1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #include <linux/cgroup.h>
30 #include <linux/ctype.h>
31 #include <linux/errno.h>
32 #include <linux/fs.h>
33 #include <linux/kernel.h>
34 #include <linux/list.h>
35 #include <linux/mm.h>
36 #include <linux/mutex.h>
37 #include <linux/mount.h>
38 #include <linux/pagemap.h>
39 #include <linux/proc_fs.h>
40 #include <linux/rcupdate.h>
41 #include <linux/sched.h>
42 #include <linux/backing-dev.h>
43 #include <linux/seq_file.h>
44 #include <linux/slab.h>
45 #include <linux/magic.h>
46 #include <linux/spinlock.h>
47 #include <linux/string.h>
48 #include <linux/sort.h>
49 #include <linux/kmod.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/cgroupstats.h>
53 #include <linux/hash.h>
54 #include <linux/namei.h>
55 #include <linux/pid_namespace.h>
56 #include <linux/idr.h>
57 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
58 #include <linux/eventfd.h>
59 #include <linux/poll.h>
60
61 #include <asm/atomic.h>
62
63 static DEFINE_MUTEX(cgroup_mutex);
64
65 /*
66 * Generate an array of cgroup subsystem pointers. At boot time, this is
67 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
68 * registered after that. The mutable section of this array is protected by
69 * cgroup_mutex.
70 */
71 #define SUBSYS(_x) &_x ## _subsys,
72 static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
73 #include <linux/cgroup_subsys.h>
74 };
75
76 #define MAX_CGROUP_ROOT_NAMELEN 64
77
78 /*
79 * A cgroupfs_root represents the root of a cgroup hierarchy,
80 * and may be associated with a superblock to form an active
81 * hierarchy
82 */
83 struct cgroupfs_root {
84 struct super_block *sb;
85
86 /*
87 * The bitmask of subsystems intended to be attached to this
88 * hierarchy
89 */
90 unsigned long subsys_bits;
91
92 /* Unique id for this hierarchy. */
93 int hierarchy_id;
94
95 /* The bitmask of subsystems currently attached to this hierarchy */
96 unsigned long actual_subsys_bits;
97
98 /* A list running through the attached subsystems */
99 struct list_head subsys_list;
100
101 /* The root cgroup for this hierarchy */
102 struct cgroup top_cgroup;
103
104 /* Tracks how many cgroups are currently defined in hierarchy.*/
105 int number_of_cgroups;
106
107 /* A list running through the active hierarchies */
108 struct list_head root_list;
109
110 /* Hierarchy-specific flags */
111 unsigned long flags;
112
113 /* The path to use for release notifications. */
114 char release_agent_path[PATH_MAX];
115
116 /* The name for this hierarchy - may be empty */
117 char name[MAX_CGROUP_ROOT_NAMELEN];
118 };
119
120 /*
121 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
122 * subsystems that are otherwise unattached - it never has more than a
123 * single cgroup, and all tasks are part of that cgroup.
124 */
125 static struct cgroupfs_root rootnode;
126
127 /*
128 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
129 * cgroup_subsys->use_id != 0.
130 */
131 #define CSS_ID_MAX (65535)
132 struct css_id {
133 /*
134 * The css to which this ID points. This pointer is set to valid value
135 * after cgroup is populated. If cgroup is removed, this will be NULL.
136 * This pointer is expected to be RCU-safe because destroy()
137 * is called after synchronize_rcu(). But for safe use, css_is_removed()
138 * css_tryget() should be used for avoiding race.
139 */
140 struct cgroup_subsys_state __rcu *css;
141 /*
142 * ID of this css.
143 */
144 unsigned short id;
145 /*
146 * Depth in hierarchy which this ID belongs to.
147 */
148 unsigned short depth;
149 /*
150 * ID is freed by RCU. (and lookup routine is RCU safe.)
151 */
152 struct rcu_head rcu_head;
153 /*
154 * Hierarchy of CSS ID belongs to.
155 */
156 unsigned short stack[0]; /* Array of Length (depth+1) */
157 };
158
159 /*
160 * cgroup_event represents events which userspace want to receive.
161 */
162 struct cgroup_event {
163 /*
164 * Cgroup which the event belongs to.
165 */
166 struct cgroup *cgrp;
167 /*
168 * Control file which the event associated.
169 */
170 struct cftype *cft;
171 /*
172 * eventfd to signal userspace about the event.
173 */
174 struct eventfd_ctx *eventfd;
175 /*
176 * Each of these stored in a list by the cgroup.
177 */
178 struct list_head list;
179 /*
180 * All fields below needed to unregister event when
181 * userspace closes eventfd.
182 */
183 poll_table pt;
184 wait_queue_head_t *wqh;
185 wait_queue_t wait;
186 struct work_struct remove;
187 };
188
189 /* The list of hierarchy roots */
190
191 static LIST_HEAD(roots);
192 static int root_count;
193
194 static DEFINE_IDA(hierarchy_ida);
195 static int next_hierarchy_id;
196 static DEFINE_SPINLOCK(hierarchy_id_lock);
197
198 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
199 #define dummytop (&rootnode.top_cgroup)
200
201 /* This flag indicates whether tasks in the fork and exit paths should
202 * check for fork/exit handlers to call. This avoids us having to do
203 * extra work in the fork/exit path if none of the subsystems need to
204 * be called.
205 */
206 static int need_forkexit_callback __read_mostly;
207
208 #ifdef CONFIG_PROVE_LOCKING
cgroup_lock_is_held(void)209 int cgroup_lock_is_held(void)
210 {
211 return lockdep_is_held(&cgroup_mutex);
212 }
213 #else /* #ifdef CONFIG_PROVE_LOCKING */
cgroup_lock_is_held(void)214 int cgroup_lock_is_held(void)
215 {
216 return mutex_is_locked(&cgroup_mutex);
217 }
218 #endif /* #else #ifdef CONFIG_PROVE_LOCKING */
219
220 EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
221
222 /* convenient tests for these bits */
cgroup_is_removed(const struct cgroup * cgrp)223 inline int cgroup_is_removed(const struct cgroup *cgrp)
224 {
225 return test_bit(CGRP_REMOVED, &cgrp->flags);
226 }
227
228 /* bits in struct cgroupfs_root flags field */
229 enum {
230 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
231 };
232
cgroup_is_releasable(const struct cgroup * cgrp)233 static int cgroup_is_releasable(const struct cgroup *cgrp)
234 {
235 const int bits =
236 (1 << CGRP_RELEASABLE) |
237 (1 << CGRP_NOTIFY_ON_RELEASE);
238 return (cgrp->flags & bits) == bits;
239 }
240
notify_on_release(const struct cgroup * cgrp)241 static int notify_on_release(const struct cgroup *cgrp)
242 {
243 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
244 }
245
clone_children(const struct cgroup * cgrp)246 static int clone_children(const struct cgroup *cgrp)
247 {
248 return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
249 }
250
251 /*
252 * for_each_subsys() allows you to iterate on each subsystem attached to
253 * an active hierarchy
254 */
255 #define for_each_subsys(_root, _ss) \
256 list_for_each_entry(_ss, &_root->subsys_list, sibling)
257
258 /* for_each_active_root() allows you to iterate across the active hierarchies */
259 #define for_each_active_root(_root) \
260 list_for_each_entry(_root, &roots, root_list)
261
262 /* the list of cgroups eligible for automatic release. Protected by
263 * release_list_lock */
264 static LIST_HEAD(release_list);
265 static DEFINE_SPINLOCK(release_list_lock);
266 static void cgroup_release_agent(struct work_struct *work);
267 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
268 static void check_for_release(struct cgroup *cgrp);
269
270 /* Link structure for associating css_set objects with cgroups */
271 struct cg_cgroup_link {
272 /*
273 * List running through cg_cgroup_links associated with a
274 * cgroup, anchored on cgroup->css_sets
275 */
276 struct list_head cgrp_link_list;
277 struct cgroup *cgrp;
278 /*
279 * List running through cg_cgroup_links pointing at a
280 * single css_set object, anchored on css_set->cg_links
281 */
282 struct list_head cg_link_list;
283 struct css_set *cg;
284 };
285
286 /* The default css_set - used by init and its children prior to any
287 * hierarchies being mounted. It contains a pointer to the root state
288 * for each subsystem. Also used to anchor the list of css_sets. Not
289 * reference-counted, to improve performance when child cgroups
290 * haven't been created.
291 */
292
293 static struct css_set init_css_set;
294 static struct cg_cgroup_link init_css_set_link;
295
296 static int cgroup_init_idr(struct cgroup_subsys *ss,
297 struct cgroup_subsys_state *css);
298
299 /* css_set_lock protects the list of css_set objects, and the
300 * chain of tasks off each css_set. Nests outside task->alloc_lock
301 * due to cgroup_iter_start() */
302 static DEFINE_RWLOCK(css_set_lock);
303 static int css_set_count;
304
305 /*
306 * hash table for cgroup groups. This improves the performance to find
307 * an existing css_set. This hash doesn't (currently) take into
308 * account cgroups in empty hierarchies.
309 */
310 #define CSS_SET_HASH_BITS 7
311 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
312 static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
313
css_set_hash(struct cgroup_subsys_state * css[])314 static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
315 {
316 int i;
317 int index;
318 unsigned long tmp = 0UL;
319
320 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
321 tmp += (unsigned long)css[i];
322 tmp = (tmp >> 16) ^ tmp;
323
324 index = hash_long(tmp, CSS_SET_HASH_BITS);
325
326 return &css_set_table[index];
327 }
328
free_css_set_rcu(struct rcu_head * obj)329 static void free_css_set_rcu(struct rcu_head *obj)
330 {
331 struct css_set *cg = container_of(obj, struct css_set, rcu_head);
332 kfree(cg);
333 }
334
335 /* We don't maintain the lists running through each css_set to its
336 * task until after the first call to cgroup_iter_start(). This
337 * reduces the fork()/exit() overhead for people who have cgroups
338 * compiled into their kernel but not actually in use */
339 static int use_task_css_set_links __read_mostly;
340
__put_css_set(struct css_set * cg,int taskexit)341 static void __put_css_set(struct css_set *cg, int taskexit)
342 {
343 struct cg_cgroup_link *link;
344 struct cg_cgroup_link *saved_link;
345 /*
346 * Ensure that the refcount doesn't hit zero while any readers
347 * can see it. Similar to atomic_dec_and_lock(), but for an
348 * rwlock
349 */
350 if (atomic_add_unless(&cg->refcount, -1, 1))
351 return;
352 write_lock(&css_set_lock);
353 if (!atomic_dec_and_test(&cg->refcount)) {
354 write_unlock(&css_set_lock);
355 return;
356 }
357
358 /* This css_set is dead. unlink it and release cgroup refcounts */
359 hlist_del(&cg->hlist);
360 css_set_count--;
361
362 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
363 cg_link_list) {
364 struct cgroup *cgrp = link->cgrp;
365 list_del(&link->cg_link_list);
366 list_del(&link->cgrp_link_list);
367 if (atomic_dec_and_test(&cgrp->count) &&
368 notify_on_release(cgrp)) {
369 if (taskexit)
370 set_bit(CGRP_RELEASABLE, &cgrp->flags);
371 check_for_release(cgrp);
372 }
373
374 kfree(link);
375 }
376
377 write_unlock(&css_set_lock);
378 call_rcu(&cg->rcu_head, free_css_set_rcu);
379 }
380
381 /*
382 * refcounted get/put for css_set objects
383 */
get_css_set(struct css_set * cg)384 static inline void get_css_set(struct css_set *cg)
385 {
386 atomic_inc(&cg->refcount);
387 }
388
put_css_set(struct css_set * cg)389 static inline void put_css_set(struct css_set *cg)
390 {
391 __put_css_set(cg, 0);
392 }
393
put_css_set_taskexit(struct css_set * cg)394 static inline void put_css_set_taskexit(struct css_set *cg)
395 {
396 __put_css_set(cg, 1);
397 }
398
399 /*
400 * compare_css_sets - helper function for find_existing_css_set().
401 * @cg: candidate css_set being tested
402 * @old_cg: existing css_set for a task
403 * @new_cgrp: cgroup that's being entered by the task
404 * @template: desired set of css pointers in css_set (pre-calculated)
405 *
406 * Returns true if "cg" matches "old_cg" except for the hierarchy
407 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
408 */
compare_css_sets(struct css_set * cg,struct css_set * old_cg,struct cgroup * new_cgrp,struct cgroup_subsys_state * template[])409 static bool compare_css_sets(struct css_set *cg,
410 struct css_set *old_cg,
411 struct cgroup *new_cgrp,
412 struct cgroup_subsys_state *template[])
413 {
414 struct list_head *l1, *l2;
415
416 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
417 /* Not all subsystems matched */
418 return false;
419 }
420
421 /*
422 * Compare cgroup pointers in order to distinguish between
423 * different cgroups in heirarchies with no subsystems. We
424 * could get by with just this check alone (and skip the
425 * memcmp above) but on most setups the memcmp check will
426 * avoid the need for this more expensive check on almost all
427 * candidates.
428 */
429
430 l1 = &cg->cg_links;
431 l2 = &old_cg->cg_links;
432 while (1) {
433 struct cg_cgroup_link *cgl1, *cgl2;
434 struct cgroup *cg1, *cg2;
435
436 l1 = l1->next;
437 l2 = l2->next;
438 /* See if we reached the end - both lists are equal length. */
439 if (l1 == &cg->cg_links) {
440 BUG_ON(l2 != &old_cg->cg_links);
441 break;
442 } else {
443 BUG_ON(l2 == &old_cg->cg_links);
444 }
445 /* Locate the cgroups associated with these links. */
446 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
447 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
448 cg1 = cgl1->cgrp;
449 cg2 = cgl2->cgrp;
450 /* Hierarchies should be linked in the same order. */
451 BUG_ON(cg1->root != cg2->root);
452
453 /*
454 * If this hierarchy is the hierarchy of the cgroup
455 * that's changing, then we need to check that this
456 * css_set points to the new cgroup; if it's any other
457 * hierarchy, then this css_set should point to the
458 * same cgroup as the old css_set.
459 */
460 if (cg1->root == new_cgrp->root) {
461 if (cg1 != new_cgrp)
462 return false;
463 } else {
464 if (cg1 != cg2)
465 return false;
466 }
467 }
468 return true;
469 }
470
471 /*
472 * find_existing_css_set() is a helper for
473 * find_css_set(), and checks to see whether an existing
474 * css_set is suitable.
475 *
476 * oldcg: the cgroup group that we're using before the cgroup
477 * transition
478 *
479 * cgrp: the cgroup that we're moving into
480 *
481 * template: location in which to build the desired set of subsystem
482 * state objects for the new cgroup group
483 */
find_existing_css_set(struct css_set * oldcg,struct cgroup * cgrp,struct cgroup_subsys_state * template[])484 static struct css_set *find_existing_css_set(
485 struct css_set *oldcg,
486 struct cgroup *cgrp,
487 struct cgroup_subsys_state *template[])
488 {
489 int i;
490 struct cgroupfs_root *root = cgrp->root;
491 struct hlist_head *hhead;
492 struct hlist_node *node;
493 struct css_set *cg;
494
495 /*
496 * Build the set of subsystem state objects that we want to see in the
497 * new css_set. while subsystems can change globally, the entries here
498 * won't change, so no need for locking.
499 */
500 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
501 if (root->subsys_bits & (1UL << i)) {
502 /* Subsystem is in this hierarchy. So we want
503 * the subsystem state from the new
504 * cgroup */
505 template[i] = cgrp->subsys[i];
506 } else {
507 /* Subsystem is not in this hierarchy, so we
508 * don't want to change the subsystem state */
509 template[i] = oldcg->subsys[i];
510 }
511 }
512
513 hhead = css_set_hash(template);
514 hlist_for_each_entry(cg, node, hhead, hlist) {
515 if (!compare_css_sets(cg, oldcg, cgrp, template))
516 continue;
517
518 /* This css_set matches what we need */
519 return cg;
520 }
521
522 /* No existing cgroup group matched */
523 return NULL;
524 }
525
free_cg_links(struct list_head * tmp)526 static void free_cg_links(struct list_head *tmp)
527 {
528 struct cg_cgroup_link *link;
529 struct cg_cgroup_link *saved_link;
530
531 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
532 list_del(&link->cgrp_link_list);
533 kfree(link);
534 }
535 }
536
537 /*
538 * allocate_cg_links() allocates "count" cg_cgroup_link structures
539 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
540 * success or a negative error
541 */
allocate_cg_links(int count,struct list_head * tmp)542 static int allocate_cg_links(int count, struct list_head *tmp)
543 {
544 struct cg_cgroup_link *link;
545 int i;
546 INIT_LIST_HEAD(tmp);
547 for (i = 0; i < count; i++) {
548 link = kmalloc(sizeof(*link), GFP_KERNEL);
549 if (!link) {
550 free_cg_links(tmp);
551 return -ENOMEM;
552 }
553 list_add(&link->cgrp_link_list, tmp);
554 }
555 return 0;
556 }
557
558 /**
559 * link_css_set - a helper function to link a css_set to a cgroup
560 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
561 * @cg: the css_set to be linked
562 * @cgrp: the destination cgroup
563 */
link_css_set(struct list_head * tmp_cg_links,struct css_set * cg,struct cgroup * cgrp)564 static void link_css_set(struct list_head *tmp_cg_links,
565 struct css_set *cg, struct cgroup *cgrp)
566 {
567 struct cg_cgroup_link *link;
568
569 BUG_ON(list_empty(tmp_cg_links));
570 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
571 cgrp_link_list);
572 link->cg = cg;
573 link->cgrp = cgrp;
574 atomic_inc(&cgrp->count);
575 list_move(&link->cgrp_link_list, &cgrp->css_sets);
576 /*
577 * Always add links to the tail of the list so that the list
578 * is sorted by order of hierarchy creation
579 */
580 list_add_tail(&link->cg_link_list, &cg->cg_links);
581 }
582
583 /*
584 * find_css_set() takes an existing cgroup group and a
585 * cgroup object, and returns a css_set object that's
586 * equivalent to the old group, but with the given cgroup
587 * substituted into the appropriate hierarchy. Must be called with
588 * cgroup_mutex held
589 */
find_css_set(struct css_set * oldcg,struct cgroup * cgrp)590 static struct css_set *find_css_set(
591 struct css_set *oldcg, struct cgroup *cgrp)
592 {
593 struct css_set *res;
594 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
595
596 struct list_head tmp_cg_links;
597
598 struct hlist_head *hhead;
599 struct cg_cgroup_link *link;
600
601 /* First see if we already have a cgroup group that matches
602 * the desired set */
603 read_lock(&css_set_lock);
604 res = find_existing_css_set(oldcg, cgrp, template);
605 if (res)
606 get_css_set(res);
607 read_unlock(&css_set_lock);
608
609 if (res)
610 return res;
611
612 res = kmalloc(sizeof(*res), GFP_KERNEL);
613 if (!res)
614 return NULL;
615
616 /* Allocate all the cg_cgroup_link objects that we'll need */
617 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
618 kfree(res);
619 return NULL;
620 }
621
622 atomic_set(&res->refcount, 1);
623 INIT_LIST_HEAD(&res->cg_links);
624 INIT_LIST_HEAD(&res->tasks);
625 INIT_HLIST_NODE(&res->hlist);
626
627 /* Copy the set of subsystem state objects generated in
628 * find_existing_css_set() */
629 memcpy(res->subsys, template, sizeof(res->subsys));
630
631 write_lock(&css_set_lock);
632 /* Add reference counts and links from the new css_set. */
633 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
634 struct cgroup *c = link->cgrp;
635 if (c->root == cgrp->root)
636 c = cgrp;
637 link_css_set(&tmp_cg_links, res, c);
638 }
639
640 BUG_ON(!list_empty(&tmp_cg_links));
641
642 css_set_count++;
643
644 /* Add this cgroup group to the hash table */
645 hhead = css_set_hash(res->subsys);
646 hlist_add_head(&res->hlist, hhead);
647
648 write_unlock(&css_set_lock);
649
650 return res;
651 }
652
653 /*
654 * Return the cgroup for "task" from the given hierarchy. Must be
655 * called with cgroup_mutex held.
656 */
task_cgroup_from_root(struct task_struct * task,struct cgroupfs_root * root)657 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
658 struct cgroupfs_root *root)
659 {
660 struct css_set *css;
661 struct cgroup *res = NULL;
662
663 BUG_ON(!mutex_is_locked(&cgroup_mutex));
664 read_lock(&css_set_lock);
665 /*
666 * No need to lock the task - since we hold cgroup_mutex the
667 * task can't change groups, so the only thing that can happen
668 * is that it exits and its css is set back to init_css_set.
669 */
670 css = task->cgroups;
671 if (css == &init_css_set) {
672 res = &root->top_cgroup;
673 } else {
674 struct cg_cgroup_link *link;
675 list_for_each_entry(link, &css->cg_links, cg_link_list) {
676 struct cgroup *c = link->cgrp;
677 if (c->root == root) {
678 res = c;
679 break;
680 }
681 }
682 }
683 read_unlock(&css_set_lock);
684 BUG_ON(!res);
685 return res;
686 }
687
688 /*
689 * There is one global cgroup mutex. We also require taking
690 * task_lock() when dereferencing a task's cgroup subsys pointers.
691 * See "The task_lock() exception", at the end of this comment.
692 *
693 * A task must hold cgroup_mutex to modify cgroups.
694 *
695 * Any task can increment and decrement the count field without lock.
696 * So in general, code holding cgroup_mutex can't rely on the count
697 * field not changing. However, if the count goes to zero, then only
698 * cgroup_attach_task() can increment it again. Because a count of zero
699 * means that no tasks are currently attached, therefore there is no
700 * way a task attached to that cgroup can fork (the other way to
701 * increment the count). So code holding cgroup_mutex can safely
702 * assume that if the count is zero, it will stay zero. Similarly, if
703 * a task holds cgroup_mutex on a cgroup with zero count, it
704 * knows that the cgroup won't be removed, as cgroup_rmdir()
705 * needs that mutex.
706 *
707 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
708 * (usually) take cgroup_mutex. These are the two most performance
709 * critical pieces of code here. The exception occurs on cgroup_exit(),
710 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
711 * is taken, and if the cgroup count is zero, a usermode call made
712 * to the release agent with the name of the cgroup (path relative to
713 * the root of cgroup file system) as the argument.
714 *
715 * A cgroup can only be deleted if both its 'count' of using tasks
716 * is zero, and its list of 'children' cgroups is empty. Since all
717 * tasks in the system use _some_ cgroup, and since there is always at
718 * least one task in the system (init, pid == 1), therefore, top_cgroup
719 * always has either children cgroups and/or using tasks. So we don't
720 * need a special hack to ensure that top_cgroup cannot be deleted.
721 *
722 * The task_lock() exception
723 *
724 * The need for this exception arises from the action of
725 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
726 * another. It does so using cgroup_mutex, however there are
727 * several performance critical places that need to reference
728 * task->cgroup without the expense of grabbing a system global
729 * mutex. Therefore except as noted below, when dereferencing or, as
730 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
731 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
732 * the task_struct routinely used for such matters.
733 *
734 * P.S. One more locking exception. RCU is used to guard the
735 * update of a tasks cgroup pointer by cgroup_attach_task()
736 */
737
738 /**
739 * cgroup_lock - lock out any changes to cgroup structures
740 *
741 */
cgroup_lock(void)742 void cgroup_lock(void)
743 {
744 mutex_lock(&cgroup_mutex);
745 }
746 EXPORT_SYMBOL_GPL(cgroup_lock);
747
748 /**
749 * cgroup_unlock - release lock on cgroup changes
750 *
751 * Undo the lock taken in a previous cgroup_lock() call.
752 */
cgroup_unlock(void)753 void cgroup_unlock(void)
754 {
755 mutex_unlock(&cgroup_mutex);
756 }
757 EXPORT_SYMBOL_GPL(cgroup_unlock);
758
759 /*
760 * A couple of forward declarations required, due to cyclic reference loop:
761 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
762 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
763 * -> cgroup_mkdir.
764 */
765
766 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
767 static struct dentry *cgroup_lookup(struct inode *, struct dentry *, struct nameidata *);
768 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
769 static int cgroup_populate_dir(struct cgroup *cgrp);
770 static const struct inode_operations cgroup_dir_inode_operations;
771 static const struct file_operations proc_cgroupstats_operations;
772
773 static struct backing_dev_info cgroup_backing_dev_info = {
774 .name = "cgroup",
775 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
776 };
777
778 static int alloc_css_id(struct cgroup_subsys *ss,
779 struct cgroup *parent, struct cgroup *child);
780
cgroup_new_inode(mode_t mode,struct super_block * sb)781 static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
782 {
783 struct inode *inode = new_inode(sb);
784
785 if (inode) {
786 inode->i_ino = get_next_ino();
787 inode->i_mode = mode;
788 inode->i_uid = current_fsuid();
789 inode->i_gid = current_fsgid();
790 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
791 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
792 }
793 return inode;
794 }
795
796 /*
797 * Call subsys's pre_destroy handler.
798 * This is called before css refcnt check.
799 */
cgroup_call_pre_destroy(struct cgroup * cgrp)800 static int cgroup_call_pre_destroy(struct cgroup *cgrp)
801 {
802 struct cgroup_subsys *ss;
803 int ret = 0;
804
805 for_each_subsys(cgrp->root, ss)
806 if (ss->pre_destroy) {
807 ret = ss->pre_destroy(ss, cgrp);
808 if (ret)
809 break;
810 }
811
812 return ret;
813 }
814
free_cgroup_rcu(struct rcu_head * obj)815 static void free_cgroup_rcu(struct rcu_head *obj)
816 {
817 struct cgroup *cgrp = container_of(obj, struct cgroup, rcu_head);
818
819 kfree(cgrp);
820 }
821
cgroup_diput(struct dentry * dentry,struct inode * inode)822 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
823 {
824 /* is dentry a directory ? if so, kfree() associated cgroup */
825 if (S_ISDIR(inode->i_mode)) {
826 struct cgroup *cgrp = dentry->d_fsdata;
827 struct cgroup_subsys *ss;
828 BUG_ON(!(cgroup_is_removed(cgrp)));
829 /* It's possible for external users to be holding css
830 * reference counts on a cgroup; css_put() needs to
831 * be able to access the cgroup after decrementing
832 * the reference count in order to know if it needs to
833 * queue the cgroup to be handled by the release
834 * agent */
835 synchronize_rcu();
836
837 mutex_lock(&cgroup_mutex);
838 /*
839 * Release the subsystem state objects.
840 */
841 for_each_subsys(cgrp->root, ss)
842 ss->destroy(ss, cgrp);
843
844 cgrp->root->number_of_cgroups--;
845 mutex_unlock(&cgroup_mutex);
846
847 /*
848 * Drop the active superblock reference that we took when we
849 * created the cgroup
850 */
851 deactivate_super(cgrp->root->sb);
852
853 /*
854 * if we're getting rid of the cgroup, refcount should ensure
855 * that there are no pidlists left.
856 */
857 BUG_ON(!list_empty(&cgrp->pidlists));
858
859 call_rcu(&cgrp->rcu_head, free_cgroup_rcu);
860 }
861 iput(inode);
862 }
863
cgroup_delete(const struct dentry * d)864 static int cgroup_delete(const struct dentry *d)
865 {
866 return 1;
867 }
868
remove_dir(struct dentry * d)869 static void remove_dir(struct dentry *d)
870 {
871 struct dentry *parent = dget(d->d_parent);
872
873 d_delete(d);
874 simple_rmdir(parent->d_inode, d);
875 dput(parent);
876 }
877
cgroup_clear_directory(struct dentry * dentry)878 static void cgroup_clear_directory(struct dentry *dentry)
879 {
880 struct list_head *node;
881
882 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
883 spin_lock(&dentry->d_lock);
884 node = dentry->d_subdirs.next;
885 while (node != &dentry->d_subdirs) {
886 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
887
888 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
889 list_del_init(node);
890 if (d->d_inode) {
891 /* This should never be called on a cgroup
892 * directory with child cgroups */
893 BUG_ON(d->d_inode->i_mode & S_IFDIR);
894 dget_dlock(d);
895 spin_unlock(&d->d_lock);
896 spin_unlock(&dentry->d_lock);
897 d_delete(d);
898 simple_unlink(dentry->d_inode, d);
899 dput(d);
900 spin_lock(&dentry->d_lock);
901 } else
902 spin_unlock(&d->d_lock);
903 node = dentry->d_subdirs.next;
904 }
905 spin_unlock(&dentry->d_lock);
906 }
907
908 /*
909 * NOTE : the dentry must have been dget()'ed
910 */
cgroup_d_remove_dir(struct dentry * dentry)911 static void cgroup_d_remove_dir(struct dentry *dentry)
912 {
913 struct dentry *parent;
914
915 cgroup_clear_directory(dentry);
916
917 parent = dentry->d_parent;
918 spin_lock(&parent->d_lock);
919 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
920 list_del_init(&dentry->d_u.d_child);
921 spin_unlock(&dentry->d_lock);
922 spin_unlock(&parent->d_lock);
923 remove_dir(dentry);
924 }
925
926 /*
927 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
928 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
929 * reference to css->refcnt. In general, this refcnt is expected to goes down
930 * to zero, soon.
931 *
932 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
933 */
934 DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
935
cgroup_wakeup_rmdir_waiter(struct cgroup * cgrp)936 static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
937 {
938 if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
939 wake_up_all(&cgroup_rmdir_waitq);
940 }
941
cgroup_exclude_rmdir(struct cgroup_subsys_state * css)942 void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
943 {
944 css_get(css);
945 }
946
cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state * css)947 void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
948 {
949 cgroup_wakeup_rmdir_waiter(css->cgroup);
950 css_put(css);
951 }
952
953 /*
954 * Call with cgroup_mutex held. Drops reference counts on modules, including
955 * any duplicate ones that parse_cgroupfs_options took. If this function
956 * returns an error, no reference counts are touched.
957 */
rebind_subsystems(struct cgroupfs_root * root,unsigned long final_bits)958 static int rebind_subsystems(struct cgroupfs_root *root,
959 unsigned long final_bits)
960 {
961 unsigned long added_bits, removed_bits;
962 struct cgroup *cgrp = &root->top_cgroup;
963 int i;
964
965 BUG_ON(!mutex_is_locked(&cgroup_mutex));
966
967 removed_bits = root->actual_subsys_bits & ~final_bits;
968 added_bits = final_bits & ~root->actual_subsys_bits;
969 /* Check that any added subsystems are currently free */
970 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
971 unsigned long bit = 1UL << i;
972 struct cgroup_subsys *ss = subsys[i];
973 if (!(bit & added_bits))
974 continue;
975 /*
976 * Nobody should tell us to do a subsys that doesn't exist:
977 * parse_cgroupfs_options should catch that case and refcounts
978 * ensure that subsystems won't disappear once selected.
979 */
980 BUG_ON(ss == NULL);
981 if (ss->root != &rootnode) {
982 /* Subsystem isn't free */
983 return -EBUSY;
984 }
985 }
986
987 /* Currently we don't handle adding/removing subsystems when
988 * any child cgroups exist. This is theoretically supportable
989 * but involves complex error handling, so it's being left until
990 * later */
991 if (root->number_of_cgroups > 1)
992 return -EBUSY;
993
994 /* Process each subsystem */
995 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
996 struct cgroup_subsys *ss = subsys[i];
997 unsigned long bit = 1UL << i;
998 if (bit & added_bits) {
999 /* We're binding this subsystem to this hierarchy */
1000 BUG_ON(ss == NULL);
1001 BUG_ON(cgrp->subsys[i]);
1002 BUG_ON(!dummytop->subsys[i]);
1003 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
1004 mutex_lock(&ss->hierarchy_mutex);
1005 cgrp->subsys[i] = dummytop->subsys[i];
1006 cgrp->subsys[i]->cgroup = cgrp;
1007 list_move(&ss->sibling, &root->subsys_list);
1008 ss->root = root;
1009 if (ss->bind)
1010 ss->bind(ss, cgrp);
1011 mutex_unlock(&ss->hierarchy_mutex);
1012 /* refcount was already taken, and we're keeping it */
1013 } else if (bit & removed_bits) {
1014 /* We're removing this subsystem */
1015 BUG_ON(ss == NULL);
1016 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1017 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1018 mutex_lock(&ss->hierarchy_mutex);
1019 if (ss->bind)
1020 ss->bind(ss, dummytop);
1021 dummytop->subsys[i]->cgroup = dummytop;
1022 cgrp->subsys[i] = NULL;
1023 subsys[i]->root = &rootnode;
1024 list_move(&ss->sibling, &rootnode.subsys_list);
1025 mutex_unlock(&ss->hierarchy_mutex);
1026 /* subsystem is now free - drop reference on module */
1027 module_put(ss->module);
1028 } else if (bit & final_bits) {
1029 /* Subsystem state should already exist */
1030 BUG_ON(ss == NULL);
1031 BUG_ON(!cgrp->subsys[i]);
1032 /*
1033 * a refcount was taken, but we already had one, so
1034 * drop the extra reference.
1035 */
1036 module_put(ss->module);
1037 #ifdef CONFIG_MODULE_UNLOAD
1038 BUG_ON(ss->module && !module_refcount(ss->module));
1039 #endif
1040 } else {
1041 /* Subsystem state shouldn't exist */
1042 BUG_ON(cgrp->subsys[i]);
1043 }
1044 }
1045 root->subsys_bits = root->actual_subsys_bits = final_bits;
1046 synchronize_rcu();
1047
1048 return 0;
1049 }
1050
cgroup_show_options(struct seq_file * seq,struct vfsmount * vfs)1051 static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
1052 {
1053 struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
1054 struct cgroup_subsys *ss;
1055
1056 mutex_lock(&cgroup_mutex);
1057 for_each_subsys(root, ss)
1058 seq_printf(seq, ",%s", ss->name);
1059 if (test_bit(ROOT_NOPREFIX, &root->flags))
1060 seq_puts(seq, ",noprefix");
1061 if (strlen(root->release_agent_path))
1062 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1063 if (clone_children(&root->top_cgroup))
1064 seq_puts(seq, ",clone_children");
1065 if (strlen(root->name))
1066 seq_printf(seq, ",name=%s", root->name);
1067 mutex_unlock(&cgroup_mutex);
1068 return 0;
1069 }
1070
1071 struct cgroup_sb_opts {
1072 unsigned long subsys_bits;
1073 unsigned long flags;
1074 char *release_agent;
1075 bool clone_children;
1076 char *name;
1077 /* User explicitly requested empty subsystem */
1078 bool none;
1079
1080 struct cgroupfs_root *new_root;
1081
1082 };
1083
1084 /*
1085 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1086 * with cgroup_mutex held to protect the subsys[] array. This function takes
1087 * refcounts on subsystems to be used, unless it returns error, in which case
1088 * no refcounts are taken.
1089 */
parse_cgroupfs_options(char * data,struct cgroup_sb_opts * opts)1090 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1091 {
1092 char *token, *o = data;
1093 bool all_ss = false, one_ss = false;
1094 unsigned long mask = (unsigned long)-1;
1095 int i;
1096 bool module_pin_failed = false;
1097
1098 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1099
1100 #ifdef CONFIG_CPUSETS
1101 mask = ~(1UL << cpuset_subsys_id);
1102 #endif
1103
1104 memset(opts, 0, sizeof(*opts));
1105
1106 while ((token = strsep(&o, ",")) != NULL) {
1107 if (!*token)
1108 return -EINVAL;
1109 if (!strcmp(token, "none")) {
1110 /* Explicitly have no subsystems */
1111 opts->none = true;
1112 continue;
1113 }
1114 if (!strcmp(token, "all")) {
1115 /* Mutually exclusive option 'all' + subsystem name */
1116 if (one_ss)
1117 return -EINVAL;
1118 all_ss = true;
1119 continue;
1120 }
1121 if (!strcmp(token, "noprefix")) {
1122 set_bit(ROOT_NOPREFIX, &opts->flags);
1123 continue;
1124 }
1125 if (!strcmp(token, "clone_children")) {
1126 opts->clone_children = true;
1127 continue;
1128 }
1129 if (!strncmp(token, "release_agent=", 14)) {
1130 /* Specifying two release agents is forbidden */
1131 if (opts->release_agent)
1132 return -EINVAL;
1133 opts->release_agent =
1134 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1135 if (!opts->release_agent)
1136 return -ENOMEM;
1137 continue;
1138 }
1139 if (!strncmp(token, "name=", 5)) {
1140 const char *name = token + 5;
1141 /* Can't specify an empty name */
1142 if (!strlen(name))
1143 return -EINVAL;
1144 /* Must match [\w.-]+ */
1145 for (i = 0; i < strlen(name); i++) {
1146 char c = name[i];
1147 if (isalnum(c))
1148 continue;
1149 if ((c == '.') || (c == '-') || (c == '_'))
1150 continue;
1151 return -EINVAL;
1152 }
1153 /* Specifying two names is forbidden */
1154 if (opts->name)
1155 return -EINVAL;
1156 opts->name = kstrndup(name,
1157 MAX_CGROUP_ROOT_NAMELEN - 1,
1158 GFP_KERNEL);
1159 if (!opts->name)
1160 return -ENOMEM;
1161
1162 continue;
1163 }
1164
1165 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1166 struct cgroup_subsys *ss = subsys[i];
1167 if (ss == NULL)
1168 continue;
1169 if (strcmp(token, ss->name))
1170 continue;
1171 if (ss->disabled)
1172 continue;
1173
1174 /* Mutually exclusive option 'all' + subsystem name */
1175 if (all_ss)
1176 return -EINVAL;
1177 set_bit(i, &opts->subsys_bits);
1178 one_ss = true;
1179
1180 break;
1181 }
1182 if (i == CGROUP_SUBSYS_COUNT)
1183 return -ENOENT;
1184 }
1185
1186 /*
1187 * If the 'all' option was specified select all the subsystems,
1188 * otherwise 'all, 'none' and a subsystem name options were not
1189 * specified, let's default to 'all'
1190 */
1191 if (all_ss || (!all_ss && !one_ss && !opts->none)) {
1192 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1193 struct cgroup_subsys *ss = subsys[i];
1194 if (ss == NULL)
1195 continue;
1196 if (ss->disabled)
1197 continue;
1198 set_bit(i, &opts->subsys_bits);
1199 }
1200 }
1201
1202 /* Consistency checks */
1203
1204 /*
1205 * Option noprefix was introduced just for backward compatibility
1206 * with the old cpuset, so we allow noprefix only if mounting just
1207 * the cpuset subsystem.
1208 */
1209 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1210 (opts->subsys_bits & mask))
1211 return -EINVAL;
1212
1213
1214 /* Can't specify "none" and some subsystems */
1215 if (opts->subsys_bits && opts->none)
1216 return -EINVAL;
1217
1218 /*
1219 * We either have to specify by name or by subsystems. (So all
1220 * empty hierarchies must have a name).
1221 */
1222 if (!opts->subsys_bits && !opts->name)
1223 return -EINVAL;
1224
1225 /*
1226 * Grab references on all the modules we'll need, so the subsystems
1227 * don't dance around before rebind_subsystems attaches them. This may
1228 * take duplicate reference counts on a subsystem that's already used,
1229 * but rebind_subsystems handles this case.
1230 */
1231 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1232 unsigned long bit = 1UL << i;
1233
1234 if (!(bit & opts->subsys_bits))
1235 continue;
1236 if (!try_module_get(subsys[i]->module)) {
1237 module_pin_failed = true;
1238 break;
1239 }
1240 }
1241 if (module_pin_failed) {
1242 /*
1243 * oops, one of the modules was going away. this means that we
1244 * raced with a module_delete call, and to the user this is
1245 * essentially a "subsystem doesn't exist" case.
1246 */
1247 for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
1248 /* drop refcounts only on the ones we took */
1249 unsigned long bit = 1UL << i;
1250
1251 if (!(bit & opts->subsys_bits))
1252 continue;
1253 module_put(subsys[i]->module);
1254 }
1255 return -ENOENT;
1256 }
1257
1258 return 0;
1259 }
1260
drop_parsed_module_refcounts(unsigned long subsys_bits)1261 static void drop_parsed_module_refcounts(unsigned long subsys_bits)
1262 {
1263 int i;
1264 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1265 unsigned long bit = 1UL << i;
1266
1267 if (!(bit & subsys_bits))
1268 continue;
1269 module_put(subsys[i]->module);
1270 }
1271 }
1272
cgroup_remount(struct super_block * sb,int * flags,char * data)1273 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1274 {
1275 int ret = 0;
1276 struct cgroupfs_root *root = sb->s_fs_info;
1277 struct cgroup *cgrp = &root->top_cgroup;
1278 struct cgroup_sb_opts opts;
1279
1280 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1281 mutex_lock(&cgroup_mutex);
1282
1283 /* See what subsystems are wanted */
1284 ret = parse_cgroupfs_options(data, &opts);
1285 if (ret)
1286 goto out_unlock;
1287
1288 /* Don't allow flags or name to change at remount */
1289 if (opts.flags != root->flags ||
1290 (opts.name && strcmp(opts.name, root->name))) {
1291 ret = -EINVAL;
1292 drop_parsed_module_refcounts(opts.subsys_bits);
1293 goto out_unlock;
1294 }
1295
1296 ret = rebind_subsystems(root, opts.subsys_bits);
1297 if (ret) {
1298 drop_parsed_module_refcounts(opts.subsys_bits);
1299 goto out_unlock;
1300 }
1301
1302 /* (re)populate subsystem files */
1303 cgroup_populate_dir(cgrp);
1304
1305 if (opts.release_agent)
1306 strcpy(root->release_agent_path, opts.release_agent);
1307 out_unlock:
1308 kfree(opts.release_agent);
1309 kfree(opts.name);
1310 mutex_unlock(&cgroup_mutex);
1311 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1312 return ret;
1313 }
1314
1315 static const struct super_operations cgroup_ops = {
1316 .statfs = simple_statfs,
1317 .drop_inode = generic_delete_inode,
1318 .show_options = cgroup_show_options,
1319 .remount_fs = cgroup_remount,
1320 };
1321
init_cgroup_housekeeping(struct cgroup * cgrp)1322 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1323 {
1324 INIT_LIST_HEAD(&cgrp->sibling);
1325 INIT_LIST_HEAD(&cgrp->children);
1326 INIT_LIST_HEAD(&cgrp->css_sets);
1327 INIT_LIST_HEAD(&cgrp->release_list);
1328 INIT_LIST_HEAD(&cgrp->pidlists);
1329 mutex_init(&cgrp->pidlist_mutex);
1330 INIT_LIST_HEAD(&cgrp->event_list);
1331 spin_lock_init(&cgrp->event_list_lock);
1332 }
1333
init_cgroup_root(struct cgroupfs_root * root)1334 static void init_cgroup_root(struct cgroupfs_root *root)
1335 {
1336 struct cgroup *cgrp = &root->top_cgroup;
1337 INIT_LIST_HEAD(&root->subsys_list);
1338 INIT_LIST_HEAD(&root->root_list);
1339 root->number_of_cgroups = 1;
1340 cgrp->root = root;
1341 cgrp->top_cgroup = cgrp;
1342 init_cgroup_housekeeping(cgrp);
1343 }
1344
init_root_id(struct cgroupfs_root * root)1345 static bool init_root_id(struct cgroupfs_root *root)
1346 {
1347 int ret = 0;
1348
1349 do {
1350 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1351 return false;
1352 spin_lock(&hierarchy_id_lock);
1353 /* Try to allocate the next unused ID */
1354 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1355 &root->hierarchy_id);
1356 if (ret == -ENOSPC)
1357 /* Try again starting from 0 */
1358 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1359 if (!ret) {
1360 next_hierarchy_id = root->hierarchy_id + 1;
1361 } else if (ret != -EAGAIN) {
1362 /* Can only get here if the 31-bit IDR is full ... */
1363 BUG_ON(ret);
1364 }
1365 spin_unlock(&hierarchy_id_lock);
1366 } while (ret);
1367 return true;
1368 }
1369
cgroup_test_super(struct super_block * sb,void * data)1370 static int cgroup_test_super(struct super_block *sb, void *data)
1371 {
1372 struct cgroup_sb_opts *opts = data;
1373 struct cgroupfs_root *root = sb->s_fs_info;
1374
1375 /* If we asked for a name then it must match */
1376 if (opts->name && strcmp(opts->name, root->name))
1377 return 0;
1378
1379 /*
1380 * If we asked for subsystems (or explicitly for no
1381 * subsystems) then they must match
1382 */
1383 if ((opts->subsys_bits || opts->none)
1384 && (opts->subsys_bits != root->subsys_bits))
1385 return 0;
1386
1387 return 1;
1388 }
1389
cgroup_root_from_opts(struct cgroup_sb_opts * opts)1390 static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1391 {
1392 struct cgroupfs_root *root;
1393
1394 if (!opts->subsys_bits && !opts->none)
1395 return NULL;
1396
1397 root = kzalloc(sizeof(*root), GFP_KERNEL);
1398 if (!root)
1399 return ERR_PTR(-ENOMEM);
1400
1401 if (!init_root_id(root)) {
1402 kfree(root);
1403 return ERR_PTR(-ENOMEM);
1404 }
1405 init_cgroup_root(root);
1406
1407 root->subsys_bits = opts->subsys_bits;
1408 root->flags = opts->flags;
1409 if (opts->release_agent)
1410 strcpy(root->release_agent_path, opts->release_agent);
1411 if (opts->name)
1412 strcpy(root->name, opts->name);
1413 if (opts->clone_children)
1414 set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
1415 return root;
1416 }
1417
cgroup_drop_root(struct cgroupfs_root * root)1418 static void cgroup_drop_root(struct cgroupfs_root *root)
1419 {
1420 if (!root)
1421 return;
1422
1423 BUG_ON(!root->hierarchy_id);
1424 spin_lock(&hierarchy_id_lock);
1425 ida_remove(&hierarchy_ida, root->hierarchy_id);
1426 spin_unlock(&hierarchy_id_lock);
1427 kfree(root);
1428 }
1429
cgroup_set_super(struct super_block * sb,void * data)1430 static int cgroup_set_super(struct super_block *sb, void *data)
1431 {
1432 int ret;
1433 struct cgroup_sb_opts *opts = data;
1434
1435 /* If we don't have a new root, we can't set up a new sb */
1436 if (!opts->new_root)
1437 return -EINVAL;
1438
1439 BUG_ON(!opts->subsys_bits && !opts->none);
1440
1441 ret = set_anon_super(sb, NULL);
1442 if (ret)
1443 return ret;
1444
1445 sb->s_fs_info = opts->new_root;
1446 opts->new_root->sb = sb;
1447
1448 sb->s_blocksize = PAGE_CACHE_SIZE;
1449 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1450 sb->s_magic = CGROUP_SUPER_MAGIC;
1451 sb->s_op = &cgroup_ops;
1452
1453 return 0;
1454 }
1455
cgroup_get_rootdir(struct super_block * sb)1456 static int cgroup_get_rootdir(struct super_block *sb)
1457 {
1458 static const struct dentry_operations cgroup_dops = {
1459 .d_iput = cgroup_diput,
1460 .d_delete = cgroup_delete,
1461 };
1462
1463 struct inode *inode =
1464 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1465 struct dentry *dentry;
1466
1467 if (!inode)
1468 return -ENOMEM;
1469
1470 inode->i_fop = &simple_dir_operations;
1471 inode->i_op = &cgroup_dir_inode_operations;
1472 /* directories start off with i_nlink == 2 (for "." entry) */
1473 inc_nlink(inode);
1474 dentry = d_alloc_root(inode);
1475 if (!dentry) {
1476 iput(inode);
1477 return -ENOMEM;
1478 }
1479 sb->s_root = dentry;
1480 /* for everything else we want ->d_op set */
1481 sb->s_d_op = &cgroup_dops;
1482 return 0;
1483 }
1484
cgroup_mount(struct file_system_type * fs_type,int flags,const char * unused_dev_name,void * data)1485 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1486 int flags, const char *unused_dev_name,
1487 void *data)
1488 {
1489 struct cgroup_sb_opts opts;
1490 struct cgroupfs_root *root;
1491 int ret = 0;
1492 struct super_block *sb;
1493 struct cgroupfs_root *new_root;
1494
1495 /* First find the desired set of subsystems */
1496 mutex_lock(&cgroup_mutex);
1497 ret = parse_cgroupfs_options(data, &opts);
1498 mutex_unlock(&cgroup_mutex);
1499 if (ret)
1500 goto out_err;
1501
1502 /*
1503 * Allocate a new cgroup root. We may not need it if we're
1504 * reusing an existing hierarchy.
1505 */
1506 new_root = cgroup_root_from_opts(&opts);
1507 if (IS_ERR(new_root)) {
1508 ret = PTR_ERR(new_root);
1509 goto drop_modules;
1510 }
1511 opts.new_root = new_root;
1512
1513 /* Locate an existing or new sb for this hierarchy */
1514 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
1515 if (IS_ERR(sb)) {
1516 ret = PTR_ERR(sb);
1517 cgroup_drop_root(opts.new_root);
1518 goto drop_modules;
1519 }
1520
1521 root = sb->s_fs_info;
1522 BUG_ON(!root);
1523 if (root == opts.new_root) {
1524 /* We used the new root structure, so this is a new hierarchy */
1525 struct list_head tmp_cg_links;
1526 struct cgroup *root_cgrp = &root->top_cgroup;
1527 struct inode *inode;
1528 struct cgroupfs_root *existing_root;
1529 int i;
1530
1531 BUG_ON(sb->s_root != NULL);
1532
1533 ret = cgroup_get_rootdir(sb);
1534 if (ret)
1535 goto drop_new_super;
1536 inode = sb->s_root->d_inode;
1537
1538 mutex_lock(&inode->i_mutex);
1539 mutex_lock(&cgroup_mutex);
1540
1541 if (strlen(root->name)) {
1542 /* Check for name clashes with existing mounts */
1543 for_each_active_root(existing_root) {
1544 if (!strcmp(existing_root->name, root->name)) {
1545 ret = -EBUSY;
1546 mutex_unlock(&cgroup_mutex);
1547 mutex_unlock(&inode->i_mutex);
1548 goto drop_new_super;
1549 }
1550 }
1551 }
1552
1553 /*
1554 * We're accessing css_set_count without locking
1555 * css_set_lock here, but that's OK - it can only be
1556 * increased by someone holding cgroup_lock, and
1557 * that's us. The worst that can happen is that we
1558 * have some link structures left over
1559 */
1560 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1561 if (ret) {
1562 mutex_unlock(&cgroup_mutex);
1563 mutex_unlock(&inode->i_mutex);
1564 goto drop_new_super;
1565 }
1566
1567 ret = rebind_subsystems(root, root->subsys_bits);
1568 if (ret == -EBUSY) {
1569 mutex_unlock(&cgroup_mutex);
1570 mutex_unlock(&inode->i_mutex);
1571 free_cg_links(&tmp_cg_links);
1572 goto drop_new_super;
1573 }
1574 /*
1575 * There must be no failure case after here, since rebinding
1576 * takes care of subsystems' refcounts, which are explicitly
1577 * dropped in the failure exit path.
1578 */
1579
1580 /* EBUSY should be the only error here */
1581 BUG_ON(ret);
1582
1583 list_add(&root->root_list, &roots);
1584 root_count++;
1585
1586 sb->s_root->d_fsdata = root_cgrp;
1587 root->top_cgroup.dentry = sb->s_root;
1588
1589 /* Link the top cgroup in this hierarchy into all
1590 * the css_set objects */
1591 write_lock(&css_set_lock);
1592 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1593 struct hlist_head *hhead = &css_set_table[i];
1594 struct hlist_node *node;
1595 struct css_set *cg;
1596
1597 hlist_for_each_entry(cg, node, hhead, hlist)
1598 link_css_set(&tmp_cg_links, cg, root_cgrp);
1599 }
1600 write_unlock(&css_set_lock);
1601
1602 free_cg_links(&tmp_cg_links);
1603
1604 BUG_ON(!list_empty(&root_cgrp->sibling));
1605 BUG_ON(!list_empty(&root_cgrp->children));
1606 BUG_ON(root->number_of_cgroups != 1);
1607
1608 cgroup_populate_dir(root_cgrp);
1609 mutex_unlock(&cgroup_mutex);
1610 mutex_unlock(&inode->i_mutex);
1611 } else {
1612 /*
1613 * We re-used an existing hierarchy - the new root (if
1614 * any) is not needed
1615 */
1616 cgroup_drop_root(opts.new_root);
1617 /* no subsys rebinding, so refcounts don't change */
1618 drop_parsed_module_refcounts(opts.subsys_bits);
1619 }
1620
1621 kfree(opts.release_agent);
1622 kfree(opts.name);
1623 return dget(sb->s_root);
1624
1625 drop_new_super:
1626 deactivate_locked_super(sb);
1627 drop_modules:
1628 drop_parsed_module_refcounts(opts.subsys_bits);
1629 out_err:
1630 kfree(opts.release_agent);
1631 kfree(opts.name);
1632 return ERR_PTR(ret);
1633 }
1634
cgroup_kill_sb(struct super_block * sb)1635 static void cgroup_kill_sb(struct super_block *sb) {
1636 struct cgroupfs_root *root = sb->s_fs_info;
1637 struct cgroup *cgrp = &root->top_cgroup;
1638 int ret;
1639 struct cg_cgroup_link *link;
1640 struct cg_cgroup_link *saved_link;
1641
1642 BUG_ON(!root);
1643
1644 BUG_ON(root->number_of_cgroups != 1);
1645 BUG_ON(!list_empty(&cgrp->children));
1646 BUG_ON(!list_empty(&cgrp->sibling));
1647
1648 mutex_lock(&cgroup_mutex);
1649
1650 /* Rebind all subsystems back to the default hierarchy */
1651 ret = rebind_subsystems(root, 0);
1652 /* Shouldn't be able to fail ... */
1653 BUG_ON(ret);
1654
1655 /*
1656 * Release all the links from css_sets to this hierarchy's
1657 * root cgroup
1658 */
1659 write_lock(&css_set_lock);
1660
1661 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1662 cgrp_link_list) {
1663 list_del(&link->cg_link_list);
1664 list_del(&link->cgrp_link_list);
1665 kfree(link);
1666 }
1667 write_unlock(&css_set_lock);
1668
1669 if (!list_empty(&root->root_list)) {
1670 list_del(&root->root_list);
1671 root_count--;
1672 }
1673
1674 mutex_unlock(&cgroup_mutex);
1675
1676 kill_litter_super(sb);
1677 cgroup_drop_root(root);
1678 }
1679
1680 static struct file_system_type cgroup_fs_type = {
1681 .name = "cgroup",
1682 .mount = cgroup_mount,
1683 .kill_sb = cgroup_kill_sb,
1684 };
1685
1686 static struct kobject *cgroup_kobj;
1687
__d_cgrp(struct dentry * dentry)1688 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1689 {
1690 return dentry->d_fsdata;
1691 }
1692
__d_cft(struct dentry * dentry)1693 static inline struct cftype *__d_cft(struct dentry *dentry)
1694 {
1695 return dentry->d_fsdata;
1696 }
1697
1698 /**
1699 * cgroup_path - generate the path of a cgroup
1700 * @cgrp: the cgroup in question
1701 * @buf: the buffer to write the path into
1702 * @buflen: the length of the buffer
1703 *
1704 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1705 * reference. Writes path of cgroup into buf. Returns 0 on success,
1706 * -errno on error.
1707 */
cgroup_path(const struct cgroup * cgrp,char * buf,int buflen)1708 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1709 {
1710 char *start;
1711 struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
1712 rcu_read_lock_held() ||
1713 cgroup_lock_is_held());
1714
1715 if (!dentry || cgrp == dummytop) {
1716 /*
1717 * Inactive subsystems have no dentry for their root
1718 * cgroup
1719 */
1720 strcpy(buf, "/");
1721 return 0;
1722 }
1723
1724 start = buf + buflen;
1725
1726 *--start = '\0';
1727 for (;;) {
1728 int len = dentry->d_name.len;
1729
1730 if ((start -= len) < buf)
1731 return -ENAMETOOLONG;
1732 memcpy(start, dentry->d_name.name, len);
1733 cgrp = cgrp->parent;
1734 if (!cgrp)
1735 break;
1736
1737 dentry = rcu_dereference_check(cgrp->dentry,
1738 rcu_read_lock_held() ||
1739 cgroup_lock_is_held());
1740 if (!cgrp->parent)
1741 continue;
1742 if (--start < buf)
1743 return -ENAMETOOLONG;
1744 *start = '/';
1745 }
1746 memmove(buf, start, buf + buflen - start);
1747 return 0;
1748 }
1749 EXPORT_SYMBOL_GPL(cgroup_path);
1750
1751 /**
1752 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1753 * @cgrp: the cgroup the task is attaching to
1754 * @tsk: the task to be attached
1755 *
1756 * Call holding cgroup_mutex. May take task_lock of
1757 * the task 'tsk' during call.
1758 */
cgroup_attach_task(struct cgroup * cgrp,struct task_struct * tsk)1759 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1760 {
1761 int retval = 0;
1762 struct cgroup_subsys *ss, *failed_ss = NULL;
1763 struct cgroup *oldcgrp;
1764 struct css_set *cg;
1765 struct css_set *newcg;
1766 struct cgroupfs_root *root = cgrp->root;
1767
1768 /* Nothing to do if the task is already in that cgroup */
1769 oldcgrp = task_cgroup_from_root(tsk, root);
1770 if (cgrp == oldcgrp)
1771 return 0;
1772
1773 for_each_subsys(root, ss) {
1774 if (ss->can_attach) {
1775 retval = ss->can_attach(ss, cgrp, tsk, false);
1776 if (retval) {
1777 /*
1778 * Remember on which subsystem the can_attach()
1779 * failed, so that we only call cancel_attach()
1780 * against the subsystems whose can_attach()
1781 * succeeded. (See below)
1782 */
1783 failed_ss = ss;
1784 goto out;
1785 }
1786 }
1787 }
1788
1789 task_lock(tsk);
1790 cg = tsk->cgroups;
1791 get_css_set(cg);
1792 task_unlock(tsk);
1793 /*
1794 * Locate or allocate a new css_set for this task,
1795 * based on its final set of cgroups
1796 */
1797 newcg = find_css_set(cg, cgrp);
1798 put_css_set(cg);
1799 if (!newcg) {
1800 retval = -ENOMEM;
1801 goto out;
1802 }
1803
1804 task_lock(tsk);
1805 if (tsk->flags & PF_EXITING) {
1806 task_unlock(tsk);
1807 put_css_set(newcg);
1808 retval = -ESRCH;
1809 goto out;
1810 }
1811 rcu_assign_pointer(tsk->cgroups, newcg);
1812 task_unlock(tsk);
1813
1814 /* Update the css_set linked lists if we're using them */
1815 write_lock(&css_set_lock);
1816 if (!list_empty(&tsk->cg_list))
1817 list_move(&tsk->cg_list, &newcg->tasks);
1818 write_unlock(&css_set_lock);
1819
1820 for_each_subsys(root, ss) {
1821 if (ss->attach)
1822 ss->attach(ss, cgrp, oldcgrp, tsk, false);
1823 }
1824 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1825 synchronize_rcu();
1826 put_css_set(cg);
1827
1828 /*
1829 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1830 * is no longer empty.
1831 */
1832 cgroup_wakeup_rmdir_waiter(cgrp);
1833 out:
1834 if (retval) {
1835 for_each_subsys(root, ss) {
1836 if (ss == failed_ss)
1837 /*
1838 * This subsystem was the one that failed the
1839 * can_attach() check earlier, so we don't need
1840 * to call cancel_attach() against it or any
1841 * remaining subsystems.
1842 */
1843 break;
1844 if (ss->cancel_attach)
1845 ss->cancel_attach(ss, cgrp, tsk, false);
1846 }
1847 }
1848 return retval;
1849 }
1850
1851 /**
1852 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1853 * @from: attach to all cgroups of a given task
1854 * @tsk: the task to be attached
1855 */
cgroup_attach_task_all(struct task_struct * from,struct task_struct * tsk)1856 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
1857 {
1858 struct cgroupfs_root *root;
1859 int retval = 0;
1860
1861 cgroup_lock();
1862 for_each_active_root(root) {
1863 struct cgroup *from_cg = task_cgroup_from_root(from, root);
1864
1865 retval = cgroup_attach_task(from_cg, tsk);
1866 if (retval)
1867 break;
1868 }
1869 cgroup_unlock();
1870
1871 return retval;
1872 }
1873 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
1874
1875 /*
1876 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
1877 * held. May take task_lock of task
1878 */
attach_task_by_pid(struct cgroup * cgrp,u64 pid)1879 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
1880 {
1881 struct task_struct *tsk;
1882 const struct cred *cred = current_cred(), *tcred;
1883 int ret;
1884
1885 if (pid) {
1886 rcu_read_lock();
1887 tsk = find_task_by_vpid(pid);
1888 if (!tsk || tsk->flags & PF_EXITING) {
1889 rcu_read_unlock();
1890 return -ESRCH;
1891 }
1892
1893 tcred = __task_cred(tsk);
1894 if (cred->euid &&
1895 cred->euid != tcred->uid &&
1896 cred->euid != tcred->suid) {
1897 rcu_read_unlock();
1898 return -EACCES;
1899 }
1900 get_task_struct(tsk);
1901 rcu_read_unlock();
1902 } else {
1903 tsk = current;
1904 get_task_struct(tsk);
1905 }
1906
1907 ret = cgroup_attach_task(cgrp, tsk);
1908 put_task_struct(tsk);
1909 return ret;
1910 }
1911
cgroup_tasks_write(struct cgroup * cgrp,struct cftype * cft,u64 pid)1912 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
1913 {
1914 int ret;
1915 if (!cgroup_lock_live_group(cgrp))
1916 return -ENODEV;
1917 ret = attach_task_by_pid(cgrp, pid);
1918 cgroup_unlock();
1919 return ret;
1920 }
1921
1922 /**
1923 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
1924 * @cgrp: the cgroup to be checked for liveness
1925 *
1926 * On success, returns true; the lock should be later released with
1927 * cgroup_unlock(). On failure returns false with no lock held.
1928 */
cgroup_lock_live_group(struct cgroup * cgrp)1929 bool cgroup_lock_live_group(struct cgroup *cgrp)
1930 {
1931 mutex_lock(&cgroup_mutex);
1932 if (cgroup_is_removed(cgrp)) {
1933 mutex_unlock(&cgroup_mutex);
1934 return false;
1935 }
1936 return true;
1937 }
1938 EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
1939
cgroup_release_agent_write(struct cgroup * cgrp,struct cftype * cft,const char * buffer)1940 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
1941 const char *buffer)
1942 {
1943 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
1944 if (strlen(buffer) >= PATH_MAX)
1945 return -EINVAL;
1946 if (!cgroup_lock_live_group(cgrp))
1947 return -ENODEV;
1948 strcpy(cgrp->root->release_agent_path, buffer);
1949 cgroup_unlock();
1950 return 0;
1951 }
1952
cgroup_release_agent_show(struct cgroup * cgrp,struct cftype * cft,struct seq_file * seq)1953 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
1954 struct seq_file *seq)
1955 {
1956 if (!cgroup_lock_live_group(cgrp))
1957 return -ENODEV;
1958 seq_puts(seq, cgrp->root->release_agent_path);
1959 seq_putc(seq, '\n');
1960 cgroup_unlock();
1961 return 0;
1962 }
1963
1964 /* A buffer size big enough for numbers or short strings */
1965 #define CGROUP_LOCAL_BUFFER_SIZE 64
1966
cgroup_write_X64(struct cgroup * cgrp,struct cftype * cft,struct file * file,const char __user * userbuf,size_t nbytes,loff_t * unused_ppos)1967 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
1968 struct file *file,
1969 const char __user *userbuf,
1970 size_t nbytes, loff_t *unused_ppos)
1971 {
1972 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
1973 int retval = 0;
1974 char *end;
1975
1976 if (!nbytes)
1977 return -EINVAL;
1978 if (nbytes >= sizeof(buffer))
1979 return -E2BIG;
1980 if (copy_from_user(buffer, userbuf, nbytes))
1981 return -EFAULT;
1982
1983 buffer[nbytes] = 0; /* nul-terminate */
1984 if (cft->write_u64) {
1985 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
1986 if (*end)
1987 return -EINVAL;
1988 retval = cft->write_u64(cgrp, cft, val);
1989 } else {
1990 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
1991 if (*end)
1992 return -EINVAL;
1993 retval = cft->write_s64(cgrp, cft, val);
1994 }
1995 if (!retval)
1996 retval = nbytes;
1997 return retval;
1998 }
1999
cgroup_write_string(struct cgroup * cgrp,struct cftype * cft,struct file * file,const char __user * userbuf,size_t nbytes,loff_t * unused_ppos)2000 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2001 struct file *file,
2002 const char __user *userbuf,
2003 size_t nbytes, loff_t *unused_ppos)
2004 {
2005 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2006 int retval = 0;
2007 size_t max_bytes = cft->max_write_len;
2008 char *buffer = local_buffer;
2009
2010 if (!max_bytes)
2011 max_bytes = sizeof(local_buffer) - 1;
2012 if (nbytes >= max_bytes)
2013 return -E2BIG;
2014 /* Allocate a dynamic buffer if we need one */
2015 if (nbytes >= sizeof(local_buffer)) {
2016 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2017 if (buffer == NULL)
2018 return -ENOMEM;
2019 }
2020 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2021 retval = -EFAULT;
2022 goto out;
2023 }
2024
2025 buffer[nbytes] = 0; /* nul-terminate */
2026 retval = cft->write_string(cgrp, cft, strstrip(buffer));
2027 if (!retval)
2028 retval = nbytes;
2029 out:
2030 if (buffer != local_buffer)
2031 kfree(buffer);
2032 return retval;
2033 }
2034
cgroup_file_write(struct file * file,const char __user * buf,size_t nbytes,loff_t * ppos)2035 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2036 size_t nbytes, loff_t *ppos)
2037 {
2038 struct cftype *cft = __d_cft(file->f_dentry);
2039 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2040
2041 if (cgroup_is_removed(cgrp))
2042 return -ENODEV;
2043 if (cft->write)
2044 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2045 if (cft->write_u64 || cft->write_s64)
2046 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2047 if (cft->write_string)
2048 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2049 if (cft->trigger) {
2050 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2051 return ret ? ret : nbytes;
2052 }
2053 return -EINVAL;
2054 }
2055
cgroup_read_u64(struct cgroup * cgrp,struct cftype * cft,struct file * file,char __user * buf,size_t nbytes,loff_t * ppos)2056 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2057 struct file *file,
2058 char __user *buf, size_t nbytes,
2059 loff_t *ppos)
2060 {
2061 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2062 u64 val = cft->read_u64(cgrp, cft);
2063 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2064
2065 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2066 }
2067
cgroup_read_s64(struct cgroup * cgrp,struct cftype * cft,struct file * file,char __user * buf,size_t nbytes,loff_t * ppos)2068 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2069 struct file *file,
2070 char __user *buf, size_t nbytes,
2071 loff_t *ppos)
2072 {
2073 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2074 s64 val = cft->read_s64(cgrp, cft);
2075 int len = sprintf(tmp, "%lld\n", (long long) val);
2076
2077 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2078 }
2079
cgroup_file_read(struct file * file,char __user * buf,size_t nbytes,loff_t * ppos)2080 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2081 size_t nbytes, loff_t *ppos)
2082 {
2083 struct cftype *cft = __d_cft(file->f_dentry);
2084 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2085
2086 if (cgroup_is_removed(cgrp))
2087 return -ENODEV;
2088
2089 if (cft->read)
2090 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2091 if (cft->read_u64)
2092 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2093 if (cft->read_s64)
2094 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2095 return -EINVAL;
2096 }
2097
2098 /*
2099 * seqfile ops/methods for returning structured data. Currently just
2100 * supports string->u64 maps, but can be extended in future.
2101 */
2102
2103 struct cgroup_seqfile_state {
2104 struct cftype *cft;
2105 struct cgroup *cgroup;
2106 };
2107
cgroup_map_add(struct cgroup_map_cb * cb,const char * key,u64 value)2108 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2109 {
2110 struct seq_file *sf = cb->state;
2111 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2112 }
2113
cgroup_seqfile_show(struct seq_file * m,void * arg)2114 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2115 {
2116 struct cgroup_seqfile_state *state = m->private;
2117 struct cftype *cft = state->cft;
2118 if (cft->read_map) {
2119 struct cgroup_map_cb cb = {
2120 .fill = cgroup_map_add,
2121 .state = m,
2122 };
2123 return cft->read_map(state->cgroup, cft, &cb);
2124 }
2125 return cft->read_seq_string(state->cgroup, cft, m);
2126 }
2127
cgroup_seqfile_release(struct inode * inode,struct file * file)2128 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2129 {
2130 struct seq_file *seq = file->private_data;
2131 kfree(seq->private);
2132 return single_release(inode, file);
2133 }
2134
2135 static const struct file_operations cgroup_seqfile_operations = {
2136 .read = seq_read,
2137 .write = cgroup_file_write,
2138 .llseek = seq_lseek,
2139 .release = cgroup_seqfile_release,
2140 };
2141
cgroup_file_open(struct inode * inode,struct file * file)2142 static int cgroup_file_open(struct inode *inode, struct file *file)
2143 {
2144 int err;
2145 struct cftype *cft;
2146
2147 err = generic_file_open(inode, file);
2148 if (err)
2149 return err;
2150 cft = __d_cft(file->f_dentry);
2151
2152 if (cft->read_map || cft->read_seq_string) {
2153 struct cgroup_seqfile_state *state =
2154 kzalloc(sizeof(*state), GFP_USER);
2155 if (!state)
2156 return -ENOMEM;
2157 state->cft = cft;
2158 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2159 file->f_op = &cgroup_seqfile_operations;
2160 err = single_open(file, cgroup_seqfile_show, state);
2161 if (err < 0)
2162 kfree(state);
2163 } else if (cft->open)
2164 err = cft->open(inode, file);
2165 else
2166 err = 0;
2167
2168 return err;
2169 }
2170
cgroup_file_release(struct inode * inode,struct file * file)2171 static int cgroup_file_release(struct inode *inode, struct file *file)
2172 {
2173 struct cftype *cft = __d_cft(file->f_dentry);
2174 if (cft->release)
2175 return cft->release(inode, file);
2176 return 0;
2177 }
2178
2179 /*
2180 * cgroup_rename - Only allow simple rename of directories in place.
2181 */
cgroup_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)2182 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2183 struct inode *new_dir, struct dentry *new_dentry)
2184 {
2185 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2186 return -ENOTDIR;
2187 if (new_dentry->d_inode)
2188 return -EEXIST;
2189 if (old_dir != new_dir)
2190 return -EIO;
2191 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2192 }
2193
2194 static const struct file_operations cgroup_file_operations = {
2195 .read = cgroup_file_read,
2196 .write = cgroup_file_write,
2197 .llseek = generic_file_llseek,
2198 .open = cgroup_file_open,
2199 .release = cgroup_file_release,
2200 };
2201
2202 static const struct inode_operations cgroup_dir_inode_operations = {
2203 .lookup = cgroup_lookup,
2204 .mkdir = cgroup_mkdir,
2205 .rmdir = cgroup_rmdir,
2206 .rename = cgroup_rename,
2207 };
2208
cgroup_lookup(struct inode * dir,struct dentry * dentry,struct nameidata * nd)2209 static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
2210 {
2211 if (dentry->d_name.len > NAME_MAX)
2212 return ERR_PTR(-ENAMETOOLONG);
2213 d_add(dentry, NULL);
2214 return NULL;
2215 }
2216
2217 /*
2218 * Check if a file is a control file
2219 */
__file_cft(struct file * file)2220 static inline struct cftype *__file_cft(struct file *file)
2221 {
2222 if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
2223 return ERR_PTR(-EINVAL);
2224 return __d_cft(file->f_dentry);
2225 }
2226
cgroup_create_file(struct dentry * dentry,mode_t mode,struct super_block * sb)2227 static int cgroup_create_file(struct dentry *dentry, mode_t mode,
2228 struct super_block *sb)
2229 {
2230 struct inode *inode;
2231
2232 if (!dentry)
2233 return -ENOENT;
2234 if (dentry->d_inode)
2235 return -EEXIST;
2236
2237 inode = cgroup_new_inode(mode, sb);
2238 if (!inode)
2239 return -ENOMEM;
2240
2241 if (S_ISDIR(mode)) {
2242 inode->i_op = &cgroup_dir_inode_operations;
2243 inode->i_fop = &simple_dir_operations;
2244
2245 /* start off with i_nlink == 2 (for "." entry) */
2246 inc_nlink(inode);
2247
2248 /* start with the directory inode held, so that we can
2249 * populate it without racing with another mkdir */
2250 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2251 } else if (S_ISREG(mode)) {
2252 inode->i_size = 0;
2253 inode->i_fop = &cgroup_file_operations;
2254 }
2255 d_instantiate(dentry, inode);
2256 dget(dentry); /* Extra count - pin the dentry in core */
2257 return 0;
2258 }
2259
2260 /*
2261 * cgroup_create_dir - create a directory for an object.
2262 * @cgrp: the cgroup we create the directory for. It must have a valid
2263 * ->parent field. And we are going to fill its ->dentry field.
2264 * @dentry: dentry of the new cgroup
2265 * @mode: mode to set on new directory.
2266 */
cgroup_create_dir(struct cgroup * cgrp,struct dentry * dentry,mode_t mode)2267 static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
2268 mode_t mode)
2269 {
2270 struct dentry *parent;
2271 int error = 0;
2272
2273 parent = cgrp->parent->dentry;
2274 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
2275 if (!error) {
2276 dentry->d_fsdata = cgrp;
2277 inc_nlink(parent->d_inode);
2278 rcu_assign_pointer(cgrp->dentry, dentry);
2279 dget(dentry);
2280 }
2281 dput(dentry);
2282
2283 return error;
2284 }
2285
2286 /**
2287 * cgroup_file_mode - deduce file mode of a control file
2288 * @cft: the control file in question
2289 *
2290 * returns cft->mode if ->mode is not 0
2291 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2292 * returns S_IRUGO if it has only a read handler
2293 * returns S_IWUSR if it has only a write hander
2294 */
cgroup_file_mode(const struct cftype * cft)2295 static mode_t cgroup_file_mode(const struct cftype *cft)
2296 {
2297 mode_t mode = 0;
2298
2299 if (cft->mode)
2300 return cft->mode;
2301
2302 if (cft->read || cft->read_u64 || cft->read_s64 ||
2303 cft->read_map || cft->read_seq_string)
2304 mode |= S_IRUGO;
2305
2306 if (cft->write || cft->write_u64 || cft->write_s64 ||
2307 cft->write_string || cft->trigger)
2308 mode |= S_IWUSR;
2309
2310 return mode;
2311 }
2312
cgroup_add_file(struct cgroup * cgrp,struct cgroup_subsys * subsys,const struct cftype * cft)2313 int cgroup_add_file(struct cgroup *cgrp,
2314 struct cgroup_subsys *subsys,
2315 const struct cftype *cft)
2316 {
2317 struct dentry *dir = cgrp->dentry;
2318 struct dentry *dentry;
2319 int error;
2320 mode_t mode;
2321
2322 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2323 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2324 strcpy(name, subsys->name);
2325 strcat(name, ".");
2326 }
2327 strcat(name, cft->name);
2328 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2329 dentry = lookup_one_len(name, dir, strlen(name));
2330 if (!IS_ERR(dentry)) {
2331 mode = cgroup_file_mode(cft);
2332 error = cgroup_create_file(dentry, mode | S_IFREG,
2333 cgrp->root->sb);
2334 if (!error)
2335 dentry->d_fsdata = (void *)cft;
2336 dput(dentry);
2337 } else
2338 error = PTR_ERR(dentry);
2339 return error;
2340 }
2341 EXPORT_SYMBOL_GPL(cgroup_add_file);
2342
cgroup_add_files(struct cgroup * cgrp,struct cgroup_subsys * subsys,const struct cftype cft[],int count)2343 int cgroup_add_files(struct cgroup *cgrp,
2344 struct cgroup_subsys *subsys,
2345 const struct cftype cft[],
2346 int count)
2347 {
2348 int i, err;
2349 for (i = 0; i < count; i++) {
2350 err = cgroup_add_file(cgrp, subsys, &cft[i]);
2351 if (err)
2352 return err;
2353 }
2354 return 0;
2355 }
2356 EXPORT_SYMBOL_GPL(cgroup_add_files);
2357
2358 /**
2359 * cgroup_task_count - count the number of tasks in a cgroup.
2360 * @cgrp: the cgroup in question
2361 *
2362 * Return the number of tasks in the cgroup.
2363 */
cgroup_task_count(const struct cgroup * cgrp)2364 int cgroup_task_count(const struct cgroup *cgrp)
2365 {
2366 int count = 0;
2367 struct cg_cgroup_link *link;
2368
2369 read_lock(&css_set_lock);
2370 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2371 count += atomic_read(&link->cg->refcount);
2372 }
2373 read_unlock(&css_set_lock);
2374 return count;
2375 }
2376
2377 /*
2378 * Advance a list_head iterator. The iterator should be positioned at
2379 * the start of a css_set
2380 */
cgroup_advance_iter(struct cgroup * cgrp,struct cgroup_iter * it)2381 static void cgroup_advance_iter(struct cgroup *cgrp,
2382 struct cgroup_iter *it)
2383 {
2384 struct list_head *l = it->cg_link;
2385 struct cg_cgroup_link *link;
2386 struct css_set *cg;
2387
2388 /* Advance to the next non-empty css_set */
2389 do {
2390 l = l->next;
2391 if (l == &cgrp->css_sets) {
2392 it->cg_link = NULL;
2393 return;
2394 }
2395 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2396 cg = link->cg;
2397 } while (list_empty(&cg->tasks));
2398 it->cg_link = l;
2399 it->task = cg->tasks.next;
2400 }
2401
2402 /*
2403 * To reduce the fork() overhead for systems that are not actually
2404 * using their cgroups capability, we don't maintain the lists running
2405 * through each css_set to its tasks until we see the list actually
2406 * used - in other words after the first call to cgroup_iter_start().
2407 *
2408 * The tasklist_lock is not held here, as do_each_thread() and
2409 * while_each_thread() are protected by RCU.
2410 */
cgroup_enable_task_cg_lists(void)2411 static void cgroup_enable_task_cg_lists(void)
2412 {
2413 struct task_struct *p, *g;
2414 write_lock(&css_set_lock);
2415 use_task_css_set_links = 1;
2416 do_each_thread(g, p) {
2417 task_lock(p);
2418 /*
2419 * We should check if the process is exiting, otherwise
2420 * it will race with cgroup_exit() in that the list
2421 * entry won't be deleted though the process has exited.
2422 */
2423 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2424 list_add(&p->cg_list, &p->cgroups->tasks);
2425 task_unlock(p);
2426 } while_each_thread(g, p);
2427 write_unlock(&css_set_lock);
2428 }
2429
cgroup_iter_start(struct cgroup * cgrp,struct cgroup_iter * it)2430 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
2431 {
2432 /*
2433 * The first time anyone tries to iterate across a cgroup,
2434 * we need to enable the list linking each css_set to its
2435 * tasks, and fix up all existing tasks.
2436 */
2437 if (!use_task_css_set_links)
2438 cgroup_enable_task_cg_lists();
2439
2440 read_lock(&css_set_lock);
2441 it->cg_link = &cgrp->css_sets;
2442 cgroup_advance_iter(cgrp, it);
2443 }
2444
cgroup_iter_next(struct cgroup * cgrp,struct cgroup_iter * it)2445 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
2446 struct cgroup_iter *it)
2447 {
2448 struct task_struct *res;
2449 struct list_head *l = it->task;
2450 struct cg_cgroup_link *link;
2451
2452 /* If the iterator cg is NULL, we have no tasks */
2453 if (!it->cg_link)
2454 return NULL;
2455 res = list_entry(l, struct task_struct, cg_list);
2456 /* Advance iterator to find next entry */
2457 l = l->next;
2458 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
2459 if (l == &link->cg->tasks) {
2460 /* We reached the end of this task list - move on to
2461 * the next cg_cgroup_link */
2462 cgroup_advance_iter(cgrp, it);
2463 } else {
2464 it->task = l;
2465 }
2466 return res;
2467 }
2468
cgroup_iter_end(struct cgroup * cgrp,struct cgroup_iter * it)2469 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
2470 {
2471 read_unlock(&css_set_lock);
2472 }
2473
started_after_time(struct task_struct * t1,struct timespec * time,struct task_struct * t2)2474 static inline int started_after_time(struct task_struct *t1,
2475 struct timespec *time,
2476 struct task_struct *t2)
2477 {
2478 int start_diff = timespec_compare(&t1->start_time, time);
2479 if (start_diff > 0) {
2480 return 1;
2481 } else if (start_diff < 0) {
2482 return 0;
2483 } else {
2484 /*
2485 * Arbitrarily, if two processes started at the same
2486 * time, we'll say that the lower pointer value
2487 * started first. Note that t2 may have exited by now
2488 * so this may not be a valid pointer any longer, but
2489 * that's fine - it still serves to distinguish
2490 * between two tasks started (effectively) simultaneously.
2491 */
2492 return t1 > t2;
2493 }
2494 }
2495
2496 /*
2497 * This function is a callback from heap_insert() and is used to order
2498 * the heap.
2499 * In this case we order the heap in descending task start time.
2500 */
started_after(void * p1,void * p2)2501 static inline int started_after(void *p1, void *p2)
2502 {
2503 struct task_struct *t1 = p1;
2504 struct task_struct *t2 = p2;
2505 return started_after_time(t1, &t2->start_time, t2);
2506 }
2507
2508 /**
2509 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
2510 * @scan: struct cgroup_scanner containing arguments for the scan
2511 *
2512 * Arguments include pointers to callback functions test_task() and
2513 * process_task().
2514 * Iterate through all the tasks in a cgroup, calling test_task() for each,
2515 * and if it returns true, call process_task() for it also.
2516 * The test_task pointer may be NULL, meaning always true (select all tasks).
2517 * Effectively duplicates cgroup_iter_{start,next,end}()
2518 * but does not lock css_set_lock for the call to process_task().
2519 * The struct cgroup_scanner may be embedded in any structure of the caller's
2520 * creation.
2521 * It is guaranteed that process_task() will act on every task that
2522 * is a member of the cgroup for the duration of this call. This
2523 * function may or may not call process_task() for tasks that exit
2524 * or move to a different cgroup during the call, or are forked or
2525 * move into the cgroup during the call.
2526 *
2527 * Note that test_task() may be called with locks held, and may in some
2528 * situations be called multiple times for the same task, so it should
2529 * be cheap.
2530 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
2531 * pre-allocated and will be used for heap operations (and its "gt" member will
2532 * be overwritten), else a temporary heap will be used (allocation of which
2533 * may cause this function to fail).
2534 */
cgroup_scan_tasks(struct cgroup_scanner * scan)2535 int cgroup_scan_tasks(struct cgroup_scanner *scan)
2536 {
2537 int retval, i;
2538 struct cgroup_iter it;
2539 struct task_struct *p, *dropped;
2540 /* Never dereference latest_task, since it's not refcounted */
2541 struct task_struct *latest_task = NULL;
2542 struct ptr_heap tmp_heap;
2543 struct ptr_heap *heap;
2544 struct timespec latest_time = { 0, 0 };
2545
2546 if (scan->heap) {
2547 /* The caller supplied our heap and pre-allocated its memory */
2548 heap = scan->heap;
2549 heap->gt = &started_after;
2550 } else {
2551 /* We need to allocate our own heap memory */
2552 heap = &tmp_heap;
2553 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
2554 if (retval)
2555 /* cannot allocate the heap */
2556 return retval;
2557 }
2558
2559 again:
2560 /*
2561 * Scan tasks in the cgroup, using the scanner's "test_task" callback
2562 * to determine which are of interest, and using the scanner's
2563 * "process_task" callback to process any of them that need an update.
2564 * Since we don't want to hold any locks during the task updates,
2565 * gather tasks to be processed in a heap structure.
2566 * The heap is sorted by descending task start time.
2567 * If the statically-sized heap fills up, we overflow tasks that
2568 * started later, and in future iterations only consider tasks that
2569 * started after the latest task in the previous pass. This
2570 * guarantees forward progress and that we don't miss any tasks.
2571 */
2572 heap->size = 0;
2573 cgroup_iter_start(scan->cg, &it);
2574 while ((p = cgroup_iter_next(scan->cg, &it))) {
2575 /*
2576 * Only affect tasks that qualify per the caller's callback,
2577 * if he provided one
2578 */
2579 if (scan->test_task && !scan->test_task(p, scan))
2580 continue;
2581 /*
2582 * Only process tasks that started after the last task
2583 * we processed
2584 */
2585 if (!started_after_time(p, &latest_time, latest_task))
2586 continue;
2587 dropped = heap_insert(heap, p);
2588 if (dropped == NULL) {
2589 /*
2590 * The new task was inserted; the heap wasn't
2591 * previously full
2592 */
2593 get_task_struct(p);
2594 } else if (dropped != p) {
2595 /*
2596 * The new task was inserted, and pushed out a
2597 * different task
2598 */
2599 get_task_struct(p);
2600 put_task_struct(dropped);
2601 }
2602 /*
2603 * Else the new task was newer than anything already in
2604 * the heap and wasn't inserted
2605 */
2606 }
2607 cgroup_iter_end(scan->cg, &it);
2608
2609 if (heap->size) {
2610 for (i = 0; i < heap->size; i++) {
2611 struct task_struct *q = heap->ptrs[i];
2612 if (i == 0) {
2613 latest_time = q->start_time;
2614 latest_task = q;
2615 }
2616 /* Process the task per the caller's callback */
2617 scan->process_task(q, scan);
2618 put_task_struct(q);
2619 }
2620 /*
2621 * If we had to process any tasks at all, scan again
2622 * in case some of them were in the middle of forking
2623 * children that didn't get processed.
2624 * Not the most efficient way to do it, but it avoids
2625 * having to take callback_mutex in the fork path
2626 */
2627 goto again;
2628 }
2629 if (heap == &tmp_heap)
2630 heap_free(&tmp_heap);
2631 return 0;
2632 }
2633
2634 /*
2635 * Stuff for reading the 'tasks'/'procs' files.
2636 *
2637 * Reading this file can return large amounts of data if a cgroup has
2638 * *lots* of attached tasks. So it may need several calls to read(),
2639 * but we cannot guarantee that the information we produce is correct
2640 * unless we produce it entirely atomically.
2641 *
2642 */
2643
2644 /*
2645 * The following two functions "fix" the issue where there are more pids
2646 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
2647 * TODO: replace with a kernel-wide solution to this problem
2648 */
2649 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
pidlist_allocate(int count)2650 static void *pidlist_allocate(int count)
2651 {
2652 if (PIDLIST_TOO_LARGE(count))
2653 return vmalloc(count * sizeof(pid_t));
2654 else
2655 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
2656 }
pidlist_free(void * p)2657 static void pidlist_free(void *p)
2658 {
2659 if (is_vmalloc_addr(p))
2660 vfree(p);
2661 else
2662 kfree(p);
2663 }
pidlist_resize(void * p,int newcount)2664 static void *pidlist_resize(void *p, int newcount)
2665 {
2666 void *newlist;
2667 /* note: if new alloc fails, old p will still be valid either way */
2668 if (is_vmalloc_addr(p)) {
2669 newlist = vmalloc(newcount * sizeof(pid_t));
2670 if (!newlist)
2671 return NULL;
2672 memcpy(newlist, p, newcount * sizeof(pid_t));
2673 vfree(p);
2674 } else {
2675 newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
2676 }
2677 return newlist;
2678 }
2679
2680 /*
2681 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
2682 * If the new stripped list is sufficiently smaller and there's enough memory
2683 * to allocate a new buffer, will let go of the unneeded memory. Returns the
2684 * number of unique elements.
2685 */
2686 /* is the size difference enough that we should re-allocate the array? */
2687 #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
pidlist_uniq(pid_t ** p,int length)2688 static int pidlist_uniq(pid_t **p, int length)
2689 {
2690 int src, dest = 1;
2691 pid_t *list = *p;
2692 pid_t *newlist;
2693
2694 /*
2695 * we presume the 0th element is unique, so i starts at 1. trivial
2696 * edge cases first; no work needs to be done for either
2697 */
2698 if (length == 0 || length == 1)
2699 return length;
2700 /* src and dest walk down the list; dest counts unique elements */
2701 for (src = 1; src < length; src++) {
2702 /* find next unique element */
2703 while (list[src] == list[src-1]) {
2704 src++;
2705 if (src == length)
2706 goto after;
2707 }
2708 /* dest always points to where the next unique element goes */
2709 list[dest] = list[src];
2710 dest++;
2711 }
2712 after:
2713 /*
2714 * if the length difference is large enough, we want to allocate a
2715 * smaller buffer to save memory. if this fails due to out of memory,
2716 * we'll just stay with what we've got.
2717 */
2718 if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
2719 newlist = pidlist_resize(list, dest);
2720 if (newlist)
2721 *p = newlist;
2722 }
2723 return dest;
2724 }
2725
cmppid(const void * a,const void * b)2726 static int cmppid(const void *a, const void *b)
2727 {
2728 return *(pid_t *)a - *(pid_t *)b;
2729 }
2730
2731 /*
2732 * find the appropriate pidlist for our purpose (given procs vs tasks)
2733 * returns with the lock on that pidlist already held, and takes care
2734 * of the use count, or returns NULL with no locks held if we're out of
2735 * memory.
2736 */
cgroup_pidlist_find(struct cgroup * cgrp,enum cgroup_filetype type)2737 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
2738 enum cgroup_filetype type)
2739 {
2740 struct cgroup_pidlist *l;
2741 /* don't need task_nsproxy() if we're looking at ourself */
2742 struct pid_namespace *ns = current->nsproxy->pid_ns;
2743
2744 /*
2745 * We can't drop the pidlist_mutex before taking the l->mutex in case
2746 * the last ref-holder is trying to remove l from the list at the same
2747 * time. Holding the pidlist_mutex precludes somebody taking whichever
2748 * list we find out from under us - compare release_pid_array().
2749 */
2750 mutex_lock(&cgrp->pidlist_mutex);
2751 list_for_each_entry(l, &cgrp->pidlists, links) {
2752 if (l->key.type == type && l->key.ns == ns) {
2753 /* make sure l doesn't vanish out from under us */
2754 down_write(&l->mutex);
2755 mutex_unlock(&cgrp->pidlist_mutex);
2756 return l;
2757 }
2758 }
2759 /* entry not found; create a new one */
2760 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
2761 if (!l) {
2762 mutex_unlock(&cgrp->pidlist_mutex);
2763 return l;
2764 }
2765 init_rwsem(&l->mutex);
2766 down_write(&l->mutex);
2767 l->key.type = type;
2768 l->key.ns = get_pid_ns(ns);
2769 l->use_count = 0; /* don't increment here */
2770 l->list = NULL;
2771 l->owner = cgrp;
2772 list_add(&l->links, &cgrp->pidlists);
2773 mutex_unlock(&cgrp->pidlist_mutex);
2774 return l;
2775 }
2776
2777 /*
2778 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
2779 */
pidlist_array_load(struct cgroup * cgrp,enum cgroup_filetype type,struct cgroup_pidlist ** lp)2780 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
2781 struct cgroup_pidlist **lp)
2782 {
2783 pid_t *array;
2784 int length;
2785 int pid, n = 0; /* used for populating the array */
2786 struct cgroup_iter it;
2787 struct task_struct *tsk;
2788 struct cgroup_pidlist *l;
2789
2790 /*
2791 * If cgroup gets more users after we read count, we won't have
2792 * enough space - tough. This race is indistinguishable to the
2793 * caller from the case that the additional cgroup users didn't
2794 * show up until sometime later on.
2795 */
2796 length = cgroup_task_count(cgrp);
2797 array = pidlist_allocate(length);
2798 if (!array)
2799 return -ENOMEM;
2800 /* now, populate the array */
2801 cgroup_iter_start(cgrp, &it);
2802 while ((tsk = cgroup_iter_next(cgrp, &it))) {
2803 if (unlikely(n == length))
2804 break;
2805 /* get tgid or pid for procs or tasks file respectively */
2806 if (type == CGROUP_FILE_PROCS)
2807 pid = task_tgid_vnr(tsk);
2808 else
2809 pid = task_pid_vnr(tsk);
2810 if (pid > 0) /* make sure to only use valid results */
2811 array[n++] = pid;
2812 }
2813 cgroup_iter_end(cgrp, &it);
2814 length = n;
2815 /* now sort & (if procs) strip out duplicates */
2816 sort(array, length, sizeof(pid_t), cmppid, NULL);
2817 if (type == CGROUP_FILE_PROCS)
2818 length = pidlist_uniq(&array, length);
2819 l = cgroup_pidlist_find(cgrp, type);
2820 if (!l) {
2821 pidlist_free(array);
2822 return -ENOMEM;
2823 }
2824 /* store array, freeing old if necessary - lock already held */
2825 pidlist_free(l->list);
2826 l->list = array;
2827 l->length = length;
2828 l->use_count++;
2829 up_write(&l->mutex);
2830 *lp = l;
2831 return 0;
2832 }
2833
2834 /**
2835 * cgroupstats_build - build and fill cgroupstats
2836 * @stats: cgroupstats to fill information into
2837 * @dentry: A dentry entry belonging to the cgroup for which stats have
2838 * been requested.
2839 *
2840 * Build and fill cgroupstats so that taskstats can export it to user
2841 * space.
2842 */
cgroupstats_build(struct cgroupstats * stats,struct dentry * dentry)2843 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
2844 {
2845 int ret = -EINVAL;
2846 struct cgroup *cgrp;
2847 struct cgroup_iter it;
2848 struct task_struct *tsk;
2849
2850 /*
2851 * Validate dentry by checking the superblock operations,
2852 * and make sure it's a directory.
2853 */
2854 if (dentry->d_sb->s_op != &cgroup_ops ||
2855 !S_ISDIR(dentry->d_inode->i_mode))
2856 goto err;
2857
2858 ret = 0;
2859 cgrp = dentry->d_fsdata;
2860
2861 cgroup_iter_start(cgrp, &it);
2862 while ((tsk = cgroup_iter_next(cgrp, &it))) {
2863 switch (tsk->state) {
2864 case TASK_RUNNING:
2865 stats->nr_running++;
2866 break;
2867 case TASK_INTERRUPTIBLE:
2868 stats->nr_sleeping++;
2869 break;
2870 case TASK_UNINTERRUPTIBLE:
2871 stats->nr_uninterruptible++;
2872 break;
2873 case TASK_STOPPED:
2874 stats->nr_stopped++;
2875 break;
2876 default:
2877 if (delayacct_is_task_waiting_on_io(tsk))
2878 stats->nr_io_wait++;
2879 break;
2880 }
2881 }
2882 cgroup_iter_end(cgrp, &it);
2883
2884 err:
2885 return ret;
2886 }
2887
2888
2889 /*
2890 * seq_file methods for the tasks/procs files. The seq_file position is the
2891 * next pid to display; the seq_file iterator is a pointer to the pid
2892 * in the cgroup->l->list array.
2893 */
2894
cgroup_pidlist_start(struct seq_file * s,loff_t * pos)2895 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
2896 {
2897 /*
2898 * Initially we receive a position value that corresponds to
2899 * one more than the last pid shown (or 0 on the first call or
2900 * after a seek to the start). Use a binary-search to find the
2901 * next pid to display, if any
2902 */
2903 struct cgroup_pidlist *l = s->private;
2904 int index = 0, pid = *pos;
2905 int *iter;
2906
2907 down_read(&l->mutex);
2908 if (pid) {
2909 int end = l->length;
2910
2911 while (index < end) {
2912 int mid = (index + end) / 2;
2913 if (l->list[mid] == pid) {
2914 index = mid;
2915 break;
2916 } else if (l->list[mid] <= pid)
2917 index = mid + 1;
2918 else
2919 end = mid;
2920 }
2921 }
2922 /* If we're off the end of the array, we're done */
2923 if (index >= l->length)
2924 return NULL;
2925 /* Update the abstract position to be the actual pid that we found */
2926 iter = l->list + index;
2927 *pos = *iter;
2928 return iter;
2929 }
2930
cgroup_pidlist_stop(struct seq_file * s,void * v)2931 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
2932 {
2933 struct cgroup_pidlist *l = s->private;
2934 up_read(&l->mutex);
2935 }
2936
cgroup_pidlist_next(struct seq_file * s,void * v,loff_t * pos)2937 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
2938 {
2939 struct cgroup_pidlist *l = s->private;
2940 pid_t *p = v;
2941 pid_t *end = l->list + l->length;
2942 /*
2943 * Advance to the next pid in the array. If this goes off the
2944 * end, we're done
2945 */
2946 p++;
2947 if (p >= end) {
2948 return NULL;
2949 } else {
2950 *pos = *p;
2951 return p;
2952 }
2953 }
2954
cgroup_pidlist_show(struct seq_file * s,void * v)2955 static int cgroup_pidlist_show(struct seq_file *s, void *v)
2956 {
2957 return seq_printf(s, "%d\n", *(int *)v);
2958 }
2959
2960 /*
2961 * seq_operations functions for iterating on pidlists through seq_file -
2962 * independent of whether it's tasks or procs
2963 */
2964 static const struct seq_operations cgroup_pidlist_seq_operations = {
2965 .start = cgroup_pidlist_start,
2966 .stop = cgroup_pidlist_stop,
2967 .next = cgroup_pidlist_next,
2968 .show = cgroup_pidlist_show,
2969 };
2970
cgroup_release_pid_array(struct cgroup_pidlist * l)2971 static void cgroup_release_pid_array(struct cgroup_pidlist *l)
2972 {
2973 /*
2974 * the case where we're the last user of this particular pidlist will
2975 * have us remove it from the cgroup's list, which entails taking the
2976 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
2977 * pidlist_mutex, we have to take pidlist_mutex first.
2978 */
2979 mutex_lock(&l->owner->pidlist_mutex);
2980 down_write(&l->mutex);
2981 BUG_ON(!l->use_count);
2982 if (!--l->use_count) {
2983 /* we're the last user if refcount is 0; remove and free */
2984 list_del(&l->links);
2985 mutex_unlock(&l->owner->pidlist_mutex);
2986 pidlist_free(l->list);
2987 put_pid_ns(l->key.ns);
2988 up_write(&l->mutex);
2989 kfree(l);
2990 return;
2991 }
2992 mutex_unlock(&l->owner->pidlist_mutex);
2993 up_write(&l->mutex);
2994 }
2995
cgroup_pidlist_release(struct inode * inode,struct file * file)2996 static int cgroup_pidlist_release(struct inode *inode, struct file *file)
2997 {
2998 struct cgroup_pidlist *l;
2999 if (!(file->f_mode & FMODE_READ))
3000 return 0;
3001 /*
3002 * the seq_file will only be initialized if the file was opened for
3003 * reading; hence we check if it's not null only in that case.
3004 */
3005 l = ((struct seq_file *)file->private_data)->private;
3006 cgroup_release_pid_array(l);
3007 return seq_release(inode, file);
3008 }
3009
3010 static const struct file_operations cgroup_pidlist_operations = {
3011 .read = seq_read,
3012 .llseek = seq_lseek,
3013 .write = cgroup_file_write,
3014 .release = cgroup_pidlist_release,
3015 };
3016
3017 /*
3018 * The following functions handle opens on a file that displays a pidlist
3019 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3020 * in the cgroup.
3021 */
3022 /* helper function for the two below it */
cgroup_pidlist_open(struct file * file,enum cgroup_filetype type)3023 static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3024 {
3025 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3026 struct cgroup_pidlist *l;
3027 int retval;
3028
3029 /* Nothing to do for write-only files */
3030 if (!(file->f_mode & FMODE_READ))
3031 return 0;
3032
3033 /* have the array populated */
3034 retval = pidlist_array_load(cgrp, type, &l);
3035 if (retval)
3036 return retval;
3037 /* configure file information */
3038 file->f_op = &cgroup_pidlist_operations;
3039
3040 retval = seq_open(file, &cgroup_pidlist_seq_operations);
3041 if (retval) {
3042 cgroup_release_pid_array(l);
3043 return retval;
3044 }
3045 ((struct seq_file *)file->private_data)->private = l;
3046 return 0;
3047 }
cgroup_tasks_open(struct inode * unused,struct file * file)3048 static int cgroup_tasks_open(struct inode *unused, struct file *file)
3049 {
3050 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3051 }
cgroup_procs_open(struct inode * unused,struct file * file)3052 static int cgroup_procs_open(struct inode *unused, struct file *file)
3053 {
3054 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3055 }
3056
cgroup_read_notify_on_release(struct cgroup * cgrp,struct cftype * cft)3057 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3058 struct cftype *cft)
3059 {
3060 return notify_on_release(cgrp);
3061 }
3062
cgroup_write_notify_on_release(struct cgroup * cgrp,struct cftype * cft,u64 val)3063 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3064 struct cftype *cft,
3065 u64 val)
3066 {
3067 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3068 if (val)
3069 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3070 else
3071 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3072 return 0;
3073 }
3074
3075 /*
3076 * Unregister event and free resources.
3077 *
3078 * Gets called from workqueue.
3079 */
cgroup_event_remove(struct work_struct * work)3080 static void cgroup_event_remove(struct work_struct *work)
3081 {
3082 struct cgroup_event *event = container_of(work, struct cgroup_event,
3083 remove);
3084 struct cgroup *cgrp = event->cgrp;
3085
3086 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3087
3088 eventfd_ctx_put(event->eventfd);
3089 kfree(event);
3090 dput(cgrp->dentry);
3091 }
3092
3093 /*
3094 * Gets called on POLLHUP on eventfd when user closes it.
3095 *
3096 * Called with wqh->lock held and interrupts disabled.
3097 */
cgroup_event_wake(wait_queue_t * wait,unsigned mode,int sync,void * key)3098 static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3099 int sync, void *key)
3100 {
3101 struct cgroup_event *event = container_of(wait,
3102 struct cgroup_event, wait);
3103 struct cgroup *cgrp = event->cgrp;
3104 unsigned long flags = (unsigned long)key;
3105
3106 if (flags & POLLHUP) {
3107 __remove_wait_queue(event->wqh, &event->wait);
3108 spin_lock(&cgrp->event_list_lock);
3109 list_del(&event->list);
3110 spin_unlock(&cgrp->event_list_lock);
3111 /*
3112 * We are in atomic context, but cgroup_event_remove() may
3113 * sleep, so we have to call it in workqueue.
3114 */
3115 schedule_work(&event->remove);
3116 }
3117
3118 return 0;
3119 }
3120
cgroup_event_ptable_queue_proc(struct file * file,wait_queue_head_t * wqh,poll_table * pt)3121 static void cgroup_event_ptable_queue_proc(struct file *file,
3122 wait_queue_head_t *wqh, poll_table *pt)
3123 {
3124 struct cgroup_event *event = container_of(pt,
3125 struct cgroup_event, pt);
3126
3127 event->wqh = wqh;
3128 add_wait_queue(wqh, &event->wait);
3129 }
3130
3131 /*
3132 * Parse input and register new cgroup event handler.
3133 *
3134 * Input must be in format '<event_fd> <control_fd> <args>'.
3135 * Interpretation of args is defined by control file implementation.
3136 */
cgroup_write_event_control(struct cgroup * cgrp,struct cftype * cft,const char * buffer)3137 static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3138 const char *buffer)
3139 {
3140 struct cgroup_event *event = NULL;
3141 unsigned int efd, cfd;
3142 struct file *efile = NULL;
3143 struct file *cfile = NULL;
3144 char *endp;
3145 int ret;
3146
3147 efd = simple_strtoul(buffer, &endp, 10);
3148 if (*endp != ' ')
3149 return -EINVAL;
3150 buffer = endp + 1;
3151
3152 cfd = simple_strtoul(buffer, &endp, 10);
3153 if ((*endp != ' ') && (*endp != '\0'))
3154 return -EINVAL;
3155 buffer = endp + 1;
3156
3157 event = kzalloc(sizeof(*event), GFP_KERNEL);
3158 if (!event)
3159 return -ENOMEM;
3160 event->cgrp = cgrp;
3161 INIT_LIST_HEAD(&event->list);
3162 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3163 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3164 INIT_WORK(&event->remove, cgroup_event_remove);
3165
3166 efile = eventfd_fget(efd);
3167 if (IS_ERR(efile)) {
3168 ret = PTR_ERR(efile);
3169 goto fail;
3170 }
3171
3172 event->eventfd = eventfd_ctx_fileget(efile);
3173 if (IS_ERR(event->eventfd)) {
3174 ret = PTR_ERR(event->eventfd);
3175 goto fail;
3176 }
3177
3178 cfile = fget(cfd);
3179 if (!cfile) {
3180 ret = -EBADF;
3181 goto fail;
3182 }
3183
3184 /* the process need read permission on control file */
3185 ret = file_permission(cfile, MAY_READ);
3186 if (ret < 0)
3187 goto fail;
3188
3189 event->cft = __file_cft(cfile);
3190 if (IS_ERR(event->cft)) {
3191 ret = PTR_ERR(event->cft);
3192 goto fail;
3193 }
3194
3195 if (!event->cft->register_event || !event->cft->unregister_event) {
3196 ret = -EINVAL;
3197 goto fail;
3198 }
3199
3200 ret = event->cft->register_event(cgrp, event->cft,
3201 event->eventfd, buffer);
3202 if (ret)
3203 goto fail;
3204
3205 if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
3206 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3207 ret = 0;
3208 goto fail;
3209 }
3210
3211 /*
3212 * Events should be removed after rmdir of cgroup directory, but before
3213 * destroying subsystem state objects. Let's take reference to cgroup
3214 * directory dentry to do that.
3215 */
3216 dget(cgrp->dentry);
3217
3218 spin_lock(&cgrp->event_list_lock);
3219 list_add(&event->list, &cgrp->event_list);
3220 spin_unlock(&cgrp->event_list_lock);
3221
3222 fput(cfile);
3223 fput(efile);
3224
3225 return 0;
3226
3227 fail:
3228 if (cfile)
3229 fput(cfile);
3230
3231 if (event && event->eventfd && !IS_ERR(event->eventfd))
3232 eventfd_ctx_put(event->eventfd);
3233
3234 if (!IS_ERR_OR_NULL(efile))
3235 fput(efile);
3236
3237 kfree(event);
3238
3239 return ret;
3240 }
3241
cgroup_clone_children_read(struct cgroup * cgrp,struct cftype * cft)3242 static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3243 struct cftype *cft)
3244 {
3245 return clone_children(cgrp);
3246 }
3247
cgroup_clone_children_write(struct cgroup * cgrp,struct cftype * cft,u64 val)3248 static int cgroup_clone_children_write(struct cgroup *cgrp,
3249 struct cftype *cft,
3250 u64 val)
3251 {
3252 if (val)
3253 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3254 else
3255 clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3256 return 0;
3257 }
3258
3259 /*
3260 * for the common functions, 'private' gives the type of file
3261 */
3262 /* for hysterical raisins, we can't put this on the older files */
3263 #define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3264 static struct cftype files[] = {
3265 {
3266 .name = "tasks",
3267 .open = cgroup_tasks_open,
3268 .write_u64 = cgroup_tasks_write,
3269 .release = cgroup_pidlist_release,
3270 .mode = S_IRUGO | S_IWUSR,
3271 },
3272 {
3273 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
3274 .open = cgroup_procs_open,
3275 /* .write_u64 = cgroup_procs_write, TODO */
3276 .release = cgroup_pidlist_release,
3277 .mode = S_IRUGO,
3278 },
3279 {
3280 .name = "notify_on_release",
3281 .read_u64 = cgroup_read_notify_on_release,
3282 .write_u64 = cgroup_write_notify_on_release,
3283 },
3284 {
3285 .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3286 .write_string = cgroup_write_event_control,
3287 .mode = S_IWUGO,
3288 },
3289 {
3290 .name = "cgroup.clone_children",
3291 .read_u64 = cgroup_clone_children_read,
3292 .write_u64 = cgroup_clone_children_write,
3293 },
3294 };
3295
3296 static struct cftype cft_release_agent = {
3297 .name = "release_agent",
3298 .read_seq_string = cgroup_release_agent_show,
3299 .write_string = cgroup_release_agent_write,
3300 .max_write_len = PATH_MAX,
3301 };
3302
cgroup_populate_dir(struct cgroup * cgrp)3303 static int cgroup_populate_dir(struct cgroup *cgrp)
3304 {
3305 int err;
3306 struct cgroup_subsys *ss;
3307
3308 /* First clear out any existing files */
3309 cgroup_clear_directory(cgrp->dentry);
3310
3311 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
3312 if (err < 0)
3313 return err;
3314
3315 if (cgrp == cgrp->top_cgroup) {
3316 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
3317 return err;
3318 }
3319
3320 for_each_subsys(cgrp->root, ss) {
3321 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
3322 return err;
3323 }
3324 /* This cgroup is ready now */
3325 for_each_subsys(cgrp->root, ss) {
3326 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3327 /*
3328 * Update id->css pointer and make this css visible from
3329 * CSS ID functions. This pointer will be dereferened
3330 * from RCU-read-side without locks.
3331 */
3332 if (css->id)
3333 rcu_assign_pointer(css->id->css, css);
3334 }
3335
3336 return 0;
3337 }
3338
init_cgroup_css(struct cgroup_subsys_state * css,struct cgroup_subsys * ss,struct cgroup * cgrp)3339 static void init_cgroup_css(struct cgroup_subsys_state *css,
3340 struct cgroup_subsys *ss,
3341 struct cgroup *cgrp)
3342 {
3343 css->cgroup = cgrp;
3344 atomic_set(&css->refcnt, 1);
3345 css->flags = 0;
3346 css->id = NULL;
3347 if (cgrp == dummytop)
3348 set_bit(CSS_ROOT, &css->flags);
3349 BUG_ON(cgrp->subsys[ss->subsys_id]);
3350 cgrp->subsys[ss->subsys_id] = css;
3351 }
3352
cgroup_lock_hierarchy(struct cgroupfs_root * root)3353 static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
3354 {
3355 /* We need to take each hierarchy_mutex in a consistent order */
3356 int i;
3357
3358 /*
3359 * No worry about a race with rebind_subsystems that might mess up the
3360 * locking order, since both parties are under cgroup_mutex.
3361 */
3362 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3363 struct cgroup_subsys *ss = subsys[i];
3364 if (ss == NULL)
3365 continue;
3366 if (ss->root == root)
3367 mutex_lock(&ss->hierarchy_mutex);
3368 }
3369 }
3370
cgroup_unlock_hierarchy(struct cgroupfs_root * root)3371 static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
3372 {
3373 int i;
3374
3375 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3376 struct cgroup_subsys *ss = subsys[i];
3377 if (ss == NULL)
3378 continue;
3379 if (ss->root == root)
3380 mutex_unlock(&ss->hierarchy_mutex);
3381 }
3382 }
3383
3384 /*
3385 * cgroup_create - create a cgroup
3386 * @parent: cgroup that will be parent of the new cgroup
3387 * @dentry: dentry of the new cgroup
3388 * @mode: mode to set on new inode
3389 *
3390 * Must be called with the mutex on the parent inode held
3391 */
cgroup_create(struct cgroup * parent,struct dentry * dentry,mode_t mode)3392 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
3393 mode_t mode)
3394 {
3395 struct cgroup *cgrp;
3396 struct cgroupfs_root *root = parent->root;
3397 int err = 0;
3398 struct cgroup_subsys *ss;
3399 struct super_block *sb = root->sb;
3400
3401 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3402 if (!cgrp)
3403 return -ENOMEM;
3404
3405 /* Grab a reference on the superblock so the hierarchy doesn't
3406 * get deleted on unmount if there are child cgroups. This
3407 * can be done outside cgroup_mutex, since the sb can't
3408 * disappear while someone has an open control file on the
3409 * fs */
3410 atomic_inc(&sb->s_active);
3411
3412 mutex_lock(&cgroup_mutex);
3413
3414 init_cgroup_housekeeping(cgrp);
3415
3416 cgrp->parent = parent;
3417 cgrp->root = parent->root;
3418 cgrp->top_cgroup = parent->top_cgroup;
3419
3420 if (notify_on_release(parent))
3421 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3422
3423 if (clone_children(parent))
3424 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3425
3426 for_each_subsys(root, ss) {
3427 struct cgroup_subsys_state *css = ss->create(ss, cgrp);
3428
3429 if (IS_ERR(css)) {
3430 err = PTR_ERR(css);
3431 goto err_destroy;
3432 }
3433 init_cgroup_css(css, ss, cgrp);
3434 if (ss->use_id) {
3435 err = alloc_css_id(ss, parent, cgrp);
3436 if (err)
3437 goto err_destroy;
3438 }
3439 /* At error, ->destroy() callback has to free assigned ID. */
3440 if (clone_children(parent) && ss->post_clone)
3441 ss->post_clone(ss, cgrp);
3442 }
3443
3444 cgroup_lock_hierarchy(root);
3445 list_add(&cgrp->sibling, &cgrp->parent->children);
3446 cgroup_unlock_hierarchy(root);
3447 root->number_of_cgroups++;
3448
3449 err = cgroup_create_dir(cgrp, dentry, mode);
3450 if (err < 0)
3451 goto err_remove;
3452
3453 /* The cgroup directory was pre-locked for us */
3454 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
3455
3456 err = cgroup_populate_dir(cgrp);
3457 /* If err < 0, we have a half-filled directory - oh well ;) */
3458
3459 mutex_unlock(&cgroup_mutex);
3460 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
3461
3462 return 0;
3463
3464 err_remove:
3465
3466 cgroup_lock_hierarchy(root);
3467 list_del(&cgrp->sibling);
3468 cgroup_unlock_hierarchy(root);
3469 root->number_of_cgroups--;
3470
3471 err_destroy:
3472
3473 for_each_subsys(root, ss) {
3474 if (cgrp->subsys[ss->subsys_id])
3475 ss->destroy(ss, cgrp);
3476 }
3477
3478 mutex_unlock(&cgroup_mutex);
3479
3480 /* Release the reference count that we took on the superblock */
3481 deactivate_super(sb);
3482
3483 kfree(cgrp);
3484 return err;
3485 }
3486
cgroup_mkdir(struct inode * dir,struct dentry * dentry,int mode)3487 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3488 {
3489 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
3490
3491 /* the vfs holds inode->i_mutex already */
3492 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
3493 }
3494
cgroup_has_css_refs(struct cgroup * cgrp)3495 static int cgroup_has_css_refs(struct cgroup *cgrp)
3496 {
3497 /* Check the reference count on each subsystem. Since we
3498 * already established that there are no tasks in the
3499 * cgroup, if the css refcount is also 1, then there should
3500 * be no outstanding references, so the subsystem is safe to
3501 * destroy. We scan across all subsystems rather than using
3502 * the per-hierarchy linked list of mounted subsystems since
3503 * we can be called via check_for_release() with no
3504 * synchronization other than RCU, and the subsystem linked
3505 * list isn't RCU-safe */
3506 int i;
3507 /*
3508 * We won't need to lock the subsys array, because the subsystems
3509 * we're concerned about aren't going anywhere since our cgroup root
3510 * has a reference on them.
3511 */
3512 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3513 struct cgroup_subsys *ss = subsys[i];
3514 struct cgroup_subsys_state *css;
3515 /* Skip subsystems not present or not in this hierarchy */
3516 if (ss == NULL || ss->root != cgrp->root)
3517 continue;
3518 css = cgrp->subsys[ss->subsys_id];
3519 /* When called from check_for_release() it's possible
3520 * that by this point the cgroup has been removed
3521 * and the css deleted. But a false-positive doesn't
3522 * matter, since it can only happen if the cgroup
3523 * has been deleted and hence no longer needs the
3524 * release agent to be called anyway. */
3525 if (css && (atomic_read(&css->refcnt) > 1))
3526 return 1;
3527 }
3528 return 0;
3529 }
3530
3531 /*
3532 * Atomically mark all (or else none) of the cgroup's CSS objects as
3533 * CSS_REMOVED. Return true on success, or false if the cgroup has
3534 * busy subsystems. Call with cgroup_mutex held
3535 */
3536
cgroup_clear_css_refs(struct cgroup * cgrp)3537 static int cgroup_clear_css_refs(struct cgroup *cgrp)
3538 {
3539 struct cgroup_subsys *ss;
3540 unsigned long flags;
3541 bool failed = false;
3542 local_irq_save(flags);
3543 for_each_subsys(cgrp->root, ss) {
3544 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3545 int refcnt;
3546 while (1) {
3547 /* We can only remove a CSS with a refcnt==1 */
3548 refcnt = atomic_read(&css->refcnt);
3549 if (refcnt > 1) {
3550 failed = true;
3551 goto done;
3552 }
3553 BUG_ON(!refcnt);
3554 /*
3555 * Drop the refcnt to 0 while we check other
3556 * subsystems. This will cause any racing
3557 * css_tryget() to spin until we set the
3558 * CSS_REMOVED bits or abort
3559 */
3560 if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
3561 break;
3562 cpu_relax();
3563 }
3564 }
3565 done:
3566 for_each_subsys(cgrp->root, ss) {
3567 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3568 if (failed) {
3569 /*
3570 * Restore old refcnt if we previously managed
3571 * to clear it from 1 to 0
3572 */
3573 if (!atomic_read(&css->refcnt))
3574 atomic_set(&css->refcnt, 1);
3575 } else {
3576 /* Commit the fact that the CSS is removed */
3577 set_bit(CSS_REMOVED, &css->flags);
3578 }
3579 }
3580 local_irq_restore(flags);
3581 return !failed;
3582 }
3583
cgroup_rmdir(struct inode * unused_dir,struct dentry * dentry)3584 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
3585 {
3586 struct cgroup *cgrp = dentry->d_fsdata;
3587 struct dentry *d;
3588 struct cgroup *parent;
3589 DEFINE_WAIT(wait);
3590 struct cgroup_event *event, *tmp;
3591 int ret;
3592
3593 /* the vfs holds both inode->i_mutex already */
3594 again:
3595 mutex_lock(&cgroup_mutex);
3596 if (atomic_read(&cgrp->count) != 0) {
3597 mutex_unlock(&cgroup_mutex);
3598 return -EBUSY;
3599 }
3600 if (!list_empty(&cgrp->children)) {
3601 mutex_unlock(&cgroup_mutex);
3602 return -EBUSY;
3603 }
3604 mutex_unlock(&cgroup_mutex);
3605
3606 /*
3607 * In general, subsystem has no css->refcnt after pre_destroy(). But
3608 * in racy cases, subsystem may have to get css->refcnt after
3609 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
3610 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
3611 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
3612 * and subsystem's reference count handling. Please see css_get/put
3613 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
3614 */
3615 set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3616
3617 /*
3618 * Call pre_destroy handlers of subsys. Notify subsystems
3619 * that rmdir() request comes.
3620 */
3621 ret = cgroup_call_pre_destroy(cgrp);
3622 if (ret) {
3623 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3624 return ret;
3625 }
3626
3627 mutex_lock(&cgroup_mutex);
3628 parent = cgrp->parent;
3629 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
3630 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3631 mutex_unlock(&cgroup_mutex);
3632 return -EBUSY;
3633 }
3634 prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
3635 if (!cgroup_clear_css_refs(cgrp)) {
3636 mutex_unlock(&cgroup_mutex);
3637 /*
3638 * Because someone may call cgroup_wakeup_rmdir_waiter() before
3639 * prepare_to_wait(), we need to check this flag.
3640 */
3641 if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
3642 schedule();
3643 finish_wait(&cgroup_rmdir_waitq, &wait);
3644 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3645 if (signal_pending(current))
3646 return -EINTR;
3647 goto again;
3648 }
3649 /* NO css_tryget() can success after here. */
3650 finish_wait(&cgroup_rmdir_waitq, &wait);
3651 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3652
3653 spin_lock(&release_list_lock);
3654 set_bit(CGRP_REMOVED, &cgrp->flags);
3655 if (!list_empty(&cgrp->release_list))
3656 list_del_init(&cgrp->release_list);
3657 spin_unlock(&release_list_lock);
3658
3659 cgroup_lock_hierarchy(cgrp->root);
3660 /* delete this cgroup from parent->children */
3661 list_del_init(&cgrp->sibling);
3662 cgroup_unlock_hierarchy(cgrp->root);
3663
3664 d = dget(cgrp->dentry);
3665
3666 cgroup_d_remove_dir(d);
3667 dput(d);
3668
3669 set_bit(CGRP_RELEASABLE, &parent->flags);
3670 check_for_release(parent);
3671
3672 /*
3673 * Unregister events and notify userspace.
3674 * Notify userspace about cgroup removing only after rmdir of cgroup
3675 * directory to avoid race between userspace and kernelspace
3676 */
3677 spin_lock(&cgrp->event_list_lock);
3678 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
3679 list_del(&event->list);
3680 remove_wait_queue(event->wqh, &event->wait);
3681 eventfd_signal(event->eventfd, 1);
3682 schedule_work(&event->remove);
3683 }
3684 spin_unlock(&cgrp->event_list_lock);
3685
3686 mutex_unlock(&cgroup_mutex);
3687 return 0;
3688 }
3689
cgroup_init_subsys(struct cgroup_subsys * ss)3690 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
3691 {
3692 struct cgroup_subsys_state *css;
3693
3694 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
3695
3696 /* Create the top cgroup state for this subsystem */
3697 list_add(&ss->sibling, &rootnode.subsys_list);
3698 ss->root = &rootnode;
3699 css = ss->create(ss, dummytop);
3700 /* We don't handle early failures gracefully */
3701 BUG_ON(IS_ERR(css));
3702 init_cgroup_css(css, ss, dummytop);
3703
3704 /* Update the init_css_set to contain a subsys
3705 * pointer to this state - since the subsystem is
3706 * newly registered, all tasks and hence the
3707 * init_css_set is in the subsystem's top cgroup. */
3708 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
3709
3710 need_forkexit_callback |= ss->fork || ss->exit;
3711
3712 /* At system boot, before all subsystems have been
3713 * registered, no tasks have been forked, so we don't
3714 * need to invoke fork callbacks here. */
3715 BUG_ON(!list_empty(&init_task.tasks));
3716
3717 mutex_init(&ss->hierarchy_mutex);
3718 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
3719 ss->active = 1;
3720
3721 /* this function shouldn't be used with modular subsystems, since they
3722 * need to register a subsys_id, among other things */
3723 BUG_ON(ss->module);
3724 }
3725
3726 /**
3727 * cgroup_load_subsys: load and register a modular subsystem at runtime
3728 * @ss: the subsystem to load
3729 *
3730 * This function should be called in a modular subsystem's initcall. If the
3731 * subsystem is built as a module, it will be assigned a new subsys_id and set
3732 * up for use. If the subsystem is built-in anyway, work is delegated to the
3733 * simpler cgroup_init_subsys.
3734 */
cgroup_load_subsys(struct cgroup_subsys * ss)3735 int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
3736 {
3737 int i;
3738 struct cgroup_subsys_state *css;
3739
3740 /* check name and function validity */
3741 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
3742 ss->create == NULL || ss->destroy == NULL)
3743 return -EINVAL;
3744
3745 /*
3746 * we don't support callbacks in modular subsystems. this check is
3747 * before the ss->module check for consistency; a subsystem that could
3748 * be a module should still have no callbacks even if the user isn't
3749 * compiling it as one.
3750 */
3751 if (ss->fork || ss->exit)
3752 return -EINVAL;
3753
3754 /*
3755 * an optionally modular subsystem is built-in: we want to do nothing,
3756 * since cgroup_init_subsys will have already taken care of it.
3757 */
3758 if (ss->module == NULL) {
3759 /* a few sanity checks */
3760 BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
3761 BUG_ON(subsys[ss->subsys_id] != ss);
3762 return 0;
3763 }
3764
3765 /*
3766 * need to register a subsys id before anything else - for example,
3767 * init_cgroup_css needs it.
3768 */
3769 mutex_lock(&cgroup_mutex);
3770 /* find the first empty slot in the array */
3771 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
3772 if (subsys[i] == NULL)
3773 break;
3774 }
3775 if (i == CGROUP_SUBSYS_COUNT) {
3776 /* maximum number of subsystems already registered! */
3777 mutex_unlock(&cgroup_mutex);
3778 return -EBUSY;
3779 }
3780 /* assign ourselves the subsys_id */
3781 ss->subsys_id = i;
3782 subsys[i] = ss;
3783
3784 /*
3785 * no ss->create seems to need anything important in the ss struct, so
3786 * this can happen first (i.e. before the rootnode attachment).
3787 */
3788 css = ss->create(ss, dummytop);
3789 if (IS_ERR(css)) {
3790 /* failure case - need to deassign the subsys[] slot. */
3791 subsys[i] = NULL;
3792 mutex_unlock(&cgroup_mutex);
3793 return PTR_ERR(css);
3794 }
3795
3796 list_add(&ss->sibling, &rootnode.subsys_list);
3797 ss->root = &rootnode;
3798
3799 /* our new subsystem will be attached to the dummy hierarchy. */
3800 init_cgroup_css(css, ss, dummytop);
3801 /* init_idr must be after init_cgroup_css because it sets css->id. */
3802 if (ss->use_id) {
3803 int ret = cgroup_init_idr(ss, css);
3804 if (ret) {
3805 dummytop->subsys[ss->subsys_id] = NULL;
3806 ss->destroy(ss, dummytop);
3807 subsys[i] = NULL;
3808 mutex_unlock(&cgroup_mutex);
3809 return ret;
3810 }
3811 }
3812
3813 /*
3814 * Now we need to entangle the css into the existing css_sets. unlike
3815 * in cgroup_init_subsys, there are now multiple css_sets, so each one
3816 * will need a new pointer to it; done by iterating the css_set_table.
3817 * furthermore, modifying the existing css_sets will corrupt the hash
3818 * table state, so each changed css_set will need its hash recomputed.
3819 * this is all done under the css_set_lock.
3820 */
3821 write_lock(&css_set_lock);
3822 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
3823 struct css_set *cg;
3824 struct hlist_node *node, *tmp;
3825 struct hlist_head *bucket = &css_set_table[i], *new_bucket;
3826
3827 hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
3828 /* skip entries that we already rehashed */
3829 if (cg->subsys[ss->subsys_id])
3830 continue;
3831 /* remove existing entry */
3832 hlist_del(&cg->hlist);
3833 /* set new value */
3834 cg->subsys[ss->subsys_id] = css;
3835 /* recompute hash and restore entry */
3836 new_bucket = css_set_hash(cg->subsys);
3837 hlist_add_head(&cg->hlist, new_bucket);
3838 }
3839 }
3840 write_unlock(&css_set_lock);
3841
3842 mutex_init(&ss->hierarchy_mutex);
3843 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
3844 ss->active = 1;
3845
3846 /* success! */
3847 mutex_unlock(&cgroup_mutex);
3848 return 0;
3849 }
3850 EXPORT_SYMBOL_GPL(cgroup_load_subsys);
3851
3852 /**
3853 * cgroup_unload_subsys: unload a modular subsystem
3854 * @ss: the subsystem to unload
3855 *
3856 * This function should be called in a modular subsystem's exitcall. When this
3857 * function is invoked, the refcount on the subsystem's module will be 0, so
3858 * the subsystem will not be attached to any hierarchy.
3859 */
cgroup_unload_subsys(struct cgroup_subsys * ss)3860 void cgroup_unload_subsys(struct cgroup_subsys *ss)
3861 {
3862 struct cg_cgroup_link *link;
3863 struct hlist_head *hhead;
3864
3865 BUG_ON(ss->module == NULL);
3866
3867 /*
3868 * we shouldn't be called if the subsystem is in use, and the use of
3869 * try_module_get in parse_cgroupfs_options should ensure that it
3870 * doesn't start being used while we're killing it off.
3871 */
3872 BUG_ON(ss->root != &rootnode);
3873
3874 mutex_lock(&cgroup_mutex);
3875 /* deassign the subsys_id */
3876 BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
3877 subsys[ss->subsys_id] = NULL;
3878
3879 /* remove subsystem from rootnode's list of subsystems */
3880 list_del_init(&ss->sibling);
3881
3882 /*
3883 * disentangle the css from all css_sets attached to the dummytop. as
3884 * in loading, we need to pay our respects to the hashtable gods.
3885 */
3886 write_lock(&css_set_lock);
3887 list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
3888 struct css_set *cg = link->cg;
3889
3890 hlist_del(&cg->hlist);
3891 BUG_ON(!cg->subsys[ss->subsys_id]);
3892 cg->subsys[ss->subsys_id] = NULL;
3893 hhead = css_set_hash(cg->subsys);
3894 hlist_add_head(&cg->hlist, hhead);
3895 }
3896 write_unlock(&css_set_lock);
3897
3898 /*
3899 * remove subsystem's css from the dummytop and free it - need to free
3900 * before marking as null because ss->destroy needs the cgrp->subsys
3901 * pointer to find their state. note that this also takes care of
3902 * freeing the css_id.
3903 */
3904 ss->destroy(ss, dummytop);
3905 dummytop->subsys[ss->subsys_id] = NULL;
3906
3907 mutex_unlock(&cgroup_mutex);
3908 }
3909 EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
3910
3911 /**
3912 * cgroup_init_early - cgroup initialization at system boot
3913 *
3914 * Initialize cgroups at system boot, and initialize any
3915 * subsystems that request early init.
3916 */
cgroup_init_early(void)3917 int __init cgroup_init_early(void)
3918 {
3919 int i;
3920 atomic_set(&init_css_set.refcount, 1);
3921 INIT_LIST_HEAD(&init_css_set.cg_links);
3922 INIT_LIST_HEAD(&init_css_set.tasks);
3923 INIT_HLIST_NODE(&init_css_set.hlist);
3924 css_set_count = 1;
3925 init_cgroup_root(&rootnode);
3926 root_count = 1;
3927 init_task.cgroups = &init_css_set;
3928
3929 init_css_set_link.cg = &init_css_set;
3930 init_css_set_link.cgrp = dummytop;
3931 list_add(&init_css_set_link.cgrp_link_list,
3932 &rootnode.top_cgroup.css_sets);
3933 list_add(&init_css_set_link.cg_link_list,
3934 &init_css_set.cg_links);
3935
3936 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
3937 INIT_HLIST_HEAD(&css_set_table[i]);
3938
3939 /* at bootup time, we don't worry about modular subsystems */
3940 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
3941 struct cgroup_subsys *ss = subsys[i];
3942
3943 BUG_ON(!ss->name);
3944 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
3945 BUG_ON(!ss->create);
3946 BUG_ON(!ss->destroy);
3947 if (ss->subsys_id != i) {
3948 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
3949 ss->name, ss->subsys_id);
3950 BUG();
3951 }
3952
3953 if (ss->early_init)
3954 cgroup_init_subsys(ss);
3955 }
3956 return 0;
3957 }
3958
3959 /**
3960 * cgroup_init - cgroup initialization
3961 *
3962 * Register cgroup filesystem and /proc file, and initialize
3963 * any subsystems that didn't request early init.
3964 */
cgroup_init(void)3965 int __init cgroup_init(void)
3966 {
3967 int err;
3968 int i;
3969 struct hlist_head *hhead;
3970
3971 err = bdi_init(&cgroup_backing_dev_info);
3972 if (err)
3973 return err;
3974
3975 /* at bootup time, we don't worry about modular subsystems */
3976 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
3977 struct cgroup_subsys *ss = subsys[i];
3978 if (!ss->early_init)
3979 cgroup_init_subsys(ss);
3980 if (ss->use_id)
3981 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
3982 }
3983
3984 /* Add init_css_set to the hash table */
3985 hhead = css_set_hash(init_css_set.subsys);
3986 hlist_add_head(&init_css_set.hlist, hhead);
3987 BUG_ON(!init_root_id(&rootnode));
3988
3989 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
3990 if (!cgroup_kobj) {
3991 err = -ENOMEM;
3992 goto out;
3993 }
3994
3995 err = register_filesystem(&cgroup_fs_type);
3996 if (err < 0) {
3997 kobject_put(cgroup_kobj);
3998 goto out;
3999 }
4000
4001 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4002
4003 out:
4004 if (err)
4005 bdi_destroy(&cgroup_backing_dev_info);
4006
4007 return err;
4008 }
4009
4010 /*
4011 * proc_cgroup_show()
4012 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4013 * - Used for /proc/<pid>/cgroup.
4014 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4015 * doesn't really matter if tsk->cgroup changes after we read it,
4016 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4017 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4018 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4019 * cgroup to top_cgroup.
4020 */
4021
4022 /* TODO: Use a proper seq_file iterator */
proc_cgroup_show(struct seq_file * m,void * v)4023 static int proc_cgroup_show(struct seq_file *m, void *v)
4024 {
4025 struct pid *pid;
4026 struct task_struct *tsk;
4027 char *buf;
4028 int retval;
4029 struct cgroupfs_root *root;
4030
4031 retval = -ENOMEM;
4032 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4033 if (!buf)
4034 goto out;
4035
4036 retval = -ESRCH;
4037 pid = m->private;
4038 tsk = get_pid_task(pid, PIDTYPE_PID);
4039 if (!tsk)
4040 goto out_free;
4041
4042 retval = 0;
4043
4044 mutex_lock(&cgroup_mutex);
4045
4046 for_each_active_root(root) {
4047 struct cgroup_subsys *ss;
4048 struct cgroup *cgrp;
4049 int count = 0;
4050
4051 seq_printf(m, "%d:", root->hierarchy_id);
4052 for_each_subsys(root, ss)
4053 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4054 if (strlen(root->name))
4055 seq_printf(m, "%sname=%s", count ? "," : "",
4056 root->name);
4057 seq_putc(m, ':');
4058 cgrp = task_cgroup_from_root(tsk, root);
4059 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4060 if (retval < 0)
4061 goto out_unlock;
4062 seq_puts(m, buf);
4063 seq_putc(m, '\n');
4064 }
4065
4066 out_unlock:
4067 mutex_unlock(&cgroup_mutex);
4068 put_task_struct(tsk);
4069 out_free:
4070 kfree(buf);
4071 out:
4072 return retval;
4073 }
4074
cgroup_open(struct inode * inode,struct file * file)4075 static int cgroup_open(struct inode *inode, struct file *file)
4076 {
4077 struct pid *pid = PROC_I(inode)->pid;
4078 return single_open(file, proc_cgroup_show, pid);
4079 }
4080
4081 const struct file_operations proc_cgroup_operations = {
4082 .open = cgroup_open,
4083 .read = seq_read,
4084 .llseek = seq_lseek,
4085 .release = single_release,
4086 };
4087
4088 /* Display information about each subsystem and each hierarchy */
proc_cgroupstats_show(struct seq_file * m,void * v)4089 static int proc_cgroupstats_show(struct seq_file *m, void *v)
4090 {
4091 int i;
4092
4093 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4094 /*
4095 * ideally we don't want subsystems moving around while we do this.
4096 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4097 * subsys/hierarchy state.
4098 */
4099 mutex_lock(&cgroup_mutex);
4100 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4101 struct cgroup_subsys *ss = subsys[i];
4102 if (ss == NULL)
4103 continue;
4104 seq_printf(m, "%s\t%d\t%d\t%d\n",
4105 ss->name, ss->root->hierarchy_id,
4106 ss->root->number_of_cgroups, !ss->disabled);
4107 }
4108 mutex_unlock(&cgroup_mutex);
4109 return 0;
4110 }
4111
cgroupstats_open(struct inode * inode,struct file * file)4112 static int cgroupstats_open(struct inode *inode, struct file *file)
4113 {
4114 return single_open(file, proc_cgroupstats_show, NULL);
4115 }
4116
4117 static const struct file_operations proc_cgroupstats_operations = {
4118 .open = cgroupstats_open,
4119 .read = seq_read,
4120 .llseek = seq_lseek,
4121 .release = single_release,
4122 };
4123
4124 /**
4125 * cgroup_fork - attach newly forked task to its parents cgroup.
4126 * @child: pointer to task_struct of forking parent process.
4127 *
4128 * Description: A task inherits its parent's cgroup at fork().
4129 *
4130 * A pointer to the shared css_set was automatically copied in
4131 * fork.c by dup_task_struct(). However, we ignore that copy, since
4132 * it was not made under the protection of RCU or cgroup_mutex, so
4133 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4134 * have already changed current->cgroups, allowing the previously
4135 * referenced cgroup group to be removed and freed.
4136 *
4137 * At the point that cgroup_fork() is called, 'current' is the parent
4138 * task, and the passed argument 'child' points to the child task.
4139 */
cgroup_fork(struct task_struct * child)4140 void cgroup_fork(struct task_struct *child)
4141 {
4142 task_lock(current);
4143 child->cgroups = current->cgroups;
4144 get_css_set(child->cgroups);
4145 task_unlock(current);
4146 INIT_LIST_HEAD(&child->cg_list);
4147 }
4148
4149 /**
4150 * cgroup_fork_callbacks - run fork callbacks
4151 * @child: the new task
4152 *
4153 * Called on a new task very soon before adding it to the
4154 * tasklist. No need to take any locks since no-one can
4155 * be operating on this task.
4156 */
cgroup_fork_callbacks(struct task_struct * child)4157 void cgroup_fork_callbacks(struct task_struct *child)
4158 {
4159 if (need_forkexit_callback) {
4160 int i;
4161 /*
4162 * forkexit callbacks are only supported for builtin
4163 * subsystems, and the builtin section of the subsys array is
4164 * immutable, so we don't need to lock the subsys array here.
4165 */
4166 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4167 struct cgroup_subsys *ss = subsys[i];
4168 if (ss->fork)
4169 ss->fork(ss, child);
4170 }
4171 }
4172 }
4173
4174 /**
4175 * cgroup_post_fork - called on a new task after adding it to the task list
4176 * @child: the task in question
4177 *
4178 * Adds the task to the list running through its css_set if necessary.
4179 * Has to be after the task is visible on the task list in case we race
4180 * with the first call to cgroup_iter_start() - to guarantee that the
4181 * new task ends up on its list.
4182 */
cgroup_post_fork(struct task_struct * child)4183 void cgroup_post_fork(struct task_struct *child)
4184 {
4185 if (use_task_css_set_links) {
4186 write_lock(&css_set_lock);
4187 task_lock(child);
4188 if (list_empty(&child->cg_list))
4189 list_add(&child->cg_list, &child->cgroups->tasks);
4190 task_unlock(child);
4191 write_unlock(&css_set_lock);
4192 }
4193 }
4194 /**
4195 * cgroup_exit - detach cgroup from exiting task
4196 * @tsk: pointer to task_struct of exiting process
4197 * @run_callback: run exit callbacks?
4198 *
4199 * Description: Detach cgroup from @tsk and release it.
4200 *
4201 * Note that cgroups marked notify_on_release force every task in
4202 * them to take the global cgroup_mutex mutex when exiting.
4203 * This could impact scaling on very large systems. Be reluctant to
4204 * use notify_on_release cgroups where very high task exit scaling
4205 * is required on large systems.
4206 *
4207 * the_top_cgroup_hack:
4208 *
4209 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4210 *
4211 * We call cgroup_exit() while the task is still competent to
4212 * handle notify_on_release(), then leave the task attached to the
4213 * root cgroup in each hierarchy for the remainder of its exit.
4214 *
4215 * To do this properly, we would increment the reference count on
4216 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4217 * code we would add a second cgroup function call, to drop that
4218 * reference. This would just create an unnecessary hot spot on
4219 * the top_cgroup reference count, to no avail.
4220 *
4221 * Normally, holding a reference to a cgroup without bumping its
4222 * count is unsafe. The cgroup could go away, or someone could
4223 * attach us to a different cgroup, decrementing the count on
4224 * the first cgroup that we never incremented. But in this case,
4225 * top_cgroup isn't going away, and either task has PF_EXITING set,
4226 * which wards off any cgroup_attach_task() attempts, or task is a failed
4227 * fork, never visible to cgroup_attach_task.
4228 */
cgroup_exit(struct task_struct * tsk,int run_callbacks)4229 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4230 {
4231 struct css_set *cg;
4232 int i;
4233
4234 /*
4235 * Unlink from the css_set task list if necessary.
4236 * Optimistically check cg_list before taking
4237 * css_set_lock
4238 */
4239 if (!list_empty(&tsk->cg_list)) {
4240 write_lock(&css_set_lock);
4241 if (!list_empty(&tsk->cg_list))
4242 list_del_init(&tsk->cg_list);
4243 write_unlock(&css_set_lock);
4244 }
4245
4246 /* Reassign the task to the init_css_set. */
4247 task_lock(tsk);
4248 cg = tsk->cgroups;
4249 tsk->cgroups = &init_css_set;
4250
4251 if (run_callbacks && need_forkexit_callback) {
4252 /*
4253 * modular subsystems can't use callbacks, so no need to lock
4254 * the subsys array
4255 */
4256 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4257 struct cgroup_subsys *ss = subsys[i];
4258 if (ss->exit) {
4259 struct cgroup *old_cgrp =
4260 rcu_dereference_raw(cg->subsys[i])->cgroup;
4261 struct cgroup *cgrp = task_cgroup(tsk, i);
4262 ss->exit(ss, cgrp, old_cgrp, tsk);
4263 }
4264 }
4265 }
4266 task_unlock(tsk);
4267
4268 if (cg)
4269 put_css_set_taskexit(cg);
4270 }
4271
4272 /**
4273 * cgroup_clone - clone the cgroup the given subsystem is attached to
4274 * @tsk: the task to be moved
4275 * @subsys: the given subsystem
4276 * @nodename: the name for the new cgroup
4277 *
4278 * Duplicate the current cgroup in the hierarchy that the given
4279 * subsystem is attached to, and move this task into the new
4280 * child.
4281 */
cgroup_clone(struct task_struct * tsk,struct cgroup_subsys * subsys,char * nodename)4282 int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
4283 char *nodename)
4284 {
4285 struct dentry *dentry;
4286 int ret = 0;
4287 struct cgroup *parent, *child;
4288 struct inode *inode;
4289 struct css_set *cg;
4290 struct cgroupfs_root *root;
4291 struct cgroup_subsys *ss;
4292
4293 /* We shouldn't be called by an unregistered subsystem */
4294 BUG_ON(!subsys->active);
4295
4296 /* First figure out what hierarchy and cgroup we're dealing
4297 * with, and pin them so we can drop cgroup_mutex */
4298 mutex_lock(&cgroup_mutex);
4299 again:
4300 root = subsys->root;
4301 if (root == &rootnode) {
4302 mutex_unlock(&cgroup_mutex);
4303 return 0;
4304 }
4305
4306 /* Pin the hierarchy */
4307 if (!atomic_inc_not_zero(&root->sb->s_active)) {
4308 /* We race with the final deactivate_super() */
4309 mutex_unlock(&cgroup_mutex);
4310 return 0;
4311 }
4312
4313 /* Keep the cgroup alive */
4314 task_lock(tsk);
4315 parent = task_cgroup(tsk, subsys->subsys_id);
4316 cg = tsk->cgroups;
4317 get_css_set(cg);
4318 task_unlock(tsk);
4319
4320 mutex_unlock(&cgroup_mutex);
4321
4322 /* Now do the VFS work to create a cgroup */
4323 inode = parent->dentry->d_inode;
4324
4325 /* Hold the parent directory mutex across this operation to
4326 * stop anyone else deleting the new cgroup */
4327 mutex_lock(&inode->i_mutex);
4328 dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
4329 if (IS_ERR(dentry)) {
4330 printk(KERN_INFO
4331 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
4332 PTR_ERR(dentry));
4333 ret = PTR_ERR(dentry);
4334 goto out_release;
4335 }
4336
4337 /* Create the cgroup directory, which also creates the cgroup */
4338 ret = vfs_mkdir(inode, dentry, 0755);
4339 child = __d_cgrp(dentry);
4340 dput(dentry);
4341 if (ret) {
4342 printk(KERN_INFO
4343 "Failed to create cgroup %s: %d\n", nodename,
4344 ret);
4345 goto out_release;
4346 }
4347
4348 /* The cgroup now exists. Retake cgroup_mutex and check
4349 * that we're still in the same state that we thought we
4350 * were. */
4351 mutex_lock(&cgroup_mutex);
4352 if ((root != subsys->root) ||
4353 (parent != task_cgroup(tsk, subsys->subsys_id))) {
4354 /* Aargh, we raced ... */
4355 mutex_unlock(&inode->i_mutex);
4356 put_css_set(cg);
4357
4358 deactivate_super(root->sb);
4359 /* The cgroup is still accessible in the VFS, but
4360 * we're not going to try to rmdir() it at this
4361 * point. */
4362 printk(KERN_INFO
4363 "Race in cgroup_clone() - leaking cgroup %s\n",
4364 nodename);
4365 goto again;
4366 }
4367
4368 /* do any required auto-setup */
4369 for_each_subsys(root, ss) {
4370 if (ss->post_clone)
4371 ss->post_clone(ss, child);
4372 }
4373
4374 /* All seems fine. Finish by moving the task into the new cgroup */
4375 ret = cgroup_attach_task(child, tsk);
4376 mutex_unlock(&cgroup_mutex);
4377
4378 out_release:
4379 mutex_unlock(&inode->i_mutex);
4380
4381 mutex_lock(&cgroup_mutex);
4382 put_css_set(cg);
4383 mutex_unlock(&cgroup_mutex);
4384 deactivate_super(root->sb);
4385 return ret;
4386 }
4387
4388 /**
4389 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
4390 * @cgrp: the cgroup in question
4391 * @task: the task in question
4392 *
4393 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4394 * hierarchy.
4395 *
4396 * If we are sending in dummytop, then presumably we are creating
4397 * the top cgroup in the subsystem.
4398 *
4399 * Called only by the ns (nsproxy) cgroup.
4400 */
cgroup_is_descendant(const struct cgroup * cgrp,struct task_struct * task)4401 int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
4402 {
4403 int ret;
4404 struct cgroup *target;
4405
4406 if (cgrp == dummytop)
4407 return 1;
4408
4409 target = task_cgroup_from_root(task, cgrp->root);
4410 while (cgrp != target && cgrp!= cgrp->top_cgroup)
4411 cgrp = cgrp->parent;
4412 ret = (cgrp == target);
4413 return ret;
4414 }
4415
check_for_release(struct cgroup * cgrp)4416 static void check_for_release(struct cgroup *cgrp)
4417 {
4418 /* All of these checks rely on RCU to keep the cgroup
4419 * structure alive */
4420 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
4421 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
4422 /* Control Group is currently removeable. If it's not
4423 * already queued for a userspace notification, queue
4424 * it now */
4425 int need_schedule_work = 0;
4426 spin_lock(&release_list_lock);
4427 if (!cgroup_is_removed(cgrp) &&
4428 list_empty(&cgrp->release_list)) {
4429 list_add(&cgrp->release_list, &release_list);
4430 need_schedule_work = 1;
4431 }
4432 spin_unlock(&release_list_lock);
4433 if (need_schedule_work)
4434 schedule_work(&release_agent_work);
4435 }
4436 }
4437
4438 /* Caller must verify that the css is not for root cgroup */
__css_put(struct cgroup_subsys_state * css,int count)4439 void __css_put(struct cgroup_subsys_state *css, int count)
4440 {
4441 struct cgroup *cgrp = css->cgroup;
4442 int val;
4443 rcu_read_lock();
4444 val = atomic_sub_return(count, &css->refcnt);
4445 if (val == 1) {
4446 if (notify_on_release(cgrp)) {
4447 set_bit(CGRP_RELEASABLE, &cgrp->flags);
4448 check_for_release(cgrp);
4449 }
4450 cgroup_wakeup_rmdir_waiter(cgrp);
4451 }
4452 rcu_read_unlock();
4453 WARN_ON_ONCE(val < 1);
4454 }
4455 EXPORT_SYMBOL_GPL(__css_put);
4456
4457 /*
4458 * Notify userspace when a cgroup is released, by running the
4459 * configured release agent with the name of the cgroup (path
4460 * relative to the root of cgroup file system) as the argument.
4461 *
4462 * Most likely, this user command will try to rmdir this cgroup.
4463 *
4464 * This races with the possibility that some other task will be
4465 * attached to this cgroup before it is removed, or that some other
4466 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4467 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4468 * unused, and this cgroup will be reprieved from its death sentence,
4469 * to continue to serve a useful existence. Next time it's released,
4470 * we will get notified again, if it still has 'notify_on_release' set.
4471 *
4472 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4473 * means only wait until the task is successfully execve()'d. The
4474 * separate release agent task is forked by call_usermodehelper(),
4475 * then control in this thread returns here, without waiting for the
4476 * release agent task. We don't bother to wait because the caller of
4477 * this routine has no use for the exit status of the release agent
4478 * task, so no sense holding our caller up for that.
4479 */
cgroup_release_agent(struct work_struct * work)4480 static void cgroup_release_agent(struct work_struct *work)
4481 {
4482 BUG_ON(work != &release_agent_work);
4483 mutex_lock(&cgroup_mutex);
4484 spin_lock(&release_list_lock);
4485 while (!list_empty(&release_list)) {
4486 char *argv[3], *envp[3];
4487 int i;
4488 char *pathbuf = NULL, *agentbuf = NULL;
4489 struct cgroup *cgrp = list_entry(release_list.next,
4490 struct cgroup,
4491 release_list);
4492 list_del_init(&cgrp->release_list);
4493 spin_unlock(&release_list_lock);
4494 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4495 if (!pathbuf)
4496 goto continue_free;
4497 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
4498 goto continue_free;
4499 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4500 if (!agentbuf)
4501 goto continue_free;
4502
4503 i = 0;
4504 argv[i++] = agentbuf;
4505 argv[i++] = pathbuf;
4506 argv[i] = NULL;
4507
4508 i = 0;
4509 /* minimal command environment */
4510 envp[i++] = "HOME=/";
4511 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4512 envp[i] = NULL;
4513
4514 /* Drop the lock while we invoke the usermode helper,
4515 * since the exec could involve hitting disk and hence
4516 * be a slow process */
4517 mutex_unlock(&cgroup_mutex);
4518 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
4519 mutex_lock(&cgroup_mutex);
4520 continue_free:
4521 kfree(pathbuf);
4522 kfree(agentbuf);
4523 spin_lock(&release_list_lock);
4524 }
4525 spin_unlock(&release_list_lock);
4526 mutex_unlock(&cgroup_mutex);
4527 }
4528
cgroup_disable(char * str)4529 static int __init cgroup_disable(char *str)
4530 {
4531 int i;
4532 char *token;
4533
4534 while ((token = strsep(&str, ",")) != NULL) {
4535 if (!*token)
4536 continue;
4537 /*
4538 * cgroup_disable, being at boot time, can't know about module
4539 * subsystems, so we don't worry about them.
4540 */
4541 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4542 struct cgroup_subsys *ss = subsys[i];
4543
4544 if (!strcmp(token, ss->name)) {
4545 ss->disabled = 1;
4546 printk(KERN_INFO "Disabling %s control group"
4547 " subsystem\n", ss->name);
4548 break;
4549 }
4550 }
4551 }
4552 return 1;
4553 }
4554 __setup("cgroup_disable=", cgroup_disable);
4555
4556 /*
4557 * Functons for CSS ID.
4558 */
4559
4560 /*
4561 *To get ID other than 0, this should be called when !cgroup_is_removed().
4562 */
css_id(struct cgroup_subsys_state * css)4563 unsigned short css_id(struct cgroup_subsys_state *css)
4564 {
4565 struct css_id *cssid;
4566
4567 /*
4568 * This css_id() can return correct value when somone has refcnt
4569 * on this or this is under rcu_read_lock(). Once css->id is allocated,
4570 * it's unchanged until freed.
4571 */
4572 cssid = rcu_dereference_check(css->id,
4573 rcu_read_lock_held() || atomic_read(&css->refcnt));
4574
4575 if (cssid)
4576 return cssid->id;
4577 return 0;
4578 }
4579 EXPORT_SYMBOL_GPL(css_id);
4580
css_depth(struct cgroup_subsys_state * css)4581 unsigned short css_depth(struct cgroup_subsys_state *css)
4582 {
4583 struct css_id *cssid;
4584
4585 cssid = rcu_dereference_check(css->id,
4586 rcu_read_lock_held() || atomic_read(&css->refcnt));
4587
4588 if (cssid)
4589 return cssid->depth;
4590 return 0;
4591 }
4592 EXPORT_SYMBOL_GPL(css_depth);
4593
4594 /**
4595 * css_is_ancestor - test "root" css is an ancestor of "child"
4596 * @child: the css to be tested.
4597 * @root: the css supporsed to be an ancestor of the child.
4598 *
4599 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
4600 * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
4601 * But, considering usual usage, the csses should be valid objects after test.
4602 * Assuming that the caller will do some action to the child if this returns
4603 * returns true, the caller must take "child";s reference count.
4604 * If "child" is valid object and this returns true, "root" is valid, too.
4605 */
4606
css_is_ancestor(struct cgroup_subsys_state * child,const struct cgroup_subsys_state * root)4607 bool css_is_ancestor(struct cgroup_subsys_state *child,
4608 const struct cgroup_subsys_state *root)
4609 {
4610 struct css_id *child_id;
4611 struct css_id *root_id;
4612 bool ret = true;
4613
4614 rcu_read_lock();
4615 child_id = rcu_dereference(child->id);
4616 root_id = rcu_dereference(root->id);
4617 if (!child_id
4618 || !root_id
4619 || (child_id->depth < root_id->depth)
4620 || (child_id->stack[root_id->depth] != root_id->id))
4621 ret = false;
4622 rcu_read_unlock();
4623 return ret;
4624 }
4625
__free_css_id_cb(struct rcu_head * head)4626 static void __free_css_id_cb(struct rcu_head *head)
4627 {
4628 struct css_id *id;
4629
4630 id = container_of(head, struct css_id, rcu_head);
4631 kfree(id);
4632 }
4633
free_css_id(struct cgroup_subsys * ss,struct cgroup_subsys_state * css)4634 void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
4635 {
4636 struct css_id *id = css->id;
4637 /* When this is called before css_id initialization, id can be NULL */
4638 if (!id)
4639 return;
4640
4641 BUG_ON(!ss->use_id);
4642
4643 rcu_assign_pointer(id->css, NULL);
4644 rcu_assign_pointer(css->id, NULL);
4645 spin_lock(&ss->id_lock);
4646 idr_remove(&ss->idr, id->id);
4647 spin_unlock(&ss->id_lock);
4648 call_rcu(&id->rcu_head, __free_css_id_cb);
4649 }
4650 EXPORT_SYMBOL_GPL(free_css_id);
4651
4652 /*
4653 * This is called by init or create(). Then, calls to this function are
4654 * always serialized (By cgroup_mutex() at create()).
4655 */
4656
get_new_cssid(struct cgroup_subsys * ss,int depth)4657 static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
4658 {
4659 struct css_id *newid;
4660 int myid, error, size;
4661
4662 BUG_ON(!ss->use_id);
4663
4664 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
4665 newid = kzalloc(size, GFP_KERNEL);
4666 if (!newid)
4667 return ERR_PTR(-ENOMEM);
4668 /* get id */
4669 if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
4670 error = -ENOMEM;
4671 goto err_out;
4672 }
4673 spin_lock(&ss->id_lock);
4674 /* Don't use 0. allocates an ID of 1-65535 */
4675 error = idr_get_new_above(&ss->idr, newid, 1, &myid);
4676 spin_unlock(&ss->id_lock);
4677
4678 /* Returns error when there are no free spaces for new ID.*/
4679 if (error) {
4680 error = -ENOSPC;
4681 goto err_out;
4682 }
4683 if (myid > CSS_ID_MAX)
4684 goto remove_idr;
4685
4686 newid->id = myid;
4687 newid->depth = depth;
4688 return newid;
4689 remove_idr:
4690 error = -ENOSPC;
4691 spin_lock(&ss->id_lock);
4692 idr_remove(&ss->idr, myid);
4693 spin_unlock(&ss->id_lock);
4694 err_out:
4695 kfree(newid);
4696 return ERR_PTR(error);
4697
4698 }
4699
cgroup_init_idr(struct cgroup_subsys * ss,struct cgroup_subsys_state * rootcss)4700 static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
4701 struct cgroup_subsys_state *rootcss)
4702 {
4703 struct css_id *newid;
4704
4705 spin_lock_init(&ss->id_lock);
4706 idr_init(&ss->idr);
4707
4708 newid = get_new_cssid(ss, 0);
4709 if (IS_ERR(newid))
4710 return PTR_ERR(newid);
4711
4712 newid->stack[0] = newid->id;
4713 newid->css = rootcss;
4714 rootcss->id = newid;
4715 return 0;
4716 }
4717
alloc_css_id(struct cgroup_subsys * ss,struct cgroup * parent,struct cgroup * child)4718 static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
4719 struct cgroup *child)
4720 {
4721 int subsys_id, i, depth = 0;
4722 struct cgroup_subsys_state *parent_css, *child_css;
4723 struct css_id *child_id, *parent_id;
4724
4725 subsys_id = ss->subsys_id;
4726 parent_css = parent->subsys[subsys_id];
4727 child_css = child->subsys[subsys_id];
4728 parent_id = parent_css->id;
4729 depth = parent_id->depth + 1;
4730
4731 child_id = get_new_cssid(ss, depth);
4732 if (IS_ERR(child_id))
4733 return PTR_ERR(child_id);
4734
4735 for (i = 0; i < depth; i++)
4736 child_id->stack[i] = parent_id->stack[i];
4737 child_id->stack[depth] = child_id->id;
4738 /*
4739 * child_id->css pointer will be set after this cgroup is available
4740 * see cgroup_populate_dir()
4741 */
4742 rcu_assign_pointer(child_css->id, child_id);
4743
4744 return 0;
4745 }
4746
4747 /**
4748 * css_lookup - lookup css by id
4749 * @ss: cgroup subsys to be looked into.
4750 * @id: the id
4751 *
4752 * Returns pointer to cgroup_subsys_state if there is valid one with id.
4753 * NULL if not. Should be called under rcu_read_lock()
4754 */
css_lookup(struct cgroup_subsys * ss,int id)4755 struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
4756 {
4757 struct css_id *cssid = NULL;
4758
4759 BUG_ON(!ss->use_id);
4760 cssid = idr_find(&ss->idr, id);
4761
4762 if (unlikely(!cssid))
4763 return NULL;
4764
4765 return rcu_dereference(cssid->css);
4766 }
4767 EXPORT_SYMBOL_GPL(css_lookup);
4768
4769 /**
4770 * css_get_next - lookup next cgroup under specified hierarchy.
4771 * @ss: pointer to subsystem
4772 * @id: current position of iteration.
4773 * @root: pointer to css. search tree under this.
4774 * @foundid: position of found object.
4775 *
4776 * Search next css under the specified hierarchy of rootid. Calling under
4777 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
4778 */
4779 struct cgroup_subsys_state *
css_get_next(struct cgroup_subsys * ss,int id,struct cgroup_subsys_state * root,int * foundid)4780 css_get_next(struct cgroup_subsys *ss, int id,
4781 struct cgroup_subsys_state *root, int *foundid)
4782 {
4783 struct cgroup_subsys_state *ret = NULL;
4784 struct css_id *tmp;
4785 int tmpid;
4786 int rootid = css_id(root);
4787 int depth = css_depth(root);
4788
4789 if (!rootid)
4790 return NULL;
4791
4792 BUG_ON(!ss->use_id);
4793 /* fill start point for scan */
4794 tmpid = id;
4795 while (1) {
4796 /*
4797 * scan next entry from bitmap(tree), tmpid is updated after
4798 * idr_get_next().
4799 */
4800 spin_lock(&ss->id_lock);
4801 tmp = idr_get_next(&ss->idr, &tmpid);
4802 spin_unlock(&ss->id_lock);
4803
4804 if (!tmp)
4805 break;
4806 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
4807 ret = rcu_dereference(tmp->css);
4808 if (ret) {
4809 *foundid = tmpid;
4810 break;
4811 }
4812 }
4813 /* continue to scan from next id */
4814 tmpid = tmpid + 1;
4815 }
4816 return ret;
4817 }
4818
4819 /*
4820 * get corresponding css from file open on cgroupfs directory
4821 */
cgroup_css_from_dir(struct file * f,int id)4822 struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
4823 {
4824 struct cgroup *cgrp;
4825 struct inode *inode;
4826 struct cgroup_subsys_state *css;
4827
4828 inode = f->f_dentry->d_inode;
4829 /* check in cgroup filesystem dir */
4830 if (inode->i_op != &cgroup_dir_inode_operations)
4831 return ERR_PTR(-EBADF);
4832
4833 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
4834 return ERR_PTR(-EINVAL);
4835
4836 /* get cgroup */
4837 cgrp = __d_cgrp(f->f_dentry);
4838 css = cgrp->subsys[id];
4839 return css ? css : ERR_PTR(-ENOENT);
4840 }
4841
4842 #ifdef CONFIG_CGROUP_DEBUG
debug_create(struct cgroup_subsys * ss,struct cgroup * cont)4843 static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss,
4844 struct cgroup *cont)
4845 {
4846 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
4847
4848 if (!css)
4849 return ERR_PTR(-ENOMEM);
4850
4851 return css;
4852 }
4853
debug_destroy(struct cgroup_subsys * ss,struct cgroup * cont)4854 static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
4855 {
4856 kfree(cont->subsys[debug_subsys_id]);
4857 }
4858
cgroup_refcount_read(struct cgroup * cont,struct cftype * cft)4859 static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
4860 {
4861 return atomic_read(&cont->count);
4862 }
4863
debug_taskcount_read(struct cgroup * cont,struct cftype * cft)4864 static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
4865 {
4866 return cgroup_task_count(cont);
4867 }
4868
current_css_set_read(struct cgroup * cont,struct cftype * cft)4869 static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
4870 {
4871 return (u64)(unsigned long)current->cgroups;
4872 }
4873
current_css_set_refcount_read(struct cgroup * cont,struct cftype * cft)4874 static u64 current_css_set_refcount_read(struct cgroup *cont,
4875 struct cftype *cft)
4876 {
4877 u64 count;
4878
4879 rcu_read_lock();
4880 count = atomic_read(¤t->cgroups->refcount);
4881 rcu_read_unlock();
4882 return count;
4883 }
4884
current_css_set_cg_links_read(struct cgroup * cont,struct cftype * cft,struct seq_file * seq)4885 static int current_css_set_cg_links_read(struct cgroup *cont,
4886 struct cftype *cft,
4887 struct seq_file *seq)
4888 {
4889 struct cg_cgroup_link *link;
4890 struct css_set *cg;
4891
4892 read_lock(&css_set_lock);
4893 rcu_read_lock();
4894 cg = rcu_dereference(current->cgroups);
4895 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
4896 struct cgroup *c = link->cgrp;
4897 const char *name;
4898
4899 if (c->dentry)
4900 name = c->dentry->d_name.name;
4901 else
4902 name = "?";
4903 seq_printf(seq, "Root %d group %s\n",
4904 c->root->hierarchy_id, name);
4905 }
4906 rcu_read_unlock();
4907 read_unlock(&css_set_lock);
4908 return 0;
4909 }
4910
4911 #define MAX_TASKS_SHOWN_PER_CSS 25
cgroup_css_links_read(struct cgroup * cont,struct cftype * cft,struct seq_file * seq)4912 static int cgroup_css_links_read(struct cgroup *cont,
4913 struct cftype *cft,
4914 struct seq_file *seq)
4915 {
4916 struct cg_cgroup_link *link;
4917
4918 read_lock(&css_set_lock);
4919 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
4920 struct css_set *cg = link->cg;
4921 struct task_struct *task;
4922 int count = 0;
4923 seq_printf(seq, "css_set %p\n", cg);
4924 list_for_each_entry(task, &cg->tasks, cg_list) {
4925 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
4926 seq_puts(seq, " ...\n");
4927 break;
4928 } else {
4929 seq_printf(seq, " task %d\n",
4930 task_pid_vnr(task));
4931 }
4932 }
4933 }
4934 read_unlock(&css_set_lock);
4935 return 0;
4936 }
4937
releasable_read(struct cgroup * cgrp,struct cftype * cft)4938 static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
4939 {
4940 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
4941 }
4942
4943 static struct cftype debug_files[] = {
4944 {
4945 .name = "cgroup_refcount",
4946 .read_u64 = cgroup_refcount_read,
4947 },
4948 {
4949 .name = "taskcount",
4950 .read_u64 = debug_taskcount_read,
4951 },
4952
4953 {
4954 .name = "current_css_set",
4955 .read_u64 = current_css_set_read,
4956 },
4957
4958 {
4959 .name = "current_css_set_refcount",
4960 .read_u64 = current_css_set_refcount_read,
4961 },
4962
4963 {
4964 .name = "current_css_set_cg_links",
4965 .read_seq_string = current_css_set_cg_links_read,
4966 },
4967
4968 {
4969 .name = "cgroup_css_links",
4970 .read_seq_string = cgroup_css_links_read,
4971 },
4972
4973 {
4974 .name = "releasable",
4975 .read_u64 = releasable_read,
4976 },
4977 };
4978
debug_populate(struct cgroup_subsys * ss,struct cgroup * cont)4979 static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
4980 {
4981 return cgroup_add_files(cont, ss, debug_files,
4982 ARRAY_SIZE(debug_files));
4983 }
4984
4985 struct cgroup_subsys debug_subsys = {
4986 .name = "debug",
4987 .create = debug_create,
4988 .destroy = debug_destroy,
4989 .populate = debug_populate,
4990 .subsys_id = debug_subsys_id,
4991 };
4992 #endif /* CONFIG_CGROUP_DEBUG */
4993