1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 #include "dm-ima.h"
12
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/mutex.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/signal.h>
18 #include <linux/blkpg.h>
19 #include <linux/bio.h>
20 #include <linux/mempool.h>
21 #include <linux/dax.h>
22 #include <linux/slab.h>
23 #include <linux/idr.h>
24 #include <linux/uio.h>
25 #include <linux/hdreg.h>
26 #include <linux/delay.h>
27 #include <linux/wait.h>
28 #include <linux/pr.h>
29 #include <linux/refcount.h>
30 #include <linux/part_stat.h>
31 #include <linux/blk-crypto.h>
32 #include <linux/blk-crypto-profile.h>
33
34 #define DM_MSG_PREFIX "core"
35
36 /*
37 * Cookies are numeric values sent with CHANGE and REMOVE
38 * uevents while resuming, removing or renaming the device.
39 */
40 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
41 #define DM_COOKIE_LENGTH 24
42
43 /*
44 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
45 * dm_io into one list, and reuse bio->bi_private as the list head. Before
46 * ending this fs bio, we will recover its ->bi_private.
47 */
48 #define REQ_DM_POLL_LIST REQ_DRV
49
50 static const char *_name = DM_NAME;
51
52 static unsigned int major = 0;
53 static unsigned int _major = 0;
54
55 static DEFINE_IDR(_minor_idr);
56
57 static DEFINE_SPINLOCK(_minor_lock);
58
59 static void do_deferred_remove(struct work_struct *w);
60
61 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
62
63 static struct workqueue_struct *deferred_remove_workqueue;
64
65 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
66 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
67
dm_issue_global_event(void)68 void dm_issue_global_event(void)
69 {
70 atomic_inc(&dm_global_event_nr);
71 wake_up(&dm_global_eventq);
72 }
73
74 DEFINE_STATIC_KEY_FALSE(stats_enabled);
75 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
76 DEFINE_STATIC_KEY_FALSE(zoned_enabled);
77
78 /*
79 * One of these is allocated (on-stack) per original bio.
80 */
81 struct clone_info {
82 struct dm_table *map;
83 struct bio *bio;
84 struct dm_io *io;
85 sector_t sector;
86 unsigned sector_count;
87 bool is_abnormal_io:1;
88 bool submit_as_polled:1;
89 };
90
91 #define DM_TARGET_IO_BIO_OFFSET (offsetof(struct dm_target_io, clone))
92 #define DM_IO_BIO_OFFSET \
93 (offsetof(struct dm_target_io, clone) + offsetof(struct dm_io, tio))
94
clone_to_tio(struct bio * clone)95 static inline struct dm_target_io *clone_to_tio(struct bio *clone)
96 {
97 return container_of(clone, struct dm_target_io, clone);
98 }
99
dm_per_bio_data(struct bio * bio,size_t data_size)100 void *dm_per_bio_data(struct bio *bio, size_t data_size)
101 {
102 if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
103 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
104 return (char *)bio - DM_IO_BIO_OFFSET - data_size;
105 }
106 EXPORT_SYMBOL_GPL(dm_per_bio_data);
107
dm_bio_from_per_bio_data(void * data,size_t data_size)108 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
109 {
110 struct dm_io *io = (struct dm_io *)((char *)data + data_size);
111 if (io->magic == DM_IO_MAGIC)
112 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
113 BUG_ON(io->magic != DM_TIO_MAGIC);
114 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
115 }
116 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
117
dm_bio_get_target_bio_nr(const struct bio * bio)118 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
119 {
120 return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
121 }
122 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
123
124 #define MINOR_ALLOCED ((void *)-1)
125
126 #define DM_NUMA_NODE NUMA_NO_NODE
127 static int dm_numa_node = DM_NUMA_NODE;
128
129 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE)
130 static int swap_bios = DEFAULT_SWAP_BIOS;
get_swap_bios(void)131 static int get_swap_bios(void)
132 {
133 int latch = READ_ONCE(swap_bios);
134 if (unlikely(latch <= 0))
135 latch = DEFAULT_SWAP_BIOS;
136 return latch;
137 }
138
139 struct table_device {
140 struct list_head list;
141 refcount_t count;
142 struct dm_dev dm_dev;
143 };
144
145 /*
146 * Bio-based DM's mempools' reserved IOs set by the user.
147 */
148 #define RESERVED_BIO_BASED_IOS 16
149 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
150
__dm_get_module_param_int(int * module_param,int min,int max)151 static int __dm_get_module_param_int(int *module_param, int min, int max)
152 {
153 int param = READ_ONCE(*module_param);
154 int modified_param = 0;
155 bool modified = true;
156
157 if (param < min)
158 modified_param = min;
159 else if (param > max)
160 modified_param = max;
161 else
162 modified = false;
163
164 if (modified) {
165 (void)cmpxchg(module_param, param, modified_param);
166 param = modified_param;
167 }
168
169 return param;
170 }
171
__dm_get_module_param(unsigned * module_param,unsigned def,unsigned max)172 unsigned __dm_get_module_param(unsigned *module_param,
173 unsigned def, unsigned max)
174 {
175 unsigned param = READ_ONCE(*module_param);
176 unsigned modified_param = 0;
177
178 if (!param)
179 modified_param = def;
180 else if (param > max)
181 modified_param = max;
182
183 if (modified_param) {
184 (void)cmpxchg(module_param, param, modified_param);
185 param = modified_param;
186 }
187
188 return param;
189 }
190
dm_get_reserved_bio_based_ios(void)191 unsigned dm_get_reserved_bio_based_ios(void)
192 {
193 return __dm_get_module_param(&reserved_bio_based_ios,
194 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
195 }
196 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
197
dm_get_numa_node(void)198 static unsigned dm_get_numa_node(void)
199 {
200 return __dm_get_module_param_int(&dm_numa_node,
201 DM_NUMA_NODE, num_online_nodes() - 1);
202 }
203
local_init(void)204 static int __init local_init(void)
205 {
206 int r;
207
208 r = dm_uevent_init();
209 if (r)
210 return r;
211
212 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
213 if (!deferred_remove_workqueue) {
214 r = -ENOMEM;
215 goto out_uevent_exit;
216 }
217
218 _major = major;
219 r = register_blkdev(_major, _name);
220 if (r < 0)
221 goto out_free_workqueue;
222
223 if (!_major)
224 _major = r;
225
226 return 0;
227
228 out_free_workqueue:
229 destroy_workqueue(deferred_remove_workqueue);
230 out_uevent_exit:
231 dm_uevent_exit();
232
233 return r;
234 }
235
local_exit(void)236 static void local_exit(void)
237 {
238 flush_scheduled_work();
239 destroy_workqueue(deferred_remove_workqueue);
240
241 unregister_blkdev(_major, _name);
242 dm_uevent_exit();
243
244 _major = 0;
245
246 DMINFO("cleaned up");
247 }
248
249 static int (*_inits[])(void) __initdata = {
250 local_init,
251 dm_target_init,
252 dm_linear_init,
253 dm_stripe_init,
254 dm_io_init,
255 dm_kcopyd_init,
256 dm_interface_init,
257 dm_statistics_init,
258 };
259
260 static void (*_exits[])(void) = {
261 local_exit,
262 dm_target_exit,
263 dm_linear_exit,
264 dm_stripe_exit,
265 dm_io_exit,
266 dm_kcopyd_exit,
267 dm_interface_exit,
268 dm_statistics_exit,
269 };
270
dm_init(void)271 static int __init dm_init(void)
272 {
273 const int count = ARRAY_SIZE(_inits);
274 int r, i;
275
276 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
277 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
278 " Duplicate IMA measurements will not be recorded in the IMA log.");
279 #endif
280
281 for (i = 0; i < count; i++) {
282 r = _inits[i]();
283 if (r)
284 goto bad;
285 }
286
287 return 0;
288 bad:
289 while (i--)
290 _exits[i]();
291
292 return r;
293 }
294
dm_exit(void)295 static void __exit dm_exit(void)
296 {
297 int i = ARRAY_SIZE(_exits);
298
299 while (i--)
300 _exits[i]();
301
302 /*
303 * Should be empty by this point.
304 */
305 idr_destroy(&_minor_idr);
306 }
307
308 /*
309 * Block device functions
310 */
dm_deleting_md(struct mapped_device * md)311 int dm_deleting_md(struct mapped_device *md)
312 {
313 return test_bit(DMF_DELETING, &md->flags);
314 }
315
dm_blk_open(struct block_device * bdev,fmode_t mode)316 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
317 {
318 struct mapped_device *md;
319
320 spin_lock(&_minor_lock);
321
322 md = bdev->bd_disk->private_data;
323 if (!md)
324 goto out;
325
326 if (test_bit(DMF_FREEING, &md->flags) ||
327 dm_deleting_md(md)) {
328 md = NULL;
329 goto out;
330 }
331
332 dm_get(md);
333 atomic_inc(&md->open_count);
334 out:
335 spin_unlock(&_minor_lock);
336
337 return md ? 0 : -ENXIO;
338 }
339
dm_blk_close(struct gendisk * disk,fmode_t mode)340 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
341 {
342 struct mapped_device *md;
343
344 spin_lock(&_minor_lock);
345
346 md = disk->private_data;
347 if (WARN_ON(!md))
348 goto out;
349
350 if (atomic_dec_and_test(&md->open_count) &&
351 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
352 queue_work(deferred_remove_workqueue, &deferred_remove_work);
353
354 dm_put(md);
355 out:
356 spin_unlock(&_minor_lock);
357 }
358
dm_open_count(struct mapped_device * md)359 int dm_open_count(struct mapped_device *md)
360 {
361 return atomic_read(&md->open_count);
362 }
363
364 /*
365 * Guarantees nothing is using the device before it's deleted.
366 */
dm_lock_for_deletion(struct mapped_device * md,bool mark_deferred,bool only_deferred)367 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
368 {
369 int r = 0;
370
371 spin_lock(&_minor_lock);
372
373 if (dm_open_count(md)) {
374 r = -EBUSY;
375 if (mark_deferred)
376 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
377 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
378 r = -EEXIST;
379 else
380 set_bit(DMF_DELETING, &md->flags);
381
382 spin_unlock(&_minor_lock);
383
384 return r;
385 }
386
dm_cancel_deferred_remove(struct mapped_device * md)387 int dm_cancel_deferred_remove(struct mapped_device *md)
388 {
389 int r = 0;
390
391 spin_lock(&_minor_lock);
392
393 if (test_bit(DMF_DELETING, &md->flags))
394 r = -EBUSY;
395 else
396 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
397
398 spin_unlock(&_minor_lock);
399
400 return r;
401 }
402
do_deferred_remove(struct work_struct * w)403 static void do_deferred_remove(struct work_struct *w)
404 {
405 dm_deferred_remove();
406 }
407
dm_blk_getgeo(struct block_device * bdev,struct hd_geometry * geo)408 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
409 {
410 struct mapped_device *md = bdev->bd_disk->private_data;
411
412 return dm_get_geometry(md, geo);
413 }
414
dm_prepare_ioctl(struct mapped_device * md,int * srcu_idx,struct block_device ** bdev)415 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
416 struct block_device **bdev)
417 {
418 struct dm_target *tgt;
419 struct dm_table *map;
420 int r;
421
422 retry:
423 r = -ENOTTY;
424 map = dm_get_live_table(md, srcu_idx);
425 if (!map || !dm_table_get_size(map))
426 return r;
427
428 /* We only support devices that have a single target */
429 if (dm_table_get_num_targets(map) != 1)
430 return r;
431
432 tgt = dm_table_get_target(map, 0);
433 if (!tgt->type->prepare_ioctl)
434 return r;
435
436 if (dm_suspended_md(md))
437 return -EAGAIN;
438
439 r = tgt->type->prepare_ioctl(tgt, bdev);
440 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
441 dm_put_live_table(md, *srcu_idx);
442 msleep(10);
443 goto retry;
444 }
445
446 return r;
447 }
448
dm_unprepare_ioctl(struct mapped_device * md,int srcu_idx)449 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
450 {
451 dm_put_live_table(md, srcu_idx);
452 }
453
dm_blk_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)454 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
455 unsigned int cmd, unsigned long arg)
456 {
457 struct mapped_device *md = bdev->bd_disk->private_data;
458 int r, srcu_idx;
459
460 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
461 if (r < 0)
462 goto out;
463
464 if (r > 0) {
465 /*
466 * Target determined this ioctl is being issued against a
467 * subset of the parent bdev; require extra privileges.
468 */
469 if (!capable(CAP_SYS_RAWIO)) {
470 DMDEBUG_LIMIT(
471 "%s: sending ioctl %x to DM device without required privilege.",
472 current->comm, cmd);
473 r = -ENOIOCTLCMD;
474 goto out;
475 }
476 }
477
478 if (!bdev->bd_disk->fops->ioctl)
479 r = -ENOTTY;
480 else
481 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
482 out:
483 dm_unprepare_ioctl(md, srcu_idx);
484 return r;
485 }
486
dm_start_time_ns_from_clone(struct bio * bio)487 u64 dm_start_time_ns_from_clone(struct bio *bio)
488 {
489 return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
490 }
491 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
492
bio_is_flush_with_data(struct bio * bio)493 static bool bio_is_flush_with_data(struct bio *bio)
494 {
495 return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
496 }
497
dm_io_acct(struct dm_io * io,bool end)498 static void dm_io_acct(struct dm_io *io, bool end)
499 {
500 struct dm_stats_aux *stats_aux = &io->stats_aux;
501 unsigned long start_time = io->start_time;
502 struct mapped_device *md = io->md;
503 struct bio *bio = io->orig_bio;
504 unsigned int sectors;
505
506 /*
507 * If REQ_PREFLUSH set, don't account payload, it will be
508 * submitted (and accounted) after this flush completes.
509 */
510 if (bio_is_flush_with_data(bio))
511 sectors = 0;
512 else if (likely(!(dm_io_flagged(io, DM_IO_WAS_SPLIT))))
513 sectors = bio_sectors(bio);
514 else
515 sectors = io->sectors;
516
517 if (!end)
518 bdev_start_io_acct(bio->bi_bdev, sectors, bio_op(bio),
519 start_time);
520 else
521 bdev_end_io_acct(bio->bi_bdev, bio_op(bio), start_time);
522
523 if (static_branch_unlikely(&stats_enabled) &&
524 unlikely(dm_stats_used(&md->stats))) {
525 sector_t sector;
526
527 if (likely(!dm_io_flagged(io, DM_IO_WAS_SPLIT)))
528 sector = bio->bi_iter.bi_sector;
529 else
530 sector = bio_end_sector(bio) - io->sector_offset;
531
532 dm_stats_account_io(&md->stats, bio_data_dir(bio),
533 sector, sectors,
534 end, start_time, stats_aux);
535 }
536 }
537
__dm_start_io_acct(struct dm_io * io)538 static void __dm_start_io_acct(struct dm_io *io)
539 {
540 dm_io_acct(io, false);
541 }
542
dm_start_io_acct(struct dm_io * io,struct bio * clone)543 static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
544 {
545 /*
546 * Ensure IO accounting is only ever started once.
547 */
548 if (dm_io_flagged(io, DM_IO_ACCOUNTED))
549 return;
550
551 /* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
552 if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
553 dm_io_set_flag(io, DM_IO_ACCOUNTED);
554 } else {
555 unsigned long flags;
556 /* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
557 spin_lock_irqsave(&io->lock, flags);
558 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
559 spin_unlock_irqrestore(&io->lock, flags);
560 return;
561 }
562 dm_io_set_flag(io, DM_IO_ACCOUNTED);
563 spin_unlock_irqrestore(&io->lock, flags);
564 }
565
566 __dm_start_io_acct(io);
567 }
568
dm_end_io_acct(struct dm_io * io)569 static void dm_end_io_acct(struct dm_io *io)
570 {
571 dm_io_acct(io, true);
572 }
573
alloc_io(struct mapped_device * md,struct bio * bio)574 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
575 {
576 struct dm_io *io;
577 struct dm_target_io *tio;
578 struct bio *clone;
579
580 clone = bio_alloc_clone(NULL, bio, GFP_NOIO, &md->mempools->io_bs);
581 tio = clone_to_tio(clone);
582 tio->flags = 0;
583 dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
584 tio->io = NULL;
585
586 io = container_of(tio, struct dm_io, tio);
587 io->magic = DM_IO_MAGIC;
588 io->status = BLK_STS_OK;
589
590 /* one ref is for submission, the other is for completion */
591 atomic_set(&io->io_count, 2);
592 this_cpu_inc(*md->pending_io);
593 io->orig_bio = bio;
594 io->split_bio = NULL;
595 io->md = md;
596 spin_lock_init(&io->lock);
597 io->start_time = jiffies;
598 io->flags = 0;
599
600 if (static_branch_unlikely(&stats_enabled))
601 dm_stats_record_start(&md->stats, &io->stats_aux);
602
603 return io;
604 }
605
free_io(struct dm_io * io)606 static void free_io(struct dm_io *io)
607 {
608 bio_put(&io->tio.clone);
609 }
610
alloc_tio(struct clone_info * ci,struct dm_target * ti,unsigned target_bio_nr,unsigned * len,gfp_t gfp_mask)611 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
612 unsigned target_bio_nr, unsigned *len, gfp_t gfp_mask)
613 {
614 struct mapped_device *md = ci->io->md;
615 struct dm_target_io *tio;
616 struct bio *clone;
617
618 if (!ci->io->tio.io) {
619 /* the dm_target_io embedded in ci->io is available */
620 tio = &ci->io->tio;
621 /* alloc_io() already initialized embedded clone */
622 clone = &tio->clone;
623 } else {
624 clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
625 &md->mempools->bs);
626 if (!clone)
627 return NULL;
628
629 /* REQ_DM_POLL_LIST shouldn't be inherited */
630 clone->bi_opf &= ~REQ_DM_POLL_LIST;
631
632 tio = clone_to_tio(clone);
633 tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
634 }
635
636 tio->magic = DM_TIO_MAGIC;
637 tio->io = ci->io;
638 tio->ti = ti;
639 tio->target_bio_nr = target_bio_nr;
640 tio->len_ptr = len;
641 tio->old_sector = 0;
642
643 /* Set default bdev, but target must bio_set_dev() before issuing IO */
644 clone->bi_bdev = md->disk->part0;
645 if (unlikely(ti->needs_bio_set_dev))
646 bio_set_dev(clone, md->disk->part0);
647
648 if (len) {
649 clone->bi_iter.bi_size = to_bytes(*len);
650 if (bio_integrity(clone))
651 bio_integrity_trim(clone);
652 }
653
654 return clone;
655 }
656
free_tio(struct bio * clone)657 static void free_tio(struct bio *clone)
658 {
659 if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
660 return;
661 bio_put(clone);
662 }
663
664 /*
665 * Add the bio to the list of deferred io.
666 */
queue_io(struct mapped_device * md,struct bio * bio)667 static void queue_io(struct mapped_device *md, struct bio *bio)
668 {
669 unsigned long flags;
670
671 spin_lock_irqsave(&md->deferred_lock, flags);
672 bio_list_add(&md->deferred, bio);
673 spin_unlock_irqrestore(&md->deferred_lock, flags);
674 queue_work(md->wq, &md->work);
675 }
676
677 /*
678 * Everyone (including functions in this file), should use this
679 * function to access the md->map field, and make sure they call
680 * dm_put_live_table() when finished.
681 */
dm_get_live_table(struct mapped_device * md,int * srcu_idx)682 struct dm_table *dm_get_live_table(struct mapped_device *md,
683 int *srcu_idx) __acquires(md->io_barrier)
684 {
685 *srcu_idx = srcu_read_lock(&md->io_barrier);
686
687 return srcu_dereference(md->map, &md->io_barrier);
688 }
689
dm_put_live_table(struct mapped_device * md,int srcu_idx)690 void dm_put_live_table(struct mapped_device *md,
691 int srcu_idx) __releases(md->io_barrier)
692 {
693 srcu_read_unlock(&md->io_barrier, srcu_idx);
694 }
695
dm_sync_table(struct mapped_device * md)696 void dm_sync_table(struct mapped_device *md)
697 {
698 synchronize_srcu(&md->io_barrier);
699 synchronize_rcu_expedited();
700 }
701
702 /*
703 * A fast alternative to dm_get_live_table/dm_put_live_table.
704 * The caller must not block between these two functions.
705 */
dm_get_live_table_fast(struct mapped_device * md)706 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
707 {
708 rcu_read_lock();
709 return rcu_dereference(md->map);
710 }
711
dm_put_live_table_fast(struct mapped_device * md)712 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
713 {
714 rcu_read_unlock();
715 }
716
dm_get_live_table_bio(struct mapped_device * md,int * srcu_idx,unsigned bio_opf)717 static inline struct dm_table *dm_get_live_table_bio(struct mapped_device *md,
718 int *srcu_idx, unsigned bio_opf)
719 {
720 if (bio_opf & REQ_NOWAIT)
721 return dm_get_live_table_fast(md);
722 else
723 return dm_get_live_table(md, srcu_idx);
724 }
725
dm_put_live_table_bio(struct mapped_device * md,int srcu_idx,unsigned bio_opf)726 static inline void dm_put_live_table_bio(struct mapped_device *md, int srcu_idx,
727 unsigned bio_opf)
728 {
729 if (bio_opf & REQ_NOWAIT)
730 dm_put_live_table_fast(md);
731 else
732 dm_put_live_table(md, srcu_idx);
733 }
734
735 static char *_dm_claim_ptr = "I belong to device-mapper";
736
737 /*
738 * Open a table device so we can use it as a map destination.
739 */
open_table_device(struct table_device * td,dev_t dev,struct mapped_device * md)740 static int open_table_device(struct table_device *td, dev_t dev,
741 struct mapped_device *md)
742 {
743 struct block_device *bdev;
744 u64 part_off;
745 int r;
746
747 BUG_ON(td->dm_dev.bdev);
748
749 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
750 if (IS_ERR(bdev))
751 return PTR_ERR(bdev);
752
753 r = bd_link_disk_holder(bdev, dm_disk(md));
754 if (r) {
755 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
756 return r;
757 }
758
759 td->dm_dev.bdev = bdev;
760 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off);
761 return 0;
762 }
763
764 /*
765 * Close a table device that we've been using.
766 */
close_table_device(struct table_device * td,struct mapped_device * md)767 static void close_table_device(struct table_device *td, struct mapped_device *md)
768 {
769 if (!td->dm_dev.bdev)
770 return;
771
772 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
773 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
774 put_dax(td->dm_dev.dax_dev);
775 td->dm_dev.bdev = NULL;
776 td->dm_dev.dax_dev = NULL;
777 }
778
find_table_device(struct list_head * l,dev_t dev,fmode_t mode)779 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
780 fmode_t mode)
781 {
782 struct table_device *td;
783
784 list_for_each_entry(td, l, list)
785 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
786 return td;
787
788 return NULL;
789 }
790
dm_get_table_device(struct mapped_device * md,dev_t dev,fmode_t mode,struct dm_dev ** result)791 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
792 struct dm_dev **result)
793 {
794 int r;
795 struct table_device *td;
796
797 mutex_lock(&md->table_devices_lock);
798 td = find_table_device(&md->table_devices, dev, mode);
799 if (!td) {
800 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
801 if (!td) {
802 mutex_unlock(&md->table_devices_lock);
803 return -ENOMEM;
804 }
805
806 td->dm_dev.mode = mode;
807 td->dm_dev.bdev = NULL;
808
809 if ((r = open_table_device(td, dev, md))) {
810 mutex_unlock(&md->table_devices_lock);
811 kfree(td);
812 return r;
813 }
814
815 format_dev_t(td->dm_dev.name, dev);
816
817 refcount_set(&td->count, 1);
818 list_add(&td->list, &md->table_devices);
819 } else {
820 refcount_inc(&td->count);
821 }
822 mutex_unlock(&md->table_devices_lock);
823
824 *result = &td->dm_dev;
825 return 0;
826 }
827
dm_put_table_device(struct mapped_device * md,struct dm_dev * d)828 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
829 {
830 struct table_device *td = container_of(d, struct table_device, dm_dev);
831
832 mutex_lock(&md->table_devices_lock);
833 if (refcount_dec_and_test(&td->count)) {
834 close_table_device(td, md);
835 list_del(&td->list);
836 kfree(td);
837 }
838 mutex_unlock(&md->table_devices_lock);
839 }
840
free_table_devices(struct list_head * devices)841 static void free_table_devices(struct list_head *devices)
842 {
843 struct list_head *tmp, *next;
844
845 list_for_each_safe(tmp, next, devices) {
846 struct table_device *td = list_entry(tmp, struct table_device, list);
847
848 DMWARN("dm_destroy: %s still exists with %d references",
849 td->dm_dev.name, refcount_read(&td->count));
850 kfree(td);
851 }
852 }
853
854 /*
855 * Get the geometry associated with a dm device
856 */
dm_get_geometry(struct mapped_device * md,struct hd_geometry * geo)857 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
858 {
859 *geo = md->geometry;
860
861 return 0;
862 }
863
864 /*
865 * Set the geometry of a device.
866 */
dm_set_geometry(struct mapped_device * md,struct hd_geometry * geo)867 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
868 {
869 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
870
871 if (geo->start > sz) {
872 DMWARN("Start sector is beyond the geometry limits.");
873 return -EINVAL;
874 }
875
876 md->geometry = *geo;
877
878 return 0;
879 }
880
__noflush_suspending(struct mapped_device * md)881 static int __noflush_suspending(struct mapped_device *md)
882 {
883 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
884 }
885
dm_io_complete(struct dm_io * io)886 static void dm_io_complete(struct dm_io *io)
887 {
888 blk_status_t io_error;
889 struct mapped_device *md = io->md;
890 struct bio *bio = io->split_bio ? io->split_bio : io->orig_bio;
891
892 if (io->status == BLK_STS_DM_REQUEUE) {
893 unsigned long flags;
894 /*
895 * Target requested pushing back the I/O.
896 */
897 spin_lock_irqsave(&md->deferred_lock, flags);
898 if (__noflush_suspending(md) &&
899 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) {
900 /* NOTE early return due to BLK_STS_DM_REQUEUE below */
901 bio_list_add_head(&md->deferred, bio);
902 } else {
903 /*
904 * noflush suspend was interrupted or this is
905 * a write to a zoned target.
906 */
907 io->status = BLK_STS_IOERR;
908 }
909 spin_unlock_irqrestore(&md->deferred_lock, flags);
910 }
911
912 io_error = io->status;
913 if (dm_io_flagged(io, DM_IO_ACCOUNTED))
914 dm_end_io_acct(io);
915 else if (!io_error) {
916 /*
917 * Must handle target that DM_MAPIO_SUBMITTED only to
918 * then bio_endio() rather than dm_submit_bio_remap()
919 */
920 __dm_start_io_acct(io);
921 dm_end_io_acct(io);
922 }
923 free_io(io);
924 smp_wmb();
925 this_cpu_dec(*md->pending_io);
926
927 /* nudge anyone waiting on suspend queue */
928 if (unlikely(wq_has_sleeper(&md->wait)))
929 wake_up(&md->wait);
930
931 if (io_error == BLK_STS_DM_REQUEUE || io_error == BLK_STS_AGAIN) {
932 if (bio->bi_opf & REQ_POLLED) {
933 /*
934 * Upper layer won't help us poll split bio (io->orig_bio
935 * may only reflect a subset of the pre-split original)
936 * so clear REQ_POLLED in case of requeue.
937 */
938 bio_clear_polled(bio);
939 if (io_error == BLK_STS_AGAIN) {
940 /* io_uring doesn't handle BLK_STS_AGAIN (yet) */
941 queue_io(md, bio);
942 return;
943 }
944 }
945 if (io_error == BLK_STS_DM_REQUEUE)
946 return;
947 }
948
949 if (bio_is_flush_with_data(bio)) {
950 /*
951 * Preflush done for flush with data, reissue
952 * without REQ_PREFLUSH.
953 */
954 bio->bi_opf &= ~REQ_PREFLUSH;
955 queue_io(md, bio);
956 } else {
957 /* done with normal IO or empty flush */
958 if (io_error)
959 bio->bi_status = io_error;
960 bio_endio(bio);
961 }
962 }
963
964 /*
965 * Decrements the number of outstanding ios that a bio has been
966 * cloned into, completing the original io if necc.
967 */
__dm_io_dec_pending(struct dm_io * io)968 static inline void __dm_io_dec_pending(struct dm_io *io)
969 {
970 if (atomic_dec_and_test(&io->io_count))
971 dm_io_complete(io);
972 }
973
dm_io_set_error(struct dm_io * io,blk_status_t error)974 static void dm_io_set_error(struct dm_io *io, blk_status_t error)
975 {
976 unsigned long flags;
977
978 /* Push-back supersedes any I/O errors */
979 spin_lock_irqsave(&io->lock, flags);
980 if (!(io->status == BLK_STS_DM_REQUEUE &&
981 __noflush_suspending(io->md))) {
982 io->status = error;
983 }
984 spin_unlock_irqrestore(&io->lock, flags);
985 }
986
dm_io_dec_pending(struct dm_io * io,blk_status_t error)987 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
988 {
989 if (unlikely(error))
990 dm_io_set_error(io, error);
991
992 __dm_io_dec_pending(io);
993 }
994
disable_discard(struct mapped_device * md)995 void disable_discard(struct mapped_device *md)
996 {
997 struct queue_limits *limits = dm_get_queue_limits(md);
998
999 /* device doesn't really support DISCARD, disable it */
1000 limits->max_discard_sectors = 0;
1001 }
1002
disable_write_zeroes(struct mapped_device * md)1003 void disable_write_zeroes(struct mapped_device *md)
1004 {
1005 struct queue_limits *limits = dm_get_queue_limits(md);
1006
1007 /* device doesn't really support WRITE ZEROES, disable it */
1008 limits->max_write_zeroes_sectors = 0;
1009 }
1010
swap_bios_limit(struct dm_target * ti,struct bio * bio)1011 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1012 {
1013 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
1014 }
1015
clone_endio(struct bio * bio)1016 static void clone_endio(struct bio *bio)
1017 {
1018 blk_status_t error = bio->bi_status;
1019 struct dm_target_io *tio = clone_to_tio(bio);
1020 struct dm_target *ti = tio->ti;
1021 dm_endio_fn endio = ti->type->end_io;
1022 struct dm_io *io = tio->io;
1023 struct mapped_device *md = io->md;
1024
1025 if (unlikely(error == BLK_STS_TARGET)) {
1026 if (bio_op(bio) == REQ_OP_DISCARD &&
1027 !bdev_max_discard_sectors(bio->bi_bdev))
1028 disable_discard(md);
1029 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1030 !bdev_write_zeroes_sectors(bio->bi_bdev))
1031 disable_write_zeroes(md);
1032 }
1033
1034 if (static_branch_unlikely(&zoned_enabled) &&
1035 unlikely(blk_queue_is_zoned(bdev_get_queue(bio->bi_bdev))))
1036 dm_zone_endio(io, bio);
1037
1038 if (endio) {
1039 int r = endio(ti, bio, &error);
1040 switch (r) {
1041 case DM_ENDIO_REQUEUE:
1042 if (static_branch_unlikely(&zoned_enabled)) {
1043 /*
1044 * Requeuing writes to a sequential zone of a zoned
1045 * target will break the sequential write pattern:
1046 * fail such IO.
1047 */
1048 if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1049 error = BLK_STS_IOERR;
1050 else
1051 error = BLK_STS_DM_REQUEUE;
1052 } else
1053 error = BLK_STS_DM_REQUEUE;
1054 fallthrough;
1055 case DM_ENDIO_DONE:
1056 break;
1057 case DM_ENDIO_INCOMPLETE:
1058 /* The target will handle the io */
1059 return;
1060 default:
1061 DMWARN("unimplemented target endio return value: %d", r);
1062 BUG();
1063 }
1064 }
1065
1066 if (static_branch_unlikely(&swap_bios_enabled) &&
1067 unlikely(swap_bios_limit(ti, bio)))
1068 up(&md->swap_bios_semaphore);
1069
1070 free_tio(bio);
1071 dm_io_dec_pending(io, error);
1072 }
1073
1074 /*
1075 * Return maximum size of I/O possible at the supplied sector up to the current
1076 * target boundary.
1077 */
max_io_len_target_boundary(struct dm_target * ti,sector_t target_offset)1078 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1079 sector_t target_offset)
1080 {
1081 return ti->len - target_offset;
1082 }
1083
max_io_len(struct dm_target * ti,sector_t sector)1084 static sector_t max_io_len(struct dm_target *ti, sector_t sector)
1085 {
1086 sector_t target_offset = dm_target_offset(ti, sector);
1087 sector_t len = max_io_len_target_boundary(ti, target_offset);
1088 sector_t max_len;
1089
1090 /*
1091 * Does the target need to split IO even further?
1092 * - varied (per target) IO splitting is a tenet of DM; this
1093 * explains why stacked chunk_sectors based splitting via
1094 * blk_max_size_offset() isn't possible here. So pass in
1095 * ti->max_io_len to override stacked chunk_sectors.
1096 */
1097 if (ti->max_io_len) {
1098 max_len = blk_max_size_offset(ti->table->md->queue,
1099 target_offset, ti->max_io_len);
1100 if (len > max_len)
1101 len = max_len;
1102 }
1103
1104 return len;
1105 }
1106
dm_set_target_max_io_len(struct dm_target * ti,sector_t len)1107 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1108 {
1109 if (len > UINT_MAX) {
1110 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1111 (unsigned long long)len, UINT_MAX);
1112 ti->error = "Maximum size of target IO is too large";
1113 return -EINVAL;
1114 }
1115
1116 ti->max_io_len = (uint32_t) len;
1117
1118 return 0;
1119 }
1120 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1121
dm_dax_get_live_target(struct mapped_device * md,sector_t sector,int * srcu_idx)1122 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1123 sector_t sector, int *srcu_idx)
1124 __acquires(md->io_barrier)
1125 {
1126 struct dm_table *map;
1127 struct dm_target *ti;
1128
1129 map = dm_get_live_table(md, srcu_idx);
1130 if (!map)
1131 return NULL;
1132
1133 ti = dm_table_find_target(map, sector);
1134 if (!ti)
1135 return NULL;
1136
1137 return ti;
1138 }
1139
dm_dax_direct_access(struct dax_device * dax_dev,pgoff_t pgoff,long nr_pages,enum dax_access_mode mode,void ** kaddr,pfn_t * pfn)1140 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1141 long nr_pages, enum dax_access_mode mode, void **kaddr,
1142 pfn_t *pfn)
1143 {
1144 struct mapped_device *md = dax_get_private(dax_dev);
1145 sector_t sector = pgoff * PAGE_SECTORS;
1146 struct dm_target *ti;
1147 long len, ret = -EIO;
1148 int srcu_idx;
1149
1150 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1151
1152 if (!ti)
1153 goto out;
1154 if (!ti->type->direct_access)
1155 goto out;
1156 len = max_io_len(ti, sector) / PAGE_SECTORS;
1157 if (len < 1)
1158 goto out;
1159 nr_pages = min(len, nr_pages);
1160 ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1161
1162 out:
1163 dm_put_live_table(md, srcu_idx);
1164
1165 return ret;
1166 }
1167
dm_dax_zero_page_range(struct dax_device * dax_dev,pgoff_t pgoff,size_t nr_pages)1168 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1169 size_t nr_pages)
1170 {
1171 struct mapped_device *md = dax_get_private(dax_dev);
1172 sector_t sector = pgoff * PAGE_SECTORS;
1173 struct dm_target *ti;
1174 int ret = -EIO;
1175 int srcu_idx;
1176
1177 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1178
1179 if (!ti)
1180 goto out;
1181 if (WARN_ON(!ti->type->dax_zero_page_range)) {
1182 /*
1183 * ->zero_page_range() is mandatory dax operation. If we are
1184 * here, something is wrong.
1185 */
1186 goto out;
1187 }
1188 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1189 out:
1190 dm_put_live_table(md, srcu_idx);
1191
1192 return ret;
1193 }
1194
dm_dax_recovery_write(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)1195 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1196 void *addr, size_t bytes, struct iov_iter *i)
1197 {
1198 struct mapped_device *md = dax_get_private(dax_dev);
1199 sector_t sector = pgoff * PAGE_SECTORS;
1200 struct dm_target *ti;
1201 int srcu_idx;
1202 long ret = 0;
1203
1204 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1205 if (!ti || !ti->type->dax_recovery_write)
1206 goto out;
1207
1208 ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1209 out:
1210 dm_put_live_table(md, srcu_idx);
1211 return ret;
1212 }
1213
1214 /*
1215 * A target may call dm_accept_partial_bio only from the map routine. It is
1216 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1217 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1218 * __send_duplicate_bios().
1219 *
1220 * dm_accept_partial_bio informs the dm that the target only wants to process
1221 * additional n_sectors sectors of the bio and the rest of the data should be
1222 * sent in a next bio.
1223 *
1224 * A diagram that explains the arithmetics:
1225 * +--------------------+---------------+-------+
1226 * | 1 | 2 | 3 |
1227 * +--------------------+---------------+-------+
1228 *
1229 * <-------------- *tio->len_ptr --------------->
1230 * <----- bio_sectors ----->
1231 * <-- n_sectors -->
1232 *
1233 * Region 1 was already iterated over with bio_advance or similar function.
1234 * (it may be empty if the target doesn't use bio_advance)
1235 * Region 2 is the remaining bio size that the target wants to process.
1236 * (it may be empty if region 1 is non-empty, although there is no reason
1237 * to make it empty)
1238 * The target requires that region 3 is to be sent in the next bio.
1239 *
1240 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1241 * the partially processed part (the sum of regions 1+2) must be the same for all
1242 * copies of the bio.
1243 */
dm_accept_partial_bio(struct bio * bio,unsigned n_sectors)1244 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1245 {
1246 struct dm_target_io *tio = clone_to_tio(bio);
1247 unsigned bio_sectors = bio_sectors(bio);
1248
1249 BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1250 BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1251 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1252 BUG_ON(bio_sectors > *tio->len_ptr);
1253 BUG_ON(n_sectors > bio_sectors);
1254
1255 *tio->len_ptr -= bio_sectors - n_sectors;
1256 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1257
1258 /*
1259 * __split_and_process_bio() may have already saved mapped part
1260 * for accounting but it is being reduced so update accordingly.
1261 */
1262 dm_io_set_flag(tio->io, DM_IO_WAS_SPLIT);
1263 tio->io->sectors = n_sectors;
1264 }
1265 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1266
1267 /*
1268 * @clone: clone bio that DM core passed to target's .map function
1269 * @tgt_clone: clone of @clone bio that target needs submitted
1270 *
1271 * Targets should use this interface to submit bios they take
1272 * ownership of when returning DM_MAPIO_SUBMITTED.
1273 *
1274 * Target should also enable ti->accounts_remapped_io
1275 */
dm_submit_bio_remap(struct bio * clone,struct bio * tgt_clone)1276 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1277 {
1278 struct dm_target_io *tio = clone_to_tio(clone);
1279 struct dm_io *io = tio->io;
1280
1281 /* establish bio that will get submitted */
1282 if (!tgt_clone)
1283 tgt_clone = clone;
1284
1285 /*
1286 * Account io->origin_bio to DM dev on behalf of target
1287 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1288 */
1289 dm_start_io_acct(io, clone);
1290
1291 trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1292 tio->old_sector);
1293 submit_bio_noacct(tgt_clone);
1294 }
1295 EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1296
__set_swap_bios_limit(struct mapped_device * md,int latch)1297 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1298 {
1299 mutex_lock(&md->swap_bios_lock);
1300 while (latch < md->swap_bios) {
1301 cond_resched();
1302 down(&md->swap_bios_semaphore);
1303 md->swap_bios--;
1304 }
1305 while (latch > md->swap_bios) {
1306 cond_resched();
1307 up(&md->swap_bios_semaphore);
1308 md->swap_bios++;
1309 }
1310 mutex_unlock(&md->swap_bios_lock);
1311 }
1312
__map_bio(struct bio * clone)1313 static void __map_bio(struct bio *clone)
1314 {
1315 struct dm_target_io *tio = clone_to_tio(clone);
1316 struct dm_target *ti = tio->ti;
1317 struct dm_io *io = tio->io;
1318 struct mapped_device *md = io->md;
1319 int r;
1320
1321 clone->bi_end_io = clone_endio;
1322
1323 /*
1324 * Map the clone.
1325 */
1326 tio->old_sector = clone->bi_iter.bi_sector;
1327
1328 if (static_branch_unlikely(&swap_bios_enabled) &&
1329 unlikely(swap_bios_limit(ti, clone))) {
1330 int latch = get_swap_bios();
1331 if (unlikely(latch != md->swap_bios))
1332 __set_swap_bios_limit(md, latch);
1333 down(&md->swap_bios_semaphore);
1334 }
1335
1336 if (static_branch_unlikely(&zoned_enabled)) {
1337 /*
1338 * Check if the IO needs a special mapping due to zone append
1339 * emulation on zoned target. In this case, dm_zone_map_bio()
1340 * calls the target map operation.
1341 */
1342 if (unlikely(dm_emulate_zone_append(md)))
1343 r = dm_zone_map_bio(tio);
1344 else
1345 r = ti->type->map(ti, clone);
1346 } else
1347 r = ti->type->map(ti, clone);
1348
1349 switch (r) {
1350 case DM_MAPIO_SUBMITTED:
1351 /* target has assumed ownership of this io */
1352 if (!ti->accounts_remapped_io)
1353 dm_start_io_acct(io, clone);
1354 break;
1355 case DM_MAPIO_REMAPPED:
1356 dm_submit_bio_remap(clone, NULL);
1357 break;
1358 case DM_MAPIO_KILL:
1359 case DM_MAPIO_REQUEUE:
1360 if (static_branch_unlikely(&swap_bios_enabled) &&
1361 unlikely(swap_bios_limit(ti, clone)))
1362 up(&md->swap_bios_semaphore);
1363 free_tio(clone);
1364 if (r == DM_MAPIO_KILL)
1365 dm_io_dec_pending(io, BLK_STS_IOERR);
1366 else
1367 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1368 break;
1369 default:
1370 DMWARN("unimplemented target map return value: %d", r);
1371 BUG();
1372 }
1373 }
1374
setup_split_accounting(struct clone_info * ci,unsigned len)1375 static void setup_split_accounting(struct clone_info *ci, unsigned len)
1376 {
1377 struct dm_io *io = ci->io;
1378
1379 if (ci->sector_count > len) {
1380 /*
1381 * Split needed, save the mapped part for accounting.
1382 * NOTE: dm_accept_partial_bio() will update accordingly.
1383 */
1384 dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1385 io->sectors = len;
1386 }
1387
1388 if (static_branch_unlikely(&stats_enabled) &&
1389 unlikely(dm_stats_used(&io->md->stats))) {
1390 /*
1391 * Save bi_sector in terms of its offset from end of
1392 * original bio, only needed for DM-stats' benefit.
1393 * - saved regardless of whether split needed so that
1394 * dm_accept_partial_bio() doesn't need to.
1395 */
1396 io->sector_offset = bio_end_sector(ci->bio) - ci->sector;
1397 }
1398 }
1399
alloc_multiple_bios(struct bio_list * blist,struct clone_info * ci,struct dm_target * ti,unsigned num_bios)1400 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1401 struct dm_target *ti, unsigned num_bios)
1402 {
1403 struct bio *bio;
1404 int try;
1405
1406 for (try = 0; try < 2; try++) {
1407 int bio_nr;
1408
1409 if (try)
1410 mutex_lock(&ci->io->md->table_devices_lock);
1411 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1412 bio = alloc_tio(ci, ti, bio_nr, NULL,
1413 try ? GFP_NOIO : GFP_NOWAIT);
1414 if (!bio)
1415 break;
1416
1417 bio_list_add(blist, bio);
1418 }
1419 if (try)
1420 mutex_unlock(&ci->io->md->table_devices_lock);
1421 if (bio_nr == num_bios)
1422 return;
1423
1424 while ((bio = bio_list_pop(blist)))
1425 free_tio(bio);
1426 }
1427 }
1428
__send_duplicate_bios(struct clone_info * ci,struct dm_target * ti,unsigned num_bios,unsigned * len)1429 static int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1430 unsigned num_bios, unsigned *len)
1431 {
1432 struct bio_list blist = BIO_EMPTY_LIST;
1433 struct bio *clone;
1434 int ret = 0;
1435
1436 switch (num_bios) {
1437 case 0:
1438 break;
1439 case 1:
1440 if (len)
1441 setup_split_accounting(ci, *len);
1442 clone = alloc_tio(ci, ti, 0, len, GFP_NOIO);
1443 __map_bio(clone);
1444 ret = 1;
1445 break;
1446 default:
1447 /* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1448 alloc_multiple_bios(&blist, ci, ti, num_bios);
1449 while ((clone = bio_list_pop(&blist))) {
1450 dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1451 __map_bio(clone);
1452 ret += 1;
1453 }
1454 break;
1455 }
1456
1457 return ret;
1458 }
1459
__send_empty_flush(struct clone_info * ci)1460 static void __send_empty_flush(struct clone_info *ci)
1461 {
1462 unsigned target_nr = 0;
1463 struct dm_target *ti;
1464 struct bio flush_bio;
1465
1466 /*
1467 * Use an on-stack bio for this, it's safe since we don't
1468 * need to reference it after submit. It's just used as
1469 * the basis for the clone(s).
1470 */
1471 bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1472 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1473
1474 ci->bio = &flush_bio;
1475 ci->sector_count = 0;
1476 ci->io->tio.clone.bi_iter.bi_size = 0;
1477
1478 while ((ti = dm_table_get_target(ci->map, target_nr++))) {
1479 int bios;
1480
1481 atomic_add(ti->num_flush_bios, &ci->io->io_count);
1482 bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1483 atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1484 }
1485
1486 /*
1487 * alloc_io() takes one extra reference for submission, so the
1488 * reference won't reach 0 without the following subtraction
1489 */
1490 atomic_sub(1, &ci->io->io_count);
1491
1492 bio_uninit(ci->bio);
1493 }
1494
__send_changing_extent_only(struct clone_info * ci,struct dm_target * ti,unsigned num_bios)1495 static void __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1496 unsigned num_bios)
1497 {
1498 unsigned len;
1499 int bios;
1500
1501 len = min_t(sector_t, ci->sector_count,
1502 max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1503
1504 atomic_add(num_bios, &ci->io->io_count);
1505 bios = __send_duplicate_bios(ci, ti, num_bios, &len);
1506 /*
1507 * alloc_io() takes one extra reference for submission, so the
1508 * reference won't reach 0 without the following (+1) subtraction
1509 */
1510 atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1511
1512 ci->sector += len;
1513 ci->sector_count -= len;
1514 }
1515
is_abnormal_io(struct bio * bio)1516 static bool is_abnormal_io(struct bio *bio)
1517 {
1518 unsigned int op = bio_op(bio);
1519
1520 if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) {
1521 switch (op) {
1522 case REQ_OP_DISCARD:
1523 case REQ_OP_SECURE_ERASE:
1524 case REQ_OP_WRITE_ZEROES:
1525 return true;
1526 default:
1527 break;
1528 }
1529 }
1530
1531 return false;
1532 }
1533
__process_abnormal_io(struct clone_info * ci,struct dm_target * ti)1534 static blk_status_t __process_abnormal_io(struct clone_info *ci,
1535 struct dm_target *ti)
1536 {
1537 unsigned num_bios = 0;
1538
1539 switch (bio_op(ci->bio)) {
1540 case REQ_OP_DISCARD:
1541 num_bios = ti->num_discard_bios;
1542 break;
1543 case REQ_OP_SECURE_ERASE:
1544 num_bios = ti->num_secure_erase_bios;
1545 break;
1546 case REQ_OP_WRITE_ZEROES:
1547 num_bios = ti->num_write_zeroes_bios;
1548 break;
1549 }
1550
1551 /*
1552 * Even though the device advertised support for this type of
1553 * request, that does not mean every target supports it, and
1554 * reconfiguration might also have changed that since the
1555 * check was performed.
1556 */
1557 if (unlikely(!num_bios))
1558 return BLK_STS_NOTSUPP;
1559
1560 __send_changing_extent_only(ci, ti, num_bios);
1561 return BLK_STS_OK;
1562 }
1563
1564 /*
1565 * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1566 * associated with this bio, and this bio's bi_private needs to be
1567 * stored in dm_io->data before the reuse.
1568 *
1569 * bio->bi_private is owned by fs or upper layer, so block layer won't
1570 * touch it after splitting. Meantime it won't be changed by anyone after
1571 * bio is submitted. So this reuse is safe.
1572 */
dm_poll_list_head(struct bio * bio)1573 static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1574 {
1575 return (struct dm_io **)&bio->bi_private;
1576 }
1577
dm_queue_poll_io(struct bio * bio,struct dm_io * io)1578 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1579 {
1580 struct dm_io **head = dm_poll_list_head(bio);
1581
1582 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1583 bio->bi_opf |= REQ_DM_POLL_LIST;
1584 /*
1585 * Save .bi_private into dm_io, so that we can reuse
1586 * .bi_private as dm_io list head for storing dm_io list
1587 */
1588 io->data = bio->bi_private;
1589
1590 /* tell block layer to poll for completion */
1591 bio->bi_cookie = ~BLK_QC_T_NONE;
1592
1593 io->next = NULL;
1594 } else {
1595 /*
1596 * bio recursed due to split, reuse original poll list,
1597 * and save bio->bi_private too.
1598 */
1599 io->data = (*head)->data;
1600 io->next = *head;
1601 }
1602
1603 *head = io;
1604 }
1605
1606 /*
1607 * Select the correct strategy for processing a non-flush bio.
1608 */
__split_and_process_bio(struct clone_info * ci)1609 static blk_status_t __split_and_process_bio(struct clone_info *ci)
1610 {
1611 struct bio *clone;
1612 struct dm_target *ti;
1613 unsigned len;
1614
1615 ti = dm_table_find_target(ci->map, ci->sector);
1616 if (unlikely(!ti))
1617 return BLK_STS_IOERR;
1618
1619 if (unlikely((ci->bio->bi_opf & REQ_NOWAIT) != 0) &&
1620 unlikely(!dm_target_supports_nowait(ti->type)))
1621 return BLK_STS_NOTSUPP;
1622
1623 if (unlikely(ci->is_abnormal_io))
1624 return __process_abnormal_io(ci, ti);
1625
1626 /*
1627 * Only support bio polling for normal IO, and the target io is
1628 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1629 */
1630 ci->submit_as_polled = ci->bio->bi_opf & REQ_POLLED;
1631
1632 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1633 setup_split_accounting(ci, len);
1634 clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1635 __map_bio(clone);
1636
1637 ci->sector += len;
1638 ci->sector_count -= len;
1639
1640 return BLK_STS_OK;
1641 }
1642
init_clone_info(struct clone_info * ci,struct mapped_device * md,struct dm_table * map,struct bio * bio,bool is_abnormal)1643 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1644 struct dm_table *map, struct bio *bio, bool is_abnormal)
1645 {
1646 ci->map = map;
1647 ci->io = alloc_io(md, bio);
1648 ci->bio = bio;
1649 ci->is_abnormal_io = is_abnormal;
1650 ci->submit_as_polled = false;
1651 ci->sector = bio->bi_iter.bi_sector;
1652 ci->sector_count = bio_sectors(bio);
1653
1654 /* Shouldn't happen but sector_count was being set to 0 so... */
1655 if (static_branch_unlikely(&zoned_enabled) &&
1656 WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1657 ci->sector_count = 0;
1658 }
1659
1660 /*
1661 * Entry point to split a bio into clones and submit them to the targets.
1662 */
dm_split_and_process_bio(struct mapped_device * md,struct dm_table * map,struct bio * bio)1663 static void dm_split_and_process_bio(struct mapped_device *md,
1664 struct dm_table *map, struct bio *bio)
1665 {
1666 struct clone_info ci;
1667 struct dm_io *io;
1668 blk_status_t error = BLK_STS_OK;
1669 bool is_abnormal;
1670
1671 is_abnormal = is_abnormal_io(bio);
1672 if (unlikely(is_abnormal)) {
1673 /*
1674 * Use blk_queue_split() for abnormal IO (e.g. discard, etc)
1675 * otherwise associated queue_limits won't be imposed.
1676 */
1677 blk_queue_split(&bio);
1678 }
1679
1680 init_clone_info(&ci, md, map, bio, is_abnormal);
1681 io = ci.io;
1682
1683 if (bio->bi_opf & REQ_PREFLUSH) {
1684 __send_empty_flush(&ci);
1685 /* dm_io_complete submits any data associated with flush */
1686 goto out;
1687 }
1688
1689 error = __split_and_process_bio(&ci);
1690 if (error || !ci.sector_count)
1691 goto out;
1692 /*
1693 * Remainder must be passed to submit_bio_noacct() so it gets handled
1694 * *after* bios already submitted have been completely processed.
1695 */
1696 WARN_ON_ONCE(!dm_io_flagged(io, DM_IO_WAS_SPLIT));
1697 io->split_bio = bio_split(bio, io->sectors, GFP_NOIO,
1698 &md->queue->bio_split);
1699 bio_chain(io->split_bio, bio);
1700 trace_block_split(io->split_bio, bio->bi_iter.bi_sector);
1701 submit_bio_noacct(bio);
1702 out:
1703 /*
1704 * Drop the extra reference count for non-POLLED bio, and hold one
1705 * reference for POLLED bio, which will be released in dm_poll_bio
1706 *
1707 * Add every dm_io instance into the dm_io list head which is stored
1708 * in bio->bi_private, so that dm_poll_bio can poll them all.
1709 */
1710 if (error || !ci.submit_as_polled) {
1711 /*
1712 * In case of submission failure, the extra reference for
1713 * submitting io isn't consumed yet
1714 */
1715 if (error)
1716 atomic_dec(&io->io_count);
1717 dm_io_dec_pending(io, error);
1718 } else
1719 dm_queue_poll_io(bio, io);
1720 }
1721
dm_submit_bio(struct bio * bio)1722 static void dm_submit_bio(struct bio *bio)
1723 {
1724 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1725 int srcu_idx;
1726 struct dm_table *map;
1727 unsigned bio_opf = bio->bi_opf;
1728
1729 map = dm_get_live_table_bio(md, &srcu_idx, bio_opf);
1730
1731 /* If suspended, or map not yet available, queue this IO for later */
1732 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1733 unlikely(!map)) {
1734 if (bio->bi_opf & REQ_NOWAIT)
1735 bio_wouldblock_error(bio);
1736 else if (bio->bi_opf & REQ_RAHEAD)
1737 bio_io_error(bio);
1738 else
1739 queue_io(md, bio);
1740 goto out;
1741 }
1742
1743 dm_split_and_process_bio(md, map, bio);
1744 out:
1745 dm_put_live_table_bio(md, srcu_idx, bio_opf);
1746 }
1747
dm_poll_dm_io(struct dm_io * io,struct io_comp_batch * iob,unsigned int flags)1748 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
1749 unsigned int flags)
1750 {
1751 WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
1752
1753 /* don't poll if the mapped io is done */
1754 if (atomic_read(&io->io_count) > 1)
1755 bio_poll(&io->tio.clone, iob, flags);
1756
1757 /* bio_poll holds the last reference */
1758 return atomic_read(&io->io_count) == 1;
1759 }
1760
dm_poll_bio(struct bio * bio,struct io_comp_batch * iob,unsigned int flags)1761 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
1762 unsigned int flags)
1763 {
1764 struct dm_io **head = dm_poll_list_head(bio);
1765 struct dm_io *list = *head;
1766 struct dm_io *tmp = NULL;
1767 struct dm_io *curr, *next;
1768
1769 /* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
1770 if (!(bio->bi_opf & REQ_DM_POLL_LIST))
1771 return 0;
1772
1773 WARN_ON_ONCE(!list);
1774
1775 /*
1776 * Restore .bi_private before possibly completing dm_io.
1777 *
1778 * bio_poll() is only possible once @bio has been completely
1779 * submitted via submit_bio_noacct()'s depth-first submission.
1780 * So there is no dm_queue_poll_io() race associated with
1781 * clearing REQ_DM_POLL_LIST here.
1782 */
1783 bio->bi_opf &= ~REQ_DM_POLL_LIST;
1784 bio->bi_private = list->data;
1785
1786 for (curr = list, next = curr->next; curr; curr = next, next =
1787 curr ? curr->next : NULL) {
1788 if (dm_poll_dm_io(curr, iob, flags)) {
1789 /*
1790 * clone_endio() has already occurred, so no
1791 * error handling is needed here.
1792 */
1793 __dm_io_dec_pending(curr);
1794 } else {
1795 curr->next = tmp;
1796 tmp = curr;
1797 }
1798 }
1799
1800 /* Not done? */
1801 if (tmp) {
1802 bio->bi_opf |= REQ_DM_POLL_LIST;
1803 /* Reset bio->bi_private to dm_io list head */
1804 *head = tmp;
1805 return 0;
1806 }
1807 return 1;
1808 }
1809
1810 /*-----------------------------------------------------------------
1811 * An IDR is used to keep track of allocated minor numbers.
1812 *---------------------------------------------------------------*/
free_minor(int minor)1813 static void free_minor(int minor)
1814 {
1815 spin_lock(&_minor_lock);
1816 idr_remove(&_minor_idr, minor);
1817 spin_unlock(&_minor_lock);
1818 }
1819
1820 /*
1821 * See if the device with a specific minor # is free.
1822 */
specific_minor(int minor)1823 static int specific_minor(int minor)
1824 {
1825 int r;
1826
1827 if (minor >= (1 << MINORBITS))
1828 return -EINVAL;
1829
1830 idr_preload(GFP_KERNEL);
1831 spin_lock(&_minor_lock);
1832
1833 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1834
1835 spin_unlock(&_minor_lock);
1836 idr_preload_end();
1837 if (r < 0)
1838 return r == -ENOSPC ? -EBUSY : r;
1839 return 0;
1840 }
1841
next_free_minor(int * minor)1842 static int next_free_minor(int *minor)
1843 {
1844 int r;
1845
1846 idr_preload(GFP_KERNEL);
1847 spin_lock(&_minor_lock);
1848
1849 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1850
1851 spin_unlock(&_minor_lock);
1852 idr_preload_end();
1853 if (r < 0)
1854 return r;
1855 *minor = r;
1856 return 0;
1857 }
1858
1859 static const struct block_device_operations dm_blk_dops;
1860 static const struct block_device_operations dm_rq_blk_dops;
1861 static const struct dax_operations dm_dax_ops;
1862
1863 static void dm_wq_work(struct work_struct *work);
1864
1865 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
dm_queue_destroy_crypto_profile(struct request_queue * q)1866 static void dm_queue_destroy_crypto_profile(struct request_queue *q)
1867 {
1868 dm_destroy_crypto_profile(q->crypto_profile);
1869 }
1870
1871 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1872
dm_queue_destroy_crypto_profile(struct request_queue * q)1873 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
1874 {
1875 }
1876 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1877
cleanup_mapped_device(struct mapped_device * md)1878 static void cleanup_mapped_device(struct mapped_device *md)
1879 {
1880 if (md->wq)
1881 destroy_workqueue(md->wq);
1882 dm_free_md_mempools(md->mempools);
1883
1884 if (md->dax_dev) {
1885 dax_remove_host(md->disk);
1886 kill_dax(md->dax_dev);
1887 put_dax(md->dax_dev);
1888 md->dax_dev = NULL;
1889 }
1890
1891 dm_cleanup_zoned_dev(md);
1892 if (md->disk) {
1893 spin_lock(&_minor_lock);
1894 md->disk->private_data = NULL;
1895 spin_unlock(&_minor_lock);
1896 if (dm_get_md_type(md) != DM_TYPE_NONE) {
1897 dm_sysfs_exit(md);
1898 del_gendisk(md->disk);
1899 }
1900 dm_queue_destroy_crypto_profile(md->queue);
1901 blk_cleanup_disk(md->disk);
1902 }
1903
1904 if (md->pending_io) {
1905 free_percpu(md->pending_io);
1906 md->pending_io = NULL;
1907 }
1908
1909 cleanup_srcu_struct(&md->io_barrier);
1910
1911 mutex_destroy(&md->suspend_lock);
1912 mutex_destroy(&md->type_lock);
1913 mutex_destroy(&md->table_devices_lock);
1914 mutex_destroy(&md->swap_bios_lock);
1915
1916 dm_mq_cleanup_mapped_device(md);
1917 }
1918
1919 /*
1920 * Allocate and initialise a blank device with a given minor.
1921 */
alloc_dev(int minor)1922 static struct mapped_device *alloc_dev(int minor)
1923 {
1924 int r, numa_node_id = dm_get_numa_node();
1925 struct mapped_device *md;
1926 void *old_md;
1927
1928 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1929 if (!md) {
1930 DMWARN("unable to allocate device, out of memory.");
1931 return NULL;
1932 }
1933
1934 if (!try_module_get(THIS_MODULE))
1935 goto bad_module_get;
1936
1937 /* get a minor number for the dev */
1938 if (minor == DM_ANY_MINOR)
1939 r = next_free_minor(&minor);
1940 else
1941 r = specific_minor(minor);
1942 if (r < 0)
1943 goto bad_minor;
1944
1945 r = init_srcu_struct(&md->io_barrier);
1946 if (r < 0)
1947 goto bad_io_barrier;
1948
1949 md->numa_node_id = numa_node_id;
1950 md->init_tio_pdu = false;
1951 md->type = DM_TYPE_NONE;
1952 mutex_init(&md->suspend_lock);
1953 mutex_init(&md->type_lock);
1954 mutex_init(&md->table_devices_lock);
1955 spin_lock_init(&md->deferred_lock);
1956 atomic_set(&md->holders, 1);
1957 atomic_set(&md->open_count, 0);
1958 atomic_set(&md->event_nr, 0);
1959 atomic_set(&md->uevent_seq, 0);
1960 INIT_LIST_HEAD(&md->uevent_list);
1961 INIT_LIST_HEAD(&md->table_devices);
1962 spin_lock_init(&md->uevent_lock);
1963
1964 /*
1965 * default to bio-based until DM table is loaded and md->type
1966 * established. If request-based table is loaded: blk-mq will
1967 * override accordingly.
1968 */
1969 md->disk = blk_alloc_disk(md->numa_node_id);
1970 if (!md->disk)
1971 goto bad;
1972 md->queue = md->disk->queue;
1973
1974 init_waitqueue_head(&md->wait);
1975 INIT_WORK(&md->work, dm_wq_work);
1976 init_waitqueue_head(&md->eventq);
1977 init_completion(&md->kobj_holder.completion);
1978
1979 md->swap_bios = get_swap_bios();
1980 sema_init(&md->swap_bios_semaphore, md->swap_bios);
1981 mutex_init(&md->swap_bios_lock);
1982
1983 md->disk->major = _major;
1984 md->disk->first_minor = minor;
1985 md->disk->minors = 1;
1986 md->disk->flags |= GENHD_FL_NO_PART;
1987 md->disk->fops = &dm_blk_dops;
1988 md->disk->queue = md->queue;
1989 md->disk->private_data = md;
1990 sprintf(md->disk->disk_name, "dm-%d", minor);
1991
1992 if (IS_ENABLED(CONFIG_FS_DAX)) {
1993 md->dax_dev = alloc_dax(md, &dm_dax_ops);
1994 if (IS_ERR(md->dax_dev)) {
1995 md->dax_dev = NULL;
1996 goto bad;
1997 }
1998 set_dax_nocache(md->dax_dev);
1999 set_dax_nomc(md->dax_dev);
2000 if (dax_add_host(md->dax_dev, md->disk))
2001 goto bad;
2002 }
2003
2004 format_dev_t(md->name, MKDEV(_major, minor));
2005
2006 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
2007 if (!md->wq)
2008 goto bad;
2009
2010 md->pending_io = alloc_percpu(unsigned long);
2011 if (!md->pending_io)
2012 goto bad;
2013
2014 dm_stats_init(&md->stats);
2015
2016 /* Populate the mapping, nobody knows we exist yet */
2017 spin_lock(&_minor_lock);
2018 old_md = idr_replace(&_minor_idr, md, minor);
2019 spin_unlock(&_minor_lock);
2020
2021 BUG_ON(old_md != MINOR_ALLOCED);
2022
2023 return md;
2024
2025 bad:
2026 cleanup_mapped_device(md);
2027 bad_io_barrier:
2028 free_minor(minor);
2029 bad_minor:
2030 module_put(THIS_MODULE);
2031 bad_module_get:
2032 kvfree(md);
2033 return NULL;
2034 }
2035
2036 static void unlock_fs(struct mapped_device *md);
2037
free_dev(struct mapped_device * md)2038 static void free_dev(struct mapped_device *md)
2039 {
2040 int minor = MINOR(disk_devt(md->disk));
2041
2042 unlock_fs(md);
2043
2044 cleanup_mapped_device(md);
2045
2046 free_table_devices(&md->table_devices);
2047 dm_stats_cleanup(&md->stats);
2048 free_minor(minor);
2049
2050 module_put(THIS_MODULE);
2051 kvfree(md);
2052 }
2053
2054 /*
2055 * Bind a table to the device.
2056 */
event_callback(void * context)2057 static void event_callback(void *context)
2058 {
2059 unsigned long flags;
2060 LIST_HEAD(uevents);
2061 struct mapped_device *md = (struct mapped_device *) context;
2062
2063 spin_lock_irqsave(&md->uevent_lock, flags);
2064 list_splice_init(&md->uevent_list, &uevents);
2065 spin_unlock_irqrestore(&md->uevent_lock, flags);
2066
2067 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2068
2069 atomic_inc(&md->event_nr);
2070 wake_up(&md->eventq);
2071 dm_issue_global_event();
2072 }
2073
2074 /*
2075 * Returns old map, which caller must destroy.
2076 */
__bind(struct mapped_device * md,struct dm_table * t,struct queue_limits * limits)2077 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2078 struct queue_limits *limits)
2079 {
2080 struct dm_table *old_map;
2081 sector_t size;
2082 int ret;
2083
2084 lockdep_assert_held(&md->suspend_lock);
2085
2086 size = dm_table_get_size(t);
2087
2088 /*
2089 * Wipe any geometry if the size of the table changed.
2090 */
2091 if (size != dm_get_size(md))
2092 memset(&md->geometry, 0, sizeof(md->geometry));
2093
2094 if (!get_capacity(md->disk))
2095 set_capacity(md->disk, size);
2096 else
2097 set_capacity_and_notify(md->disk, size);
2098
2099 dm_table_event_callback(t, event_callback, md);
2100
2101 if (dm_table_request_based(t)) {
2102 /*
2103 * Leverage the fact that request-based DM targets are
2104 * immutable singletons - used to optimize dm_mq_queue_rq.
2105 */
2106 md->immutable_target = dm_table_get_immutable_target(t);
2107
2108 /*
2109 * There is no need to reload with request-based dm because the
2110 * size of front_pad doesn't change.
2111 *
2112 * Note for future: If you are to reload bioset, prep-ed
2113 * requests in the queue may refer to bio from the old bioset,
2114 * so you must walk through the queue to unprep.
2115 */
2116 if (!md->mempools) {
2117 md->mempools = t->mempools;
2118 t->mempools = NULL;
2119 }
2120 } else {
2121 /*
2122 * The md may already have mempools that need changing.
2123 * If so, reload bioset because front_pad may have changed
2124 * because a different table was loaded.
2125 */
2126 dm_free_md_mempools(md->mempools);
2127 md->mempools = t->mempools;
2128 t->mempools = NULL;
2129 }
2130
2131 ret = dm_table_set_restrictions(t, md->queue, limits);
2132 if (ret) {
2133 old_map = ERR_PTR(ret);
2134 goto out;
2135 }
2136
2137 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2138 rcu_assign_pointer(md->map, (void *)t);
2139 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2140
2141 if (old_map)
2142 dm_sync_table(md);
2143 out:
2144 return old_map;
2145 }
2146
2147 /*
2148 * Returns unbound table for the caller to free.
2149 */
__unbind(struct mapped_device * md)2150 static struct dm_table *__unbind(struct mapped_device *md)
2151 {
2152 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2153
2154 if (!map)
2155 return NULL;
2156
2157 dm_table_event_callback(map, NULL, NULL);
2158 RCU_INIT_POINTER(md->map, NULL);
2159 dm_sync_table(md);
2160
2161 return map;
2162 }
2163
2164 /*
2165 * Constructor for a new device.
2166 */
dm_create(int minor,struct mapped_device ** result)2167 int dm_create(int minor, struct mapped_device **result)
2168 {
2169 struct mapped_device *md;
2170
2171 md = alloc_dev(minor);
2172 if (!md)
2173 return -ENXIO;
2174
2175 dm_ima_reset_data(md);
2176
2177 *result = md;
2178 return 0;
2179 }
2180
2181 /*
2182 * Functions to manage md->type.
2183 * All are required to hold md->type_lock.
2184 */
dm_lock_md_type(struct mapped_device * md)2185 void dm_lock_md_type(struct mapped_device *md)
2186 {
2187 mutex_lock(&md->type_lock);
2188 }
2189
dm_unlock_md_type(struct mapped_device * md)2190 void dm_unlock_md_type(struct mapped_device *md)
2191 {
2192 mutex_unlock(&md->type_lock);
2193 }
2194
dm_set_md_type(struct mapped_device * md,enum dm_queue_mode type)2195 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2196 {
2197 BUG_ON(!mutex_is_locked(&md->type_lock));
2198 md->type = type;
2199 }
2200
dm_get_md_type(struct mapped_device * md)2201 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2202 {
2203 return md->type;
2204 }
2205
dm_get_immutable_target_type(struct mapped_device * md)2206 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2207 {
2208 return md->immutable_target_type;
2209 }
2210
2211 /*
2212 * The queue_limits are only valid as long as you have a reference
2213 * count on 'md'.
2214 */
dm_get_queue_limits(struct mapped_device * md)2215 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2216 {
2217 BUG_ON(!atomic_read(&md->holders));
2218 return &md->queue->limits;
2219 }
2220 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2221
2222 /*
2223 * Setup the DM device's queue based on md's type
2224 */
dm_setup_md_queue(struct mapped_device * md,struct dm_table * t)2225 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2226 {
2227 enum dm_queue_mode type = dm_table_get_type(t);
2228 struct queue_limits limits;
2229 int r;
2230
2231 switch (type) {
2232 case DM_TYPE_REQUEST_BASED:
2233 md->disk->fops = &dm_rq_blk_dops;
2234 r = dm_mq_init_request_queue(md, t);
2235 if (r) {
2236 DMERR("Cannot initialize queue for request-based dm mapped device");
2237 return r;
2238 }
2239 break;
2240 case DM_TYPE_BIO_BASED:
2241 case DM_TYPE_DAX_BIO_BASED:
2242 break;
2243 case DM_TYPE_NONE:
2244 WARN_ON_ONCE(true);
2245 break;
2246 }
2247
2248 r = dm_calculate_queue_limits(t, &limits);
2249 if (r) {
2250 DMERR("Cannot calculate initial queue limits");
2251 return r;
2252 }
2253 r = dm_table_set_restrictions(t, md->queue, &limits);
2254 if (r)
2255 return r;
2256
2257 r = add_disk(md->disk);
2258 if (r)
2259 return r;
2260
2261 r = dm_sysfs_init(md);
2262 if (r) {
2263 del_gendisk(md->disk);
2264 return r;
2265 }
2266 md->type = type;
2267 return 0;
2268 }
2269
dm_get_md(dev_t dev)2270 struct mapped_device *dm_get_md(dev_t dev)
2271 {
2272 struct mapped_device *md;
2273 unsigned minor = MINOR(dev);
2274
2275 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2276 return NULL;
2277
2278 spin_lock(&_minor_lock);
2279
2280 md = idr_find(&_minor_idr, minor);
2281 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2282 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2283 md = NULL;
2284 goto out;
2285 }
2286 dm_get(md);
2287 out:
2288 spin_unlock(&_minor_lock);
2289
2290 return md;
2291 }
2292 EXPORT_SYMBOL_GPL(dm_get_md);
2293
dm_get_mdptr(struct mapped_device * md)2294 void *dm_get_mdptr(struct mapped_device *md)
2295 {
2296 return md->interface_ptr;
2297 }
2298
dm_set_mdptr(struct mapped_device * md,void * ptr)2299 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2300 {
2301 md->interface_ptr = ptr;
2302 }
2303
dm_get(struct mapped_device * md)2304 void dm_get(struct mapped_device *md)
2305 {
2306 atomic_inc(&md->holders);
2307 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2308 }
2309
dm_hold(struct mapped_device * md)2310 int dm_hold(struct mapped_device *md)
2311 {
2312 spin_lock(&_minor_lock);
2313 if (test_bit(DMF_FREEING, &md->flags)) {
2314 spin_unlock(&_minor_lock);
2315 return -EBUSY;
2316 }
2317 dm_get(md);
2318 spin_unlock(&_minor_lock);
2319 return 0;
2320 }
2321 EXPORT_SYMBOL_GPL(dm_hold);
2322
dm_device_name(struct mapped_device * md)2323 const char *dm_device_name(struct mapped_device *md)
2324 {
2325 return md->name;
2326 }
2327 EXPORT_SYMBOL_GPL(dm_device_name);
2328
__dm_destroy(struct mapped_device * md,bool wait)2329 static void __dm_destroy(struct mapped_device *md, bool wait)
2330 {
2331 struct dm_table *map;
2332 int srcu_idx;
2333
2334 might_sleep();
2335
2336 spin_lock(&_minor_lock);
2337 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2338 set_bit(DMF_FREEING, &md->flags);
2339 spin_unlock(&_minor_lock);
2340
2341 blk_mark_disk_dead(md->disk);
2342
2343 /*
2344 * Take suspend_lock so that presuspend and postsuspend methods
2345 * do not race with internal suspend.
2346 */
2347 mutex_lock(&md->suspend_lock);
2348 map = dm_get_live_table(md, &srcu_idx);
2349 if (!dm_suspended_md(md)) {
2350 dm_table_presuspend_targets(map);
2351 set_bit(DMF_SUSPENDED, &md->flags);
2352 set_bit(DMF_POST_SUSPENDING, &md->flags);
2353 dm_table_postsuspend_targets(map);
2354 }
2355 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2356 dm_put_live_table(md, srcu_idx);
2357 mutex_unlock(&md->suspend_lock);
2358
2359 /*
2360 * Rare, but there may be I/O requests still going to complete,
2361 * for example. Wait for all references to disappear.
2362 * No one should increment the reference count of the mapped_device,
2363 * after the mapped_device state becomes DMF_FREEING.
2364 */
2365 if (wait)
2366 while (atomic_read(&md->holders))
2367 msleep(1);
2368 else if (atomic_read(&md->holders))
2369 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2370 dm_device_name(md), atomic_read(&md->holders));
2371
2372 dm_table_destroy(__unbind(md));
2373 free_dev(md);
2374 }
2375
dm_destroy(struct mapped_device * md)2376 void dm_destroy(struct mapped_device *md)
2377 {
2378 __dm_destroy(md, true);
2379 }
2380
dm_destroy_immediate(struct mapped_device * md)2381 void dm_destroy_immediate(struct mapped_device *md)
2382 {
2383 __dm_destroy(md, false);
2384 }
2385
dm_put(struct mapped_device * md)2386 void dm_put(struct mapped_device *md)
2387 {
2388 atomic_dec(&md->holders);
2389 }
2390 EXPORT_SYMBOL_GPL(dm_put);
2391
dm_in_flight_bios(struct mapped_device * md)2392 static bool dm_in_flight_bios(struct mapped_device *md)
2393 {
2394 int cpu;
2395 unsigned long sum = 0;
2396
2397 for_each_possible_cpu(cpu)
2398 sum += *per_cpu_ptr(md->pending_io, cpu);
2399
2400 return sum != 0;
2401 }
2402
dm_wait_for_bios_completion(struct mapped_device * md,unsigned int task_state)2403 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2404 {
2405 int r = 0;
2406 DEFINE_WAIT(wait);
2407
2408 while (true) {
2409 prepare_to_wait(&md->wait, &wait, task_state);
2410
2411 if (!dm_in_flight_bios(md))
2412 break;
2413
2414 if (signal_pending_state(task_state, current)) {
2415 r = -EINTR;
2416 break;
2417 }
2418
2419 io_schedule();
2420 }
2421 finish_wait(&md->wait, &wait);
2422
2423 smp_rmb();
2424
2425 return r;
2426 }
2427
dm_wait_for_completion(struct mapped_device * md,unsigned int task_state)2428 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2429 {
2430 int r = 0;
2431
2432 if (!queue_is_mq(md->queue))
2433 return dm_wait_for_bios_completion(md, task_state);
2434
2435 while (true) {
2436 if (!blk_mq_queue_inflight(md->queue))
2437 break;
2438
2439 if (signal_pending_state(task_state, current)) {
2440 r = -EINTR;
2441 break;
2442 }
2443
2444 msleep(5);
2445 }
2446
2447 return r;
2448 }
2449
2450 /*
2451 * Process the deferred bios
2452 */
dm_wq_work(struct work_struct * work)2453 static void dm_wq_work(struct work_struct *work)
2454 {
2455 struct mapped_device *md = container_of(work, struct mapped_device, work);
2456 struct bio *bio;
2457
2458 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2459 spin_lock_irq(&md->deferred_lock);
2460 bio = bio_list_pop(&md->deferred);
2461 spin_unlock_irq(&md->deferred_lock);
2462
2463 if (!bio)
2464 break;
2465
2466 submit_bio_noacct(bio);
2467 }
2468 }
2469
dm_queue_flush(struct mapped_device * md)2470 static void dm_queue_flush(struct mapped_device *md)
2471 {
2472 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2473 smp_mb__after_atomic();
2474 queue_work(md->wq, &md->work);
2475 }
2476
2477 /*
2478 * Swap in a new table, returning the old one for the caller to destroy.
2479 */
dm_swap_table(struct mapped_device * md,struct dm_table * table)2480 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2481 {
2482 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2483 struct queue_limits limits;
2484 int r;
2485
2486 mutex_lock(&md->suspend_lock);
2487
2488 /* device must be suspended */
2489 if (!dm_suspended_md(md))
2490 goto out;
2491
2492 /*
2493 * If the new table has no data devices, retain the existing limits.
2494 * This helps multipath with queue_if_no_path if all paths disappear,
2495 * then new I/O is queued based on these limits, and then some paths
2496 * reappear.
2497 */
2498 if (dm_table_has_no_data_devices(table)) {
2499 live_map = dm_get_live_table_fast(md);
2500 if (live_map)
2501 limits = md->queue->limits;
2502 dm_put_live_table_fast(md);
2503 }
2504
2505 if (!live_map) {
2506 r = dm_calculate_queue_limits(table, &limits);
2507 if (r) {
2508 map = ERR_PTR(r);
2509 goto out;
2510 }
2511 }
2512
2513 map = __bind(md, table, &limits);
2514 dm_issue_global_event();
2515
2516 out:
2517 mutex_unlock(&md->suspend_lock);
2518 return map;
2519 }
2520
2521 /*
2522 * Functions to lock and unlock any filesystem running on the
2523 * device.
2524 */
lock_fs(struct mapped_device * md)2525 static int lock_fs(struct mapped_device *md)
2526 {
2527 int r;
2528
2529 WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2530
2531 r = freeze_bdev(md->disk->part0);
2532 if (!r)
2533 set_bit(DMF_FROZEN, &md->flags);
2534 return r;
2535 }
2536
unlock_fs(struct mapped_device * md)2537 static void unlock_fs(struct mapped_device *md)
2538 {
2539 if (!test_bit(DMF_FROZEN, &md->flags))
2540 return;
2541 thaw_bdev(md->disk->part0);
2542 clear_bit(DMF_FROZEN, &md->flags);
2543 }
2544
2545 /*
2546 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2547 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2548 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2549 *
2550 * If __dm_suspend returns 0, the device is completely quiescent
2551 * now. There is no request-processing activity. All new requests
2552 * are being added to md->deferred list.
2553 */
__dm_suspend(struct mapped_device * md,struct dm_table * map,unsigned suspend_flags,unsigned int task_state,int dmf_suspended_flag)2554 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2555 unsigned suspend_flags, unsigned int task_state,
2556 int dmf_suspended_flag)
2557 {
2558 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2559 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2560 int r;
2561
2562 lockdep_assert_held(&md->suspend_lock);
2563
2564 /*
2565 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2566 * This flag is cleared before dm_suspend returns.
2567 */
2568 if (noflush)
2569 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2570 else
2571 DMDEBUG("%s: suspending with flush", dm_device_name(md));
2572
2573 /*
2574 * This gets reverted if there's an error later and the targets
2575 * provide the .presuspend_undo hook.
2576 */
2577 dm_table_presuspend_targets(map);
2578
2579 /*
2580 * Flush I/O to the device.
2581 * Any I/O submitted after lock_fs() may not be flushed.
2582 * noflush takes precedence over do_lockfs.
2583 * (lock_fs() flushes I/Os and waits for them to complete.)
2584 */
2585 if (!noflush && do_lockfs) {
2586 r = lock_fs(md);
2587 if (r) {
2588 dm_table_presuspend_undo_targets(map);
2589 return r;
2590 }
2591 }
2592
2593 /*
2594 * Here we must make sure that no processes are submitting requests
2595 * to target drivers i.e. no one may be executing
2596 * dm_split_and_process_bio from dm_submit_bio.
2597 *
2598 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2599 * we take the write lock. To prevent any process from reentering
2600 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2601 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2602 * flush_workqueue(md->wq).
2603 */
2604 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2605 if (map)
2606 synchronize_srcu(&md->io_barrier);
2607
2608 /*
2609 * Stop md->queue before flushing md->wq in case request-based
2610 * dm defers requests to md->wq from md->queue.
2611 */
2612 if (dm_request_based(md))
2613 dm_stop_queue(md->queue);
2614
2615 flush_workqueue(md->wq);
2616
2617 /*
2618 * At this point no more requests are entering target request routines.
2619 * We call dm_wait_for_completion to wait for all existing requests
2620 * to finish.
2621 */
2622 r = dm_wait_for_completion(md, task_state);
2623 if (!r)
2624 set_bit(dmf_suspended_flag, &md->flags);
2625
2626 if (noflush)
2627 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2628 if (map)
2629 synchronize_srcu(&md->io_barrier);
2630
2631 /* were we interrupted ? */
2632 if (r < 0) {
2633 dm_queue_flush(md);
2634
2635 if (dm_request_based(md))
2636 dm_start_queue(md->queue);
2637
2638 unlock_fs(md);
2639 dm_table_presuspend_undo_targets(map);
2640 /* pushback list is already flushed, so skip flush */
2641 }
2642
2643 return r;
2644 }
2645
2646 /*
2647 * We need to be able to change a mapping table under a mounted
2648 * filesystem. For example we might want to move some data in
2649 * the background. Before the table can be swapped with
2650 * dm_bind_table, dm_suspend must be called to flush any in
2651 * flight bios and ensure that any further io gets deferred.
2652 */
2653 /*
2654 * Suspend mechanism in request-based dm.
2655 *
2656 * 1. Flush all I/Os by lock_fs() if needed.
2657 * 2. Stop dispatching any I/O by stopping the request_queue.
2658 * 3. Wait for all in-flight I/Os to be completed or requeued.
2659 *
2660 * To abort suspend, start the request_queue.
2661 */
dm_suspend(struct mapped_device * md,unsigned suspend_flags)2662 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2663 {
2664 struct dm_table *map = NULL;
2665 int r = 0;
2666
2667 retry:
2668 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2669
2670 if (dm_suspended_md(md)) {
2671 r = -EINVAL;
2672 goto out_unlock;
2673 }
2674
2675 if (dm_suspended_internally_md(md)) {
2676 /* already internally suspended, wait for internal resume */
2677 mutex_unlock(&md->suspend_lock);
2678 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2679 if (r)
2680 return r;
2681 goto retry;
2682 }
2683
2684 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2685
2686 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2687 if (r)
2688 goto out_unlock;
2689
2690 set_bit(DMF_POST_SUSPENDING, &md->flags);
2691 dm_table_postsuspend_targets(map);
2692 clear_bit(DMF_POST_SUSPENDING, &md->flags);
2693
2694 out_unlock:
2695 mutex_unlock(&md->suspend_lock);
2696 return r;
2697 }
2698
__dm_resume(struct mapped_device * md,struct dm_table * map)2699 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2700 {
2701 if (map) {
2702 int r = dm_table_resume_targets(map);
2703 if (r)
2704 return r;
2705 }
2706
2707 dm_queue_flush(md);
2708
2709 /*
2710 * Flushing deferred I/Os must be done after targets are resumed
2711 * so that mapping of targets can work correctly.
2712 * Request-based dm is queueing the deferred I/Os in its request_queue.
2713 */
2714 if (dm_request_based(md))
2715 dm_start_queue(md->queue);
2716
2717 unlock_fs(md);
2718
2719 return 0;
2720 }
2721
dm_resume(struct mapped_device * md)2722 int dm_resume(struct mapped_device *md)
2723 {
2724 int r;
2725 struct dm_table *map = NULL;
2726
2727 retry:
2728 r = -EINVAL;
2729 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2730
2731 if (!dm_suspended_md(md))
2732 goto out;
2733
2734 if (dm_suspended_internally_md(md)) {
2735 /* already internally suspended, wait for internal resume */
2736 mutex_unlock(&md->suspend_lock);
2737 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2738 if (r)
2739 return r;
2740 goto retry;
2741 }
2742
2743 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2744 if (!map || !dm_table_get_size(map))
2745 goto out;
2746
2747 r = __dm_resume(md, map);
2748 if (r)
2749 goto out;
2750
2751 clear_bit(DMF_SUSPENDED, &md->flags);
2752 out:
2753 mutex_unlock(&md->suspend_lock);
2754
2755 return r;
2756 }
2757
2758 /*
2759 * Internal suspend/resume works like userspace-driven suspend. It waits
2760 * until all bios finish and prevents issuing new bios to the target drivers.
2761 * It may be used only from the kernel.
2762 */
2763
__dm_internal_suspend(struct mapped_device * md,unsigned suspend_flags)2764 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2765 {
2766 struct dm_table *map = NULL;
2767
2768 lockdep_assert_held(&md->suspend_lock);
2769
2770 if (md->internal_suspend_count++)
2771 return; /* nested internal suspend */
2772
2773 if (dm_suspended_md(md)) {
2774 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2775 return; /* nest suspend */
2776 }
2777
2778 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2779
2780 /*
2781 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2782 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2783 * would require changing .presuspend to return an error -- avoid this
2784 * until there is a need for more elaborate variants of internal suspend.
2785 */
2786 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2787 DMF_SUSPENDED_INTERNALLY);
2788
2789 set_bit(DMF_POST_SUSPENDING, &md->flags);
2790 dm_table_postsuspend_targets(map);
2791 clear_bit(DMF_POST_SUSPENDING, &md->flags);
2792 }
2793
__dm_internal_resume(struct mapped_device * md)2794 static void __dm_internal_resume(struct mapped_device *md)
2795 {
2796 BUG_ON(!md->internal_suspend_count);
2797
2798 if (--md->internal_suspend_count)
2799 return; /* resume from nested internal suspend */
2800
2801 if (dm_suspended_md(md))
2802 goto done; /* resume from nested suspend */
2803
2804 /*
2805 * NOTE: existing callers don't need to call dm_table_resume_targets
2806 * (which may fail -- so best to avoid it for now by passing NULL map)
2807 */
2808 (void) __dm_resume(md, NULL);
2809
2810 done:
2811 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2812 smp_mb__after_atomic();
2813 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2814 }
2815
dm_internal_suspend_noflush(struct mapped_device * md)2816 void dm_internal_suspend_noflush(struct mapped_device *md)
2817 {
2818 mutex_lock(&md->suspend_lock);
2819 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2820 mutex_unlock(&md->suspend_lock);
2821 }
2822 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2823
dm_internal_resume(struct mapped_device * md)2824 void dm_internal_resume(struct mapped_device *md)
2825 {
2826 mutex_lock(&md->suspend_lock);
2827 __dm_internal_resume(md);
2828 mutex_unlock(&md->suspend_lock);
2829 }
2830 EXPORT_SYMBOL_GPL(dm_internal_resume);
2831
2832 /*
2833 * Fast variants of internal suspend/resume hold md->suspend_lock,
2834 * which prevents interaction with userspace-driven suspend.
2835 */
2836
dm_internal_suspend_fast(struct mapped_device * md)2837 void dm_internal_suspend_fast(struct mapped_device *md)
2838 {
2839 mutex_lock(&md->suspend_lock);
2840 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2841 return;
2842
2843 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2844 synchronize_srcu(&md->io_barrier);
2845 flush_workqueue(md->wq);
2846 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2847 }
2848 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2849
dm_internal_resume_fast(struct mapped_device * md)2850 void dm_internal_resume_fast(struct mapped_device *md)
2851 {
2852 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2853 goto done;
2854
2855 dm_queue_flush(md);
2856
2857 done:
2858 mutex_unlock(&md->suspend_lock);
2859 }
2860 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2861
2862 /*-----------------------------------------------------------------
2863 * Event notification.
2864 *---------------------------------------------------------------*/
dm_kobject_uevent(struct mapped_device * md,enum kobject_action action,unsigned cookie)2865 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2866 unsigned cookie)
2867 {
2868 int r;
2869 unsigned noio_flag;
2870 char udev_cookie[DM_COOKIE_LENGTH];
2871 char *envp[] = { udev_cookie, NULL };
2872
2873 noio_flag = memalloc_noio_save();
2874
2875 if (!cookie)
2876 r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2877 else {
2878 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2879 DM_COOKIE_ENV_VAR_NAME, cookie);
2880 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2881 action, envp);
2882 }
2883
2884 memalloc_noio_restore(noio_flag);
2885
2886 return r;
2887 }
2888
dm_next_uevent_seq(struct mapped_device * md)2889 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2890 {
2891 return atomic_add_return(1, &md->uevent_seq);
2892 }
2893
dm_get_event_nr(struct mapped_device * md)2894 uint32_t dm_get_event_nr(struct mapped_device *md)
2895 {
2896 return atomic_read(&md->event_nr);
2897 }
2898
dm_wait_event(struct mapped_device * md,int event_nr)2899 int dm_wait_event(struct mapped_device *md, int event_nr)
2900 {
2901 return wait_event_interruptible(md->eventq,
2902 (event_nr != atomic_read(&md->event_nr)));
2903 }
2904
dm_uevent_add(struct mapped_device * md,struct list_head * elist)2905 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2906 {
2907 unsigned long flags;
2908
2909 spin_lock_irqsave(&md->uevent_lock, flags);
2910 list_add(elist, &md->uevent_list);
2911 spin_unlock_irqrestore(&md->uevent_lock, flags);
2912 }
2913
2914 /*
2915 * The gendisk is only valid as long as you have a reference
2916 * count on 'md'.
2917 */
dm_disk(struct mapped_device * md)2918 struct gendisk *dm_disk(struct mapped_device *md)
2919 {
2920 return md->disk;
2921 }
2922 EXPORT_SYMBOL_GPL(dm_disk);
2923
dm_kobject(struct mapped_device * md)2924 struct kobject *dm_kobject(struct mapped_device *md)
2925 {
2926 return &md->kobj_holder.kobj;
2927 }
2928
dm_get_from_kobject(struct kobject * kobj)2929 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2930 {
2931 struct mapped_device *md;
2932
2933 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2934
2935 spin_lock(&_minor_lock);
2936 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2937 md = NULL;
2938 goto out;
2939 }
2940 dm_get(md);
2941 out:
2942 spin_unlock(&_minor_lock);
2943
2944 return md;
2945 }
2946
dm_suspended_md(struct mapped_device * md)2947 int dm_suspended_md(struct mapped_device *md)
2948 {
2949 return test_bit(DMF_SUSPENDED, &md->flags);
2950 }
2951
dm_post_suspending_md(struct mapped_device * md)2952 static int dm_post_suspending_md(struct mapped_device *md)
2953 {
2954 return test_bit(DMF_POST_SUSPENDING, &md->flags);
2955 }
2956
dm_suspended_internally_md(struct mapped_device * md)2957 int dm_suspended_internally_md(struct mapped_device *md)
2958 {
2959 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2960 }
2961
dm_test_deferred_remove_flag(struct mapped_device * md)2962 int dm_test_deferred_remove_flag(struct mapped_device *md)
2963 {
2964 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2965 }
2966
dm_suspended(struct dm_target * ti)2967 int dm_suspended(struct dm_target *ti)
2968 {
2969 return dm_suspended_md(ti->table->md);
2970 }
2971 EXPORT_SYMBOL_GPL(dm_suspended);
2972
dm_post_suspending(struct dm_target * ti)2973 int dm_post_suspending(struct dm_target *ti)
2974 {
2975 return dm_post_suspending_md(ti->table->md);
2976 }
2977 EXPORT_SYMBOL_GPL(dm_post_suspending);
2978
dm_noflush_suspending(struct dm_target * ti)2979 int dm_noflush_suspending(struct dm_target *ti)
2980 {
2981 return __noflush_suspending(ti->table->md);
2982 }
2983 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2984
dm_alloc_md_mempools(struct mapped_device * md,enum dm_queue_mode type,unsigned per_io_data_size,unsigned min_pool_size,bool integrity,bool poll)2985 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2986 unsigned per_io_data_size, unsigned min_pool_size,
2987 bool integrity, bool poll)
2988 {
2989 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2990 unsigned int pool_size = 0;
2991 unsigned int front_pad, io_front_pad;
2992 int ret;
2993
2994 if (!pools)
2995 return NULL;
2996
2997 switch (type) {
2998 case DM_TYPE_BIO_BASED:
2999 case DM_TYPE_DAX_BIO_BASED:
3000 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
3001 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
3002 io_front_pad = roundup(per_io_data_size, __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
3003 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, poll ? BIOSET_PERCPU_CACHE : 0);
3004 if (ret)
3005 goto out;
3006 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
3007 goto out;
3008 break;
3009 case DM_TYPE_REQUEST_BASED:
3010 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
3011 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3012 /* per_io_data_size is used for blk-mq pdu at queue allocation */
3013 break;
3014 default:
3015 BUG();
3016 }
3017
3018 ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
3019 if (ret)
3020 goto out;
3021
3022 if (integrity && bioset_integrity_create(&pools->bs, pool_size))
3023 goto out;
3024
3025 return pools;
3026
3027 out:
3028 dm_free_md_mempools(pools);
3029
3030 return NULL;
3031 }
3032
dm_free_md_mempools(struct dm_md_mempools * pools)3033 void dm_free_md_mempools(struct dm_md_mempools *pools)
3034 {
3035 if (!pools)
3036 return;
3037
3038 bioset_exit(&pools->bs);
3039 bioset_exit(&pools->io_bs);
3040
3041 kfree(pools);
3042 }
3043
3044 struct dm_pr {
3045 u64 old_key;
3046 u64 new_key;
3047 u32 flags;
3048 bool fail_early;
3049 };
3050
dm_call_pr(struct block_device * bdev,iterate_devices_callout_fn fn,void * data)3051 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3052 void *data)
3053 {
3054 struct mapped_device *md = bdev->bd_disk->private_data;
3055 struct dm_table *table;
3056 struct dm_target *ti;
3057 int ret = -ENOTTY, srcu_idx;
3058
3059 table = dm_get_live_table(md, &srcu_idx);
3060 if (!table || !dm_table_get_size(table))
3061 goto out;
3062
3063 /* We only support devices that have a single target */
3064 if (dm_table_get_num_targets(table) != 1)
3065 goto out;
3066 ti = dm_table_get_target(table, 0);
3067
3068 if (dm_suspended_md(md)) {
3069 ret = -EAGAIN;
3070 goto out;
3071 }
3072
3073 ret = -EINVAL;
3074 if (!ti->type->iterate_devices)
3075 goto out;
3076
3077 ret = ti->type->iterate_devices(ti, fn, data);
3078 out:
3079 dm_put_live_table(md, srcu_idx);
3080 return ret;
3081 }
3082
3083 /*
3084 * For register / unregister we need to manually call out to every path.
3085 */
__dm_pr_register(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3086 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3087 sector_t start, sector_t len, void *data)
3088 {
3089 struct dm_pr *pr = data;
3090 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3091
3092 if (!ops || !ops->pr_register)
3093 return -EOPNOTSUPP;
3094 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3095 }
3096
dm_pr_register(struct block_device * bdev,u64 old_key,u64 new_key,u32 flags)3097 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3098 u32 flags)
3099 {
3100 struct dm_pr pr = {
3101 .old_key = old_key,
3102 .new_key = new_key,
3103 .flags = flags,
3104 .fail_early = true,
3105 };
3106 int ret;
3107
3108 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3109 if (ret && new_key) {
3110 /* unregister all paths if we failed to register any path */
3111 pr.old_key = new_key;
3112 pr.new_key = 0;
3113 pr.flags = 0;
3114 pr.fail_early = false;
3115 dm_call_pr(bdev, __dm_pr_register, &pr);
3116 }
3117
3118 return ret;
3119 }
3120
dm_pr_reserve(struct block_device * bdev,u64 key,enum pr_type type,u32 flags)3121 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3122 u32 flags)
3123 {
3124 struct mapped_device *md = bdev->bd_disk->private_data;
3125 const struct pr_ops *ops;
3126 int r, srcu_idx;
3127
3128 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3129 if (r < 0)
3130 goto out;
3131
3132 ops = bdev->bd_disk->fops->pr_ops;
3133 if (ops && ops->pr_reserve)
3134 r = ops->pr_reserve(bdev, key, type, flags);
3135 else
3136 r = -EOPNOTSUPP;
3137 out:
3138 dm_unprepare_ioctl(md, srcu_idx);
3139 return r;
3140 }
3141
dm_pr_release(struct block_device * bdev,u64 key,enum pr_type type)3142 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3143 {
3144 struct mapped_device *md = bdev->bd_disk->private_data;
3145 const struct pr_ops *ops;
3146 int r, srcu_idx;
3147
3148 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3149 if (r < 0)
3150 goto out;
3151
3152 ops = bdev->bd_disk->fops->pr_ops;
3153 if (ops && ops->pr_release)
3154 r = ops->pr_release(bdev, key, type);
3155 else
3156 r = -EOPNOTSUPP;
3157 out:
3158 dm_unprepare_ioctl(md, srcu_idx);
3159 return r;
3160 }
3161
dm_pr_preempt(struct block_device * bdev,u64 old_key,u64 new_key,enum pr_type type,bool abort)3162 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3163 enum pr_type type, bool abort)
3164 {
3165 struct mapped_device *md = bdev->bd_disk->private_data;
3166 const struct pr_ops *ops;
3167 int r, srcu_idx;
3168
3169 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3170 if (r < 0)
3171 goto out;
3172
3173 ops = bdev->bd_disk->fops->pr_ops;
3174 if (ops && ops->pr_preempt)
3175 r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3176 else
3177 r = -EOPNOTSUPP;
3178 out:
3179 dm_unprepare_ioctl(md, srcu_idx);
3180 return r;
3181 }
3182
dm_pr_clear(struct block_device * bdev,u64 key)3183 static int dm_pr_clear(struct block_device *bdev, u64 key)
3184 {
3185 struct mapped_device *md = bdev->bd_disk->private_data;
3186 const struct pr_ops *ops;
3187 int r, srcu_idx;
3188
3189 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3190 if (r < 0)
3191 goto out;
3192
3193 ops = bdev->bd_disk->fops->pr_ops;
3194 if (ops && ops->pr_clear)
3195 r = ops->pr_clear(bdev, key);
3196 else
3197 r = -EOPNOTSUPP;
3198 out:
3199 dm_unprepare_ioctl(md, srcu_idx);
3200 return r;
3201 }
3202
3203 static const struct pr_ops dm_pr_ops = {
3204 .pr_register = dm_pr_register,
3205 .pr_reserve = dm_pr_reserve,
3206 .pr_release = dm_pr_release,
3207 .pr_preempt = dm_pr_preempt,
3208 .pr_clear = dm_pr_clear,
3209 };
3210
3211 static const struct block_device_operations dm_blk_dops = {
3212 .submit_bio = dm_submit_bio,
3213 .poll_bio = dm_poll_bio,
3214 .open = dm_blk_open,
3215 .release = dm_blk_close,
3216 .ioctl = dm_blk_ioctl,
3217 .getgeo = dm_blk_getgeo,
3218 .report_zones = dm_blk_report_zones,
3219 .pr_ops = &dm_pr_ops,
3220 .owner = THIS_MODULE
3221 };
3222
3223 static const struct block_device_operations dm_rq_blk_dops = {
3224 .open = dm_blk_open,
3225 .release = dm_blk_close,
3226 .ioctl = dm_blk_ioctl,
3227 .getgeo = dm_blk_getgeo,
3228 .pr_ops = &dm_pr_ops,
3229 .owner = THIS_MODULE
3230 };
3231
3232 static const struct dax_operations dm_dax_ops = {
3233 .direct_access = dm_dax_direct_access,
3234 .zero_page_range = dm_dax_zero_page_range,
3235 .recovery_write = dm_dax_recovery_write,
3236 };
3237
3238 /*
3239 * module hooks
3240 */
3241 module_init(dm_init);
3242 module_exit(dm_exit);
3243
3244 module_param(major, uint, 0);
3245 MODULE_PARM_DESC(major, "The major number of the device mapper");
3246
3247 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3248 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3249
3250 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3251 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3252
3253 module_param(swap_bios, int, S_IRUGO | S_IWUSR);
3254 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3255
3256 MODULE_DESCRIPTION(DM_NAME " driver");
3257 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3258 MODULE_LICENSE("GPL");
3259