1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* auditsc.c -- System-call auditing support
3 * Handles all system-call specific auditing features.
4 *
5 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
6 * Copyright 2005 Hewlett-Packard Development Company, L.P.
7 * Copyright (C) 2005, 2006 IBM Corporation
8 * All Rights Reserved.
9 *
10 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
11 *
12 * Many of the ideas implemented here are from Stephen C. Tweedie,
13 * especially the idea of avoiding a copy by using getname.
14 *
15 * The method for actual interception of syscall entry and exit (not in
16 * this file -- see entry.S) is based on a GPL'd patch written by
17 * okir@suse.de and Copyright 2003 SuSE Linux AG.
18 *
19 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
20 * 2006.
21 *
22 * The support of additional filter rules compares (>, <, >=, <=) was
23 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
24 *
25 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
26 * filesystem information.
27 *
28 * Subject and object context labeling support added by <danjones@us.ibm.com>
29 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
30 */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #include <linux/init.h>
35 #include <asm/types.h>
36 #include <linux/atomic.h>
37 #include <linux/fs.h>
38 #include <linux/namei.h>
39 #include <linux/mm.h>
40 #include <linux/export.h>
41 #include <linux/slab.h>
42 #include <linux/mount.h>
43 #include <linux/socket.h>
44 #include <linux/mqueue.h>
45 #include <linux/audit.h>
46 #include <linux/personality.h>
47 #include <linux/time.h>
48 #include <linux/netlink.h>
49 #include <linux/compiler.h>
50 #include <asm/unistd.h>
51 #include <linux/security.h>
52 #include <linux/list.h>
53 #include <linux/binfmts.h>
54 #include <linux/highmem.h>
55 #include <linux/syscalls.h>
56 #include <asm/syscall.h>
57 #include <linux/capability.h>
58 #include <linux/fs_struct.h>
59 #include <linux/compat.h>
60 #include <linux/ctype.h>
61 #include <linux/string.h>
62 #include <linux/uaccess.h>
63 #include <linux/fsnotify_backend.h>
64 #include <uapi/linux/limits.h>
65 #include <uapi/linux/netfilter/nf_tables.h>
66 #include <uapi/linux/openat2.h> // struct open_how
67
68 #include "audit.h"
69
70 /* flags stating the success for a syscall */
71 #define AUDITSC_INVALID 0
72 #define AUDITSC_SUCCESS 1
73 #define AUDITSC_FAILURE 2
74
75 /* no execve audit message should be longer than this (userspace limits),
76 * see the note near the top of audit_log_execve_info() about this value */
77 #define MAX_EXECVE_AUDIT_LEN 7500
78
79 /* max length to print of cmdline/proctitle value during audit */
80 #define MAX_PROCTITLE_AUDIT_LEN 128
81
82 /* number of audit rules */
83 int audit_n_rules;
84
85 /* determines whether we collect data for signals sent */
86 int audit_signals;
87
88 struct audit_aux_data {
89 struct audit_aux_data *next;
90 int type;
91 };
92
93 /* Number of target pids per aux struct. */
94 #define AUDIT_AUX_PIDS 16
95
96 struct audit_aux_data_pids {
97 struct audit_aux_data d;
98 pid_t target_pid[AUDIT_AUX_PIDS];
99 kuid_t target_auid[AUDIT_AUX_PIDS];
100 kuid_t target_uid[AUDIT_AUX_PIDS];
101 unsigned int target_sessionid[AUDIT_AUX_PIDS];
102 u32 target_sid[AUDIT_AUX_PIDS];
103 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
104 int pid_count;
105 };
106
107 struct audit_aux_data_bprm_fcaps {
108 struct audit_aux_data d;
109 struct audit_cap_data fcap;
110 unsigned int fcap_ver;
111 struct audit_cap_data old_pcap;
112 struct audit_cap_data new_pcap;
113 };
114
115 struct audit_tree_refs {
116 struct audit_tree_refs *next;
117 struct audit_chunk *c[31];
118 };
119
120 struct audit_nfcfgop_tab {
121 enum audit_nfcfgop op;
122 const char *s;
123 };
124
125 static const struct audit_nfcfgop_tab audit_nfcfgs[] = {
126 { AUDIT_XT_OP_REGISTER, "xt_register" },
127 { AUDIT_XT_OP_REPLACE, "xt_replace" },
128 { AUDIT_XT_OP_UNREGISTER, "xt_unregister" },
129 { AUDIT_NFT_OP_TABLE_REGISTER, "nft_register_table" },
130 { AUDIT_NFT_OP_TABLE_UNREGISTER, "nft_unregister_table" },
131 { AUDIT_NFT_OP_CHAIN_REGISTER, "nft_register_chain" },
132 { AUDIT_NFT_OP_CHAIN_UNREGISTER, "nft_unregister_chain" },
133 { AUDIT_NFT_OP_RULE_REGISTER, "nft_register_rule" },
134 { AUDIT_NFT_OP_RULE_UNREGISTER, "nft_unregister_rule" },
135 { AUDIT_NFT_OP_SET_REGISTER, "nft_register_set" },
136 { AUDIT_NFT_OP_SET_UNREGISTER, "nft_unregister_set" },
137 { AUDIT_NFT_OP_SETELEM_REGISTER, "nft_register_setelem" },
138 { AUDIT_NFT_OP_SETELEM_UNREGISTER, "nft_unregister_setelem" },
139 { AUDIT_NFT_OP_GEN_REGISTER, "nft_register_gen" },
140 { AUDIT_NFT_OP_OBJ_REGISTER, "nft_register_obj" },
141 { AUDIT_NFT_OP_OBJ_UNREGISTER, "nft_unregister_obj" },
142 { AUDIT_NFT_OP_OBJ_RESET, "nft_reset_obj" },
143 { AUDIT_NFT_OP_FLOWTABLE_REGISTER, "nft_register_flowtable" },
144 { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, "nft_unregister_flowtable" },
145 { AUDIT_NFT_OP_INVALID, "nft_invalid" },
146 };
147
audit_match_perm(struct audit_context * ctx,int mask)148 static int audit_match_perm(struct audit_context *ctx, int mask)
149 {
150 unsigned n;
151
152 if (unlikely(!ctx))
153 return 0;
154 n = ctx->major;
155
156 switch (audit_classify_syscall(ctx->arch, n)) {
157 case AUDITSC_NATIVE:
158 if ((mask & AUDIT_PERM_WRITE) &&
159 audit_match_class(AUDIT_CLASS_WRITE, n))
160 return 1;
161 if ((mask & AUDIT_PERM_READ) &&
162 audit_match_class(AUDIT_CLASS_READ, n))
163 return 1;
164 if ((mask & AUDIT_PERM_ATTR) &&
165 audit_match_class(AUDIT_CLASS_CHATTR, n))
166 return 1;
167 return 0;
168 case AUDITSC_COMPAT: /* 32bit on biarch */
169 if ((mask & AUDIT_PERM_WRITE) &&
170 audit_match_class(AUDIT_CLASS_WRITE_32, n))
171 return 1;
172 if ((mask & AUDIT_PERM_READ) &&
173 audit_match_class(AUDIT_CLASS_READ_32, n))
174 return 1;
175 if ((mask & AUDIT_PERM_ATTR) &&
176 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
177 return 1;
178 return 0;
179 case AUDITSC_OPEN:
180 return mask & ACC_MODE(ctx->argv[1]);
181 case AUDITSC_OPENAT:
182 return mask & ACC_MODE(ctx->argv[2]);
183 case AUDITSC_SOCKETCALL:
184 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
185 case AUDITSC_EXECVE:
186 return mask & AUDIT_PERM_EXEC;
187 case AUDITSC_OPENAT2:
188 return mask & ACC_MODE((u32)ctx->openat2.flags);
189 default:
190 return 0;
191 }
192 }
193
audit_match_filetype(struct audit_context * ctx,int val)194 static int audit_match_filetype(struct audit_context *ctx, int val)
195 {
196 struct audit_names *n;
197 umode_t mode = (umode_t)val;
198
199 if (unlikely(!ctx))
200 return 0;
201
202 list_for_each_entry(n, &ctx->names_list, list) {
203 if ((n->ino != AUDIT_INO_UNSET) &&
204 ((n->mode & S_IFMT) == mode))
205 return 1;
206 }
207
208 return 0;
209 }
210
211 /*
212 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
213 * ->first_trees points to its beginning, ->trees - to the current end of data.
214 * ->tree_count is the number of free entries in array pointed to by ->trees.
215 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
216 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
217 * it's going to remain 1-element for almost any setup) until we free context itself.
218 * References in it _are_ dropped - at the same time we free/drop aux stuff.
219 */
220
audit_set_auditable(struct audit_context * ctx)221 static void audit_set_auditable(struct audit_context *ctx)
222 {
223 if (!ctx->prio) {
224 ctx->prio = 1;
225 ctx->current_state = AUDIT_STATE_RECORD;
226 }
227 }
228
put_tree_ref(struct audit_context * ctx,struct audit_chunk * chunk)229 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
230 {
231 struct audit_tree_refs *p = ctx->trees;
232 int left = ctx->tree_count;
233
234 if (likely(left)) {
235 p->c[--left] = chunk;
236 ctx->tree_count = left;
237 return 1;
238 }
239 if (!p)
240 return 0;
241 p = p->next;
242 if (p) {
243 p->c[30] = chunk;
244 ctx->trees = p;
245 ctx->tree_count = 30;
246 return 1;
247 }
248 return 0;
249 }
250
grow_tree_refs(struct audit_context * ctx)251 static int grow_tree_refs(struct audit_context *ctx)
252 {
253 struct audit_tree_refs *p = ctx->trees;
254
255 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
256 if (!ctx->trees) {
257 ctx->trees = p;
258 return 0;
259 }
260 if (p)
261 p->next = ctx->trees;
262 else
263 ctx->first_trees = ctx->trees;
264 ctx->tree_count = 31;
265 return 1;
266 }
267
unroll_tree_refs(struct audit_context * ctx,struct audit_tree_refs * p,int count)268 static void unroll_tree_refs(struct audit_context *ctx,
269 struct audit_tree_refs *p, int count)
270 {
271 struct audit_tree_refs *q;
272 int n;
273
274 if (!p) {
275 /* we started with empty chain */
276 p = ctx->first_trees;
277 count = 31;
278 /* if the very first allocation has failed, nothing to do */
279 if (!p)
280 return;
281 }
282 n = count;
283 for (q = p; q != ctx->trees; q = q->next, n = 31) {
284 while (n--) {
285 audit_put_chunk(q->c[n]);
286 q->c[n] = NULL;
287 }
288 }
289 while (n-- > ctx->tree_count) {
290 audit_put_chunk(q->c[n]);
291 q->c[n] = NULL;
292 }
293 ctx->trees = p;
294 ctx->tree_count = count;
295 }
296
free_tree_refs(struct audit_context * ctx)297 static void free_tree_refs(struct audit_context *ctx)
298 {
299 struct audit_tree_refs *p, *q;
300
301 for (p = ctx->first_trees; p; p = q) {
302 q = p->next;
303 kfree(p);
304 }
305 }
306
match_tree_refs(struct audit_context * ctx,struct audit_tree * tree)307 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
308 {
309 struct audit_tree_refs *p;
310 int n;
311
312 if (!tree)
313 return 0;
314 /* full ones */
315 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
316 for (n = 0; n < 31; n++)
317 if (audit_tree_match(p->c[n], tree))
318 return 1;
319 }
320 /* partial */
321 if (p) {
322 for (n = ctx->tree_count; n < 31; n++)
323 if (audit_tree_match(p->c[n], tree))
324 return 1;
325 }
326 return 0;
327 }
328
audit_compare_uid(kuid_t uid,struct audit_names * name,struct audit_field * f,struct audit_context * ctx)329 static int audit_compare_uid(kuid_t uid,
330 struct audit_names *name,
331 struct audit_field *f,
332 struct audit_context *ctx)
333 {
334 struct audit_names *n;
335 int rc;
336
337 if (name) {
338 rc = audit_uid_comparator(uid, f->op, name->uid);
339 if (rc)
340 return rc;
341 }
342
343 if (ctx) {
344 list_for_each_entry(n, &ctx->names_list, list) {
345 rc = audit_uid_comparator(uid, f->op, n->uid);
346 if (rc)
347 return rc;
348 }
349 }
350 return 0;
351 }
352
audit_compare_gid(kgid_t gid,struct audit_names * name,struct audit_field * f,struct audit_context * ctx)353 static int audit_compare_gid(kgid_t gid,
354 struct audit_names *name,
355 struct audit_field *f,
356 struct audit_context *ctx)
357 {
358 struct audit_names *n;
359 int rc;
360
361 if (name) {
362 rc = audit_gid_comparator(gid, f->op, name->gid);
363 if (rc)
364 return rc;
365 }
366
367 if (ctx) {
368 list_for_each_entry(n, &ctx->names_list, list) {
369 rc = audit_gid_comparator(gid, f->op, n->gid);
370 if (rc)
371 return rc;
372 }
373 }
374 return 0;
375 }
376
audit_field_compare(struct task_struct * tsk,const struct cred * cred,struct audit_field * f,struct audit_context * ctx,struct audit_names * name)377 static int audit_field_compare(struct task_struct *tsk,
378 const struct cred *cred,
379 struct audit_field *f,
380 struct audit_context *ctx,
381 struct audit_names *name)
382 {
383 switch (f->val) {
384 /* process to file object comparisons */
385 case AUDIT_COMPARE_UID_TO_OBJ_UID:
386 return audit_compare_uid(cred->uid, name, f, ctx);
387 case AUDIT_COMPARE_GID_TO_OBJ_GID:
388 return audit_compare_gid(cred->gid, name, f, ctx);
389 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
390 return audit_compare_uid(cred->euid, name, f, ctx);
391 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
392 return audit_compare_gid(cred->egid, name, f, ctx);
393 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
394 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
395 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
396 return audit_compare_uid(cred->suid, name, f, ctx);
397 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
398 return audit_compare_gid(cred->sgid, name, f, ctx);
399 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
400 return audit_compare_uid(cred->fsuid, name, f, ctx);
401 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
402 return audit_compare_gid(cred->fsgid, name, f, ctx);
403 /* uid comparisons */
404 case AUDIT_COMPARE_UID_TO_AUID:
405 return audit_uid_comparator(cred->uid, f->op,
406 audit_get_loginuid(tsk));
407 case AUDIT_COMPARE_UID_TO_EUID:
408 return audit_uid_comparator(cred->uid, f->op, cred->euid);
409 case AUDIT_COMPARE_UID_TO_SUID:
410 return audit_uid_comparator(cred->uid, f->op, cred->suid);
411 case AUDIT_COMPARE_UID_TO_FSUID:
412 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
413 /* auid comparisons */
414 case AUDIT_COMPARE_AUID_TO_EUID:
415 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
416 cred->euid);
417 case AUDIT_COMPARE_AUID_TO_SUID:
418 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
419 cred->suid);
420 case AUDIT_COMPARE_AUID_TO_FSUID:
421 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
422 cred->fsuid);
423 /* euid comparisons */
424 case AUDIT_COMPARE_EUID_TO_SUID:
425 return audit_uid_comparator(cred->euid, f->op, cred->suid);
426 case AUDIT_COMPARE_EUID_TO_FSUID:
427 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
428 /* suid comparisons */
429 case AUDIT_COMPARE_SUID_TO_FSUID:
430 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
431 /* gid comparisons */
432 case AUDIT_COMPARE_GID_TO_EGID:
433 return audit_gid_comparator(cred->gid, f->op, cred->egid);
434 case AUDIT_COMPARE_GID_TO_SGID:
435 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
436 case AUDIT_COMPARE_GID_TO_FSGID:
437 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
438 /* egid comparisons */
439 case AUDIT_COMPARE_EGID_TO_SGID:
440 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
441 case AUDIT_COMPARE_EGID_TO_FSGID:
442 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
443 /* sgid comparison */
444 case AUDIT_COMPARE_SGID_TO_FSGID:
445 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
446 default:
447 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
448 return 0;
449 }
450 return 0;
451 }
452
453 /* Determine if any context name data matches a rule's watch data */
454 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
455 * otherwise.
456 *
457 * If task_creation is true, this is an explicit indication that we are
458 * filtering a task rule at task creation time. This and tsk == current are
459 * the only situations where tsk->cred may be accessed without an rcu read lock.
460 */
audit_filter_rules(struct task_struct * tsk,struct audit_krule * rule,struct audit_context * ctx,struct audit_names * name,enum audit_state * state,bool task_creation)461 static int audit_filter_rules(struct task_struct *tsk,
462 struct audit_krule *rule,
463 struct audit_context *ctx,
464 struct audit_names *name,
465 enum audit_state *state,
466 bool task_creation)
467 {
468 const struct cred *cred;
469 int i, need_sid = 1;
470 u32 sid;
471 unsigned int sessionid;
472
473 if (ctx && rule->prio <= ctx->prio)
474 return 0;
475
476 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
477
478 for (i = 0; i < rule->field_count; i++) {
479 struct audit_field *f = &rule->fields[i];
480 struct audit_names *n;
481 int result = 0;
482 pid_t pid;
483
484 switch (f->type) {
485 case AUDIT_PID:
486 pid = task_tgid_nr(tsk);
487 result = audit_comparator(pid, f->op, f->val);
488 break;
489 case AUDIT_PPID:
490 if (ctx) {
491 if (!ctx->ppid)
492 ctx->ppid = task_ppid_nr(tsk);
493 result = audit_comparator(ctx->ppid, f->op, f->val);
494 }
495 break;
496 case AUDIT_EXE:
497 result = audit_exe_compare(tsk, rule->exe);
498 if (f->op == Audit_not_equal)
499 result = !result;
500 break;
501 case AUDIT_UID:
502 result = audit_uid_comparator(cred->uid, f->op, f->uid);
503 break;
504 case AUDIT_EUID:
505 result = audit_uid_comparator(cred->euid, f->op, f->uid);
506 break;
507 case AUDIT_SUID:
508 result = audit_uid_comparator(cred->suid, f->op, f->uid);
509 break;
510 case AUDIT_FSUID:
511 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
512 break;
513 case AUDIT_GID:
514 result = audit_gid_comparator(cred->gid, f->op, f->gid);
515 if (f->op == Audit_equal) {
516 if (!result)
517 result = groups_search(cred->group_info, f->gid);
518 } else if (f->op == Audit_not_equal) {
519 if (result)
520 result = !groups_search(cred->group_info, f->gid);
521 }
522 break;
523 case AUDIT_EGID:
524 result = audit_gid_comparator(cred->egid, f->op, f->gid);
525 if (f->op == Audit_equal) {
526 if (!result)
527 result = groups_search(cred->group_info, f->gid);
528 } else if (f->op == Audit_not_equal) {
529 if (result)
530 result = !groups_search(cred->group_info, f->gid);
531 }
532 break;
533 case AUDIT_SGID:
534 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
535 break;
536 case AUDIT_FSGID:
537 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
538 break;
539 case AUDIT_SESSIONID:
540 sessionid = audit_get_sessionid(tsk);
541 result = audit_comparator(sessionid, f->op, f->val);
542 break;
543 case AUDIT_PERS:
544 result = audit_comparator(tsk->personality, f->op, f->val);
545 break;
546 case AUDIT_ARCH:
547 if (ctx)
548 result = audit_comparator(ctx->arch, f->op, f->val);
549 break;
550
551 case AUDIT_EXIT:
552 if (ctx && ctx->return_valid != AUDITSC_INVALID)
553 result = audit_comparator(ctx->return_code, f->op, f->val);
554 break;
555 case AUDIT_SUCCESS:
556 if (ctx && ctx->return_valid != AUDITSC_INVALID) {
557 if (f->val)
558 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
559 else
560 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
561 }
562 break;
563 case AUDIT_DEVMAJOR:
564 if (name) {
565 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
566 audit_comparator(MAJOR(name->rdev), f->op, f->val))
567 ++result;
568 } else if (ctx) {
569 list_for_each_entry(n, &ctx->names_list, list) {
570 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
571 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
572 ++result;
573 break;
574 }
575 }
576 }
577 break;
578 case AUDIT_DEVMINOR:
579 if (name) {
580 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
581 audit_comparator(MINOR(name->rdev), f->op, f->val))
582 ++result;
583 } else if (ctx) {
584 list_for_each_entry(n, &ctx->names_list, list) {
585 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
586 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
587 ++result;
588 break;
589 }
590 }
591 }
592 break;
593 case AUDIT_INODE:
594 if (name)
595 result = audit_comparator(name->ino, f->op, f->val);
596 else if (ctx) {
597 list_for_each_entry(n, &ctx->names_list, list) {
598 if (audit_comparator(n->ino, f->op, f->val)) {
599 ++result;
600 break;
601 }
602 }
603 }
604 break;
605 case AUDIT_OBJ_UID:
606 if (name) {
607 result = audit_uid_comparator(name->uid, f->op, f->uid);
608 } else if (ctx) {
609 list_for_each_entry(n, &ctx->names_list, list) {
610 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
611 ++result;
612 break;
613 }
614 }
615 }
616 break;
617 case AUDIT_OBJ_GID:
618 if (name) {
619 result = audit_gid_comparator(name->gid, f->op, f->gid);
620 } else if (ctx) {
621 list_for_each_entry(n, &ctx->names_list, list) {
622 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
623 ++result;
624 break;
625 }
626 }
627 }
628 break;
629 case AUDIT_WATCH:
630 if (name) {
631 result = audit_watch_compare(rule->watch,
632 name->ino,
633 name->dev);
634 if (f->op == Audit_not_equal)
635 result = !result;
636 }
637 break;
638 case AUDIT_DIR:
639 if (ctx) {
640 result = match_tree_refs(ctx, rule->tree);
641 if (f->op == Audit_not_equal)
642 result = !result;
643 }
644 break;
645 case AUDIT_LOGINUID:
646 result = audit_uid_comparator(audit_get_loginuid(tsk),
647 f->op, f->uid);
648 break;
649 case AUDIT_LOGINUID_SET:
650 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
651 break;
652 case AUDIT_SADDR_FAM:
653 if (ctx && ctx->sockaddr)
654 result = audit_comparator(ctx->sockaddr->ss_family,
655 f->op, f->val);
656 break;
657 case AUDIT_SUBJ_USER:
658 case AUDIT_SUBJ_ROLE:
659 case AUDIT_SUBJ_TYPE:
660 case AUDIT_SUBJ_SEN:
661 case AUDIT_SUBJ_CLR:
662 /* NOTE: this may return negative values indicating
663 a temporary error. We simply treat this as a
664 match for now to avoid losing information that
665 may be wanted. An error message will also be
666 logged upon error */
667 if (f->lsm_rule) {
668 if (need_sid) {
669 /* @tsk should always be equal to
670 * @current with the exception of
671 * fork()/copy_process() in which case
672 * the new @tsk creds are still a dup
673 * of @current's creds so we can still
674 * use security_current_getsecid_subj()
675 * here even though it always refs
676 * @current's creds
677 */
678 security_current_getsecid_subj(&sid);
679 need_sid = 0;
680 }
681 result = security_audit_rule_match(sid, f->type,
682 f->op,
683 f->lsm_rule);
684 }
685 break;
686 case AUDIT_OBJ_USER:
687 case AUDIT_OBJ_ROLE:
688 case AUDIT_OBJ_TYPE:
689 case AUDIT_OBJ_LEV_LOW:
690 case AUDIT_OBJ_LEV_HIGH:
691 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
692 also applies here */
693 if (f->lsm_rule) {
694 /* Find files that match */
695 if (name) {
696 result = security_audit_rule_match(
697 name->osid,
698 f->type,
699 f->op,
700 f->lsm_rule);
701 } else if (ctx) {
702 list_for_each_entry(n, &ctx->names_list, list) {
703 if (security_audit_rule_match(
704 n->osid,
705 f->type,
706 f->op,
707 f->lsm_rule)) {
708 ++result;
709 break;
710 }
711 }
712 }
713 /* Find ipc objects that match */
714 if (!ctx || ctx->type != AUDIT_IPC)
715 break;
716 if (security_audit_rule_match(ctx->ipc.osid,
717 f->type, f->op,
718 f->lsm_rule))
719 ++result;
720 }
721 break;
722 case AUDIT_ARG0:
723 case AUDIT_ARG1:
724 case AUDIT_ARG2:
725 case AUDIT_ARG3:
726 if (ctx)
727 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
728 break;
729 case AUDIT_FILTERKEY:
730 /* ignore this field for filtering */
731 result = 1;
732 break;
733 case AUDIT_PERM:
734 result = audit_match_perm(ctx, f->val);
735 if (f->op == Audit_not_equal)
736 result = !result;
737 break;
738 case AUDIT_FILETYPE:
739 result = audit_match_filetype(ctx, f->val);
740 if (f->op == Audit_not_equal)
741 result = !result;
742 break;
743 case AUDIT_FIELD_COMPARE:
744 result = audit_field_compare(tsk, cred, f, ctx, name);
745 break;
746 }
747 if (!result)
748 return 0;
749 }
750
751 if (ctx) {
752 if (rule->filterkey) {
753 kfree(ctx->filterkey);
754 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
755 }
756 ctx->prio = rule->prio;
757 }
758 switch (rule->action) {
759 case AUDIT_NEVER:
760 *state = AUDIT_STATE_DISABLED;
761 break;
762 case AUDIT_ALWAYS:
763 *state = AUDIT_STATE_RECORD;
764 break;
765 }
766 return 1;
767 }
768
769 /* At process creation time, we can determine if system-call auditing is
770 * completely disabled for this task. Since we only have the task
771 * structure at this point, we can only check uid and gid.
772 */
audit_filter_task(struct task_struct * tsk,char ** key)773 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
774 {
775 struct audit_entry *e;
776 enum audit_state state;
777
778 rcu_read_lock();
779 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
780 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
781 &state, true)) {
782 if (state == AUDIT_STATE_RECORD)
783 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
784 rcu_read_unlock();
785 return state;
786 }
787 }
788 rcu_read_unlock();
789 return AUDIT_STATE_BUILD;
790 }
791
audit_in_mask(const struct audit_krule * rule,unsigned long val)792 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
793 {
794 int word, bit;
795
796 if (val > 0xffffffff)
797 return false;
798
799 word = AUDIT_WORD(val);
800 if (word >= AUDIT_BITMASK_SIZE)
801 return false;
802
803 bit = AUDIT_BIT(val);
804
805 return rule->mask[word] & bit;
806 }
807
808 /**
809 * audit_filter_uring - apply filters to an io_uring operation
810 * @tsk: associated task
811 * @ctx: audit context
812 */
audit_filter_uring(struct task_struct * tsk,struct audit_context * ctx)813 static void audit_filter_uring(struct task_struct *tsk,
814 struct audit_context *ctx)
815 {
816 struct audit_entry *e;
817 enum audit_state state;
818
819 if (auditd_test_task(tsk))
820 return;
821
822 rcu_read_lock();
823 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_URING_EXIT],
824 list) {
825 if (audit_in_mask(&e->rule, ctx->uring_op) &&
826 audit_filter_rules(tsk, &e->rule, ctx, NULL, &state,
827 false)) {
828 rcu_read_unlock();
829 ctx->current_state = state;
830 return;
831 }
832 }
833 rcu_read_unlock();
834 }
835
836 /* At syscall exit time, this filter is called if the audit_state is
837 * not low enough that auditing cannot take place, but is also not
838 * high enough that we already know we have to write an audit record
839 * (i.e., the state is AUDIT_STATE_BUILD).
840 */
audit_filter_syscall(struct task_struct * tsk,struct audit_context * ctx)841 static void audit_filter_syscall(struct task_struct *tsk,
842 struct audit_context *ctx)
843 {
844 struct audit_entry *e;
845 enum audit_state state;
846
847 if (auditd_test_task(tsk))
848 return;
849
850 rcu_read_lock();
851 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_EXIT], list) {
852 if (audit_in_mask(&e->rule, ctx->major) &&
853 audit_filter_rules(tsk, &e->rule, ctx, NULL,
854 &state, false)) {
855 rcu_read_unlock();
856 ctx->current_state = state;
857 return;
858 }
859 }
860 rcu_read_unlock();
861 return;
862 }
863
864 /*
865 * Given an audit_name check the inode hash table to see if they match.
866 * Called holding the rcu read lock to protect the use of audit_inode_hash
867 */
audit_filter_inode_name(struct task_struct * tsk,struct audit_names * n,struct audit_context * ctx)868 static int audit_filter_inode_name(struct task_struct *tsk,
869 struct audit_names *n,
870 struct audit_context *ctx) {
871 int h = audit_hash_ino((u32)n->ino);
872 struct list_head *list = &audit_inode_hash[h];
873 struct audit_entry *e;
874 enum audit_state state;
875
876 list_for_each_entry_rcu(e, list, list) {
877 if (audit_in_mask(&e->rule, ctx->major) &&
878 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
879 ctx->current_state = state;
880 return 1;
881 }
882 }
883 return 0;
884 }
885
886 /* At syscall exit time, this filter is called if any audit_names have been
887 * collected during syscall processing. We only check rules in sublists at hash
888 * buckets applicable to the inode numbers in audit_names.
889 * Regarding audit_state, same rules apply as for audit_filter_syscall().
890 */
audit_filter_inodes(struct task_struct * tsk,struct audit_context * ctx)891 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
892 {
893 struct audit_names *n;
894
895 if (auditd_test_task(tsk))
896 return;
897
898 rcu_read_lock();
899
900 list_for_each_entry(n, &ctx->names_list, list) {
901 if (audit_filter_inode_name(tsk, n, ctx))
902 break;
903 }
904 rcu_read_unlock();
905 }
906
audit_proctitle_free(struct audit_context * context)907 static inline void audit_proctitle_free(struct audit_context *context)
908 {
909 kfree(context->proctitle.value);
910 context->proctitle.value = NULL;
911 context->proctitle.len = 0;
912 }
913
audit_free_module(struct audit_context * context)914 static inline void audit_free_module(struct audit_context *context)
915 {
916 if (context->type == AUDIT_KERN_MODULE) {
917 kfree(context->module.name);
918 context->module.name = NULL;
919 }
920 }
audit_free_names(struct audit_context * context)921 static inline void audit_free_names(struct audit_context *context)
922 {
923 struct audit_names *n, *next;
924
925 list_for_each_entry_safe(n, next, &context->names_list, list) {
926 list_del(&n->list);
927 if (n->name)
928 putname(n->name);
929 if (n->should_free)
930 kfree(n);
931 }
932 context->name_count = 0;
933 path_put(&context->pwd);
934 context->pwd.dentry = NULL;
935 context->pwd.mnt = NULL;
936 }
937
audit_free_aux(struct audit_context * context)938 static inline void audit_free_aux(struct audit_context *context)
939 {
940 struct audit_aux_data *aux;
941
942 while ((aux = context->aux)) {
943 context->aux = aux->next;
944 kfree(aux);
945 }
946 context->aux = NULL;
947 while ((aux = context->aux_pids)) {
948 context->aux_pids = aux->next;
949 kfree(aux);
950 }
951 context->aux_pids = NULL;
952 }
953
954 /**
955 * audit_reset_context - reset a audit_context structure
956 * @ctx: the audit_context to reset
957 *
958 * All fields in the audit_context will be reset to an initial state, all
959 * references held by fields will be dropped, and private memory will be
960 * released. When this function returns the audit_context will be suitable
961 * for reuse, so long as the passed context is not NULL or a dummy context.
962 */
audit_reset_context(struct audit_context * ctx)963 static void audit_reset_context(struct audit_context *ctx)
964 {
965 if (!ctx)
966 return;
967
968 /* if ctx is non-null, reset the "ctx->state" regardless */
969 ctx->context = AUDIT_CTX_UNUSED;
970 if (ctx->dummy)
971 return;
972
973 /*
974 * NOTE: It shouldn't matter in what order we release the fields, so
975 * release them in the order in which they appear in the struct;
976 * this gives us some hope of quickly making sure we are
977 * resetting the audit_context properly.
978 *
979 * Other things worth mentioning:
980 * - we don't reset "dummy"
981 * - we don't reset "state", we do reset "current_state"
982 * - we preserve "filterkey" if "state" is AUDIT_STATE_RECORD
983 * - much of this is likely overkill, but play it safe for now
984 * - we really need to work on improving the audit_context struct
985 */
986
987 ctx->current_state = ctx->state;
988 ctx->serial = 0;
989 ctx->major = 0;
990 ctx->uring_op = 0;
991 ctx->ctime = (struct timespec64){ .tv_sec = 0, .tv_nsec = 0 };
992 memset(ctx->argv, 0, sizeof(ctx->argv));
993 ctx->return_code = 0;
994 ctx->prio = (ctx->state == AUDIT_STATE_RECORD ? ~0ULL : 0);
995 ctx->return_valid = AUDITSC_INVALID;
996 audit_free_names(ctx);
997 if (ctx->state != AUDIT_STATE_RECORD) {
998 kfree(ctx->filterkey);
999 ctx->filterkey = NULL;
1000 }
1001 audit_free_aux(ctx);
1002 kfree(ctx->sockaddr);
1003 ctx->sockaddr = NULL;
1004 ctx->sockaddr_len = 0;
1005 ctx->pid = ctx->ppid = 0;
1006 ctx->uid = ctx->euid = ctx->suid = ctx->fsuid = KUIDT_INIT(0);
1007 ctx->gid = ctx->egid = ctx->sgid = ctx->fsgid = KGIDT_INIT(0);
1008 ctx->personality = 0;
1009 ctx->arch = 0;
1010 ctx->target_pid = 0;
1011 ctx->target_auid = ctx->target_uid = KUIDT_INIT(0);
1012 ctx->target_sessionid = 0;
1013 ctx->target_sid = 0;
1014 ctx->target_comm[0] = '\0';
1015 unroll_tree_refs(ctx, NULL, 0);
1016 WARN_ON(!list_empty(&ctx->killed_trees));
1017 audit_free_module(ctx);
1018 ctx->fds[0] = -1;
1019 audit_proctitle_free(ctx);
1020 ctx->type = 0; /* reset last for audit_free_*() */
1021 }
1022
audit_alloc_context(enum audit_state state)1023 static inline struct audit_context *audit_alloc_context(enum audit_state state)
1024 {
1025 struct audit_context *context;
1026
1027 context = kzalloc(sizeof(*context), GFP_KERNEL);
1028 if (!context)
1029 return NULL;
1030 context->context = AUDIT_CTX_UNUSED;
1031 context->state = state;
1032 context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0;
1033 INIT_LIST_HEAD(&context->killed_trees);
1034 INIT_LIST_HEAD(&context->names_list);
1035 context->fds[0] = -1;
1036 context->return_valid = AUDITSC_INVALID;
1037 return context;
1038 }
1039
1040 /**
1041 * audit_alloc - allocate an audit context block for a task
1042 * @tsk: task
1043 *
1044 * Filter on the task information and allocate a per-task audit context
1045 * if necessary. Doing so turns on system call auditing for the
1046 * specified task. This is called from copy_process, so no lock is
1047 * needed.
1048 */
audit_alloc(struct task_struct * tsk)1049 int audit_alloc(struct task_struct *tsk)
1050 {
1051 struct audit_context *context;
1052 enum audit_state state;
1053 char *key = NULL;
1054
1055 if (likely(!audit_ever_enabled))
1056 return 0;
1057
1058 state = audit_filter_task(tsk, &key);
1059 if (state == AUDIT_STATE_DISABLED) {
1060 clear_task_syscall_work(tsk, SYSCALL_AUDIT);
1061 return 0;
1062 }
1063
1064 if (!(context = audit_alloc_context(state))) {
1065 kfree(key);
1066 audit_log_lost("out of memory in audit_alloc");
1067 return -ENOMEM;
1068 }
1069 context->filterkey = key;
1070
1071 audit_set_context(tsk, context);
1072 set_task_syscall_work(tsk, SYSCALL_AUDIT);
1073 return 0;
1074 }
1075
1076 /**
1077 * audit_alloc_kernel - allocate an audit_context for a kernel task
1078 * @tsk: the kernel task
1079 *
1080 * Similar to the audit_alloc() function, but intended for kernel private
1081 * threads. Returns zero on success, negative values on failure.
1082 */
audit_alloc_kernel(struct task_struct * tsk)1083 int audit_alloc_kernel(struct task_struct *tsk)
1084 {
1085 /*
1086 * At the moment we are just going to call into audit_alloc() to
1087 * simplify the code, but there two things to keep in mind with this
1088 * approach:
1089 *
1090 * 1. Filtering internal kernel tasks is a bit laughable in almost all
1091 * cases, but there is at least one case where there is a benefit:
1092 * the '-a task,never' case allows the admin to effectively disable
1093 * task auditing at runtime.
1094 *
1095 * 2. The {set,clear}_task_syscall_work() ops likely have zero effect
1096 * on these internal kernel tasks, but they probably don't hurt either.
1097 */
1098 return audit_alloc(tsk);
1099 }
1100
audit_free_context(struct audit_context * context)1101 static inline void audit_free_context(struct audit_context *context)
1102 {
1103 /* resetting is extra work, but it is likely just noise */
1104 audit_reset_context(context);
1105 free_tree_refs(context);
1106 kfree(context->filterkey);
1107 kfree(context);
1108 }
1109
audit_log_pid_context(struct audit_context * context,pid_t pid,kuid_t auid,kuid_t uid,unsigned int sessionid,u32 sid,char * comm)1110 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1111 kuid_t auid, kuid_t uid, unsigned int sessionid,
1112 u32 sid, char *comm)
1113 {
1114 struct audit_buffer *ab;
1115 char *ctx = NULL;
1116 u32 len;
1117 int rc = 0;
1118
1119 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1120 if (!ab)
1121 return rc;
1122
1123 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1124 from_kuid(&init_user_ns, auid),
1125 from_kuid(&init_user_ns, uid), sessionid);
1126 if (sid) {
1127 if (security_secid_to_secctx(sid, &ctx, &len)) {
1128 audit_log_format(ab, " obj=(none)");
1129 rc = 1;
1130 } else {
1131 audit_log_format(ab, " obj=%s", ctx);
1132 security_release_secctx(ctx, len);
1133 }
1134 }
1135 audit_log_format(ab, " ocomm=");
1136 audit_log_untrustedstring(ab, comm);
1137 audit_log_end(ab);
1138
1139 return rc;
1140 }
1141
audit_log_execve_info(struct audit_context * context,struct audit_buffer ** ab)1142 static void audit_log_execve_info(struct audit_context *context,
1143 struct audit_buffer **ab)
1144 {
1145 long len_max;
1146 long len_rem;
1147 long len_full;
1148 long len_buf;
1149 long len_abuf = 0;
1150 long len_tmp;
1151 bool require_data;
1152 bool encode;
1153 unsigned int iter;
1154 unsigned int arg;
1155 char *buf_head;
1156 char *buf;
1157 const char __user *p = (const char __user *)current->mm->arg_start;
1158
1159 /* NOTE: this buffer needs to be large enough to hold all the non-arg
1160 * data we put in the audit record for this argument (see the
1161 * code below) ... at this point in time 96 is plenty */
1162 char abuf[96];
1163
1164 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1165 * current value of 7500 is not as important as the fact that it
1166 * is less than 8k, a setting of 7500 gives us plenty of wiggle
1167 * room if we go over a little bit in the logging below */
1168 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1169 len_max = MAX_EXECVE_AUDIT_LEN;
1170
1171 /* scratch buffer to hold the userspace args */
1172 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1173 if (!buf_head) {
1174 audit_panic("out of memory for argv string");
1175 return;
1176 }
1177 buf = buf_head;
1178
1179 audit_log_format(*ab, "argc=%d", context->execve.argc);
1180
1181 len_rem = len_max;
1182 len_buf = 0;
1183 len_full = 0;
1184 require_data = true;
1185 encode = false;
1186 iter = 0;
1187 arg = 0;
1188 do {
1189 /* NOTE: we don't ever want to trust this value for anything
1190 * serious, but the audit record format insists we
1191 * provide an argument length for really long arguments,
1192 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1193 * to use strncpy_from_user() to obtain this value for
1194 * recording in the log, although we don't use it
1195 * anywhere here to avoid a double-fetch problem */
1196 if (len_full == 0)
1197 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1198
1199 /* read more data from userspace */
1200 if (require_data) {
1201 /* can we make more room in the buffer? */
1202 if (buf != buf_head) {
1203 memmove(buf_head, buf, len_buf);
1204 buf = buf_head;
1205 }
1206
1207 /* fetch as much as we can of the argument */
1208 len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1209 len_max - len_buf);
1210 if (len_tmp == -EFAULT) {
1211 /* unable to copy from userspace */
1212 send_sig(SIGKILL, current, 0);
1213 goto out;
1214 } else if (len_tmp == (len_max - len_buf)) {
1215 /* buffer is not large enough */
1216 require_data = true;
1217 /* NOTE: if we are going to span multiple
1218 * buffers force the encoding so we stand
1219 * a chance at a sane len_full value and
1220 * consistent record encoding */
1221 encode = true;
1222 len_full = len_full * 2;
1223 p += len_tmp;
1224 } else {
1225 require_data = false;
1226 if (!encode)
1227 encode = audit_string_contains_control(
1228 buf, len_tmp);
1229 /* try to use a trusted value for len_full */
1230 if (len_full < len_max)
1231 len_full = (encode ?
1232 len_tmp * 2 : len_tmp);
1233 p += len_tmp + 1;
1234 }
1235 len_buf += len_tmp;
1236 buf_head[len_buf] = '\0';
1237
1238 /* length of the buffer in the audit record? */
1239 len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1240 }
1241
1242 /* write as much as we can to the audit log */
1243 if (len_buf >= 0) {
1244 /* NOTE: some magic numbers here - basically if we
1245 * can't fit a reasonable amount of data into the
1246 * existing audit buffer, flush it and start with
1247 * a new buffer */
1248 if ((sizeof(abuf) + 8) > len_rem) {
1249 len_rem = len_max;
1250 audit_log_end(*ab);
1251 *ab = audit_log_start(context,
1252 GFP_KERNEL, AUDIT_EXECVE);
1253 if (!*ab)
1254 goto out;
1255 }
1256
1257 /* create the non-arg portion of the arg record */
1258 len_tmp = 0;
1259 if (require_data || (iter > 0) ||
1260 ((len_abuf + sizeof(abuf)) > len_rem)) {
1261 if (iter == 0) {
1262 len_tmp += snprintf(&abuf[len_tmp],
1263 sizeof(abuf) - len_tmp,
1264 " a%d_len=%lu",
1265 arg, len_full);
1266 }
1267 len_tmp += snprintf(&abuf[len_tmp],
1268 sizeof(abuf) - len_tmp,
1269 " a%d[%d]=", arg, iter++);
1270 } else
1271 len_tmp += snprintf(&abuf[len_tmp],
1272 sizeof(abuf) - len_tmp,
1273 " a%d=", arg);
1274 WARN_ON(len_tmp >= sizeof(abuf));
1275 abuf[sizeof(abuf) - 1] = '\0';
1276
1277 /* log the arg in the audit record */
1278 audit_log_format(*ab, "%s", abuf);
1279 len_rem -= len_tmp;
1280 len_tmp = len_buf;
1281 if (encode) {
1282 if (len_abuf > len_rem)
1283 len_tmp = len_rem / 2; /* encoding */
1284 audit_log_n_hex(*ab, buf, len_tmp);
1285 len_rem -= len_tmp * 2;
1286 len_abuf -= len_tmp * 2;
1287 } else {
1288 if (len_abuf > len_rem)
1289 len_tmp = len_rem - 2; /* quotes */
1290 audit_log_n_string(*ab, buf, len_tmp);
1291 len_rem -= len_tmp + 2;
1292 /* don't subtract the "2" because we still need
1293 * to add quotes to the remaining string */
1294 len_abuf -= len_tmp;
1295 }
1296 len_buf -= len_tmp;
1297 buf += len_tmp;
1298 }
1299
1300 /* ready to move to the next argument? */
1301 if ((len_buf == 0) && !require_data) {
1302 arg++;
1303 iter = 0;
1304 len_full = 0;
1305 require_data = true;
1306 encode = false;
1307 }
1308 } while (arg < context->execve.argc);
1309
1310 /* NOTE: the caller handles the final audit_log_end() call */
1311
1312 out:
1313 kfree(buf_head);
1314 }
1315
audit_log_cap(struct audit_buffer * ab,char * prefix,kernel_cap_t * cap)1316 static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1317 kernel_cap_t *cap)
1318 {
1319 int i;
1320
1321 if (cap_isclear(*cap)) {
1322 audit_log_format(ab, " %s=0", prefix);
1323 return;
1324 }
1325 audit_log_format(ab, " %s=", prefix);
1326 CAP_FOR_EACH_U32(i)
1327 audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]);
1328 }
1329
audit_log_fcaps(struct audit_buffer * ab,struct audit_names * name)1330 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1331 {
1332 if (name->fcap_ver == -1) {
1333 audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1334 return;
1335 }
1336 audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1337 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1338 audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1339 name->fcap.fE, name->fcap_ver,
1340 from_kuid(&init_user_ns, name->fcap.rootid));
1341 }
1342
audit_log_time(struct audit_context * context,struct audit_buffer ** ab)1343 static void audit_log_time(struct audit_context *context, struct audit_buffer **ab)
1344 {
1345 const struct audit_ntp_data *ntp = &context->time.ntp_data;
1346 const struct timespec64 *tk = &context->time.tk_injoffset;
1347 static const char * const ntp_name[] = {
1348 "offset",
1349 "freq",
1350 "status",
1351 "tai",
1352 "tick",
1353 "adjust",
1354 };
1355 int type;
1356
1357 if (context->type == AUDIT_TIME_ADJNTPVAL) {
1358 for (type = 0; type < AUDIT_NTP_NVALS; type++) {
1359 if (ntp->vals[type].newval != ntp->vals[type].oldval) {
1360 if (!*ab) {
1361 *ab = audit_log_start(context,
1362 GFP_KERNEL,
1363 AUDIT_TIME_ADJNTPVAL);
1364 if (!*ab)
1365 return;
1366 }
1367 audit_log_format(*ab, "op=%s old=%lli new=%lli",
1368 ntp_name[type],
1369 ntp->vals[type].oldval,
1370 ntp->vals[type].newval);
1371 audit_log_end(*ab);
1372 *ab = NULL;
1373 }
1374 }
1375 }
1376 if (tk->tv_sec != 0 || tk->tv_nsec != 0) {
1377 if (!*ab) {
1378 *ab = audit_log_start(context, GFP_KERNEL,
1379 AUDIT_TIME_INJOFFSET);
1380 if (!*ab)
1381 return;
1382 }
1383 audit_log_format(*ab, "sec=%lli nsec=%li",
1384 (long long)tk->tv_sec, tk->tv_nsec);
1385 audit_log_end(*ab);
1386 *ab = NULL;
1387 }
1388 }
1389
show_special(struct audit_context * context,int * call_panic)1390 static void show_special(struct audit_context *context, int *call_panic)
1391 {
1392 struct audit_buffer *ab;
1393 int i;
1394
1395 ab = audit_log_start(context, GFP_KERNEL, context->type);
1396 if (!ab)
1397 return;
1398
1399 switch (context->type) {
1400 case AUDIT_SOCKETCALL: {
1401 int nargs = context->socketcall.nargs;
1402
1403 audit_log_format(ab, "nargs=%d", nargs);
1404 for (i = 0; i < nargs; i++)
1405 audit_log_format(ab, " a%d=%lx", i,
1406 context->socketcall.args[i]);
1407 break; }
1408 case AUDIT_IPC: {
1409 u32 osid = context->ipc.osid;
1410
1411 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1412 from_kuid(&init_user_ns, context->ipc.uid),
1413 from_kgid(&init_user_ns, context->ipc.gid),
1414 context->ipc.mode);
1415 if (osid) {
1416 char *ctx = NULL;
1417 u32 len;
1418
1419 if (security_secid_to_secctx(osid, &ctx, &len)) {
1420 audit_log_format(ab, " osid=%u", osid);
1421 *call_panic = 1;
1422 } else {
1423 audit_log_format(ab, " obj=%s", ctx);
1424 security_release_secctx(ctx, len);
1425 }
1426 }
1427 if (context->ipc.has_perm) {
1428 audit_log_end(ab);
1429 ab = audit_log_start(context, GFP_KERNEL,
1430 AUDIT_IPC_SET_PERM);
1431 if (unlikely(!ab))
1432 return;
1433 audit_log_format(ab,
1434 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1435 context->ipc.qbytes,
1436 context->ipc.perm_uid,
1437 context->ipc.perm_gid,
1438 context->ipc.perm_mode);
1439 }
1440 break; }
1441 case AUDIT_MQ_OPEN:
1442 audit_log_format(ab,
1443 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1444 "mq_msgsize=%ld mq_curmsgs=%ld",
1445 context->mq_open.oflag, context->mq_open.mode,
1446 context->mq_open.attr.mq_flags,
1447 context->mq_open.attr.mq_maxmsg,
1448 context->mq_open.attr.mq_msgsize,
1449 context->mq_open.attr.mq_curmsgs);
1450 break;
1451 case AUDIT_MQ_SENDRECV:
1452 audit_log_format(ab,
1453 "mqdes=%d msg_len=%zd msg_prio=%u "
1454 "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1455 context->mq_sendrecv.mqdes,
1456 context->mq_sendrecv.msg_len,
1457 context->mq_sendrecv.msg_prio,
1458 (long long) context->mq_sendrecv.abs_timeout.tv_sec,
1459 context->mq_sendrecv.abs_timeout.tv_nsec);
1460 break;
1461 case AUDIT_MQ_NOTIFY:
1462 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1463 context->mq_notify.mqdes,
1464 context->mq_notify.sigev_signo);
1465 break;
1466 case AUDIT_MQ_GETSETATTR: {
1467 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1468
1469 audit_log_format(ab,
1470 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1471 "mq_curmsgs=%ld ",
1472 context->mq_getsetattr.mqdes,
1473 attr->mq_flags, attr->mq_maxmsg,
1474 attr->mq_msgsize, attr->mq_curmsgs);
1475 break; }
1476 case AUDIT_CAPSET:
1477 audit_log_format(ab, "pid=%d", context->capset.pid);
1478 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1479 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1480 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1481 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1482 break;
1483 case AUDIT_MMAP:
1484 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1485 context->mmap.flags);
1486 break;
1487 case AUDIT_OPENAT2:
1488 audit_log_format(ab, "oflag=0%llo mode=0%llo resolve=0x%llx",
1489 context->openat2.flags,
1490 context->openat2.mode,
1491 context->openat2.resolve);
1492 break;
1493 case AUDIT_EXECVE:
1494 audit_log_execve_info(context, &ab);
1495 break;
1496 case AUDIT_KERN_MODULE:
1497 audit_log_format(ab, "name=");
1498 if (context->module.name) {
1499 audit_log_untrustedstring(ab, context->module.name);
1500 } else
1501 audit_log_format(ab, "(null)");
1502
1503 break;
1504 case AUDIT_TIME_ADJNTPVAL:
1505 case AUDIT_TIME_INJOFFSET:
1506 /* this call deviates from the rest, eating the buffer */
1507 audit_log_time(context, &ab);
1508 break;
1509 }
1510 audit_log_end(ab);
1511 }
1512
audit_proctitle_rtrim(char * proctitle,int len)1513 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1514 {
1515 char *end = proctitle + len - 1;
1516
1517 while (end > proctitle && !isprint(*end))
1518 end--;
1519
1520 /* catch the case where proctitle is only 1 non-print character */
1521 len = end - proctitle + 1;
1522 len -= isprint(proctitle[len-1]) == 0;
1523 return len;
1524 }
1525
1526 /*
1527 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1528 * @context: audit_context for the task
1529 * @n: audit_names structure with reportable details
1530 * @path: optional path to report instead of audit_names->name
1531 * @record_num: record number to report when handling a list of names
1532 * @call_panic: optional pointer to int that will be updated if secid fails
1533 */
audit_log_name(struct audit_context * context,struct audit_names * n,const struct path * path,int record_num,int * call_panic)1534 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1535 const struct path *path, int record_num, int *call_panic)
1536 {
1537 struct audit_buffer *ab;
1538
1539 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1540 if (!ab)
1541 return;
1542
1543 audit_log_format(ab, "item=%d", record_num);
1544
1545 if (path)
1546 audit_log_d_path(ab, " name=", path);
1547 else if (n->name) {
1548 switch (n->name_len) {
1549 case AUDIT_NAME_FULL:
1550 /* log the full path */
1551 audit_log_format(ab, " name=");
1552 audit_log_untrustedstring(ab, n->name->name);
1553 break;
1554 case 0:
1555 /* name was specified as a relative path and the
1556 * directory component is the cwd
1557 */
1558 if (context->pwd.dentry && context->pwd.mnt)
1559 audit_log_d_path(ab, " name=", &context->pwd);
1560 else
1561 audit_log_format(ab, " name=(null)");
1562 break;
1563 default:
1564 /* log the name's directory component */
1565 audit_log_format(ab, " name=");
1566 audit_log_n_untrustedstring(ab, n->name->name,
1567 n->name_len);
1568 }
1569 } else
1570 audit_log_format(ab, " name=(null)");
1571
1572 if (n->ino != AUDIT_INO_UNSET)
1573 audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1574 n->ino,
1575 MAJOR(n->dev),
1576 MINOR(n->dev),
1577 n->mode,
1578 from_kuid(&init_user_ns, n->uid),
1579 from_kgid(&init_user_ns, n->gid),
1580 MAJOR(n->rdev),
1581 MINOR(n->rdev));
1582 if (n->osid != 0) {
1583 char *ctx = NULL;
1584 u32 len;
1585
1586 if (security_secid_to_secctx(
1587 n->osid, &ctx, &len)) {
1588 audit_log_format(ab, " osid=%u", n->osid);
1589 if (call_panic)
1590 *call_panic = 2;
1591 } else {
1592 audit_log_format(ab, " obj=%s", ctx);
1593 security_release_secctx(ctx, len);
1594 }
1595 }
1596
1597 /* log the audit_names record type */
1598 switch (n->type) {
1599 case AUDIT_TYPE_NORMAL:
1600 audit_log_format(ab, " nametype=NORMAL");
1601 break;
1602 case AUDIT_TYPE_PARENT:
1603 audit_log_format(ab, " nametype=PARENT");
1604 break;
1605 case AUDIT_TYPE_CHILD_DELETE:
1606 audit_log_format(ab, " nametype=DELETE");
1607 break;
1608 case AUDIT_TYPE_CHILD_CREATE:
1609 audit_log_format(ab, " nametype=CREATE");
1610 break;
1611 default:
1612 audit_log_format(ab, " nametype=UNKNOWN");
1613 break;
1614 }
1615
1616 audit_log_fcaps(ab, n);
1617 audit_log_end(ab);
1618 }
1619
audit_log_proctitle(void)1620 static void audit_log_proctitle(void)
1621 {
1622 int res;
1623 char *buf;
1624 char *msg = "(null)";
1625 int len = strlen(msg);
1626 struct audit_context *context = audit_context();
1627 struct audit_buffer *ab;
1628
1629 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1630 if (!ab)
1631 return; /* audit_panic or being filtered */
1632
1633 audit_log_format(ab, "proctitle=");
1634
1635 /* Not cached */
1636 if (!context->proctitle.value) {
1637 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1638 if (!buf)
1639 goto out;
1640 /* Historically called this from procfs naming */
1641 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1642 if (res == 0) {
1643 kfree(buf);
1644 goto out;
1645 }
1646 res = audit_proctitle_rtrim(buf, res);
1647 if (res == 0) {
1648 kfree(buf);
1649 goto out;
1650 }
1651 context->proctitle.value = buf;
1652 context->proctitle.len = res;
1653 }
1654 msg = context->proctitle.value;
1655 len = context->proctitle.len;
1656 out:
1657 audit_log_n_untrustedstring(ab, msg, len);
1658 audit_log_end(ab);
1659 }
1660
1661 /**
1662 * audit_log_uring - generate a AUDIT_URINGOP record
1663 * @ctx: the audit context
1664 */
audit_log_uring(struct audit_context * ctx)1665 static void audit_log_uring(struct audit_context *ctx)
1666 {
1667 struct audit_buffer *ab;
1668 const struct cred *cred;
1669
1670 ab = audit_log_start(ctx, GFP_ATOMIC, AUDIT_URINGOP);
1671 if (!ab)
1672 return;
1673 cred = current_cred();
1674 audit_log_format(ab, "uring_op=%d", ctx->uring_op);
1675 if (ctx->return_valid != AUDITSC_INVALID)
1676 audit_log_format(ab, " success=%s exit=%ld",
1677 (ctx->return_valid == AUDITSC_SUCCESS ?
1678 "yes" : "no"),
1679 ctx->return_code);
1680 audit_log_format(ab,
1681 " items=%d"
1682 " ppid=%d pid=%d uid=%u gid=%u euid=%u suid=%u"
1683 " fsuid=%u egid=%u sgid=%u fsgid=%u",
1684 ctx->name_count,
1685 task_ppid_nr(current), task_tgid_nr(current),
1686 from_kuid(&init_user_ns, cred->uid),
1687 from_kgid(&init_user_ns, cred->gid),
1688 from_kuid(&init_user_ns, cred->euid),
1689 from_kuid(&init_user_ns, cred->suid),
1690 from_kuid(&init_user_ns, cred->fsuid),
1691 from_kgid(&init_user_ns, cred->egid),
1692 from_kgid(&init_user_ns, cred->sgid),
1693 from_kgid(&init_user_ns, cred->fsgid));
1694 audit_log_task_context(ab);
1695 audit_log_key(ab, ctx->filterkey);
1696 audit_log_end(ab);
1697 }
1698
audit_log_exit(void)1699 static void audit_log_exit(void)
1700 {
1701 int i, call_panic = 0;
1702 struct audit_context *context = audit_context();
1703 struct audit_buffer *ab;
1704 struct audit_aux_data *aux;
1705 struct audit_names *n;
1706
1707 context->personality = current->personality;
1708
1709 switch (context->context) {
1710 case AUDIT_CTX_SYSCALL:
1711 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1712 if (!ab)
1713 return;
1714 audit_log_format(ab, "arch=%x syscall=%d",
1715 context->arch, context->major);
1716 if (context->personality != PER_LINUX)
1717 audit_log_format(ab, " per=%lx", context->personality);
1718 if (context->return_valid != AUDITSC_INVALID)
1719 audit_log_format(ab, " success=%s exit=%ld",
1720 (context->return_valid == AUDITSC_SUCCESS ?
1721 "yes" : "no"),
1722 context->return_code);
1723 audit_log_format(ab,
1724 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1725 context->argv[0],
1726 context->argv[1],
1727 context->argv[2],
1728 context->argv[3],
1729 context->name_count);
1730 audit_log_task_info(ab);
1731 audit_log_key(ab, context->filterkey);
1732 audit_log_end(ab);
1733 break;
1734 case AUDIT_CTX_URING:
1735 audit_log_uring(context);
1736 break;
1737 default:
1738 BUG();
1739 break;
1740 }
1741
1742 for (aux = context->aux; aux; aux = aux->next) {
1743
1744 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1745 if (!ab)
1746 continue; /* audit_panic has been called */
1747
1748 switch (aux->type) {
1749
1750 case AUDIT_BPRM_FCAPS: {
1751 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1752
1753 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1754 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1755 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1756 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1757 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1758 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1759 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1760 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1761 audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1762 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1763 audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1764 audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1765 audit_log_format(ab, " frootid=%d",
1766 from_kuid(&init_user_ns,
1767 axs->fcap.rootid));
1768 break; }
1769
1770 }
1771 audit_log_end(ab);
1772 }
1773
1774 if (context->type)
1775 show_special(context, &call_panic);
1776
1777 if (context->fds[0] >= 0) {
1778 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1779 if (ab) {
1780 audit_log_format(ab, "fd0=%d fd1=%d",
1781 context->fds[0], context->fds[1]);
1782 audit_log_end(ab);
1783 }
1784 }
1785
1786 if (context->sockaddr_len) {
1787 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1788 if (ab) {
1789 audit_log_format(ab, "saddr=");
1790 audit_log_n_hex(ab, (void *)context->sockaddr,
1791 context->sockaddr_len);
1792 audit_log_end(ab);
1793 }
1794 }
1795
1796 for (aux = context->aux_pids; aux; aux = aux->next) {
1797 struct audit_aux_data_pids *axs = (void *)aux;
1798
1799 for (i = 0; i < axs->pid_count; i++)
1800 if (audit_log_pid_context(context, axs->target_pid[i],
1801 axs->target_auid[i],
1802 axs->target_uid[i],
1803 axs->target_sessionid[i],
1804 axs->target_sid[i],
1805 axs->target_comm[i]))
1806 call_panic = 1;
1807 }
1808
1809 if (context->target_pid &&
1810 audit_log_pid_context(context, context->target_pid,
1811 context->target_auid, context->target_uid,
1812 context->target_sessionid,
1813 context->target_sid, context->target_comm))
1814 call_panic = 1;
1815
1816 if (context->pwd.dentry && context->pwd.mnt) {
1817 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1818 if (ab) {
1819 audit_log_d_path(ab, "cwd=", &context->pwd);
1820 audit_log_end(ab);
1821 }
1822 }
1823
1824 i = 0;
1825 list_for_each_entry(n, &context->names_list, list) {
1826 if (n->hidden)
1827 continue;
1828 audit_log_name(context, n, NULL, i++, &call_panic);
1829 }
1830
1831 if (context->context == AUDIT_CTX_SYSCALL)
1832 audit_log_proctitle();
1833
1834 /* Send end of event record to help user space know we are finished */
1835 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1836 if (ab)
1837 audit_log_end(ab);
1838 if (call_panic)
1839 audit_panic("error in audit_log_exit()");
1840 }
1841
1842 /**
1843 * __audit_free - free a per-task audit context
1844 * @tsk: task whose audit context block to free
1845 *
1846 * Called from copy_process, do_exit, and the io_uring code
1847 */
__audit_free(struct task_struct * tsk)1848 void __audit_free(struct task_struct *tsk)
1849 {
1850 struct audit_context *context = tsk->audit_context;
1851
1852 if (!context)
1853 return;
1854
1855 /* this may generate CONFIG_CHANGE records */
1856 if (!list_empty(&context->killed_trees))
1857 audit_kill_trees(context);
1858
1859 /* We are called either by do_exit() or the fork() error handling code;
1860 * in the former case tsk == current and in the latter tsk is a
1861 * random task_struct that doesn't doesn't have any meaningful data we
1862 * need to log via audit_log_exit().
1863 */
1864 if (tsk == current && !context->dummy) {
1865 context->return_valid = AUDITSC_INVALID;
1866 context->return_code = 0;
1867 if (context->context == AUDIT_CTX_SYSCALL) {
1868 audit_filter_syscall(tsk, context);
1869 audit_filter_inodes(tsk, context);
1870 if (context->current_state == AUDIT_STATE_RECORD)
1871 audit_log_exit();
1872 } else if (context->context == AUDIT_CTX_URING) {
1873 /* TODO: verify this case is real and valid */
1874 audit_filter_uring(tsk, context);
1875 audit_filter_inodes(tsk, context);
1876 if (context->current_state == AUDIT_STATE_RECORD)
1877 audit_log_uring(context);
1878 }
1879 }
1880
1881 audit_set_context(tsk, NULL);
1882 audit_free_context(context);
1883 }
1884
1885 /**
1886 * audit_return_fixup - fixup the return codes in the audit_context
1887 * @ctx: the audit_context
1888 * @success: true/false value to indicate if the operation succeeded or not
1889 * @code: operation return code
1890 *
1891 * We need to fixup the return code in the audit logs if the actual return
1892 * codes are later going to be fixed by the arch specific signal handlers.
1893 */
audit_return_fixup(struct audit_context * ctx,int success,long code)1894 static void audit_return_fixup(struct audit_context *ctx,
1895 int success, long code)
1896 {
1897 /*
1898 * This is actually a test for:
1899 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1900 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1901 *
1902 * but is faster than a bunch of ||
1903 */
1904 if (unlikely(code <= -ERESTARTSYS) &&
1905 (code >= -ERESTART_RESTARTBLOCK) &&
1906 (code != -ENOIOCTLCMD))
1907 ctx->return_code = -EINTR;
1908 else
1909 ctx->return_code = code;
1910 ctx->return_valid = (success ? AUDITSC_SUCCESS : AUDITSC_FAILURE);
1911 }
1912
1913 /**
1914 * __audit_uring_entry - prepare the kernel task's audit context for io_uring
1915 * @op: the io_uring opcode
1916 *
1917 * This is similar to audit_syscall_entry() but is intended for use by io_uring
1918 * operations. This function should only ever be called from
1919 * audit_uring_entry() as we rely on the audit context checking present in that
1920 * function.
1921 */
__audit_uring_entry(u8 op)1922 void __audit_uring_entry(u8 op)
1923 {
1924 struct audit_context *ctx = audit_context();
1925
1926 if (ctx->state == AUDIT_STATE_DISABLED)
1927 return;
1928
1929 /*
1930 * NOTE: It's possible that we can be called from the process' context
1931 * before it returns to userspace, and before audit_syscall_exit()
1932 * is called. In this case there is not much to do, just record
1933 * the io_uring details and return.
1934 */
1935 ctx->uring_op = op;
1936 if (ctx->context == AUDIT_CTX_SYSCALL)
1937 return;
1938
1939 ctx->dummy = !audit_n_rules;
1940 if (!ctx->dummy && ctx->state == AUDIT_STATE_BUILD)
1941 ctx->prio = 0;
1942
1943 ctx->context = AUDIT_CTX_URING;
1944 ctx->current_state = ctx->state;
1945 ktime_get_coarse_real_ts64(&ctx->ctime);
1946 }
1947
1948 /**
1949 * __audit_uring_exit - wrap up the kernel task's audit context after io_uring
1950 * @success: true/false value to indicate if the operation succeeded or not
1951 * @code: operation return code
1952 *
1953 * This is similar to audit_syscall_exit() but is intended for use by io_uring
1954 * operations. This function should only ever be called from
1955 * audit_uring_exit() as we rely on the audit context checking present in that
1956 * function.
1957 */
__audit_uring_exit(int success,long code)1958 void __audit_uring_exit(int success, long code)
1959 {
1960 struct audit_context *ctx = audit_context();
1961
1962 if (ctx->dummy) {
1963 if (ctx->context != AUDIT_CTX_URING)
1964 return;
1965 goto out;
1966 }
1967
1968 audit_return_fixup(ctx, success, code);
1969 if (ctx->context == AUDIT_CTX_SYSCALL) {
1970 /*
1971 * NOTE: See the note in __audit_uring_entry() about the case
1972 * where we may be called from process context before we
1973 * return to userspace via audit_syscall_exit(). In this
1974 * case we simply emit a URINGOP record and bail, the
1975 * normal syscall exit handling will take care of
1976 * everything else.
1977 * It is also worth mentioning that when we are called,
1978 * the current process creds may differ from the creds
1979 * used during the normal syscall processing; keep that
1980 * in mind if/when we move the record generation code.
1981 */
1982
1983 /*
1984 * We need to filter on the syscall info here to decide if we
1985 * should emit a URINGOP record. I know it seems odd but this
1986 * solves the problem where users have a filter to block *all*
1987 * syscall records in the "exit" filter; we want to preserve
1988 * the behavior here.
1989 */
1990 audit_filter_syscall(current, ctx);
1991 if (ctx->current_state != AUDIT_STATE_RECORD)
1992 audit_filter_uring(current, ctx);
1993 audit_filter_inodes(current, ctx);
1994 if (ctx->current_state != AUDIT_STATE_RECORD)
1995 return;
1996
1997 audit_log_uring(ctx);
1998 return;
1999 }
2000
2001 /* this may generate CONFIG_CHANGE records */
2002 if (!list_empty(&ctx->killed_trees))
2003 audit_kill_trees(ctx);
2004
2005 /* run through both filters to ensure we set the filterkey properly */
2006 audit_filter_uring(current, ctx);
2007 audit_filter_inodes(current, ctx);
2008 if (ctx->current_state != AUDIT_STATE_RECORD)
2009 goto out;
2010 audit_log_exit();
2011
2012 out:
2013 audit_reset_context(ctx);
2014 }
2015
2016 /**
2017 * __audit_syscall_entry - fill in an audit record at syscall entry
2018 * @major: major syscall type (function)
2019 * @a1: additional syscall register 1
2020 * @a2: additional syscall register 2
2021 * @a3: additional syscall register 3
2022 * @a4: additional syscall register 4
2023 *
2024 * Fill in audit context at syscall entry. This only happens if the
2025 * audit context was created when the task was created and the state or
2026 * filters demand the audit context be built. If the state from the
2027 * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD,
2028 * then the record will be written at syscall exit time (otherwise, it
2029 * will only be written if another part of the kernel requests that it
2030 * be written).
2031 */
__audit_syscall_entry(int major,unsigned long a1,unsigned long a2,unsigned long a3,unsigned long a4)2032 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
2033 unsigned long a3, unsigned long a4)
2034 {
2035 struct audit_context *context = audit_context();
2036 enum audit_state state;
2037
2038 if (!audit_enabled || !context)
2039 return;
2040
2041 WARN_ON(context->context != AUDIT_CTX_UNUSED);
2042 WARN_ON(context->name_count);
2043 if (context->context != AUDIT_CTX_UNUSED || context->name_count) {
2044 audit_panic("unrecoverable error in audit_syscall_entry()");
2045 return;
2046 }
2047
2048 state = context->state;
2049 if (state == AUDIT_STATE_DISABLED)
2050 return;
2051
2052 context->dummy = !audit_n_rules;
2053 if (!context->dummy && state == AUDIT_STATE_BUILD) {
2054 context->prio = 0;
2055 if (auditd_test_task(current))
2056 return;
2057 }
2058
2059 context->arch = syscall_get_arch(current);
2060 context->major = major;
2061 context->argv[0] = a1;
2062 context->argv[1] = a2;
2063 context->argv[2] = a3;
2064 context->argv[3] = a4;
2065 context->context = AUDIT_CTX_SYSCALL;
2066 context->current_state = state;
2067 ktime_get_coarse_real_ts64(&context->ctime);
2068 }
2069
2070 /**
2071 * __audit_syscall_exit - deallocate audit context after a system call
2072 * @success: success value of the syscall
2073 * @return_code: return value of the syscall
2074 *
2075 * Tear down after system call. If the audit context has been marked as
2076 * auditable (either because of the AUDIT_STATE_RECORD state from
2077 * filtering, or because some other part of the kernel wrote an audit
2078 * message), then write out the syscall information. In call cases,
2079 * free the names stored from getname().
2080 */
__audit_syscall_exit(int success,long return_code)2081 void __audit_syscall_exit(int success, long return_code)
2082 {
2083 struct audit_context *context = audit_context();
2084
2085 if (!context || context->dummy ||
2086 context->context != AUDIT_CTX_SYSCALL)
2087 goto out;
2088
2089 /* this may generate CONFIG_CHANGE records */
2090 if (!list_empty(&context->killed_trees))
2091 audit_kill_trees(context);
2092
2093 audit_return_fixup(context, success, return_code);
2094 /* run through both filters to ensure we set the filterkey properly */
2095 audit_filter_syscall(current, context);
2096 audit_filter_inodes(current, context);
2097 if (context->current_state < AUDIT_STATE_RECORD)
2098 goto out;
2099
2100 audit_log_exit();
2101
2102 out:
2103 audit_reset_context(context);
2104 }
2105
handle_one(const struct inode * inode)2106 static inline void handle_one(const struct inode *inode)
2107 {
2108 struct audit_context *context;
2109 struct audit_tree_refs *p;
2110 struct audit_chunk *chunk;
2111 int count;
2112
2113 if (likely(!inode->i_fsnotify_marks))
2114 return;
2115 context = audit_context();
2116 p = context->trees;
2117 count = context->tree_count;
2118 rcu_read_lock();
2119 chunk = audit_tree_lookup(inode);
2120 rcu_read_unlock();
2121 if (!chunk)
2122 return;
2123 if (likely(put_tree_ref(context, chunk)))
2124 return;
2125 if (unlikely(!grow_tree_refs(context))) {
2126 pr_warn("out of memory, audit has lost a tree reference\n");
2127 audit_set_auditable(context);
2128 audit_put_chunk(chunk);
2129 unroll_tree_refs(context, p, count);
2130 return;
2131 }
2132 put_tree_ref(context, chunk);
2133 }
2134
handle_path(const struct dentry * dentry)2135 static void handle_path(const struct dentry *dentry)
2136 {
2137 struct audit_context *context;
2138 struct audit_tree_refs *p;
2139 const struct dentry *d, *parent;
2140 struct audit_chunk *drop;
2141 unsigned long seq;
2142 int count;
2143
2144 context = audit_context();
2145 p = context->trees;
2146 count = context->tree_count;
2147 retry:
2148 drop = NULL;
2149 d = dentry;
2150 rcu_read_lock();
2151 seq = read_seqbegin(&rename_lock);
2152 for(;;) {
2153 struct inode *inode = d_backing_inode(d);
2154
2155 if (inode && unlikely(inode->i_fsnotify_marks)) {
2156 struct audit_chunk *chunk;
2157
2158 chunk = audit_tree_lookup(inode);
2159 if (chunk) {
2160 if (unlikely(!put_tree_ref(context, chunk))) {
2161 drop = chunk;
2162 break;
2163 }
2164 }
2165 }
2166 parent = d->d_parent;
2167 if (parent == d)
2168 break;
2169 d = parent;
2170 }
2171 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
2172 rcu_read_unlock();
2173 if (!drop) {
2174 /* just a race with rename */
2175 unroll_tree_refs(context, p, count);
2176 goto retry;
2177 }
2178 audit_put_chunk(drop);
2179 if (grow_tree_refs(context)) {
2180 /* OK, got more space */
2181 unroll_tree_refs(context, p, count);
2182 goto retry;
2183 }
2184 /* too bad */
2185 pr_warn("out of memory, audit has lost a tree reference\n");
2186 unroll_tree_refs(context, p, count);
2187 audit_set_auditable(context);
2188 return;
2189 }
2190 rcu_read_unlock();
2191 }
2192
audit_alloc_name(struct audit_context * context,unsigned char type)2193 static struct audit_names *audit_alloc_name(struct audit_context *context,
2194 unsigned char type)
2195 {
2196 struct audit_names *aname;
2197
2198 if (context->name_count < AUDIT_NAMES) {
2199 aname = &context->preallocated_names[context->name_count];
2200 memset(aname, 0, sizeof(*aname));
2201 } else {
2202 aname = kzalloc(sizeof(*aname), GFP_NOFS);
2203 if (!aname)
2204 return NULL;
2205 aname->should_free = true;
2206 }
2207
2208 aname->ino = AUDIT_INO_UNSET;
2209 aname->type = type;
2210 list_add_tail(&aname->list, &context->names_list);
2211
2212 context->name_count++;
2213 if (!context->pwd.dentry)
2214 get_fs_pwd(current->fs, &context->pwd);
2215 return aname;
2216 }
2217
2218 /**
2219 * __audit_reusename - fill out filename with info from existing entry
2220 * @uptr: userland ptr to pathname
2221 *
2222 * Search the audit_names list for the current audit context. If there is an
2223 * existing entry with a matching "uptr" then return the filename
2224 * associated with that audit_name. If not, return NULL.
2225 */
2226 struct filename *
__audit_reusename(const __user char * uptr)2227 __audit_reusename(const __user char *uptr)
2228 {
2229 struct audit_context *context = audit_context();
2230 struct audit_names *n;
2231
2232 list_for_each_entry(n, &context->names_list, list) {
2233 if (!n->name)
2234 continue;
2235 if (n->name->uptr == uptr) {
2236 n->name->refcnt++;
2237 return n->name;
2238 }
2239 }
2240 return NULL;
2241 }
2242
2243 /**
2244 * __audit_getname - add a name to the list
2245 * @name: name to add
2246 *
2247 * Add a name to the list of audit names for this context.
2248 * Called from fs/namei.c:getname().
2249 */
__audit_getname(struct filename * name)2250 void __audit_getname(struct filename *name)
2251 {
2252 struct audit_context *context = audit_context();
2253 struct audit_names *n;
2254
2255 if (context->context == AUDIT_CTX_UNUSED)
2256 return;
2257
2258 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2259 if (!n)
2260 return;
2261
2262 n->name = name;
2263 n->name_len = AUDIT_NAME_FULL;
2264 name->aname = n;
2265 name->refcnt++;
2266 }
2267
audit_copy_fcaps(struct audit_names * name,const struct dentry * dentry)2268 static inline int audit_copy_fcaps(struct audit_names *name,
2269 const struct dentry *dentry)
2270 {
2271 struct cpu_vfs_cap_data caps;
2272 int rc;
2273
2274 if (!dentry)
2275 return 0;
2276
2277 rc = get_vfs_caps_from_disk(&init_user_ns, dentry, &caps);
2278 if (rc)
2279 return rc;
2280
2281 name->fcap.permitted = caps.permitted;
2282 name->fcap.inheritable = caps.inheritable;
2283 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2284 name->fcap.rootid = caps.rootid;
2285 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
2286 VFS_CAP_REVISION_SHIFT;
2287
2288 return 0;
2289 }
2290
2291 /* Copy inode data into an audit_names. */
audit_copy_inode(struct audit_names * name,const struct dentry * dentry,struct inode * inode,unsigned int flags)2292 static void audit_copy_inode(struct audit_names *name,
2293 const struct dentry *dentry,
2294 struct inode *inode, unsigned int flags)
2295 {
2296 name->ino = inode->i_ino;
2297 name->dev = inode->i_sb->s_dev;
2298 name->mode = inode->i_mode;
2299 name->uid = inode->i_uid;
2300 name->gid = inode->i_gid;
2301 name->rdev = inode->i_rdev;
2302 security_inode_getsecid(inode, &name->osid);
2303 if (flags & AUDIT_INODE_NOEVAL) {
2304 name->fcap_ver = -1;
2305 return;
2306 }
2307 audit_copy_fcaps(name, dentry);
2308 }
2309
2310 /**
2311 * __audit_inode - store the inode and device from a lookup
2312 * @name: name being audited
2313 * @dentry: dentry being audited
2314 * @flags: attributes for this particular entry
2315 */
__audit_inode(struct filename * name,const struct dentry * dentry,unsigned int flags)2316 void __audit_inode(struct filename *name, const struct dentry *dentry,
2317 unsigned int flags)
2318 {
2319 struct audit_context *context = audit_context();
2320 struct inode *inode = d_backing_inode(dentry);
2321 struct audit_names *n;
2322 bool parent = flags & AUDIT_INODE_PARENT;
2323 struct audit_entry *e;
2324 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2325 int i;
2326
2327 if (context->context == AUDIT_CTX_UNUSED)
2328 return;
2329
2330 rcu_read_lock();
2331 list_for_each_entry_rcu(e, list, list) {
2332 for (i = 0; i < e->rule.field_count; i++) {
2333 struct audit_field *f = &e->rule.fields[i];
2334
2335 if (f->type == AUDIT_FSTYPE
2336 && audit_comparator(inode->i_sb->s_magic,
2337 f->op, f->val)
2338 && e->rule.action == AUDIT_NEVER) {
2339 rcu_read_unlock();
2340 return;
2341 }
2342 }
2343 }
2344 rcu_read_unlock();
2345
2346 if (!name)
2347 goto out_alloc;
2348
2349 /*
2350 * If we have a pointer to an audit_names entry already, then we can
2351 * just use it directly if the type is correct.
2352 */
2353 n = name->aname;
2354 if (n) {
2355 if (parent) {
2356 if (n->type == AUDIT_TYPE_PARENT ||
2357 n->type == AUDIT_TYPE_UNKNOWN)
2358 goto out;
2359 } else {
2360 if (n->type != AUDIT_TYPE_PARENT)
2361 goto out;
2362 }
2363 }
2364
2365 list_for_each_entry_reverse(n, &context->names_list, list) {
2366 if (n->ino) {
2367 /* valid inode number, use that for the comparison */
2368 if (n->ino != inode->i_ino ||
2369 n->dev != inode->i_sb->s_dev)
2370 continue;
2371 } else if (n->name) {
2372 /* inode number has not been set, check the name */
2373 if (strcmp(n->name->name, name->name))
2374 continue;
2375 } else
2376 /* no inode and no name (?!) ... this is odd ... */
2377 continue;
2378
2379 /* match the correct record type */
2380 if (parent) {
2381 if (n->type == AUDIT_TYPE_PARENT ||
2382 n->type == AUDIT_TYPE_UNKNOWN)
2383 goto out;
2384 } else {
2385 if (n->type != AUDIT_TYPE_PARENT)
2386 goto out;
2387 }
2388 }
2389
2390 out_alloc:
2391 /* unable to find an entry with both a matching name and type */
2392 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2393 if (!n)
2394 return;
2395 if (name) {
2396 n->name = name;
2397 name->refcnt++;
2398 }
2399
2400 out:
2401 if (parent) {
2402 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2403 n->type = AUDIT_TYPE_PARENT;
2404 if (flags & AUDIT_INODE_HIDDEN)
2405 n->hidden = true;
2406 } else {
2407 n->name_len = AUDIT_NAME_FULL;
2408 n->type = AUDIT_TYPE_NORMAL;
2409 }
2410 handle_path(dentry);
2411 audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2412 }
2413
__audit_file(const struct file * file)2414 void __audit_file(const struct file *file)
2415 {
2416 __audit_inode(NULL, file->f_path.dentry, 0);
2417 }
2418
2419 /**
2420 * __audit_inode_child - collect inode info for created/removed objects
2421 * @parent: inode of dentry parent
2422 * @dentry: dentry being audited
2423 * @type: AUDIT_TYPE_* value that we're looking for
2424 *
2425 * For syscalls that create or remove filesystem objects, audit_inode
2426 * can only collect information for the filesystem object's parent.
2427 * This call updates the audit context with the child's information.
2428 * Syscalls that create a new filesystem object must be hooked after
2429 * the object is created. Syscalls that remove a filesystem object
2430 * must be hooked prior, in order to capture the target inode during
2431 * unsuccessful attempts.
2432 */
__audit_inode_child(struct inode * parent,const struct dentry * dentry,const unsigned char type)2433 void __audit_inode_child(struct inode *parent,
2434 const struct dentry *dentry,
2435 const unsigned char type)
2436 {
2437 struct audit_context *context = audit_context();
2438 struct inode *inode = d_backing_inode(dentry);
2439 const struct qstr *dname = &dentry->d_name;
2440 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2441 struct audit_entry *e;
2442 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2443 int i;
2444
2445 if (context->context == AUDIT_CTX_UNUSED)
2446 return;
2447
2448 rcu_read_lock();
2449 list_for_each_entry_rcu(e, list, list) {
2450 for (i = 0; i < e->rule.field_count; i++) {
2451 struct audit_field *f = &e->rule.fields[i];
2452
2453 if (f->type == AUDIT_FSTYPE
2454 && audit_comparator(parent->i_sb->s_magic,
2455 f->op, f->val)
2456 && e->rule.action == AUDIT_NEVER) {
2457 rcu_read_unlock();
2458 return;
2459 }
2460 }
2461 }
2462 rcu_read_unlock();
2463
2464 if (inode)
2465 handle_one(inode);
2466
2467 /* look for a parent entry first */
2468 list_for_each_entry(n, &context->names_list, list) {
2469 if (!n->name ||
2470 (n->type != AUDIT_TYPE_PARENT &&
2471 n->type != AUDIT_TYPE_UNKNOWN))
2472 continue;
2473
2474 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2475 !audit_compare_dname_path(dname,
2476 n->name->name, n->name_len)) {
2477 if (n->type == AUDIT_TYPE_UNKNOWN)
2478 n->type = AUDIT_TYPE_PARENT;
2479 found_parent = n;
2480 break;
2481 }
2482 }
2483
2484 /* is there a matching child entry? */
2485 list_for_each_entry(n, &context->names_list, list) {
2486 /* can only match entries that have a name */
2487 if (!n->name ||
2488 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2489 continue;
2490
2491 if (!strcmp(dname->name, n->name->name) ||
2492 !audit_compare_dname_path(dname, n->name->name,
2493 found_parent ?
2494 found_parent->name_len :
2495 AUDIT_NAME_FULL)) {
2496 if (n->type == AUDIT_TYPE_UNKNOWN)
2497 n->type = type;
2498 found_child = n;
2499 break;
2500 }
2501 }
2502
2503 if (!found_parent) {
2504 /* create a new, "anonymous" parent record */
2505 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2506 if (!n)
2507 return;
2508 audit_copy_inode(n, NULL, parent, 0);
2509 }
2510
2511 if (!found_child) {
2512 found_child = audit_alloc_name(context, type);
2513 if (!found_child)
2514 return;
2515
2516 /* Re-use the name belonging to the slot for a matching parent
2517 * directory. All names for this context are relinquished in
2518 * audit_free_names() */
2519 if (found_parent) {
2520 found_child->name = found_parent->name;
2521 found_child->name_len = AUDIT_NAME_FULL;
2522 found_child->name->refcnt++;
2523 }
2524 }
2525
2526 if (inode)
2527 audit_copy_inode(found_child, dentry, inode, 0);
2528 else
2529 found_child->ino = AUDIT_INO_UNSET;
2530 }
2531 EXPORT_SYMBOL_GPL(__audit_inode_child);
2532
2533 /**
2534 * auditsc_get_stamp - get local copies of audit_context values
2535 * @ctx: audit_context for the task
2536 * @t: timespec64 to store time recorded in the audit_context
2537 * @serial: serial value that is recorded in the audit_context
2538 *
2539 * Also sets the context as auditable.
2540 */
auditsc_get_stamp(struct audit_context * ctx,struct timespec64 * t,unsigned int * serial)2541 int auditsc_get_stamp(struct audit_context *ctx,
2542 struct timespec64 *t, unsigned int *serial)
2543 {
2544 if (ctx->context == AUDIT_CTX_UNUSED)
2545 return 0;
2546 if (!ctx->serial)
2547 ctx->serial = audit_serial();
2548 t->tv_sec = ctx->ctime.tv_sec;
2549 t->tv_nsec = ctx->ctime.tv_nsec;
2550 *serial = ctx->serial;
2551 if (!ctx->prio) {
2552 ctx->prio = 1;
2553 ctx->current_state = AUDIT_STATE_RECORD;
2554 }
2555 return 1;
2556 }
2557
2558 /**
2559 * __audit_mq_open - record audit data for a POSIX MQ open
2560 * @oflag: open flag
2561 * @mode: mode bits
2562 * @attr: queue attributes
2563 *
2564 */
__audit_mq_open(int oflag,umode_t mode,struct mq_attr * attr)2565 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2566 {
2567 struct audit_context *context = audit_context();
2568
2569 if (attr)
2570 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2571 else
2572 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2573
2574 context->mq_open.oflag = oflag;
2575 context->mq_open.mode = mode;
2576
2577 context->type = AUDIT_MQ_OPEN;
2578 }
2579
2580 /**
2581 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2582 * @mqdes: MQ descriptor
2583 * @msg_len: Message length
2584 * @msg_prio: Message priority
2585 * @abs_timeout: Message timeout in absolute time
2586 *
2587 */
__audit_mq_sendrecv(mqd_t mqdes,size_t msg_len,unsigned int msg_prio,const struct timespec64 * abs_timeout)2588 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2589 const struct timespec64 *abs_timeout)
2590 {
2591 struct audit_context *context = audit_context();
2592 struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2593
2594 if (abs_timeout)
2595 memcpy(p, abs_timeout, sizeof(*p));
2596 else
2597 memset(p, 0, sizeof(*p));
2598
2599 context->mq_sendrecv.mqdes = mqdes;
2600 context->mq_sendrecv.msg_len = msg_len;
2601 context->mq_sendrecv.msg_prio = msg_prio;
2602
2603 context->type = AUDIT_MQ_SENDRECV;
2604 }
2605
2606 /**
2607 * __audit_mq_notify - record audit data for a POSIX MQ notify
2608 * @mqdes: MQ descriptor
2609 * @notification: Notification event
2610 *
2611 */
2612
__audit_mq_notify(mqd_t mqdes,const struct sigevent * notification)2613 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2614 {
2615 struct audit_context *context = audit_context();
2616
2617 if (notification)
2618 context->mq_notify.sigev_signo = notification->sigev_signo;
2619 else
2620 context->mq_notify.sigev_signo = 0;
2621
2622 context->mq_notify.mqdes = mqdes;
2623 context->type = AUDIT_MQ_NOTIFY;
2624 }
2625
2626 /**
2627 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2628 * @mqdes: MQ descriptor
2629 * @mqstat: MQ flags
2630 *
2631 */
__audit_mq_getsetattr(mqd_t mqdes,struct mq_attr * mqstat)2632 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2633 {
2634 struct audit_context *context = audit_context();
2635
2636 context->mq_getsetattr.mqdes = mqdes;
2637 context->mq_getsetattr.mqstat = *mqstat;
2638 context->type = AUDIT_MQ_GETSETATTR;
2639 }
2640
2641 /**
2642 * __audit_ipc_obj - record audit data for ipc object
2643 * @ipcp: ipc permissions
2644 *
2645 */
__audit_ipc_obj(struct kern_ipc_perm * ipcp)2646 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2647 {
2648 struct audit_context *context = audit_context();
2649
2650 context->ipc.uid = ipcp->uid;
2651 context->ipc.gid = ipcp->gid;
2652 context->ipc.mode = ipcp->mode;
2653 context->ipc.has_perm = 0;
2654 security_ipc_getsecid(ipcp, &context->ipc.osid);
2655 context->type = AUDIT_IPC;
2656 }
2657
2658 /**
2659 * __audit_ipc_set_perm - record audit data for new ipc permissions
2660 * @qbytes: msgq bytes
2661 * @uid: msgq user id
2662 * @gid: msgq group id
2663 * @mode: msgq mode (permissions)
2664 *
2665 * Called only after audit_ipc_obj().
2666 */
__audit_ipc_set_perm(unsigned long qbytes,uid_t uid,gid_t gid,umode_t mode)2667 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2668 {
2669 struct audit_context *context = audit_context();
2670
2671 context->ipc.qbytes = qbytes;
2672 context->ipc.perm_uid = uid;
2673 context->ipc.perm_gid = gid;
2674 context->ipc.perm_mode = mode;
2675 context->ipc.has_perm = 1;
2676 }
2677
__audit_bprm(struct linux_binprm * bprm)2678 void __audit_bprm(struct linux_binprm *bprm)
2679 {
2680 struct audit_context *context = audit_context();
2681
2682 context->type = AUDIT_EXECVE;
2683 context->execve.argc = bprm->argc;
2684 }
2685
2686
2687 /**
2688 * __audit_socketcall - record audit data for sys_socketcall
2689 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2690 * @args: args array
2691 *
2692 */
__audit_socketcall(int nargs,unsigned long * args)2693 int __audit_socketcall(int nargs, unsigned long *args)
2694 {
2695 struct audit_context *context = audit_context();
2696
2697 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2698 return -EINVAL;
2699 context->type = AUDIT_SOCKETCALL;
2700 context->socketcall.nargs = nargs;
2701 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2702 return 0;
2703 }
2704
2705 /**
2706 * __audit_fd_pair - record audit data for pipe and socketpair
2707 * @fd1: the first file descriptor
2708 * @fd2: the second file descriptor
2709 *
2710 */
__audit_fd_pair(int fd1,int fd2)2711 void __audit_fd_pair(int fd1, int fd2)
2712 {
2713 struct audit_context *context = audit_context();
2714
2715 context->fds[0] = fd1;
2716 context->fds[1] = fd2;
2717 }
2718
2719 /**
2720 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2721 * @len: data length in user space
2722 * @a: data address in kernel space
2723 *
2724 * Returns 0 for success or NULL context or < 0 on error.
2725 */
__audit_sockaddr(int len,void * a)2726 int __audit_sockaddr(int len, void *a)
2727 {
2728 struct audit_context *context = audit_context();
2729
2730 if (!context->sockaddr) {
2731 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2732
2733 if (!p)
2734 return -ENOMEM;
2735 context->sockaddr = p;
2736 }
2737
2738 context->sockaddr_len = len;
2739 memcpy(context->sockaddr, a, len);
2740 return 0;
2741 }
2742
__audit_ptrace(struct task_struct * t)2743 void __audit_ptrace(struct task_struct *t)
2744 {
2745 struct audit_context *context = audit_context();
2746
2747 context->target_pid = task_tgid_nr(t);
2748 context->target_auid = audit_get_loginuid(t);
2749 context->target_uid = task_uid(t);
2750 context->target_sessionid = audit_get_sessionid(t);
2751 security_task_getsecid_obj(t, &context->target_sid);
2752 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2753 }
2754
2755 /**
2756 * audit_signal_info_syscall - record signal info for syscalls
2757 * @t: task being signaled
2758 *
2759 * If the audit subsystem is being terminated, record the task (pid)
2760 * and uid that is doing that.
2761 */
audit_signal_info_syscall(struct task_struct * t)2762 int audit_signal_info_syscall(struct task_struct *t)
2763 {
2764 struct audit_aux_data_pids *axp;
2765 struct audit_context *ctx = audit_context();
2766 kuid_t t_uid = task_uid(t);
2767
2768 if (!audit_signals || audit_dummy_context())
2769 return 0;
2770
2771 /* optimize the common case by putting first signal recipient directly
2772 * in audit_context */
2773 if (!ctx->target_pid) {
2774 ctx->target_pid = task_tgid_nr(t);
2775 ctx->target_auid = audit_get_loginuid(t);
2776 ctx->target_uid = t_uid;
2777 ctx->target_sessionid = audit_get_sessionid(t);
2778 security_task_getsecid_obj(t, &ctx->target_sid);
2779 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2780 return 0;
2781 }
2782
2783 axp = (void *)ctx->aux_pids;
2784 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2785 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2786 if (!axp)
2787 return -ENOMEM;
2788
2789 axp->d.type = AUDIT_OBJ_PID;
2790 axp->d.next = ctx->aux_pids;
2791 ctx->aux_pids = (void *)axp;
2792 }
2793 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2794
2795 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2796 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2797 axp->target_uid[axp->pid_count] = t_uid;
2798 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2799 security_task_getsecid_obj(t, &axp->target_sid[axp->pid_count]);
2800 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2801 axp->pid_count++;
2802
2803 return 0;
2804 }
2805
2806 /**
2807 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2808 * @bprm: pointer to the bprm being processed
2809 * @new: the proposed new credentials
2810 * @old: the old credentials
2811 *
2812 * Simply check if the proc already has the caps given by the file and if not
2813 * store the priv escalation info for later auditing at the end of the syscall
2814 *
2815 * -Eric
2816 */
__audit_log_bprm_fcaps(struct linux_binprm * bprm,const struct cred * new,const struct cred * old)2817 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2818 const struct cred *new, const struct cred *old)
2819 {
2820 struct audit_aux_data_bprm_fcaps *ax;
2821 struct audit_context *context = audit_context();
2822 struct cpu_vfs_cap_data vcaps;
2823
2824 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2825 if (!ax)
2826 return -ENOMEM;
2827
2828 ax->d.type = AUDIT_BPRM_FCAPS;
2829 ax->d.next = context->aux;
2830 context->aux = (void *)ax;
2831
2832 get_vfs_caps_from_disk(&init_user_ns,
2833 bprm->file->f_path.dentry, &vcaps);
2834
2835 ax->fcap.permitted = vcaps.permitted;
2836 ax->fcap.inheritable = vcaps.inheritable;
2837 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2838 ax->fcap.rootid = vcaps.rootid;
2839 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2840
2841 ax->old_pcap.permitted = old->cap_permitted;
2842 ax->old_pcap.inheritable = old->cap_inheritable;
2843 ax->old_pcap.effective = old->cap_effective;
2844 ax->old_pcap.ambient = old->cap_ambient;
2845
2846 ax->new_pcap.permitted = new->cap_permitted;
2847 ax->new_pcap.inheritable = new->cap_inheritable;
2848 ax->new_pcap.effective = new->cap_effective;
2849 ax->new_pcap.ambient = new->cap_ambient;
2850 return 0;
2851 }
2852
2853 /**
2854 * __audit_log_capset - store information about the arguments to the capset syscall
2855 * @new: the new credentials
2856 * @old: the old (current) credentials
2857 *
2858 * Record the arguments userspace sent to sys_capset for later printing by the
2859 * audit system if applicable
2860 */
__audit_log_capset(const struct cred * new,const struct cred * old)2861 void __audit_log_capset(const struct cred *new, const struct cred *old)
2862 {
2863 struct audit_context *context = audit_context();
2864
2865 context->capset.pid = task_tgid_nr(current);
2866 context->capset.cap.effective = new->cap_effective;
2867 context->capset.cap.inheritable = new->cap_effective;
2868 context->capset.cap.permitted = new->cap_permitted;
2869 context->capset.cap.ambient = new->cap_ambient;
2870 context->type = AUDIT_CAPSET;
2871 }
2872
__audit_mmap_fd(int fd,int flags)2873 void __audit_mmap_fd(int fd, int flags)
2874 {
2875 struct audit_context *context = audit_context();
2876
2877 context->mmap.fd = fd;
2878 context->mmap.flags = flags;
2879 context->type = AUDIT_MMAP;
2880 }
2881
__audit_openat2_how(struct open_how * how)2882 void __audit_openat2_how(struct open_how *how)
2883 {
2884 struct audit_context *context = audit_context();
2885
2886 context->openat2.flags = how->flags;
2887 context->openat2.mode = how->mode;
2888 context->openat2.resolve = how->resolve;
2889 context->type = AUDIT_OPENAT2;
2890 }
2891
__audit_log_kern_module(char * name)2892 void __audit_log_kern_module(char *name)
2893 {
2894 struct audit_context *context = audit_context();
2895
2896 context->module.name = kstrdup(name, GFP_KERNEL);
2897 if (!context->module.name)
2898 audit_log_lost("out of memory in __audit_log_kern_module");
2899 context->type = AUDIT_KERN_MODULE;
2900 }
2901
__audit_fanotify(unsigned int response)2902 void __audit_fanotify(unsigned int response)
2903 {
2904 audit_log(audit_context(), GFP_KERNEL,
2905 AUDIT_FANOTIFY, "resp=%u", response);
2906 }
2907
__audit_tk_injoffset(struct timespec64 offset)2908 void __audit_tk_injoffset(struct timespec64 offset)
2909 {
2910 struct audit_context *context = audit_context();
2911
2912 /* only set type if not already set by NTP */
2913 if (!context->type)
2914 context->type = AUDIT_TIME_INJOFFSET;
2915 memcpy(&context->time.tk_injoffset, &offset, sizeof(offset));
2916 }
2917
__audit_ntp_log(const struct audit_ntp_data * ad)2918 void __audit_ntp_log(const struct audit_ntp_data *ad)
2919 {
2920 struct audit_context *context = audit_context();
2921 int type;
2922
2923 for (type = 0; type < AUDIT_NTP_NVALS; type++)
2924 if (ad->vals[type].newval != ad->vals[type].oldval) {
2925 /* unconditionally set type, overwriting TK */
2926 context->type = AUDIT_TIME_ADJNTPVAL;
2927 memcpy(&context->time.ntp_data, ad, sizeof(*ad));
2928 break;
2929 }
2930 }
2931
__audit_log_nfcfg(const char * name,u8 af,unsigned int nentries,enum audit_nfcfgop op,gfp_t gfp)2932 void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries,
2933 enum audit_nfcfgop op, gfp_t gfp)
2934 {
2935 struct audit_buffer *ab;
2936 char comm[sizeof(current->comm)];
2937
2938 ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG);
2939 if (!ab)
2940 return;
2941 audit_log_format(ab, "table=%s family=%u entries=%u op=%s",
2942 name, af, nentries, audit_nfcfgs[op].s);
2943
2944 audit_log_format(ab, " pid=%u", task_pid_nr(current));
2945 audit_log_task_context(ab); /* subj= */
2946 audit_log_format(ab, " comm=");
2947 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2948 audit_log_end(ab);
2949 }
2950 EXPORT_SYMBOL_GPL(__audit_log_nfcfg);
2951
audit_log_task(struct audit_buffer * ab)2952 static void audit_log_task(struct audit_buffer *ab)
2953 {
2954 kuid_t auid, uid;
2955 kgid_t gid;
2956 unsigned int sessionid;
2957 char comm[sizeof(current->comm)];
2958
2959 auid = audit_get_loginuid(current);
2960 sessionid = audit_get_sessionid(current);
2961 current_uid_gid(&uid, &gid);
2962
2963 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2964 from_kuid(&init_user_ns, auid),
2965 from_kuid(&init_user_ns, uid),
2966 from_kgid(&init_user_ns, gid),
2967 sessionid);
2968 audit_log_task_context(ab);
2969 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2970 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2971 audit_log_d_path_exe(ab, current->mm);
2972 }
2973
2974 /**
2975 * audit_core_dumps - record information about processes that end abnormally
2976 * @signr: signal value
2977 *
2978 * If a process ends with a core dump, something fishy is going on and we
2979 * should record the event for investigation.
2980 */
audit_core_dumps(long signr)2981 void audit_core_dumps(long signr)
2982 {
2983 struct audit_buffer *ab;
2984
2985 if (!audit_enabled)
2986 return;
2987
2988 if (signr == SIGQUIT) /* don't care for those */
2989 return;
2990
2991 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2992 if (unlikely(!ab))
2993 return;
2994 audit_log_task(ab);
2995 audit_log_format(ab, " sig=%ld res=1", signr);
2996 audit_log_end(ab);
2997 }
2998
2999 /**
3000 * audit_seccomp - record information about a seccomp action
3001 * @syscall: syscall number
3002 * @signr: signal value
3003 * @code: the seccomp action
3004 *
3005 * Record the information associated with a seccomp action. Event filtering for
3006 * seccomp actions that are not to be logged is done in seccomp_log().
3007 * Therefore, this function forces auditing independent of the audit_enabled
3008 * and dummy context state because seccomp actions should be logged even when
3009 * audit is not in use.
3010 */
audit_seccomp(unsigned long syscall,long signr,int code)3011 void audit_seccomp(unsigned long syscall, long signr, int code)
3012 {
3013 struct audit_buffer *ab;
3014
3015 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
3016 if (unlikely(!ab))
3017 return;
3018 audit_log_task(ab);
3019 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
3020 signr, syscall_get_arch(current), syscall,
3021 in_compat_syscall(), KSTK_EIP(current), code);
3022 audit_log_end(ab);
3023 }
3024
audit_seccomp_actions_logged(const char * names,const char * old_names,int res)3025 void audit_seccomp_actions_logged(const char *names, const char *old_names,
3026 int res)
3027 {
3028 struct audit_buffer *ab;
3029
3030 if (!audit_enabled)
3031 return;
3032
3033 ab = audit_log_start(audit_context(), GFP_KERNEL,
3034 AUDIT_CONFIG_CHANGE);
3035 if (unlikely(!ab))
3036 return;
3037
3038 audit_log_format(ab,
3039 "op=seccomp-logging actions=%s old-actions=%s res=%d",
3040 names, old_names, res);
3041 audit_log_end(ab);
3042 }
3043
audit_killed_trees(void)3044 struct list_head *audit_killed_trees(void)
3045 {
3046 struct audit_context *ctx = audit_context();
3047 if (likely(!ctx || ctx->context == AUDIT_CTX_UNUSED))
3048 return NULL;
3049 return &ctx->killed_trees;
3050 }
3051