1 #include "amd64_edac.h"
2 #include <asm/amd_nb.h>
3 
4 static struct edac_pci_ctl_info *amd64_ctl_pci;
5 
6 static int report_gart_errors;
7 module_param(report_gart_errors, int, 0644);
8 
9 /*
10  * Set by command line parameter. If BIOS has enabled the ECC, this override is
11  * cleared to prevent re-enabling the hardware by this driver.
12  */
13 static int ecc_enable_override;
14 module_param(ecc_enable_override, int, 0644);
15 
16 static struct msr __percpu *msrs;
17 
18 /*
19  * count successfully initialized driver instances for setup_pci_device()
20  */
21 static atomic_t drv_instances = ATOMIC_INIT(0);
22 
23 /* Per-node driver instances */
24 static struct mem_ctl_info **mcis;
25 static struct ecc_settings **ecc_stngs;
26 
27 /*
28  * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
29  * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
30  * or higher value'.
31  *
32  *FIXME: Produce a better mapping/linearisation.
33  */
34 struct scrubrate {
35        u32 scrubval;           /* bit pattern for scrub rate */
36        u32 bandwidth;          /* bandwidth consumed (bytes/sec) */
37 } scrubrates[] = {
38 	{ 0x01, 1600000000UL},
39 	{ 0x02, 800000000UL},
40 	{ 0x03, 400000000UL},
41 	{ 0x04, 200000000UL},
42 	{ 0x05, 100000000UL},
43 	{ 0x06, 50000000UL},
44 	{ 0x07, 25000000UL},
45 	{ 0x08, 12284069UL},
46 	{ 0x09, 6274509UL},
47 	{ 0x0A, 3121951UL},
48 	{ 0x0B, 1560975UL},
49 	{ 0x0C, 781440UL},
50 	{ 0x0D, 390720UL},
51 	{ 0x0E, 195300UL},
52 	{ 0x0F, 97650UL},
53 	{ 0x10, 48854UL},
54 	{ 0x11, 24427UL},
55 	{ 0x12, 12213UL},
56 	{ 0x13, 6101UL},
57 	{ 0x14, 3051UL},
58 	{ 0x15, 1523UL},
59 	{ 0x16, 761UL},
60 	{ 0x00, 0UL},        /* scrubbing off */
61 };
62 
__amd64_read_pci_cfg_dword(struct pci_dev * pdev,int offset,u32 * val,const char * func)63 static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
64 				      u32 *val, const char *func)
65 {
66 	int err = 0;
67 
68 	err = pci_read_config_dword(pdev, offset, val);
69 	if (err)
70 		amd64_warn("%s: error reading F%dx%03x.\n",
71 			   func, PCI_FUNC(pdev->devfn), offset);
72 
73 	return err;
74 }
75 
__amd64_write_pci_cfg_dword(struct pci_dev * pdev,int offset,u32 val,const char * func)76 int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
77 				u32 val, const char *func)
78 {
79 	int err = 0;
80 
81 	err = pci_write_config_dword(pdev, offset, val);
82 	if (err)
83 		amd64_warn("%s: error writing to F%dx%03x.\n",
84 			   func, PCI_FUNC(pdev->devfn), offset);
85 
86 	return err;
87 }
88 
89 /*
90  *
91  * Depending on the family, F2 DCT reads need special handling:
92  *
93  * K8: has a single DCT only
94  *
95  * F10h: each DCT has its own set of regs
96  *	DCT0 -> F2x040..
97  *	DCT1 -> F2x140..
98  *
99  * F15h: we select which DCT we access using F1x10C[DctCfgSel]
100  *
101  */
k8_read_dct_pci_cfg(struct amd64_pvt * pvt,int addr,u32 * val,const char * func)102 static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
103 			       const char *func)
104 {
105 	if (addr >= 0x100)
106 		return -EINVAL;
107 
108 	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
109 }
110 
f10_read_dct_pci_cfg(struct amd64_pvt * pvt,int addr,u32 * val,const char * func)111 static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
112 				 const char *func)
113 {
114 	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
115 }
116 
117 /*
118  * Select DCT to which PCI cfg accesses are routed
119  */
f15h_select_dct(struct amd64_pvt * pvt,u8 dct)120 static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
121 {
122 	u32 reg = 0;
123 
124 	amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
125 	reg &= 0xfffffffe;
126 	reg |= dct;
127 	amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
128 }
129 
f15_read_dct_pci_cfg(struct amd64_pvt * pvt,int addr,u32 * val,const char * func)130 static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
131 				 const char *func)
132 {
133 	u8 dct  = 0;
134 
135 	if (addr >= 0x140 && addr <= 0x1a0) {
136 		dct   = 1;
137 		addr -= 0x100;
138 	}
139 
140 	f15h_select_dct(pvt, dct);
141 
142 	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
143 }
144 
145 /*
146  * Memory scrubber control interface. For K8, memory scrubbing is handled by
147  * hardware and can involve L2 cache, dcache as well as the main memory. With
148  * F10, this is extended to L3 cache scrubbing on CPU models sporting that
149  * functionality.
150  *
151  * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
152  * (dram) over to cache lines. This is nasty, so we will use bandwidth in
153  * bytes/sec for the setting.
154  *
155  * Currently, we only do dram scrubbing. If the scrubbing is done in software on
156  * other archs, we might not have access to the caches directly.
157  */
158 
159 /*
160  * scan the scrub rate mapping table for a close or matching bandwidth value to
161  * issue. If requested is too big, then use last maximum value found.
162  */
__amd64_set_scrub_rate(struct pci_dev * ctl,u32 new_bw,u32 min_rate)163 static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
164 {
165 	u32 scrubval;
166 	int i;
167 
168 	/*
169 	 * map the configured rate (new_bw) to a value specific to the AMD64
170 	 * memory controller and apply to register. Search for the first
171 	 * bandwidth entry that is greater or equal than the setting requested
172 	 * and program that. If at last entry, turn off DRAM scrubbing.
173 	 *
174 	 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
175 	 * by falling back to the last element in scrubrates[].
176 	 */
177 	for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
178 		/*
179 		 * skip scrub rates which aren't recommended
180 		 * (see F10 BKDG, F3x58)
181 		 */
182 		if (scrubrates[i].scrubval < min_rate)
183 			continue;
184 
185 		if (scrubrates[i].bandwidth <= new_bw)
186 			break;
187 	}
188 
189 	scrubval = scrubrates[i].scrubval;
190 
191 	pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
192 
193 	if (scrubval)
194 		return scrubrates[i].bandwidth;
195 
196 	return 0;
197 }
198 
amd64_set_scrub_rate(struct mem_ctl_info * mci,u32 bw)199 static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
200 {
201 	struct amd64_pvt *pvt = mci->pvt_info;
202 	u32 min_scrubrate = 0x5;
203 
204 	if (boot_cpu_data.x86 == 0xf)
205 		min_scrubrate = 0x0;
206 
207 	/* F15h Erratum #505 */
208 	if (boot_cpu_data.x86 == 0x15)
209 		f15h_select_dct(pvt, 0);
210 
211 	return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
212 }
213 
amd64_get_scrub_rate(struct mem_ctl_info * mci)214 static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
215 {
216 	struct amd64_pvt *pvt = mci->pvt_info;
217 	u32 scrubval = 0;
218 	int i, retval = -EINVAL;
219 
220 	/* F15h Erratum #505 */
221 	if (boot_cpu_data.x86 == 0x15)
222 		f15h_select_dct(pvt, 0);
223 
224 	amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
225 
226 	scrubval = scrubval & 0x001F;
227 
228 	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
229 		if (scrubrates[i].scrubval == scrubval) {
230 			retval = scrubrates[i].bandwidth;
231 			break;
232 		}
233 	}
234 	return retval;
235 }
236 
237 /*
238  * returns true if the SysAddr given by sys_addr matches the
239  * DRAM base/limit associated with node_id
240  */
amd64_base_limit_match(struct amd64_pvt * pvt,u64 sys_addr,unsigned nid)241 static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr,
242 				   unsigned nid)
243 {
244 	u64 addr;
245 
246 	/* The K8 treats this as a 40-bit value.  However, bits 63-40 will be
247 	 * all ones if the most significant implemented address bit is 1.
248 	 * Here we discard bits 63-40.  See section 3.4.2 of AMD publication
249 	 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
250 	 * Application Programming.
251 	 */
252 	addr = sys_addr & 0x000000ffffffffffull;
253 
254 	return ((addr >= get_dram_base(pvt, nid)) &&
255 		(addr <= get_dram_limit(pvt, nid)));
256 }
257 
258 /*
259  * Attempt to map a SysAddr to a node. On success, return a pointer to the
260  * mem_ctl_info structure for the node that the SysAddr maps to.
261  *
262  * On failure, return NULL.
263  */
find_mc_by_sys_addr(struct mem_ctl_info * mci,u64 sys_addr)264 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
265 						u64 sys_addr)
266 {
267 	struct amd64_pvt *pvt;
268 	unsigned node_id;
269 	u32 intlv_en, bits;
270 
271 	/*
272 	 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
273 	 * 3.4.4.2) registers to map the SysAddr to a node ID.
274 	 */
275 	pvt = mci->pvt_info;
276 
277 	/*
278 	 * The value of this field should be the same for all DRAM Base
279 	 * registers.  Therefore we arbitrarily choose to read it from the
280 	 * register for node 0.
281 	 */
282 	intlv_en = dram_intlv_en(pvt, 0);
283 
284 	if (intlv_en == 0) {
285 		for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
286 			if (amd64_base_limit_match(pvt, sys_addr, node_id))
287 				goto found;
288 		}
289 		goto err_no_match;
290 	}
291 
292 	if (unlikely((intlv_en != 0x01) &&
293 		     (intlv_en != 0x03) &&
294 		     (intlv_en != 0x07))) {
295 		amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
296 		return NULL;
297 	}
298 
299 	bits = (((u32) sys_addr) >> 12) & intlv_en;
300 
301 	for (node_id = 0; ; ) {
302 		if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
303 			break;	/* intlv_sel field matches */
304 
305 		if (++node_id >= DRAM_RANGES)
306 			goto err_no_match;
307 	}
308 
309 	/* sanity test for sys_addr */
310 	if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
311 		amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
312 			   "range for node %d with node interleaving enabled.\n",
313 			   __func__, sys_addr, node_id);
314 		return NULL;
315 	}
316 
317 found:
318 	return edac_mc_find((int)node_id);
319 
320 err_no_match:
321 	debugf2("sys_addr 0x%lx doesn't match any node\n",
322 		(unsigned long)sys_addr);
323 
324 	return NULL;
325 }
326 
327 /*
328  * compute the CS base address of the @csrow on the DRAM controller @dct.
329  * For details see F2x[5C:40] in the processor's BKDG
330  */
get_cs_base_and_mask(struct amd64_pvt * pvt,int csrow,u8 dct,u64 * base,u64 * mask)331 static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
332 				 u64 *base, u64 *mask)
333 {
334 	u64 csbase, csmask, base_bits, mask_bits;
335 	u8 addr_shift;
336 
337 	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
338 		csbase		= pvt->csels[dct].csbases[csrow];
339 		csmask		= pvt->csels[dct].csmasks[csrow];
340 		base_bits	= GENMASK(21, 31) | GENMASK(9, 15);
341 		mask_bits	= GENMASK(21, 29) | GENMASK(9, 15);
342 		addr_shift	= 4;
343 	} else {
344 		csbase		= pvt->csels[dct].csbases[csrow];
345 		csmask		= pvt->csels[dct].csmasks[csrow >> 1];
346 		addr_shift	= 8;
347 
348 		if (boot_cpu_data.x86 == 0x15)
349 			base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
350 		else
351 			base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
352 	}
353 
354 	*base  = (csbase & base_bits) << addr_shift;
355 
356 	*mask  = ~0ULL;
357 	/* poke holes for the csmask */
358 	*mask &= ~(mask_bits << addr_shift);
359 	/* OR them in */
360 	*mask |= (csmask & mask_bits) << addr_shift;
361 }
362 
363 #define for_each_chip_select(i, dct, pvt) \
364 	for (i = 0; i < pvt->csels[dct].b_cnt; i++)
365 
366 #define chip_select_base(i, dct, pvt) \
367 	pvt->csels[dct].csbases[i]
368 
369 #define for_each_chip_select_mask(i, dct, pvt) \
370 	for (i = 0; i < pvt->csels[dct].m_cnt; i++)
371 
372 /*
373  * @input_addr is an InputAddr associated with the node given by mci. Return the
374  * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
375  */
input_addr_to_csrow(struct mem_ctl_info * mci,u64 input_addr)376 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
377 {
378 	struct amd64_pvt *pvt;
379 	int csrow;
380 	u64 base, mask;
381 
382 	pvt = mci->pvt_info;
383 
384 	for_each_chip_select(csrow, 0, pvt) {
385 		if (!csrow_enabled(csrow, 0, pvt))
386 			continue;
387 
388 		get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
389 
390 		mask = ~mask;
391 
392 		if ((input_addr & mask) == (base & mask)) {
393 			debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
394 				(unsigned long)input_addr, csrow,
395 				pvt->mc_node_id);
396 
397 			return csrow;
398 		}
399 	}
400 	debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
401 		(unsigned long)input_addr, pvt->mc_node_id);
402 
403 	return -1;
404 }
405 
406 /*
407  * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
408  * for the node represented by mci. Info is passed back in *hole_base,
409  * *hole_offset, and *hole_size.  Function returns 0 if info is valid or 1 if
410  * info is invalid. Info may be invalid for either of the following reasons:
411  *
412  * - The revision of the node is not E or greater.  In this case, the DRAM Hole
413  *   Address Register does not exist.
414  *
415  * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
416  *   indicating that its contents are not valid.
417  *
418  * The values passed back in *hole_base, *hole_offset, and *hole_size are
419  * complete 32-bit values despite the fact that the bitfields in the DHAR
420  * only represent bits 31-24 of the base and offset values.
421  */
amd64_get_dram_hole_info(struct mem_ctl_info * mci,u64 * hole_base,u64 * hole_offset,u64 * hole_size)422 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
423 			     u64 *hole_offset, u64 *hole_size)
424 {
425 	struct amd64_pvt *pvt = mci->pvt_info;
426 	u64 base;
427 
428 	/* only revE and later have the DRAM Hole Address Register */
429 	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
430 		debugf1("  revision %d for node %d does not support DHAR\n",
431 			pvt->ext_model, pvt->mc_node_id);
432 		return 1;
433 	}
434 
435 	/* valid for Fam10h and above */
436 	if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
437 		debugf1("  Dram Memory Hoisting is DISABLED on this system\n");
438 		return 1;
439 	}
440 
441 	if (!dhar_valid(pvt)) {
442 		debugf1("  Dram Memory Hoisting is DISABLED on this node %d\n",
443 			pvt->mc_node_id);
444 		return 1;
445 	}
446 
447 	/* This node has Memory Hoisting */
448 
449 	/* +------------------+--------------------+--------------------+-----
450 	 * | memory           | DRAM hole          | relocated          |
451 	 * | [0, (x - 1)]     | [x, 0xffffffff]    | addresses from     |
452 	 * |                  |                    | DRAM hole          |
453 	 * |                  |                    | [0x100000000,      |
454 	 * |                  |                    |  (0x100000000+     |
455 	 * |                  |                    |   (0xffffffff-x))] |
456 	 * +------------------+--------------------+--------------------+-----
457 	 *
458 	 * Above is a diagram of physical memory showing the DRAM hole and the
459 	 * relocated addresses from the DRAM hole.  As shown, the DRAM hole
460 	 * starts at address x (the base address) and extends through address
461 	 * 0xffffffff.  The DRAM Hole Address Register (DHAR) relocates the
462 	 * addresses in the hole so that they start at 0x100000000.
463 	 */
464 
465 	base = dhar_base(pvt);
466 
467 	*hole_base = base;
468 	*hole_size = (0x1ull << 32) - base;
469 
470 	if (boot_cpu_data.x86 > 0xf)
471 		*hole_offset = f10_dhar_offset(pvt);
472 	else
473 		*hole_offset = k8_dhar_offset(pvt);
474 
475 	debugf1("  DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
476 		pvt->mc_node_id, (unsigned long)*hole_base,
477 		(unsigned long)*hole_offset, (unsigned long)*hole_size);
478 
479 	return 0;
480 }
481 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
482 
483 /*
484  * Return the DramAddr that the SysAddr given by @sys_addr maps to.  It is
485  * assumed that sys_addr maps to the node given by mci.
486  *
487  * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
488  * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
489  * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
490  * then it is also involved in translating a SysAddr to a DramAddr. Sections
491  * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
492  * These parts of the documentation are unclear. I interpret them as follows:
493  *
494  * When node n receives a SysAddr, it processes the SysAddr as follows:
495  *
496  * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
497  *    Limit registers for node n. If the SysAddr is not within the range
498  *    specified by the base and limit values, then node n ignores the Sysaddr
499  *    (since it does not map to node n). Otherwise continue to step 2 below.
500  *
501  * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
502  *    disabled so skip to step 3 below. Otherwise see if the SysAddr is within
503  *    the range of relocated addresses (starting at 0x100000000) from the DRAM
504  *    hole. If not, skip to step 3 below. Else get the value of the
505  *    DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
506  *    offset defined by this value from the SysAddr.
507  *
508  * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
509  *    Base register for node n. To obtain the DramAddr, subtract the base
510  *    address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
511  */
sys_addr_to_dram_addr(struct mem_ctl_info * mci,u64 sys_addr)512 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
513 {
514 	struct amd64_pvt *pvt = mci->pvt_info;
515 	u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
516 	int ret = 0;
517 
518 	dram_base = get_dram_base(pvt, pvt->mc_node_id);
519 
520 	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
521 				      &hole_size);
522 	if (!ret) {
523 		if ((sys_addr >= (1ull << 32)) &&
524 		    (sys_addr < ((1ull << 32) + hole_size))) {
525 			/* use DHAR to translate SysAddr to DramAddr */
526 			dram_addr = sys_addr - hole_offset;
527 
528 			debugf2("using DHAR to translate SysAddr 0x%lx to "
529 				"DramAddr 0x%lx\n",
530 				(unsigned long)sys_addr,
531 				(unsigned long)dram_addr);
532 
533 			return dram_addr;
534 		}
535 	}
536 
537 	/*
538 	 * Translate the SysAddr to a DramAddr as shown near the start of
539 	 * section 3.4.4 (p. 70).  Although sys_addr is a 64-bit value, the k8
540 	 * only deals with 40-bit values.  Therefore we discard bits 63-40 of
541 	 * sys_addr below.  If bit 39 of sys_addr is 1 then the bits we
542 	 * discard are all 1s.  Otherwise the bits we discard are all 0s.  See
543 	 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
544 	 * Programmer's Manual Volume 1 Application Programming.
545 	 */
546 	dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
547 
548 	debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
549 		"DramAddr 0x%lx\n", (unsigned long)sys_addr,
550 		(unsigned long)dram_addr);
551 	return dram_addr;
552 }
553 
554 /*
555  * @intlv_en is the value of the IntlvEn field from a DRAM Base register
556  * (section 3.4.4.1).  Return the number of bits from a SysAddr that are used
557  * for node interleaving.
558  */
num_node_interleave_bits(unsigned intlv_en)559 static int num_node_interleave_bits(unsigned intlv_en)
560 {
561 	static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
562 	int n;
563 
564 	BUG_ON(intlv_en > 7);
565 	n = intlv_shift_table[intlv_en];
566 	return n;
567 }
568 
569 /* Translate the DramAddr given by @dram_addr to an InputAddr. */
dram_addr_to_input_addr(struct mem_ctl_info * mci,u64 dram_addr)570 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
571 {
572 	struct amd64_pvt *pvt;
573 	int intlv_shift;
574 	u64 input_addr;
575 
576 	pvt = mci->pvt_info;
577 
578 	/*
579 	 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
580 	 * concerning translating a DramAddr to an InputAddr.
581 	 */
582 	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
583 	input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
584 		      (dram_addr & 0xfff);
585 
586 	debugf2("  Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
587 		intlv_shift, (unsigned long)dram_addr,
588 		(unsigned long)input_addr);
589 
590 	return input_addr;
591 }
592 
593 /*
594  * Translate the SysAddr represented by @sys_addr to an InputAddr.  It is
595  * assumed that @sys_addr maps to the node given by mci.
596  */
sys_addr_to_input_addr(struct mem_ctl_info * mci,u64 sys_addr)597 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
598 {
599 	u64 input_addr;
600 
601 	input_addr =
602 	    dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
603 
604 	debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
605 		(unsigned long)sys_addr, (unsigned long)input_addr);
606 
607 	return input_addr;
608 }
609 
610 
611 /*
612  * @input_addr is an InputAddr associated with the node represented by mci.
613  * Translate @input_addr to a DramAddr and return the result.
614  */
input_addr_to_dram_addr(struct mem_ctl_info * mci,u64 input_addr)615 static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
616 {
617 	struct amd64_pvt *pvt;
618 	unsigned node_id, intlv_shift;
619 	u64 bits, dram_addr;
620 	u32 intlv_sel;
621 
622 	/*
623 	 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
624 	 * shows how to translate a DramAddr to an InputAddr. Here we reverse
625 	 * this procedure. When translating from a DramAddr to an InputAddr, the
626 	 * bits used for node interleaving are discarded.  Here we recover these
627 	 * bits from the IntlvSel field of the DRAM Limit register (section
628 	 * 3.4.4.2) for the node that input_addr is associated with.
629 	 */
630 	pvt = mci->pvt_info;
631 	node_id = pvt->mc_node_id;
632 
633 	BUG_ON(node_id > 7);
634 
635 	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
636 	if (intlv_shift == 0) {
637 		debugf1("    InputAddr 0x%lx translates to DramAddr of "
638 			"same value\n",	(unsigned long)input_addr);
639 
640 		return input_addr;
641 	}
642 
643 	bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) +
644 		(input_addr & 0xfff);
645 
646 	intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
647 	dram_addr = bits + (intlv_sel << 12);
648 
649 	debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
650 		"(%d node interleave bits)\n", (unsigned long)input_addr,
651 		(unsigned long)dram_addr, intlv_shift);
652 
653 	return dram_addr;
654 }
655 
656 /*
657  * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
658  * @dram_addr to a SysAddr.
659  */
dram_addr_to_sys_addr(struct mem_ctl_info * mci,u64 dram_addr)660 static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
661 {
662 	struct amd64_pvt *pvt = mci->pvt_info;
663 	u64 hole_base, hole_offset, hole_size, base, sys_addr;
664 	int ret = 0;
665 
666 	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
667 				      &hole_size);
668 	if (!ret) {
669 		if ((dram_addr >= hole_base) &&
670 		    (dram_addr < (hole_base + hole_size))) {
671 			sys_addr = dram_addr + hole_offset;
672 
673 			debugf1("using DHAR to translate DramAddr 0x%lx to "
674 				"SysAddr 0x%lx\n", (unsigned long)dram_addr,
675 				(unsigned long)sys_addr);
676 
677 			return sys_addr;
678 		}
679 	}
680 
681 	base     = get_dram_base(pvt, pvt->mc_node_id);
682 	sys_addr = dram_addr + base;
683 
684 	/*
685 	 * The sys_addr we have computed up to this point is a 40-bit value
686 	 * because the k8 deals with 40-bit values.  However, the value we are
687 	 * supposed to return is a full 64-bit physical address.  The AMD
688 	 * x86-64 architecture specifies that the most significant implemented
689 	 * address bit through bit 63 of a physical address must be either all
690 	 * 0s or all 1s.  Therefore we sign-extend the 40-bit sys_addr to a
691 	 * 64-bit value below.  See section 3.4.2 of AMD publication 24592:
692 	 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
693 	 * Programming.
694 	 */
695 	sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
696 
697 	debugf1("    Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
698 		pvt->mc_node_id, (unsigned long)dram_addr,
699 		(unsigned long)sys_addr);
700 
701 	return sys_addr;
702 }
703 
704 /*
705  * @input_addr is an InputAddr associated with the node given by mci. Translate
706  * @input_addr to a SysAddr.
707  */
input_addr_to_sys_addr(struct mem_ctl_info * mci,u64 input_addr)708 static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
709 					 u64 input_addr)
710 {
711 	return dram_addr_to_sys_addr(mci,
712 				     input_addr_to_dram_addr(mci, input_addr));
713 }
714 
715 /*
716  * Find the minimum and maximum InputAddr values that map to the given @csrow.
717  * Pass back these values in *input_addr_min and *input_addr_max.
718  */
find_csrow_limits(struct mem_ctl_info * mci,int csrow,u64 * input_addr_min,u64 * input_addr_max)719 static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
720 			      u64 *input_addr_min, u64 *input_addr_max)
721 {
722 	struct amd64_pvt *pvt;
723 	u64 base, mask;
724 
725 	pvt = mci->pvt_info;
726 	BUG_ON((csrow < 0) || (csrow >= pvt->csels[0].b_cnt));
727 
728 	get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
729 
730 	*input_addr_min = base & ~mask;
731 	*input_addr_max = base | mask;
732 }
733 
734 /* Map the Error address to a PAGE and PAGE OFFSET. */
error_address_to_page_and_offset(u64 error_address,u32 * page,u32 * offset)735 static inline void error_address_to_page_and_offset(u64 error_address,
736 						    u32 *page, u32 *offset)
737 {
738 	*page = (u32) (error_address >> PAGE_SHIFT);
739 	*offset = ((u32) error_address) & ~PAGE_MASK;
740 }
741 
742 /*
743  * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
744  * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
745  * of a node that detected an ECC memory error.  mci represents the node that
746  * the error address maps to (possibly different from the node that detected
747  * the error).  Return the number of the csrow that sys_addr maps to, or -1 on
748  * error.
749  */
sys_addr_to_csrow(struct mem_ctl_info * mci,u64 sys_addr)750 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
751 {
752 	int csrow;
753 
754 	csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
755 
756 	if (csrow == -1)
757 		amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
758 				  "address 0x%lx\n", (unsigned long)sys_addr);
759 	return csrow;
760 }
761 
762 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
763 
764 /*
765  * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
766  * are ECC capable.
767  */
amd64_determine_edac_cap(struct amd64_pvt * pvt)768 static unsigned long amd64_determine_edac_cap(struct amd64_pvt *pvt)
769 {
770 	u8 bit;
771 	unsigned long edac_cap = EDAC_FLAG_NONE;
772 
773 	bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
774 		? 19
775 		: 17;
776 
777 	if (pvt->dclr0 & BIT(bit))
778 		edac_cap = EDAC_FLAG_SECDED;
779 
780 	return edac_cap;
781 }
782 
783 static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8);
784 
amd64_dump_dramcfg_low(u32 dclr,int chan)785 static void amd64_dump_dramcfg_low(u32 dclr, int chan)
786 {
787 	debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
788 
789 	debugf1("  DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
790 		(dclr & BIT(16)) ?  "un" : "",
791 		(dclr & BIT(19)) ? "yes" : "no");
792 
793 	debugf1("  PAR/ERR parity: %s\n",
794 		(dclr & BIT(8)) ?  "enabled" : "disabled");
795 
796 	if (boot_cpu_data.x86 == 0x10)
797 		debugf1("  DCT 128bit mode width: %s\n",
798 			(dclr & BIT(11)) ?  "128b" : "64b");
799 
800 	debugf1("  x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
801 		(dclr & BIT(12)) ?  "yes" : "no",
802 		(dclr & BIT(13)) ?  "yes" : "no",
803 		(dclr & BIT(14)) ?  "yes" : "no",
804 		(dclr & BIT(15)) ?  "yes" : "no");
805 }
806 
807 /* Display and decode various NB registers for debug purposes. */
dump_misc_regs(struct amd64_pvt * pvt)808 static void dump_misc_regs(struct amd64_pvt *pvt)
809 {
810 	debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
811 
812 	debugf1("  NB two channel DRAM capable: %s\n",
813 		(pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
814 
815 	debugf1("  ECC capable: %s, ChipKill ECC capable: %s\n",
816 		(pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
817 		(pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
818 
819 	amd64_dump_dramcfg_low(pvt->dclr0, 0);
820 
821 	debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
822 
823 	debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
824 			"offset: 0x%08x\n",
825 			pvt->dhar, dhar_base(pvt),
826 			(boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
827 						   : f10_dhar_offset(pvt));
828 
829 	debugf1("  DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
830 
831 	amd64_debug_display_dimm_sizes(pvt, 0);
832 
833 	/* everything below this point is Fam10h and above */
834 	if (boot_cpu_data.x86 == 0xf)
835 		return;
836 
837 	amd64_debug_display_dimm_sizes(pvt, 1);
838 
839 	amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
840 
841 	/* Only if NOT ganged does dclr1 have valid info */
842 	if (!dct_ganging_enabled(pvt))
843 		amd64_dump_dramcfg_low(pvt->dclr1, 1);
844 }
845 
846 /*
847  * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
848  */
prep_chip_selects(struct amd64_pvt * pvt)849 static void prep_chip_selects(struct amd64_pvt *pvt)
850 {
851 	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
852 		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
853 		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
854 	} else {
855 		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
856 		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
857 	}
858 }
859 
860 /*
861  * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
862  */
read_dct_base_mask(struct amd64_pvt * pvt)863 static void read_dct_base_mask(struct amd64_pvt *pvt)
864 {
865 	int cs;
866 
867 	prep_chip_selects(pvt);
868 
869 	for_each_chip_select(cs, 0, pvt) {
870 		int reg0   = DCSB0 + (cs * 4);
871 		int reg1   = DCSB1 + (cs * 4);
872 		u32 *base0 = &pvt->csels[0].csbases[cs];
873 		u32 *base1 = &pvt->csels[1].csbases[cs];
874 
875 		if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
876 			debugf0("  DCSB0[%d]=0x%08x reg: F2x%x\n",
877 				cs, *base0, reg0);
878 
879 		if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
880 			continue;
881 
882 		if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
883 			debugf0("  DCSB1[%d]=0x%08x reg: F2x%x\n",
884 				cs, *base1, reg1);
885 	}
886 
887 	for_each_chip_select_mask(cs, 0, pvt) {
888 		int reg0   = DCSM0 + (cs * 4);
889 		int reg1   = DCSM1 + (cs * 4);
890 		u32 *mask0 = &pvt->csels[0].csmasks[cs];
891 		u32 *mask1 = &pvt->csels[1].csmasks[cs];
892 
893 		if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
894 			debugf0("    DCSM0[%d]=0x%08x reg: F2x%x\n",
895 				cs, *mask0, reg0);
896 
897 		if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
898 			continue;
899 
900 		if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
901 			debugf0("    DCSM1[%d]=0x%08x reg: F2x%x\n",
902 				cs, *mask1, reg1);
903 	}
904 }
905 
amd64_determine_memory_type(struct amd64_pvt * pvt,int cs)906 static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
907 {
908 	enum mem_type type;
909 
910 	/* F15h supports only DDR3 */
911 	if (boot_cpu_data.x86 >= 0x15)
912 		type = (pvt->dclr0 & BIT(16)) ?	MEM_DDR3 : MEM_RDDR3;
913 	else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
914 		if (pvt->dchr0 & DDR3_MODE)
915 			type = (pvt->dclr0 & BIT(16)) ?	MEM_DDR3 : MEM_RDDR3;
916 		else
917 			type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
918 	} else {
919 		type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
920 	}
921 
922 	amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
923 
924 	return type;
925 }
926 
927 /* Get the number of DCT channels the memory controller is using. */
k8_early_channel_count(struct amd64_pvt * pvt)928 static int k8_early_channel_count(struct amd64_pvt *pvt)
929 {
930 	int flag;
931 
932 	if (pvt->ext_model >= K8_REV_F)
933 		/* RevF (NPT) and later */
934 		flag = pvt->dclr0 & WIDTH_128;
935 	else
936 		/* RevE and earlier */
937 		flag = pvt->dclr0 & REVE_WIDTH_128;
938 
939 	/* not used */
940 	pvt->dclr1 = 0;
941 
942 	return (flag) ? 2 : 1;
943 }
944 
945 /* On F10h and later ErrAddr is MC4_ADDR[47:1] */
get_error_address(struct mce * m)946 static u64 get_error_address(struct mce *m)
947 {
948 	struct cpuinfo_x86 *c = &boot_cpu_data;
949 	u64 addr;
950 	u8 start_bit = 1;
951 	u8 end_bit   = 47;
952 
953 	if (c->x86 == 0xf) {
954 		start_bit = 3;
955 		end_bit   = 39;
956 	}
957 
958 	addr = m->addr & GENMASK(start_bit, end_bit);
959 
960 	/*
961 	 * Erratum 637 workaround
962 	 */
963 	if (c->x86 == 0x15) {
964 		struct amd64_pvt *pvt;
965 		u64 cc6_base, tmp_addr;
966 		u32 tmp;
967 		u8 mce_nid, intlv_en;
968 
969 		if ((addr & GENMASK(24, 47)) >> 24 != 0x00fdf7)
970 			return addr;
971 
972 		mce_nid	= amd_get_nb_id(m->extcpu);
973 		pvt	= mcis[mce_nid]->pvt_info;
974 
975 		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
976 		intlv_en = tmp >> 21 & 0x7;
977 
978 		/* add [47:27] + 3 trailing bits */
979 		cc6_base  = (tmp & GENMASK(0, 20)) << 3;
980 
981 		/* reverse and add DramIntlvEn */
982 		cc6_base |= intlv_en ^ 0x7;
983 
984 		/* pin at [47:24] */
985 		cc6_base <<= 24;
986 
987 		if (!intlv_en)
988 			return cc6_base | (addr & GENMASK(0, 23));
989 
990 		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
991 
992 							/* faster log2 */
993 		tmp_addr  = (addr & GENMASK(12, 23)) << __fls(intlv_en + 1);
994 
995 		/* OR DramIntlvSel into bits [14:12] */
996 		tmp_addr |= (tmp & GENMASK(21, 23)) >> 9;
997 
998 		/* add remaining [11:0] bits from original MC4_ADDR */
999 		tmp_addr |= addr & GENMASK(0, 11);
1000 
1001 		return cc6_base | tmp_addr;
1002 	}
1003 
1004 	return addr;
1005 }
1006 
read_dram_base_limit_regs(struct amd64_pvt * pvt,unsigned range)1007 static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
1008 {
1009 	struct cpuinfo_x86 *c = &boot_cpu_data;
1010 	int off = range << 3;
1011 
1012 	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off,  &pvt->ranges[range].base.lo);
1013 	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
1014 
1015 	if (c->x86 == 0xf)
1016 		return;
1017 
1018 	if (!dram_rw(pvt, range))
1019 		return;
1020 
1021 	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off,  &pvt->ranges[range].base.hi);
1022 	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
1023 
1024 	/* Factor in CC6 save area by reading dst node's limit reg */
1025 	if (c->x86 == 0x15) {
1026 		struct pci_dev *f1 = NULL;
1027 		u8 nid = dram_dst_node(pvt, range);
1028 		u32 llim;
1029 
1030 		f1 = pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(0x18 + nid, 1));
1031 		if (WARN_ON(!f1))
1032 			return;
1033 
1034 		amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
1035 
1036 		pvt->ranges[range].lim.lo &= GENMASK(0, 15);
1037 
1038 					    /* {[39:27],111b} */
1039 		pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
1040 
1041 		pvt->ranges[range].lim.hi &= GENMASK(0, 7);
1042 
1043 					    /* [47:40] */
1044 		pvt->ranges[range].lim.hi |= llim >> 13;
1045 
1046 		pci_dev_put(f1);
1047 	}
1048 }
1049 
k8_map_sysaddr_to_csrow(struct mem_ctl_info * mci,u64 sys_addr,u16 syndrome)1050 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1051 				    u16 syndrome)
1052 {
1053 	struct mem_ctl_info *src_mci;
1054 	struct amd64_pvt *pvt = mci->pvt_info;
1055 	int channel, csrow;
1056 	u32 page, offset;
1057 
1058 	/* CHIPKILL enabled */
1059 	if (pvt->nbcfg & NBCFG_CHIPKILL) {
1060 		channel = get_channel_from_ecc_syndrome(mci, syndrome);
1061 		if (channel < 0) {
1062 			/*
1063 			 * Syndrome didn't map, so we don't know which of the
1064 			 * 2 DIMMs is in error. So we need to ID 'both' of them
1065 			 * as suspect.
1066 			 */
1067 			amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
1068 					   "error reporting race\n", syndrome);
1069 			edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1070 			return;
1071 		}
1072 	} else {
1073 		/*
1074 		 * non-chipkill ecc mode
1075 		 *
1076 		 * The k8 documentation is unclear about how to determine the
1077 		 * channel number when using non-chipkill memory.  This method
1078 		 * was obtained from email communication with someone at AMD.
1079 		 * (Wish the email was placed in this comment - norsk)
1080 		 */
1081 		channel = ((sys_addr & BIT(3)) != 0);
1082 	}
1083 
1084 	/*
1085 	 * Find out which node the error address belongs to. This may be
1086 	 * different from the node that detected the error.
1087 	 */
1088 	src_mci = find_mc_by_sys_addr(mci, sys_addr);
1089 	if (!src_mci) {
1090 		amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
1091 			     (unsigned long)sys_addr);
1092 		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1093 		return;
1094 	}
1095 
1096 	/* Now map the sys_addr to a CSROW */
1097 	csrow = sys_addr_to_csrow(src_mci, sys_addr);
1098 	if (csrow < 0) {
1099 		edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1100 	} else {
1101 		error_address_to_page_and_offset(sys_addr, &page, &offset);
1102 
1103 		edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1104 				  channel, EDAC_MOD_STR);
1105 	}
1106 }
1107 
ddr2_cs_size(unsigned i,bool dct_width)1108 static int ddr2_cs_size(unsigned i, bool dct_width)
1109 {
1110 	unsigned shift = 0;
1111 
1112 	if (i <= 2)
1113 		shift = i;
1114 	else if (!(i & 0x1))
1115 		shift = i >> 1;
1116 	else
1117 		shift = (i + 1) >> 1;
1118 
1119 	return 128 << (shift + !!dct_width);
1120 }
1121 
k8_dbam_to_chip_select(struct amd64_pvt * pvt,u8 dct,unsigned cs_mode)1122 static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1123 				  unsigned cs_mode)
1124 {
1125 	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1126 
1127 	if (pvt->ext_model >= K8_REV_F) {
1128 		WARN_ON(cs_mode > 11);
1129 		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1130 	}
1131 	else if (pvt->ext_model >= K8_REV_D) {
1132 		unsigned diff;
1133 		WARN_ON(cs_mode > 10);
1134 
1135 		/*
1136 		 * the below calculation, besides trying to win an obfuscated C
1137 		 * contest, maps cs_mode values to DIMM chip select sizes. The
1138 		 * mappings are:
1139 		 *
1140 		 * cs_mode	CS size (mb)
1141 		 * =======	============
1142 		 * 0		32
1143 		 * 1		64
1144 		 * 2		128
1145 		 * 3		128
1146 		 * 4		256
1147 		 * 5		512
1148 		 * 6		256
1149 		 * 7		512
1150 		 * 8		1024
1151 		 * 9		1024
1152 		 * 10		2048
1153 		 *
1154 		 * Basically, it calculates a value with which to shift the
1155 		 * smallest CS size of 32MB.
1156 		 *
1157 		 * ddr[23]_cs_size have a similar purpose.
1158 		 */
1159 		diff = cs_mode/3 + (unsigned)(cs_mode > 5);
1160 
1161 		return 32 << (cs_mode - diff);
1162 	}
1163 	else {
1164 		WARN_ON(cs_mode > 6);
1165 		return 32 << cs_mode;
1166 	}
1167 }
1168 
1169 /*
1170  * Get the number of DCT channels in use.
1171  *
1172  * Return:
1173  *	number of Memory Channels in operation
1174  * Pass back:
1175  *	contents of the DCL0_LOW register
1176  */
f1x_early_channel_count(struct amd64_pvt * pvt)1177 static int f1x_early_channel_count(struct amd64_pvt *pvt)
1178 {
1179 	int i, j, channels = 0;
1180 
1181 	/* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1182 	if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128))
1183 		return 2;
1184 
1185 	/*
1186 	 * Need to check if in unganged mode: In such, there are 2 channels,
1187 	 * but they are not in 128 bit mode and thus the above 'dclr0' status
1188 	 * bit will be OFF.
1189 	 *
1190 	 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1191 	 * their CSEnable bit on. If so, then SINGLE DIMM case.
1192 	 */
1193 	debugf0("Data width is not 128 bits - need more decoding\n");
1194 
1195 	/*
1196 	 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1197 	 * is more than just one DIMM present in unganged mode. Need to check
1198 	 * both controllers since DIMMs can be placed in either one.
1199 	 */
1200 	for (i = 0; i < 2; i++) {
1201 		u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1202 
1203 		for (j = 0; j < 4; j++) {
1204 			if (DBAM_DIMM(j, dbam) > 0) {
1205 				channels++;
1206 				break;
1207 			}
1208 		}
1209 	}
1210 
1211 	if (channels > 2)
1212 		channels = 2;
1213 
1214 	amd64_info("MCT channel count: %d\n", channels);
1215 
1216 	return channels;
1217 }
1218 
ddr3_cs_size(unsigned i,bool dct_width)1219 static int ddr3_cs_size(unsigned i, bool dct_width)
1220 {
1221 	unsigned shift = 0;
1222 	int cs_size = 0;
1223 
1224 	if (i == 0 || i == 3 || i == 4)
1225 		cs_size = -1;
1226 	else if (i <= 2)
1227 		shift = i;
1228 	else if (i == 12)
1229 		shift = 7;
1230 	else if (!(i & 0x1))
1231 		shift = i >> 1;
1232 	else
1233 		shift = (i + 1) >> 1;
1234 
1235 	if (cs_size != -1)
1236 		cs_size = (128 * (1 << !!dct_width)) << shift;
1237 
1238 	return cs_size;
1239 }
1240 
f10_dbam_to_chip_select(struct amd64_pvt * pvt,u8 dct,unsigned cs_mode)1241 static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1242 				   unsigned cs_mode)
1243 {
1244 	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1245 
1246 	WARN_ON(cs_mode > 11);
1247 
1248 	if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1249 		return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1250 	else
1251 		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1252 }
1253 
1254 /*
1255  * F15h supports only 64bit DCT interfaces
1256  */
f15_dbam_to_chip_select(struct amd64_pvt * pvt,u8 dct,unsigned cs_mode)1257 static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1258 				   unsigned cs_mode)
1259 {
1260 	WARN_ON(cs_mode > 12);
1261 
1262 	return ddr3_cs_size(cs_mode, false);
1263 }
1264 
read_dram_ctl_register(struct amd64_pvt * pvt)1265 static void read_dram_ctl_register(struct amd64_pvt *pvt)
1266 {
1267 
1268 	if (boot_cpu_data.x86 == 0xf)
1269 		return;
1270 
1271 	if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1272 		debugf0("F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1273 			pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
1274 
1275 		debugf0("  DCTs operate in %s mode.\n",
1276 			(dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
1277 
1278 		if (!dct_ganging_enabled(pvt))
1279 			debugf0("  Address range split per DCT: %s\n",
1280 				(dct_high_range_enabled(pvt) ? "yes" : "no"));
1281 
1282 		debugf0("  data interleave for ECC: %s, "
1283 			"DRAM cleared since last warm reset: %s\n",
1284 			(dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1285 			(dct_memory_cleared(pvt) ? "yes" : "no"));
1286 
1287 		debugf0("  channel interleave: %s, "
1288 			"interleave bits selector: 0x%x\n",
1289 			(dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1290 			dct_sel_interleave_addr(pvt));
1291 	}
1292 
1293 	amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
1294 }
1295 
1296 /*
1297  * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1298  * Interleaving Modes.
1299  */
f1x_determine_channel(struct amd64_pvt * pvt,u64 sys_addr,bool hi_range_sel,u8 intlv_en)1300 static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1301 				bool hi_range_sel, u8 intlv_en)
1302 {
1303 	u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
1304 
1305 	if (dct_ganging_enabled(pvt))
1306 		return 0;
1307 
1308 	if (hi_range_sel)
1309 		return dct_sel_high;
1310 
1311 	/*
1312 	 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1313 	 */
1314 	if (dct_interleave_enabled(pvt)) {
1315 		u8 intlv_addr = dct_sel_interleave_addr(pvt);
1316 
1317 		/* return DCT select function: 0=DCT0, 1=DCT1 */
1318 		if (!intlv_addr)
1319 			return sys_addr >> 6 & 1;
1320 
1321 		if (intlv_addr & 0x2) {
1322 			u8 shift = intlv_addr & 0x1 ? 9 : 6;
1323 			u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1324 
1325 			return ((sys_addr >> shift) & 1) ^ temp;
1326 		}
1327 
1328 		return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
1329 	}
1330 
1331 	if (dct_high_range_enabled(pvt))
1332 		return ~dct_sel_high & 1;
1333 
1334 	return 0;
1335 }
1336 
1337 /* Convert the sys_addr to the normalized DCT address */
f1x_get_norm_dct_addr(struct amd64_pvt * pvt,unsigned range,u64 sys_addr,bool hi_rng,u32 dct_sel_base_addr)1338 static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, unsigned range,
1339 				 u64 sys_addr, bool hi_rng,
1340 				 u32 dct_sel_base_addr)
1341 {
1342 	u64 chan_off;
1343 	u64 dram_base		= get_dram_base(pvt, range);
1344 	u64 hole_off		= f10_dhar_offset(pvt);
1345 	u64 dct_sel_base_off	= (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
1346 
1347 	if (hi_rng) {
1348 		/*
1349 		 * if
1350 		 * base address of high range is below 4Gb
1351 		 * (bits [47:27] at [31:11])
1352 		 * DRAM address space on this DCT is hoisted above 4Gb	&&
1353 		 * sys_addr > 4Gb
1354 		 *
1355 		 *	remove hole offset from sys_addr
1356 		 * else
1357 		 *	remove high range offset from sys_addr
1358 		 */
1359 		if ((!(dct_sel_base_addr >> 16) ||
1360 		     dct_sel_base_addr < dhar_base(pvt)) &&
1361 		    dhar_valid(pvt) &&
1362 		    (sys_addr >= BIT_64(32)))
1363 			chan_off = hole_off;
1364 		else
1365 			chan_off = dct_sel_base_off;
1366 	} else {
1367 		/*
1368 		 * if
1369 		 * we have a valid hole		&&
1370 		 * sys_addr > 4Gb
1371 		 *
1372 		 *	remove hole
1373 		 * else
1374 		 *	remove dram base to normalize to DCT address
1375 		 */
1376 		if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
1377 			chan_off = hole_off;
1378 		else
1379 			chan_off = dram_base;
1380 	}
1381 
1382 	return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
1383 }
1384 
1385 /*
1386  * checks if the csrow passed in is marked as SPARED, if so returns the new
1387  * spare row
1388  */
f10_process_possible_spare(struct amd64_pvt * pvt,u8 dct,int csrow)1389 static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
1390 {
1391 	int tmp_cs;
1392 
1393 	if (online_spare_swap_done(pvt, dct) &&
1394 	    csrow == online_spare_bad_dramcs(pvt, dct)) {
1395 
1396 		for_each_chip_select(tmp_cs, dct, pvt) {
1397 			if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
1398 				csrow = tmp_cs;
1399 				break;
1400 			}
1401 		}
1402 	}
1403 	return csrow;
1404 }
1405 
1406 /*
1407  * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1408  * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1409  *
1410  * Return:
1411  *	-EINVAL:  NOT FOUND
1412  *	0..csrow = Chip-Select Row
1413  */
f1x_lookup_addr_in_dct(u64 in_addr,u32 nid,u8 dct)1414 static int f1x_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
1415 {
1416 	struct mem_ctl_info *mci;
1417 	struct amd64_pvt *pvt;
1418 	u64 cs_base, cs_mask;
1419 	int cs_found = -EINVAL;
1420 	int csrow;
1421 
1422 	mci = mcis[nid];
1423 	if (!mci)
1424 		return cs_found;
1425 
1426 	pvt = mci->pvt_info;
1427 
1428 	debugf1("input addr: 0x%llx, DCT: %d\n", in_addr, dct);
1429 
1430 	for_each_chip_select(csrow, dct, pvt) {
1431 		if (!csrow_enabled(csrow, dct, pvt))
1432 			continue;
1433 
1434 		get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
1435 
1436 		debugf1("    CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1437 			csrow, cs_base, cs_mask);
1438 
1439 		cs_mask = ~cs_mask;
1440 
1441 		debugf1("    (InputAddr & ~CSMask)=0x%llx "
1442 			"(CSBase & ~CSMask)=0x%llx\n",
1443 			(in_addr & cs_mask), (cs_base & cs_mask));
1444 
1445 		if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1446 			cs_found = f10_process_possible_spare(pvt, dct, csrow);
1447 
1448 			debugf1(" MATCH csrow=%d\n", cs_found);
1449 			break;
1450 		}
1451 	}
1452 	return cs_found;
1453 }
1454 
1455 /*
1456  * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1457  * swapped with a region located at the bottom of memory so that the GPU can use
1458  * the interleaved region and thus two channels.
1459  */
f1x_swap_interleaved_region(struct amd64_pvt * pvt,u64 sys_addr)1460 static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
1461 {
1462 	u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
1463 
1464 	if (boot_cpu_data.x86 == 0x10) {
1465 		/* only revC3 and revE have that feature */
1466 		if (boot_cpu_data.x86_model < 4 ||
1467 		    (boot_cpu_data.x86_model < 0xa &&
1468 		     boot_cpu_data.x86_mask < 3))
1469 			return sys_addr;
1470 	}
1471 
1472 	amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
1473 
1474 	if (!(swap_reg & 0x1))
1475 		return sys_addr;
1476 
1477 	swap_base	= (swap_reg >> 3) & 0x7f;
1478 	swap_limit	= (swap_reg >> 11) & 0x7f;
1479 	rgn_size	= (swap_reg >> 20) & 0x7f;
1480 	tmp_addr	= sys_addr >> 27;
1481 
1482 	if (!(sys_addr >> 34) &&
1483 	    (((tmp_addr >= swap_base) &&
1484 	     (tmp_addr <= swap_limit)) ||
1485 	     (tmp_addr < rgn_size)))
1486 		return sys_addr ^ (u64)swap_base << 27;
1487 
1488 	return sys_addr;
1489 }
1490 
1491 /* For a given @dram_range, check if @sys_addr falls within it. */
f1x_match_to_this_node(struct amd64_pvt * pvt,unsigned range,u64 sys_addr,int * nid,int * chan_sel)1492 static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1493 				  u64 sys_addr, int *nid, int *chan_sel)
1494 {
1495 	int cs_found = -EINVAL;
1496 	u64 chan_addr;
1497 	u32 dct_sel_base;
1498 	u8 channel;
1499 	bool high_range = false;
1500 
1501 	u8 node_id    = dram_dst_node(pvt, range);
1502 	u8 intlv_en   = dram_intlv_en(pvt, range);
1503 	u32 intlv_sel = dram_intlv_sel(pvt, range);
1504 
1505 	debugf1("(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1506 		range, sys_addr, get_dram_limit(pvt, range));
1507 
1508 	if (dhar_valid(pvt) &&
1509 	    dhar_base(pvt) <= sys_addr &&
1510 	    sys_addr < BIT_64(32)) {
1511 		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1512 			    sys_addr);
1513 		return -EINVAL;
1514 	}
1515 
1516 	if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1517 		return -EINVAL;
1518 
1519 	sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
1520 
1521 	dct_sel_base = dct_sel_baseaddr(pvt);
1522 
1523 	/*
1524 	 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1525 	 * select between DCT0 and DCT1.
1526 	 */
1527 	if (dct_high_range_enabled(pvt) &&
1528 	   !dct_ganging_enabled(pvt) &&
1529 	   ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1530 		high_range = true;
1531 
1532 	channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
1533 
1534 	chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
1535 					  high_range, dct_sel_base);
1536 
1537 	/* Remove node interleaving, see F1x120 */
1538 	if (intlv_en)
1539 		chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
1540 			    (chan_addr & 0xfff);
1541 
1542 	/* remove channel interleave */
1543 	if (dct_interleave_enabled(pvt) &&
1544 	   !dct_high_range_enabled(pvt) &&
1545 	   !dct_ganging_enabled(pvt)) {
1546 
1547 		if (dct_sel_interleave_addr(pvt) != 1) {
1548 			if (dct_sel_interleave_addr(pvt) == 0x3)
1549 				/* hash 9 */
1550 				chan_addr = ((chan_addr >> 10) << 9) |
1551 					     (chan_addr & 0x1ff);
1552 			else
1553 				/* A[6] or hash 6 */
1554 				chan_addr = ((chan_addr >> 7) << 6) |
1555 					     (chan_addr & 0x3f);
1556 		} else
1557 			/* A[12] */
1558 			chan_addr = ((chan_addr >> 13) << 12) |
1559 				     (chan_addr & 0xfff);
1560 	}
1561 
1562 	debugf1("   Normalized DCT addr: 0x%llx\n", chan_addr);
1563 
1564 	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
1565 
1566 	if (cs_found >= 0) {
1567 		*nid = node_id;
1568 		*chan_sel = channel;
1569 	}
1570 	return cs_found;
1571 }
1572 
f1x_translate_sysaddr_to_cs(struct amd64_pvt * pvt,u64 sys_addr,int * node,int * chan_sel)1573 static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1574 				       int *node, int *chan_sel)
1575 {
1576 	int cs_found = -EINVAL;
1577 	unsigned range;
1578 
1579 	for (range = 0; range < DRAM_RANGES; range++) {
1580 
1581 		if (!dram_rw(pvt, range))
1582 			continue;
1583 
1584 		if ((get_dram_base(pvt, range)  <= sys_addr) &&
1585 		    (get_dram_limit(pvt, range) >= sys_addr)) {
1586 
1587 			cs_found = f1x_match_to_this_node(pvt, range,
1588 							  sys_addr, node,
1589 							  chan_sel);
1590 			if (cs_found >= 0)
1591 				break;
1592 		}
1593 	}
1594 	return cs_found;
1595 }
1596 
1597 /*
1598  * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1599  * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
1600  *
1601  * The @sys_addr is usually an error address received from the hardware
1602  * (MCX_ADDR).
1603  */
f1x_map_sysaddr_to_csrow(struct mem_ctl_info * mci,u64 sys_addr,u16 syndrome)1604 static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1605 				     u16 syndrome)
1606 {
1607 	struct amd64_pvt *pvt = mci->pvt_info;
1608 	u32 page, offset;
1609 	int nid, csrow, chan = 0;
1610 
1611 	csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1612 
1613 	if (csrow < 0) {
1614 		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1615 		return;
1616 	}
1617 
1618 	error_address_to_page_and_offset(sys_addr, &page, &offset);
1619 
1620 	/*
1621 	 * We need the syndromes for channel detection only when we're
1622 	 * ganged. Otherwise @chan should already contain the channel at
1623 	 * this point.
1624 	 */
1625 	if (dct_ganging_enabled(pvt))
1626 		chan = get_channel_from_ecc_syndrome(mci, syndrome);
1627 
1628 	if (chan >= 0)
1629 		edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
1630 				  EDAC_MOD_STR);
1631 	else
1632 		/*
1633 		 * Channel unknown, report all channels on this CSROW as failed.
1634 		 */
1635 		for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
1636 			edac_mc_handle_ce(mci, page, offset, syndrome,
1637 					  csrow, chan, EDAC_MOD_STR);
1638 }
1639 
1640 /*
1641  * debug routine to display the memory sizes of all logical DIMMs and its
1642  * CSROWs
1643  */
amd64_debug_display_dimm_sizes(struct amd64_pvt * pvt,u8 ctrl)1644 static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
1645 {
1646 	int dimm, size0, size1, factor = 0;
1647 	u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
1648 	u32 dbam  = ctrl ? pvt->dbam1 : pvt->dbam0;
1649 
1650 	if (boot_cpu_data.x86 == 0xf) {
1651 		if (pvt->dclr0 & WIDTH_128)
1652 			factor = 1;
1653 
1654 		/* K8 families < revF not supported yet */
1655 	       if (pvt->ext_model < K8_REV_F)
1656 			return;
1657 	       else
1658 		       WARN_ON(ctrl != 0);
1659 	}
1660 
1661 	dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
1662 	dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
1663 						   : pvt->csels[0].csbases;
1664 
1665 	debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam);
1666 
1667 	edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1668 
1669 	/* Dump memory sizes for DIMM and its CSROWs */
1670 	for (dimm = 0; dimm < 4; dimm++) {
1671 
1672 		size0 = 0;
1673 		if (dcsb[dimm*2] & DCSB_CS_ENABLE)
1674 			size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
1675 						     DBAM_DIMM(dimm, dbam));
1676 
1677 		size1 = 0;
1678 		if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
1679 			size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
1680 						     DBAM_DIMM(dimm, dbam));
1681 
1682 		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1683 				dimm * 2,     size0 << factor,
1684 				dimm * 2 + 1, size1 << factor);
1685 	}
1686 }
1687 
1688 static struct amd64_family_type amd64_family_types[] = {
1689 	[K8_CPUS] = {
1690 		.ctl_name = "K8",
1691 		.f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1692 		.f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1693 		.ops = {
1694 			.early_channel_count	= k8_early_channel_count,
1695 			.map_sysaddr_to_csrow	= k8_map_sysaddr_to_csrow,
1696 			.dbam_to_cs		= k8_dbam_to_chip_select,
1697 			.read_dct_pci_cfg	= k8_read_dct_pci_cfg,
1698 		}
1699 	},
1700 	[F10_CPUS] = {
1701 		.ctl_name = "F10h",
1702 		.f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1703 		.f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1704 		.ops = {
1705 			.early_channel_count	= f1x_early_channel_count,
1706 			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
1707 			.dbam_to_cs		= f10_dbam_to_chip_select,
1708 			.read_dct_pci_cfg	= f10_read_dct_pci_cfg,
1709 		}
1710 	},
1711 	[F15_CPUS] = {
1712 		.ctl_name = "F15h",
1713 		.f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
1714 		.f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
1715 		.ops = {
1716 			.early_channel_count	= f1x_early_channel_count,
1717 			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
1718 			.dbam_to_cs		= f15_dbam_to_chip_select,
1719 			.read_dct_pci_cfg	= f15_read_dct_pci_cfg,
1720 		}
1721 	},
1722 };
1723 
pci_get_related_function(unsigned int vendor,unsigned int device,struct pci_dev * related)1724 static struct pci_dev *pci_get_related_function(unsigned int vendor,
1725 						unsigned int device,
1726 						struct pci_dev *related)
1727 {
1728 	struct pci_dev *dev = NULL;
1729 
1730 	dev = pci_get_device(vendor, device, dev);
1731 	while (dev) {
1732 		if ((dev->bus->number == related->bus->number) &&
1733 		    (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1734 			break;
1735 		dev = pci_get_device(vendor, device, dev);
1736 	}
1737 
1738 	return dev;
1739 }
1740 
1741 /*
1742  * These are tables of eigenvectors (one per line) which can be used for the
1743  * construction of the syndrome tables. The modified syndrome search algorithm
1744  * uses those to find the symbol in error and thus the DIMM.
1745  *
1746  * Algorithm courtesy of Ross LaFetra from AMD.
1747  */
1748 static u16 x4_vectors[] = {
1749 	0x2f57, 0x1afe, 0x66cc, 0xdd88,
1750 	0x11eb, 0x3396, 0x7f4c, 0xeac8,
1751 	0x0001, 0x0002, 0x0004, 0x0008,
1752 	0x1013, 0x3032, 0x4044, 0x8088,
1753 	0x106b, 0x30d6, 0x70fc, 0xe0a8,
1754 	0x4857, 0xc4fe, 0x13cc, 0x3288,
1755 	0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1756 	0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1757 	0x15c1, 0x2a42, 0x89ac, 0x4758,
1758 	0x2b03, 0x1602, 0x4f0c, 0xca08,
1759 	0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1760 	0x8ba7, 0x465e, 0x244c, 0x1cc8,
1761 	0x2b87, 0x164e, 0x642c, 0xdc18,
1762 	0x40b9, 0x80de, 0x1094, 0x20e8,
1763 	0x27db, 0x1eb6, 0x9dac, 0x7b58,
1764 	0x11c1, 0x2242, 0x84ac, 0x4c58,
1765 	0x1be5, 0x2d7a, 0x5e34, 0xa718,
1766 	0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1767 	0x4c97, 0xc87e, 0x11fc, 0x33a8,
1768 	0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1769 	0x16b3, 0x3d62, 0x4f34, 0x8518,
1770 	0x1e2f, 0x391a, 0x5cac, 0xf858,
1771 	0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1772 	0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1773 	0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1774 	0x4397, 0xc27e, 0x17fc, 0x3ea8,
1775 	0x1617, 0x3d3e, 0x6464, 0xb8b8,
1776 	0x23ff, 0x12aa, 0xab6c, 0x56d8,
1777 	0x2dfb, 0x1ba6, 0x913c, 0x7328,
1778 	0x185d, 0x2ca6, 0x7914, 0x9e28,
1779 	0x171b, 0x3e36, 0x7d7c, 0xebe8,
1780 	0x4199, 0x82ee, 0x19f4, 0x2e58,
1781 	0x4807, 0xc40e, 0x130c, 0x3208,
1782 	0x1905, 0x2e0a, 0x5804, 0xac08,
1783 	0x213f, 0x132a, 0xadfc, 0x5ba8,
1784 	0x19a9, 0x2efe, 0xb5cc, 0x6f88,
1785 };
1786 
1787 static u16 x8_vectors[] = {
1788 	0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1789 	0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1790 	0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1791 	0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1792 	0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1793 	0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1794 	0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1795 	0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1796 	0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1797 	0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1798 	0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1799 	0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1800 	0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1801 	0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1802 	0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1803 	0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1804 	0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1805 	0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1806 	0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1807 };
1808 
decode_syndrome(u16 syndrome,u16 * vectors,unsigned num_vecs,unsigned v_dim)1809 static int decode_syndrome(u16 syndrome, u16 *vectors, unsigned num_vecs,
1810 			   unsigned v_dim)
1811 {
1812 	unsigned int i, err_sym;
1813 
1814 	for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1815 		u16 s = syndrome;
1816 		unsigned v_idx =  err_sym * v_dim;
1817 		unsigned v_end = (err_sym + 1) * v_dim;
1818 
1819 		/* walk over all 16 bits of the syndrome */
1820 		for (i = 1; i < (1U << 16); i <<= 1) {
1821 
1822 			/* if bit is set in that eigenvector... */
1823 			if (v_idx < v_end && vectors[v_idx] & i) {
1824 				u16 ev_comp = vectors[v_idx++];
1825 
1826 				/* ... and bit set in the modified syndrome, */
1827 				if (s & i) {
1828 					/* remove it. */
1829 					s ^= ev_comp;
1830 
1831 					if (!s)
1832 						return err_sym;
1833 				}
1834 
1835 			} else if (s & i)
1836 				/* can't get to zero, move to next symbol */
1837 				break;
1838 		}
1839 	}
1840 
1841 	debugf0("syndrome(%x) not found\n", syndrome);
1842 	return -1;
1843 }
1844 
map_err_sym_to_channel(int err_sym,int sym_size)1845 static int map_err_sym_to_channel(int err_sym, int sym_size)
1846 {
1847 	if (sym_size == 4)
1848 		switch (err_sym) {
1849 		case 0x20:
1850 		case 0x21:
1851 			return 0;
1852 			break;
1853 		case 0x22:
1854 		case 0x23:
1855 			return 1;
1856 			break;
1857 		default:
1858 			return err_sym >> 4;
1859 			break;
1860 		}
1861 	/* x8 symbols */
1862 	else
1863 		switch (err_sym) {
1864 		/* imaginary bits not in a DIMM */
1865 		case 0x10:
1866 			WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1867 					  err_sym);
1868 			return -1;
1869 			break;
1870 
1871 		case 0x11:
1872 			return 0;
1873 			break;
1874 		case 0x12:
1875 			return 1;
1876 			break;
1877 		default:
1878 			return err_sym >> 3;
1879 			break;
1880 		}
1881 	return -1;
1882 }
1883 
get_channel_from_ecc_syndrome(struct mem_ctl_info * mci,u16 syndrome)1884 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1885 {
1886 	struct amd64_pvt *pvt = mci->pvt_info;
1887 	int err_sym = -1;
1888 
1889 	if (pvt->ecc_sym_sz == 8)
1890 		err_sym = decode_syndrome(syndrome, x8_vectors,
1891 					  ARRAY_SIZE(x8_vectors),
1892 					  pvt->ecc_sym_sz);
1893 	else if (pvt->ecc_sym_sz == 4)
1894 		err_sym = decode_syndrome(syndrome, x4_vectors,
1895 					  ARRAY_SIZE(x4_vectors),
1896 					  pvt->ecc_sym_sz);
1897 	else {
1898 		amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
1899 		return err_sym;
1900 	}
1901 
1902 	return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
1903 }
1904 
1905 /*
1906  * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
1907  * ADDRESS and process.
1908  */
amd64_handle_ce(struct mem_ctl_info * mci,struct mce * m)1909 static void amd64_handle_ce(struct mem_ctl_info *mci, struct mce *m)
1910 {
1911 	struct amd64_pvt *pvt = mci->pvt_info;
1912 	u64 sys_addr;
1913 	u16 syndrome;
1914 
1915 	/* Ensure that the Error Address is VALID */
1916 	if (!(m->status & MCI_STATUS_ADDRV)) {
1917 		amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1918 		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1919 		return;
1920 	}
1921 
1922 	sys_addr = get_error_address(m);
1923 	syndrome = extract_syndrome(m->status);
1924 
1925 	amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
1926 
1927 	pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, syndrome);
1928 }
1929 
1930 /* Handle any Un-correctable Errors (UEs) */
amd64_handle_ue(struct mem_ctl_info * mci,struct mce * m)1931 static void amd64_handle_ue(struct mem_ctl_info *mci, struct mce *m)
1932 {
1933 	struct mem_ctl_info *log_mci, *src_mci = NULL;
1934 	int csrow;
1935 	u64 sys_addr;
1936 	u32 page, offset;
1937 
1938 	log_mci = mci;
1939 
1940 	if (!(m->status & MCI_STATUS_ADDRV)) {
1941 		amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1942 		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1943 		return;
1944 	}
1945 
1946 	sys_addr = get_error_address(m);
1947 
1948 	/*
1949 	 * Find out which node the error address belongs to. This may be
1950 	 * different from the node that detected the error.
1951 	 */
1952 	src_mci = find_mc_by_sys_addr(mci, sys_addr);
1953 	if (!src_mci) {
1954 		amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
1955 				  (unsigned long)sys_addr);
1956 		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1957 		return;
1958 	}
1959 
1960 	log_mci = src_mci;
1961 
1962 	csrow = sys_addr_to_csrow(log_mci, sys_addr);
1963 	if (csrow < 0) {
1964 		amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
1965 				  (unsigned long)sys_addr);
1966 		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1967 	} else {
1968 		error_address_to_page_and_offset(sys_addr, &page, &offset);
1969 		edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
1970 	}
1971 }
1972 
__amd64_decode_bus_error(struct mem_ctl_info * mci,struct mce * m)1973 static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
1974 					    struct mce *m)
1975 {
1976 	u16 ec = EC(m->status);
1977 	u8 xec = XEC(m->status, 0x1f);
1978 	u8 ecc_type = (m->status >> 45) & 0x3;
1979 
1980 	/* Bail early out if this was an 'observed' error */
1981 	if (PP(ec) == NBSL_PP_OBS)
1982 		return;
1983 
1984 	/* Do only ECC errors */
1985 	if (xec && xec != F10_NBSL_EXT_ERR_ECC)
1986 		return;
1987 
1988 	if (ecc_type == 2)
1989 		amd64_handle_ce(mci, m);
1990 	else if (ecc_type == 1)
1991 		amd64_handle_ue(mci, m);
1992 }
1993 
amd64_decode_bus_error(int node_id,struct mce * m)1994 void amd64_decode_bus_error(int node_id, struct mce *m)
1995 {
1996 	__amd64_decode_bus_error(mcis[node_id], m);
1997 }
1998 
1999 /*
2000  * Use pvt->F2 which contains the F2 CPU PCI device to get the related
2001  * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
2002  */
reserve_mc_sibling_devs(struct amd64_pvt * pvt,u16 f1_id,u16 f3_id)2003 static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
2004 {
2005 	/* Reserve the ADDRESS MAP Device */
2006 	pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
2007 	if (!pvt->F1) {
2008 		amd64_err("error address map device not found: "
2009 			  "vendor %x device 0x%x (broken BIOS?)\n",
2010 			  PCI_VENDOR_ID_AMD, f1_id);
2011 		return -ENODEV;
2012 	}
2013 
2014 	/* Reserve the MISC Device */
2015 	pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
2016 	if (!pvt->F3) {
2017 		pci_dev_put(pvt->F1);
2018 		pvt->F1 = NULL;
2019 
2020 		amd64_err("error F3 device not found: "
2021 			  "vendor %x device 0x%x (broken BIOS?)\n",
2022 			  PCI_VENDOR_ID_AMD, f3_id);
2023 
2024 		return -ENODEV;
2025 	}
2026 	debugf1("F1: %s\n", pci_name(pvt->F1));
2027 	debugf1("F2: %s\n", pci_name(pvt->F2));
2028 	debugf1("F3: %s\n", pci_name(pvt->F3));
2029 
2030 	return 0;
2031 }
2032 
free_mc_sibling_devs(struct amd64_pvt * pvt)2033 static void free_mc_sibling_devs(struct amd64_pvt *pvt)
2034 {
2035 	pci_dev_put(pvt->F1);
2036 	pci_dev_put(pvt->F3);
2037 }
2038 
2039 /*
2040  * Retrieve the hardware registers of the memory controller (this includes the
2041  * 'Address Map' and 'Misc' device regs)
2042  */
read_mc_regs(struct amd64_pvt * pvt)2043 static void read_mc_regs(struct amd64_pvt *pvt)
2044 {
2045 	struct cpuinfo_x86 *c = &boot_cpu_data;
2046 	u64 msr_val;
2047 	u32 tmp;
2048 	unsigned range;
2049 
2050 	/*
2051 	 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2052 	 * those are Read-As-Zero
2053 	 */
2054 	rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2055 	debugf0("  TOP_MEM:  0x%016llx\n", pvt->top_mem);
2056 
2057 	/* check first whether TOP_MEM2 is enabled */
2058 	rdmsrl(MSR_K8_SYSCFG, msr_val);
2059 	if (msr_val & (1U << 21)) {
2060 		rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2061 		debugf0("  TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
2062 	} else
2063 		debugf0("  TOP_MEM2 disabled.\n");
2064 
2065 	amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
2066 
2067 	read_dram_ctl_register(pvt);
2068 
2069 	for (range = 0; range < DRAM_RANGES; range++) {
2070 		u8 rw;
2071 
2072 		/* read settings for this DRAM range */
2073 		read_dram_base_limit_regs(pvt, range);
2074 
2075 		rw = dram_rw(pvt, range);
2076 		if (!rw)
2077 			continue;
2078 
2079 		debugf1("  DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
2080 			range,
2081 			get_dram_base(pvt, range),
2082 			get_dram_limit(pvt, range));
2083 
2084 		debugf1("   IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
2085 			dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
2086 			(rw & 0x1) ? "R" : "-",
2087 			(rw & 0x2) ? "W" : "-",
2088 			dram_intlv_sel(pvt, range),
2089 			dram_dst_node(pvt, range));
2090 	}
2091 
2092 	read_dct_base_mask(pvt);
2093 
2094 	amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
2095 	amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
2096 
2097 	amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
2098 
2099 	amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
2100 	amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
2101 
2102 	if (!dct_ganging_enabled(pvt)) {
2103 		amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
2104 		amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
2105 	}
2106 
2107 	pvt->ecc_sym_sz = 4;
2108 
2109 	if (c->x86 >= 0x10) {
2110 		amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
2111 		amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
2112 
2113 		/* F10h, revD and later can do x8 ECC too */
2114 		if ((c->x86 > 0x10 || c->x86_model > 7) && tmp & BIT(25))
2115 			pvt->ecc_sym_sz = 8;
2116 	}
2117 	dump_misc_regs(pvt);
2118 }
2119 
2120 /*
2121  * NOTE: CPU Revision Dependent code
2122  *
2123  * Input:
2124  *	@csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
2125  *	k8 private pointer to -->
2126  *			DRAM Bank Address mapping register
2127  *			node_id
2128  *			DCL register where dual_channel_active is
2129  *
2130  * The DBAM register consists of 4 sets of 4 bits each definitions:
2131  *
2132  * Bits:	CSROWs
2133  * 0-3		CSROWs 0 and 1
2134  * 4-7		CSROWs 2 and 3
2135  * 8-11		CSROWs 4 and 5
2136  * 12-15	CSROWs 6 and 7
2137  *
2138  * Values range from: 0 to 15
2139  * The meaning of the values depends on CPU revision and dual-channel state,
2140  * see relevant BKDG more info.
2141  *
2142  * The memory controller provides for total of only 8 CSROWs in its current
2143  * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2144  * single channel or two (2) DIMMs in dual channel mode.
2145  *
2146  * The following code logic collapses the various tables for CSROW based on CPU
2147  * revision.
2148  *
2149  * Returns:
2150  *	The number of PAGE_SIZE pages on the specified CSROW number it
2151  *	encompasses
2152  *
2153  */
amd64_csrow_nr_pages(struct amd64_pvt * pvt,u8 dct,int csrow_nr)2154 static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
2155 {
2156 	u32 cs_mode, nr_pages;
2157 	u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
2158 
2159 	/*
2160 	 * The math on this doesn't look right on the surface because x/2*4 can
2161 	 * be simplified to x*2 but this expression makes use of the fact that
2162 	 * it is integral math where 1/2=0. This intermediate value becomes the
2163 	 * number of bits to shift the DBAM register to extract the proper CSROW
2164 	 * field.
2165 	 */
2166 	cs_mode =  (dbam >> ((csrow_nr / 2) * 4)) & 0xF;
2167 
2168 	nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
2169 
2170 	debugf0("  (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
2171 	debugf0("    nr_pages= %u  channel-count = %d\n",
2172 		nr_pages, pvt->channel_count);
2173 
2174 	return nr_pages;
2175 }
2176 
2177 /*
2178  * Initialize the array of csrow attribute instances, based on the values
2179  * from pci config hardware registers.
2180  */
init_csrows(struct mem_ctl_info * mci)2181 static int init_csrows(struct mem_ctl_info *mci)
2182 {
2183 	struct csrow_info *csrow;
2184 	struct amd64_pvt *pvt = mci->pvt_info;
2185 	u64 input_addr_min, input_addr_max, sys_addr, base, mask;
2186 	u32 val;
2187 	int i, empty = 1;
2188 
2189 	amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
2190 
2191 	pvt->nbcfg = val;
2192 
2193 	debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2194 		pvt->mc_node_id, val,
2195 		!!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
2196 
2197 	for_each_chip_select(i, 0, pvt) {
2198 		csrow = &mci->csrows[i];
2199 
2200 		if (!csrow_enabled(i, 0, pvt) && !csrow_enabled(i, 1, pvt)) {
2201 			debugf1("----CSROW %d EMPTY for node %d\n", i,
2202 				pvt->mc_node_id);
2203 			continue;
2204 		}
2205 
2206 		debugf1("----CSROW %d VALID for MC node %d\n",
2207 			i, pvt->mc_node_id);
2208 
2209 		empty = 0;
2210 		if (csrow_enabled(i, 0, pvt))
2211 			csrow->nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
2212 		if (csrow_enabled(i, 1, pvt))
2213 			csrow->nr_pages += amd64_csrow_nr_pages(pvt, 1, i);
2214 		find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2215 		sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2216 		csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2217 		sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2218 		csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
2219 
2220 		get_cs_base_and_mask(pvt, i, 0, &base, &mask);
2221 		csrow->page_mask = ~mask;
2222 		/* 8 bytes of resolution */
2223 
2224 		csrow->mtype = amd64_determine_memory_type(pvt, i);
2225 
2226 		debugf1("  for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2227 		debugf1("    input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2228 			(unsigned long)input_addr_min,
2229 			(unsigned long)input_addr_max);
2230 		debugf1("    sys_addr: 0x%lx  page_mask: 0x%lx\n",
2231 			(unsigned long)sys_addr, csrow->page_mask);
2232 		debugf1("    nr_pages: %u  first_page: 0x%lx "
2233 			"last_page: 0x%lx\n",
2234 			(unsigned)csrow->nr_pages,
2235 			csrow->first_page, csrow->last_page);
2236 
2237 		/*
2238 		 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2239 		 */
2240 		if (pvt->nbcfg & NBCFG_ECC_ENABLE)
2241 			csrow->edac_mode =
2242 			    (pvt->nbcfg & NBCFG_CHIPKILL) ?
2243 			    EDAC_S4ECD4ED : EDAC_SECDED;
2244 		else
2245 			csrow->edac_mode = EDAC_NONE;
2246 	}
2247 
2248 	return empty;
2249 }
2250 
2251 /* get all cores on this DCT */
get_cpus_on_this_dct_cpumask(struct cpumask * mask,unsigned nid)2252 static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, unsigned nid)
2253 {
2254 	int cpu;
2255 
2256 	for_each_online_cpu(cpu)
2257 		if (amd_get_nb_id(cpu) == nid)
2258 			cpumask_set_cpu(cpu, mask);
2259 }
2260 
2261 /* check MCG_CTL on all the cpus on this node */
amd64_nb_mce_bank_enabled_on_node(unsigned nid)2262 static bool amd64_nb_mce_bank_enabled_on_node(unsigned nid)
2263 {
2264 	cpumask_var_t mask;
2265 	int cpu, nbe;
2266 	bool ret = false;
2267 
2268 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2269 		amd64_warn("%s: Error allocating mask\n", __func__);
2270 		return false;
2271 	}
2272 
2273 	get_cpus_on_this_dct_cpumask(mask, nid);
2274 
2275 	rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2276 
2277 	for_each_cpu(cpu, mask) {
2278 		struct msr *reg = per_cpu_ptr(msrs, cpu);
2279 		nbe = reg->l & MSR_MCGCTL_NBE;
2280 
2281 		debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2282 			cpu, reg->q,
2283 			(nbe ? "enabled" : "disabled"));
2284 
2285 		if (!nbe)
2286 			goto out;
2287 	}
2288 	ret = true;
2289 
2290 out:
2291 	free_cpumask_var(mask);
2292 	return ret;
2293 }
2294 
toggle_ecc_err_reporting(struct ecc_settings * s,u8 nid,bool on)2295 static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
2296 {
2297 	cpumask_var_t cmask;
2298 	int cpu;
2299 
2300 	if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2301 		amd64_warn("%s: error allocating mask\n", __func__);
2302 		return false;
2303 	}
2304 
2305 	get_cpus_on_this_dct_cpumask(cmask, nid);
2306 
2307 	rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2308 
2309 	for_each_cpu(cpu, cmask) {
2310 
2311 		struct msr *reg = per_cpu_ptr(msrs, cpu);
2312 
2313 		if (on) {
2314 			if (reg->l & MSR_MCGCTL_NBE)
2315 				s->flags.nb_mce_enable = 1;
2316 
2317 			reg->l |= MSR_MCGCTL_NBE;
2318 		} else {
2319 			/*
2320 			 * Turn off NB MCE reporting only when it was off before
2321 			 */
2322 			if (!s->flags.nb_mce_enable)
2323 				reg->l &= ~MSR_MCGCTL_NBE;
2324 		}
2325 	}
2326 	wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2327 
2328 	free_cpumask_var(cmask);
2329 
2330 	return 0;
2331 }
2332 
enable_ecc_error_reporting(struct ecc_settings * s,u8 nid,struct pci_dev * F3)2333 static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2334 				       struct pci_dev *F3)
2335 {
2336 	bool ret = true;
2337 	u32 value, mask = 0x3;		/* UECC/CECC enable */
2338 
2339 	if (toggle_ecc_err_reporting(s, nid, ON)) {
2340 		amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2341 		return false;
2342 	}
2343 
2344 	amd64_read_pci_cfg(F3, NBCTL, &value);
2345 
2346 	s->old_nbctl   = value & mask;
2347 	s->nbctl_valid = true;
2348 
2349 	value |= mask;
2350 	amd64_write_pci_cfg(F3, NBCTL, value);
2351 
2352 	amd64_read_pci_cfg(F3, NBCFG, &value);
2353 
2354 	debugf0("1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2355 		nid, value, !!(value & NBCFG_ECC_ENABLE));
2356 
2357 	if (!(value & NBCFG_ECC_ENABLE)) {
2358 		amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2359 
2360 		s->flags.nb_ecc_prev = 0;
2361 
2362 		/* Attempt to turn on DRAM ECC Enable */
2363 		value |= NBCFG_ECC_ENABLE;
2364 		amd64_write_pci_cfg(F3, NBCFG, value);
2365 
2366 		amd64_read_pci_cfg(F3, NBCFG, &value);
2367 
2368 		if (!(value & NBCFG_ECC_ENABLE)) {
2369 			amd64_warn("Hardware rejected DRAM ECC enable,"
2370 				   "check memory DIMM configuration.\n");
2371 			ret = false;
2372 		} else {
2373 			amd64_info("Hardware accepted DRAM ECC Enable\n");
2374 		}
2375 	} else {
2376 		s->flags.nb_ecc_prev = 1;
2377 	}
2378 
2379 	debugf0("2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2380 		nid, value, !!(value & NBCFG_ECC_ENABLE));
2381 
2382 	return ret;
2383 }
2384 
restore_ecc_error_reporting(struct ecc_settings * s,u8 nid,struct pci_dev * F3)2385 static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2386 					struct pci_dev *F3)
2387 {
2388 	u32 value, mask = 0x3;		/* UECC/CECC enable */
2389 
2390 
2391 	if (!s->nbctl_valid)
2392 		return;
2393 
2394 	amd64_read_pci_cfg(F3, NBCTL, &value);
2395 	value &= ~mask;
2396 	value |= s->old_nbctl;
2397 
2398 	amd64_write_pci_cfg(F3, NBCTL, value);
2399 
2400 	/* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2401 	if (!s->flags.nb_ecc_prev) {
2402 		amd64_read_pci_cfg(F3, NBCFG, &value);
2403 		value &= ~NBCFG_ECC_ENABLE;
2404 		amd64_write_pci_cfg(F3, NBCFG, value);
2405 	}
2406 
2407 	/* restore the NB Enable MCGCTL bit */
2408 	if (toggle_ecc_err_reporting(s, nid, OFF))
2409 		amd64_warn("Error restoring NB MCGCTL settings!\n");
2410 }
2411 
2412 /*
2413  * EDAC requires that the BIOS have ECC enabled before
2414  * taking over the processing of ECC errors. A command line
2415  * option allows to force-enable hardware ECC later in
2416  * enable_ecc_error_reporting().
2417  */
2418 static const char *ecc_msg =
2419 	"ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2420 	" Either enable ECC checking or force module loading by setting "
2421 	"'ecc_enable_override'.\n"
2422 	" (Note that use of the override may cause unknown side effects.)\n";
2423 
ecc_enabled(struct pci_dev * F3,u8 nid)2424 static bool ecc_enabled(struct pci_dev *F3, u8 nid)
2425 {
2426 	u32 value;
2427 	u8 ecc_en = 0;
2428 	bool nb_mce_en = false;
2429 
2430 	amd64_read_pci_cfg(F3, NBCFG, &value);
2431 
2432 	ecc_en = !!(value & NBCFG_ECC_ENABLE);
2433 	amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
2434 
2435 	nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
2436 	if (!nb_mce_en)
2437 		amd64_notice("NB MCE bank disabled, set MSR "
2438 			     "0x%08x[4] on node %d to enable.\n",
2439 			     MSR_IA32_MCG_CTL, nid);
2440 
2441 	if (!ecc_en || !nb_mce_en) {
2442 		amd64_notice("%s", ecc_msg);
2443 		return false;
2444 	}
2445 	return true;
2446 }
2447 
2448 struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2449 					  ARRAY_SIZE(amd64_inj_attrs) +
2450 					  1];
2451 
2452 struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2453 
set_mc_sysfs_attrs(struct mem_ctl_info * mci)2454 static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
2455 {
2456 	unsigned int i = 0, j = 0;
2457 
2458 	for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2459 		sysfs_attrs[i] = amd64_dbg_attrs[i];
2460 
2461 	if (boot_cpu_data.x86 >= 0x10)
2462 		for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2463 			sysfs_attrs[i] = amd64_inj_attrs[j];
2464 
2465 	sysfs_attrs[i] = terminator;
2466 
2467 	mci->mc_driver_sysfs_attributes = sysfs_attrs;
2468 }
2469 
setup_mci_misc_attrs(struct mem_ctl_info * mci,struct amd64_family_type * fam)2470 static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
2471 				 struct amd64_family_type *fam)
2472 {
2473 	struct amd64_pvt *pvt = mci->pvt_info;
2474 
2475 	mci->mtype_cap		= MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2476 	mci->edac_ctl_cap	= EDAC_FLAG_NONE;
2477 
2478 	if (pvt->nbcap & NBCAP_SECDED)
2479 		mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2480 
2481 	if (pvt->nbcap & NBCAP_CHIPKILL)
2482 		mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2483 
2484 	mci->edac_cap		= amd64_determine_edac_cap(pvt);
2485 	mci->mod_name		= EDAC_MOD_STR;
2486 	mci->mod_ver		= EDAC_AMD64_VERSION;
2487 	mci->ctl_name		= fam->ctl_name;
2488 	mci->dev_name		= pci_name(pvt->F2);
2489 	mci->ctl_page_to_phys	= NULL;
2490 
2491 	/* memory scrubber interface */
2492 	mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2493 	mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2494 }
2495 
2496 /*
2497  * returns a pointer to the family descriptor on success, NULL otherwise.
2498  */
amd64_per_family_init(struct amd64_pvt * pvt)2499 static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
2500 {
2501 	u8 fam = boot_cpu_data.x86;
2502 	struct amd64_family_type *fam_type = NULL;
2503 
2504 	switch (fam) {
2505 	case 0xf:
2506 		fam_type		= &amd64_family_types[K8_CPUS];
2507 		pvt->ops		= &amd64_family_types[K8_CPUS].ops;
2508 		break;
2509 
2510 	case 0x10:
2511 		fam_type		= &amd64_family_types[F10_CPUS];
2512 		pvt->ops		= &amd64_family_types[F10_CPUS].ops;
2513 		break;
2514 
2515 	case 0x15:
2516 		fam_type		= &amd64_family_types[F15_CPUS];
2517 		pvt->ops		= &amd64_family_types[F15_CPUS].ops;
2518 		break;
2519 
2520 	default:
2521 		amd64_err("Unsupported family!\n");
2522 		return NULL;
2523 	}
2524 
2525 	pvt->ext_model = boot_cpu_data.x86_model >> 4;
2526 
2527 	amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
2528 		     (fam == 0xf ?
2529 				(pvt->ext_model >= K8_REV_F  ? "revF or later "
2530 							     : "revE or earlier ")
2531 				 : ""), pvt->mc_node_id);
2532 	return fam_type;
2533 }
2534 
amd64_init_one_instance(struct pci_dev * F2)2535 static int amd64_init_one_instance(struct pci_dev *F2)
2536 {
2537 	struct amd64_pvt *pvt = NULL;
2538 	struct amd64_family_type *fam_type = NULL;
2539 	struct mem_ctl_info *mci = NULL;
2540 	int err = 0, ret;
2541 	u8 nid = get_node_id(F2);
2542 
2543 	ret = -ENOMEM;
2544 	pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2545 	if (!pvt)
2546 		goto err_ret;
2547 
2548 	pvt->mc_node_id	= nid;
2549 	pvt->F2 = F2;
2550 
2551 	ret = -EINVAL;
2552 	fam_type = amd64_per_family_init(pvt);
2553 	if (!fam_type)
2554 		goto err_free;
2555 
2556 	ret = -ENODEV;
2557 	err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
2558 	if (err)
2559 		goto err_free;
2560 
2561 	read_mc_regs(pvt);
2562 
2563 	/*
2564 	 * We need to determine how many memory channels there are. Then use
2565 	 * that information for calculating the size of the dynamic instance
2566 	 * tables in the 'mci' structure.
2567 	 */
2568 	ret = -EINVAL;
2569 	pvt->channel_count = pvt->ops->early_channel_count(pvt);
2570 	if (pvt->channel_count < 0)
2571 		goto err_siblings;
2572 
2573 	ret = -ENOMEM;
2574 	mci = edac_mc_alloc(0, pvt->csels[0].b_cnt, pvt->channel_count, nid);
2575 	if (!mci)
2576 		goto err_siblings;
2577 
2578 	mci->pvt_info = pvt;
2579 	mci->dev = &pvt->F2->dev;
2580 
2581 	setup_mci_misc_attrs(mci, fam_type);
2582 
2583 	if (init_csrows(mci))
2584 		mci->edac_cap = EDAC_FLAG_NONE;
2585 
2586 	set_mc_sysfs_attrs(mci);
2587 
2588 	ret = -ENODEV;
2589 	if (edac_mc_add_mc(mci)) {
2590 		debugf1("failed edac_mc_add_mc()\n");
2591 		goto err_add_mc;
2592 	}
2593 
2594 	/* register stuff with EDAC MCE */
2595 	if (report_gart_errors)
2596 		amd_report_gart_errors(true);
2597 
2598 	amd_register_ecc_decoder(amd64_decode_bus_error);
2599 
2600 	mcis[nid] = mci;
2601 
2602 	atomic_inc(&drv_instances);
2603 
2604 	return 0;
2605 
2606 err_add_mc:
2607 	edac_mc_free(mci);
2608 
2609 err_siblings:
2610 	free_mc_sibling_devs(pvt);
2611 
2612 err_free:
2613 	kfree(pvt);
2614 
2615 err_ret:
2616 	return ret;
2617 }
2618 
amd64_probe_one_instance(struct pci_dev * pdev,const struct pci_device_id * mc_type)2619 static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
2620 					     const struct pci_device_id *mc_type)
2621 {
2622 	u8 nid = get_node_id(pdev);
2623 	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2624 	struct ecc_settings *s;
2625 	int ret = 0;
2626 
2627 	ret = pci_enable_device(pdev);
2628 	if (ret < 0) {
2629 		debugf0("ret=%d\n", ret);
2630 		return -EIO;
2631 	}
2632 
2633 	ret = -ENOMEM;
2634 	s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2635 	if (!s)
2636 		goto err_out;
2637 
2638 	ecc_stngs[nid] = s;
2639 
2640 	if (!ecc_enabled(F3, nid)) {
2641 		ret = -ENODEV;
2642 
2643 		if (!ecc_enable_override)
2644 			goto err_enable;
2645 
2646 		amd64_warn("Forcing ECC on!\n");
2647 
2648 		if (!enable_ecc_error_reporting(s, nid, F3))
2649 			goto err_enable;
2650 	}
2651 
2652 	ret = amd64_init_one_instance(pdev);
2653 	if (ret < 0) {
2654 		amd64_err("Error probing instance: %d\n", nid);
2655 		restore_ecc_error_reporting(s, nid, F3);
2656 	}
2657 
2658 	return ret;
2659 
2660 err_enable:
2661 	kfree(s);
2662 	ecc_stngs[nid] = NULL;
2663 
2664 err_out:
2665 	return ret;
2666 }
2667 
amd64_remove_one_instance(struct pci_dev * pdev)2668 static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2669 {
2670 	struct mem_ctl_info *mci;
2671 	struct amd64_pvt *pvt;
2672 	u8 nid = get_node_id(pdev);
2673 	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2674 	struct ecc_settings *s = ecc_stngs[nid];
2675 
2676 	/* Remove from EDAC CORE tracking list */
2677 	mci = edac_mc_del_mc(&pdev->dev);
2678 	if (!mci)
2679 		return;
2680 
2681 	pvt = mci->pvt_info;
2682 
2683 	restore_ecc_error_reporting(s, nid, F3);
2684 
2685 	free_mc_sibling_devs(pvt);
2686 
2687 	/* unregister from EDAC MCE */
2688 	amd_report_gart_errors(false);
2689 	amd_unregister_ecc_decoder(amd64_decode_bus_error);
2690 
2691 	kfree(ecc_stngs[nid]);
2692 	ecc_stngs[nid] = NULL;
2693 
2694 	/* Free the EDAC CORE resources */
2695 	mci->pvt_info = NULL;
2696 	mcis[nid] = NULL;
2697 
2698 	kfree(pvt);
2699 	edac_mc_free(mci);
2700 }
2701 
2702 /*
2703  * This table is part of the interface for loading drivers for PCI devices. The
2704  * PCI core identifies what devices are on a system during boot, and then
2705  * inquiry this table to see if this driver is for a given device found.
2706  */
2707 static DEFINE_PCI_DEVICE_TABLE(amd64_pci_table) = {
2708 	{
2709 		.vendor		= PCI_VENDOR_ID_AMD,
2710 		.device		= PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2711 		.subvendor	= PCI_ANY_ID,
2712 		.subdevice	= PCI_ANY_ID,
2713 		.class		= 0,
2714 		.class_mask	= 0,
2715 	},
2716 	{
2717 		.vendor		= PCI_VENDOR_ID_AMD,
2718 		.device		= PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2719 		.subvendor	= PCI_ANY_ID,
2720 		.subdevice	= PCI_ANY_ID,
2721 		.class		= 0,
2722 		.class_mask	= 0,
2723 	},
2724 	{
2725 		.vendor		= PCI_VENDOR_ID_AMD,
2726 		.device		= PCI_DEVICE_ID_AMD_15H_NB_F2,
2727 		.subvendor	= PCI_ANY_ID,
2728 		.subdevice	= PCI_ANY_ID,
2729 		.class		= 0,
2730 		.class_mask	= 0,
2731 	},
2732 
2733 	{0, }
2734 };
2735 MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2736 
2737 static struct pci_driver amd64_pci_driver = {
2738 	.name		= EDAC_MOD_STR,
2739 	.probe		= amd64_probe_one_instance,
2740 	.remove		= __devexit_p(amd64_remove_one_instance),
2741 	.id_table	= amd64_pci_table,
2742 };
2743 
setup_pci_device(void)2744 static void setup_pci_device(void)
2745 {
2746 	struct mem_ctl_info *mci;
2747 	struct amd64_pvt *pvt;
2748 
2749 	if (amd64_ctl_pci)
2750 		return;
2751 
2752 	mci = mcis[0];
2753 	if (mci) {
2754 
2755 		pvt = mci->pvt_info;
2756 		amd64_ctl_pci =
2757 			edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
2758 
2759 		if (!amd64_ctl_pci) {
2760 			pr_warning("%s(): Unable to create PCI control\n",
2761 				   __func__);
2762 
2763 			pr_warning("%s(): PCI error report via EDAC not set\n",
2764 				   __func__);
2765 			}
2766 	}
2767 }
2768 
amd64_edac_init(void)2769 static int __init amd64_edac_init(void)
2770 {
2771 	int err = -ENODEV;
2772 
2773 	printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
2774 
2775 	opstate_init();
2776 
2777 	if (amd_cache_northbridges() < 0)
2778 		goto err_ret;
2779 
2780 	err = -ENOMEM;
2781 	mcis	  = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
2782 	ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
2783 	if (!(mcis && ecc_stngs))
2784 		goto err_free;
2785 
2786 	msrs = msrs_alloc();
2787 	if (!msrs)
2788 		goto err_free;
2789 
2790 	err = pci_register_driver(&amd64_pci_driver);
2791 	if (err)
2792 		goto err_pci;
2793 
2794 	err = -ENODEV;
2795 	if (!atomic_read(&drv_instances))
2796 		goto err_no_instances;
2797 
2798 	setup_pci_device();
2799 	return 0;
2800 
2801 err_no_instances:
2802 	pci_unregister_driver(&amd64_pci_driver);
2803 
2804 err_pci:
2805 	msrs_free(msrs);
2806 	msrs = NULL;
2807 
2808 err_free:
2809 	kfree(mcis);
2810 	mcis = NULL;
2811 
2812 	kfree(ecc_stngs);
2813 	ecc_stngs = NULL;
2814 
2815 err_ret:
2816 	return err;
2817 }
2818 
amd64_edac_exit(void)2819 static void __exit amd64_edac_exit(void)
2820 {
2821 	if (amd64_ctl_pci)
2822 		edac_pci_release_generic_ctl(amd64_ctl_pci);
2823 
2824 	pci_unregister_driver(&amd64_pci_driver);
2825 
2826 	kfree(ecc_stngs);
2827 	ecc_stngs = NULL;
2828 
2829 	kfree(mcis);
2830 	mcis = NULL;
2831 
2832 	msrs_free(msrs);
2833 	msrs = NULL;
2834 }
2835 
2836 module_init(amd64_edac_init);
2837 module_exit(amd64_edac_exit);
2838 
2839 MODULE_LICENSE("GPL");
2840 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2841 		"Dave Peterson, Thayne Harbaugh");
2842 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2843 		EDAC_AMD64_VERSION);
2844 
2845 module_param(edac_op_state, int, 0444);
2846 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
2847