers
1039 * who might what to use the return value from
1040 * ext4_grp_locked_error() to distinguish between the
1041 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1042 * aggressively from the ext4 function in question, with a
1043 * more appropriate error code.
1044 */
1045 ext4_lock_group(sb, grp);
1046 return;
1047 }
1048
ext4_mark_group_bitmap_corrupted(struct super_block * sb,ext4_group_t group,unsigned int flags)1049 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1050 ext4_group_t group,
1051 unsigned int flags)
1052 {
1053 struct ext4_sb_info *sbi = EXT4_SB(sb);
1054 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1055 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1056 int ret;
1057
1058 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1059 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1060 &grp->bb_state);
1061 if (!ret)
1062 percpu_counter_sub(&sbi->s_freeclusters_counter,
1063 grp->bb_free);
1064 }
1065
1066 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1067 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1068 &grp->bb_state);
1069 if (!ret && gdp) {
1070 int count;
1071
1072 count = ext4_free_inodes_count(sb, gdp);
1073 percpu_counter_sub(&sbi->s_freeinodes_counter,
1074 count);
1075 }
1076 }
1077 }
1078
ext4_update_dynamic_rev(struct super_block * sb)1079 void ext4_update_dynamic_rev(struct super_block *sb)
1080 {
1081 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1082
1083 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1084 return;
1085
1086 ext4_warning(sb,
1087 "updating to rev %d because of new feature flag, "
1088 "running e2fsck is recommended",
1089 EXT4_DYNAMIC_REV);
1090
1091 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1092 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1093 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1094 /* leave es->s_feature_*compat flags alone */
1095 /* es->s_uuid will be set by e2fsck if empty */
1096
1097 /*
1098 * The rest of the superblock fields should be zero, and if not it
1099 * means they are likely already in use, so leave them alone. We
1100 * can leave it up to e2fsck to clean up any inconsistencies there.
1101 */
1102 }
1103
1104 /*
1105 * Open the external journal device
1106 */
ext4_blkdev_get(dev_t dev,struct super_block * sb)1107 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
1108 {
1109 struct block_device *bdev;
1110
1111 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
1112 if (IS_ERR(bdev))
1113 goto fail;
1114 return bdev;
1115
1116 fail:
1117 ext4_msg(sb, KERN_ERR,
1118 "failed to open journal device unknown-block(%u,%u) %ld",
1119 MAJOR(dev), MINOR(dev), PTR_ERR(bdev));
1120 return NULL;
1121 }
1122
1123 /*
1124 * Release the journal device
1125 */
ext4_blkdev_put(struct block_device * bdev)1126 static void ext4_blkdev_put(struct block_device *bdev)
1127 {
1128 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1129 }
1130
ext4_blkdev_remove(struct ext4_sb_info * sbi)1131 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
1132 {
1133 struct block_device *bdev;
1134 bdev = sbi->s_journal_bdev;
1135 if (bdev) {
1136 ext4_blkdev_put(bdev);
1137 sbi->s_journal_bdev = NULL;
1138 }
1139 }
1140
orphan_list_entry(struct list_head * l)1141 static inline struct inode *orphan_list_entry(struct list_head *l)
1142 {
1143 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1144 }
1145
dump_orphan_list(struct super_block * sb,struct ext4_sb_info * sbi)1146 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1147 {
1148 struct list_head *l;
1149
1150 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1151 le32_to_cpu(sbi->s_es->s_last_orphan));
1152
1153 printk(KERN_ERR "sb_info orphan list:\n");
1154 list_for_each(l, &sbi->s_orphan) {
1155 struct inode *inode = orphan_list_entry(l);
1156 printk(KERN_ERR " "
1157 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1158 inode->i_sb->s_id, inode->i_ino, inode,
1159 inode->i_mode, inode->i_nlink,
1160 NEXT_ORPHAN(inode));
1161 }
1162 }
1163
1164 #ifdef CONFIG_QUOTA
1165 static int ext4_quota_off(struct super_block *sb, int type);
1166
ext4_quota_off_umount(struct super_block * sb)1167 static inline void ext4_quota_off_umount(struct super_block *sb)
1168 {
1169 int type;
1170
1171 /* Use our quota_off function to clear inode flags etc. */
1172 for (type = 0; type < EXT4_MAXQUOTAS; type++)
1173 ext4_quota_off(sb, type);
1174 }
1175
1176 /*
1177 * This is a helper function which is used in the mount/remount
1178 * codepaths (which holds s_umount) to fetch the quota file name.
1179 */
get_qf_name(struct super_block * sb,struct ext4_sb_info * sbi,int type)1180 static inline char *get_qf_name(struct super_block *sb,
1181 struct ext4_sb_info *sbi,
1182 int type)
1183 {
1184 return rcu_dereference_protected(sbi->s_qf_names[type],
1185 lockdep_is_held(&sb->s_umount));
1186 }
1187 #else
ext4_quota_off_umount(struct super_block * sb)1188 static inline void ext4_quota_off_umount(struct super_block *sb)
1189 {
1190 }
1191 #endif
1192
ext4_put_super(struct super_block * sb)1193 static void ext4_put_super(struct super_block *sb)
1194 {
1195 struct ext4_sb_info *sbi = EXT4_SB(sb);
1196 struct ext4_super_block *es = sbi->s_es;
1197 struct buffer_head **group_desc;
1198 struct flex_groups **flex_groups;
1199 int aborted = 0;
1200 int i, err;
1201
1202 /*
1203 * Unregister sysfs before destroying jbd2 journal.
1204 * Since we could still access attr_journal_task attribute via sysfs
1205 * path which could have sbi->s_journal->j_task as NULL
1206 * Unregister sysfs before flush sbi->s_error_work.
1207 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If
1208 * read metadata verify failed then will queue error work.
1209 * flush_stashed_error_work will call start_this_handle may trigger
1210 * BUG_ON.
1211 */
1212 ext4_unregister_sysfs(sb);
1213
1214 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount"))
1215 ext4_msg(sb, KERN_INFO, "unmounting filesystem.");
1216
1217 ext4_unregister_li_request(sb);
1218 ext4_quota_off_umount(sb);
1219
1220 flush_work(&sbi->s_error_work);
1221 destroy_workqueue(sbi->rsv_conversion_wq);
1222 ext4_release_orphan_info(sb);
1223
1224 if (sbi->s_journal) {
1225 aborted = is_journal_aborted(sbi->s_journal);
1226 err = jbd2_journal_destroy(sbi->s_journal);
1227 sbi->s_journal = NULL;
1228 if ((err < 0) && !aborted) {
1229 ext4_abort(sb, -err, "Couldn't clean up the journal");
1230 }
1231 }
1232
1233 ext4_es_unregister_shrinker(sbi);
1234 del_timer_sync(&sbi->s_err_report);
1235 ext4_release_system_zone(sb);
1236 ext4_mb_release(sb);
1237 ext4_ext_release(sb);
1238
1239 if (!sb_rdonly(sb) && !aborted) {
1240 ext4_clear_feature_journal_needs_recovery(sb);
1241 ext4_clear_feature_orphan_present(sb);
1242 es->s_state = cpu_to_le16(sbi->s_mount_state);
1243 }
1244 if (!sb_rdonly(sb))
1245 ext4_commit_super(sb);
1246
1247 rcu_read_lock();
1248 group_desc = rcu_dereference(sbi->s_group_desc);
1249 for (i = 0; i < sbi->s_gdb_count; i++)
1250 brelse(group_desc[i]);
1251 kvfree(group_desc);
1252 flex_groups = rcu_dereference(sbi->s_flex_groups);
1253 if (flex_groups) {
1254 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1255 kvfree(flex_groups[i]);
1256 kvfree(flex_groups);
1257 }
1258 rcu_read_unlock();
1259 percpu_counter_destroy(&sbi->s_freeclusters_counter);
1260 percpu_counter_destroy(&sbi->s_freeinodes_counter);
1261 percpu_counter_destroy(&sbi->s_dirs_counter);
1262 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1263 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1264 percpu_free_rwsem(&sbi->s_writepages_rwsem);
1265 #ifdef CONFIG_QUOTA
1266 for (i = 0; i < EXT4_MAXQUOTAS; i++)
1267 kfree(get_qf_name(sb, sbi, i));
1268 #endif
1269
1270 /* Debugging code just in case the in-memory inode orphan list
1271 * isn't empty. The on-disk one can be non-empty if we've
1272 * detected an error and taken the fs readonly, but the
1273 * in-memory list had better be clean by this point. */
1274 if (!list_empty(&sbi->s_orphan))
1275 dump_orphan_list(sb, sbi);
1276 ASSERT(list_empty(&sbi->s_orphan));
1277
1278 sync_blockdev(sb->s_bdev);
1279 invalidate_bdev(sb->s_bdev);
1280 if (sbi->s_journal_bdev && sbi->s_journal_bdev != sb->s_bdev) {
1281 /*
1282 * Invalidate the journal device's buffers. We don't want them
1283 * floating about in memory - the physical journal device may
1284 * hotswapped, and it breaks the `ro-after' testing code.
1285 */
1286 sync_blockdev(sbi->s_journal_bdev);
1287 invalidate_bdev(sbi->s_journal_bdev);
1288 ext4_blkdev_remove(sbi);
1289 }
1290
1291 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1292 sbi->s_ea_inode_cache = NULL;
1293
1294 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1295 sbi->s_ea_block_cache = NULL;
1296
1297 ext4_stop_mmpd(sbi);
1298
1299 brelse(sbi->s_sbh);
1300 sb->s_fs_info = NULL;
1301 /*
1302 * Now that we are completely done shutting down the
1303 * superblock, we need to actually destroy the kobject.
1304 */
1305 kobject_put(&sbi->s_kobj);
1306 wait_for_completion(&sbi->s_kobj_unregister);
1307 if (sbi->s_chksum_driver)
1308 crypto_free_shash(sbi->s_chksum_driver);
1309 kfree(sbi->s_blockgroup_lock);
1310 fs_put_dax(sbi->s_daxdev);
1311 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1312 #if IS_ENABLED(CONFIG_UNICODE)
1313 utf8_unload(sb->s_encoding);
1314 #endif
1315 kfree(sbi);
1316 }
1317
1318 static struct kmem_cache *ext4_inode_cachep;
1319
1320 /*
1321 * Called inside transaction, so use GFP_NOFS
1322 */
ext4_alloc_inode(struct super_block * sb)1323 static struct inode *ext4_alloc_inode(struct super_block *sb)
1324 {
1325 struct ext4_inode_info *ei;
1326
1327 ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS);
1328 if (!ei)
1329 return NULL;
1330
1331 inode_set_iversion(&ei->vfs_inode, 1);
1332 spin_lock_init(&ei->i_raw_lock);
1333 INIT_LIST_HEAD(&ei->i_prealloc_list);
1334 atomic_set(&ei->i_prealloc_active, 0);
1335 spin_lock_init(&ei->i_prealloc_lock);
1336 ext4_es_init_tree(&ei->i_es_tree);
1337 rwlock_init(&ei->i_es_lock);
1338 INIT_LIST_HEAD(&ei->i_es_list);
1339 ei->i_es_all_nr = 0;
1340 ei->i_es_shk_nr = 0;
1341 ei->i_es_shrink_lblk = 0;
1342 ei->i_reserved_data_blocks = 0;
1343 spin_lock_init(&(ei->i_block_reservation_lock));
1344 ext4_init_pending_tree(&ei->i_pending_tree);
1345 #ifdef CONFIG_QUOTA
1346 ei->i_reserved_quota = 0;
1347 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1348 #endif
1349 ei->jinode = NULL;
1350 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1351 spin_lock_init(&ei->i_completed_io_lock);
1352 ei->i_sync_tid = 0;
1353 ei->i_datasync_tid = 0;
1354 atomic_set(&ei->i_unwritten, 0);
1355 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1356 ext4_fc_init_inode(&ei->vfs_inode);
1357 mutex_init(&ei->i_fc_lock);
1358 return &ei->vfs_inode;
1359 }
1360
ext4_drop_inode(struct inode * inode)1361 static int ext4_drop_inode(struct inode *inode)
1362 {
1363 int drop = generic_drop_inode(inode);
1364
1365 if (!drop)
1366 drop = fscrypt_drop_inode(inode);
1367
1368 trace_ext4_drop_inode(inode, drop);
1369 return drop;
1370 }
1371
ext4_free_in_core_inode(struct inode * inode)1372 static void ext4_free_in_core_inode(struct inode *inode)
1373 {
1374 fscrypt_free_inode(inode);
1375 if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1376 pr_warn("%s: inode %ld still in fc list",
1377 __func__, inode->i_ino);
1378 }
1379 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1380 }
1381
ext4_destroy_inode(struct inode * inode)1382 static void ext4_destroy_inode(struct inode *inode)
1383 {
1384 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1385 ext4_msg(inode->i_sb, KERN_ERR,
1386 "Inode %lu (%p): orphan list check failed!",
1387 inode->i_ino, EXT4_I(inode));
1388 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1389 EXT4_I(inode), sizeof(struct ext4_inode_info),
1390 true);
1391 dump_stack();
1392 }
1393
1394 if (EXT4_I(inode)->i_reserved_data_blocks)
1395 ext4_msg(inode->i_sb, KERN_ERR,
1396 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1397 inode->i_ino, EXT4_I(inode),
1398 EXT4_I(inode)->i_reserved_data_blocks);
1399 }
1400
init_once(void * foo)1401 static void init_once(void *foo)
1402 {
1403 struct ext4_inode_info *ei = foo;
1404
1405 INIT_LIST_HEAD(&ei->i_orphan);
1406 init_rwsem(&ei->xattr_sem);
1407 init_rwsem(&ei->i_data_sem);
1408 inode_init_once(&ei->vfs_inode);
1409 ext4_fc_init_inode(&ei->vfs_inode);
1410 }
1411
init_inodecache(void)1412 static int __init init_inodecache(void)
1413 {
1414 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1415 sizeof(struct ext4_inode_info), 0,
1416 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1417 SLAB_ACCOUNT),
1418 offsetof(struct ext4_inode_info, i_data),
1419 sizeof_field(struct ext4_inode_info, i_data),
1420 init_once);
1421 if (ext4_inode_cachep == NULL)
1422 return -ENOMEM;
1423 return 0;
1424 }
1425
destroy_inodecache(void)1426 static void destroy_inodecache(void)
1427 {
1428 /*
1429 * Make sure all delayed rcu free inodes are flushed before we
1430 * destroy cache.
1431 */
1432 rcu_barrier();
1433 kmem_cache_destroy(ext4_inode_cachep);
1434 }
1435
ext4_clear_inode(struct inode * inode)1436 void ext4_clear_inode(struct inode *inode)
1437 {
1438 ext4_fc_del(inode);
1439 invalidate_inode_buffers(inode);
1440 clear_inode(inode);
1441 ext4_discard_preallocations(inode, 0);
1442 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1443 dquot_drop(inode);
1444 if (EXT4_I(inode)->jinode) {
1445 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1446 EXT4_I(inode)->jinode);
1447 jbd2_free_inode(EXT4_I(inode)->jinode);
1448 EXT4_I(inode)->jinode = NULL;
1449 }
1450 fscrypt_put_encryption_info(inode);
1451 fsverity_cleanup_inode(inode);
1452 }
1453
ext4_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)1454 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1455 u64 ino, u32 generation)
1456 {
1457 struct inode *inode;
1458
1459 /*
1460 * Currently we don't know the generation for parent directory, so
1461 * a generation of 0 means "accept any"
1462 */
1463 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1464 if (IS_ERR(inode))
1465 return ERR_CAST(inode);
1466 if (generation && inode->i_generation != generation) {
1467 iput(inode);
1468 return ERR_PTR(-ESTALE);
1469 }
1470
1471 return inode;
1472 }
1473
ext4_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1474 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1475 int fh_len, int fh_type)
1476 {
1477 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1478 ext4_nfs_get_inode);
1479 }
1480
ext4_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1481 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1482 int fh_len, int fh_type)
1483 {
1484 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1485 ext4_nfs_get_inode);
1486 }
1487
ext4_nfs_commit_metadata(struct inode * inode)1488 static int ext4_nfs_commit_metadata(struct inode *inode)
1489 {
1490 struct writeback_control wbc = {
1491 .sync_mode = WB_SYNC_ALL
1492 };
1493
1494 trace_ext4_nfs_commit_metadata(inode);
1495 return ext4_write_inode(inode, &wbc);
1496 }
1497
1498 #ifdef CONFIG_QUOTA
1499 static const char * const quotatypes[] = INITQFNAMES;
1500 #define QTYPE2NAME(t) (quotatypes[t])
1501
1502 static int ext4_write_dquot(struct dquot *dquot);
1503 static int ext4_acquire_dquot(struct dquot *dquot);
1504 static int ext4_release_dquot(struct dquot *dquot);
1505 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1506 static int ext4_write_info(struct super_block *sb, int type);
1507 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1508 const struct path *path);
1509 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1510 size_t len, loff_t off);
1511 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1512 const char *data, size_t len, loff_t off);
1513 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1514 unsigned int flags);
1515
ext4_get_dquots(struct inode * inode)1516 static struct dquot **ext4_get_dquots(struct inode *inode)
1517 {
1518 return EXT4_I(inode)->i_dquot;
1519 }
1520
1521 static const struct dquot_operations ext4_quota_operations = {
1522 .get_reserved_space = ext4_get_reserved_space,
1523 .write_dquot = ext4_write_dquot,
1524 .acquire_dquot = ext4_acquire_dquot,
1525 .release_dquot = ext4_release_dquot,
1526 .mark_dirty = ext4_mark_dquot_dirty,
1527 .write_info = ext4_write_info,
1528 .alloc_dquot = dquot_alloc,
1529 .destroy_dquot = dquot_destroy,
1530 .get_projid = ext4_get_projid,
1531 .get_inode_usage = ext4_get_inode_usage,
1532 .get_next_id = dquot_get_next_id,
1533 };
1534
1535 static const struct quotactl_ops ext4_qctl_operations = {
1536 .quota_on = ext4_quota_on,
1537 .quota_off = ext4_quota_off,
1538 .quota_sync = dquot_quota_sync,
1539 .get_state = dquot_get_state,
1540 .set_info = dquot_set_dqinfo,
1541 .get_dqblk = dquot_get_dqblk,
1542 .set_dqblk = dquot_set_dqblk,
1543 .get_nextdqblk = dquot_get_next_dqblk,
1544 };
1545 #endif
1546
1547 static const struct super_operations ext4_sops = {
1548 .alloc_inode = ext4_alloc_inode,
1549 .free_inode = ext4_free_in_core_inode,
1550 .destroy_inode = ext4_destroy_inode,
1551 .write_inode = ext4_write_inode,
1552 .dirty_inode = ext4_dirty_inode,
1553 .drop_inode = ext4_drop_inode,
1554 .evict_inode = ext4_evict_inode,
1555 .put_super = ext4_put_super,
1556 .sync_fs = ext4_sync_fs,
1557 .freeze_fs = ext4_freeze,
1558 .unfreeze_fs = ext4_unfreeze,
1559 .statfs = ext4_statfs,
1560 .show_options = ext4_show_options,
1561 #ifdef CONFIG_QUOTA
1562 .quota_read = ext4_quota_read,
1563 .quota_write = ext4_quota_write,
1564 .get_dquots = ext4_get_dquots,
1565 #endif
1566 };
1567
1568 static const struct export_operations ext4_export_ops = {
1569 .fh_to_dentry = ext4_fh_to_dentry,
1570 .fh_to_parent = ext4_fh_to_parent,
1571 .get_parent = ext4_get_parent,
1572 .commit_metadata = ext4_nfs_commit_metadata,
1573 };
1574
1575 enum {
1576 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1577 Opt_resgid, Opt_resuid, Opt_sb,
1578 Opt_nouid32, Opt_debug, Opt_removed,
1579 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1580 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1581 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1582 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1583 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1584 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1585 Opt_inlinecrypt,
1586 Opt_usrjquota, Opt_grpjquota, Opt_quota,
1587 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1588 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version,
1589 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1590 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1591 Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize,
1592 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1593 Opt_inode_readahead_blks, Opt_journal_ioprio,
1594 Opt_dioread_nolock, Opt_dioread_lock,
1595 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1596 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1597 Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
1598 Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type,
1599 #ifdef CONFIG_EXT4_DEBUG
1600 Opt_fc_debug_max_replay, Opt_fc_debug_force
1601 #endif
1602 };
1603
1604 static const struct constant_table ext4_param_errors[] = {
1605 {"continue", EXT4_MOUNT_ERRORS_CONT},
1606 {"panic", EXT4_MOUNT_ERRORS_PANIC},
1607 {"remount-ro", EXT4_MOUNT_ERRORS_RO},
1608 {}
1609 };
1610
1611 static const struct constant_table ext4_param_data[] = {
1612 {"journal", EXT4_MOUNT_JOURNAL_DATA},
1613 {"ordered", EXT4_MOUNT_ORDERED_DATA},
1614 {"writeback", EXT4_MOUNT_WRITEBACK_DATA},
1615 {}
1616 };
1617
1618 static const struct constant_table ext4_param_data_err[] = {
1619 {"abort", Opt_data_err_abort},
1620 {"ignore", Opt_data_err_ignore},
1621 {}
1622 };
1623
1624 static const struct constant_table ext4_param_jqfmt[] = {
1625 {"vfsold", QFMT_VFS_OLD},
1626 {"vfsv0", QFMT_VFS_V0},
1627 {"vfsv1", QFMT_VFS_V1},
1628 {}
1629 };
1630
1631 static const struct constant_table ext4_param_dax[] = {
1632 {"always", Opt_dax_always},
1633 {"inode", Opt_dax_inode},
1634 {"never", Opt_dax_never},
1635 {}
1636 };
1637
1638 /* String parameter that allows empty argument */
1639 #define fsparam_string_empty(NAME, OPT) \
1640 __fsparam(fs_param_is_string, NAME, OPT, fs_param_can_be_empty, NULL)
1641
1642 /*
1643 * Mount option specification
1644 * We don't use fsparam_flag_no because of the way we set the
1645 * options and the way we show them in _ext4_show_options(). To
1646 * keep the changes to a minimum, let's keep the negative options
1647 * separate for now.
1648 */
1649 static const struct fs_parameter_spec ext4_param_specs[] = {
1650 fsparam_flag ("bsddf", Opt_bsd_df),
1651 fsparam_flag ("minixdf", Opt_minix_df),
1652 fsparam_flag ("grpid", Opt_grpid),
1653 fsparam_flag ("bsdgroups", Opt_grpid),
1654 fsparam_flag ("nogrpid", Opt_nogrpid),
1655 fsparam_flag ("sysvgroups", Opt_nogrpid),
1656 fsparam_u32 ("resgid", Opt_resgid),
1657 fsparam_u32 ("resuid", Opt_resuid),
1658 fsparam_u32 ("sb", Opt_sb),
1659 fsparam_enum ("errors", Opt_errors, ext4_param_errors),
1660 fsparam_flag ("nouid32", Opt_nouid32),
1661 fsparam_flag ("debug", Opt_debug),
1662 fsparam_flag ("oldalloc", Opt_removed),
1663 fsparam_flag ("orlov", Opt_removed),
1664 fsparam_flag ("user_xattr", Opt_user_xattr),
1665 fsparam_flag ("nouser_xattr", Opt_nouser_xattr),
1666 fsparam_flag ("acl", Opt_acl),
1667 fsparam_flag ("noacl", Opt_noacl),
1668 fsparam_flag ("norecovery", Opt_noload),
1669 fsparam_flag ("noload", Opt_noload),
1670 fsparam_flag ("bh", Opt_removed),
1671 fsparam_flag ("nobh", Opt_removed),
1672 fsparam_u32 ("commit", Opt_commit),
1673 fsparam_u32 ("min_batch_time", Opt_min_batch_time),
1674 fsparam_u32 ("max_batch_time", Opt_max_batch_time),
1675 fsparam_u32 ("journal_dev", Opt_journal_dev),
1676 fsparam_bdev ("journal_path", Opt_journal_path),
1677 fsparam_flag ("journal_checksum", Opt_journal_checksum),
1678 fsparam_flag ("nojournal_checksum", Opt_nojournal_checksum),
1679 fsparam_flag ("journal_async_commit",Opt_journal_async_commit),
1680 fsparam_flag ("abort", Opt_abort),
1681 fsparam_enum ("data", Opt_data, ext4_param_data),
1682 fsparam_enum ("data_err", Opt_data_err,
1683 ext4_param_data_err),
1684 fsparam_string_empty
1685 ("usrjquota", Opt_usrjquota),
1686 fsparam_string_empty
1687 ("grpjquota", Opt_grpjquota),
1688 fsparam_enum ("jqfmt", Opt_jqfmt, ext4_param_jqfmt),
1689 fsparam_flag ("grpquota", Opt_grpquota),
1690 fsparam_flag ("quota", Opt_quota),
1691 fsparam_flag ("noquota", Opt_noquota),
1692 fsparam_flag ("usrquota", Opt_usrquota),
1693 fsparam_flag ("prjquota", Opt_prjquota),
1694 fsparam_flag ("barrier", Opt_barrier),
1695 fsparam_u32 ("barrier", Opt_barrier),
1696 fsparam_flag ("nobarrier", Opt_nobarrier),
1697 fsparam_flag ("i_version", Opt_i_version),
1698 fsparam_flag ("dax", Opt_dax),
1699 fsparam_enum ("dax", Opt_dax_type, ext4_param_dax),
1700 fsparam_u32 ("stripe", Opt_stripe),
1701 fsparam_flag ("delalloc", Opt_delalloc),
1702 fsparam_flag ("nodelalloc", Opt_nodelalloc),
1703 fsparam_flag ("warn_on_error", Opt_warn_on_error),
1704 fsparam_flag ("nowarn_on_error", Opt_nowarn_on_error),
1705 fsparam_u32 ("debug_want_extra_isize",
1706 Opt_debug_want_extra_isize),
1707 fsparam_flag ("mblk_io_submit", Opt_removed),
1708 fsparam_flag ("nomblk_io_submit", Opt_removed),
1709 fsparam_flag ("block_validity", Opt_block_validity),
1710 fsparam_flag ("noblock_validity", Opt_noblock_validity),
1711 fsparam_u32 ("inode_readahead_blks",
1712 Opt_inode_readahead_blks),
1713 fsparam_u32 ("journal_ioprio", Opt_journal_ioprio),
1714 fsparam_u32 ("auto_da_alloc", Opt_auto_da_alloc),
1715 fsparam_flag ("auto_da_alloc", Opt_auto_da_alloc),
1716 fsparam_flag ("noauto_da_alloc", Opt_noauto_da_alloc),
1717 fsparam_flag ("dioread_nolock", Opt_dioread_nolock),
1718 fsparam_flag ("nodioread_nolock", Opt_dioread_lock),
1719 fsparam_flag ("dioread_lock", Opt_dioread_lock),
1720 fsparam_flag ("discard", Opt_discard),
1721 fsparam_flag ("nodiscard", Opt_nodiscard),
1722 fsparam_u32 ("init_itable", Opt_init_itable),
1723 fsparam_flag ("init_itable", Opt_init_itable),
1724 fsparam_flag ("noinit_itable", Opt_noinit_itable),
1725 #ifdef CONFIG_EXT4_DEBUG
1726 fsparam_flag ("fc_debug_force", Opt_fc_debug_force),
1727 fsparam_u32 ("fc_debug_max_replay", Opt_fc_debug_max_replay),
1728 #endif
1729 fsparam_u32 ("max_dir_size_kb", Opt_max_dir_size_kb),
1730 fsparam_flag ("test_dummy_encryption",
1731 Opt_test_dummy_encryption),
1732 fsparam_string ("test_dummy_encryption",
1733 Opt_test_dummy_encryption),
1734 fsparam_flag ("inlinecrypt", Opt_inlinecrypt),
1735 fsparam_flag ("nombcache", Opt_nombcache),
1736 fsparam_flag ("no_mbcache", Opt_nombcache), /* for backward compatibility */
1737 fsparam_flag ("prefetch_block_bitmaps",
1738 Opt_removed),
1739 fsparam_flag ("no_prefetch_block_bitmaps",
1740 Opt_no_prefetch_block_bitmaps),
1741 fsparam_s32 ("mb_optimize_scan", Opt_mb_optimize_scan),
1742 fsparam_string ("check", Opt_removed), /* mount option from ext2/3 */
1743 fsparam_flag ("nocheck", Opt_removed), /* mount option from ext2/3 */
1744 fsparam_flag ("reservation", Opt_removed), /* mount option from ext2/3 */
1745 fsparam_flag ("noreservation", Opt_removed), /* mount option from ext2/3 */
1746 fsparam_u32 ("journal", Opt_removed), /* mount option from ext2/3 */
1747 {}
1748 };
1749
1750 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1751
1752 static const char deprecated_msg[] =
1753 "Mount option \"%s\" will be removed by %s\n"
1754 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1755
1756 #define MOPT_SET 0x0001
1757 #define MOPT_CLEAR 0x0002
1758 #define MOPT_NOSUPPORT 0x0004
1759 #define MOPT_EXPLICIT 0x0008
1760 #ifdef CONFIG_QUOTA
1761 #define MOPT_Q 0
1762 #define MOPT_QFMT 0x0010
1763 #else
1764 #define MOPT_Q MOPT_NOSUPPORT
1765 #define MOPT_QFMT MOPT_NOSUPPORT
1766 #endif
1767 #define MOPT_NO_EXT2 0x0020
1768 #define MOPT_NO_EXT3 0x0040
1769 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1770 #define MOPT_SKIP 0x0080
1771 #define MOPT_2 0x0100
1772
1773 static const struct mount_opts {
1774 int token;
1775 int mount_opt;
1776 int flags;
1777 } ext4_mount_opts[] = {
1778 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1779 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1780 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1781 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1782 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1783 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1784 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1785 MOPT_EXT4_ONLY | MOPT_SET},
1786 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1787 MOPT_EXT4_ONLY | MOPT_CLEAR},
1788 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1789 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1790 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1791 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1792 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1793 MOPT_EXT4_ONLY | MOPT_CLEAR},
1794 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1795 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1796 {Opt_commit, 0, MOPT_NO_EXT2},
1797 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1798 MOPT_EXT4_ONLY | MOPT_CLEAR},
1799 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1800 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1801 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1802 EXT4_MOUNT_JOURNAL_CHECKSUM),
1803 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1804 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1805 {Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2},
1806 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1807 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1808 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1809 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1810 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1811 {Opt_dax_type, 0, MOPT_EXT4_ONLY},
1812 {Opt_journal_dev, 0, MOPT_NO_EXT2},
1813 {Opt_journal_path, 0, MOPT_NO_EXT2},
1814 {Opt_journal_ioprio, 0, MOPT_NO_EXT2},
1815 {Opt_data, 0, MOPT_NO_EXT2},
1816 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1817 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1818 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1819 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1820 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1821 #else
1822 {Opt_acl, 0, MOPT_NOSUPPORT},
1823 {Opt_noacl, 0, MOPT_NOSUPPORT},
1824 #endif
1825 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1826 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1827 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1828 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1829 MOPT_SET | MOPT_Q},
1830 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1831 MOPT_SET | MOPT_Q},
1832 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1833 MOPT_SET | MOPT_Q},
1834 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1835 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1836 MOPT_CLEAR | MOPT_Q},
1837 {Opt_usrjquota, 0, MOPT_Q},
1838 {Opt_grpjquota, 0, MOPT_Q},
1839 {Opt_jqfmt, 0, MOPT_QFMT},
1840 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1841 {Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
1842 MOPT_SET},
1843 #ifdef CONFIG_EXT4_DEBUG
1844 {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
1845 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
1846 #endif
1847 {Opt_err, 0, 0}
1848 };
1849
1850 #if IS_ENABLED(CONFIG_UNICODE)
1851 static const struct ext4_sb_encodings {
1852 __u16 magic;
1853 char *name;
1854 unsigned int version;
1855 } ext4_sb_encoding_map[] = {
1856 {EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
1857 };
1858
1859 static const struct ext4_sb_encodings *
ext4_sb_read_encoding(const struct ext4_super_block * es)1860 ext4_sb_read_encoding(const struct ext4_super_block *es)
1861 {
1862 __u16 magic = le16_to_cpu(es->s_encoding);
1863 int i;
1864
1865 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1866 if (magic == ext4_sb_encoding_map[i].magic)
1867 return &ext4_sb_encoding_map[i];
1868
1869 return NULL;
1870 }
1871 #endif
1872
1873 #define EXT4_SPEC_JQUOTA (1 << 0)
1874 #define EXT4_SPEC_JQFMT (1 << 1)
1875 #define EXT4_SPEC_DATAJ (1 << 2)
1876 #define EXT4_SPEC_SB_BLOCK (1 << 3)
1877 #define EXT4_SPEC_JOURNAL_DEV (1 << 4)
1878 #define EXT4_SPEC_JOURNAL_IOPRIO (1 << 5)
1879 #define EXT4_SPEC_s_want_extra_isize (1 << 7)
1880 #define EXT4_SPEC_s_max_batch_time (1 << 8)
1881 #define EXT4_SPEC_s_min_batch_time (1 << 9)
1882 #define EXT4_SPEC_s_inode_readahead_blks (1 << 10)
1883 #define EXT4_SPEC_s_li_wait_mult (1 << 11)
1884 #define EXT4_SPEC_s_max_dir_size_kb (1 << 12)
1885 #define EXT4_SPEC_s_stripe (1 << 13)
1886 #define EXT4_SPEC_s_resuid (1 << 14)
1887 #define EXT4_SPEC_s_resgid (1 << 15)
1888 #define EXT4_SPEC_s_commit_interval (1 << 16)
1889 #define EXT4_SPEC_s_fc_debug_max_replay (1 << 17)
1890 #define EXT4_SPEC_s_sb_block (1 << 18)
1891 #define EXT4_SPEC_mb_optimize_scan (1 << 19)
1892
1893 struct ext4_fs_context {
1894 char *s_qf_names[EXT4_MAXQUOTAS];
1895 struct fscrypt_dummy_policy dummy_enc_policy;
1896 int s_jquota_fmt; /* Format of quota to use */
1897 #ifdef CONFIG_EXT4_DEBUG
1898 int s_fc_debug_max_replay;
1899 #endif
1900 unsigned short qname_spec;
1901 unsigned long vals_s_flags; /* Bits to set in s_flags */
1902 unsigned long mask_s_flags; /* Bits changed in s_flags */
1903 unsigned long journal_devnum;
1904 unsigned long s_commit_interval;
1905 unsigned long s_stripe;
1906 unsigned int s_inode_readahead_blks;
1907 unsigned int s_want_extra_isize;
1908 unsigned int s_li_wait_mult;
1909 unsigned int s_max_dir_size_kb;
1910 unsigned int journal_ioprio;
1911 unsigned int vals_s_mount_opt;
1912 unsigned int mask_s_mount_opt;
1913 unsigned int vals_s_mount_opt2;
1914 unsigned int mask_s_mount_opt2;
1915 unsigned long vals_s_mount_flags;
1916 unsigned long mask_s_mount_flags;
1917 unsigned int opt_flags; /* MOPT flags */
1918 unsigned int spec;
1919 u32 s_max_batch_time;
1920 u32 s_min_batch_time;
1921 kuid_t s_resuid;
1922 kgid_t s_resgid;
1923 ext4_fsblk_t s_sb_block;
1924 };
1925
ext4_fc_free(struct fs_context * fc)1926 static void ext4_fc_free(struct fs_context *fc)
1927 {
1928 struct ext4_fs_context *ctx = fc->fs_private;
1929 int i;
1930
1931 if (!ctx)
1932 return;
1933
1934 for (i = 0; i < EXT4_MAXQUOTAS; i++)
1935 kfree(ctx->s_qf_names[i]);
1936
1937 fscrypt_free_dummy_policy(&ctx->dummy_enc_policy);
1938 kfree(ctx);
1939 }
1940
ext4_init_fs_context(struct fs_context * fc)1941 int ext4_init_fs_context(struct fs_context *fc)
1942 {
1943 struct ext4_fs_context *ctx;
1944
1945 ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
1946 if (!ctx)
1947 return -ENOMEM;
1948
1949 fc->fs_private = ctx;
1950 fc->ops = &ext4_context_ops;
1951
1952 return 0;
1953 }
1954
1955 #ifdef CONFIG_QUOTA
1956 /*
1957 * Note the name of the specified quota file.
1958 */
note_qf_name(struct fs_context * fc,int qtype,struct fs_parameter * param)1959 static int note_qf_name(struct fs_context *fc, int qtype,
1960 struct fs_parameter *param)
1961 {
1962 struct ext4_fs_context *ctx = fc->fs_private;
1963 char *qname;
1964
1965 if (param->size < 1) {
1966 ext4_msg(NULL, KERN_ERR, "Missing quota name");
1967 return -EINVAL;
1968 }
1969 if (strchr(param->string, '/')) {
1970 ext4_msg(NULL, KERN_ERR,
1971 "quotafile must be on filesystem root");
1972 return -EINVAL;
1973 }
1974 if (ctx->s_qf_names[qtype]) {
1975 if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) {
1976 ext4_msg(NULL, KERN_ERR,
1977 "%s quota file already specified",
1978 QTYPE2NAME(qtype));
1979 return -EINVAL;
1980 }
1981 return 0;
1982 }
1983
1984 qname = kmemdup_nul(param->string, param->size, GFP_KERNEL);
1985 if (!qname) {
1986 ext4_msg(NULL, KERN_ERR,
1987 "Not enough memory for storing quotafile name");
1988 return -ENOMEM;
1989 }
1990 ctx->s_qf_names[qtype] = qname;
1991 ctx->qname_spec |= 1 << qtype;
1992 ctx->spec |= EXT4_SPEC_JQUOTA;
1993 return 0;
1994 }
1995
1996 /*
1997 * Clear the name of the specified quota file.
1998 */
unnote_qf_name(struct fs_context * fc,int qtype)1999 static int unnote_qf_name(struct fs_context *fc, int qtype)
2000 {
2001 struct ext4_fs_context *ctx = fc->fs_private;
2002
2003 if (ctx->s_qf_names[qtype])
2004 kfree(ctx->s_qf_names[qtype]);
2005
2006 ctx->s_qf_names[qtype] = NULL;
2007 ctx->qname_spec |= 1 << qtype;
2008 ctx->spec |= EXT4_SPEC_JQUOTA;
2009 return 0;
2010 }
2011 #endif
2012
ext4_parse_test_dummy_encryption(const struct fs_parameter * param,struct ext4_fs_context * ctx)2013 static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param,
2014 struct ext4_fs_context *ctx)
2015 {
2016 int err;
2017
2018 if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) {
2019 ext4_msg(NULL, KERN_WARNING,
2020 "test_dummy_encryption option not supported");
2021 return -EINVAL;
2022 }
2023 err = fscrypt_parse_test_dummy_encryption(param,
2024 &ctx->dummy_enc_policy);
2025 if (err == -EINVAL) {
2026 ext4_msg(NULL, KERN_WARNING,
2027 "Value of option \"%s\" is unrecognized", param->key);
2028 } else if (err == -EEXIST) {
2029 ext4_msg(NULL, KERN_WARNING,
2030 "Conflicting test_dummy_encryption options");
2031 return -EINVAL;
2032 }
2033 return err;
2034 }
2035
2036 #define EXT4_SET_CTX(name) \
2037 static inline void ctx_set_##name(struct ext4_fs_context *ctx, \
2038 unsigned long flag) \
2039 { \
2040 ctx->mask_s_##name |= flag; \
2041 ctx->vals_s_##name |= flag; \
2042 }
2043
2044 #define EXT4_CLEAR_CTX(name) \
2045 static inline void ctx_clear_##name(struct ext4_fs_context *ctx, \
2046 unsigned long flag) \
2047 { \
2048 ctx->mask_s_##name |= flag; \
2049 ctx->vals_s_##name &= ~flag; \
2050 }
2051
2052 #define EXT4_TEST_CTX(name) \
2053 static inline unsigned long \
2054 ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag) \
2055 { \
2056 return (ctx->vals_s_##name & flag); \
2057 }
2058
2059 EXT4_SET_CTX(flags); /* set only */
2060 EXT4_SET_CTX(mount_opt);
2061 EXT4_CLEAR_CTX(mount_opt);
2062 EXT4_TEST_CTX(mount_opt);
2063 EXT4_SET_CTX(mount_opt2);
2064 EXT4_CLEAR_CTX(mount_opt2);
2065 EXT4_TEST_CTX(mount_opt2);
2066
ctx_set_mount_flag(struct ext4_fs_context * ctx,int bit)2067 static inline void ctx_set_mount_flag(struct ext4_fs_context *ctx, int bit)
2068 {
2069 set_bit(bit, &ctx->mask_s_mount_flags);
2070 set_bit(bit, &ctx->vals_s_mount_flags);
2071 }
2072
ext4_parse_param(struct fs_context * fc,struct fs_parameter * param)2073 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param)
2074 {
2075 struct ext4_fs_context *ctx = fc->fs_private;
2076 struct fs_parse_result result;
2077 const struct mount_opts *m;
2078 int is_remount;
2079 kuid_t uid;
2080 kgid_t gid;
2081 int token;
2082
2083 token = fs_parse(fc, ext4_param_specs, param, &result);
2084 if (token < 0)
2085 return token;
2086 is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2087
2088 for (m = ext4_mount_opts; m->token != Opt_err; m++)
2089 if (token == m->token)
2090 break;
2091
2092 ctx->opt_flags |= m->flags;
2093
2094 if (m->flags & MOPT_EXPLICIT) {
2095 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2096 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC);
2097 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2098 ctx_set_mount_opt2(ctx,
2099 EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM);
2100 } else
2101 return -EINVAL;
2102 }
2103
2104 if (m->flags & MOPT_NOSUPPORT) {
2105 ext4_msg(NULL, KERN_ERR, "%s option not supported",
2106 param->key);
2107 return 0;
2108 }
2109
2110 switch (token) {
2111 #ifdef CONFIG_QUOTA
2112 case Opt_usrjquota:
2113 if (!*param->string)
2114 return unnote_qf_name(fc, USRQUOTA);
2115 else
2116 return note_qf_name(fc, USRQUOTA, param);
2117 case Opt_grpjquota:
2118 if (!*param->string)
2119 return unnote_qf_name(fc, GRPQUOTA);
2120 else
2121 return note_qf_name(fc, GRPQUOTA, param);
2122 #endif
2123 case Opt_noacl:
2124 case Opt_nouser_xattr:
2125 ext4_msg(NULL, KERN_WARNING, deprecated_msg, param->key, "3.5");
2126 break;
2127 case Opt_sb:
2128 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2129 ext4_msg(NULL, KERN_WARNING,
2130 "Ignoring %s option on remount", param->key);
2131 } else {
2132 ctx->s_sb_block = result.uint_32;
2133 ctx->spec |= EXT4_SPEC_s_sb_block;
2134 }
2135 return 0;
2136 case Opt_removed:
2137 ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option",
2138 param->key);
2139 return 0;
2140 case Opt_abort:
2141 ctx_set_mount_flag(ctx, EXT4_MF_FS_ABORTED);
2142 return 0;
2143 case Opt_i_version:
2144 ext4_msg(NULL, KERN_WARNING, deprecated_msg, param->key, "5.20");
2145 ext4_msg(NULL, KERN_WARNING, "Use iversion instead\n");
2146 ctx_set_flags(ctx, SB_I_VERSION);
2147 return 0;
2148 case Opt_inlinecrypt:
2149 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2150 ctx_set_flags(ctx, SB_INLINECRYPT);
2151 #else
2152 ext4_msg(NULL, KERN_ERR, "inline encryption not supported");
2153 #endif
2154 return 0;
2155 case Opt_errors:
2156 ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK);
2157 ctx_set_mount_opt(ctx, result.uint_32);
2158 return 0;
2159 #ifdef CONFIG_QUOTA
2160 case Opt_jqfmt:
2161 ctx->s_jquota_fmt = result.uint_32;
2162 ctx->spec |= EXT4_SPEC_JQFMT;
2163 return 0;
2164 #endif
2165 case Opt_data:
2166 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2167 ctx_set_mount_opt(ctx, result.uint_32);
2168 ctx->spec |= EXT4_SPEC_DATAJ;
2169 return 0;
2170 case Opt_commit:
2171 if (result.uint_32 == 0)
2172 ctx->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE;
2173 else if (result.uint_32 > INT_MAX / HZ) {
2174 ext4_msg(NULL, KERN_ERR,
2175 "Invalid commit interval %d, "
2176 "must be smaller than %d",
2177 result.uint_32, INT_MAX / HZ);
2178 return -EINVAL;
2179 }
2180 ctx->s_commit_interval = HZ * result.uint_32;
2181 ctx->spec |= EXT4_SPEC_s_commit_interval;
2182 return 0;
2183 case Opt_debug_want_extra_isize:
2184 if ((result.uint_32 & 1) || (result.uint_32 < 4)) {
2185 ext4_msg(NULL, KERN_ERR,
2186 "Invalid want_extra_isize %d", result.uint_32);
2187 return -EINVAL;
2188 }
2189 ctx->s_want_extra_isize = result.uint_32;
2190 ctx->spec |= EXT4_SPEC_s_want_extra_isize;
2191 return 0;
2192 case Opt_max_batch_time:
2193 ctx->s_max_batch_time = result.uint_32;
2194 ctx->spec |= EXT4_SPEC_s_max_batch_time;
2195 return 0;
2196 case Opt_min_batch_time:
2197 ctx->s_min_batch_time = result.uint_32;
2198 ctx->spec |= EXT4_SPEC_s_min_batch_time;
2199 return 0;
2200 case Opt_inode_readahead_blks:
2201 if (result.uint_32 &&
2202 (result.uint_32 > (1 << 30) ||
2203 !is_power_of_2(result.uint_32))) {
2204 ext4_msg(NULL, KERN_ERR,
2205 "EXT4-fs: inode_readahead_blks must be "
2206 "0 or a power of 2 smaller than 2^31");
2207 return -EINVAL;
2208 }
2209 ctx->s_inode_readahead_blks = result.uint_32;
2210 ctx->spec |= EXT4_SPEC_s_inode_readahead_blks;
2211 return 0;
2212 case Opt_init_itable:
2213 ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE);
2214 ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
2215 if (param->type == fs_value_is_string)
2216 ctx->s_li_wait_mult = result.uint_32;
2217 ctx->spec |= EXT4_SPEC_s_li_wait_mult;
2218 return 0;
2219 case Opt_max_dir_size_kb:
2220 ctx->s_max_dir_size_kb = result.uint_32;
2221 ctx->spec |= EXT4_SPEC_s_max_dir_size_kb;
2222 return 0;
2223 #ifdef CONFIG_EXT4_DEBUG
2224 case Opt_fc_debug_max_replay:
2225 ctx->s_fc_debug_max_replay = result.uint_32;
2226 ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay;
2227 return 0;
2228 #endif
2229 case Opt_stripe:
2230 ctx->s_stripe = result.uint_32;
2231 ctx->spec |= EXT4_SPEC_s_stripe;
2232 return 0;
2233 case Opt_resuid:
2234 uid = make_kuid(current_user_ns(), result.uint_32);
2235 if (!uid_valid(uid)) {
2236 ext4_msg(NULL, KERN_ERR, "Invalid uid value %d",
2237 result.uint_32);
2238 return -EINVAL;
2239 }
2240 ctx->s_resuid = uid;
2241 ctx->spec |= EXT4_SPEC_s_resuid;
2242 return 0;
2243 case Opt_resgid:
2244 gid = make_kgid(current_user_ns(), result.uint_32);
2245 if (!gid_valid(gid)) {
2246 ext4_msg(NULL, KERN_ERR, "Invalid gid value %d",
2247 result.uint_32);
2248 return -EINVAL;
2249 }
2250 ctx->s_resgid = gid;
2251 ctx->spec |= EXT4_SPEC_s_resgid;
2252 return 0;
2253 case Opt_journal_dev:
2254 if (is_remount) {
2255 ext4_msg(NULL, KERN_ERR,
2256 "Cannot specify journal on remount");
2257 return -EINVAL;
2258 }
2259 ctx->journal_devnum = result.uint_32;
2260 ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2261 return 0;
2262 case Opt_journal_path:
2263 {
2264 struct inode *journal_inode;
2265 struct path path;
2266 int error;
2267
2268 if (is_remount) {
2269 ext4_msg(NULL, KERN_ERR,
2270 "Cannot specify journal on remount");
2271 return -EINVAL;
2272 }
2273
2274 error = fs_lookup_param(fc, param, 1, &path);
2275 if (error) {
2276 ext4_msg(NULL, KERN_ERR, "error: could not find "
2277 "journal device path");
2278 return -EINVAL;
2279 }
2280
2281 journal_inode = d_inode(path.dentry);
2282 ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev);
2283 ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2284 path_put(&path);
2285 return 0;
2286 }
2287 case Opt_journal_ioprio:
2288 if (result.uint_32 > 7) {
2289 ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority"
2290 " (must be 0-7)");
2291 return -EINVAL;
2292 }
2293 ctx->journal_ioprio =
2294 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32);
2295 ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO;
2296 return 0;
2297 case Opt_test_dummy_encryption:
2298 return ext4_parse_test_dummy_encryption(param, ctx);
2299 case Opt_dax:
2300 case Opt_dax_type:
2301 #ifdef CONFIG_FS_DAX
2302 {
2303 int type = (token == Opt_dax) ?
2304 Opt_dax : result.uint_32;
2305
2306 switch (type) {
2307 case Opt_dax:
2308 case Opt_dax_always:
2309 ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2310 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2311 break;
2312 case Opt_dax_never:
2313 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2314 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2315 break;
2316 case Opt_dax_inode:
2317 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2318 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2319 /* Strictly for printing options */
2320 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE);
2321 break;
2322 }
2323 return 0;
2324 }
2325 #else
2326 ext4_msg(NULL, KERN_INFO, "dax option not supported");
2327 return -EINVAL;
2328 #endif
2329 case Opt_data_err:
2330 if (result.uint_32 == Opt_data_err_abort)
2331 ctx_set_mount_opt(ctx, m->mount_opt);
2332 else if (result.uint_32 == Opt_data_err_ignore)
2333 ctx_clear_mount_opt(ctx, m->mount_opt);
2334 return 0;
2335 case Opt_mb_optimize_scan:
2336 if (result.int_32 == 1) {
2337 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2338 ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2339 } else if (result.int_32 == 0) {
2340 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2341 ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2342 } else {
2343 ext4_msg(NULL, KERN_WARNING,
2344 "mb_optimize_scan should be set to 0 or 1.");
2345 return -EINVAL;
2346 }
2347 return 0;
2348 }
2349
2350 /*
2351 * At this point we should only be getting options requiring MOPT_SET,
2352 * or MOPT_CLEAR. Anything else is a bug
2353 */
2354 if (m->token == Opt_err) {
2355 ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s",
2356 param->key);
2357 WARN_ON(1);
2358 return -EINVAL;
2359 }
2360
2361 else {
2362 unsigned int set = 0;
2363
2364 if ((param->type == fs_value_is_flag) ||
2365 result.uint_32 > 0)
2366 set = 1;
2367
2368 if (m->flags & MOPT_CLEAR)
2369 set = !set;
2370 else if (unlikely(!(m->flags & MOPT_SET))) {
2371 ext4_msg(NULL, KERN_WARNING,
2372 "buggy handling of option %s",
2373 param->key);
2374 WARN_ON(1);
2375 return -EINVAL;
2376 }
2377 if (m->flags & MOPT_2) {
2378 if (set != 0)
2379 ctx_set_mount_opt2(ctx, m->mount_opt);
2380 else
2381 ctx_clear_mount_opt2(ctx, m->mount_opt);
2382 } else {
2383 if (set != 0)
2384 ctx_set_mount_opt(ctx, m->mount_opt);
2385 else
2386 ctx_clear_mount_opt(ctx, m->mount_opt);
2387 }
2388 }
2389
2390 return 0;
2391 }
2392
parse_options(struct fs_context * fc,char * options)2393 static int parse_options(struct fs_context *fc, char *options)
2394 {
2395 struct fs_parameter param;
2396 int ret;
2397 char *key;
2398
2399 if (!options)
2400 return 0;
2401
2402 while ((key = strsep(&options, ",")) != NULL) {
2403 if (*key) {
2404 size_t v_len = 0;
2405 char *value = strchr(key, '=');
2406
2407 param.type = fs_value_is_flag;
2408 param.string = NULL;
2409
2410 if (value) {
2411 if (value == key)
2412 continue;
2413
2414 *value++ = 0;
2415 v_len = strlen(value);
2416 param.string = kmemdup_nul(value, v_len,
2417 GFP_KERNEL);
2418 if (!param.string)
2419 return -ENOMEM;
2420 param.type = fs_value_is_string;
2421 }
2422
2423 param.key = key;
2424 param.size = v_len;
2425
2426 ret = ext4_parse_param(fc, ¶m);
2427 if (param.string)
2428 kfree(param.string);
2429 if (ret < 0)
2430 return ret;
2431 }
2432 }
2433
2434 ret = ext4_validate_options(fc);
2435 if (ret < 0)
2436 return ret;
2437
2438 return 0;
2439 }
2440
parse_apply_sb_mount_options(struct super_block * sb,struct ext4_fs_context * m_ctx)2441 static int parse_apply_sb_mount_options(struct super_block *sb,
2442 struct ext4_fs_context *m_ctx)
2443 {
2444 struct ext4_sb_info *sbi = EXT4_SB(sb);
2445 char *s_mount_opts = NULL;
2446 struct ext4_fs_context *s_ctx = NULL;
2447 struct fs_context *fc = NULL;
2448 int ret = -ENOMEM;
2449
2450 if (!sbi->s_es->s_mount_opts[0])
2451 return 0;
2452
2453 s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
2454 sizeof(sbi->s_es->s_mount_opts),
2455 GFP_KERNEL);
2456 if (!s_mount_opts)
2457 return ret;
2458
2459 fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL);
2460 if (!fc)
2461 goto out_free;
2462
2463 s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2464 if (!s_ctx)
2465 goto out_free;
2466
2467 fc->fs_private = s_ctx;
2468 fc->s_fs_info = sbi;
2469
2470 ret = parse_options(fc, s_mount_opts);
2471 if (ret < 0)
2472 goto parse_failed;
2473
2474 ret = ext4_check_opt_consistency(fc, sb);
2475 if (ret < 0) {
2476 parse_failed:
2477 ext4_msg(sb, KERN_WARNING,
2478 "failed to parse options in superblock: %s",
2479 s_mount_opts);
2480 ret = 0;
2481 goto out_free;
2482 }
2483
2484 if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV)
2485 m_ctx->journal_devnum = s_ctx->journal_devnum;
2486 if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)
2487 m_ctx->journal_ioprio = s_ctx->journal_ioprio;
2488
2489 ext4_apply_options(fc, sb);
2490 ret = 0;
2491
2492 out_free:
2493 if (fc) {
2494 ext4_fc_free(fc);
2495 kfree(fc);
2496 }
2497 kfree(s_mount_opts);
2498 return ret;
2499 }
2500
ext4_apply_quota_options(struct fs_context * fc,struct super_block * sb)2501 static void ext4_apply_quota_options(struct fs_context *fc,
2502 struct super_block *sb)
2503 {
2504 #ifdef CONFIG_QUOTA
2505 bool quota_feature = ext4_has_feature_quota(sb);
2506 struct ext4_fs_context *ctx = fc->fs_private;
2507 struct ext4_sb_info *sbi = EXT4_SB(sb);
2508 char *qname;
2509 int i;
2510
2511 if (quota_feature)
2512 return;
2513
2514 if (ctx->spec & EXT4_SPEC_JQUOTA) {
2515 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2516 if (!(ctx->qname_spec & (1 << i)))
2517 continue;
2518
2519 qname = ctx->s_qf_names[i]; /* May be NULL */
2520 if (qname)
2521 set_opt(sb, QUOTA);
2522 ctx->s_qf_names[i] = NULL;
2523 qname = rcu_replace_pointer(sbi->s_qf_names[i], qname,
2524 lockdep_is_held(&sb->s_umount));
2525 if (qname)
2526 kfree_rcu(qname);
2527 }
2528 }
2529
2530 if (ctx->spec & EXT4_SPEC_JQFMT)
2531 sbi->s_jquota_fmt = ctx->s_jquota_fmt;
2532 #endif
2533 }
2534
2535 /*
2536 * Check quota settings consistency.
2537 */
ext4_check_quota_consistency(struct fs_context * fc,struct super_block * sb)2538 static int ext4_check_quota_consistency(struct fs_context *fc,
2539 struct super_block *sb)
2540 {
2541 #ifdef CONFIG_QUOTA
2542 struct ext4_fs_context *ctx = fc->fs_private;
2543 struct ext4_sb_info *sbi = EXT4_SB(sb);
2544 bool quota_feature = ext4_has_feature_quota(sb);
2545 bool quota_loaded = sb_any_quota_loaded(sb);
2546 bool usr_qf_name, grp_qf_name, usrquota, grpquota;
2547 int quota_flags, i;
2548
2549 /*
2550 * We do the test below only for project quotas. 'usrquota' and
2551 * 'grpquota' mount options are allowed even without quota feature
2552 * to support legacy quotas in quota files.
2553 */
2554 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) &&
2555 !ext4_has_feature_project(sb)) {
2556 ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. "
2557 "Cannot enable project quota enforcement.");
2558 return -EINVAL;
2559 }
2560
2561 quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
2562 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA;
2563 if (quota_loaded &&
2564 ctx->mask_s_mount_opt & quota_flags &&
2565 !ctx_test_mount_opt(ctx, quota_flags))
2566 goto err_quota_change;
2567
2568 if (ctx->spec & EXT4_SPEC_JQUOTA) {
2569
2570 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2571 if (!(ctx->qname_spec & (1 << i)))
2572 continue;
2573
2574 if (quota_loaded &&
2575 !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i])
2576 goto err_jquota_change;
2577
2578 if (sbi->s_qf_names[i] && ctx->s_qf_names[i] &&
2579 strcmp(get_qf_name(sb, sbi, i),
2580 ctx->s_qf_names[i]) != 0)
2581 goto err_jquota_specified;
2582 }
2583
2584 if (quota_feature) {
2585 ext4_msg(NULL, KERN_INFO,
2586 "Journaled quota options ignored when "
2587 "QUOTA feature is enabled");
2588 return 0;
2589 }
2590 }
2591
2592 if (ctx->spec & EXT4_SPEC_JQFMT) {
2593 if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded)
2594 goto err_jquota_change;
2595 if (quota_feature) {
2596 ext4_msg(NULL, KERN_INFO, "Quota format mount options "
2597 "ignored when QUOTA feature is enabled");
2598 return 0;
2599 }
2600 }
2601
2602 /* Make sure we don't mix old and new quota format */
2603 usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) ||
2604 ctx->s_qf_names[USRQUOTA]);
2605 grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) ||
2606 ctx->s_qf_names[GRPQUOTA]);
2607
2608 usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2609 test_opt(sb, USRQUOTA));
2610
2611 grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) ||
2612 test_opt(sb, GRPQUOTA));
2613
2614 if (usr_qf_name) {
2615 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2616 usrquota = false;
2617 }
2618 if (grp_qf_name) {
2619 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2620 grpquota = false;
2621 }
2622
2623 if (usr_qf_name || grp_qf_name) {
2624 if (usrquota || grpquota) {
2625 ext4_msg(NULL, KERN_ERR, "old and new quota "
2626 "format mixing");
2627 return -EINVAL;
2628 }
2629
2630 if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) {
2631 ext4_msg(NULL, KERN_ERR, "journaled quota format "
2632 "not specified");
2633 return -EINVAL;
2634 }
2635 }
2636
2637 return 0;
2638
2639 err_quota_change:
2640 ext4_msg(NULL, KERN_ERR,
2641 "Cannot change quota options when quota turned on");
2642 return -EINVAL;
2643 err_jquota_change:
2644 ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota "
2645 "options when quota turned on");
2646 return -EINVAL;
2647 err_jquota_specified:
2648 ext4_msg(NULL, KERN_ERR, "%s quota file already specified",
2649 QTYPE2NAME(i));
2650 return -EINVAL;
2651 #else
2652 return 0;
2653 #endif
2654 }
2655
ext4_check_test_dummy_encryption(const struct fs_context * fc,struct super_block * sb)2656 static int ext4_check_test_dummy_encryption(const struct fs_context *fc,
2657 struct super_block *sb)
2658 {
2659 const struct ext4_fs_context *ctx = fc->fs_private;
2660 const struct ext4_sb_info *sbi = EXT4_SB(sb);
2661 int err;
2662
2663 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy))
2664 return 0;
2665
2666 if (!ext4_has_feature_encrypt(sb)) {
2667 ext4_msg(NULL, KERN_WARNING,
2668 "test_dummy_encryption requires encrypt feature");
2669 return -EINVAL;
2670 }
2671 /*
2672 * This mount option is just for testing, and it's not worthwhile to
2673 * implement the extra complexity (e.g. RCU protection) that would be
2674 * needed to allow it to be set or changed during remount. We do allow
2675 * it to be specified during remount, but only if there is no change.
2676 */
2677 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2678 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2679 &ctx->dummy_enc_policy))
2680 return 0;
2681 ext4_msg(NULL, KERN_WARNING,
2682 "Can't set or change test_dummy_encryption on remount");
2683 return -EINVAL;
2684 }
2685 /* Also make sure s_mount_opts didn't contain a conflicting value. */
2686 if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) {
2687 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2688 &ctx->dummy_enc_policy))
2689 return 0;
2690 ext4_msg(NULL, KERN_WARNING,
2691 "Conflicting test_dummy_encryption options");
2692 return -EINVAL;
2693 }
2694 /*
2695 * fscrypt_add_test_dummy_key() technically changes the super_block, so
2696 * technically it should be delayed until ext4_apply_options() like the
2697 * other changes. But since we never get here for remounts (see above),
2698 * and this is the last chance to report errors, we do it here.
2699 */
2700 err = fscrypt_add_test_dummy_key(sb, &ctx->dummy_enc_policy);
2701 if (err)
2702 ext4_msg(NULL, KERN_WARNING,
2703 "Error adding test dummy encryption key [%d]", err);
2704 return err;
2705 }
2706
ext4_apply_test_dummy_encryption(struct ext4_fs_context * ctx,struct super_block * sb)2707 static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx,
2708 struct super_block *sb)
2709 {
2710 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) ||
2711 /* if already set, it was already verified to be the same */
2712 fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy))
2713 return;
2714 EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy;
2715 memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy));
2716 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2717 }
2718
ext4_check_opt_consistency(struct fs_context * fc,struct super_block * sb)2719 static int ext4_check_opt_consistency(struct fs_context *fc,
2720 struct super_block *sb)
2721 {
2722 struct ext4_fs_context *ctx = fc->fs_private;
2723 struct ext4_sb_info *sbi = fc->s_fs_info;
2724 int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2725 int err;
2726
2727 if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2728 ext4_msg(NULL, KERN_ERR,
2729 "Mount option(s) incompatible with ext2");
2730 return -EINVAL;
2731 }
2732 if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2733 ext4_msg(NULL, KERN_ERR,
2734 "Mount option(s) incompatible with ext3");
2735 return -EINVAL;
2736 }
2737
2738 if (ctx->s_want_extra_isize >
2739 (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) {
2740 ext4_msg(NULL, KERN_ERR,
2741 "Invalid want_extra_isize %d",
2742 ctx->s_want_extra_isize);
2743 return -EINVAL;
2744 }
2745
2746 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DIOREAD_NOLOCK)) {
2747 int blocksize =
2748 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2749 if (blocksize < PAGE_SIZE)
2750 ext4_msg(NULL, KERN_WARNING, "Warning: mounting with an "
2751 "experimental mount option 'dioread_nolock' "
2752 "for blocksize < PAGE_SIZE");
2753 }
2754
2755 err = ext4_check_test_dummy_encryption(fc, sb);
2756 if (err)
2757 return err;
2758
2759 if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) {
2760 if (!sbi->s_journal) {
2761 ext4_msg(NULL, KERN_WARNING,
2762 "Remounting file system with no journal "
2763 "so ignoring journalled data option");
2764 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2765 } else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) !=
2766 test_opt(sb, DATA_FLAGS)) {
2767 ext4_msg(NULL, KERN_ERR, "Cannot change data mode "
2768 "on remount");
2769 return -EINVAL;
2770 }
2771 }
2772
2773 if (is_remount) {
2774 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2775 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
2776 ext4_msg(NULL, KERN_ERR, "can't mount with "
2777 "both data=journal and dax");
2778 return -EINVAL;
2779 }
2780
2781 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2782 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2783 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2784 fail_dax_change_remount:
2785 ext4_msg(NULL, KERN_ERR, "can't change "
2786 "dax mount option while remounting");
2787 return -EINVAL;
2788 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) &&
2789 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2790 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) {
2791 goto fail_dax_change_remount;
2792 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) &&
2793 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2794 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2795 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) {
2796 goto fail_dax_change_remount;
2797 }
2798 }
2799
2800 return ext4_check_quota_consistency(fc, sb);
2801 }
2802
ext4_apply_options(struct fs_context * fc,struct super_block * sb)2803 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb)
2804 {
2805 struct ext4_fs_context *ctx = fc->fs_private;
2806 struct ext4_sb_info *sbi = fc->s_fs_info;
2807
2808 sbi->s_mount_opt &= ~ctx->mask_s_mount_opt;
2809 sbi->s_mount_opt |= ctx->vals_s_mount_opt;
2810 sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2;
2811 sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2;
2812 sbi->s_mount_flags &= ~ctx->mask_s_mount_flags;
2813 sbi->s_mount_flags |= ctx->vals_s_mount_flags;
2814 sb->s_flags &= ~ctx->mask_s_flags;
2815 sb->s_flags |= ctx->vals_s_flags;
2816
2817 /*
2818 * i_version differs from common mount option iversion so we have
2819 * to let vfs know that it was set, otherwise it would get cleared
2820 * on remount
2821 */
2822 if (ctx->mask_s_flags & SB_I_VERSION)
2823 fc->sb_flags |= SB_I_VERSION;
2824
2825 #define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; })
2826 APPLY(s_commit_interval);
2827 APPLY(s_stripe);
2828 APPLY(s_max_batch_time);
2829 APPLY(s_min_batch_time);
2830 APPLY(s_want_extra_isize);
2831 APPLY(s_inode_readahead_blks);
2832 APPLY(s_max_dir_size_kb);
2833 APPLY(s_li_wait_mult);
2834 APPLY(s_resgid);
2835 APPLY(s_resuid);
2836
2837 #ifdef CONFIG_EXT4_DEBUG
2838 APPLY(s_fc_debug_max_replay);
2839 #endif
2840
2841 ext4_apply_quota_options(fc, sb);
2842 ext4_apply_test_dummy_encryption(ctx, sb);
2843 }
2844
2845
ext4_validate_options(struct fs_context * fc)2846 static int ext4_validate_options(struct fs_context *fc)
2847 {
2848 #ifdef CONFIG_QUOTA
2849 struct ext4_fs_context *ctx = fc->fs_private;
2850 char *usr_qf_name, *grp_qf_name;
2851
2852 usr_qf_name = ctx->s_qf_names[USRQUOTA];
2853 grp_qf_name = ctx->s_qf_names[GRPQUOTA];
2854
2855 if (usr_qf_name || grp_qf_name) {
2856 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name)
2857 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2858
2859 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name)
2860 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2861
2862 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2863 ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) {
2864 ext4_msg(NULL, KERN_ERR, "old and new quota "
2865 "format mixing");
2866 return -EINVAL;
2867 }
2868 }
2869 #endif
2870 return 1;
2871 }
2872
ext4_show_quota_options(struct seq_file * seq,struct super_block * sb)2873 static inline void ext4_show_quota_options(struct seq_file *seq,
2874 struct super_block *sb)
2875 {
2876 #if defined(CONFIG_QUOTA)
2877 struct ext4_sb_info *sbi = EXT4_SB(sb);
2878 char *usr_qf_name, *grp_qf_name;
2879
2880 if (sbi->s_jquota_fmt) {
2881 char *fmtname = "";
2882
2883 switch (sbi->s_jquota_fmt) {
2884 case QFMT_VFS_OLD:
2885 fmtname = "vfsold";
2886 break;
2887 case QFMT_VFS_V0:
2888 fmtname = "vfsv0";
2889 break;
2890 case QFMT_VFS_V1:
2891 fmtname = "vfsv1";
2892 break;
2893 }
2894 seq_printf(seq, ",jqfmt=%s", fmtname);
2895 }
2896
2897 rcu_read_lock();
2898 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2899 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2900 if (usr_qf_name)
2901 seq_show_option(seq, "usrjquota", usr_qf_name);
2902 if (grp_qf_name)
2903 seq_show_option(seq, "grpjquota", grp_qf_name);
2904 rcu_read_unlock();
2905 #endif
2906 }
2907
token2str(int token)2908 static const char *token2str(int token)
2909 {
2910 const struct fs_parameter_spec *spec;
2911
2912 for (spec = ext4_param_specs; spec->name != NULL; spec++)
2913 if (spec->opt == token && !spec->type)
2914 break;
2915 return spec->name;
2916 }
2917
2918 /*
2919 * Show an option if
2920 * - it's set to a non-default value OR
2921 * - if the per-sb default is different from the global default
2922 */
_ext4_show_options(struct seq_file * seq,struct super_block * sb,int nodefs)2923 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2924 int nodefs)
2925 {
2926 struct ext4_sb_info *sbi = EXT4_SB(sb);
2927 struct ext4_super_block *es = sbi->s_es;
2928 int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2929 const struct mount_opts *m;
2930 char sep = nodefs ? '\n' : ',';
2931
2932 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2933 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2934
2935 if (sbi->s_sb_block != 1)
2936 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2937
2938 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2939 int want_set = m->flags & MOPT_SET;
2940 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2941 m->flags & MOPT_SKIP)
2942 continue;
2943 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2944 continue; /* skip if same as the default */
2945 if ((want_set &&
2946 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2947 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2948 continue; /* select Opt_noFoo vs Opt_Foo */
2949 SEQ_OPTS_PRINT("%s", token2str(m->token));
2950 }
2951
2952 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2953 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2954 SEQ_OPTS_PRINT("resuid=%u",
2955 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2956 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2957 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2958 SEQ_OPTS_PRINT("resgid=%u",
2959 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2960 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2961 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2962 SEQ_OPTS_PUTS("errors=remount-ro");
2963 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2964 SEQ_OPTS_PUTS("errors=continue");
2965 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2966 SEQ_OPTS_PUTS("errors=panic");
2967 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2968 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2969 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2970 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2971 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2972 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2973 if (sb->s_flags & SB_I_VERSION)
2974 SEQ_OPTS_PUTS("i_version");
2975 if (nodefs || sbi->s_stripe)
2976 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2977 if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2978 (sbi->s_mount_opt ^ def_mount_opt)) {
2979 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2980 SEQ_OPTS_PUTS("data=journal");
2981 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2982 SEQ_OPTS_PUTS("data=ordered");
2983 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2984 SEQ_OPTS_PUTS("data=writeback");
2985 }
2986 if (nodefs ||
2987 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2988 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2989 sbi->s_inode_readahead_blks);
2990
2991 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2992 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2993 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2994 if (nodefs || sbi->s_max_dir_size_kb)
2995 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2996 if (test_opt(sb, DATA_ERR_ABORT))
2997 SEQ_OPTS_PUTS("data_err=abort");
2998
2999 fscrypt_show_test_dummy_encryption(seq, sep, sb);
3000
3001 if (sb->s_flags & SB_INLINECRYPT)
3002 SEQ_OPTS_PUTS("inlinecrypt");
3003
3004 if (test_opt(sb, DAX_ALWAYS)) {
3005 if (IS_EXT2_SB(sb))
3006 SEQ_OPTS_PUTS("dax");
3007 else
3008 SEQ_OPTS_PUTS("dax=always");
3009 } else if (test_opt2(sb, DAX_NEVER)) {
3010 SEQ_OPTS_PUTS("dax=never");
3011 } else if (test_opt2(sb, DAX_INODE)) {
3012 SEQ_OPTS_PUTS("dax=inode");
3013 }
3014 ext4_show_quota_options(seq, sb);
3015 return 0;
3016 }
3017
ext4_show_options(struct seq_file * seq,struct dentry * root)3018 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
3019 {
3020 return _ext4_show_options(seq, root->d_sb, 0);
3021 }
3022
ext4_seq_options_show(struct seq_file * seq,void * offset)3023 int ext4_seq_options_show(struct seq_file *seq, void *offset)
3024 {
3025 struct super_block *sb = seq->private;
3026 int rc;
3027
3028 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
3029 rc = _ext4_show_options(seq, sb, 1);
3030 seq_puts(seq, "\n");
3031 return rc;
3032 }
3033
ext4_setup_super(struct super_block * sb,struct ext4_super_block * es,int read_only)3034 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
3035 int read_only)
3036 {
3037 struct ext4_sb_info *sbi = EXT4_SB(sb);
3038 int err = 0;
3039
3040 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
3041 ext4_msg(sb, KERN_ERR, "revision level too high, "
3042 "forcing read-only mode");
3043 err = -EROFS;
3044 goto done;
3045 }
3046 if (read_only)
3047 goto done;
3048 if (!(sbi->s_mount_state & EXT4_VALID_FS))
3049 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
3050 "running e2fsck is recommended");
3051 else if (sbi->s_mount_state & EXT4_ERROR_FS)
3052 ext4_msg(sb, KERN_WARNING,
3053 "warning: mounting fs with errors, "
3054 "running e2fsck is recommended");
3055 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
3056 le16_to_cpu(es->s_mnt_count) >=
3057 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
3058 ext4_msg(sb, KERN_WARNING,
3059 "warning: maximal mount count reached, "
3060 "running e2fsck is recommended");
3061 else if (le32_to_cpu(es->s_checkinterval) &&
3062 (ext4_get_tstamp(es, s_lastcheck) +
3063 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
3064 ext4_msg(sb, KERN_WARNING,
3065 "warning: checktime reached, "
3066 "running e2fsck is recommended");
3067 if (!sbi->s_journal)
3068 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
3069 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
3070 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
3071 le16_add_cpu(&es->s_mnt_count, 1);
3072 ext4_update_tstamp(es, s_mtime);
3073 if (sbi->s_journal) {
3074 ext4_set_feature_journal_needs_recovery(sb);
3075 if (ext4_has_feature_orphan_file(sb))
3076 ext4_set_feature_orphan_present(sb);
3077 }
3078
3079 err = ext4_commit_super(sb);
3080 done:
3081 if (test_opt(sb, DEBUG))
3082 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
3083 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
3084 sb->s_blocksize,
3085 sbi->s_groups_count,
3086 EXT4_BLOCKS_PER_GROUP(sb),
3087 EXT4_INODES_PER_GROUP(sb),
3088 sbi->s_mount_opt, sbi->s_mount_opt2);
3089 return err;
3090 }
3091
ext4_alloc_flex_bg_array(struct super_block * sb,ext4_group_t ngroup)3092 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
3093 {
3094 struct ext4_sb_info *sbi = EXT4_SB(sb);
3095 struct flex_groups **old_groups, **new_groups;
3096 int size, i, j;
3097
3098 if (!sbi->s_log_groups_per_flex)
3099 return 0;
3100
3101 size = ext4_flex_group(sbi, ngroup - 1) + 1;
3102 if (size <= sbi->s_flex_groups_allocated)
3103 return 0;
3104
3105 new_groups = kvzalloc(roundup_pow_of_two(size *
3106 sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
3107 if (!new_groups) {
3108 ext4_msg(sb, KERN_ERR,
3109 "not enough memory for %d flex group pointers", size);
3110 return -ENOMEM;
3111 }
3112 for (i = sbi->s_flex_groups_allocated; i < size; i++) {
3113 new_groups[i] = kvzalloc(roundup_pow_of_two(
3114 sizeof(struct flex_groups)),
3115 GFP_KERNEL);
3116 if (!new_groups[i]) {
3117 for (j = sbi->s_flex_groups_allocated; j < i; j++)
3118 kvfree(new_groups[j]);
3119 kvfree(new_groups);
3120 ext4_msg(sb, KERN_ERR,
3121 "not enough memory for %d flex groups", size);
3122 return -ENOMEM;
3123 }
3124 }
3125 rcu_read_lock();
3126 old_groups = rcu_dereference(sbi->s_flex_groups);
3127 if (old_groups)
3128 memcpy(new_groups, old_groups,
3129 (sbi->s_flex_groups_allocated *
3130 sizeof(struct flex_groups *)));
3131 rcu_read_unlock();
3132 rcu_assign_pointer(sbi->s_flex_groups, new_groups);
3133 sbi->s_flex_groups_allocated = size;
3134 if (old_groups)
3135 ext4_kvfree_array_rcu(old_groups);
3136 return 0;
3137 }
3138
ext4_fill_flex_info(struct super_block * sb)3139 static int ext4_fill_flex_info(struct super_block *sb)
3140 {
3141 struct ext4_sb_info *sbi = EXT4_SB(sb);
3142 struct ext4_group_desc *gdp = NULL;
3143 struct flex_groups *fg;
3144 ext4_group_t flex_group;
3145 int i, err;
3146
3147 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
3148 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
3149 sbi->s_log_groups_per_flex = 0;
3150 return 1;
3151 }
3152
3153 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
3154 if (err)
3155 goto failed;
3156
3157 for (i = 0; i < sbi->s_groups_count; i++) {
3158 gdp = ext4_get_group_desc(sb, i, NULL);
3159
3160 flex_group = ext4_flex_group(sbi, i);
3161 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
3162 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
3163 atomic64_add(ext4_free_group_clusters(sb, gdp),
3164 &fg->free_clusters);
3165 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
3166 }
3167
3168 return 1;
3169 failed:
3170 return 0;
3171 }
3172
ext4_group_desc_csum(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)3173 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
3174 struct ext4_group_desc *gdp)
3175 {
3176 int offset = offsetof(struct ext4_group_desc, bg_checksum);
3177 __u16 crc = 0;
3178 __le32 le_group = cpu_to_le32(block_group);
3179 struct ext4_sb_info *sbi = EXT4_SB(sb);
3180
3181 if (ext4_has_metadata_csum(sbi->s_sb)) {
3182 /* Use new metadata_csum algorithm */
3183 __u32 csum32;
3184 __u16 dummy_csum = 0;
3185
3186 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
3187 sizeof(le_group));
3188 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
3189 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
3190 sizeof(dummy_csum));
3191 offset += sizeof(dummy_csum);
3192 if (offset < sbi->s_desc_size)
3193 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
3194 sbi->s_desc_size - offset);
3195
3196 crc = csum32 & 0xFFFF;
3197 goto out;
3198 }
3199
3200 /* old crc16 code */
3201 if (!ext4_has_feature_gdt_csum(sb))
3202 return 0;
3203
3204 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
3205 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
3206 crc = crc16(crc, (__u8 *)gdp, offset);
3207 offset += sizeof(gdp->bg_checksum); /* skip checksum */
3208 /* for checksum of struct ext4_group_desc do the rest...*/
3209 if (ext4_has_feature_64bit(sb) &&
3210 offset < le16_to_cpu(sbi->s_es->s_desc_size))
3211 crc = crc16(crc, (__u8 *)gdp + offset,
3212 le16_to_cpu(sbi->s_es->s_desc_size) -
3213 offset);
3214
3215 out:
3216 return cpu_to_le16(crc);
3217 }
3218
ext4_group_desc_csum_verify(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)3219 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
3220 struct ext4_group_desc *gdp)
3221 {
3222 if (ext4_has_group_desc_csum(sb) &&
3223 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
3224 return 0;
3225
3226 return 1;
3227 }
3228
ext4_group_desc_csum_set(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)3229 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
3230 struct ext4_group_desc *gdp)
3231 {
3232 if (!ext4_has_group_desc_csum(sb))
3233 return;
3234 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
3235 }
3236
3237 /* Called at mount-time, super-block is locked */
ext4_check_descriptors(struct super_block * sb,ext4_fsblk_t sb_block,ext4_group_t * first_not_zeroed)3238 static int ext4_check_descriptors(struct super_block *sb,
3239 ext4_fsblk_t sb_block,
3240 ext4_group_t *first_not_zeroed)
3241 {
3242 struct ext4_sb_info *sbi = EXT4_SB(sb);
3243 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
3244 ext4_fsblk_t last_block;
3245 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
3246 ext4_fsblk_t block_bitmap;
3247 ext4_fsblk_t inode_bitmap;
3248 ext4_fsblk_t inode_table;
3249 int flexbg_flag = 0;
3250 ext4_group_t i, grp = sbi->s_groups_count;
3251
3252 if (ext4_has_feature_flex_bg(sb))
3253 flexbg_flag = 1;
3254
3255 ext4_debug("Checking group descriptors");
3256
3257 for (i = 0; i < sbi->s_groups_count; i++) {
3258 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
3259
3260 if (i == sbi->s_groups_count - 1 || flexbg_flag)
3261 last_block = ext4_blocks_count(sbi->s_es) - 1;
3262 else
3263 last_block = first_block +
3264 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
3265
3266 if ((grp == sbi->s_groups_count) &&
3267 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3268 grp = i;
3269
3270 block_bitmap = ext4_block_bitmap(sb, gdp);
3271 if (block_bitmap == sb_block) {
3272 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3273 "Block bitmap for group %u overlaps "
3274 "superblock", i);
3275 if (!sb_rdonly(sb))
3276 return 0;
3277 }
3278 if (block_bitmap >= sb_block + 1 &&
3279 block_bitmap <= last_bg_block) {
3280 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3281 "Block bitmap for group %u overlaps "
3282 "block group descriptors", i);
3283 if (!sb_rdonly(sb))
3284 return 0;
3285 }
3286 if (block_bitmap < first_block || block_bitmap > last_block) {
3287 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3288 "Block bitmap for group %u not in group "
3289 "(block %llu)!", i, block_bitmap);
3290 return 0;
3291 }
3292 inode_bitmap = ext4_inode_bitmap(sb, gdp);
3293 if (inode_bitmap == sb_block) {
3294 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3295 "Inode bitmap for group %u overlaps "
3296 "superblock", i);
3297 if (!sb_rdonly(sb))
3298 return 0;
3299 }
3300 if (inode_bitmap >= sb_block + 1 &&
3301 inode_bitmap <= last_bg_block) {
3302 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3303 "Inode bitmap for group %u overlaps "
3304 "block group descriptors", i);
3305 if (!sb_rdonly(sb))
3306 return 0;
3307 }
3308 if (inode_bitmap < first_block || inode_bitmap > last_block) {
3309 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3310 "Inode bitmap for group %u not in group "
3311 "(block %llu)!", i, inode_bitmap);
3312 return 0;
3313 }
3314 inode_table = ext4_inode_table(sb, gdp);
3315 if (inode_table == sb_block) {
3316 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3317 "Inode table for group %u overlaps "
3318 "superblock", i);
3319 if (!sb_rdonly(sb))
3320 return 0;
3321 }
3322 if (inode_table >= sb_block + 1 &&
3323 inode_table <= last_bg_block) {
3324 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3325 "Inode table for group %u overlaps "
3326 "block group descriptors", i);
3327 if (!sb_rdonly(sb))
3328 return 0;
3329 }
3330 if (inode_table < first_block ||
3331 inode_table + sbi->s_itb_per_group - 1 > last_block) {
3332 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3333 "Inode table for group %u not in group "
3334 "(block %llu)!", i, inode_table);
3335 return 0;
3336 }
3337 ext4_lock_group(sb, i);
3338 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
3339 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3340 "Checksum for group %u failed (%u!=%u)",
3341 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
3342 gdp)), le16_to_cpu(gdp->bg_checksum));
3343 if (!sb_rdonly(sb)) {
3344 ext4_unlock_group(sb, i);
3345 return 0;
3346 }
3347 }
3348 ext4_unlock_group(sb, i);
3349 if (!flexbg_flag)
3350 first_block += EXT4_BLOCKS_PER_GROUP(sb);
3351 }
3352 if (NULL != first_not_zeroed)
3353 *first_not_zeroed = grp;
3354 return 1;
3355 }
3356
3357 /*
3358 * Maximal extent format file size.
3359 * Resulting logical blkno at s_maxbytes must fit in our on-disk
3360 * extent format containers, within a sector_t, and within i_blocks
3361 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
3362 * so that won't be a limiting factor.
3363 *
3364 * However there is other limiting factor. We do store extents in the form
3365 * of starting block and length, hence the resulting length of the extent
3366 * covering maximum file size must fit into on-disk format containers as
3367 * well. Given that length is always by 1 unit bigger than max unit (because
3368 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3369 *
3370 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3371 */
ext4_max_size(int blkbits,int has_huge_files)3372 static loff_t ext4_max_size(int blkbits, int has_huge_files)
3373 {
3374 loff_t res;
3375 loff_t upper_limit = MAX_LFS_FILESIZE;
3376
3377 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3378
3379 if (!has_huge_files) {
3380 upper_limit = (1LL << 32) - 1;
3381
3382 /* total blocks in file system block size */
3383 upper_limit >>= (blkbits - 9);
3384 upper_limit <<= blkbits;
3385 }
3386
3387 /*
3388 * 32-bit extent-start container, ee_block. We lower the maxbytes
3389 * by one fs block, so ee_len can cover the extent of maximum file
3390 * size
3391 */
3392 res = (1LL << 32) - 1;
3393 res <<= blkbits;
3394
3395 /* Sanity check against vm- & vfs- imposed limits */
3396 if (res > upper_limit)
3397 res = upper_limit;
3398
3399 return res;
3400 }
3401
3402 /*
3403 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
3404 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3405 * We need to be 1 filesystem block less than the 2^48 sector limit.
3406 */
ext4_max_bitmap_size(int bits,int has_huge_files)3407 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3408 {
3409 loff_t upper_limit, res = EXT4_NDIR_BLOCKS;
3410 int meta_blocks;
3411 unsigned int ppb = 1 << (bits - 2);
3412
3413 /*
3414 * This is calculated to be the largest file size for a dense, block
3415 * mapped file such that the file's total number of 512-byte sectors,
3416 * including data and all indirect blocks, does not exceed (2^48 - 1).
3417 *
3418 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3419 * number of 512-byte sectors of the file.
3420 */
3421 if (!has_huge_files) {
3422 /*
3423 * !has_huge_files or implies that the inode i_block field
3424 * represents total file blocks in 2^32 512-byte sectors ==
3425 * size of vfs inode i_blocks * 8
3426 */
3427 upper_limit = (1LL << 32) - 1;
3428
3429 /* total blocks in file system block size */
3430 upper_limit >>= (bits - 9);
3431
3432 } else {
3433 /*
3434 * We use 48 bit ext4_inode i_blocks
3435 * With EXT4_HUGE_FILE_FL set the i_blocks
3436 * represent total number of blocks in
3437 * file system block size
3438 */
3439 upper_limit = (1LL << 48) - 1;
3440
3441 }
3442
3443 /* Compute how many blocks we can address by block tree */
3444 res += ppb;
3445 res += ppb * ppb;
3446 res += ((loff_t)ppb) * ppb * ppb;
3447 /* Compute how many metadata blocks are needed */
3448 meta_blocks = 1;
3449 meta_blocks += 1 + ppb;
3450 meta_blocks += 1 + ppb + ppb * ppb;
3451 /* Does block tree limit file size? */
3452 if (res + meta_blocks <= upper_limit)
3453 goto check_lfs;
3454
3455 res = upper_limit;
3456 /* How many metadata blocks are needed for addressing upper_limit? */
3457 upper_limit -= EXT4_NDIR_BLOCKS;
3458 /* indirect blocks */
3459 meta_blocks = 1;
3460 upper_limit -= ppb;
3461 /* double indirect blocks */
3462 if (upper_limit < ppb * ppb) {
3463 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb);
3464 res -= meta_blocks;
3465 goto check_lfs;
3466 }
3467 meta_blocks += 1 + ppb;
3468 upper_limit -= ppb * ppb;
3469 /* tripple indirect blocks for the rest */
3470 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) +
3471 DIV_ROUND_UP_ULL(upper_limit, ppb*ppb);
3472 res -= meta_blocks;
3473 check_lfs:
3474 res <<= bits;
3475 if (res > MAX_LFS_FILESIZE)
3476 res = MAX_LFS_FILESIZE;
3477
3478 return res;
3479 }
3480
descriptor_loc(struct super_block * sb,ext4_fsblk_t logical_sb_block,int nr)3481 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3482 ext4_fsblk_t logical_sb_block, int nr)
3483 {
3484 struct ext4_sb_info *sbi = EXT4_SB(sb);
3485 ext4_group_t bg, first_meta_bg;
3486 int has_super = 0;
3487
3488 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3489
3490 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3491 return logical_sb_block + nr + 1;
3492 bg = sbi->s_desc_per_block * nr;
3493 if (ext4_bg_has_super(sb, bg))
3494 has_super = 1;
3495
3496 /*
3497 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3498 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
3499 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3500 * compensate.
3501 */
3502 if (sb->s_blocksize == 1024 && nr == 0 &&
3503 le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3504 has_super++;
3505
3506 return (has_super + ext4_group_first_block_no(sb, bg));
3507 }
3508
3509 /**
3510 * ext4_get_stripe_size: Get the stripe size.
3511 * @sbi: In memory super block info
3512 *
3513 * If we have specified it via mount option, then
3514 * use the mount option value. If the value specified at mount time is
3515 * greater than the blocks per group use the super block value.
3516 * If the super block value is greater than blocks per group return 0.
3517 * Allocator needs it be less than blocks per group.
3518 *
3519 */
ext4_get_stripe_size(struct ext4_sb_info * sbi)3520 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3521 {
3522 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3523 unsigned long stripe_width =
3524 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3525 int ret;
3526
3527 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3528 ret = sbi->s_stripe;
3529 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3530 ret = stripe_width;
3531 else if (stride && stride <= sbi->s_blocks_per_group)
3532 ret = stride;
3533 else
3534 ret = 0;
3535
3536 /*
3537 * If the stripe width is 1, this makes no sense and
3538 * we set it to 0 to turn off stripe handling code.
3539 */
3540 if (ret <= 1)
3541 ret = 0;
3542
3543 return ret;
3544 }
3545
3546 /*
3547 * Check whether this filesystem can be mounted based on
3548 * the features present and the RDONLY/RDWR mount requested.
3549 * Returns 1 if this filesystem can be mounted as requested,
3550 * 0 if it cannot be.
3551 */
ext4_feature_set_ok(struct super_block * sb,int readonly)3552 int ext4_feature_set_ok(struct super_block *sb, int readonly)
3553 {
3554 if (ext4_has_unknown_ext4_incompat_features(sb)) {
3555 ext4_msg(sb, KERN_ERR,
3556 "Couldn't mount because of "
3557 "unsupported optional features (%x)",
3558 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3559 ~EXT4_FEATURE_INCOMPAT_SUPP));
3560 return 0;
3561 }
3562
3563 #if !IS_ENABLED(CONFIG_UNICODE)
3564 if (ext4_has_feature_casefold(sb)) {
3565 ext4_msg(sb, KERN_ERR,
3566 "Filesystem with casefold feature cannot be "
3567 "mounted without CONFIG_UNICODE");
3568 return 0;
3569 }
3570 #endif
3571
3572 if (readonly)
3573 return 1;
3574
3575 if (ext4_has_feature_readonly(sb)) {
3576 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3577 sb->s_flags |= SB_RDONLY;
3578 return 1;
3579 }
3580
3581 /* Check that feature set is OK for a read-write mount */
3582 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3583 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3584 "unsupported optional features (%x)",
3585 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3586 ~EXT4_FEATURE_RO_COMPAT_SUPP));
3587 return 0;
3588 }
3589 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3590 ext4_msg(sb, KERN_ERR,
3591 "Can't support bigalloc feature without "
3592 "extents feature\n");
3593 return 0;
3594 }
3595
3596 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3597 if (!readonly && (ext4_has_feature_quota(sb) ||
3598 ext4_has_feature_project(sb))) {
3599 ext4_msg(sb, KERN_ERR,
3600 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3601 return 0;
3602 }
3603 #endif /* CONFIG_QUOTA */
3604 return 1;
3605 }
3606
3607 /*
3608 * This function is called once a day if we have errors logged
3609 * on the file system
3610 */
print_daily_error_info(struct timer_list * t)3611 static void print_daily_error_info(struct timer_list *t)
3612 {
3613 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3614 struct super_block *sb = sbi->s_sb;
3615 struct ext4_super_block *es = sbi->s_es;
3616
3617 if (es->s_error_count)
3618 /* fsck newer than v1.41.13 is needed to clean this condition. */
3619 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3620 le32_to_cpu(es->s_error_count));
3621 if (es->s_first_error_time) {
3622 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3623 sb->s_id,
3624 ext4_get_tstamp(es, s_first_error_time),
3625 (int) sizeof(es->s_first_error_func),
3626 es->s_first_error_func,
3627 le32_to_cpu(es->s_first_error_line));
3628 if (es->s_first_error_ino)
3629 printk(KERN_CONT ": inode %u",
3630 le32_to_cpu(es->s_first_error_ino));
3631 if (es->s_first_error_block)
3632 printk(KERN_CONT ": block %llu", (unsigned long long)
3633 le64_to_cpu(es->s_first_error_block));
3634 printk(KERN_CONT "\n");
3635 }
3636 if (es->s_last_error_time) {
3637 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3638 sb->s_id,
3639 ext4_get_tstamp(es, s_last_error_time),
3640 (int) sizeof(es->s_last_error_func),
3641 es->s_last_error_func,
3642 le32_to_cpu(es->s_last_error_line));
3643 if (es->s_last_error_ino)
3644 printk(KERN_CONT ": inode %u",
3645 le32_to_cpu(es->s_last_error_ino));
3646 if (es->s_last_error_block)
3647 printk(KERN_CONT ": block %llu", (unsigned long long)
3648 le64_to_cpu(es->s_last_error_block));
3649 printk(KERN_CONT "\n");
3650 }
3651 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
3652 }
3653
3654 /* Find next suitable group and run ext4_init_inode_table */
ext4_run_li_request(struct ext4_li_request * elr)3655 static int ext4_run_li_request(struct ext4_li_request *elr)
3656 {
3657 struct ext4_group_desc *gdp = NULL;
3658 struct super_block *sb = elr->lr_super;
3659 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3660 ext4_group_t group = elr->lr_next_group;
3661 unsigned int prefetch_ios = 0;
3662 int ret = 0;
3663 u64 start_time;
3664
3665 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3666 elr->lr_next_group = ext4_mb_prefetch(sb, group,
3667 EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios);
3668 if (prefetch_ios)
3669 ext4_mb_prefetch_fini(sb, elr->lr_next_group,
3670 prefetch_ios);
3671 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group,
3672 prefetch_ios);
3673 if (group >= elr->lr_next_group) {
3674 ret = 1;
3675 if (elr->lr_first_not_zeroed != ngroups &&
3676 !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3677 elr->lr_next_group = elr->lr_first_not_zeroed;
3678 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3679 ret = 0;
3680 }
3681 }
3682 return ret;
3683 }
3684
3685 for (; group < ngroups; group++) {
3686 gdp = ext4_get_group_desc(sb, group, NULL);
3687 if (!gdp) {
3688 ret = 1;
3689 break;
3690 }
3691
3692 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3693 break;
3694 }
3695
3696 if (group >= ngroups)
3697 ret = 1;
3698
3699 if (!ret) {
3700 start_time = ktime_get_real_ns();
3701 ret = ext4_init_inode_table(sb, group,
3702 elr->lr_timeout ? 0 : 1);
3703 trace_ext4_lazy_itable_init(sb, group);
3704 if (elr->lr_timeout == 0) {
3705 elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) *
3706 EXT4_SB(elr->lr_super)->s_li_wait_mult);
3707 }
3708 elr->lr_next_sched = jiffies + elr->lr_timeout;
3709 elr->lr_next_group = group + 1;
3710 }
3711 return ret;
3712 }
3713
3714 /*
3715 * Remove lr_request from the list_request and free the
3716 * request structure. Should be called with li_list_mtx held
3717 */
ext4_remove_li_request(struct ext4_li_request * elr)3718 static void ext4_remove_li_request(struct ext4_li_request *elr)
3719 {
3720 if (!elr)
3721 return;
3722
3723 list_del(&elr->lr_request);
3724 EXT4_SB(elr->lr_super)->s_li_request = NULL;
3725 kfree(elr);
3726 }
3727
ext4_unregister_li_request(struct super_block * sb)3728 static void ext4_unregister_li_request(struct super_block *sb)
3729 {
3730 mutex_lock(&ext4_li_mtx);
3731 if (!ext4_li_info) {
3732 mutex_unlock(&ext4_li_mtx);
3733 return;
3734 }
3735
3736 mutex_lock(&ext4_li_info->li_list_mtx);
3737 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3738 mutex_unlock(&ext4_li_info->li_list_mtx);
3739 mutex_unlock(&ext4_li_mtx);
3740 }
3741
3742 static struct task_struct *ext4_lazyinit_task;
3743
3744 /*
3745 * This is the function where ext4lazyinit thread lives. It walks
3746 * through the request list searching for next scheduled filesystem.
3747 * When such a fs is found, run the lazy initialization request
3748 * (ext4_rn_li_request) and keep track of the time spend in this
3749 * function. Based on that time we compute next schedule time of
3750 * the request. When walking through the list is complete, compute
3751 * next waking time and put itself into sleep.
3752 */
ext4_lazyinit_thread(void * arg)3753 static int ext4_lazyinit_thread(void *arg)
3754 {
3755 struct ext4_lazy_init *eli = arg;
3756 struct list_head *pos, *n;
3757 struct ext4_li_request *elr;
3758 unsigned long next_wakeup, cur;
3759
3760 BUG_ON(NULL == eli);
3761
3762 cont_thread:
3763 while (true) {
3764 next_wakeup = MAX_JIFFY_OFFSET;
3765
3766 mutex_lock(&eli->li_list_mtx);
3767 if (list_empty(&eli->li_request_list)) {
3768 mutex_unlock(&eli->li_list_mtx);
3769 goto exit_thread;
3770 }
3771 list_for_each_safe(pos, n, &eli->li_request_list) {
3772 int err = 0;
3773 int progress = 0;
3774 elr = list_entry(pos, struct ext4_li_request,
3775 lr_request);
3776
3777 if (time_before(jiffies, elr->lr_next_sched)) {
3778 if (time_before(elr->lr_next_sched, next_wakeup))
3779 next_wakeup = elr->lr_next_sched;
3780 continue;
3781 }
3782 if (down_read_trylock(&elr->lr_super->s_umount)) {
3783 if (sb_start_write_trylock(elr->lr_super)) {
3784 progress = 1;
3785 /*
3786 * We hold sb->s_umount, sb can not
3787 * be removed from the list, it is
3788 * now safe to drop li_list_mtx
3789 */
3790 mutex_unlock(&eli->li_list_mtx);
3791 err = ext4_run_li_request(elr);
3792 sb_end_write(elr->lr_super);
3793 mutex_lock(&eli->li_list_mtx);
3794 n = pos->next;
3795 }
3796 up_read((&elr->lr_super->s_umount));
3797 }
3798 /* error, remove the lazy_init job */
3799 if (err) {
3800 ext4_remove_li_request(elr);
3801 continue;
3802 }
3803 if (!progress) {
3804 elr->lr_next_sched = jiffies +
3805 (prandom_u32()
3806 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3807 }
3808 if (time_before(elr->lr_next_sched, next_wakeup))
3809 next_wakeup = elr->lr_next_sched;
3810 }
3811 mutex_unlock(&eli->li_list_mtx);
3812
3813 try_to_freeze();
3814
3815 cur = jiffies;
3816 if ((time_after_eq(cur, next_wakeup)) ||
3817 (MAX_JIFFY_OFFSET == next_wakeup)) {
3818 cond_resched();
3819 continue;
3820 }
3821
3822 schedule_timeout_interruptible(next_wakeup - cur);
3823
3824 if (kthread_should_stop()) {
3825 ext4_clear_request_list();
3826 goto exit_thread;
3827 }
3828 }
3829
3830 exit_thread:
3831 /*
3832 * It looks like the request list is empty, but we need
3833 * to check it under the li_list_mtx lock, to prevent any
3834 * additions into it, and of course we should lock ext4_li_mtx
3835 * to atomically free the list and ext4_li_info, because at
3836 * this point another ext4 filesystem could be registering
3837 * new one.
3838 */
3839 mutex_lock(&ext4_li_mtx);
3840 mutex_lock(&eli->li_list_mtx);
3841 if (!list_empty(&eli->li_request_list)) {
3842 mutex_unlock(&eli->li_list_mtx);
3843 mutex_unlock(&ext4_li_mtx);
3844 goto cont_thread;
3845 }
3846 mutex_unlock(&eli->li_list_mtx);
3847 kfree(ext4_li_info);
3848 ext4_li_info = NULL;
3849 mutex_unlock(&ext4_li_mtx);
3850
3851 return 0;
3852 }
3853
ext4_clear_request_list(void)3854 static void ext4_clear_request_list(void)
3855 {
3856 struct list_head *pos, *n;
3857 struct ext4_li_request *elr;
3858
3859 mutex_lock(&ext4_li_info->li_list_mtx);
3860 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3861 elr = list_entry(pos, struct ext4_li_request,
3862 lr_request);
3863 ext4_remove_li_request(elr);
3864 }
3865 mutex_unlock(&ext4_li_info->li_list_mtx);
3866 }
3867
ext4_run_lazyinit_thread(void)3868 static int ext4_run_lazyinit_thread(void)
3869 {
3870 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3871 ext4_li_info, "ext4lazyinit");
3872 if (IS_ERR(ext4_lazyinit_task)) {
3873 int err = PTR_ERR(ext4_lazyinit_task);
3874 ext4_clear_request_list();
3875 kfree(ext4_li_info);
3876 ext4_li_info = NULL;
3877 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3878 "initialization thread\n",
3879 err);
3880 return err;
3881 }
3882 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3883 return 0;
3884 }
3885
3886 /*
3887 * Check whether it make sense to run itable init. thread or not.
3888 * If there is at least one uninitialized inode table, return
3889 * corresponding group number, else the loop goes through all
3890 * groups and return total number of groups.
3891 */
ext4_has_uninit_itable(struct super_block * sb)3892 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3893 {
3894 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3895 struct ext4_group_desc *gdp = NULL;
3896
3897 if (!ext4_has_group_desc_csum(sb))
3898 return ngroups;
3899
3900 for (group = 0; group < ngroups; group++) {
3901 gdp = ext4_get_group_desc(sb, group, NULL);
3902 if (!gdp)
3903 continue;
3904
3905 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3906 break;
3907 }
3908
3909 return group;
3910 }
3911
ext4_li_info_new(void)3912 static int ext4_li_info_new(void)
3913 {
3914 struct ext4_lazy_init *eli = NULL;
3915
3916 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3917 if (!eli)
3918 return -ENOMEM;
3919
3920 INIT_LIST_HEAD(&eli->li_request_list);
3921 mutex_init(&eli->li_list_mtx);
3922
3923 eli->li_state |= EXT4_LAZYINIT_QUIT;
3924
3925 ext4_li_info = eli;
3926
3927 return 0;
3928 }
3929
ext4_li_request_new(struct super_block * sb,ext4_group_t start)3930 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3931 ext4_group_t start)
3932 {
3933 struct ext4_li_request *elr;
3934
3935 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3936 if (!elr)
3937 return NULL;
3938
3939 elr->lr_super = sb;
3940 elr->lr_first_not_zeroed = start;
3941 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
3942 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3943 elr->lr_next_group = start;
3944 } else {
3945 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3946 }
3947
3948 /*
3949 * Randomize first schedule time of the request to
3950 * spread the inode table initialization requests
3951 * better.
3952 */
3953 elr->lr_next_sched = jiffies + (prandom_u32() %
3954 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3955 return elr;
3956 }
3957
ext4_register_li_request(struct super_block * sb,ext4_group_t first_not_zeroed)3958 int ext4_register_li_request(struct super_block *sb,
3959 ext4_group_t first_not_zeroed)
3960 {
3961 struct ext4_sb_info *sbi = EXT4_SB(sb);
3962 struct ext4_li_request *elr = NULL;
3963 ext4_group_t ngroups = sbi->s_groups_count;
3964 int ret = 0;
3965
3966 mutex_lock(&ext4_li_mtx);
3967 if (sbi->s_li_request != NULL) {
3968 /*
3969 * Reset timeout so it can be computed again, because
3970 * s_li_wait_mult might have changed.
3971 */
3972 sbi->s_li_request->lr_timeout = 0;
3973 goto out;
3974 }
3975
3976 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
3977 (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3978 !test_opt(sb, INIT_INODE_TABLE)))
3979 goto out;
3980
3981 elr = ext4_li_request_new(sb, first_not_zeroed);
3982 if (!elr) {
3983 ret = -ENOMEM;
3984 goto out;
3985 }
3986
3987 if (NULL == ext4_li_info) {
3988 ret = ext4_li_info_new();
3989 if (ret)
3990 goto out;
3991 }
3992
3993 mutex_lock(&ext4_li_info->li_list_mtx);
3994 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3995 mutex_unlock(&ext4_li_info->li_list_mtx);
3996
3997 sbi->s_li_request = elr;
3998 /*
3999 * set elr to NULL here since it has been inserted to
4000 * the request_list and the removal and free of it is
4001 * handled by ext4_clear_request_list from now on.
4002 */
4003 elr = NULL;
4004
4005 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
4006 ret = ext4_run_lazyinit_thread();
4007 if (ret)
4008 goto out;
4009 }
4010 out:
4011 mutex_unlock(&ext4_li_mtx);
4012 if (ret)
4013 kfree(elr);
4014 return ret;
4015 }
4016
4017 /*
4018 * We do not need to lock anything since this is called on
4019 * module unload.
4020 */
ext4_destroy_lazyinit_thread(void)4021 static void ext4_destroy_lazyinit_thread(void)
4022 {
4023 /*
4024 * If thread exited earlier
4025 * there's nothing to be done.
4026 */
4027 if (!ext4_li_info || !ext4_lazyinit_task)
4028 return;
4029
4030 kthread_stop(ext4_lazyinit_task);
4031 }
4032
set_journal_csum_feature_set(struct super_block * sb)4033 static int set_journal_csum_feature_set(struct super_block *sb)
4034 {
4035 int ret = 1;
4036 int compat, incompat;
4037 struct ext4_sb_info *sbi = EXT4_SB(sb);
4038
4039 if (ext4_has_metadata_csum(sb)) {
4040 /* journal checksum v3 */
4041 compat = 0;
4042 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
4043 } else {
4044 /* journal checksum v1 */
4045 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
4046 incompat = 0;
4047 }
4048
4049 jbd2_journal_clear_features(sbi->s_journal,
4050 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
4051 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
4052 JBD2_FEATURE_INCOMPAT_CSUM_V2);
4053 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4054 ret = jbd2_journal_set_features(sbi->s_journal,
4055 compat, 0,
4056 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
4057 incompat);
4058 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
4059 ret = jbd2_journal_set_features(sbi->s_journal,
4060 compat, 0,
4061 incompat);
4062 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4063 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4064 } else {
4065 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4066 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4067 }
4068
4069 return ret;
4070 }
4071
4072 /*
4073 * Note: calculating the overhead so we can be compatible with
4074 * historical BSD practice is quite difficult in the face of
4075 * clusters/bigalloc. This is because multiple metadata blocks from
4076 * different block group can end up in the same allocation cluster.
4077 * Calculating the exact overhead in the face of clustered allocation
4078 * requires either O(all block bitmaps) in memory or O(number of block
4079 * groups**2) in time. We will still calculate the superblock for
4080 * older file systems --- and if we come across with a bigalloc file
4081 * system with zero in s_overhead_clusters the estimate will be close to
4082 * correct especially for very large cluster sizes --- but for newer
4083 * file systems, it's better to calculate this figure once at mkfs
4084 * time, and store it in the superblock. If the superblock value is
4085 * present (even for non-bigalloc file systems), we will use it.
4086 */
count_overhead(struct super_block * sb,ext4_group_t grp,char * buf)4087 static int count_overhead(struct super_block *sb, ext4_group_t grp,
4088 char *buf)
4089 {
4090 struct ext4_sb_info *sbi = EXT4_SB(sb);
4091 struct ext4_group_desc *gdp;
4092 ext4_fsblk_t first_block, last_block, b;
4093 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4094 int s, j, count = 0;
4095 int has_super = ext4_bg_has_super(sb, grp);
4096
4097 if (!ext4_has_feature_bigalloc(sb))
4098 return (has_super + ext4_bg_num_gdb(sb, grp) +
4099 (has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) +
4100 sbi->s_itb_per_group + 2);
4101
4102 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
4103 (grp * EXT4_BLOCKS_PER_GROUP(sb));
4104 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
4105 for (i = 0; i < ngroups; i++) {
4106 gdp = ext4_get_group_desc(sb, i, NULL);
4107 b = ext4_block_bitmap(sb, gdp);
4108 if (b >= first_block && b <= last_block) {
4109 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4110 count++;
4111 }
4112 b = ext4_inode_bitmap(sb, gdp);
4113 if (b >= first_block && b <= last_block) {
4114 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4115 count++;
4116 }
4117 b = ext4_inode_table(sb, gdp);
4118 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
4119 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
4120 int c = EXT4_B2C(sbi, b - first_block);
4121 ext4_set_bit(c, buf);
4122 count++;
4123 }
4124 if (i != grp)
4125 continue;
4126 s = 0;
4127 if (ext4_bg_has_super(sb, grp)) {
4128 ext4_set_bit(s++, buf);
4129 count++;
4130 }
4131 j = ext4_bg_num_gdb(sb, grp);
4132 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
4133 ext4_error(sb, "Invalid number of block group "
4134 "descriptor blocks: %d", j);
4135 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
4136 }
4137 count += j;
4138 for (; j > 0; j--)
4139 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
4140 }
4141 if (!count)
4142 return 0;
4143 return EXT4_CLUSTERS_PER_GROUP(sb) -
4144 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
4145 }
4146
4147 /*
4148 * Compute the overhead and stash it in sbi->s_overhead
4149 */
ext4_calculate_overhead(struct super_block * sb)4150 int ext4_calculate_overhead(struct super_block *sb)
4151 {
4152 struct ext4_sb_info *sbi = EXT4_SB(sb);
4153 struct ext4_super_block *es = sbi->s_es;
4154 struct inode *j_inode;
4155 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
4156 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4157 ext4_fsblk_t overhead = 0;
4158 char *buf = (char *) get_zeroed_page(GFP_NOFS);
4159
4160 if (!buf)
4161 return -ENOMEM;
4162
4163 /*
4164 * Compute the overhead (FS structures). This is constant
4165 * for a given filesystem unless the number of block groups
4166 * changes so we cache the previous value until it does.
4167 */
4168
4169 /*
4170 * All of the blocks before first_data_block are overhead
4171 */
4172 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
4173
4174 /*
4175 * Add the overhead found in each block group
4176 */
4177 for (i = 0; i < ngroups; i++) {
4178 int blks;
4179
4180 blks = count_overhead(sb, i, buf);
4181 overhead += blks;
4182 if (blks)
4183 memset(buf, 0, PAGE_SIZE);
4184 cond_resched();
4185 }
4186
4187 /*
4188 * Add the internal journal blocks whether the journal has been
4189 * loaded or not
4190 */
4191 if (sbi->s_journal && !sbi->s_journal_bdev)
4192 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
4193 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
4194 /* j_inum for internal journal is non-zero */
4195 j_inode = ext4_get_journal_inode(sb, j_inum);
4196 if (j_inode) {
4197 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
4198 overhead += EXT4_NUM_B2C(sbi, j_blocks);
4199 iput(j_inode);
4200 } else {
4201 ext4_msg(sb, KERN_ERR, "can't get journal size");
4202 }
4203 }
4204 sbi->s_overhead = overhead;
4205 smp_wmb();
4206 free_page((unsigned long) buf);
4207 return 0;
4208 }
4209
ext4_set_resv_clusters(struct super_block * sb)4210 static void ext4_set_resv_clusters(struct super_block *sb)
4211 {
4212 ext4_fsblk_t resv_clusters;
4213 struct ext4_sb_info *sbi = EXT4_SB(sb);
4214
4215 /*
4216 * There's no need to reserve anything when we aren't using extents.
4217 * The space estimates are exact, there are no unwritten extents,
4218 * hole punching doesn't need new metadata... This is needed especially
4219 * to keep ext2/3 backward compatibility.
4220 */
4221 if (!ext4_has_feature_extents(sb))
4222 return;
4223 /*
4224 * By default we reserve 2% or 4096 clusters, whichever is smaller.
4225 * This should cover the situations where we can not afford to run
4226 * out of space like for example punch hole, or converting
4227 * unwritten extents in delalloc path. In most cases such
4228 * allocation would require 1, or 2 blocks, higher numbers are
4229 * very rare.
4230 */
4231 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
4232 sbi->s_cluster_bits);
4233
4234 do_div(resv_clusters, 50);
4235 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
4236
4237 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
4238 }
4239
ext4_quota_mode(struct super_block * sb)4240 static const char *ext4_quota_mode(struct super_block *sb)
4241 {
4242 #ifdef CONFIG_QUOTA
4243 if (!ext4_quota_capable(sb))
4244 return "none";
4245
4246 if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
4247 return "journalled";
4248 else
4249 return "writeback";
4250 #else
4251 return "disabled";
4252 #endif
4253 }
4254
ext4_setup_csum_trigger(struct super_block * sb,enum ext4_journal_trigger_type type,void (* trigger)(struct jbd2_buffer_trigger_type * type,struct buffer_head * bh,void * mapped_data,size_t size))4255 static void ext4_setup_csum_trigger(struct super_block *sb,
4256 enum ext4_journal_trigger_type type,
4257 void (*trigger)(
4258 struct jbd2_buffer_trigger_type *type,
4259 struct buffer_head *bh,
4260 void *mapped_data,
4261 size_t size))
4262 {
4263 struct ext4_sb_info *sbi = EXT4_SB(sb);
4264
4265 sbi->s_journal_triggers[type].sb = sb;
4266 sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger;
4267 }
4268
ext4_free_sbi(struct ext4_sb_info * sbi)4269 static void ext4_free_sbi(struct ext4_sb_info *sbi)
4270 {
4271 if (!sbi)
4272 return;
4273
4274 kfree(sbi->s_blockgroup_lock);
4275 fs_put_dax(sbi->s_daxdev);
4276 kfree(sbi);
4277 }
4278
ext4_alloc_sbi(struct super_block * sb)4279 static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb)
4280 {
4281 struct ext4_sb_info *sbi;
4282
4283 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4284 if (!sbi)
4285 return NULL;
4286
4287 sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off);
4288
4289 sbi->s_blockgroup_lock =
4290 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4291
4292 if (!sbi->s_blockgroup_lock)
4293 goto err_out;
4294
4295 sb->s_fs_info = sbi;
4296 sbi->s_sb = sb;
4297 return sbi;
4298 err_out:
4299 fs_put_dax(sbi->s_daxdev);
4300 kfree(sbi);
4301 return NULL;
4302 }
4303
__ext4_fill_super(struct fs_context * fc,struct super_block * sb)4304 static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb)
4305 {
4306 struct buffer_head *bh, **group_desc;
4307 struct ext4_super_block *es = NULL;
4308 struct ext4_sb_info *sbi = EXT4_SB(sb);
4309 struct flex_groups **flex_groups;
4310 ext4_fsblk_t block;
4311 ext4_fsblk_t logical_sb_block;
4312 unsigned long offset = 0;
4313 unsigned long def_mount_opts;
4314 struct inode *root;
4315 int ret = -ENOMEM;
4316 int blocksize, clustersize;
4317 unsigned int db_count;
4318 unsigned int i;
4319 int needs_recovery, has_huge_files;
4320 __u64 blocks_count;
4321 int err = 0;
4322 ext4_group_t first_not_zeroed;
4323 struct ext4_fs_context *ctx = fc->fs_private;
4324 int silent = fc->sb_flags & SB_SILENT;
4325
4326 /* Set defaults for the variables that will be set during parsing */
4327 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO))
4328 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4329
4330 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
4331 sbi->s_sectors_written_start =
4332 part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
4333
4334 /* -EINVAL is default */
4335 ret = -EINVAL;
4336 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
4337 if (!blocksize) {
4338 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
4339 goto out_fail;
4340 }
4341
4342 /*
4343 * The ext4 superblock will not be buffer aligned for other than 1kB
4344 * block sizes. We need to calculate the offset from buffer start.
4345 */
4346 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
4347 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
4348 offset = do_div(logical_sb_block, blocksize);
4349 } else {
4350 logical_sb_block = sbi->s_sb_block;
4351 }
4352
4353 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4354 if (IS_ERR(bh)) {
4355 ext4_msg(sb, KERN_ERR, "unable to read superblock");
4356 ret = PTR_ERR(bh);
4357 goto out_fail;
4358 }
4359 /*
4360 * Note: s_es must be initialized as soon as possible because
4361 * some ext4 macro-instructions depend on its value
4362 */
4363 es = (struct ext4_super_block *) (bh->b_data + offset);
4364 sbi->s_es = es;
4365 sb->s_magic = le16_to_cpu(es->s_magic);
4366 if (sb->s_magic != EXT4_SUPER_MAGIC)
4367 goto cantfind_ext4;
4368 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
4369
4370 /* Warn if metadata_csum and gdt_csum are both set. */
4371 if (ext4_has_feature_metadata_csum(sb) &&
4372 ext4_has_feature_gdt_csum(sb))
4373 ext4_warning(sb, "metadata_csum and uninit_bg are "
4374 "redundant flags; please run fsck.");
4375
4376 /* Check for a known checksum algorithm */
4377 if (!ext4_verify_csum_type(sb, es)) {
4378 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4379 "unknown checksum algorithm.");
4380 silent = 1;
4381 goto cantfind_ext4;
4382 }
4383 ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE,
4384 ext4_orphan_file_block_trigger);
4385
4386 /* Load the checksum driver */
4387 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
4388 if (IS_ERR(sbi->s_chksum_driver)) {
4389 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
4390 ret = PTR_ERR(sbi->s_chksum_driver);
4391 sbi->s_chksum_driver = NULL;
4392 goto failed_mount;
4393 }
4394
4395 /* Check superblock checksum */
4396 if (!ext4_superblock_csum_verify(sb, es)) {
4397 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4398 "invalid superblock checksum. Run e2fsck?");
4399 silent = 1;
4400 ret = -EFSBADCRC;
4401 goto cantfind_ext4;
4402 }
4403
4404 /* Precompute checksum seed for all metadata */
4405 if (ext4_has_feature_csum_seed(sb))
4406 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4407 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4408 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4409 sizeof(es->s_uuid));
4410
4411 /* Set defaults before we parse the mount options */
4412 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4413 set_opt(sb, INIT_INODE_TABLE);
4414 if (def_mount_opts & EXT4_DEFM_DEBUG)
4415 set_opt(sb, DEBUG);
4416 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4417 set_opt(sb, GRPID);
4418 if (def_mount_opts & EXT4_DEFM_UID16)
4419 set_opt(sb, NO_UID32);
4420 /* xattr user namespace & acls are now defaulted on */
4421 set_opt(sb, XATTR_USER);
4422 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4423 set_opt(sb, POSIX_ACL);
4424 #endif
4425 if (ext4_has_feature_fast_commit(sb))
4426 set_opt2(sb, JOURNAL_FAST_COMMIT);
4427 /* don't forget to enable journal_csum when metadata_csum is enabled. */
4428 if (ext4_has_metadata_csum(sb))
4429 set_opt(sb, JOURNAL_CHECKSUM);
4430
4431 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4432 set_opt(sb, JOURNAL_DATA);
4433 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4434 set_opt(sb, ORDERED_DATA);
4435 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4436 set_opt(sb, WRITEBACK_DATA);
4437
4438 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
4439 set_opt(sb, ERRORS_PANIC);
4440 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
4441 set_opt(sb, ERRORS_CONT);
4442 else
4443 set_opt(sb, ERRORS_RO);
4444 /* block_validity enabled by default; disable with noblock_validity */
4445 set_opt(sb, BLOCK_VALIDITY);
4446 if (def_mount_opts & EXT4_DEFM_DISCARD)
4447 set_opt(sb, DISCARD);
4448
4449 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
4450 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
4451 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
4452 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
4453 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
4454
4455 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4456 set_opt(sb, BARRIER);
4457
4458 /*
4459 * enable delayed allocation by default
4460 * Use -o nodelalloc to turn it off
4461 */
4462 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4463 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4464 set_opt(sb, DELALLOC);
4465
4466 /*
4467 * set default s_li_wait_mult for lazyinit, for the case there is
4468 * no mount option specified.
4469 */
4470 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
4471
4472 if (le32_to_cpu(es->s_log_block_size) >
4473 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4474 ext4_msg(sb, KERN_ERR,
4475 "Invalid log block size: %u",
4476 le32_to_cpu(es->s_log_block_size));
4477 goto failed_mount;
4478 }
4479 if (le32_to_cpu(es->s_log_cluster_size) >
4480 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4481 ext4_msg(sb, KERN_ERR,
4482 "Invalid log cluster size: %u",
4483 le32_to_cpu(es->s_log_cluster_size));
4484 goto failed_mount;
4485 }
4486
4487 blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
4488
4489 if (blocksize == PAGE_SIZE)
4490 set_opt(sb, DIOREAD_NOLOCK);
4491
4492 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4493 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4494 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4495 } else {
4496 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4497 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4498 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4499 ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4500 sbi->s_first_ino);
4501 goto failed_mount;
4502 }
4503 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4504 (!is_power_of_2(sbi->s_inode_size)) ||
4505 (sbi->s_inode_size > blocksize)) {
4506 ext4_msg(sb, KERN_ERR,
4507 "unsupported inode size: %d",
4508 sbi->s_inode_size);
4509 ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize);
4510 goto failed_mount;
4511 }
4512 /*
4513 * i_atime_extra is the last extra field available for
4514 * [acm]times in struct ext4_inode. Checking for that
4515 * field should suffice to ensure we have extra space
4516 * for all three.
4517 */
4518 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4519 sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4520 sb->s_time_gran = 1;
4521 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4522 } else {
4523 sb->s_time_gran = NSEC_PER_SEC;
4524 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4525 }
4526 sb->s_time_min = EXT4_TIMESTAMP_MIN;
4527 }
4528 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4529 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4530 EXT4_GOOD_OLD_INODE_SIZE;
4531 if (ext4_has_feature_extra_isize(sb)) {
4532 unsigned v, max = (sbi->s_inode_size -
4533 EXT4_GOOD_OLD_INODE_SIZE);
4534
4535 v = le16_to_cpu(es->s_want_extra_isize);
4536 if (v > max) {
4537 ext4_msg(sb, KERN_ERR,
4538 "bad s_want_extra_isize: %d", v);
4539 goto failed_mount;
4540 }
4541 if (sbi->s_want_extra_isize < v)
4542 sbi->s_want_extra_isize = v;
4543
4544 v = le16_to_cpu(es->s_min_extra_isize);
4545 if (v > max) {
4546 ext4_msg(sb, KERN_ERR,
4547 "bad s_min_extra_isize: %d", v);
4548 goto failed_mount;
4549 }
4550 if (sbi->s_want_extra_isize < v)
4551 sbi->s_want_extra_isize = v;
4552 }
4553 }
4554
4555 err = parse_apply_sb_mount_options(sb, ctx);
4556 if (err < 0)
4557 goto failed_mount;
4558
4559 sbi->s_def_mount_opt = sbi->s_mount_opt;
4560
4561 err = ext4_check_opt_consistency(fc, sb);
4562 if (err < 0)
4563 goto failed_mount;
4564
4565 ext4_apply_options(fc, sb);
4566
4567 #if IS_ENABLED(CONFIG_UNICODE)
4568 if (ext4_has_feature_casefold(sb) && !sb->s_encoding) {
4569 const struct ext4_sb_encodings *encoding_info;
4570 struct unicode_map *encoding;
4571 __u16 encoding_flags = le16_to_cpu(es->s_encoding_flags);
4572
4573 encoding_info = ext4_sb_read_encoding(es);
4574 if (!encoding_info) {
4575 ext4_msg(sb, KERN_ERR,
4576 "Encoding requested by superblock is unknown");
4577 goto failed_mount;
4578 }
4579
4580 encoding = utf8_load(encoding_info->version);
4581 if (IS_ERR(encoding)) {
4582 ext4_msg(sb, KERN_ERR,
4583 "can't mount with superblock charset: %s-%u.%u.%u "
4584 "not supported by the kernel. flags: 0x%x.",
4585 encoding_info->name,
4586 unicode_major(encoding_info->version),
4587 unicode_minor(encoding_info->version),
4588 unicode_rev(encoding_info->version),
4589 encoding_flags);
4590 goto failed_mount;
4591 }
4592 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4593 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
4594 unicode_major(encoding_info->version),
4595 unicode_minor(encoding_info->version),
4596 unicode_rev(encoding_info->version),
4597 encoding_flags);
4598
4599 sb->s_encoding = encoding;
4600 sb->s_encoding_flags = encoding_flags;
4601 }
4602 #endif
4603
4604 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4605 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, O_DIRECT and fast_commit support!\n");
4606 /* can't mount with both data=journal and dioread_nolock. */
4607 clear_opt(sb, DIOREAD_NOLOCK);
4608 clear_opt2(sb, JOURNAL_FAST_COMMIT);
4609 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4610 ext4_msg(sb, KERN_ERR, "can't mount with "
4611 "both data=journal and delalloc");
4612 goto failed_mount;
4613 }
4614 if (test_opt(sb, DAX_ALWAYS)) {
4615 ext4_msg(sb, KERN_ERR, "can't mount with "
4616 "both data=journal and dax");
4617 goto failed_mount;
4618 }
4619 if (ext4_has_feature_encrypt(sb)) {
4620 ext4_msg(sb, KERN_WARNING,
4621 "encrypted files will use data=ordered "
4622 "instead of data journaling mode");
4623 }
4624 if (test_opt(sb, DELALLOC))
4625 clear_opt(sb, DELALLOC);
4626 } else {
4627 sb->s_iflags |= SB_I_CGROUPWB;
4628 }
4629
4630 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
4631 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
4632
4633 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4634 (ext4_has_compat_features(sb) ||
4635 ext4_has_ro_compat_features(sb) ||
4636 ext4_has_incompat_features(sb)))
4637 ext4_msg(sb, KERN_WARNING,
4638 "feature flags set on rev 0 fs, "
4639 "running e2fsck is recommended");
4640
4641 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4642 set_opt2(sb, HURD_COMPAT);
4643 if (ext4_has_feature_64bit(sb)) {
4644 ext4_msg(sb, KERN_ERR,
4645 "The Hurd can't support 64-bit file systems");
4646 goto failed_mount;
4647 }
4648
4649 /*
4650 * ea_inode feature uses l_i_version field which is not
4651 * available in HURD_COMPAT mode.
4652 */
4653 if (ext4_has_feature_ea_inode(sb)) {
4654 ext4_msg(sb, KERN_ERR,
4655 "ea_inode feature is not supported for Hurd");
4656 goto failed_mount;
4657 }
4658 }
4659
4660 if (IS_EXT2_SB(sb)) {
4661 if (ext2_feature_set_ok(sb))
4662 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4663 "using the ext4 subsystem");
4664 else {
4665 /*
4666 * If we're probing be silent, if this looks like
4667 * it's actually an ext[34] filesystem.
4668 */
4669 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4670 goto failed_mount;
4671 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4672 "to feature incompatibilities");
4673 goto failed_mount;
4674 }
4675 }
4676
4677 if (IS_EXT3_SB(sb)) {
4678 if (ext3_feature_set_ok(sb))
4679 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4680 "using the ext4 subsystem");
4681 else {
4682 /*
4683 * If we're probing be silent, if this looks like
4684 * it's actually an ext4 filesystem.
4685 */
4686 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4687 goto failed_mount;
4688 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4689 "to feature incompatibilities");
4690 goto failed_mount;
4691 }
4692 }
4693
4694 /*
4695 * Check feature flags regardless of the revision level, since we
4696 * previously didn't change the revision level when setting the flags,
4697 * so there is a chance incompat flags are set on a rev 0 filesystem.
4698 */
4699 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4700 goto failed_mount;
4701
4702 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
4703 ext4_msg(sb, KERN_ERR,
4704 "Number of reserved GDT blocks insanely large: %d",
4705 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4706 goto failed_mount;
4707 }
4708
4709 if (sbi->s_daxdev) {
4710 if (blocksize == PAGE_SIZE)
4711 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4712 else
4713 ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n");
4714 }
4715
4716 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4717 if (ext4_has_feature_inline_data(sb)) {
4718 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4719 " that may contain inline data");
4720 goto failed_mount;
4721 }
4722 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4723 ext4_msg(sb, KERN_ERR,
4724 "DAX unsupported by block device.");
4725 goto failed_mount;
4726 }
4727 }
4728
4729 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4730 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4731 es->s_encryption_level);
4732 goto failed_mount;
4733 }
4734
4735 if (sb->s_blocksize != blocksize) {
4736 /*
4737 * bh must be released before kill_bdev(), otherwise
4738 * it won't be freed and its page also. kill_bdev()
4739 * is called by sb_set_blocksize().
4740 */
4741 brelse(bh);
4742 /* Validate the filesystem blocksize */
4743 if (!sb_set_blocksize(sb, blocksize)) {
4744 ext4_msg(sb, KERN_ERR, "bad block size %d",
4745 blocksize);
4746 bh = NULL;
4747 goto failed_mount;
4748 }
4749
4750 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
4751 offset = do_div(logical_sb_block, blocksize);
4752 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4753 if (IS_ERR(bh)) {
4754 ext4_msg(sb, KERN_ERR,
4755 "Can't read superblock on 2nd try");
4756 ret = PTR_ERR(bh);
4757 bh = NULL;
4758 goto failed_mount;
4759 }
4760 es = (struct ext4_super_block *)(bh->b_data + offset);
4761 sbi->s_es = es;
4762 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
4763 ext4_msg(sb, KERN_ERR,
4764 "Magic mismatch, very weird!");
4765 goto failed_mount;
4766 }
4767 }
4768
4769 has_huge_files = ext4_has_feature_huge_file(sb);
4770 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
4771 has_huge_files);
4772 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
4773
4774 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
4775 if (ext4_has_feature_64bit(sb)) {
4776 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
4777 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
4778 !is_power_of_2(sbi->s_desc_size)) {
4779 ext4_msg(sb, KERN_ERR,
4780 "unsupported descriptor size %lu",
4781 sbi->s_desc_size);
4782 goto failed_mount;
4783 }
4784 } else
4785 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
4786
4787 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
4788 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
4789
4790 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
4791 if (sbi->s_inodes_per_block == 0)
4792 goto cantfind_ext4;
4793 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
4794 sbi->s_inodes_per_group > blocksize * 8) {
4795 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
4796 sbi->s_inodes_per_group);
4797 goto failed_mount;
4798 }
4799 sbi->s_itb_per_group = sbi->s_inodes_per_group /
4800 sbi->s_inodes_per_block;
4801 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
4802 sbi->s_sbh = bh;
4803 sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY;
4804 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
4805 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
4806
4807 for (i = 0; i < 4; i++)
4808 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
4809 sbi->s_def_hash_version = es->s_def_hash_version;
4810 if (ext4_has_feature_dir_index(sb)) {
4811 i = le32_to_cpu(es->s_flags);
4812 if (i & EXT2_FLAGS_UNSIGNED_HASH)
4813 sbi->s_hash_unsigned = 3;
4814 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
4815 #ifdef __CHAR_UNSIGNED__
4816 if (!sb_rdonly(sb))
4817 es->s_flags |=
4818 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
4819 sbi->s_hash_unsigned = 3;
4820 #else
4821 if (!sb_rdonly(sb))
4822 es->s_flags |=
4823 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
4824 #endif
4825 }
4826 }
4827
4828 /* Handle clustersize */
4829 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4830 if (ext4_has_feature_bigalloc(sb)) {
4831 if (clustersize < blocksize) {
4832 ext4_msg(sb, KERN_ERR,
4833 "cluster size (%d) smaller than "
4834 "block size (%d)", clustersize, blocksize);
4835 goto failed_mount;
4836 }
4837 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4838 le32_to_cpu(es->s_log_block_size);
4839 sbi->s_clusters_per_group =
4840 le32_to_cpu(es->s_clusters_per_group);
4841 if (sbi->s_clusters_per_group > blocksize * 8) {
4842 ext4_msg(sb, KERN_ERR,
4843 "#clusters per group too big: %lu",
4844 sbi->s_clusters_per_group);
4845 goto failed_mount;
4846 }
4847 if (sbi->s_blocks_per_group !=
4848 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
4849 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4850 "clusters per group (%lu) inconsistent",
4851 sbi->s_blocks_per_group,
4852 sbi->s_clusters_per_group);
4853 goto failed_mount;
4854 }
4855 } else {
4856 if (clustersize != blocksize) {
4857 ext4_msg(sb, KERN_ERR,
4858 "fragment/cluster size (%d) != "
4859 "block size (%d)", clustersize, blocksize);
4860 goto failed_mount;
4861 }
4862 if (sbi->s_blocks_per_group > blocksize * 8) {
4863 ext4_msg(sb, KERN_ERR,
4864 "#blocks per group too big: %lu",
4865 sbi->s_blocks_per_group);
4866 goto failed_mount;
4867 }
4868 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4869 sbi->s_cluster_bits = 0;
4870 }
4871 sbi->s_cluster_ratio = clustersize / blocksize;
4872
4873 /* Do we have standard group size of clustersize * 8 blocks ? */
4874 if (sbi->s_blocks_per_group == clustersize << 3)
4875 set_opt2(sb, STD_GROUP_SIZE);
4876
4877 /*
4878 * Test whether we have more sectors than will fit in sector_t,
4879 * and whether the max offset is addressable by the page cache.
4880 */
4881 err = generic_check_addressable(sb->s_blocksize_bits,
4882 ext4_blocks_count(es));
4883 if (err) {
4884 ext4_msg(sb, KERN_ERR, "filesystem"
4885 " too large to mount safely on this system");
4886 goto failed_mount;
4887 }
4888
4889 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
4890 goto cantfind_ext4;
4891
4892 /* check blocks count against device size */
4893 blocks_count = sb_bdev_nr_blocks(sb);
4894 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4895 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4896 "exceeds size of device (%llu blocks)",
4897 ext4_blocks_count(es), blocks_count);
4898 goto failed_mount;
4899 }
4900
4901 /*
4902 * It makes no sense for the first data block to be beyond the end
4903 * of the filesystem.
4904 */
4905 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4906 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4907 "block %u is beyond end of filesystem (%llu)",
4908 le32_to_cpu(es->s_first_data_block),
4909 ext4_blocks_count(es));
4910 goto failed_mount;
4911 }
4912 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4913 (sbi->s_cluster_ratio == 1)) {
4914 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4915 "block is 0 with a 1k block and cluster size");
4916 goto failed_mount;
4917 }
4918
4919 blocks_count = (ext4_blocks_count(es) -
4920 le32_to_cpu(es->s_first_data_block) +
4921 EXT4_BLOCKS_PER_GROUP(sb) - 1);
4922 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4923 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4924 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4925 "(block count %llu, first data block %u, "
4926 "blocks per group %lu)", blocks_count,
4927 ext4_blocks_count(es),
4928 le32_to_cpu(es->s_first_data_block),
4929 EXT4_BLOCKS_PER_GROUP(sb));
4930 goto failed_mount;
4931 }
4932 sbi->s_groups_count = blocks_count;
4933 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4934 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4935 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4936 le32_to_cpu(es->s_inodes_count)) {
4937 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4938 le32_to_cpu(es->s_inodes_count),
4939 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4940 ret = -EINVAL;
4941 goto failed_mount;
4942 }
4943 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4944 EXT4_DESC_PER_BLOCK(sb);
4945 if (ext4_has_feature_meta_bg(sb)) {
4946 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4947 ext4_msg(sb, KERN_WARNING,
4948 "first meta block group too large: %u "
4949 "(group descriptor block count %u)",
4950 le32_to_cpu(es->s_first_meta_bg), db_count);
4951 goto failed_mount;
4952 }
4953 }
4954 rcu_assign_pointer(sbi->s_group_desc,
4955 kvmalloc_array(db_count,
4956 sizeof(struct buffer_head *),
4957 GFP_KERNEL));
4958 if (sbi->s_group_desc == NULL) {
4959 ext4_msg(sb, KERN_ERR, "not enough memory");
4960 ret = -ENOMEM;
4961 goto failed_mount;
4962 }
4963
4964 bgl_lock_init(sbi->s_blockgroup_lock);
4965
4966 /* Pre-read the descriptors into the buffer cache */
4967 for (i = 0; i < db_count; i++) {
4968 block = descriptor_loc(sb, logical_sb_block, i);
4969 ext4_sb_breadahead_unmovable(sb, block);
4970 }
4971
4972 for (i = 0; i < db_count; i++) {
4973 struct buffer_head *bh;
4974
4975 block = descriptor_loc(sb, logical_sb_block, i);
4976 bh = ext4_sb_bread_unmovable(sb, block);
4977 if (IS_ERR(bh)) {
4978 ext4_msg(sb, KERN_ERR,
4979 "can't read group descriptor %d", i);
4980 db_count = i;
4981 ret = PTR_ERR(bh);
4982 goto failed_mount2;
4983 }
4984 rcu_read_lock();
4985 rcu_dereference(sbi->s_group_desc)[i] = bh;
4986 rcu_read_unlock();
4987 }
4988 sbi->s_gdb_count = db_count;
4989 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4990 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4991 ret = -EFSCORRUPTED;
4992 goto failed_mount2;
4993 }
4994
4995 timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4996 spin_lock_init(&sbi->s_error_lock);
4997 INIT_WORK(&sbi->s_error_work, flush_stashed_error_work);
4998
4999 /* Register extent status tree shrinker */
5000 if (ext4_es_register_shrinker(sbi))
5001 goto failed_mount3;
5002
5003 sbi->s_stripe = ext4_get_stripe_size(sbi);
5004 sbi->s_extent_max_zeroout_kb = 32;
5005
5006 /*
5007 * set up enough so that it can read an inode
5008 */
5009 sb->s_op = &ext4_sops;
5010 sb->s_export_op = &ext4_export_ops;
5011 sb->s_xattr = ext4_xattr_handlers;
5012 #ifdef CONFIG_FS_ENCRYPTION
5013 sb->s_cop = &ext4_cryptops;
5014 #endif
5015 #ifdef CONFIG_FS_VERITY
5016 sb->s_vop = &ext4_verityops;
5017 #endif
5018 #ifdef CONFIG_QUOTA
5019 sb->dq_op = &ext4_quota_operations;
5020 if (ext4_has_feature_quota(sb))
5021 sb->s_qcop = &dquot_quotactl_sysfile_ops;
5022 else
5023 sb->s_qcop = &ext4_qctl_operations;
5024 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
5025 #endif
5026 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
5027
5028 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
5029 mutex_init(&sbi->s_orphan_lock);
5030
5031 /* Initialize fast commit stuff */
5032 atomic_set(&sbi->s_fc_subtid, 0);
5033 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
5034 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
5035 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
5036 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
5037 sbi->s_fc_bytes = 0;
5038 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
5039 sbi->s_fc_ineligible_tid = 0;
5040 spin_lock_init(&sbi->s_fc_lock);
5041 memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
5042 sbi->s_fc_replay_state.fc_regions = NULL;
5043 sbi->s_fc_replay_state.fc_regions_size = 0;
5044 sbi->s_fc_replay_state.fc_regions_used = 0;
5045 sbi->s_fc_replay_state.fc_regions_valid = 0;
5046 sbi->s_fc_replay_state.fc_modified_inodes = NULL;
5047 sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
5048 sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
5049
5050 sb->s_root = NULL;
5051
5052 needs_recovery = (es->s_last_orphan != 0 ||
5053 ext4_has_feature_orphan_present(sb) ||
5054 ext4_has_feature_journal_needs_recovery(sb));
5055
5056 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
5057 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
5058 goto failed_mount3a;
5059
5060 /*
5061 * The first inode we look at is the journal inode. Don't try
5062 * root first: it may be modified in the journal!
5063 */
5064 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
5065 err = ext4_load_journal(sb, es, ctx->journal_devnum);
5066 if (err)
5067 goto failed_mount3a;
5068 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
5069 ext4_has_feature_journal_needs_recovery(sb)) {
5070 ext4_msg(sb, KERN_ERR, "required journal recovery "
5071 "suppressed and not mounted read-only");
5072 goto failed_mount_wq;
5073 } else {
5074 /* Nojournal mode, all journal mount options are illegal */
5075 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
5076 ext4_msg(sb, KERN_ERR, "can't mount with "
5077 "journal_checksum, fs mounted w/o journal");
5078 goto failed_mount_wq;
5079 }
5080 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5081 ext4_msg(sb, KERN_ERR, "can't mount with "
5082 "journal_async_commit, fs mounted w/o journal");
5083 goto failed_mount_wq;
5084 }
5085 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
5086 ext4_msg(sb, KERN_ERR, "can't mount with "
5087 "commit=%lu, fs mounted w/o journal",
5088 sbi->s_commit_interval / HZ);
5089 goto failed_mount_wq;
5090 }
5091 if (EXT4_MOUNT_DATA_FLAGS &
5092 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
5093 ext4_msg(sb, KERN_ERR, "can't mount with "
5094 "data=, fs mounted w/o journal");
5095 goto failed_mount_wq;
5096 }
5097 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
5098 clear_opt(sb, JOURNAL_CHECKSUM);
5099 clear_opt(sb, DATA_FLAGS);
5100 clear_opt2(sb, JOURNAL_FAST_COMMIT);
5101 sbi->s_journal = NULL;
5102 needs_recovery = 0;
5103 goto no_journal;
5104 }
5105
5106 if (ext4_has_feature_64bit(sb) &&
5107 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
5108 JBD2_FEATURE_INCOMPAT_64BIT)) {
5109 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
5110 goto failed_mount_wq;
5111 }
5112
5113 if (!set_journal_csum_feature_set(sb)) {
5114 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
5115 "feature set");
5116 goto failed_mount_wq;
5117 }
5118
5119 if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
5120 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
5121 JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
5122 ext4_msg(sb, KERN_ERR,
5123 "Failed to set fast commit journal feature");
5124 goto failed_mount_wq;
5125 }
5126
5127 /* We have now updated the journal if required, so we can
5128 * validate the data journaling mode. */
5129 switch (test_opt(sb, DATA_FLAGS)) {
5130 case 0:
5131 /* No mode set, assume a default based on the journal
5132 * capabilities: ORDERED_DATA if the journal can
5133 * cope, else JOURNAL_DATA
5134 */
5135 if (jbd2_journal_check_available_features
5136 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
5137 set_opt(sb, ORDERED_DATA);
5138 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
5139 } else {
5140 set_opt(sb, JOURNAL_DATA);
5141 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
5142 }
5143 break;
5144
5145 case EXT4_MOUNT_ORDERED_DATA:
5146 case EXT4_MOUNT_WRITEBACK_DATA:
5147 if (!jbd2_journal_check_available_features
5148 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
5149 ext4_msg(sb, KERN_ERR, "Journal does not support "
5150 "requested data journaling mode");
5151 goto failed_mount_wq;
5152 }
5153 break;
5154 default:
5155 break;
5156 }
5157
5158 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
5159 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5160 ext4_msg(sb, KERN_ERR, "can't mount with "
5161 "journal_async_commit in data=ordered mode");
5162 goto failed_mount_wq;
5163 }
5164
5165 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
5166
5167 sbi->s_journal->j_submit_inode_data_buffers =
5168 ext4_journal_submit_inode_data_buffers;
5169 sbi->s_journal->j_finish_inode_data_buffers =
5170 ext4_journal_finish_inode_data_buffers;
5171
5172 no_journal:
5173 if (!test_opt(sb, NO_MBCACHE)) {
5174 sbi->s_ea_block_cache = ext4_xattr_create_cache();
5175 if (!sbi->s_ea_block_cache) {
5176 ext4_msg(sb, KERN_ERR,
5177 "Failed to create ea_block_cache");
5178 goto failed_mount_wq;
5179 }
5180
5181 if (ext4_has_feature_ea_inode(sb)) {
5182 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
5183 if (!sbi->s_ea_inode_cache) {
5184 ext4_msg(sb, KERN_ERR,
5185 "Failed to create ea_inode_cache");
5186 goto failed_mount_wq;
5187 }
5188 }
5189 }
5190
5191 if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) {
5192 ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity");
5193 goto failed_mount_wq;
5194 }
5195
5196 /*
5197 * Get the # of file system overhead blocks from the
5198 * superblock if present.
5199 */
5200 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
5201 /* ignore the precalculated value if it is ridiculous */
5202 if (sbi->s_overhead > ext4_blocks_count(es))
5203 sbi->s_overhead = 0;
5204 /*
5205 * If the bigalloc feature is not enabled recalculating the
5206 * overhead doesn't take long, so we might as well just redo
5207 * it to make sure we are using the correct value.
5208 */
5209 if (!ext4_has_feature_bigalloc(sb))
5210 sbi->s_overhead = 0;
5211 if (sbi->s_overhead == 0) {
5212 err = ext4_calculate_overhead(sb);
5213 if (err)
5214 goto failed_mount_wq;
5215 }
5216
5217 /*
5218 * The maximum number of concurrent works can be high and
5219 * concurrency isn't really necessary. Limit it to 1.
5220 */
5221 EXT4_SB(sb)->rsv_conversion_wq =
5222 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
5223 if (!EXT4_SB(sb)->rsv_conversion_wq) {
5224 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
5225 ret = -ENOMEM;
5226 goto failed_mount4;
5227 }
5228
5229 /*
5230 * The jbd2_journal_load will have done any necessary log recovery,
5231 * so we can safely mount the rest of the filesystem now.
5232 */
5233
5234 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
5235 if (IS_ERR(root)) {
5236 ext4_msg(sb, KERN_ERR, "get root inode failed");
5237 ret = PTR_ERR(root);
5238 root = NULL;
5239 goto failed_mount4;
5240 }
5241 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
5242 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
5243 iput(root);
5244 goto failed_mount4;
5245 }
5246
5247 sb->s_root = d_make_root(root);
5248 if (!sb->s_root) {
5249 ext4_msg(sb, KERN_ERR, "get root dentry failed");
5250 ret = -ENOMEM;
5251 goto failed_mount4;
5252 }
5253
5254 ret = ext4_setup_super(sb, es, sb_rdonly(sb));
5255 if (ret == -EROFS) {
5256 sb->s_flags |= SB_RDONLY;
5257 ret = 0;
5258 } else if (ret)
5259 goto failed_mount4a;
5260
5261 ext4_set_resv_clusters(sb);
5262
5263 if (test_opt(sb, BLOCK_VALIDITY)) {
5264 err = ext4_setup_system_zone(sb);
5265 if (err) {
5266 ext4_msg(sb, KERN_ERR, "failed to initialize system "
5267 "zone (%d)", err);
5268 goto failed_mount4a;
5269 }
5270 }
5271 ext4_fc_replay_cleanup(sb);
5272
5273 ext4_ext_init(sb);
5274
5275 /*
5276 * Enable optimize_scan if number of groups is > threshold. This can be
5277 * turned off by passing "mb_optimize_scan=0". This can also be
5278 * turned on forcefully by passing "mb_optimize_scan=1".
5279 */
5280 if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) {
5281 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
5282 set_opt2(sb, MB_OPTIMIZE_SCAN);
5283 else
5284 clear_opt2(sb, MB_OPTIMIZE_SCAN);
5285 }
5286
5287 err = ext4_mb_init(sb);
5288 if (err) {
5289 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
5290 err);
5291 goto failed_mount5;
5292 }
5293
5294 /*
5295 * We can only set up the journal commit callback once
5296 * mballoc is initialized
5297 */
5298 if (sbi->s_journal)
5299 sbi->s_journal->j_commit_callback =
5300 ext4_journal_commit_callback;
5301
5302 block = ext4_count_free_clusters(sb);
5303 ext4_free_blocks_count_set(sbi->s_es,
5304 EXT4_C2B(sbi, block));
5305 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
5306 GFP_KERNEL);
5307 if (!err) {
5308 unsigned long freei = ext4_count_free_inodes(sb);
5309 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
5310 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
5311 GFP_KERNEL);
5312 }
5313 if (!err)
5314 err = percpu_counter_init(&sbi->s_dirs_counter,
5315 ext4_count_dirs(sb), GFP_KERNEL);
5316 if (!err)
5317 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
5318 GFP_KERNEL);
5319 if (!err)
5320 err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
5321 GFP_KERNEL);
5322 if (!err)
5323 err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
5324
5325 if (err) {
5326 ext4_msg(sb, KERN_ERR, "insufficient memory");
5327 goto failed_mount6;
5328 }
5329
5330 if (ext4_has_feature_flex_bg(sb))
5331 if (!ext4_fill_flex_info(sb)) {
5332 ext4_msg(sb, KERN_ERR,
5333 "unable to initialize "
5334 "flex_bg meta info!");
5335 ret = -ENOMEM;
5336 goto failed_mount6;
5337 }
5338
5339 err = ext4_register_li_request(sb, first_not_zeroed);
5340 if (err)
5341 goto failed_mount6;
5342
5343 err = ext4_register_sysfs(sb);
5344 if (err)
5345 goto failed_mount7;
5346
5347 err = ext4_init_orphan_info(sb);
5348 if (err)
5349 goto failed_mount8;
5350 #ifdef CONFIG_QUOTA
5351 /* Enable quota usage during mount. */
5352 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5353 err = ext4_enable_quotas(sb);
5354 if (err)
5355 goto failed_mount9;
5356 }
5357 #endif /* CONFIG_QUOTA */
5358
5359 /*
5360 * Save the original bdev mapping's wb_err value which could be
5361 * used to detect the metadata async write error.
5362 */
5363 spin_lock_init(&sbi->s_bdev_wb_lock);
5364 errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
5365 &sbi->s_bdev_wb_err);
5366 sb->s_bdev->bd_super = sb;
5367 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5368 ext4_orphan_cleanup(sb, es);
5369 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5370 /*
5371 * Update the checksum after updating free space/inode counters and
5372 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect
5373 * checksum in the buffer cache until it is written out and
5374 * e2fsprogs programs trying to open a file system immediately
5375 * after it is mounted can fail.
5376 */
5377 ext4_superblock_csum_set(sb);
5378 if (needs_recovery) {
5379 ext4_msg(sb, KERN_INFO, "recovery complete");
5380 err = ext4_mark_recovery_complete(sb, es);
5381 if (err)
5382 goto failed_mount9;
5383 }
5384
5385 if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev))
5386 ext4_msg(sb, KERN_WARNING,
5387 "mounting with \"discard\" option, but the device does not support discard");
5388
5389 if (es->s_error_count)
5390 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5391
5392 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5393 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5394 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5395 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5396 atomic_set(&sbi->s_warning_count, 0);
5397 atomic_set(&sbi->s_msg_count, 0);
5398
5399 return 0;
5400
5401 cantfind_ext4:
5402 if (!silent)
5403 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5404 goto failed_mount;
5405
5406 failed_mount9:
5407 ext4_release_orphan_info(sb);
5408 failed_mount8:
5409 ext4_unregister_sysfs(sb);
5410 kobject_put(&sbi->s_kobj);
5411 failed_mount7:
5412 ext4_unregister_li_request(sb);
5413 failed_mount6:
5414 ext4_mb_release(sb);
5415 rcu_read_lock();
5416 flex_groups = rcu_dereference(sbi->s_flex_groups);
5417 if (flex_groups) {
5418 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
5419 kvfree(flex_groups[i]);
5420 kvfree(flex_groups);
5421 }
5422 rcu_read_unlock();
5423 percpu_counter_destroy(&sbi->s_freeclusters_counter);
5424 percpu_counter_destroy(&sbi->s_freeinodes_counter);
5425 percpu_counter_destroy(&sbi->s_dirs_counter);
5426 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
5427 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
5428 percpu_free_rwsem(&sbi->s_writepages_rwsem);
5429 failed_mount5:
5430 ext4_ext_release(sb);
5431 ext4_release_system_zone(sb);
5432 failed_mount4a:
5433 dput(sb->s_root);
5434 sb->s_root = NULL;
5435 failed_mount4:
5436 ext4_msg(sb, KERN_ERR, "mount failed");
5437 if (EXT4_SB(sb)->rsv_conversion_wq)
5438 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5439 failed_mount_wq:
5440 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5441 sbi->s_ea_inode_cache = NULL;
5442
5443 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5444 sbi->s_ea_block_cache = NULL;
5445
5446 if (sbi->s_journal) {
5447 /* flush s_error_work before journal destroy. */
5448 flush_work(&sbi->s_error_work);
5449 jbd2_journal_destroy(sbi->s_journal);
5450 sbi->s_journal = NULL;
5451 }
5452 failed_mount3a:
5453 ext4_es_unregister_shrinker(sbi);
5454 failed_mount3:
5455 /* flush s_error_work before sbi destroy */
5456 flush_work(&sbi->s_error_work);
5457 del_timer_sync(&sbi->s_err_report);
5458 ext4_stop_mmpd(sbi);
5459 failed_mount2:
5460 rcu_read_lock();
5461 group_desc = rcu_dereference(sbi->s_group_desc);
5462 for (i = 0; i < db_count; i++)
5463 brelse(group_desc[i]);
5464 kvfree(group_desc);
5465 rcu_read_unlock();
5466 failed_mount:
5467 if (sbi->s_chksum_driver)
5468 crypto_free_shash(sbi->s_chksum_driver);
5469
5470 #if IS_ENABLED(CONFIG_UNICODE)
5471 utf8_unload(sb->s_encoding);
5472 #endif
5473
5474 #ifdef CONFIG_QUOTA
5475 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5476 kfree(get_qf_name(sb, sbi, i));
5477 #endif
5478 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5479 /* ext4_blkdev_remove() calls kill_bdev(), release bh before it. */
5480 brelse(bh);
5481 ext4_blkdev_remove(sbi);
5482 out_fail:
5483 sb->s_fs_info = NULL;
5484 return err ? err : ret;
5485 }
5486
ext4_fill_super(struct super_block * sb,struct fs_context * fc)5487 static int ext4_fill_super(struct super_block *sb, struct fs_context *fc)
5488 {
5489 struct ext4_fs_context *ctx = fc->fs_private;
5490 struct ext4_sb_info *sbi;
5491 const char *descr;
5492 int ret;
5493
5494 sbi = ext4_alloc_sbi(sb);
5495 if (!sbi)
5496 return -ENOMEM;
5497
5498 fc->s_fs_info = sbi;
5499
5500 /* Cleanup superblock name */
5501 strreplace(sb->s_id, '/', '!');
5502
5503 sbi->s_sb_block = 1; /* Default super block location */
5504 if (ctx->spec & EXT4_SPEC_s_sb_block)
5505 sbi->s_sb_block = ctx->s_sb_block;
5506
5507 ret = __ext4_fill_super(fc, sb);
5508 if (ret < 0)
5509 goto free_sbi;
5510
5511 if (sbi->s_journal) {
5512 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5513 descr = " journalled data mode";
5514 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5515 descr = " ordered data mode";
5516 else
5517 descr = " writeback data mode";
5518 } else
5519 descr = "out journal";
5520
5521 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5522 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
5523 "Quota mode: %s.", descr, ext4_quota_mode(sb));
5524
5525 /* Update the s_overhead_clusters if necessary */
5526 ext4_update_overhead(sb);
5527 return 0;
5528
5529 free_sbi:
5530 ext4_free_sbi(sbi);
5531 fc->s_fs_info = NULL;
5532 return ret;
5533 }
5534
ext4_get_tree(struct fs_context * fc)5535 static int ext4_get_tree(struct fs_context *fc)
5536 {
5537 return get_tree_bdev(fc, ext4_fill_super);
5538 }
5539
5540 /*
5541 * Setup any per-fs journal parameters now. We'll do this both on
5542 * initial mount, once the journal has been initialised but before we've
5543 * done any recovery; and again on any subsequent remount.
5544 */
ext4_init_journal_params(struct super_block * sb,journal_t * journal)5545 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5546 {
5547 struct ext4_sb_info *sbi = EXT4_SB(sb);
5548
5549 journal->j_commit_interval = sbi->s_commit_interval;
5550 journal->j_min_batch_time = sbi->s_min_batch_time;
5551 journal->j_max_batch_time = sbi->s_max_batch_time;
5552 ext4_fc_init(sb, journal);
5553
5554 write_lock(&journal->j_state_lock);
5555 if (test_opt(sb, BARRIER))
5556 journal->j_flags |= JBD2_BARRIER;
5557 else
5558 journal->j_flags &= ~JBD2_BARRIER;
5559 if (test_opt(sb, DATA_ERR_ABORT))
5560 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5561 else
5562 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5563 write_unlock(&journal->j_state_lock);
5564 }
5565
ext4_get_journal_inode(struct super_block * sb,unsigned int journal_inum)5566 static struct inode *ext4_get_journal_inode(struct super_block *sb,
5567 unsigned int journal_inum)
5568 {
5569 struct inode *journal_inode;
5570
5571 /*
5572 * Test for the existence of a valid inode on disk. Bad things
5573 * happen if we iget() an unused inode, as the subsequent iput()
5574 * will try to delete it.
5575 */
5576 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5577 if (IS_ERR(journal_inode)) {
5578 ext4_msg(sb, KERN_ERR, "no journal found");
5579 return NULL;
5580 }
5581 if (!journal_inode->i_nlink) {
5582 make_bad_inode(journal_inode);
5583 iput(journal_inode);
5584 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5585 return NULL;
5586 }
5587
5588 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
5589 journal_inode, journal_inode->i_size);
5590 if (!S_ISREG(journal_inode->i_mode)) {
5591 ext4_msg(sb, KERN_ERR, "invalid journal inode");
5592 iput(journal_inode);
5593 return NULL;
5594 }
5595 return journal_inode;
5596 }
5597
ext4_get_journal(struct super_block * sb,unsigned int journal_inum)5598 static journal_t *ext4_get_journal(struct super_block *sb,
5599 unsigned int journal_inum)
5600 {
5601 struct inode *journal_inode;
5602 journal_t *journal;
5603
5604 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5605 return NULL;
5606
5607 journal_inode = ext4_get_journal_inode(sb, journal_inum);
5608 if (!journal_inode)
5609 return NULL;
5610
5611 journal = jbd2_journal_init_inode(journal_inode);
5612 if (!journal) {
5613 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5614 iput(journal_inode);
5615 return NULL;
5616 }
5617 journal->j_private = sb;
5618 ext4_init_journal_params(sb, journal);
5619 return journal;
5620 }
5621
ext4_get_dev_journal(struct super_block * sb,dev_t j_dev)5622 static journal_t *ext4_get_dev_journal(struct super_block *sb,
5623 dev_t j_dev)
5624 {
5625 struct buffer_head *bh;
5626 journal_t *journal;
5627 ext4_fsblk_t start;
5628 ext4_fsblk_t len;
5629 int hblock, blocksize;
5630 ext4_fsblk_t sb_block;
5631 unsigned long offset;
5632 struct ext4_super_block *es;
5633 struct block_device *bdev;
5634
5635 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5636 return NULL;
5637
5638 bdev = ext4_blkdev_get(j_dev, sb);
5639 if (bdev == NULL)
5640 return NULL;
5641
5642 blocksize = sb->s_blocksize;
5643 hblock = bdev_logical_block_size(bdev);
5644 if (blocksize < hblock) {
5645 ext4_msg(sb, KERN_ERR,
5646 "blocksize too small for journal device");
5647 goto out_bdev;
5648 }
5649
5650 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5651 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5652 set_blocksize(bdev, blocksize);
5653 if (!(bh = __bread(bdev, sb_block, blocksize))) {
5654 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5655 "external journal");
5656 goto out_bdev;
5657 }
5658
5659 es = (struct ext4_super_block *) (bh->b_data + offset);
5660 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5661 !(le32_to_cpu(es->s_feature_incompat) &
5662 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5663 ext4_msg(sb, KERN_ERR, "external journal has "
5664 "bad superblock");
5665 brelse(bh);
5666 goto out_bdev;
5667 }
5668
5669 if ((le32_to_cpu(es->s_feature_ro_compat) &
5670 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5671 es->s_checksum != ext4_superblock_csum(sb, es)) {
5672 ext4_msg(sb, KERN_ERR, "external journal has "
5673 "corrupt superblock");
5674 brelse(bh);
5675 goto out_bdev;
5676 }
5677
5678 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5679 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5680 brelse(bh);
5681 goto out_bdev;
5682 }
5683
5684 len = ext4_blocks_count(es);
5685 start = sb_block + 1;
5686 brelse(bh); /* we're done with the superblock */
5687
5688 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
5689 start, len, blocksize);
5690 if (!journal) {
5691 ext4_msg(sb, KERN_ERR, "failed to create device journal");
5692 goto out_bdev;
5693 }
5694 journal->j_private = sb;
5695 if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) {
5696 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
5697 goto out_journal;
5698 }
5699 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5700 ext4_msg(sb, KERN_ERR, "External journal has more than one "
5701 "user (unsupported) - %d",
5702 be32_to_cpu(journal->j_superblock->s_nr_users));
5703 goto out_journal;
5704 }
5705 EXT4_SB(sb)->s_journal_bdev = bdev;
5706 ext4_init_journal_params(sb, journal);
5707 return journal;
5708
5709 out_journal:
5710 jbd2_journal_destroy(journal);
5711 out_bdev:
5712 ext4_blkdev_put(bdev);
5713 return NULL;
5714 }
5715
ext4_load_journal(struct super_block * sb,struct ext4_super_block * es,unsigned long journal_devnum)5716 static int ext4_load_journal(struct super_block *sb,
5717 struct ext4_super_block *es,
5718 unsigned long journal_devnum)
5719 {
5720 journal_t *journal;
5721 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5722 dev_t journal_dev;
5723 int err = 0;
5724 int really_read_only;
5725 int journal_dev_ro;
5726
5727 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5728 return -EFSCORRUPTED;
5729
5730 if (journal_devnum &&
5731 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5732 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5733 "numbers have changed");
5734 journal_dev = new_decode_dev(journal_devnum);
5735 } else
5736 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5737
5738 if (journal_inum && journal_dev) {
5739 ext4_msg(sb, KERN_ERR,
5740 "filesystem has both journal inode and journal device!");
5741 return -EINVAL;
5742 }
5743
5744 if (journal_inum) {
5745 journal = ext4_get_journal(sb, journal_inum);
5746 if (!journal)
5747 return -EINVAL;
5748 } else {
5749 journal = ext4_get_dev_journal(sb, journal_dev);
5750 if (!journal)
5751 return -EINVAL;
5752 }
5753
5754 journal_dev_ro = bdev_read_only(journal->j_dev);
5755 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
5756
5757 if (journal_dev_ro && !sb_rdonly(sb)) {
5758 ext4_msg(sb, KERN_ERR,
5759 "journal device read-only, try mounting with '-o ro'");
5760 err = -EROFS;
5761 goto err_out;
5762 }
5763
5764 /*
5765 * Are we loading a blank journal or performing recovery after a
5766 * crash? For recovery, we need to check in advance whether we
5767 * can get read-write access to the device.
5768 */
5769 if (ext4_has_feature_journal_needs_recovery(sb)) {
5770 if (sb_rdonly(sb)) {
5771 ext4_msg(sb, KERN_INFO, "INFO: recovery "
5772 "required on readonly filesystem");
5773 if (really_read_only) {
5774 ext4_msg(sb, KERN_ERR, "write access "
5775 "unavailable, cannot proceed "
5776 "(try mounting with noload)");
5777 err = -EROFS;
5778 goto err_out;
5779 }
5780 ext4_msg(sb, KERN_INFO, "write access will "
5781 "be enabled during recovery");
5782 }
5783 }
5784
5785 if (!(journal->j_flags & JBD2_BARRIER))
5786 ext4_msg(sb, KERN_INFO, "barriers disabled");
5787
5788 if (!ext4_has_feature_journal_needs_recovery(sb))
5789 err = jbd2_journal_wipe(journal, !really_read_only);
5790 if (!err) {
5791 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
5792 if (save)
5793 memcpy(save, ((char *) es) +
5794 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
5795 err = jbd2_journal_load(journal);
5796 if (save)
5797 memcpy(((char *) es) + EXT4_S_ERR_START,
5798 save, EXT4_S_ERR_LEN);
5799 kfree(save);
5800 }
5801
5802 if (err) {
5803 ext4_msg(sb, KERN_ERR, "error loading journal");
5804 goto err_out;
5805 }
5806
5807 EXT4_SB(sb)->s_journal = journal;
5808 err = ext4_clear_journal_err(sb, es);
5809 if (err) {
5810 EXT4_SB(sb)->s_journal = NULL;
5811 jbd2_journal_destroy(journal);
5812 return err;
5813 }
5814
5815 if (!really_read_only && journal_devnum &&
5816 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5817 es->s_journal_dev = cpu_to_le32(journal_devnum);
5818
5819 /* Make sure we flush the recovery flag to disk. */
5820 ext4_commit_super(sb);
5821 }
5822
5823 return 0;
5824
5825 err_out:
5826 jbd2_journal_destroy(journal);
5827 return err;
5828 }
5829
5830 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
ext4_update_super(struct super_block * sb)5831 static void ext4_update_super(struct super_block *sb)
5832 {
5833 struct ext4_sb_info *sbi = EXT4_SB(sb);
5834 struct ext4_super_block *es = sbi->s_es;
5835 struct buffer_head *sbh = sbi->s_sbh;
5836
5837 lock_buffer(sbh);
5838 /*
5839 * If the file system is mounted read-only, don't update the
5840 * superblock write time. This avoids updating the superblock
5841 * write time when we are mounting the root file system
5842 * read/only but we need to replay the journal; at that point,
5843 * for people who are east of GMT and who make their clock
5844 * tick in localtime for Windows bug-for-bug compatibility,
5845 * the clock is set in the future, and this will cause e2fsck
5846 * to complain and force a full file system check.
5847 */
5848 if (!(sb->s_flags & SB_RDONLY))
5849 ext4_update_tstamp(es, s_wtime);
5850 es->s_kbytes_written =
5851 cpu_to_le64(sbi->s_kbytes_written +
5852 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
5853 sbi->s_sectors_written_start) >> 1));
5854 if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
5855 ext4_free_blocks_count_set(es,
5856 EXT4_C2B(sbi, percpu_counter_sum_positive(
5857 &sbi->s_freeclusters_counter)));
5858 if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
5859 es->s_free_inodes_count =
5860 cpu_to_le32(percpu_counter_sum_positive(
5861 &sbi->s_freeinodes_counter));
5862 /* Copy error information to the on-disk superblock */
5863 spin_lock(&sbi->s_error_lock);
5864 if (sbi->s_add_error_count > 0) {
5865 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5866 if (!es->s_first_error_time && !es->s_first_error_time_hi) {
5867 __ext4_update_tstamp(&es->s_first_error_time,
5868 &es->s_first_error_time_hi,
5869 sbi->s_first_error_time);
5870 strncpy(es->s_first_error_func, sbi->s_first_error_func,
5871 sizeof(es->s_first_error_func));
5872 es->s_first_error_line =
5873 cpu_to_le32(sbi->s_first_error_line);
5874 es->s_first_error_ino =
5875 cpu_to_le32(sbi->s_first_error_ino);
5876 es->s_first_error_block =
5877 cpu_to_le64(sbi->s_first_error_block);
5878 es->s_first_error_errcode =
5879 ext4_errno_to_code(sbi->s_first_error_code);
5880 }
5881 __ext4_update_tstamp(&es->s_last_error_time,
5882 &es->s_last_error_time_hi,
5883 sbi->s_last_error_time);
5884 strncpy(es->s_last_error_func, sbi->s_last_error_func,
5885 sizeof(es->s_last_error_func));
5886 es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
5887 es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
5888 es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
5889 es->s_last_error_errcode =
5890 ext4_errno_to_code(sbi->s_last_error_code);
5891 /*
5892 * Start the daily error reporting function if it hasn't been
5893 * started already
5894 */
5895 if (!es->s_error_count)
5896 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
5897 le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
5898 sbi->s_add_error_count = 0;
5899 }
5900 spin_unlock(&sbi->s_error_lock);
5901
5902 ext4_superblock_csum_set(sb);
5903 unlock_buffer(sbh);
5904 }
5905
ext4_commit_super(struct super_block * sb)5906 static int ext4_commit_super(struct super_block *sb)
5907 {
5908 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
5909
5910 if (!sbh)
5911 return -EINVAL;
5912 if (block_device_ejected(sb))
5913 return -ENODEV;
5914
5915 ext4_update_super(sb);
5916
5917 lock_buffer(sbh);
5918 /* Buffer got discarded which means block device got invalidated */
5919 if (!buffer_mapped(sbh)) {
5920 unlock_buffer(sbh);
5921 return -EIO;
5922 }
5923
5924 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
5925 /*
5926 * Oh, dear. A previous attempt to write the
5927 * superblock failed. This could happen because the
5928 * USB device was yanked out. Or it could happen to
5929 * be a transient write error and maybe the block will
5930 * be remapped. Nothing we can do but to retry the
5931 * write and hope for the best.
5932 */
5933 ext4_msg(sb, KERN_ERR, "previous I/O error to "
5934 "superblock detected");
5935 clear_buffer_write_io_error(sbh);
5936 set_buffer_uptodate(sbh);
5937 }
5938 get_bh(sbh);
5939 /* Clear potential dirty bit if it was journalled update */
5940 clear_buffer_dirty(sbh);
5941 sbh->b_end_io = end_buffer_write_sync;
5942 submit_bh(REQ_OP_WRITE,
5943 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh);
5944 wait_on_buffer(sbh);
5945 if (buffer_write_io_error(sbh)) {
5946 ext4_msg(sb, KERN_ERR, "I/O error while writing "
5947 "superblock");
5948 clear_buffer_write_io_error(sbh);
5949 set_buffer_uptodate(sbh);
5950 return -EIO;
5951 }
5952 return 0;
5953 }
5954
5955 /*
5956 * Have we just finished recovery? If so, and if we are mounting (or
5957 * remounting) the filesystem readonly, then we will end up with a
5958 * consistent fs on disk. Record that fact.
5959 */
ext4_mark_recovery_complete(struct super_block * sb,struct ext4_super_block * es)5960 static int ext4_mark_recovery_complete(struct super_block *sb,
5961 struct ext4_super_block *es)
5962 {
5963 int err;
5964 journal_t *journal = EXT4_SB(sb)->s_journal;
5965
5966 if (!ext4_has_feature_journal(sb)) {
5967 if (journal != NULL) {
5968 ext4_error(sb, "Journal got removed while the fs was "
5969 "mounted!");
5970 return -EFSCORRUPTED;
5971 }
5972 return 0;
5973 }
5974 jbd2_journal_lock_updates(journal);
5975 err = jbd2_journal_flush(journal, 0);
5976 if (err < 0)
5977 goto out;
5978
5979 if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) ||
5980 ext4_has_feature_orphan_present(sb))) {
5981 if (!ext4_orphan_file_empty(sb)) {
5982 ext4_error(sb, "Orphan file not empty on read-only fs.");
5983 err = -EFSCORRUPTED;
5984 goto out;
5985 }
5986 ext4_clear_feature_journal_needs_recovery(sb);
5987 ext4_clear_feature_orphan_present(sb);
5988 ext4_commit_super(sb);
5989 }
5990 out:
5991 jbd2_journal_unlock_updates(journal);
5992 return err;
5993 }
5994
5995 /*
5996 * If we are mounting (or read-write remounting) a filesystem whose journal
5997 * has recorded an error from a previous lifetime, move that error to the
5998 * main filesystem now.
5999 */
ext4_clear_journal_err(struct super_block * sb,struct ext4_super_block * es)6000 static int ext4_clear_journal_err(struct super_block *sb,
6001 struct ext4_super_block *es)
6002 {
6003 journal_t *journal;
6004 int j_errno;
6005 const char *errstr;
6006
6007 if (!ext4_has_feature_journal(sb)) {
6008 ext4_error(sb, "Journal got removed while the fs was mounted!");
6009 return -EFSCORRUPTED;
6010 }
6011
6012 journal = EXT4_SB(sb)->s_journal;
6013
6014 /*
6015 * Now check for any error status which may have been recorded in the
6016 * journal by a prior ext4_error() or ext4_abort()
6017 */
6018
6019 j_errno = jbd2_journal_errno(journal);
6020 if (j_errno) {
6021 char nbuf[16];
6022
6023 errstr = ext4_decode_error(sb, j_errno, nbuf);
6024 ext4_warning(sb, "Filesystem error recorded "
6025 "from previous mount: %s", errstr);
6026 ext4_warning(sb, "Marking fs in need of filesystem check.");
6027
6028 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
6029 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6030 ext4_commit_super(sb);
6031
6032 jbd2_journal_clear_err(journal);
6033 jbd2_journal_update_sb_errno(journal);
6034 }
6035 return 0;
6036 }
6037
6038 /*
6039 * Force the running and committing transactions to commit,
6040 * and wait on the commit.
6041 */
ext4_force_commit(struct super_block * sb)6042 int ext4_force_commit(struct super_block *sb)
6043 {
6044 journal_t *journal;
6045
6046 if (sb_rdonly(sb))
6047 return 0;
6048
6049 journal = EXT4_SB(sb)->s_journal;
6050 return ext4_journal_force_commit(journal);
6051 }
6052
ext4_sync_fs(struct super_block * sb,int wait)6053 static int ext4_sync_fs(struct super_block *sb, int wait)
6054 {
6055 int ret = 0;
6056 tid_t target;
6057 bool needs_barrier = false;
6058 struct ext4_sb_info *sbi = EXT4_SB(sb);
6059
6060 if (unlikely(ext4_forced_shutdown(sbi)))
6061 return 0;
6062
6063 trace_ext4_sync_fs(sb, wait);
6064 flush_workqueue(sbi->rsv_conversion_wq);
6065 /*
6066 * Writeback quota in non-journalled quota case - journalled quota has
6067 * no dirty dquots
6068 */
6069 dquot_writeback_dquots(sb, -1);
6070 /*
6071 * Data writeback is possible w/o journal transaction, so barrier must
6072 * being sent at the end of the function. But we can skip it if
6073 * transaction_commit will do it for us.
6074 */
6075 if (sbi->s_journal) {
6076 target = jbd2_get_latest_transaction(sbi->s_journal);
6077 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
6078 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
6079 needs_barrier = true;
6080
6081 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
6082 if (wait)
6083 ret = jbd2_log_wait_commit(sbi->s_journal,
6084 target);
6085 }
6086 } else if (wait && test_opt(sb, BARRIER))
6087 needs_barrier = true;
6088 if (needs_barrier) {
6089 int err;
6090 err = blkdev_issue_flush(sb->s_bdev);
6091 if (!ret)
6092 ret = err;
6093 }
6094
6095 return ret;
6096 }
6097
6098 /*
6099 * LVM calls this function before a (read-only) snapshot is created. This
6100 * gives us a chance to flush the journal completely and mark the fs clean.
6101 *
6102 * Note that only this function cannot bring a filesystem to be in a clean
6103 * state independently. It relies on upper layer to stop all data & metadata
6104 * modifications.
6105 */
ext4_freeze(struct super_block * sb)6106 static int ext4_freeze(struct super_block *sb)
6107 {
6108 int error = 0;
6109 journal_t *journal;
6110
6111 if (sb_rdonly(sb))
6112 return 0;
6113
6114 journal = EXT4_SB(sb)->s_journal;
6115
6116 if (journal) {
6117 /* Now we set up the journal barrier. */
6118 jbd2_journal_lock_updates(journal);
6119
6120 /*
6121 * Don't clear the needs_recovery flag if we failed to
6122 * flush the journal.
6123 */
6124 error = jbd2_journal_flush(journal, 0);
6125 if (error < 0)
6126 goto out;
6127
6128 /* Journal blocked and flushed, clear needs_recovery flag. */
6129 ext4_clear_feature_journal_needs_recovery(sb);
6130 if (ext4_orphan_file_empty(sb))
6131 ext4_clear_feature_orphan_present(sb);
6132 }
6133
6134 error = ext4_commit_super(sb);
6135 out:
6136 if (journal)
6137 /* we rely on upper layer to stop further updates */
6138 jbd2_journal_unlock_updates(journal);
6139 return error;
6140 }
6141
6142 /*
6143 * Called by LVM after the snapshot is done. We need to reset the RECOVER
6144 * flag here, even though the filesystem is not technically dirty yet.
6145 */
ext4_unfreeze(struct super_block * sb)6146 static int ext4_unfreeze(struct super_block *sb)
6147 {
6148 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
6149 return 0;
6150
6151 if (EXT4_SB(sb)->s_journal) {
6152 /* Reset the needs_recovery flag before the fs is unlocked. */
6153 ext4_set_feature_journal_needs_recovery(sb);
6154 if (ext4_has_feature_orphan_file(sb))
6155 ext4_set_feature_orphan_present(sb);
6156 }
6157
6158 ext4_commit_super(sb);
6159 return 0;
6160 }
6161
6162 /*
6163 * Structure to save mount options for ext4_remount's benefit
6164 */
6165 struct ext4_mount_options {
6166 unsigned long s_mount_opt;
6167 unsigned long s_mount_opt2;
6168 kuid_t s_resuid;
6169 kgid_t s_resgid;
6170 unsigned long s_commit_interval;
6171 u32 s_min_batch_time, s_max_batch_time;
6172 #ifdef CONFIG_QUOTA
6173 int s_jquota_fmt;
6174 char *s_qf_names[EXT4_MAXQUOTAS];
6175 #endif
6176 };
6177
__ext4_remount(struct fs_context * fc,struct super_block * sb)6178 static int __ext4_remount(struct fs_context *fc, struct super_block *sb)
6179 {
6180 struct ext4_fs_context *ctx = fc->fs_private;
6181 struct ext4_super_block *es;
6182 struct ext4_sb_info *sbi = EXT4_SB(sb);
6183 unsigned long old_sb_flags;
6184 struct ext4_mount_options old_opts;
6185 ext4_group_t g;
6186 int err = 0;
6187 #ifdef CONFIG_QUOTA
6188 int enable_quota = 0;
6189 int i, j;
6190 char *to_free[EXT4_MAXQUOTAS];
6191 #endif
6192
6193
6194 /* Store the original options */
6195 old_sb_flags = sb->s_flags;
6196 old_opts.s_mount_opt = sbi->s_mount_opt;
6197 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
6198 old_opts.s_resuid = sbi->s_resuid;
6199 old_opts.s_resgid = sbi->s_resgid;
6200 old_opts.s_commit_interval = sbi->s_commit_interval;
6201 old_opts.s_min_batch_time = sbi->s_min_batch_time;
6202 old_opts.s_max_batch_time = sbi->s_max_batch_time;
6203 #ifdef CONFIG_QUOTA
6204 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
6205 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6206 if (sbi->s_qf_names[i]) {
6207 char *qf_name = get_qf_name(sb, sbi, i);
6208
6209 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
6210 if (!old_opts.s_qf_names[i]) {
6211 for (j = 0; j < i; j++)
6212 kfree(old_opts.s_qf_names[j]);
6213 return -ENOMEM;
6214 }
6215 } else
6216 old_opts.s_qf_names[i] = NULL;
6217 #endif
6218 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) {
6219 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
6220 ctx->journal_ioprio =
6221 sbi->s_journal->j_task->io_context->ioprio;
6222 else
6223 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
6224
6225 }
6226
6227 ext4_apply_options(fc, sb);
6228
6229 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
6230 test_opt(sb, JOURNAL_CHECKSUM)) {
6231 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
6232 "during remount not supported; ignoring");
6233 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
6234 }
6235
6236 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
6237 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
6238 ext4_msg(sb, KERN_ERR, "can't mount with "
6239 "both data=journal and delalloc");
6240 err = -EINVAL;
6241 goto restore_opts;
6242 }
6243 if (test_opt(sb, DIOREAD_NOLOCK)) {
6244 ext4_msg(sb, KERN_ERR, "can't mount with "
6245 "both data=journal and dioread_nolock");
6246 err = -EINVAL;
6247 goto restore_opts;
6248 }
6249 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
6250 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
6251 ext4_msg(sb, KERN_ERR, "can't mount with "
6252 "journal_async_commit in data=ordered mode");
6253 err = -EINVAL;
6254 goto restore_opts;
6255 }
6256 }
6257
6258 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
6259 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
6260 err = -EINVAL;
6261 goto restore_opts;
6262 }
6263
6264 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
6265 ext4_abort(sb, ESHUTDOWN, "Abort forced by user");
6266
6267 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
6268 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
6269
6270 es = sbi->s_es;
6271
6272 if (sbi->s_journal) {
6273 ext4_init_journal_params(sb, sbi->s_journal);
6274 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
6275 }
6276
6277 /* Flush outstanding errors before changing fs state */
6278 flush_work(&sbi->s_error_work);
6279
6280 if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) {
6281 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) {
6282 err = -EROFS;
6283 goto restore_opts;
6284 }
6285
6286 if (fc->sb_flags & SB_RDONLY) {
6287 err = sync_filesystem(sb);
6288 if (err < 0)
6289 goto restore_opts;
6290 err = dquot_suspend(sb, -1);
6291 if (err < 0)
6292 goto restore_opts;
6293
6294 /*
6295 * First of all, the unconditional stuff we have to do
6296 * to disable replay of the journal when we next remount
6297 */
6298 sb->s_flags |= SB_RDONLY;
6299
6300 /*
6301 * OK, test if we are remounting a valid rw partition
6302 * readonly, and if so set the rdonly flag and then
6303 * mark the partition as valid again.
6304 */
6305 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
6306 (sbi->s_mount_state & EXT4_VALID_FS))
6307 es->s_state = cpu_to_le16(sbi->s_mount_state);
6308
6309 if (sbi->s_journal) {
6310 /*
6311 * We let remount-ro finish even if marking fs
6312 * as clean failed...
6313 */
6314 ext4_mark_recovery_complete(sb, es);
6315 }
6316 } else {
6317 /* Make sure we can mount this feature set readwrite */
6318 if (ext4_has_feature_readonly(sb) ||
6319 !ext4_feature_set_ok(sb, 0)) {
6320 err = -EROFS;
6321 goto restore_opts;
6322 }
6323 /*
6324 * Make sure the group descriptor checksums
6325 * are sane. If they aren't, refuse to remount r/w.
6326 */
6327 for (g = 0; g < sbi->s_groups_count; g++) {
6328 struct ext4_group_desc *gdp =
6329 ext4_get_group_desc(sb, g, NULL);
6330
6331 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
6332 ext4_msg(sb, KERN_ERR,
6333 "ext4_remount: Checksum for group %u failed (%u!=%u)",
6334 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
6335 le16_to_cpu(gdp->bg_checksum));
6336 err = -EFSBADCRC;
6337 goto restore_opts;
6338 }
6339 }
6340
6341 /*
6342 * If we have an unprocessed orphan list hanging
6343 * around from a previously readonly bdev mount,
6344 * require a full umount/remount for now.
6345 */
6346 if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) {
6347 ext4_msg(sb, KERN_WARNING, "Couldn't "
6348 "remount RDWR because of unprocessed "
6349 "orphan inode list. Please "
6350 "umount/remount instead");
6351 err = -EINVAL;
6352 goto restore_opts;
6353 }
6354
6355 /*
6356 * Mounting a RDONLY partition read-write, so reread
6357 * and store the current valid flag. (It may have
6358 * been changed by e2fsck since we originally mounted
6359 * the partition.)
6360 */
6361 if (sbi->s_journal) {
6362 err = ext4_clear_journal_err(sb, es);
6363 if (err)
6364 goto restore_opts;
6365 }
6366 sbi->s_mount_state = (le16_to_cpu(es->s_state) &
6367 ~EXT4_FC_REPLAY);
6368
6369 err = ext4_setup_super(sb, es, 0);
6370 if (err)
6371 goto restore_opts;
6372
6373 sb->s_flags &= ~SB_RDONLY;
6374 if (ext4_has_feature_mmp(sb))
6375 if (ext4_multi_mount_protect(sb,
6376 le64_to_cpu(es->s_mmp_block))) {
6377 err = -EROFS;
6378 goto restore_opts;
6379 }
6380 #ifdef CONFIG_QUOTA
6381 enable_quota = 1;
6382 #endif
6383 }
6384 }
6385
6386 /*
6387 * Reinitialize lazy itable initialization thread based on
6388 * current settings
6389 */
6390 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6391 ext4_unregister_li_request(sb);
6392 else {
6393 ext4_group_t first_not_zeroed;
6394 first_not_zeroed = ext4_has_uninit_itable(sb);
6395 ext4_register_li_request(sb, first_not_zeroed);
6396 }
6397
6398 /*
6399 * Handle creation of system zone data early because it can fail.
6400 * Releasing of existing data is done when we are sure remount will
6401 * succeed.
6402 */
6403 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6404 err = ext4_setup_system_zone(sb);
6405 if (err)
6406 goto restore_opts;
6407 }
6408
6409 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6410 err = ext4_commit_super(sb);
6411 if (err)
6412 goto restore_opts;
6413 }
6414
6415 #ifdef CONFIG_QUOTA
6416 /* Release old quota file names */
6417 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6418 kfree(old_opts.s_qf_names[i]);
6419 if (enable_quota) {
6420 if (sb_any_quota_suspended(sb))
6421 dquot_resume(sb, -1);
6422 else if (ext4_has_feature_quota(sb)) {
6423 err = ext4_enable_quotas(sb);
6424 if (err)
6425 goto restore_opts;
6426 }
6427 }
6428 #endif
6429 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6430 ext4_release_system_zone(sb);
6431
6432 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6433 ext4_stop_mmpd(sbi);
6434
6435 return 0;
6436
6437 restore_opts:
6438 sb->s_flags = old_sb_flags;
6439 sbi->s_mount_opt = old_opts.s_mount_opt;
6440 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6441 sbi->s_resuid = old_opts.s_resuid;
6442 sbi->s_resgid = old_opts.s_resgid;
6443 sbi->s_commit_interval = old_opts.s_commit_interval;
6444 sbi->s_min_batch_time = old_opts.s_min_batch_time;
6445 sbi->s_max_batch_time = old_opts.s_max_batch_time;
6446 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6447 ext4_release_system_zone(sb);
6448 #ifdef CONFIG_QUOTA
6449 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6450 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6451 to_free[i] = get_qf_name(sb, sbi, i);
6452 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6453 }
6454 synchronize_rcu();
6455 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6456 kfree(to_free[i]);
6457 #endif
6458 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6459 ext4_stop_mmpd(sbi);
6460 return err;
6461 }
6462
ext4_reconfigure(struct fs_context * fc)6463 static int ext4_reconfigure(struct fs_context *fc)
6464 {
6465 struct super_block *sb = fc->root->d_sb;
6466 int ret;
6467
6468 fc->s_fs_info = EXT4_SB(sb);
6469
6470 ret = ext4_check_opt_consistency(fc, sb);
6471 if (ret < 0)
6472 return ret;
6473
6474 ret = __ext4_remount(fc, sb);
6475 if (ret < 0)
6476 return ret;
6477
6478 ext4_msg(sb, KERN_INFO, "re-mounted. Quota mode: %s.",
6479 ext4_quota_mode(sb));
6480
6481 return 0;
6482 }
6483
6484 #ifdef CONFIG_QUOTA
ext4_statfs_project(struct super_block * sb,kprojid_t projid,struct kstatfs * buf)6485 static int ext4_statfs_project(struct super_block *sb,
6486 kprojid_t projid, struct kstatfs *buf)
6487 {
6488 struct kqid qid;
6489 struct dquot *dquot;
6490 u64 limit;
6491 u64 curblock;
6492
6493 qid = make_kqid_projid(projid);
6494 dquot = dqget(sb, qid);
6495 if (IS_ERR(dquot))
6496 return PTR_ERR(dquot);
6497 spin_lock(&dquot->dq_dqb_lock);
6498
6499 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6500 dquot->dq_dqb.dqb_bhardlimit);
6501 limit >>= sb->s_blocksize_bits;
6502
6503 if (limit && buf->f_blocks > limit) {
6504 curblock = (dquot->dq_dqb.dqb_curspace +
6505 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6506 buf->f_blocks = limit;
6507 buf->f_bfree = buf->f_bavail =
6508 (buf->f_blocks > curblock) ?
6509 (buf->f_blocks - curblock) : 0;
6510 }
6511
6512 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6513 dquot->dq_dqb.dqb_ihardlimit);
6514 if (limit && buf->f_files > limit) {
6515 buf->f_files = limit;
6516 buf->f_ffree =
6517 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6518 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6519 }
6520
6521 spin_unlock(&dquot->dq_dqb_lock);
6522 dqput(dquot);
6523 return 0;
6524 }
6525 #endif
6526
ext4_statfs(struct dentry * dentry,struct kstatfs * buf)6527 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6528 {
6529 struct super_block *sb = dentry->d_sb;
6530 struct ext4_sb_info *sbi = EXT4_SB(sb);
6531 struct ext4_super_block *es = sbi->s_es;
6532 ext4_fsblk_t overhead = 0, resv_blocks;
6533 s64 bfree;
6534 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6535
6536 if (!test_opt(sb, MINIX_DF))
6537 overhead = sbi->s_overhead;
6538
6539 buf->f_type = EXT4_SUPER_MAGIC;
6540 buf->f_bsize = sb->s_blocksize;
6541 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6542 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6543 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6544 /* prevent underflow in case that few free space is available */
6545 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6546 buf->f_bavail = buf->f_bfree -
6547 (ext4_r_blocks_count(es) + resv_blocks);
6548 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6549 buf->f_bavail = 0;
6550 buf->f_files = le32_to_cpu(es->s_inodes_count);
6551 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6552 buf->f_namelen = EXT4_NAME_LEN;
6553 buf->f_fsid = uuid_to_fsid(es->s_uuid);
6554
6555 #ifdef CONFIG_QUOTA
6556 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6557 sb_has_quota_limits_enabled(sb, PRJQUOTA))
6558 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6559 #endif
6560 return 0;
6561 }
6562
6563
6564 #ifdef CONFIG_QUOTA
6565
6566 /*
6567 * Helper functions so that transaction is started before we acquire dqio_sem
6568 * to keep correct lock ordering of transaction > dqio_sem
6569 */
dquot_to_inode(struct dquot * dquot)6570 static inline struct inode *dquot_to_inode(struct dquot *dquot)
6571 {
6572 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6573 }
6574
ext4_write_dquot(struct dquot * dquot)6575 static int ext4_write_dquot(struct dquot *dquot)
6576 {
6577 int ret, err;
6578 handle_t *handle;
6579 struct inode *inode;
6580
6581 inode = dquot_to_inode(dquot);
6582 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6583 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6584 if (IS_ERR(handle))
6585 return PTR_ERR(handle);
6586 ret = dquot_commit(dquot);
6587 err = ext4_journal_stop(handle);
6588 if (!ret)
6589 ret = err;
6590 return ret;
6591 }
6592
ext4_acquire_dquot(struct dquot * dquot)6593 static int ext4_acquire_dquot(struct dquot *dquot)
6594 {
6595 int ret, err;
6596 handle_t *handle;
6597
6598 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6599 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6600 if (IS_ERR(handle))
6601 return PTR_ERR(handle);
6602 ret = dquot_acquire(dquot);
6603 err = ext4_journal_stop(handle);
6604 if (!ret)
6605 ret = err;
6606 return ret;
6607 }
6608
ext4_release_dquot(struct dquot * dquot)6609 static int ext4_release_dquot(struct dquot *dquot)
6610 {
6611 int ret, err;
6612 handle_t *handle;
6613
6614 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6615 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6616 if (IS_ERR(handle)) {
6617 /* Release dquot anyway to avoid endless cycle in dqput() */
6618 dquot_release(dquot);
6619 return PTR_ERR(handle);
6620 }
6621 ret = dquot_release(dquot);
6622 err = ext4_journal_stop(handle);
6623 if (!ret)
6624 ret = err;
6625 return ret;
6626 }
6627
ext4_mark_dquot_dirty(struct dquot * dquot)6628 static int ext4_mark_dquot_dirty(struct dquot *dquot)
6629 {
6630 struct super_block *sb = dquot->dq_sb;
6631
6632 if (ext4_is_quota_journalled(sb)) {
6633 dquot_mark_dquot_dirty(dquot);
6634 return ext4_write_dquot(dquot);
6635 } else {
6636 return dquot_mark_dquot_dirty(dquot);
6637 }
6638 }
6639
ext4_write_info(struct super_block * sb,int type)6640 static int ext4_write_info(struct super_block *sb, int type)
6641 {
6642 int ret, err;
6643 handle_t *handle;
6644
6645 /* Data block + inode block */
6646 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
6647 if (IS_ERR(handle))
6648 return PTR_ERR(handle);
6649 ret = dquot_commit_info(sb, type);
6650 err = ext4_journal_stop(handle);
6651 if (!ret)
6652 ret = err;
6653 return ret;
6654 }
6655
lockdep_set_quota_inode(struct inode * inode,int subclass)6656 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6657 {
6658 struct ext4_inode_info *ei = EXT4_I(inode);
6659
6660 /* The first argument of lockdep_set_subclass has to be
6661 * *exactly* the same as the argument to init_rwsem() --- in
6662 * this case, in init_once() --- or lockdep gets unhappy
6663 * because the name of the lock is set using the
6664 * stringification of the argument to init_rwsem().
6665 */
6666 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
6667 lockdep_set_subclass(&ei->i_data_sem, subclass);
6668 }
6669
6670 /*
6671 * Standard function to be called on quota_on
6672 */
ext4_quota_on(struct super_block * sb,int type,int format_id,const struct path * path)6673 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
6674 const struct path *path)
6675 {
6676 int err;
6677
6678 if (!test_opt(sb, QUOTA))
6679 return -EINVAL;
6680
6681 /* Quotafile not on the same filesystem? */
6682 if (path->dentry->d_sb != sb)
6683 return -EXDEV;
6684
6685 /* Quota already enabled for this file? */
6686 if (IS_NOQUOTA(d_inode(path->dentry)))
6687 return -EBUSY;
6688
6689 /* Journaling quota? */
6690 if (EXT4_SB(sb)->s_qf_names[type]) {
6691 /* Quotafile not in fs root? */
6692 if (path->dentry->d_parent != sb->s_root)
6693 ext4_msg(sb, KERN_WARNING,
6694 "Quota file not on filesystem root. "
6695 "Journaled quota will not work");
6696 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
6697 } else {
6698 /*
6699 * Clear the flag just in case mount options changed since
6700 * last time.
6701 */
6702 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
6703 }
6704
6705 /*
6706 * When we journal data on quota file, we have to flush journal to see
6707 * all updates to the file when we bypass pagecache...
6708 */
6709 if (EXT4_SB(sb)->s_journal &&
6710 ext4_should_journal_data(d_inode(path->dentry))) {
6711 /*
6712 * We don't need to lock updates but journal_flush() could
6713 * otherwise be livelocked...
6714 */
6715 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
6716 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal, 0);
6717 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
6718 if (err)
6719 return err;
6720 }
6721
6722 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
6723 err = dquot_quota_on(sb, type, format_id, path);
6724 if (!err) {
6725 struct inode *inode = d_inode(path->dentry);
6726 handle_t *handle;
6727
6728 /*
6729 * Set inode flags to prevent userspace from messing with quota
6730 * files. If this fails, we return success anyway since quotas
6731 * are already enabled and this is not a hard failure.
6732 */
6733 inode_lock(inode);
6734 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6735 if (IS_ERR(handle))
6736 goto unlock_inode;
6737 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
6738 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
6739 S_NOATIME | S_IMMUTABLE);
6740 err = ext4_mark_inode_dirty(handle, inode);
6741 ext4_journal_stop(handle);
6742 unlock_inode:
6743 inode_unlock(inode);
6744 if (err)
6745 dquot_quota_off(sb, type);
6746 }
6747 if (err)
6748 lockdep_set_quota_inode(path->dentry->d_inode,
6749 I_DATA_SEM_NORMAL);
6750 return err;
6751 }
6752
ext4_quota_enable(struct super_block * sb,int type,int format_id,unsigned int flags)6753 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
6754 unsigned int flags)
6755 {
6756 int err;
6757 struct inode *qf_inode;
6758 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6759 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6760 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6761 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6762 };
6763
6764 BUG_ON(!ext4_has_feature_quota(sb));
6765
6766 if (!qf_inums[type])
6767 return -EPERM;
6768
6769 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
6770 if (IS_ERR(qf_inode)) {
6771 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
6772 return PTR_ERR(qf_inode);
6773 }
6774
6775 /* Don't account quota for quota files to avoid recursion */
6776 qf_inode->i_flags |= S_NOQUOTA;
6777 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
6778 err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
6779 if (err)
6780 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
6781 iput(qf_inode);
6782
6783 return err;
6784 }
6785
6786 /* Enable usage tracking for all quota types. */
ext4_enable_quotas(struct super_block * sb)6787 int ext4_enable_quotas(struct super_block *sb)
6788 {
6789 int type, err = 0;
6790 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6791 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6792 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6793 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6794 };
6795 bool quota_mopt[EXT4_MAXQUOTAS] = {
6796 test_opt(sb, USRQUOTA),
6797 test_opt(sb, GRPQUOTA),
6798 test_opt(sb, PRJQUOTA),
6799 };
6800
6801 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
6802 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
6803 if (qf_inums[type]) {
6804 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
6805 DQUOT_USAGE_ENABLED |
6806 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
6807 if (err) {
6808 ext4_warning(sb,
6809 "Failed to enable quota tracking "
6810 "(type=%d, err=%d). Please run "
6811 "e2fsck to fix.", type, err);
6812 for (type--; type >= 0; type--) {
6813 struct inode *inode;
6814
6815 inode = sb_dqopt(sb)->files[type];
6816 if (inode)
6817 inode = igrab(inode);
6818 dquot_quota_off(sb, type);
6819 if (inode) {
6820 lockdep_set_quota_inode(inode,
6821 I_DATA_SEM_NORMAL);
6822 iput(inode);
6823 }
6824 }
6825
6826 return err;
6827 }
6828 }
6829 }
6830 return 0;
6831 }
6832
ext4_quota_off(struct super_block * sb,int type)6833 static int ext4_quota_off(struct super_block *sb, int type)
6834 {
6835 struct inode *inode = sb_dqopt(sb)->files[type];
6836 handle_t *handle;
6837 int err;
6838
6839 /* Force all delayed allocation blocks to be allocated.
6840 * Caller already holds s_umount sem */
6841 if (test_opt(sb, DELALLOC))
6842 sync_filesystem(sb);
6843
6844 if (!inode || !igrab(inode))
6845 goto out;
6846
6847 err = dquot_quota_off(sb, type);
6848 if (err || ext4_has_feature_quota(sb))
6849 goto out_put;
6850
6851 inode_lock(inode);
6852 /*
6853 * Update modification times of quota files when userspace can
6854 * start looking at them. If we fail, we return success anyway since
6855 * this is not a hard failure and quotas are already disabled.
6856 */
6857 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6858 if (IS_ERR(handle)) {
6859 err = PTR_ERR(handle);
6860 goto out_unlock;
6861 }
6862 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
6863 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
6864 inode->i_mtime = inode->i_ctime = current_time(inode);
6865 err = ext4_mark_inode_dirty(handle, inode);
6866 ext4_journal_stop(handle);
6867 out_unlock:
6868 inode_unlock(inode);
6869 out_put:
6870 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
6871 iput(inode);
6872 return err;
6873 out:
6874 return dquot_quota_off(sb, type);
6875 }
6876
6877 /* Read data from quotafile - avoid pagecache and such because we cannot afford
6878 * acquiring the locks... As quota files are never truncated and quota code
6879 * itself serializes the operations (and no one else should touch the files)
6880 * we don't have to be afraid of races */
ext4_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)6881 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
6882 size_t len, loff_t off)
6883 {
6884 struct inode *inode = sb_dqopt(sb)->files[type];
6885 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6886 int offset = off & (sb->s_blocksize - 1);
6887 int tocopy;
6888 size_t toread;
6889 struct buffer_head *bh;
6890 loff_t i_size = i_size_read(inode);
6891
6892 if (off > i_size)
6893 return 0;
6894 if (off+len > i_size)
6895 len = i_size-off;
6896 toread = len;
6897 while (toread > 0) {
6898 tocopy = sb->s_blocksize - offset < toread ?
6899 sb->s_blocksize - offset : toread;
6900 bh = ext4_bread(NULL, inode, blk, 0);
6901 if (IS_ERR(bh))
6902 return PTR_ERR(bh);
6903 if (!bh) /* A hole? */
6904 memset(data, 0, tocopy);
6905 else
6906 memcpy(data, bh->b_data+offset, tocopy);
6907 brelse(bh);
6908 offset = 0;
6909 toread -= tocopy;
6910 data += tocopy;
6911 blk++;
6912 }
6913 return len;
6914 }
6915
6916 /* Write to quotafile (we know the transaction is already started and has
6917 * enough credits) */
ext4_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)6918 static ssize_t ext4_quota_write(struct super_block *sb, int type,
6919 const char *data, size_t len, loff_t off)
6920 {
6921 struct inode *inode = sb_dqopt(sb)->files[type];
6922 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6923 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
6924 int retries = 0;
6925 struct buffer_head *bh;
6926 handle_t *handle = journal_current_handle();
6927
6928 if (!handle) {
6929 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6930 " cancelled because transaction is not started",
6931 (unsigned long long)off, (unsigned long long)len);
6932 return -EIO;
6933 }
6934 /*
6935 * Since we account only one data block in transaction credits,
6936 * then it is impossible to cross a block boundary.
6937 */
6938 if (sb->s_blocksize - offset < len) {
6939 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6940 " cancelled because not block aligned",
6941 (unsigned long long)off, (unsigned long long)len);
6942 return -EIO;
6943 }
6944
6945 do {
6946 bh = ext4_bread(handle, inode, blk,
6947 EXT4_GET_BLOCKS_CREATE |
6948 EXT4_GET_BLOCKS_METADATA_NOFAIL);
6949 } while (PTR_ERR(bh) == -ENOSPC &&
6950 ext4_should_retry_alloc(inode->i_sb, &retries));
6951 if (IS_ERR(bh))
6952 return PTR_ERR(bh);
6953 if (!bh)
6954 goto out;
6955 BUFFER_TRACE(bh, "get write access");
6956 err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE);
6957 if (err) {
6958 brelse(bh);
6959 return err;
6960 }
6961 lock_buffer(bh);
6962 memcpy(bh->b_data+offset, data, len);
6963 flush_dcache_page(bh->b_page);
6964 unlock_buffer(bh);
6965 err = ext4_handle_dirty_metadata(handle, NULL, bh);
6966 brelse(bh);
6967 out:
6968 if (inode->i_size < off + len) {
6969 i_size_write(inode, off + len);
6970 EXT4_I(inode)->i_disksize = inode->i_size;
6971 err2 = ext4_mark_inode_dirty(handle, inode);
6972 if (unlikely(err2 && !err))
6973 err = err2;
6974 }
6975 return err ? err : len;
6976 }
6977 #endif
6978
6979 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
register_as_ext2(void)6980 static inline void register_as_ext2(void)
6981 {
6982 int err = register_filesystem(&ext2_fs_type);
6983 if (err)
6984 printk(KERN_WARNING
6985 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
6986 }
6987
unregister_as_ext2(void)6988 static inline void unregister_as_ext2(void)
6989 {
6990 unregister_filesystem(&ext2_fs_type);
6991 }
6992
ext2_feature_set_ok(struct super_block * sb)6993 static inline int ext2_feature_set_ok(struct super_block *sb)
6994 {
6995 if (ext4_has_unknown_ext2_incompat_features(sb))
6996 return 0;
6997 if (sb_rdonly(sb))
6998 return 1;
6999 if (ext4_has_unknown_ext2_ro_compat_features(sb))
7000 return 0;
7001 return 1;
7002 }
7003 #else
register_as_ext2(void)7004 static inline void register_as_ext2(void) { }
unregister_as_ext2(void)7005 static inline void unregister_as_ext2(void) { }
ext2_feature_set_ok(struct super_block * sb)7006 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
7007 #endif
7008
register_as_ext3(void)7009 static inline void register_as_ext3(void)
7010 {
7011 int err = register_filesystem(&ext3_fs_type);
7012 if (err)
7013 printk(KERN_WARNING
7014 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
7015 }
7016
unregister_as_ext3(void)7017 static inline void unregister_as_ext3(void)
7018 {
7019 unregister_filesystem(&ext3_fs_type);
7020 }
7021
ext3_feature_set_ok(struct super_block * sb)7022 static inline int ext3_feature_set_ok(struct super_block *sb)
7023 {
7024 if (ext4_has_unknown_ext3_incompat_features(sb))
7025 return 0;
7026 if (!ext4_has_feature_journal(sb))
7027 return 0;
7028 if (sb_rdonly(sb))
7029 return 1;
7030 if (ext4_has_unknown_ext3_ro_compat_features(sb))
7031 return 0;
7032 return 1;
7033 }
7034
7035 static struct file_system_type ext4_fs_type = {
7036 .owner = THIS_MODULE,
7037 .name = "ext4",
7038 .init_fs_context = ext4_init_fs_context,
7039 .parameters = ext4_param_specs,
7040 .kill_sb = kill_block_super,
7041 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
7042 };
7043 MODULE_ALIAS_FS("ext4");
7044
7045 /* Shared across all ext4 file systems */
7046 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
7047
ext4_init_fs(void)7048 static int __init ext4_init_fs(void)
7049 {
7050 int i, err;
7051
7052 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
7053 ext4_li_info = NULL;
7054
7055 /* Build-time check for flags consistency */
7056 ext4_check_flag_values();
7057
7058 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
7059 init_waitqueue_head(&ext4__ioend_wq[i]);
7060
7061 err = ext4_init_es();
7062 if (err)
7063 return err;
7064
7065 err = ext4_init_pending();
7066 if (err)
7067 goto out7;
7068
7069 err = ext4_init_post_read_processing();
7070 if (err)
7071 goto out6;
7072
7073 err = ext4_init_pageio();
7074 if (err)
7075 goto out5;
7076
7077 err = ext4_init_system_zone();
7078 if (err)
7079 goto out4;
7080
7081 err = ext4_init_sysfs();
7082 if (err)
7083 goto out3;
7084
7085 err = ext4_init_mballoc();
7086 if (err)
7087 goto out2;
7088 err = init_inodecache();
7089 if (err)
7090 goto out1;
7091
7092 err = ext4_fc_init_dentry_cache();
7093 if (err)
7094 goto out05;
7095
7096 register_as_ext3();
7097 register_as_ext2();
7098 err = register_filesystem(&ext4_fs_type);
7099 if (err)
7100 goto out;
7101
7102 return 0;
7103 out:
7104 unregister_as_ext2();
7105 unregister_as_ext3();
7106 ext4_fc_destroy_dentry_cache();
7107 out05:
7108 destroy_inodecache();
7109 out1:
7110 ext4_exit_mballoc();
7111 out2:
7112 ext4_exit_sysfs();
7113 out3:
7114 ext4_exit_system_zone();
7115 out4:
7116 ext4_exit_pageio();
7117 out5:
7118 ext4_exit_post_read_processing();
7119 out6:
7120 ext4_exit_pending();
7121 out7:
7122 ext4_exit_es();
7123
7124 return err;
7125 }
7126
ext4_exit_fs(void)7127 static void __exit ext4_exit_fs(void)
7128 {
7129 ext4_destroy_lazyinit_thread();
7130 unregister_as_ext2();
7131 unregister_as_ext3();
7132 unregister_filesystem(&ext4_fs_type);
7133 ext4_fc_destroy_dentry_cache();
7134 destroy_inodecache();
7135 ext4_exit_mballoc();
7136 ext4_exit_sysfs();
7137 ext4_exit_system_zone();
7138 ext4_exit_pageio();
7139 ext4_exit_post_read_processing();
7140 ext4_exit_es();
7141 ext4_exit_pending();
7142 }
7143
7144 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
7145 MODULE_DESCRIPTION("Fourth Extended Filesystem");
7146 MODULE_LICENSE("GPL");
7147 MODULE_SOFTDEP("pre: crc32c");
7148 module_init(ext4_init_fs)
7149 module_exit(ext4_exit_fs)
7150