1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <linux/atomic.h>
48 #include <linux/fs.h>
49 #include <linux/namei.h>
50 #include <linux/mm.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/mount.h>
54 #include <linux/socket.h>
55 #include <linux/mqueue.h>
56 #include <linux/audit.h>
57 #include <linux/personality.h>
58 #include <linux/time.h>
59 #include <linux/netlink.h>
60 #include <linux/compiler.h>
61 #include <asm/unistd.h>
62 #include <linux/security.h>
63 #include <linux/list.h>
64 #include <linux/tty.h>
65 #include <linux/binfmts.h>
66 #include <linux/highmem.h>
67 #include <linux/syscalls.h>
68 #include <linux/capability.h>
69 #include <linux/fs_struct.h>
70
71 #include "audit.h"
72
73 /* flags stating the success for a syscall */
74 #define AUDITSC_INVALID 0
75 #define AUDITSC_SUCCESS 1
76 #define AUDITSC_FAILURE 2
77
78 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
79 * for saving names from getname(). If we get more names we will allocate
80 * a name dynamically and also add those to the list anchored by names_list. */
81 #define AUDIT_NAMES 5
82
83 /* Indicates that audit should log the full pathname. */
84 #define AUDIT_NAME_FULL -1
85
86 /* no execve audit message should be longer than this (userspace limits) */
87 #define MAX_EXECVE_AUDIT_LEN 7500
88
89 /* number of audit rules */
90 int audit_n_rules;
91
92 /* determines whether we collect data for signals sent */
93 int audit_signals;
94
95 struct audit_cap_data {
96 kernel_cap_t permitted;
97 kernel_cap_t inheritable;
98 union {
99 unsigned int fE; /* effective bit of a file capability */
100 kernel_cap_t effective; /* effective set of a process */
101 };
102 };
103
104 /* When fs/namei.c:getname() is called, we store the pointer in name and
105 * we don't let putname() free it (instead we free all of the saved
106 * pointers at syscall exit time).
107 *
108 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
109 struct audit_names {
110 struct list_head list; /* audit_context->names_list */
111 const char *name;
112 unsigned long ino;
113 dev_t dev;
114 umode_t mode;
115 uid_t uid;
116 gid_t gid;
117 dev_t rdev;
118 u32 osid;
119 struct audit_cap_data fcap;
120 unsigned int fcap_ver;
121 int name_len; /* number of name's characters to log */
122 bool name_put; /* call __putname() for this name */
123 /*
124 * This was an allocated audit_names and not from the array of
125 * names allocated in the task audit context. Thus this name
126 * should be freed on syscall exit
127 */
128 bool should_free;
129 };
130
131 struct audit_aux_data {
132 struct audit_aux_data *next;
133 int type;
134 };
135
136 #define AUDIT_AUX_IPCPERM 0
137
138 /* Number of target pids per aux struct. */
139 #define AUDIT_AUX_PIDS 16
140
141 struct audit_aux_data_execve {
142 struct audit_aux_data d;
143 int argc;
144 int envc;
145 struct mm_struct *mm;
146 };
147
148 struct audit_aux_data_pids {
149 struct audit_aux_data d;
150 pid_t target_pid[AUDIT_AUX_PIDS];
151 uid_t target_auid[AUDIT_AUX_PIDS];
152 uid_t target_uid[AUDIT_AUX_PIDS];
153 unsigned int target_sessionid[AUDIT_AUX_PIDS];
154 u32 target_sid[AUDIT_AUX_PIDS];
155 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
156 int pid_count;
157 };
158
159 struct audit_aux_data_bprm_fcaps {
160 struct audit_aux_data d;
161 struct audit_cap_data fcap;
162 unsigned int fcap_ver;
163 struct audit_cap_data old_pcap;
164 struct audit_cap_data new_pcap;
165 };
166
167 struct audit_aux_data_capset {
168 struct audit_aux_data d;
169 pid_t pid;
170 struct audit_cap_data cap;
171 };
172
173 struct audit_tree_refs {
174 struct audit_tree_refs *next;
175 struct audit_chunk *c[31];
176 };
177
178 /* The per-task audit context. */
179 struct audit_context {
180 int dummy; /* must be the first element */
181 int in_syscall; /* 1 if task is in a syscall */
182 enum audit_state state, current_state;
183 unsigned int serial; /* serial number for record */
184 int major; /* syscall number */
185 struct timespec ctime; /* time of syscall entry */
186 unsigned long argv[4]; /* syscall arguments */
187 long return_code;/* syscall return code */
188 u64 prio;
189 int return_valid; /* return code is valid */
190 /*
191 * The names_list is the list of all audit_names collected during this
192 * syscall. The first AUDIT_NAMES entries in the names_list will
193 * actually be from the preallocated_names array for performance
194 * reasons. Except during allocation they should never be referenced
195 * through the preallocated_names array and should only be found/used
196 * by running the names_list.
197 */
198 struct audit_names preallocated_names[AUDIT_NAMES];
199 int name_count; /* total records in names_list */
200 struct list_head names_list; /* anchor for struct audit_names->list */
201 char * filterkey; /* key for rule that triggered record */
202 struct path pwd;
203 struct audit_context *previous; /* For nested syscalls */
204 struct audit_aux_data *aux;
205 struct audit_aux_data *aux_pids;
206 struct sockaddr_storage *sockaddr;
207 size_t sockaddr_len;
208 /* Save things to print about task_struct */
209 pid_t pid, ppid;
210 uid_t uid, euid, suid, fsuid;
211 gid_t gid, egid, sgid, fsgid;
212 unsigned long personality;
213 int arch;
214
215 pid_t target_pid;
216 uid_t target_auid;
217 uid_t target_uid;
218 unsigned int target_sessionid;
219 u32 target_sid;
220 char target_comm[TASK_COMM_LEN];
221
222 struct audit_tree_refs *trees, *first_trees;
223 struct list_head killed_trees;
224 int tree_count;
225
226 int type;
227 union {
228 struct {
229 int nargs;
230 long args[6];
231 } socketcall;
232 struct {
233 uid_t uid;
234 gid_t gid;
235 umode_t mode;
236 u32 osid;
237 int has_perm;
238 uid_t perm_uid;
239 gid_t perm_gid;
240 umode_t perm_mode;
241 unsigned long qbytes;
242 } ipc;
243 struct {
244 mqd_t mqdes;
245 struct mq_attr mqstat;
246 } mq_getsetattr;
247 struct {
248 mqd_t mqdes;
249 int sigev_signo;
250 } mq_notify;
251 struct {
252 mqd_t mqdes;
253 size_t msg_len;
254 unsigned int msg_prio;
255 struct timespec abs_timeout;
256 } mq_sendrecv;
257 struct {
258 int oflag;
259 umode_t mode;
260 struct mq_attr attr;
261 } mq_open;
262 struct {
263 pid_t pid;
264 struct audit_cap_data cap;
265 } capset;
266 struct {
267 int fd;
268 int flags;
269 } mmap;
270 };
271 int fds[2];
272
273 #if AUDIT_DEBUG
274 int put_count;
275 int ino_count;
276 #endif
277 };
278
open_arg(int flags,int mask)279 static inline int open_arg(int flags, int mask)
280 {
281 int n = ACC_MODE(flags);
282 if (flags & (O_TRUNC | O_CREAT))
283 n |= AUDIT_PERM_WRITE;
284 return n & mask;
285 }
286
audit_match_perm(struct audit_context * ctx,int mask)287 static int audit_match_perm(struct audit_context *ctx, int mask)
288 {
289 unsigned n;
290 if (unlikely(!ctx))
291 return 0;
292 n = ctx->major;
293
294 switch (audit_classify_syscall(ctx->arch, n)) {
295 case 0: /* native */
296 if ((mask & AUDIT_PERM_WRITE) &&
297 audit_match_class(AUDIT_CLASS_WRITE, n))
298 return 1;
299 if ((mask & AUDIT_PERM_READ) &&
300 audit_match_class(AUDIT_CLASS_READ, n))
301 return 1;
302 if ((mask & AUDIT_PERM_ATTR) &&
303 audit_match_class(AUDIT_CLASS_CHATTR, n))
304 return 1;
305 return 0;
306 case 1: /* 32bit on biarch */
307 if ((mask & AUDIT_PERM_WRITE) &&
308 audit_match_class(AUDIT_CLASS_WRITE_32, n))
309 return 1;
310 if ((mask & AUDIT_PERM_READ) &&
311 audit_match_class(AUDIT_CLASS_READ_32, n))
312 return 1;
313 if ((mask & AUDIT_PERM_ATTR) &&
314 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
315 return 1;
316 return 0;
317 case 2: /* open */
318 return mask & ACC_MODE(ctx->argv[1]);
319 case 3: /* openat */
320 return mask & ACC_MODE(ctx->argv[2]);
321 case 4: /* socketcall */
322 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
323 case 5: /* execve */
324 return mask & AUDIT_PERM_EXEC;
325 default:
326 return 0;
327 }
328 }
329
audit_match_filetype(struct audit_context * ctx,int val)330 static int audit_match_filetype(struct audit_context *ctx, int val)
331 {
332 struct audit_names *n;
333 umode_t mode = (umode_t)val;
334
335 if (unlikely(!ctx))
336 return 0;
337
338 list_for_each_entry(n, &ctx->names_list, list) {
339 if ((n->ino != -1) &&
340 ((n->mode & S_IFMT) == mode))
341 return 1;
342 }
343
344 return 0;
345 }
346
347 /*
348 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
349 * ->first_trees points to its beginning, ->trees - to the current end of data.
350 * ->tree_count is the number of free entries in array pointed to by ->trees.
351 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
352 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
353 * it's going to remain 1-element for almost any setup) until we free context itself.
354 * References in it _are_ dropped - at the same time we free/drop aux stuff.
355 */
356
357 #ifdef CONFIG_AUDIT_TREE
audit_set_auditable(struct audit_context * ctx)358 static void audit_set_auditable(struct audit_context *ctx)
359 {
360 if (!ctx->prio) {
361 ctx->prio = 1;
362 ctx->current_state = AUDIT_RECORD_CONTEXT;
363 }
364 }
365
put_tree_ref(struct audit_context * ctx,struct audit_chunk * chunk)366 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
367 {
368 struct audit_tree_refs *p = ctx->trees;
369 int left = ctx->tree_count;
370 if (likely(left)) {
371 p->c[--left] = chunk;
372 ctx->tree_count = left;
373 return 1;
374 }
375 if (!p)
376 return 0;
377 p = p->next;
378 if (p) {
379 p->c[30] = chunk;
380 ctx->trees = p;
381 ctx->tree_count = 30;
382 return 1;
383 }
384 return 0;
385 }
386
grow_tree_refs(struct audit_context * ctx)387 static int grow_tree_refs(struct audit_context *ctx)
388 {
389 struct audit_tree_refs *p = ctx->trees;
390 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
391 if (!ctx->trees) {
392 ctx->trees = p;
393 return 0;
394 }
395 if (p)
396 p->next = ctx->trees;
397 else
398 ctx->first_trees = ctx->trees;
399 ctx->tree_count = 31;
400 return 1;
401 }
402 #endif
403
unroll_tree_refs(struct audit_context * ctx,struct audit_tree_refs * p,int count)404 static void unroll_tree_refs(struct audit_context *ctx,
405 struct audit_tree_refs *p, int count)
406 {
407 #ifdef CONFIG_AUDIT_TREE
408 struct audit_tree_refs *q;
409 int n;
410 if (!p) {
411 /* we started with empty chain */
412 p = ctx->first_trees;
413 count = 31;
414 /* if the very first allocation has failed, nothing to do */
415 if (!p)
416 return;
417 }
418 n = count;
419 for (q = p; q != ctx->trees; q = q->next, n = 31) {
420 while (n--) {
421 audit_put_chunk(q->c[n]);
422 q->c[n] = NULL;
423 }
424 }
425 while (n-- > ctx->tree_count) {
426 audit_put_chunk(q->c[n]);
427 q->c[n] = NULL;
428 }
429 ctx->trees = p;
430 ctx->tree_count = count;
431 #endif
432 }
433
free_tree_refs(struct audit_context * ctx)434 static void free_tree_refs(struct audit_context *ctx)
435 {
436 struct audit_tree_refs *p, *q;
437 for (p = ctx->first_trees; p; p = q) {
438 q = p->next;
439 kfree(p);
440 }
441 }
442
match_tree_refs(struct audit_context * ctx,struct audit_tree * tree)443 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
444 {
445 #ifdef CONFIG_AUDIT_TREE
446 struct audit_tree_refs *p;
447 int n;
448 if (!tree)
449 return 0;
450 /* full ones */
451 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
452 for (n = 0; n < 31; n++)
453 if (audit_tree_match(p->c[n], tree))
454 return 1;
455 }
456 /* partial */
457 if (p) {
458 for (n = ctx->tree_count; n < 31; n++)
459 if (audit_tree_match(p->c[n], tree))
460 return 1;
461 }
462 #endif
463 return 0;
464 }
465
audit_compare_id(uid_t uid1,struct audit_names * name,unsigned long name_offset,struct audit_field * f,struct audit_context * ctx)466 static int audit_compare_id(uid_t uid1,
467 struct audit_names *name,
468 unsigned long name_offset,
469 struct audit_field *f,
470 struct audit_context *ctx)
471 {
472 struct audit_names *n;
473 unsigned long addr;
474 uid_t uid2;
475 int rc;
476
477 BUILD_BUG_ON(sizeof(uid_t) != sizeof(gid_t));
478
479 if (name) {
480 addr = (unsigned long)name;
481 addr += name_offset;
482
483 uid2 = *(uid_t *)addr;
484 rc = audit_comparator(uid1, f->op, uid2);
485 if (rc)
486 return rc;
487 }
488
489 if (ctx) {
490 list_for_each_entry(n, &ctx->names_list, list) {
491 addr = (unsigned long)n;
492 addr += name_offset;
493
494 uid2 = *(uid_t *)addr;
495
496 rc = audit_comparator(uid1, f->op, uid2);
497 if (rc)
498 return rc;
499 }
500 }
501 return 0;
502 }
503
audit_field_compare(struct task_struct * tsk,const struct cred * cred,struct audit_field * f,struct audit_context * ctx,struct audit_names * name)504 static int audit_field_compare(struct task_struct *tsk,
505 const struct cred *cred,
506 struct audit_field *f,
507 struct audit_context *ctx,
508 struct audit_names *name)
509 {
510 switch (f->val) {
511 /* process to file object comparisons */
512 case AUDIT_COMPARE_UID_TO_OBJ_UID:
513 return audit_compare_id(cred->uid,
514 name, offsetof(struct audit_names, uid),
515 f, ctx);
516 case AUDIT_COMPARE_GID_TO_OBJ_GID:
517 return audit_compare_id(cred->gid,
518 name, offsetof(struct audit_names, gid),
519 f, ctx);
520 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
521 return audit_compare_id(cred->euid,
522 name, offsetof(struct audit_names, uid),
523 f, ctx);
524 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
525 return audit_compare_id(cred->egid,
526 name, offsetof(struct audit_names, gid),
527 f, ctx);
528 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
529 return audit_compare_id(tsk->loginuid,
530 name, offsetof(struct audit_names, uid),
531 f, ctx);
532 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
533 return audit_compare_id(cred->suid,
534 name, offsetof(struct audit_names, uid),
535 f, ctx);
536 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
537 return audit_compare_id(cred->sgid,
538 name, offsetof(struct audit_names, gid),
539 f, ctx);
540 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
541 return audit_compare_id(cred->fsuid,
542 name, offsetof(struct audit_names, uid),
543 f, ctx);
544 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
545 return audit_compare_id(cred->fsgid,
546 name, offsetof(struct audit_names, gid),
547 f, ctx);
548 /* uid comparisons */
549 case AUDIT_COMPARE_UID_TO_AUID:
550 return audit_comparator(cred->uid, f->op, tsk->loginuid);
551 case AUDIT_COMPARE_UID_TO_EUID:
552 return audit_comparator(cred->uid, f->op, cred->euid);
553 case AUDIT_COMPARE_UID_TO_SUID:
554 return audit_comparator(cred->uid, f->op, cred->suid);
555 case AUDIT_COMPARE_UID_TO_FSUID:
556 return audit_comparator(cred->uid, f->op, cred->fsuid);
557 /* auid comparisons */
558 case AUDIT_COMPARE_AUID_TO_EUID:
559 return audit_comparator(tsk->loginuid, f->op, cred->euid);
560 case AUDIT_COMPARE_AUID_TO_SUID:
561 return audit_comparator(tsk->loginuid, f->op, cred->suid);
562 case AUDIT_COMPARE_AUID_TO_FSUID:
563 return audit_comparator(tsk->loginuid, f->op, cred->fsuid);
564 /* euid comparisons */
565 case AUDIT_COMPARE_EUID_TO_SUID:
566 return audit_comparator(cred->euid, f->op, cred->suid);
567 case AUDIT_COMPARE_EUID_TO_FSUID:
568 return audit_comparator(cred->euid, f->op, cred->fsuid);
569 /* suid comparisons */
570 case AUDIT_COMPARE_SUID_TO_FSUID:
571 return audit_comparator(cred->suid, f->op, cred->fsuid);
572 /* gid comparisons */
573 case AUDIT_COMPARE_GID_TO_EGID:
574 return audit_comparator(cred->gid, f->op, cred->egid);
575 case AUDIT_COMPARE_GID_TO_SGID:
576 return audit_comparator(cred->gid, f->op, cred->sgid);
577 case AUDIT_COMPARE_GID_TO_FSGID:
578 return audit_comparator(cred->gid, f->op, cred->fsgid);
579 /* egid comparisons */
580 case AUDIT_COMPARE_EGID_TO_SGID:
581 return audit_comparator(cred->egid, f->op, cred->sgid);
582 case AUDIT_COMPARE_EGID_TO_FSGID:
583 return audit_comparator(cred->egid, f->op, cred->fsgid);
584 /* sgid comparison */
585 case AUDIT_COMPARE_SGID_TO_FSGID:
586 return audit_comparator(cred->sgid, f->op, cred->fsgid);
587 default:
588 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
589 return 0;
590 }
591 return 0;
592 }
593
594 /* Determine if any context name data matches a rule's watch data */
595 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
596 * otherwise.
597 *
598 * If task_creation is true, this is an explicit indication that we are
599 * filtering a task rule at task creation time. This and tsk == current are
600 * the only situations where tsk->cred may be accessed without an rcu read lock.
601 */
audit_filter_rules(struct task_struct * tsk,struct audit_krule * rule,struct audit_context * ctx,struct audit_names * name,enum audit_state * state,bool task_creation)602 static int audit_filter_rules(struct task_struct *tsk,
603 struct audit_krule *rule,
604 struct audit_context *ctx,
605 struct audit_names *name,
606 enum audit_state *state,
607 bool task_creation)
608 {
609 const struct cred *cred;
610 int i, need_sid = 1;
611 u32 sid;
612
613 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
614
615 for (i = 0; i < rule->field_count; i++) {
616 struct audit_field *f = &rule->fields[i];
617 struct audit_names *n;
618 int result = 0;
619
620 switch (f->type) {
621 case AUDIT_PID:
622 result = audit_comparator(tsk->pid, f->op, f->val);
623 break;
624 case AUDIT_PPID:
625 if (ctx) {
626 if (!ctx->ppid)
627 ctx->ppid = sys_getppid();
628 result = audit_comparator(ctx->ppid, f->op, f->val);
629 }
630 break;
631 case AUDIT_UID:
632 result = audit_comparator(cred->uid, f->op, f->val);
633 break;
634 case AUDIT_EUID:
635 result = audit_comparator(cred->euid, f->op, f->val);
636 break;
637 case AUDIT_SUID:
638 result = audit_comparator(cred->suid, f->op, f->val);
639 break;
640 case AUDIT_FSUID:
641 result = audit_comparator(cred->fsuid, f->op, f->val);
642 break;
643 case AUDIT_GID:
644 result = audit_comparator(cred->gid, f->op, f->val);
645 break;
646 case AUDIT_EGID:
647 result = audit_comparator(cred->egid, f->op, f->val);
648 break;
649 case AUDIT_SGID:
650 result = audit_comparator(cred->sgid, f->op, f->val);
651 break;
652 case AUDIT_FSGID:
653 result = audit_comparator(cred->fsgid, f->op, f->val);
654 break;
655 case AUDIT_PERS:
656 result = audit_comparator(tsk->personality, f->op, f->val);
657 break;
658 case AUDIT_ARCH:
659 if (ctx)
660 result = audit_comparator(ctx->arch, f->op, f->val);
661 break;
662
663 case AUDIT_EXIT:
664 if (ctx && ctx->return_valid)
665 result = audit_comparator(ctx->return_code, f->op, f->val);
666 break;
667 case AUDIT_SUCCESS:
668 if (ctx && ctx->return_valid) {
669 if (f->val)
670 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
671 else
672 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
673 }
674 break;
675 case AUDIT_DEVMAJOR:
676 if (name) {
677 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
678 audit_comparator(MAJOR(name->rdev), f->op, f->val))
679 ++result;
680 } else if (ctx) {
681 list_for_each_entry(n, &ctx->names_list, list) {
682 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
683 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
684 ++result;
685 break;
686 }
687 }
688 }
689 break;
690 case AUDIT_DEVMINOR:
691 if (name) {
692 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
693 audit_comparator(MINOR(name->rdev), f->op, f->val))
694 ++result;
695 } else if (ctx) {
696 list_for_each_entry(n, &ctx->names_list, list) {
697 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
698 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
699 ++result;
700 break;
701 }
702 }
703 }
704 break;
705 case AUDIT_INODE:
706 if (name)
707 result = (name->ino == f->val);
708 else if (ctx) {
709 list_for_each_entry(n, &ctx->names_list, list) {
710 if (audit_comparator(n->ino, f->op, f->val)) {
711 ++result;
712 break;
713 }
714 }
715 }
716 break;
717 case AUDIT_OBJ_UID:
718 if (name) {
719 result = audit_comparator(name->uid, f->op, f->val);
720 } else if (ctx) {
721 list_for_each_entry(n, &ctx->names_list, list) {
722 if (audit_comparator(n->uid, f->op, f->val)) {
723 ++result;
724 break;
725 }
726 }
727 }
728 break;
729 case AUDIT_OBJ_GID:
730 if (name) {
731 result = audit_comparator(name->gid, f->op, f->val);
732 } else if (ctx) {
733 list_for_each_entry(n, &ctx->names_list, list) {
734 if (audit_comparator(n->gid, f->op, f->val)) {
735 ++result;
736 break;
737 }
738 }
739 }
740 break;
741 case AUDIT_WATCH:
742 if (name)
743 result = audit_watch_compare(rule->watch, name->ino, name->dev);
744 break;
745 case AUDIT_DIR:
746 if (ctx)
747 result = match_tree_refs(ctx, rule->tree);
748 break;
749 case AUDIT_LOGINUID:
750 result = 0;
751 if (ctx)
752 result = audit_comparator(tsk->loginuid, f->op, f->val);
753 break;
754 case AUDIT_SUBJ_USER:
755 case AUDIT_SUBJ_ROLE:
756 case AUDIT_SUBJ_TYPE:
757 case AUDIT_SUBJ_SEN:
758 case AUDIT_SUBJ_CLR:
759 /* NOTE: this may return negative values indicating
760 a temporary error. We simply treat this as a
761 match for now to avoid losing information that
762 may be wanted. An error message will also be
763 logged upon error */
764 if (f->lsm_rule) {
765 if (need_sid) {
766 security_task_getsecid(tsk, &sid);
767 need_sid = 0;
768 }
769 result = security_audit_rule_match(sid, f->type,
770 f->op,
771 f->lsm_rule,
772 ctx);
773 }
774 break;
775 case AUDIT_OBJ_USER:
776 case AUDIT_OBJ_ROLE:
777 case AUDIT_OBJ_TYPE:
778 case AUDIT_OBJ_LEV_LOW:
779 case AUDIT_OBJ_LEV_HIGH:
780 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
781 also applies here */
782 if (f->lsm_rule) {
783 /* Find files that match */
784 if (name) {
785 result = security_audit_rule_match(
786 name->osid, f->type, f->op,
787 f->lsm_rule, ctx);
788 } else if (ctx) {
789 list_for_each_entry(n, &ctx->names_list, list) {
790 if (security_audit_rule_match(n->osid, f->type,
791 f->op, f->lsm_rule,
792 ctx)) {
793 ++result;
794 break;
795 }
796 }
797 }
798 /* Find ipc objects that match */
799 if (!ctx || ctx->type != AUDIT_IPC)
800 break;
801 if (security_audit_rule_match(ctx->ipc.osid,
802 f->type, f->op,
803 f->lsm_rule, ctx))
804 ++result;
805 }
806 break;
807 case AUDIT_ARG0:
808 case AUDIT_ARG1:
809 case AUDIT_ARG2:
810 case AUDIT_ARG3:
811 if (ctx)
812 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
813 break;
814 case AUDIT_FILTERKEY:
815 /* ignore this field for filtering */
816 result = 1;
817 break;
818 case AUDIT_PERM:
819 result = audit_match_perm(ctx, f->val);
820 break;
821 case AUDIT_FILETYPE:
822 result = audit_match_filetype(ctx, f->val);
823 break;
824 case AUDIT_FIELD_COMPARE:
825 result = audit_field_compare(tsk, cred, f, ctx, name);
826 break;
827 }
828 if (!result)
829 return 0;
830 }
831
832 if (ctx) {
833 if (rule->prio <= ctx->prio)
834 return 0;
835 if (rule->filterkey) {
836 kfree(ctx->filterkey);
837 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
838 }
839 ctx->prio = rule->prio;
840 }
841 switch (rule->action) {
842 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
843 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
844 }
845 return 1;
846 }
847
848 /* At process creation time, we can determine if system-call auditing is
849 * completely disabled for this task. Since we only have the task
850 * structure at this point, we can only check uid and gid.
851 */
audit_filter_task(struct task_struct * tsk,char ** key)852 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
853 {
854 struct audit_entry *e;
855 enum audit_state state;
856
857 rcu_read_lock();
858 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
859 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
860 &state, true)) {
861 if (state == AUDIT_RECORD_CONTEXT)
862 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
863 rcu_read_unlock();
864 return state;
865 }
866 }
867 rcu_read_unlock();
868 return AUDIT_BUILD_CONTEXT;
869 }
870
audit_in_mask(const struct audit_krule * rule,unsigned long val)871 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
872 {
873 int word, bit;
874
875 if (val > 0xffffffff)
876 return false;
877
878 word = AUDIT_WORD(val);
879 if (word >= AUDIT_BITMASK_SIZE)
880 return false;
881
882 bit = AUDIT_BIT(val);
883
884 return rule->mask[word] & bit;
885 }
886
887 /* At syscall entry and exit time, this filter is called if the
888 * audit_state is not low enough that auditing cannot take place, but is
889 * also not high enough that we already know we have to write an audit
890 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
891 */
audit_filter_syscall(struct task_struct * tsk,struct audit_context * ctx,struct list_head * list)892 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
893 struct audit_context *ctx,
894 struct list_head *list)
895 {
896 struct audit_entry *e;
897 enum audit_state state;
898
899 if (audit_pid && tsk->tgid == audit_pid)
900 return AUDIT_DISABLED;
901
902 rcu_read_lock();
903 if (!list_empty(list)) {
904 list_for_each_entry_rcu(e, list, list) {
905 if (audit_in_mask(&e->rule, ctx->major) &&
906 audit_filter_rules(tsk, &e->rule, ctx, NULL,
907 &state, false)) {
908 rcu_read_unlock();
909 ctx->current_state = state;
910 return state;
911 }
912 }
913 }
914 rcu_read_unlock();
915 return AUDIT_BUILD_CONTEXT;
916 }
917
918 /*
919 * Given an audit_name check the inode hash table to see if they match.
920 * Called holding the rcu read lock to protect the use of audit_inode_hash
921 */
audit_filter_inode_name(struct task_struct * tsk,struct audit_names * n,struct audit_context * ctx)922 static int audit_filter_inode_name(struct task_struct *tsk,
923 struct audit_names *n,
924 struct audit_context *ctx) {
925 int h = audit_hash_ino((u32)n->ino);
926 struct list_head *list = &audit_inode_hash[h];
927 struct audit_entry *e;
928 enum audit_state state;
929
930 if (list_empty(list))
931 return 0;
932
933 list_for_each_entry_rcu(e, list, list) {
934 if (audit_in_mask(&e->rule, ctx->major) &&
935 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
936 ctx->current_state = state;
937 return 1;
938 }
939 }
940
941 return 0;
942 }
943
944 /* At syscall exit time, this filter is called if any audit_names have been
945 * collected during syscall processing. We only check rules in sublists at hash
946 * buckets applicable to the inode numbers in audit_names.
947 * Regarding audit_state, same rules apply as for audit_filter_syscall().
948 */
audit_filter_inodes(struct task_struct * tsk,struct audit_context * ctx)949 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
950 {
951 struct audit_names *n;
952
953 if (audit_pid && tsk->tgid == audit_pid)
954 return;
955
956 rcu_read_lock();
957
958 list_for_each_entry(n, &ctx->names_list, list) {
959 if (audit_filter_inode_name(tsk, n, ctx))
960 break;
961 }
962 rcu_read_unlock();
963 }
964
audit_get_context(struct task_struct * tsk,int return_valid,long return_code)965 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
966 int return_valid,
967 long return_code)
968 {
969 struct audit_context *context = tsk->audit_context;
970
971 if (!context)
972 return NULL;
973 context->return_valid = return_valid;
974
975 /*
976 * we need to fix up the return code in the audit logs if the actual
977 * return codes are later going to be fixed up by the arch specific
978 * signal handlers
979 *
980 * This is actually a test for:
981 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
982 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
983 *
984 * but is faster than a bunch of ||
985 */
986 if (unlikely(return_code <= -ERESTARTSYS) &&
987 (return_code >= -ERESTART_RESTARTBLOCK) &&
988 (return_code != -ENOIOCTLCMD))
989 context->return_code = -EINTR;
990 else
991 context->return_code = return_code;
992
993 if (context->in_syscall && !context->dummy) {
994 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
995 audit_filter_inodes(tsk, context);
996 }
997
998 tsk->audit_context = NULL;
999 return context;
1000 }
1001
audit_free_names(struct audit_context * context)1002 static inline void audit_free_names(struct audit_context *context)
1003 {
1004 struct audit_names *n, *next;
1005
1006 #if AUDIT_DEBUG == 2
1007 if (context->put_count + context->ino_count != context->name_count) {
1008 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
1009 " name_count=%d put_count=%d"
1010 " ino_count=%d [NOT freeing]\n",
1011 __FILE__, __LINE__,
1012 context->serial, context->major, context->in_syscall,
1013 context->name_count, context->put_count,
1014 context->ino_count);
1015 list_for_each_entry(n, &context->names_list, list) {
1016 printk(KERN_ERR "names[%d] = %p = %s\n", i,
1017 n->name, n->name ?: "(null)");
1018 }
1019 dump_stack();
1020 return;
1021 }
1022 #endif
1023 #if AUDIT_DEBUG
1024 context->put_count = 0;
1025 context->ino_count = 0;
1026 #endif
1027
1028 list_for_each_entry_safe(n, next, &context->names_list, list) {
1029 list_del(&n->list);
1030 if (n->name && n->name_put)
1031 __putname(n->name);
1032 if (n->should_free)
1033 kfree(n);
1034 }
1035 context->name_count = 0;
1036 path_put(&context->pwd);
1037 context->pwd.dentry = NULL;
1038 context->pwd.mnt = NULL;
1039 }
1040
audit_free_aux(struct audit_context * context)1041 static inline void audit_free_aux(struct audit_context *context)
1042 {
1043 struct audit_aux_data *aux;
1044
1045 while ((aux = context->aux)) {
1046 context->aux = aux->next;
1047 kfree(aux);
1048 }
1049 while ((aux = context->aux_pids)) {
1050 context->aux_pids = aux->next;
1051 kfree(aux);
1052 }
1053 }
1054
audit_zero_context(struct audit_context * context,enum audit_state state)1055 static inline void audit_zero_context(struct audit_context *context,
1056 enum audit_state state)
1057 {
1058 memset(context, 0, sizeof(*context));
1059 context->state = state;
1060 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1061 }
1062
audit_alloc_context(enum audit_state state)1063 static inline struct audit_context *audit_alloc_context(enum audit_state state)
1064 {
1065 struct audit_context *context;
1066
1067 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
1068 return NULL;
1069 audit_zero_context(context, state);
1070 INIT_LIST_HEAD(&context->killed_trees);
1071 INIT_LIST_HEAD(&context->names_list);
1072 return context;
1073 }
1074
1075 /**
1076 * audit_alloc - allocate an audit context block for a task
1077 * @tsk: task
1078 *
1079 * Filter on the task information and allocate a per-task audit context
1080 * if necessary. Doing so turns on system call auditing for the
1081 * specified task. This is called from copy_process, so no lock is
1082 * needed.
1083 */
audit_alloc(struct task_struct * tsk)1084 int audit_alloc(struct task_struct *tsk)
1085 {
1086 struct audit_context *context;
1087 enum audit_state state;
1088 char *key = NULL;
1089
1090 if (likely(!audit_ever_enabled))
1091 return 0; /* Return if not auditing. */
1092
1093 state = audit_filter_task(tsk, &key);
1094 if (state == AUDIT_DISABLED)
1095 return 0;
1096
1097 if (!(context = audit_alloc_context(state))) {
1098 kfree(key);
1099 audit_log_lost("out of memory in audit_alloc");
1100 return -ENOMEM;
1101 }
1102 context->filterkey = key;
1103
1104 tsk->audit_context = context;
1105 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
1106 return 0;
1107 }
1108
audit_free_context(struct audit_context * context)1109 static inline void audit_free_context(struct audit_context *context)
1110 {
1111 struct audit_context *previous;
1112 int count = 0;
1113
1114 do {
1115 previous = context->previous;
1116 if (previous || (count && count < 10)) {
1117 ++count;
1118 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
1119 " freeing multiple contexts (%d)\n",
1120 context->serial, context->major,
1121 context->name_count, count);
1122 }
1123 audit_free_names(context);
1124 unroll_tree_refs(context, NULL, 0);
1125 free_tree_refs(context);
1126 audit_free_aux(context);
1127 kfree(context->filterkey);
1128 kfree(context->sockaddr);
1129 kfree(context);
1130 context = previous;
1131 } while (context);
1132 if (count >= 10)
1133 printk(KERN_ERR "audit: freed %d contexts\n", count);
1134 }
1135
audit_log_task_context(struct audit_buffer * ab)1136 void audit_log_task_context(struct audit_buffer *ab)
1137 {
1138 char *ctx = NULL;
1139 unsigned len;
1140 int error;
1141 u32 sid;
1142
1143 security_task_getsecid(current, &sid);
1144 if (!sid)
1145 return;
1146
1147 error = security_secid_to_secctx(sid, &ctx, &len);
1148 if (error) {
1149 if (error != -EINVAL)
1150 goto error_path;
1151 return;
1152 }
1153
1154 audit_log_format(ab, " subj=%s", ctx);
1155 security_release_secctx(ctx, len);
1156 return;
1157
1158 error_path:
1159 audit_panic("error in audit_log_task_context");
1160 return;
1161 }
1162
1163 EXPORT_SYMBOL(audit_log_task_context);
1164
audit_log_task_info(struct audit_buffer * ab,struct task_struct * tsk)1165 static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1166 {
1167 char name[sizeof(tsk->comm)];
1168 struct mm_struct *mm = tsk->mm;
1169 struct vm_area_struct *vma;
1170
1171 /* tsk == current */
1172
1173 get_task_comm(name, tsk);
1174 audit_log_format(ab, " comm=");
1175 audit_log_untrustedstring(ab, name);
1176
1177 if (mm) {
1178 down_read(&mm->mmap_sem);
1179 vma = mm->mmap;
1180 while (vma) {
1181 if ((vma->vm_flags & VM_EXECUTABLE) &&
1182 vma->vm_file) {
1183 audit_log_d_path(ab, " exe=",
1184 &vma->vm_file->f_path);
1185 break;
1186 }
1187 vma = vma->vm_next;
1188 }
1189 up_read(&mm->mmap_sem);
1190 }
1191 audit_log_task_context(ab);
1192 }
1193
audit_log_pid_context(struct audit_context * context,pid_t pid,uid_t auid,uid_t uid,unsigned int sessionid,u32 sid,char * comm)1194 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1195 uid_t auid, uid_t uid, unsigned int sessionid,
1196 u32 sid, char *comm)
1197 {
1198 struct audit_buffer *ab;
1199 char *ctx = NULL;
1200 u32 len;
1201 int rc = 0;
1202
1203 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1204 if (!ab)
1205 return rc;
1206
1207 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
1208 uid, sessionid);
1209 if (security_secid_to_secctx(sid, &ctx, &len)) {
1210 audit_log_format(ab, " obj=(none)");
1211 rc = 1;
1212 } else {
1213 audit_log_format(ab, " obj=%s", ctx);
1214 security_release_secctx(ctx, len);
1215 }
1216 audit_log_format(ab, " ocomm=");
1217 audit_log_untrustedstring(ab, comm);
1218 audit_log_end(ab);
1219
1220 return rc;
1221 }
1222
1223 /*
1224 * to_send and len_sent accounting are very loose estimates. We aren't
1225 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1226 * within about 500 bytes (next page boundary)
1227 *
1228 * why snprintf? an int is up to 12 digits long. if we just assumed when
1229 * logging that a[%d]= was going to be 16 characters long we would be wasting
1230 * space in every audit message. In one 7500 byte message we can log up to
1231 * about 1000 min size arguments. That comes down to about 50% waste of space
1232 * if we didn't do the snprintf to find out how long arg_num_len was.
1233 */
audit_log_single_execve_arg(struct audit_context * context,struct audit_buffer ** ab,int arg_num,size_t * len_sent,const char __user * p,char * buf)1234 static int audit_log_single_execve_arg(struct audit_context *context,
1235 struct audit_buffer **ab,
1236 int arg_num,
1237 size_t *len_sent,
1238 const char __user *p,
1239 char *buf)
1240 {
1241 char arg_num_len_buf[12];
1242 const char __user *tmp_p = p;
1243 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1244 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1245 size_t len, len_left, to_send;
1246 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1247 unsigned int i, has_cntl = 0, too_long = 0;
1248 int ret;
1249
1250 /* strnlen_user includes the null we don't want to send */
1251 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1252
1253 /*
1254 * We just created this mm, if we can't find the strings
1255 * we just copied into it something is _very_ wrong. Similar
1256 * for strings that are too long, we should not have created
1257 * any.
1258 */
1259 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1260 WARN_ON(1);
1261 send_sig(SIGKILL, current, 0);
1262 return -1;
1263 }
1264
1265 /* walk the whole argument looking for non-ascii chars */
1266 do {
1267 if (len_left > MAX_EXECVE_AUDIT_LEN)
1268 to_send = MAX_EXECVE_AUDIT_LEN;
1269 else
1270 to_send = len_left;
1271 ret = copy_from_user(buf, tmp_p, to_send);
1272 /*
1273 * There is no reason for this copy to be short. We just
1274 * copied them here, and the mm hasn't been exposed to user-
1275 * space yet.
1276 */
1277 if (ret) {
1278 WARN_ON(1);
1279 send_sig(SIGKILL, current, 0);
1280 return -1;
1281 }
1282 buf[to_send] = '\0';
1283 has_cntl = audit_string_contains_control(buf, to_send);
1284 if (has_cntl) {
1285 /*
1286 * hex messages get logged as 2 bytes, so we can only
1287 * send half as much in each message
1288 */
1289 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1290 break;
1291 }
1292 len_left -= to_send;
1293 tmp_p += to_send;
1294 } while (len_left > 0);
1295
1296 len_left = len;
1297
1298 if (len > max_execve_audit_len)
1299 too_long = 1;
1300
1301 /* rewalk the argument actually logging the message */
1302 for (i = 0; len_left > 0; i++) {
1303 int room_left;
1304
1305 if (len_left > max_execve_audit_len)
1306 to_send = max_execve_audit_len;
1307 else
1308 to_send = len_left;
1309
1310 /* do we have space left to send this argument in this ab? */
1311 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1312 if (has_cntl)
1313 room_left -= (to_send * 2);
1314 else
1315 room_left -= to_send;
1316 if (room_left < 0) {
1317 *len_sent = 0;
1318 audit_log_end(*ab);
1319 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1320 if (!*ab)
1321 return 0;
1322 }
1323
1324 /*
1325 * first record needs to say how long the original string was
1326 * so we can be sure nothing was lost.
1327 */
1328 if ((i == 0) && (too_long))
1329 audit_log_format(*ab, " a%d_len=%zu", arg_num,
1330 has_cntl ? 2*len : len);
1331
1332 /*
1333 * normally arguments are small enough to fit and we already
1334 * filled buf above when we checked for control characters
1335 * so don't bother with another copy_from_user
1336 */
1337 if (len >= max_execve_audit_len)
1338 ret = copy_from_user(buf, p, to_send);
1339 else
1340 ret = 0;
1341 if (ret) {
1342 WARN_ON(1);
1343 send_sig(SIGKILL, current, 0);
1344 return -1;
1345 }
1346 buf[to_send] = '\0';
1347
1348 /* actually log it */
1349 audit_log_format(*ab, " a%d", arg_num);
1350 if (too_long)
1351 audit_log_format(*ab, "[%d]", i);
1352 audit_log_format(*ab, "=");
1353 if (has_cntl)
1354 audit_log_n_hex(*ab, buf, to_send);
1355 else
1356 audit_log_string(*ab, buf);
1357
1358 p += to_send;
1359 len_left -= to_send;
1360 *len_sent += arg_num_len;
1361 if (has_cntl)
1362 *len_sent += to_send * 2;
1363 else
1364 *len_sent += to_send;
1365 }
1366 /* include the null we didn't log */
1367 return len + 1;
1368 }
1369
audit_log_execve_info(struct audit_context * context,struct audit_buffer ** ab,struct audit_aux_data_execve * axi)1370 static void audit_log_execve_info(struct audit_context *context,
1371 struct audit_buffer **ab,
1372 struct audit_aux_data_execve *axi)
1373 {
1374 int i, len;
1375 size_t len_sent = 0;
1376 const char __user *p;
1377 char *buf;
1378
1379 if (axi->mm != current->mm)
1380 return; /* execve failed, no additional info */
1381
1382 p = (const char __user *)axi->mm->arg_start;
1383
1384 audit_log_format(*ab, "argc=%d", axi->argc);
1385
1386 /*
1387 * we need some kernel buffer to hold the userspace args. Just
1388 * allocate one big one rather than allocating one of the right size
1389 * for every single argument inside audit_log_single_execve_arg()
1390 * should be <8k allocation so should be pretty safe.
1391 */
1392 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1393 if (!buf) {
1394 audit_panic("out of memory for argv string\n");
1395 return;
1396 }
1397
1398 for (i = 0; i < axi->argc; i++) {
1399 len = audit_log_single_execve_arg(context, ab, i,
1400 &len_sent, p, buf);
1401 if (len <= 0)
1402 break;
1403 p += len;
1404 }
1405 kfree(buf);
1406 }
1407
audit_log_cap(struct audit_buffer * ab,char * prefix,kernel_cap_t * cap)1408 static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1409 {
1410 int i;
1411
1412 audit_log_format(ab, " %s=", prefix);
1413 CAP_FOR_EACH_U32(i) {
1414 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1415 }
1416 }
1417
audit_log_fcaps(struct audit_buffer * ab,struct audit_names * name)1418 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1419 {
1420 kernel_cap_t *perm = &name->fcap.permitted;
1421 kernel_cap_t *inh = &name->fcap.inheritable;
1422 int log = 0;
1423
1424 if (!cap_isclear(*perm)) {
1425 audit_log_cap(ab, "cap_fp", perm);
1426 log = 1;
1427 }
1428 if (!cap_isclear(*inh)) {
1429 audit_log_cap(ab, "cap_fi", inh);
1430 log = 1;
1431 }
1432
1433 if (log)
1434 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1435 }
1436
show_special(struct audit_context * context,int * call_panic)1437 static void show_special(struct audit_context *context, int *call_panic)
1438 {
1439 struct audit_buffer *ab;
1440 int i;
1441
1442 ab = audit_log_start(context, GFP_KERNEL, context->type);
1443 if (!ab)
1444 return;
1445
1446 switch (context->type) {
1447 case AUDIT_SOCKETCALL: {
1448 int nargs = context->socketcall.nargs;
1449 audit_log_format(ab, "nargs=%d", nargs);
1450 for (i = 0; i < nargs; i++)
1451 audit_log_format(ab, " a%d=%lx", i,
1452 context->socketcall.args[i]);
1453 break; }
1454 case AUDIT_IPC: {
1455 u32 osid = context->ipc.osid;
1456
1457 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1458 context->ipc.uid, context->ipc.gid, context->ipc.mode);
1459 if (osid) {
1460 char *ctx = NULL;
1461 u32 len;
1462 if (security_secid_to_secctx(osid, &ctx, &len)) {
1463 audit_log_format(ab, " osid=%u", osid);
1464 *call_panic = 1;
1465 } else {
1466 audit_log_format(ab, " obj=%s", ctx);
1467 security_release_secctx(ctx, len);
1468 }
1469 }
1470 if (context->ipc.has_perm) {
1471 audit_log_end(ab);
1472 ab = audit_log_start(context, GFP_KERNEL,
1473 AUDIT_IPC_SET_PERM);
1474 audit_log_format(ab,
1475 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1476 context->ipc.qbytes,
1477 context->ipc.perm_uid,
1478 context->ipc.perm_gid,
1479 context->ipc.perm_mode);
1480 if (!ab)
1481 return;
1482 }
1483 break; }
1484 case AUDIT_MQ_OPEN: {
1485 audit_log_format(ab,
1486 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1487 "mq_msgsize=%ld mq_curmsgs=%ld",
1488 context->mq_open.oflag, context->mq_open.mode,
1489 context->mq_open.attr.mq_flags,
1490 context->mq_open.attr.mq_maxmsg,
1491 context->mq_open.attr.mq_msgsize,
1492 context->mq_open.attr.mq_curmsgs);
1493 break; }
1494 case AUDIT_MQ_SENDRECV: {
1495 audit_log_format(ab,
1496 "mqdes=%d msg_len=%zd msg_prio=%u "
1497 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1498 context->mq_sendrecv.mqdes,
1499 context->mq_sendrecv.msg_len,
1500 context->mq_sendrecv.msg_prio,
1501 context->mq_sendrecv.abs_timeout.tv_sec,
1502 context->mq_sendrecv.abs_timeout.tv_nsec);
1503 break; }
1504 case AUDIT_MQ_NOTIFY: {
1505 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1506 context->mq_notify.mqdes,
1507 context->mq_notify.sigev_signo);
1508 break; }
1509 case AUDIT_MQ_GETSETATTR: {
1510 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1511 audit_log_format(ab,
1512 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1513 "mq_curmsgs=%ld ",
1514 context->mq_getsetattr.mqdes,
1515 attr->mq_flags, attr->mq_maxmsg,
1516 attr->mq_msgsize, attr->mq_curmsgs);
1517 break; }
1518 case AUDIT_CAPSET: {
1519 audit_log_format(ab, "pid=%d", context->capset.pid);
1520 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1521 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1522 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1523 break; }
1524 case AUDIT_MMAP: {
1525 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1526 context->mmap.flags);
1527 break; }
1528 }
1529 audit_log_end(ab);
1530 }
1531
audit_log_name(struct audit_context * context,struct audit_names * n,int record_num,int * call_panic)1532 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1533 int record_num, int *call_panic)
1534 {
1535 struct audit_buffer *ab;
1536 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1537 if (!ab)
1538 return; /* audit_panic has been called */
1539
1540 audit_log_format(ab, "item=%d", record_num);
1541
1542 if (n->name) {
1543 switch (n->name_len) {
1544 case AUDIT_NAME_FULL:
1545 /* log the full path */
1546 audit_log_format(ab, " name=");
1547 audit_log_untrustedstring(ab, n->name);
1548 break;
1549 case 0:
1550 /* name was specified as a relative path and the
1551 * directory component is the cwd */
1552 audit_log_d_path(ab, " name=", &context->pwd);
1553 break;
1554 default:
1555 /* log the name's directory component */
1556 audit_log_format(ab, " name=");
1557 audit_log_n_untrustedstring(ab, n->name,
1558 n->name_len);
1559 }
1560 } else
1561 audit_log_format(ab, " name=(null)");
1562
1563 if (n->ino != (unsigned long)-1) {
1564 audit_log_format(ab, " inode=%lu"
1565 " dev=%02x:%02x mode=%#ho"
1566 " ouid=%u ogid=%u rdev=%02x:%02x",
1567 n->ino,
1568 MAJOR(n->dev),
1569 MINOR(n->dev),
1570 n->mode,
1571 n->uid,
1572 n->gid,
1573 MAJOR(n->rdev),
1574 MINOR(n->rdev));
1575 }
1576 if (n->osid != 0) {
1577 char *ctx = NULL;
1578 u32 len;
1579 if (security_secid_to_secctx(
1580 n->osid, &ctx, &len)) {
1581 audit_log_format(ab, " osid=%u", n->osid);
1582 *call_panic = 2;
1583 } else {
1584 audit_log_format(ab, " obj=%s", ctx);
1585 security_release_secctx(ctx, len);
1586 }
1587 }
1588
1589 audit_log_fcaps(ab, n);
1590
1591 audit_log_end(ab);
1592 }
1593
audit_log_exit(struct audit_context * context,struct task_struct * tsk)1594 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1595 {
1596 const struct cred *cred;
1597 int i, call_panic = 0;
1598 struct audit_buffer *ab;
1599 struct audit_aux_data *aux;
1600 const char *tty;
1601 struct audit_names *n;
1602
1603 /* tsk == current */
1604 context->pid = tsk->pid;
1605 if (!context->ppid)
1606 context->ppid = sys_getppid();
1607 cred = current_cred();
1608 context->uid = cred->uid;
1609 context->gid = cred->gid;
1610 context->euid = cred->euid;
1611 context->suid = cred->suid;
1612 context->fsuid = cred->fsuid;
1613 context->egid = cred->egid;
1614 context->sgid = cred->sgid;
1615 context->fsgid = cred->fsgid;
1616 context->personality = tsk->personality;
1617
1618 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1619 if (!ab)
1620 return; /* audit_panic has been called */
1621 audit_log_format(ab, "arch=%x syscall=%d",
1622 context->arch, context->major);
1623 if (context->personality != PER_LINUX)
1624 audit_log_format(ab, " per=%lx", context->personality);
1625 if (context->return_valid)
1626 audit_log_format(ab, " success=%s exit=%ld",
1627 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1628 context->return_code);
1629
1630 spin_lock_irq(&tsk->sighand->siglock);
1631 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1632 tty = tsk->signal->tty->name;
1633 else
1634 tty = "(none)";
1635 spin_unlock_irq(&tsk->sighand->siglock);
1636
1637 audit_log_format(ab,
1638 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1639 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1640 " euid=%u suid=%u fsuid=%u"
1641 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1642 context->argv[0],
1643 context->argv[1],
1644 context->argv[2],
1645 context->argv[3],
1646 context->name_count,
1647 context->ppid,
1648 context->pid,
1649 tsk->loginuid,
1650 context->uid,
1651 context->gid,
1652 context->euid, context->suid, context->fsuid,
1653 context->egid, context->sgid, context->fsgid, tty,
1654 tsk->sessionid);
1655
1656
1657 audit_log_task_info(ab, tsk);
1658 audit_log_key(ab, context->filterkey);
1659 audit_log_end(ab);
1660
1661 for (aux = context->aux; aux; aux = aux->next) {
1662
1663 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1664 if (!ab)
1665 continue; /* audit_panic has been called */
1666
1667 switch (aux->type) {
1668
1669 case AUDIT_EXECVE: {
1670 struct audit_aux_data_execve *axi = (void *)aux;
1671 audit_log_execve_info(context, &ab, axi);
1672 break; }
1673
1674 case AUDIT_BPRM_FCAPS: {
1675 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1676 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1677 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1678 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1679 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1680 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1681 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1682 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1683 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1684 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1685 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1686 break; }
1687
1688 }
1689 audit_log_end(ab);
1690 }
1691
1692 if (context->type)
1693 show_special(context, &call_panic);
1694
1695 if (context->fds[0] >= 0) {
1696 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1697 if (ab) {
1698 audit_log_format(ab, "fd0=%d fd1=%d",
1699 context->fds[0], context->fds[1]);
1700 audit_log_end(ab);
1701 }
1702 }
1703
1704 if (context->sockaddr_len) {
1705 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1706 if (ab) {
1707 audit_log_format(ab, "saddr=");
1708 audit_log_n_hex(ab, (void *)context->sockaddr,
1709 context->sockaddr_len);
1710 audit_log_end(ab);
1711 }
1712 }
1713
1714 for (aux = context->aux_pids; aux; aux = aux->next) {
1715 struct audit_aux_data_pids *axs = (void *)aux;
1716
1717 for (i = 0; i < axs->pid_count; i++)
1718 if (audit_log_pid_context(context, axs->target_pid[i],
1719 axs->target_auid[i],
1720 axs->target_uid[i],
1721 axs->target_sessionid[i],
1722 axs->target_sid[i],
1723 axs->target_comm[i]))
1724 call_panic = 1;
1725 }
1726
1727 if (context->target_pid &&
1728 audit_log_pid_context(context, context->target_pid,
1729 context->target_auid, context->target_uid,
1730 context->target_sessionid,
1731 context->target_sid, context->target_comm))
1732 call_panic = 1;
1733
1734 if (context->pwd.dentry && context->pwd.mnt) {
1735 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1736 if (ab) {
1737 audit_log_d_path(ab, " cwd=", &context->pwd);
1738 audit_log_end(ab);
1739 }
1740 }
1741
1742 i = 0;
1743 list_for_each_entry(n, &context->names_list, list)
1744 audit_log_name(context, n, i++, &call_panic);
1745
1746 /* Send end of event record to help user space know we are finished */
1747 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1748 if (ab)
1749 audit_log_end(ab);
1750 if (call_panic)
1751 audit_panic("error converting sid to string");
1752 }
1753
1754 /**
1755 * audit_free - free a per-task audit context
1756 * @tsk: task whose audit context block to free
1757 *
1758 * Called from copy_process and do_exit
1759 */
__audit_free(struct task_struct * tsk)1760 void __audit_free(struct task_struct *tsk)
1761 {
1762 struct audit_context *context;
1763
1764 context = audit_get_context(tsk, 0, 0);
1765 if (!context)
1766 return;
1767
1768 /* Check for system calls that do not go through the exit
1769 * function (e.g., exit_group), then free context block.
1770 * We use GFP_ATOMIC here because we might be doing this
1771 * in the context of the idle thread */
1772 /* that can happen only if we are called from do_exit() */
1773 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1774 audit_log_exit(context, tsk);
1775 if (!list_empty(&context->killed_trees))
1776 audit_kill_trees(&context->killed_trees);
1777
1778 audit_free_context(context);
1779 }
1780
1781 /**
1782 * audit_syscall_entry - fill in an audit record at syscall entry
1783 * @arch: architecture type
1784 * @major: major syscall type (function)
1785 * @a1: additional syscall register 1
1786 * @a2: additional syscall register 2
1787 * @a3: additional syscall register 3
1788 * @a4: additional syscall register 4
1789 *
1790 * Fill in audit context at syscall entry. This only happens if the
1791 * audit context was created when the task was created and the state or
1792 * filters demand the audit context be built. If the state from the
1793 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1794 * then the record will be written at syscall exit time (otherwise, it
1795 * will only be written if another part of the kernel requests that it
1796 * be written).
1797 */
__audit_syscall_entry(int arch,int major,unsigned long a1,unsigned long a2,unsigned long a3,unsigned long a4)1798 void __audit_syscall_entry(int arch, int major,
1799 unsigned long a1, unsigned long a2,
1800 unsigned long a3, unsigned long a4)
1801 {
1802 struct task_struct *tsk = current;
1803 struct audit_context *context = tsk->audit_context;
1804 enum audit_state state;
1805
1806 if (!context)
1807 return;
1808
1809 /*
1810 * This happens only on certain architectures that make system
1811 * calls in kernel_thread via the entry.S interface, instead of
1812 * with direct calls. (If you are porting to a new
1813 * architecture, hitting this condition can indicate that you
1814 * got the _exit/_leave calls backward in entry.S.)
1815 *
1816 * i386 no
1817 * x86_64 no
1818 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1819 *
1820 * This also happens with vm86 emulation in a non-nested manner
1821 * (entries without exits), so this case must be caught.
1822 */
1823 if (context->in_syscall) {
1824 struct audit_context *newctx;
1825
1826 #if AUDIT_DEBUG
1827 printk(KERN_ERR
1828 "audit(:%d) pid=%d in syscall=%d;"
1829 " entering syscall=%d\n",
1830 context->serial, tsk->pid, context->major, major);
1831 #endif
1832 newctx = audit_alloc_context(context->state);
1833 if (newctx) {
1834 newctx->previous = context;
1835 context = newctx;
1836 tsk->audit_context = newctx;
1837 } else {
1838 /* If we can't alloc a new context, the best we
1839 * can do is to leak memory (any pending putname
1840 * will be lost). The only other alternative is
1841 * to abandon auditing. */
1842 audit_zero_context(context, context->state);
1843 }
1844 }
1845 BUG_ON(context->in_syscall || context->name_count);
1846
1847 if (!audit_enabled)
1848 return;
1849
1850 context->arch = arch;
1851 context->major = major;
1852 context->argv[0] = a1;
1853 context->argv[1] = a2;
1854 context->argv[2] = a3;
1855 context->argv[3] = a4;
1856
1857 state = context->state;
1858 context->dummy = !audit_n_rules;
1859 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1860 context->prio = 0;
1861 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1862 }
1863 if (state == AUDIT_DISABLED)
1864 return;
1865
1866 context->serial = 0;
1867 context->ctime = CURRENT_TIME;
1868 context->in_syscall = 1;
1869 context->current_state = state;
1870 context->ppid = 0;
1871 }
1872
1873 /**
1874 * audit_syscall_exit - deallocate audit context after a system call
1875 * @success: success value of the syscall
1876 * @return_code: return value of the syscall
1877 *
1878 * Tear down after system call. If the audit context has been marked as
1879 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1880 * filtering, or because some other part of the kernel wrote an audit
1881 * message), then write out the syscall information. In call cases,
1882 * free the names stored from getname().
1883 */
__audit_syscall_exit(int success,long return_code)1884 void __audit_syscall_exit(int success, long return_code)
1885 {
1886 struct task_struct *tsk = current;
1887 struct audit_context *context;
1888
1889 if (success)
1890 success = AUDITSC_SUCCESS;
1891 else
1892 success = AUDITSC_FAILURE;
1893
1894 context = audit_get_context(tsk, success, return_code);
1895 if (!context)
1896 return;
1897
1898 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1899 audit_log_exit(context, tsk);
1900
1901 context->in_syscall = 0;
1902 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1903
1904 if (!list_empty(&context->killed_trees))
1905 audit_kill_trees(&context->killed_trees);
1906
1907 if (context->previous) {
1908 struct audit_context *new_context = context->previous;
1909 context->previous = NULL;
1910 audit_free_context(context);
1911 tsk->audit_context = new_context;
1912 } else {
1913 audit_free_names(context);
1914 unroll_tree_refs(context, NULL, 0);
1915 audit_free_aux(context);
1916 context->aux = NULL;
1917 context->aux_pids = NULL;
1918 context->target_pid = 0;
1919 context->target_sid = 0;
1920 context->sockaddr_len = 0;
1921 context->type = 0;
1922 context->fds[0] = -1;
1923 if (context->state != AUDIT_RECORD_CONTEXT) {
1924 kfree(context->filterkey);
1925 context->filterkey = NULL;
1926 }
1927 tsk->audit_context = context;
1928 }
1929 }
1930
handle_one(const struct inode * inode)1931 static inline void handle_one(const struct inode *inode)
1932 {
1933 #ifdef CONFIG_AUDIT_TREE
1934 struct audit_context *context;
1935 struct audit_tree_refs *p;
1936 struct audit_chunk *chunk;
1937 int count;
1938 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1939 return;
1940 context = current->audit_context;
1941 p = context->trees;
1942 count = context->tree_count;
1943 rcu_read_lock();
1944 chunk = audit_tree_lookup(inode);
1945 rcu_read_unlock();
1946 if (!chunk)
1947 return;
1948 if (likely(put_tree_ref(context, chunk)))
1949 return;
1950 if (unlikely(!grow_tree_refs(context))) {
1951 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1952 audit_set_auditable(context);
1953 audit_put_chunk(chunk);
1954 unroll_tree_refs(context, p, count);
1955 return;
1956 }
1957 put_tree_ref(context, chunk);
1958 #endif
1959 }
1960
handle_path(const struct dentry * dentry)1961 static void handle_path(const struct dentry *dentry)
1962 {
1963 #ifdef CONFIG_AUDIT_TREE
1964 struct audit_context *context;
1965 struct audit_tree_refs *p;
1966 const struct dentry *d, *parent;
1967 struct audit_chunk *drop;
1968 unsigned long seq;
1969 int count;
1970
1971 context = current->audit_context;
1972 p = context->trees;
1973 count = context->tree_count;
1974 retry:
1975 drop = NULL;
1976 d = dentry;
1977 rcu_read_lock();
1978 seq = read_seqbegin(&rename_lock);
1979 for(;;) {
1980 struct inode *inode = d->d_inode;
1981 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1982 struct audit_chunk *chunk;
1983 chunk = audit_tree_lookup(inode);
1984 if (chunk) {
1985 if (unlikely(!put_tree_ref(context, chunk))) {
1986 drop = chunk;
1987 break;
1988 }
1989 }
1990 }
1991 parent = d->d_parent;
1992 if (parent == d)
1993 break;
1994 d = parent;
1995 }
1996 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1997 rcu_read_unlock();
1998 if (!drop) {
1999 /* just a race with rename */
2000 unroll_tree_refs(context, p, count);
2001 goto retry;
2002 }
2003 audit_put_chunk(drop);
2004 if (grow_tree_refs(context)) {
2005 /* OK, got more space */
2006 unroll_tree_refs(context, p, count);
2007 goto retry;
2008 }
2009 /* too bad */
2010 printk(KERN_WARNING
2011 "out of memory, audit has lost a tree reference\n");
2012 unroll_tree_refs(context, p, count);
2013 audit_set_auditable(context);
2014 return;
2015 }
2016 rcu_read_unlock();
2017 #endif
2018 }
2019
audit_alloc_name(struct audit_context * context)2020 static struct audit_names *audit_alloc_name(struct audit_context *context)
2021 {
2022 struct audit_names *aname;
2023
2024 if (context->name_count < AUDIT_NAMES) {
2025 aname = &context->preallocated_names[context->name_count];
2026 memset(aname, 0, sizeof(*aname));
2027 } else {
2028 aname = kzalloc(sizeof(*aname), GFP_NOFS);
2029 if (!aname)
2030 return NULL;
2031 aname->should_free = true;
2032 }
2033
2034 aname->ino = (unsigned long)-1;
2035 list_add_tail(&aname->list, &context->names_list);
2036
2037 context->name_count++;
2038 #if AUDIT_DEBUG
2039 context->ino_count++;
2040 #endif
2041 return aname;
2042 }
2043
2044 /**
2045 * audit_getname - add a name to the list
2046 * @name: name to add
2047 *
2048 * Add a name to the list of audit names for this context.
2049 * Called from fs/namei.c:getname().
2050 */
__audit_getname(const char * name)2051 void __audit_getname(const char *name)
2052 {
2053 struct audit_context *context = current->audit_context;
2054 struct audit_names *n;
2055
2056 if (!context->in_syscall) {
2057 #if AUDIT_DEBUG == 2
2058 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
2059 __FILE__, __LINE__, context->serial, name);
2060 dump_stack();
2061 #endif
2062 return;
2063 }
2064
2065 n = audit_alloc_name(context);
2066 if (!n)
2067 return;
2068
2069 n->name = name;
2070 n->name_len = AUDIT_NAME_FULL;
2071 n->name_put = true;
2072
2073 if (!context->pwd.dentry)
2074 get_fs_pwd(current->fs, &context->pwd);
2075 }
2076
2077 /* audit_putname - intercept a putname request
2078 * @name: name to intercept and delay for putname
2079 *
2080 * If we have stored the name from getname in the audit context,
2081 * then we delay the putname until syscall exit.
2082 * Called from include/linux/fs.h:putname().
2083 */
audit_putname(const char * name)2084 void audit_putname(const char *name)
2085 {
2086 struct audit_context *context = current->audit_context;
2087
2088 BUG_ON(!context);
2089 if (!context->in_syscall) {
2090 #if AUDIT_DEBUG == 2
2091 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
2092 __FILE__, __LINE__, context->serial, name);
2093 if (context->name_count) {
2094 struct audit_names *n;
2095 int i;
2096
2097 list_for_each_entry(n, &context->names_list, list)
2098 printk(KERN_ERR "name[%d] = %p = %s\n", i,
2099 n->name, n->name ?: "(null)");
2100 }
2101 #endif
2102 __putname(name);
2103 }
2104 #if AUDIT_DEBUG
2105 else {
2106 ++context->put_count;
2107 if (context->put_count > context->name_count) {
2108 printk(KERN_ERR "%s:%d(:%d): major=%d"
2109 " in_syscall=%d putname(%p) name_count=%d"
2110 " put_count=%d\n",
2111 __FILE__, __LINE__,
2112 context->serial, context->major,
2113 context->in_syscall, name, context->name_count,
2114 context->put_count);
2115 dump_stack();
2116 }
2117 }
2118 #endif
2119 }
2120
audit_copy_fcaps(struct audit_names * name,const struct dentry * dentry)2121 static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
2122 {
2123 struct cpu_vfs_cap_data caps;
2124 int rc;
2125
2126 if (!dentry)
2127 return 0;
2128
2129 rc = get_vfs_caps_from_disk(dentry, &caps);
2130 if (rc)
2131 return rc;
2132
2133 name->fcap.permitted = caps.permitted;
2134 name->fcap.inheritable = caps.inheritable;
2135 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2136 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2137
2138 return 0;
2139 }
2140
2141
2142 /* Copy inode data into an audit_names. */
audit_copy_inode(struct audit_names * name,const struct dentry * dentry,const struct inode * inode)2143 static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2144 const struct inode *inode)
2145 {
2146 name->ino = inode->i_ino;
2147 name->dev = inode->i_sb->s_dev;
2148 name->mode = inode->i_mode;
2149 name->uid = inode->i_uid;
2150 name->gid = inode->i_gid;
2151 name->rdev = inode->i_rdev;
2152 security_inode_getsecid(inode, &name->osid);
2153 audit_copy_fcaps(name, dentry);
2154 }
2155
2156 /**
2157 * audit_inode - store the inode and device from a lookup
2158 * @name: name being audited
2159 * @dentry: dentry being audited
2160 *
2161 * Called from fs/namei.c:path_lookup().
2162 */
__audit_inode(const char * name,const struct dentry * dentry)2163 void __audit_inode(const char *name, const struct dentry *dentry)
2164 {
2165 struct audit_context *context = current->audit_context;
2166 const struct inode *inode = dentry->d_inode;
2167 struct audit_names *n;
2168
2169 if (!context->in_syscall)
2170 return;
2171
2172 list_for_each_entry_reverse(n, &context->names_list, list) {
2173 if (n->name && (n->name == name))
2174 goto out;
2175 }
2176
2177 /* unable to find the name from a previous getname() */
2178 n = audit_alloc_name(context);
2179 if (!n)
2180 return;
2181 out:
2182 handle_path(dentry);
2183 audit_copy_inode(n, dentry, inode);
2184 }
2185
2186 /**
2187 * audit_inode_child - collect inode info for created/removed objects
2188 * @dentry: dentry being audited
2189 * @parent: inode of dentry parent
2190 *
2191 * For syscalls that create or remove filesystem objects, audit_inode
2192 * can only collect information for the filesystem object's parent.
2193 * This call updates the audit context with the child's information.
2194 * Syscalls that create a new filesystem object must be hooked after
2195 * the object is created. Syscalls that remove a filesystem object
2196 * must be hooked prior, in order to capture the target inode during
2197 * unsuccessful attempts.
2198 */
__audit_inode_child(const struct dentry * dentry,const struct inode * parent)2199 void __audit_inode_child(const struct dentry *dentry,
2200 const struct inode *parent)
2201 {
2202 struct audit_context *context = current->audit_context;
2203 const char *found_parent = NULL, *found_child = NULL;
2204 const struct inode *inode = dentry->d_inode;
2205 const char *dname = dentry->d_name.name;
2206 struct audit_names *n;
2207 int dirlen = 0;
2208
2209 if (!context->in_syscall)
2210 return;
2211
2212 if (inode)
2213 handle_one(inode);
2214
2215 /* parent is more likely, look for it first */
2216 list_for_each_entry(n, &context->names_list, list) {
2217 if (!n->name)
2218 continue;
2219
2220 if (n->ino == parent->i_ino &&
2221 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2222 n->name_len = dirlen; /* update parent data in place */
2223 found_parent = n->name;
2224 goto add_names;
2225 }
2226 }
2227
2228 /* no matching parent, look for matching child */
2229 list_for_each_entry(n, &context->names_list, list) {
2230 if (!n->name)
2231 continue;
2232
2233 /* strcmp() is the more likely scenario */
2234 if (!strcmp(dname, n->name) ||
2235 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2236 if (inode)
2237 audit_copy_inode(n, NULL, inode);
2238 else
2239 n->ino = (unsigned long)-1;
2240 found_child = n->name;
2241 goto add_names;
2242 }
2243 }
2244
2245 add_names:
2246 if (!found_parent) {
2247 n = audit_alloc_name(context);
2248 if (!n)
2249 return;
2250 audit_copy_inode(n, NULL, parent);
2251 }
2252
2253 if (!found_child) {
2254 n = audit_alloc_name(context);
2255 if (!n)
2256 return;
2257
2258 /* Re-use the name belonging to the slot for a matching parent
2259 * directory. All names for this context are relinquished in
2260 * audit_free_names() */
2261 if (found_parent) {
2262 n->name = found_parent;
2263 n->name_len = AUDIT_NAME_FULL;
2264 /* don't call __putname() */
2265 n->name_put = false;
2266 }
2267
2268 if (inode)
2269 audit_copy_inode(n, NULL, inode);
2270 }
2271 }
2272 EXPORT_SYMBOL_GPL(__audit_inode_child);
2273
2274 /**
2275 * auditsc_get_stamp - get local copies of audit_context values
2276 * @ctx: audit_context for the task
2277 * @t: timespec to store time recorded in the audit_context
2278 * @serial: serial value that is recorded in the audit_context
2279 *
2280 * Also sets the context as auditable.
2281 */
auditsc_get_stamp(struct audit_context * ctx,struct timespec * t,unsigned int * serial)2282 int auditsc_get_stamp(struct audit_context *ctx,
2283 struct timespec *t, unsigned int *serial)
2284 {
2285 if (!ctx->in_syscall)
2286 return 0;
2287 if (!ctx->serial)
2288 ctx->serial = audit_serial();
2289 t->tv_sec = ctx->ctime.tv_sec;
2290 t->tv_nsec = ctx->ctime.tv_nsec;
2291 *serial = ctx->serial;
2292 if (!ctx->prio) {
2293 ctx->prio = 1;
2294 ctx->current_state = AUDIT_RECORD_CONTEXT;
2295 }
2296 return 1;
2297 }
2298
2299 /* global counter which is incremented every time something logs in */
2300 static atomic_t session_id = ATOMIC_INIT(0);
2301
2302 /**
2303 * audit_set_loginuid - set current task's audit_context loginuid
2304 * @loginuid: loginuid value
2305 *
2306 * Returns 0.
2307 *
2308 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2309 */
audit_set_loginuid(uid_t loginuid)2310 int audit_set_loginuid(uid_t loginuid)
2311 {
2312 struct task_struct *task = current;
2313 struct audit_context *context = task->audit_context;
2314 unsigned int sessionid;
2315
2316 #ifdef CONFIG_AUDIT_LOGINUID_IMMUTABLE
2317 if (task->loginuid != -1)
2318 return -EPERM;
2319 #else /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2320 if (!capable(CAP_AUDIT_CONTROL))
2321 return -EPERM;
2322 #endif /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2323
2324 sessionid = atomic_inc_return(&session_id);
2325 if (context && context->in_syscall) {
2326 struct audit_buffer *ab;
2327
2328 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2329 if (ab) {
2330 audit_log_format(ab, "login pid=%d uid=%u "
2331 "old auid=%u new auid=%u"
2332 " old ses=%u new ses=%u",
2333 task->pid, task_uid(task),
2334 task->loginuid, loginuid,
2335 task->sessionid, sessionid);
2336 audit_log_end(ab);
2337 }
2338 }
2339 task->sessionid = sessionid;
2340 task->loginuid = loginuid;
2341 return 0;
2342 }
2343
2344 /**
2345 * __audit_mq_open - record audit data for a POSIX MQ open
2346 * @oflag: open flag
2347 * @mode: mode bits
2348 * @attr: queue attributes
2349 *
2350 */
__audit_mq_open(int oflag,umode_t mode,struct mq_attr * attr)2351 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2352 {
2353 struct audit_context *context = current->audit_context;
2354
2355 if (attr)
2356 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2357 else
2358 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2359
2360 context->mq_open.oflag = oflag;
2361 context->mq_open.mode = mode;
2362
2363 context->type = AUDIT_MQ_OPEN;
2364 }
2365
2366 /**
2367 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2368 * @mqdes: MQ descriptor
2369 * @msg_len: Message length
2370 * @msg_prio: Message priority
2371 * @abs_timeout: Message timeout in absolute time
2372 *
2373 */
__audit_mq_sendrecv(mqd_t mqdes,size_t msg_len,unsigned int msg_prio,const struct timespec * abs_timeout)2374 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2375 const struct timespec *abs_timeout)
2376 {
2377 struct audit_context *context = current->audit_context;
2378 struct timespec *p = &context->mq_sendrecv.abs_timeout;
2379
2380 if (abs_timeout)
2381 memcpy(p, abs_timeout, sizeof(struct timespec));
2382 else
2383 memset(p, 0, sizeof(struct timespec));
2384
2385 context->mq_sendrecv.mqdes = mqdes;
2386 context->mq_sendrecv.msg_len = msg_len;
2387 context->mq_sendrecv.msg_prio = msg_prio;
2388
2389 context->type = AUDIT_MQ_SENDRECV;
2390 }
2391
2392 /**
2393 * __audit_mq_notify - record audit data for a POSIX MQ notify
2394 * @mqdes: MQ descriptor
2395 * @notification: Notification event
2396 *
2397 */
2398
__audit_mq_notify(mqd_t mqdes,const struct sigevent * notification)2399 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2400 {
2401 struct audit_context *context = current->audit_context;
2402
2403 if (notification)
2404 context->mq_notify.sigev_signo = notification->sigev_signo;
2405 else
2406 context->mq_notify.sigev_signo = 0;
2407
2408 context->mq_notify.mqdes = mqdes;
2409 context->type = AUDIT_MQ_NOTIFY;
2410 }
2411
2412 /**
2413 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2414 * @mqdes: MQ descriptor
2415 * @mqstat: MQ flags
2416 *
2417 */
__audit_mq_getsetattr(mqd_t mqdes,struct mq_attr * mqstat)2418 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2419 {
2420 struct audit_context *context = current->audit_context;
2421 context->mq_getsetattr.mqdes = mqdes;
2422 context->mq_getsetattr.mqstat = *mqstat;
2423 context->type = AUDIT_MQ_GETSETATTR;
2424 }
2425
2426 /**
2427 * audit_ipc_obj - record audit data for ipc object
2428 * @ipcp: ipc permissions
2429 *
2430 */
__audit_ipc_obj(struct kern_ipc_perm * ipcp)2431 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2432 {
2433 struct audit_context *context = current->audit_context;
2434 context->ipc.uid = ipcp->uid;
2435 context->ipc.gid = ipcp->gid;
2436 context->ipc.mode = ipcp->mode;
2437 context->ipc.has_perm = 0;
2438 security_ipc_getsecid(ipcp, &context->ipc.osid);
2439 context->type = AUDIT_IPC;
2440 }
2441
2442 /**
2443 * audit_ipc_set_perm - record audit data for new ipc permissions
2444 * @qbytes: msgq bytes
2445 * @uid: msgq user id
2446 * @gid: msgq group id
2447 * @mode: msgq mode (permissions)
2448 *
2449 * Called only after audit_ipc_obj().
2450 */
__audit_ipc_set_perm(unsigned long qbytes,uid_t uid,gid_t gid,umode_t mode)2451 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2452 {
2453 struct audit_context *context = current->audit_context;
2454
2455 context->ipc.qbytes = qbytes;
2456 context->ipc.perm_uid = uid;
2457 context->ipc.perm_gid = gid;
2458 context->ipc.perm_mode = mode;
2459 context->ipc.has_perm = 1;
2460 }
2461
__audit_bprm(struct linux_binprm * bprm)2462 int __audit_bprm(struct linux_binprm *bprm)
2463 {
2464 struct audit_aux_data_execve *ax;
2465 struct audit_context *context = current->audit_context;
2466
2467 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2468 if (!ax)
2469 return -ENOMEM;
2470
2471 ax->argc = bprm->argc;
2472 ax->envc = bprm->envc;
2473 ax->mm = bprm->mm;
2474 ax->d.type = AUDIT_EXECVE;
2475 ax->d.next = context->aux;
2476 context->aux = (void *)ax;
2477 return 0;
2478 }
2479
2480
2481 /**
2482 * audit_socketcall - record audit data for sys_socketcall
2483 * @nargs: number of args
2484 * @args: args array
2485 *
2486 */
__audit_socketcall(int nargs,unsigned long * args)2487 void __audit_socketcall(int nargs, unsigned long *args)
2488 {
2489 struct audit_context *context = current->audit_context;
2490
2491 context->type = AUDIT_SOCKETCALL;
2492 context->socketcall.nargs = nargs;
2493 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2494 }
2495
2496 /**
2497 * __audit_fd_pair - record audit data for pipe and socketpair
2498 * @fd1: the first file descriptor
2499 * @fd2: the second file descriptor
2500 *
2501 */
__audit_fd_pair(int fd1,int fd2)2502 void __audit_fd_pair(int fd1, int fd2)
2503 {
2504 struct audit_context *context = current->audit_context;
2505 context->fds[0] = fd1;
2506 context->fds[1] = fd2;
2507 }
2508
2509 /**
2510 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2511 * @len: data length in user space
2512 * @a: data address in kernel space
2513 *
2514 * Returns 0 for success or NULL context or < 0 on error.
2515 */
__audit_sockaddr(int len,void * a)2516 int __audit_sockaddr(int len, void *a)
2517 {
2518 struct audit_context *context = current->audit_context;
2519
2520 if (!context->sockaddr) {
2521 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2522 if (!p)
2523 return -ENOMEM;
2524 context->sockaddr = p;
2525 }
2526
2527 context->sockaddr_len = len;
2528 memcpy(context->sockaddr, a, len);
2529 return 0;
2530 }
2531
__audit_ptrace(struct task_struct * t)2532 void __audit_ptrace(struct task_struct *t)
2533 {
2534 struct audit_context *context = current->audit_context;
2535
2536 context->target_pid = t->pid;
2537 context->target_auid = audit_get_loginuid(t);
2538 context->target_uid = task_uid(t);
2539 context->target_sessionid = audit_get_sessionid(t);
2540 security_task_getsecid(t, &context->target_sid);
2541 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2542 }
2543
2544 /**
2545 * audit_signal_info - record signal info for shutting down audit subsystem
2546 * @sig: signal value
2547 * @t: task being signaled
2548 *
2549 * If the audit subsystem is being terminated, record the task (pid)
2550 * and uid that is doing that.
2551 */
__audit_signal_info(int sig,struct task_struct * t)2552 int __audit_signal_info(int sig, struct task_struct *t)
2553 {
2554 struct audit_aux_data_pids *axp;
2555 struct task_struct *tsk = current;
2556 struct audit_context *ctx = tsk->audit_context;
2557 uid_t uid = current_uid(), t_uid = task_uid(t);
2558
2559 if (audit_pid && t->tgid == audit_pid) {
2560 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2561 audit_sig_pid = tsk->pid;
2562 if (tsk->loginuid != -1)
2563 audit_sig_uid = tsk->loginuid;
2564 else
2565 audit_sig_uid = uid;
2566 security_task_getsecid(tsk, &audit_sig_sid);
2567 }
2568 if (!audit_signals || audit_dummy_context())
2569 return 0;
2570 }
2571
2572 /* optimize the common case by putting first signal recipient directly
2573 * in audit_context */
2574 if (!ctx->target_pid) {
2575 ctx->target_pid = t->tgid;
2576 ctx->target_auid = audit_get_loginuid(t);
2577 ctx->target_uid = t_uid;
2578 ctx->target_sessionid = audit_get_sessionid(t);
2579 security_task_getsecid(t, &ctx->target_sid);
2580 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2581 return 0;
2582 }
2583
2584 axp = (void *)ctx->aux_pids;
2585 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2586 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2587 if (!axp)
2588 return -ENOMEM;
2589
2590 axp->d.type = AUDIT_OBJ_PID;
2591 axp->d.next = ctx->aux_pids;
2592 ctx->aux_pids = (void *)axp;
2593 }
2594 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2595
2596 axp->target_pid[axp->pid_count] = t->tgid;
2597 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2598 axp->target_uid[axp->pid_count] = t_uid;
2599 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2600 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2601 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2602 axp->pid_count++;
2603
2604 return 0;
2605 }
2606
2607 /**
2608 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2609 * @bprm: pointer to the bprm being processed
2610 * @new: the proposed new credentials
2611 * @old: the old credentials
2612 *
2613 * Simply check if the proc already has the caps given by the file and if not
2614 * store the priv escalation info for later auditing at the end of the syscall
2615 *
2616 * -Eric
2617 */
__audit_log_bprm_fcaps(struct linux_binprm * bprm,const struct cred * new,const struct cred * old)2618 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2619 const struct cred *new, const struct cred *old)
2620 {
2621 struct audit_aux_data_bprm_fcaps *ax;
2622 struct audit_context *context = current->audit_context;
2623 struct cpu_vfs_cap_data vcaps;
2624 struct dentry *dentry;
2625
2626 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2627 if (!ax)
2628 return -ENOMEM;
2629
2630 ax->d.type = AUDIT_BPRM_FCAPS;
2631 ax->d.next = context->aux;
2632 context->aux = (void *)ax;
2633
2634 dentry = dget(bprm->file->f_dentry);
2635 get_vfs_caps_from_disk(dentry, &vcaps);
2636 dput(dentry);
2637
2638 ax->fcap.permitted = vcaps.permitted;
2639 ax->fcap.inheritable = vcaps.inheritable;
2640 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2641 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2642
2643 ax->old_pcap.permitted = old->cap_permitted;
2644 ax->old_pcap.inheritable = old->cap_inheritable;
2645 ax->old_pcap.effective = old->cap_effective;
2646
2647 ax->new_pcap.permitted = new->cap_permitted;
2648 ax->new_pcap.inheritable = new->cap_inheritable;
2649 ax->new_pcap.effective = new->cap_effective;
2650 return 0;
2651 }
2652
2653 /**
2654 * __audit_log_capset - store information about the arguments to the capset syscall
2655 * @pid: target pid of the capset call
2656 * @new: the new credentials
2657 * @old: the old (current) credentials
2658 *
2659 * Record the aguments userspace sent to sys_capset for later printing by the
2660 * audit system if applicable
2661 */
__audit_log_capset(pid_t pid,const struct cred * new,const struct cred * old)2662 void __audit_log_capset(pid_t pid,
2663 const struct cred *new, const struct cred *old)
2664 {
2665 struct audit_context *context = current->audit_context;
2666 context->capset.pid = pid;
2667 context->capset.cap.effective = new->cap_effective;
2668 context->capset.cap.inheritable = new->cap_effective;
2669 context->capset.cap.permitted = new->cap_permitted;
2670 context->type = AUDIT_CAPSET;
2671 }
2672
__audit_mmap_fd(int fd,int flags)2673 void __audit_mmap_fd(int fd, int flags)
2674 {
2675 struct audit_context *context = current->audit_context;
2676 context->mmap.fd = fd;
2677 context->mmap.flags = flags;
2678 context->type = AUDIT_MMAP;
2679 }
2680
audit_log_abend(struct audit_buffer * ab,char * reason,long signr)2681 static void audit_log_abend(struct audit_buffer *ab, char *reason, long signr)
2682 {
2683 uid_t auid, uid;
2684 gid_t gid;
2685 unsigned int sessionid;
2686
2687 auid = audit_get_loginuid(current);
2688 sessionid = audit_get_sessionid(current);
2689 current_uid_gid(&uid, &gid);
2690
2691 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2692 auid, uid, gid, sessionid);
2693 audit_log_task_context(ab);
2694 audit_log_format(ab, " pid=%d comm=", current->pid);
2695 audit_log_untrustedstring(ab, current->comm);
2696 audit_log_format(ab, " reason=");
2697 audit_log_string(ab, reason);
2698 audit_log_format(ab, " sig=%ld", signr);
2699 }
2700 /**
2701 * audit_core_dumps - record information about processes that end abnormally
2702 * @signr: signal value
2703 *
2704 * If a process ends with a core dump, something fishy is going on and we
2705 * should record the event for investigation.
2706 */
audit_core_dumps(long signr)2707 void audit_core_dumps(long signr)
2708 {
2709 struct audit_buffer *ab;
2710
2711 if (!audit_enabled)
2712 return;
2713
2714 if (signr == SIGQUIT) /* don't care for those */
2715 return;
2716
2717 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2718 audit_log_abend(ab, "memory violation", signr);
2719 audit_log_end(ab);
2720 }
2721
__audit_seccomp(unsigned long syscall)2722 void __audit_seccomp(unsigned long syscall)
2723 {
2724 struct audit_buffer *ab;
2725
2726 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2727 audit_log_abend(ab, "seccomp", SIGKILL);
2728 audit_log_format(ab, " syscall=%ld", syscall);
2729 audit_log_end(ab);
2730 }
2731
audit_killed_trees(void)2732 struct list_head *audit_killed_trees(void)
2733 {
2734 struct audit_context *ctx = current->audit_context;
2735 if (likely(!ctx || !ctx->in_syscall))
2736 return NULL;
2737 return &ctx->killed_trees;
2738 }
2739