1 #include "amd64_edac.h"
2 #include <asm/amd_nb.h>
3
4 static struct edac_pci_ctl_info *amd64_ctl_pci;
5
6 static int report_gart_errors;
7 module_param(report_gart_errors, int, 0644);
8
9 /*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13 static int ecc_enable_override;
14 module_param(ecc_enable_override, int, 0644);
15
16 static struct msr __percpu *msrs;
17
18 /*
19 * count successfully initialized driver instances for setup_pci_device()
20 */
21 static atomic_t drv_instances = ATOMIC_INIT(0);
22
23 /* Per-node driver instances */
24 static struct mem_ctl_info **mcis;
25 static struct ecc_settings **ecc_stngs;
26
27 /*
28 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
29 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
30 * or higher value'.
31 *
32 *FIXME: Produce a better mapping/linearisation.
33 */
34 struct scrubrate {
35 u32 scrubval; /* bit pattern for scrub rate */
36 u32 bandwidth; /* bandwidth consumed (bytes/sec) */
37 } scrubrates[] = {
38 { 0x01, 1600000000UL},
39 { 0x02, 800000000UL},
40 { 0x03, 400000000UL},
41 { 0x04, 200000000UL},
42 { 0x05, 100000000UL},
43 { 0x06, 50000000UL},
44 { 0x07, 25000000UL},
45 { 0x08, 12284069UL},
46 { 0x09, 6274509UL},
47 { 0x0A, 3121951UL},
48 { 0x0B, 1560975UL},
49 { 0x0C, 781440UL},
50 { 0x0D, 390720UL},
51 { 0x0E, 195300UL},
52 { 0x0F, 97650UL},
53 { 0x10, 48854UL},
54 { 0x11, 24427UL},
55 { 0x12, 12213UL},
56 { 0x13, 6101UL},
57 { 0x14, 3051UL},
58 { 0x15, 1523UL},
59 { 0x16, 761UL},
60 { 0x00, 0UL}, /* scrubbing off */
61 };
62
__amd64_read_pci_cfg_dword(struct pci_dev * pdev,int offset,u32 * val,const char * func)63 static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
64 u32 *val, const char *func)
65 {
66 int err = 0;
67
68 err = pci_read_config_dword(pdev, offset, val);
69 if (err)
70 amd64_warn("%s: error reading F%dx%03x.\n",
71 func, PCI_FUNC(pdev->devfn), offset);
72
73 return err;
74 }
75
__amd64_write_pci_cfg_dword(struct pci_dev * pdev,int offset,u32 val,const char * func)76 int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
77 u32 val, const char *func)
78 {
79 int err = 0;
80
81 err = pci_write_config_dword(pdev, offset, val);
82 if (err)
83 amd64_warn("%s: error writing to F%dx%03x.\n",
84 func, PCI_FUNC(pdev->devfn), offset);
85
86 return err;
87 }
88
89 /*
90 *
91 * Depending on the family, F2 DCT reads need special handling:
92 *
93 * K8: has a single DCT only
94 *
95 * F10h: each DCT has its own set of regs
96 * DCT0 -> F2x040..
97 * DCT1 -> F2x140..
98 *
99 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
100 *
101 */
k8_read_dct_pci_cfg(struct amd64_pvt * pvt,int addr,u32 * val,const char * func)102 static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
103 const char *func)
104 {
105 if (addr >= 0x100)
106 return -EINVAL;
107
108 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
109 }
110
f10_read_dct_pci_cfg(struct amd64_pvt * pvt,int addr,u32 * val,const char * func)111 static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
112 const char *func)
113 {
114 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
115 }
116
117 /*
118 * Select DCT to which PCI cfg accesses are routed
119 */
f15h_select_dct(struct amd64_pvt * pvt,u8 dct)120 static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
121 {
122 u32 reg = 0;
123
124 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, ®);
125 reg &= 0xfffffffe;
126 reg |= dct;
127 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
128 }
129
f15_read_dct_pci_cfg(struct amd64_pvt * pvt,int addr,u32 * val,const char * func)130 static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
131 const char *func)
132 {
133 u8 dct = 0;
134
135 if (addr >= 0x140 && addr <= 0x1a0) {
136 dct = 1;
137 addr -= 0x100;
138 }
139
140 f15h_select_dct(pvt, dct);
141
142 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
143 }
144
145 /*
146 * Memory scrubber control interface. For K8, memory scrubbing is handled by
147 * hardware and can involve L2 cache, dcache as well as the main memory. With
148 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
149 * functionality.
150 *
151 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
152 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
153 * bytes/sec for the setting.
154 *
155 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
156 * other archs, we might not have access to the caches directly.
157 */
158
159 /*
160 * scan the scrub rate mapping table for a close or matching bandwidth value to
161 * issue. If requested is too big, then use last maximum value found.
162 */
__amd64_set_scrub_rate(struct pci_dev * ctl,u32 new_bw,u32 min_rate)163 static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
164 {
165 u32 scrubval;
166 int i;
167
168 /*
169 * map the configured rate (new_bw) to a value specific to the AMD64
170 * memory controller and apply to register. Search for the first
171 * bandwidth entry that is greater or equal than the setting requested
172 * and program that. If at last entry, turn off DRAM scrubbing.
173 *
174 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
175 * by falling back to the last element in scrubrates[].
176 */
177 for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
178 /*
179 * skip scrub rates which aren't recommended
180 * (see F10 BKDG, F3x58)
181 */
182 if (scrubrates[i].scrubval < min_rate)
183 continue;
184
185 if (scrubrates[i].bandwidth <= new_bw)
186 break;
187 }
188
189 scrubval = scrubrates[i].scrubval;
190
191 pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
192
193 if (scrubval)
194 return scrubrates[i].bandwidth;
195
196 return 0;
197 }
198
amd64_set_scrub_rate(struct mem_ctl_info * mci,u32 bw)199 static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
200 {
201 struct amd64_pvt *pvt = mci->pvt_info;
202 u32 min_scrubrate = 0x5;
203
204 if (boot_cpu_data.x86 == 0xf)
205 min_scrubrate = 0x0;
206
207 /* F15h Erratum #505 */
208 if (boot_cpu_data.x86 == 0x15)
209 f15h_select_dct(pvt, 0);
210
211 return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
212 }
213
amd64_get_scrub_rate(struct mem_ctl_info * mci)214 static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
215 {
216 struct amd64_pvt *pvt = mci->pvt_info;
217 u32 scrubval = 0;
218 int i, retval = -EINVAL;
219
220 /* F15h Erratum #505 */
221 if (boot_cpu_data.x86 == 0x15)
222 f15h_select_dct(pvt, 0);
223
224 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
225
226 scrubval = scrubval & 0x001F;
227
228 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
229 if (scrubrates[i].scrubval == scrubval) {
230 retval = scrubrates[i].bandwidth;
231 break;
232 }
233 }
234 return retval;
235 }
236
237 /*
238 * returns true if the SysAddr given by sys_addr matches the
239 * DRAM base/limit associated with node_id
240 */
amd64_base_limit_match(struct amd64_pvt * pvt,u64 sys_addr,unsigned nid)241 static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr,
242 unsigned nid)
243 {
244 u64 addr;
245
246 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
247 * all ones if the most significant implemented address bit is 1.
248 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
249 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
250 * Application Programming.
251 */
252 addr = sys_addr & 0x000000ffffffffffull;
253
254 return ((addr >= get_dram_base(pvt, nid)) &&
255 (addr <= get_dram_limit(pvt, nid)));
256 }
257
258 /*
259 * Attempt to map a SysAddr to a node. On success, return a pointer to the
260 * mem_ctl_info structure for the node that the SysAddr maps to.
261 *
262 * On failure, return NULL.
263 */
find_mc_by_sys_addr(struct mem_ctl_info * mci,u64 sys_addr)264 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
265 u64 sys_addr)
266 {
267 struct amd64_pvt *pvt;
268 unsigned node_id;
269 u32 intlv_en, bits;
270
271 /*
272 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
273 * 3.4.4.2) registers to map the SysAddr to a node ID.
274 */
275 pvt = mci->pvt_info;
276
277 /*
278 * The value of this field should be the same for all DRAM Base
279 * registers. Therefore we arbitrarily choose to read it from the
280 * register for node 0.
281 */
282 intlv_en = dram_intlv_en(pvt, 0);
283
284 if (intlv_en == 0) {
285 for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
286 if (amd64_base_limit_match(pvt, sys_addr, node_id))
287 goto found;
288 }
289 goto err_no_match;
290 }
291
292 if (unlikely((intlv_en != 0x01) &&
293 (intlv_en != 0x03) &&
294 (intlv_en != 0x07))) {
295 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
296 return NULL;
297 }
298
299 bits = (((u32) sys_addr) >> 12) & intlv_en;
300
301 for (node_id = 0; ; ) {
302 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
303 break; /* intlv_sel field matches */
304
305 if (++node_id >= DRAM_RANGES)
306 goto err_no_match;
307 }
308
309 /* sanity test for sys_addr */
310 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
311 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
312 "range for node %d with node interleaving enabled.\n",
313 __func__, sys_addr, node_id);
314 return NULL;
315 }
316
317 found:
318 return edac_mc_find((int)node_id);
319
320 err_no_match:
321 debugf2("sys_addr 0x%lx doesn't match any node\n",
322 (unsigned long)sys_addr);
323
324 return NULL;
325 }
326
327 /*
328 * compute the CS base address of the @csrow on the DRAM controller @dct.
329 * For details see F2x[5C:40] in the processor's BKDG
330 */
get_cs_base_and_mask(struct amd64_pvt * pvt,int csrow,u8 dct,u64 * base,u64 * mask)331 static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
332 u64 *base, u64 *mask)
333 {
334 u64 csbase, csmask, base_bits, mask_bits;
335 u8 addr_shift;
336
337 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
338 csbase = pvt->csels[dct].csbases[csrow];
339 csmask = pvt->csels[dct].csmasks[csrow];
340 base_bits = GENMASK(21, 31) | GENMASK(9, 15);
341 mask_bits = GENMASK(21, 29) | GENMASK(9, 15);
342 addr_shift = 4;
343 } else {
344 csbase = pvt->csels[dct].csbases[csrow];
345 csmask = pvt->csels[dct].csmasks[csrow >> 1];
346 addr_shift = 8;
347
348 if (boot_cpu_data.x86 == 0x15)
349 base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
350 else
351 base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
352 }
353
354 *base = (csbase & base_bits) << addr_shift;
355
356 *mask = ~0ULL;
357 /* poke holes for the csmask */
358 *mask &= ~(mask_bits << addr_shift);
359 /* OR them in */
360 *mask |= (csmask & mask_bits) << addr_shift;
361 }
362
363 #define for_each_chip_select(i, dct, pvt) \
364 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
365
366 #define chip_select_base(i, dct, pvt) \
367 pvt->csels[dct].csbases[i]
368
369 #define for_each_chip_select_mask(i, dct, pvt) \
370 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
371
372 /*
373 * @input_addr is an InputAddr associated with the node given by mci. Return the
374 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
375 */
input_addr_to_csrow(struct mem_ctl_info * mci,u64 input_addr)376 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
377 {
378 struct amd64_pvt *pvt;
379 int csrow;
380 u64 base, mask;
381
382 pvt = mci->pvt_info;
383
384 for_each_chip_select(csrow, 0, pvt) {
385 if (!csrow_enabled(csrow, 0, pvt))
386 continue;
387
388 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
389
390 mask = ~mask;
391
392 if ((input_addr & mask) == (base & mask)) {
393 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
394 (unsigned long)input_addr, csrow,
395 pvt->mc_node_id);
396
397 return csrow;
398 }
399 }
400 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
401 (unsigned long)input_addr, pvt->mc_node_id);
402
403 return -1;
404 }
405
406 /*
407 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
408 * for the node represented by mci. Info is passed back in *hole_base,
409 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
410 * info is invalid. Info may be invalid for either of the following reasons:
411 *
412 * - The revision of the node is not E or greater. In this case, the DRAM Hole
413 * Address Register does not exist.
414 *
415 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
416 * indicating that its contents are not valid.
417 *
418 * The values passed back in *hole_base, *hole_offset, and *hole_size are
419 * complete 32-bit values despite the fact that the bitfields in the DHAR
420 * only represent bits 31-24 of the base and offset values.
421 */
amd64_get_dram_hole_info(struct mem_ctl_info * mci,u64 * hole_base,u64 * hole_offset,u64 * hole_size)422 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
423 u64 *hole_offset, u64 *hole_size)
424 {
425 struct amd64_pvt *pvt = mci->pvt_info;
426 u64 base;
427
428 /* only revE and later have the DRAM Hole Address Register */
429 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
430 debugf1(" revision %d for node %d does not support DHAR\n",
431 pvt->ext_model, pvt->mc_node_id);
432 return 1;
433 }
434
435 /* valid for Fam10h and above */
436 if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
437 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
438 return 1;
439 }
440
441 if (!dhar_valid(pvt)) {
442 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
443 pvt->mc_node_id);
444 return 1;
445 }
446
447 /* This node has Memory Hoisting */
448
449 /* +------------------+--------------------+--------------------+-----
450 * | memory | DRAM hole | relocated |
451 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
452 * | | | DRAM hole |
453 * | | | [0x100000000, |
454 * | | | (0x100000000+ |
455 * | | | (0xffffffff-x))] |
456 * +------------------+--------------------+--------------------+-----
457 *
458 * Above is a diagram of physical memory showing the DRAM hole and the
459 * relocated addresses from the DRAM hole. As shown, the DRAM hole
460 * starts at address x (the base address) and extends through address
461 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
462 * addresses in the hole so that they start at 0x100000000.
463 */
464
465 base = dhar_base(pvt);
466
467 *hole_base = base;
468 *hole_size = (0x1ull << 32) - base;
469
470 if (boot_cpu_data.x86 > 0xf)
471 *hole_offset = f10_dhar_offset(pvt);
472 else
473 *hole_offset = k8_dhar_offset(pvt);
474
475 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
476 pvt->mc_node_id, (unsigned long)*hole_base,
477 (unsigned long)*hole_offset, (unsigned long)*hole_size);
478
479 return 0;
480 }
481 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
482
483 /*
484 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
485 * assumed that sys_addr maps to the node given by mci.
486 *
487 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
488 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
489 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
490 * then it is also involved in translating a SysAddr to a DramAddr. Sections
491 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
492 * These parts of the documentation are unclear. I interpret them as follows:
493 *
494 * When node n receives a SysAddr, it processes the SysAddr as follows:
495 *
496 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
497 * Limit registers for node n. If the SysAddr is not within the range
498 * specified by the base and limit values, then node n ignores the Sysaddr
499 * (since it does not map to node n). Otherwise continue to step 2 below.
500 *
501 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
502 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
503 * the range of relocated addresses (starting at 0x100000000) from the DRAM
504 * hole. If not, skip to step 3 below. Else get the value of the
505 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
506 * offset defined by this value from the SysAddr.
507 *
508 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
509 * Base register for node n. To obtain the DramAddr, subtract the base
510 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
511 */
sys_addr_to_dram_addr(struct mem_ctl_info * mci,u64 sys_addr)512 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
513 {
514 struct amd64_pvt *pvt = mci->pvt_info;
515 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
516 int ret = 0;
517
518 dram_base = get_dram_base(pvt, pvt->mc_node_id);
519
520 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
521 &hole_size);
522 if (!ret) {
523 if ((sys_addr >= (1ull << 32)) &&
524 (sys_addr < ((1ull << 32) + hole_size))) {
525 /* use DHAR to translate SysAddr to DramAddr */
526 dram_addr = sys_addr - hole_offset;
527
528 debugf2("using DHAR to translate SysAddr 0x%lx to "
529 "DramAddr 0x%lx\n",
530 (unsigned long)sys_addr,
531 (unsigned long)dram_addr);
532
533 return dram_addr;
534 }
535 }
536
537 /*
538 * Translate the SysAddr to a DramAddr as shown near the start of
539 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
540 * only deals with 40-bit values. Therefore we discard bits 63-40 of
541 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
542 * discard are all 1s. Otherwise the bits we discard are all 0s. See
543 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
544 * Programmer's Manual Volume 1 Application Programming.
545 */
546 dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
547
548 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
549 "DramAddr 0x%lx\n", (unsigned long)sys_addr,
550 (unsigned long)dram_addr);
551 return dram_addr;
552 }
553
554 /*
555 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
556 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
557 * for node interleaving.
558 */
num_node_interleave_bits(unsigned intlv_en)559 static int num_node_interleave_bits(unsigned intlv_en)
560 {
561 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
562 int n;
563
564 BUG_ON(intlv_en > 7);
565 n = intlv_shift_table[intlv_en];
566 return n;
567 }
568
569 /* Translate the DramAddr given by @dram_addr to an InputAddr. */
dram_addr_to_input_addr(struct mem_ctl_info * mci,u64 dram_addr)570 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
571 {
572 struct amd64_pvt *pvt;
573 int intlv_shift;
574 u64 input_addr;
575
576 pvt = mci->pvt_info;
577
578 /*
579 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
580 * concerning translating a DramAddr to an InputAddr.
581 */
582 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
583 input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
584 (dram_addr & 0xfff);
585
586 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
587 intlv_shift, (unsigned long)dram_addr,
588 (unsigned long)input_addr);
589
590 return input_addr;
591 }
592
593 /*
594 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
595 * assumed that @sys_addr maps to the node given by mci.
596 */
sys_addr_to_input_addr(struct mem_ctl_info * mci,u64 sys_addr)597 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
598 {
599 u64 input_addr;
600
601 input_addr =
602 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
603
604 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
605 (unsigned long)sys_addr, (unsigned long)input_addr);
606
607 return input_addr;
608 }
609
610
611 /*
612 * @input_addr is an InputAddr associated with the node represented by mci.
613 * Translate @input_addr to a DramAddr and return the result.
614 */
input_addr_to_dram_addr(struct mem_ctl_info * mci,u64 input_addr)615 static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
616 {
617 struct amd64_pvt *pvt;
618 unsigned node_id, intlv_shift;
619 u64 bits, dram_addr;
620 u32 intlv_sel;
621
622 /*
623 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
624 * shows how to translate a DramAddr to an InputAddr. Here we reverse
625 * this procedure. When translating from a DramAddr to an InputAddr, the
626 * bits used for node interleaving are discarded. Here we recover these
627 * bits from the IntlvSel field of the DRAM Limit register (section
628 * 3.4.4.2) for the node that input_addr is associated with.
629 */
630 pvt = mci->pvt_info;
631 node_id = pvt->mc_node_id;
632
633 BUG_ON(node_id > 7);
634
635 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
636 if (intlv_shift == 0) {
637 debugf1(" InputAddr 0x%lx translates to DramAddr of "
638 "same value\n", (unsigned long)input_addr);
639
640 return input_addr;
641 }
642
643 bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) +
644 (input_addr & 0xfff);
645
646 intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
647 dram_addr = bits + (intlv_sel << 12);
648
649 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
650 "(%d node interleave bits)\n", (unsigned long)input_addr,
651 (unsigned long)dram_addr, intlv_shift);
652
653 return dram_addr;
654 }
655
656 /*
657 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
658 * @dram_addr to a SysAddr.
659 */
dram_addr_to_sys_addr(struct mem_ctl_info * mci,u64 dram_addr)660 static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
661 {
662 struct amd64_pvt *pvt = mci->pvt_info;
663 u64 hole_base, hole_offset, hole_size, base, sys_addr;
664 int ret = 0;
665
666 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
667 &hole_size);
668 if (!ret) {
669 if ((dram_addr >= hole_base) &&
670 (dram_addr < (hole_base + hole_size))) {
671 sys_addr = dram_addr + hole_offset;
672
673 debugf1("using DHAR to translate DramAddr 0x%lx to "
674 "SysAddr 0x%lx\n", (unsigned long)dram_addr,
675 (unsigned long)sys_addr);
676
677 return sys_addr;
678 }
679 }
680
681 base = get_dram_base(pvt, pvt->mc_node_id);
682 sys_addr = dram_addr + base;
683
684 /*
685 * The sys_addr we have computed up to this point is a 40-bit value
686 * because the k8 deals with 40-bit values. However, the value we are
687 * supposed to return is a full 64-bit physical address. The AMD
688 * x86-64 architecture specifies that the most significant implemented
689 * address bit through bit 63 of a physical address must be either all
690 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
691 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
692 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
693 * Programming.
694 */
695 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
696
697 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
698 pvt->mc_node_id, (unsigned long)dram_addr,
699 (unsigned long)sys_addr);
700
701 return sys_addr;
702 }
703
704 /*
705 * @input_addr is an InputAddr associated with the node given by mci. Translate
706 * @input_addr to a SysAddr.
707 */
input_addr_to_sys_addr(struct mem_ctl_info * mci,u64 input_addr)708 static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
709 u64 input_addr)
710 {
711 return dram_addr_to_sys_addr(mci,
712 input_addr_to_dram_addr(mci, input_addr));
713 }
714
715 /*
716 * Find the minimum and maximum InputAddr values that map to the given @csrow.
717 * Pass back these values in *input_addr_min and *input_addr_max.
718 */
find_csrow_limits(struct mem_ctl_info * mci,int csrow,u64 * input_addr_min,u64 * input_addr_max)719 static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
720 u64 *input_addr_min, u64 *input_addr_max)
721 {
722 struct amd64_pvt *pvt;
723 u64 base, mask;
724
725 pvt = mci->pvt_info;
726 BUG_ON((csrow < 0) || (csrow >= pvt->csels[0].b_cnt));
727
728 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
729
730 *input_addr_min = base & ~mask;
731 *input_addr_max = base | mask;
732 }
733
734 /* Map the Error address to a PAGE and PAGE OFFSET. */
error_address_to_page_and_offset(u64 error_address,u32 * page,u32 * offset)735 static inline void error_address_to_page_and_offset(u64 error_address,
736 u32 *page, u32 *offset)
737 {
738 *page = (u32) (error_address >> PAGE_SHIFT);
739 *offset = ((u32) error_address) & ~PAGE_MASK;
740 }
741
742 /*
743 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
744 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
745 * of a node that detected an ECC memory error. mci represents the node that
746 * the error address maps to (possibly different from the node that detected
747 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
748 * error.
749 */
sys_addr_to_csrow(struct mem_ctl_info * mci,u64 sys_addr)750 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
751 {
752 int csrow;
753
754 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
755
756 if (csrow == -1)
757 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
758 "address 0x%lx\n", (unsigned long)sys_addr);
759 return csrow;
760 }
761
762 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
763
764 /*
765 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
766 * are ECC capable.
767 */
amd64_determine_edac_cap(struct amd64_pvt * pvt)768 static unsigned long amd64_determine_edac_cap(struct amd64_pvt *pvt)
769 {
770 u8 bit;
771 unsigned long edac_cap = EDAC_FLAG_NONE;
772
773 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
774 ? 19
775 : 17;
776
777 if (pvt->dclr0 & BIT(bit))
778 edac_cap = EDAC_FLAG_SECDED;
779
780 return edac_cap;
781 }
782
783 static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8);
784
amd64_dump_dramcfg_low(u32 dclr,int chan)785 static void amd64_dump_dramcfg_low(u32 dclr, int chan)
786 {
787 debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
788
789 debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
790 (dclr & BIT(16)) ? "un" : "",
791 (dclr & BIT(19)) ? "yes" : "no");
792
793 debugf1(" PAR/ERR parity: %s\n",
794 (dclr & BIT(8)) ? "enabled" : "disabled");
795
796 if (boot_cpu_data.x86 == 0x10)
797 debugf1(" DCT 128bit mode width: %s\n",
798 (dclr & BIT(11)) ? "128b" : "64b");
799
800 debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
801 (dclr & BIT(12)) ? "yes" : "no",
802 (dclr & BIT(13)) ? "yes" : "no",
803 (dclr & BIT(14)) ? "yes" : "no",
804 (dclr & BIT(15)) ? "yes" : "no");
805 }
806
807 /* Display and decode various NB registers for debug purposes. */
dump_misc_regs(struct amd64_pvt * pvt)808 static void dump_misc_regs(struct amd64_pvt *pvt)
809 {
810 debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
811
812 debugf1(" NB two channel DRAM capable: %s\n",
813 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
814
815 debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
816 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
817 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
818
819 amd64_dump_dramcfg_low(pvt->dclr0, 0);
820
821 debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
822
823 debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
824 "offset: 0x%08x\n",
825 pvt->dhar, dhar_base(pvt),
826 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
827 : f10_dhar_offset(pvt));
828
829 debugf1(" DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
830
831 amd64_debug_display_dimm_sizes(pvt, 0);
832
833 /* everything below this point is Fam10h and above */
834 if (boot_cpu_data.x86 == 0xf)
835 return;
836
837 amd64_debug_display_dimm_sizes(pvt, 1);
838
839 amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
840
841 /* Only if NOT ganged does dclr1 have valid info */
842 if (!dct_ganging_enabled(pvt))
843 amd64_dump_dramcfg_low(pvt->dclr1, 1);
844 }
845
846 /*
847 * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
848 */
prep_chip_selects(struct amd64_pvt * pvt)849 static void prep_chip_selects(struct amd64_pvt *pvt)
850 {
851 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
852 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
853 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
854 } else {
855 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
856 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
857 }
858 }
859
860 /*
861 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
862 */
read_dct_base_mask(struct amd64_pvt * pvt)863 static void read_dct_base_mask(struct amd64_pvt *pvt)
864 {
865 int cs;
866
867 prep_chip_selects(pvt);
868
869 for_each_chip_select(cs, 0, pvt) {
870 int reg0 = DCSB0 + (cs * 4);
871 int reg1 = DCSB1 + (cs * 4);
872 u32 *base0 = &pvt->csels[0].csbases[cs];
873 u32 *base1 = &pvt->csels[1].csbases[cs];
874
875 if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
876 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
877 cs, *base0, reg0);
878
879 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
880 continue;
881
882 if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
883 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
884 cs, *base1, reg1);
885 }
886
887 for_each_chip_select_mask(cs, 0, pvt) {
888 int reg0 = DCSM0 + (cs * 4);
889 int reg1 = DCSM1 + (cs * 4);
890 u32 *mask0 = &pvt->csels[0].csmasks[cs];
891 u32 *mask1 = &pvt->csels[1].csmasks[cs];
892
893 if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
894 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
895 cs, *mask0, reg0);
896
897 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
898 continue;
899
900 if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
901 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
902 cs, *mask1, reg1);
903 }
904 }
905
amd64_determine_memory_type(struct amd64_pvt * pvt,int cs)906 static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
907 {
908 enum mem_type type;
909
910 /* F15h supports only DDR3 */
911 if (boot_cpu_data.x86 >= 0x15)
912 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
913 else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
914 if (pvt->dchr0 & DDR3_MODE)
915 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
916 else
917 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
918 } else {
919 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
920 }
921
922 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
923
924 return type;
925 }
926
927 /* Get the number of DCT channels the memory controller is using. */
k8_early_channel_count(struct amd64_pvt * pvt)928 static int k8_early_channel_count(struct amd64_pvt *pvt)
929 {
930 int flag;
931
932 if (pvt->ext_model >= K8_REV_F)
933 /* RevF (NPT) and later */
934 flag = pvt->dclr0 & WIDTH_128;
935 else
936 /* RevE and earlier */
937 flag = pvt->dclr0 & REVE_WIDTH_128;
938
939 /* not used */
940 pvt->dclr1 = 0;
941
942 return (flag) ? 2 : 1;
943 }
944
945 /* On F10h and later ErrAddr is MC4_ADDR[47:1] */
get_error_address(struct mce * m)946 static u64 get_error_address(struct mce *m)
947 {
948 struct cpuinfo_x86 *c = &boot_cpu_data;
949 u64 addr;
950 u8 start_bit = 1;
951 u8 end_bit = 47;
952
953 if (c->x86 == 0xf) {
954 start_bit = 3;
955 end_bit = 39;
956 }
957
958 addr = m->addr & GENMASK(start_bit, end_bit);
959
960 /*
961 * Erratum 637 workaround
962 */
963 if (c->x86 == 0x15) {
964 struct amd64_pvt *pvt;
965 u64 cc6_base, tmp_addr;
966 u32 tmp;
967 u8 mce_nid, intlv_en;
968
969 if ((addr & GENMASK(24, 47)) >> 24 != 0x00fdf7)
970 return addr;
971
972 mce_nid = amd_get_nb_id(m->extcpu);
973 pvt = mcis[mce_nid]->pvt_info;
974
975 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
976 intlv_en = tmp >> 21 & 0x7;
977
978 /* add [47:27] + 3 trailing bits */
979 cc6_base = (tmp & GENMASK(0, 20)) << 3;
980
981 /* reverse and add DramIntlvEn */
982 cc6_base |= intlv_en ^ 0x7;
983
984 /* pin at [47:24] */
985 cc6_base <<= 24;
986
987 if (!intlv_en)
988 return cc6_base | (addr & GENMASK(0, 23));
989
990 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
991
992 /* faster log2 */
993 tmp_addr = (addr & GENMASK(12, 23)) << __fls(intlv_en + 1);
994
995 /* OR DramIntlvSel into bits [14:12] */
996 tmp_addr |= (tmp & GENMASK(21, 23)) >> 9;
997
998 /* add remaining [11:0] bits from original MC4_ADDR */
999 tmp_addr |= addr & GENMASK(0, 11);
1000
1001 return cc6_base | tmp_addr;
1002 }
1003
1004 return addr;
1005 }
1006
read_dram_base_limit_regs(struct amd64_pvt * pvt,unsigned range)1007 static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
1008 {
1009 struct cpuinfo_x86 *c = &boot_cpu_data;
1010 int off = range << 3;
1011
1012 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
1013 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
1014
1015 if (c->x86 == 0xf)
1016 return;
1017
1018 if (!dram_rw(pvt, range))
1019 return;
1020
1021 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
1022 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
1023
1024 /* Factor in CC6 save area by reading dst node's limit reg */
1025 if (c->x86 == 0x15) {
1026 struct pci_dev *f1 = NULL;
1027 u8 nid = dram_dst_node(pvt, range);
1028 u32 llim;
1029
1030 f1 = pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(0x18 + nid, 1));
1031 if (WARN_ON(!f1))
1032 return;
1033
1034 amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
1035
1036 pvt->ranges[range].lim.lo &= GENMASK(0, 15);
1037
1038 /* {[39:27],111b} */
1039 pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
1040
1041 pvt->ranges[range].lim.hi &= GENMASK(0, 7);
1042
1043 /* [47:40] */
1044 pvt->ranges[range].lim.hi |= llim >> 13;
1045
1046 pci_dev_put(f1);
1047 }
1048 }
1049
k8_map_sysaddr_to_csrow(struct mem_ctl_info * mci,u64 sys_addr,u16 syndrome)1050 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1051 u16 syndrome)
1052 {
1053 struct mem_ctl_info *src_mci;
1054 struct amd64_pvt *pvt = mci->pvt_info;
1055 int channel, csrow;
1056 u32 page, offset;
1057
1058 /* CHIPKILL enabled */
1059 if (pvt->nbcfg & NBCFG_CHIPKILL) {
1060 channel = get_channel_from_ecc_syndrome(mci, syndrome);
1061 if (channel < 0) {
1062 /*
1063 * Syndrome didn't map, so we don't know which of the
1064 * 2 DIMMs is in error. So we need to ID 'both' of them
1065 * as suspect.
1066 */
1067 amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
1068 "error reporting race\n", syndrome);
1069 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1070 return;
1071 }
1072 } else {
1073 /*
1074 * non-chipkill ecc mode
1075 *
1076 * The k8 documentation is unclear about how to determine the
1077 * channel number when using non-chipkill memory. This method
1078 * was obtained from email communication with someone at AMD.
1079 * (Wish the email was placed in this comment - norsk)
1080 */
1081 channel = ((sys_addr & BIT(3)) != 0);
1082 }
1083
1084 /*
1085 * Find out which node the error address belongs to. This may be
1086 * different from the node that detected the error.
1087 */
1088 src_mci = find_mc_by_sys_addr(mci, sys_addr);
1089 if (!src_mci) {
1090 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
1091 (unsigned long)sys_addr);
1092 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1093 return;
1094 }
1095
1096 /* Now map the sys_addr to a CSROW */
1097 csrow = sys_addr_to_csrow(src_mci, sys_addr);
1098 if (csrow < 0) {
1099 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1100 } else {
1101 error_address_to_page_and_offset(sys_addr, &page, &offset);
1102
1103 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1104 channel, EDAC_MOD_STR);
1105 }
1106 }
1107
ddr2_cs_size(unsigned i,bool dct_width)1108 static int ddr2_cs_size(unsigned i, bool dct_width)
1109 {
1110 unsigned shift = 0;
1111
1112 if (i <= 2)
1113 shift = i;
1114 else if (!(i & 0x1))
1115 shift = i >> 1;
1116 else
1117 shift = (i + 1) >> 1;
1118
1119 return 128 << (shift + !!dct_width);
1120 }
1121
k8_dbam_to_chip_select(struct amd64_pvt * pvt,u8 dct,unsigned cs_mode)1122 static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1123 unsigned cs_mode)
1124 {
1125 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1126
1127 if (pvt->ext_model >= K8_REV_F) {
1128 WARN_ON(cs_mode > 11);
1129 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1130 }
1131 else if (pvt->ext_model >= K8_REV_D) {
1132 unsigned diff;
1133 WARN_ON(cs_mode > 10);
1134
1135 /*
1136 * the below calculation, besides trying to win an obfuscated C
1137 * contest, maps cs_mode values to DIMM chip select sizes. The
1138 * mappings are:
1139 *
1140 * cs_mode CS size (mb)
1141 * ======= ============
1142 * 0 32
1143 * 1 64
1144 * 2 128
1145 * 3 128
1146 * 4 256
1147 * 5 512
1148 * 6 256
1149 * 7 512
1150 * 8 1024
1151 * 9 1024
1152 * 10 2048
1153 *
1154 * Basically, it calculates a value with which to shift the
1155 * smallest CS size of 32MB.
1156 *
1157 * ddr[23]_cs_size have a similar purpose.
1158 */
1159 diff = cs_mode/3 + (unsigned)(cs_mode > 5);
1160
1161 return 32 << (cs_mode - diff);
1162 }
1163 else {
1164 WARN_ON(cs_mode > 6);
1165 return 32 << cs_mode;
1166 }
1167 }
1168
1169 /*
1170 * Get the number of DCT channels in use.
1171 *
1172 * Return:
1173 * number of Memory Channels in operation
1174 * Pass back:
1175 * contents of the DCL0_LOW register
1176 */
f1x_early_channel_count(struct amd64_pvt * pvt)1177 static int f1x_early_channel_count(struct amd64_pvt *pvt)
1178 {
1179 int i, j, channels = 0;
1180
1181 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1182 if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128))
1183 return 2;
1184
1185 /*
1186 * Need to check if in unganged mode: In such, there are 2 channels,
1187 * but they are not in 128 bit mode and thus the above 'dclr0' status
1188 * bit will be OFF.
1189 *
1190 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1191 * their CSEnable bit on. If so, then SINGLE DIMM case.
1192 */
1193 debugf0("Data width is not 128 bits - need more decoding\n");
1194
1195 /*
1196 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1197 * is more than just one DIMM present in unganged mode. Need to check
1198 * both controllers since DIMMs can be placed in either one.
1199 */
1200 for (i = 0; i < 2; i++) {
1201 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1202
1203 for (j = 0; j < 4; j++) {
1204 if (DBAM_DIMM(j, dbam) > 0) {
1205 channels++;
1206 break;
1207 }
1208 }
1209 }
1210
1211 if (channels > 2)
1212 channels = 2;
1213
1214 amd64_info("MCT channel count: %d\n", channels);
1215
1216 return channels;
1217 }
1218
ddr3_cs_size(unsigned i,bool dct_width)1219 static int ddr3_cs_size(unsigned i, bool dct_width)
1220 {
1221 unsigned shift = 0;
1222 int cs_size = 0;
1223
1224 if (i == 0 || i == 3 || i == 4)
1225 cs_size = -1;
1226 else if (i <= 2)
1227 shift = i;
1228 else if (i == 12)
1229 shift = 7;
1230 else if (!(i & 0x1))
1231 shift = i >> 1;
1232 else
1233 shift = (i + 1) >> 1;
1234
1235 if (cs_size != -1)
1236 cs_size = (128 * (1 << !!dct_width)) << shift;
1237
1238 return cs_size;
1239 }
1240
f10_dbam_to_chip_select(struct amd64_pvt * pvt,u8 dct,unsigned cs_mode)1241 static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1242 unsigned cs_mode)
1243 {
1244 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1245
1246 WARN_ON(cs_mode > 11);
1247
1248 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1249 return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1250 else
1251 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1252 }
1253
1254 /*
1255 * F15h supports only 64bit DCT interfaces
1256 */
f15_dbam_to_chip_select(struct amd64_pvt * pvt,u8 dct,unsigned cs_mode)1257 static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1258 unsigned cs_mode)
1259 {
1260 WARN_ON(cs_mode > 12);
1261
1262 return ddr3_cs_size(cs_mode, false);
1263 }
1264
read_dram_ctl_register(struct amd64_pvt * pvt)1265 static void read_dram_ctl_register(struct amd64_pvt *pvt)
1266 {
1267
1268 if (boot_cpu_data.x86 == 0xf)
1269 return;
1270
1271 if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1272 debugf0("F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1273 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
1274
1275 debugf0(" DCTs operate in %s mode.\n",
1276 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
1277
1278 if (!dct_ganging_enabled(pvt))
1279 debugf0(" Address range split per DCT: %s\n",
1280 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1281
1282 debugf0(" data interleave for ECC: %s, "
1283 "DRAM cleared since last warm reset: %s\n",
1284 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1285 (dct_memory_cleared(pvt) ? "yes" : "no"));
1286
1287 debugf0(" channel interleave: %s, "
1288 "interleave bits selector: 0x%x\n",
1289 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1290 dct_sel_interleave_addr(pvt));
1291 }
1292
1293 amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
1294 }
1295
1296 /*
1297 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1298 * Interleaving Modes.
1299 */
f1x_determine_channel(struct amd64_pvt * pvt,u64 sys_addr,bool hi_range_sel,u8 intlv_en)1300 static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1301 bool hi_range_sel, u8 intlv_en)
1302 {
1303 u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
1304
1305 if (dct_ganging_enabled(pvt))
1306 return 0;
1307
1308 if (hi_range_sel)
1309 return dct_sel_high;
1310
1311 /*
1312 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1313 */
1314 if (dct_interleave_enabled(pvt)) {
1315 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1316
1317 /* return DCT select function: 0=DCT0, 1=DCT1 */
1318 if (!intlv_addr)
1319 return sys_addr >> 6 & 1;
1320
1321 if (intlv_addr & 0x2) {
1322 u8 shift = intlv_addr & 0x1 ? 9 : 6;
1323 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1324
1325 return ((sys_addr >> shift) & 1) ^ temp;
1326 }
1327
1328 return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
1329 }
1330
1331 if (dct_high_range_enabled(pvt))
1332 return ~dct_sel_high & 1;
1333
1334 return 0;
1335 }
1336
1337 /* Convert the sys_addr to the normalized DCT address */
f1x_get_norm_dct_addr(struct amd64_pvt * pvt,unsigned range,u64 sys_addr,bool hi_rng,u32 dct_sel_base_addr)1338 static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, unsigned range,
1339 u64 sys_addr, bool hi_rng,
1340 u32 dct_sel_base_addr)
1341 {
1342 u64 chan_off;
1343 u64 dram_base = get_dram_base(pvt, range);
1344 u64 hole_off = f10_dhar_offset(pvt);
1345 u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
1346
1347 if (hi_rng) {
1348 /*
1349 * if
1350 * base address of high range is below 4Gb
1351 * (bits [47:27] at [31:11])
1352 * DRAM address space on this DCT is hoisted above 4Gb &&
1353 * sys_addr > 4Gb
1354 *
1355 * remove hole offset from sys_addr
1356 * else
1357 * remove high range offset from sys_addr
1358 */
1359 if ((!(dct_sel_base_addr >> 16) ||
1360 dct_sel_base_addr < dhar_base(pvt)) &&
1361 dhar_valid(pvt) &&
1362 (sys_addr >= BIT_64(32)))
1363 chan_off = hole_off;
1364 else
1365 chan_off = dct_sel_base_off;
1366 } else {
1367 /*
1368 * if
1369 * we have a valid hole &&
1370 * sys_addr > 4Gb
1371 *
1372 * remove hole
1373 * else
1374 * remove dram base to normalize to DCT address
1375 */
1376 if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
1377 chan_off = hole_off;
1378 else
1379 chan_off = dram_base;
1380 }
1381
1382 return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
1383 }
1384
1385 /*
1386 * checks if the csrow passed in is marked as SPARED, if so returns the new
1387 * spare row
1388 */
f10_process_possible_spare(struct amd64_pvt * pvt,u8 dct,int csrow)1389 static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
1390 {
1391 int tmp_cs;
1392
1393 if (online_spare_swap_done(pvt, dct) &&
1394 csrow == online_spare_bad_dramcs(pvt, dct)) {
1395
1396 for_each_chip_select(tmp_cs, dct, pvt) {
1397 if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
1398 csrow = tmp_cs;
1399 break;
1400 }
1401 }
1402 }
1403 return csrow;
1404 }
1405
1406 /*
1407 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1408 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1409 *
1410 * Return:
1411 * -EINVAL: NOT FOUND
1412 * 0..csrow = Chip-Select Row
1413 */
f1x_lookup_addr_in_dct(u64 in_addr,u32 nid,u8 dct)1414 static int f1x_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
1415 {
1416 struct mem_ctl_info *mci;
1417 struct amd64_pvt *pvt;
1418 u64 cs_base, cs_mask;
1419 int cs_found = -EINVAL;
1420 int csrow;
1421
1422 mci = mcis[nid];
1423 if (!mci)
1424 return cs_found;
1425
1426 pvt = mci->pvt_info;
1427
1428 debugf1("input addr: 0x%llx, DCT: %d\n", in_addr, dct);
1429
1430 for_each_chip_select(csrow, dct, pvt) {
1431 if (!csrow_enabled(csrow, dct, pvt))
1432 continue;
1433
1434 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
1435
1436 debugf1(" CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1437 csrow, cs_base, cs_mask);
1438
1439 cs_mask = ~cs_mask;
1440
1441 debugf1(" (InputAddr & ~CSMask)=0x%llx "
1442 "(CSBase & ~CSMask)=0x%llx\n",
1443 (in_addr & cs_mask), (cs_base & cs_mask));
1444
1445 if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1446 cs_found = f10_process_possible_spare(pvt, dct, csrow);
1447
1448 debugf1(" MATCH csrow=%d\n", cs_found);
1449 break;
1450 }
1451 }
1452 return cs_found;
1453 }
1454
1455 /*
1456 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1457 * swapped with a region located at the bottom of memory so that the GPU can use
1458 * the interleaved region and thus two channels.
1459 */
f1x_swap_interleaved_region(struct amd64_pvt * pvt,u64 sys_addr)1460 static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
1461 {
1462 u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
1463
1464 if (boot_cpu_data.x86 == 0x10) {
1465 /* only revC3 and revE have that feature */
1466 if (boot_cpu_data.x86_model < 4 ||
1467 (boot_cpu_data.x86_model < 0xa &&
1468 boot_cpu_data.x86_mask < 3))
1469 return sys_addr;
1470 }
1471
1472 amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
1473
1474 if (!(swap_reg & 0x1))
1475 return sys_addr;
1476
1477 swap_base = (swap_reg >> 3) & 0x7f;
1478 swap_limit = (swap_reg >> 11) & 0x7f;
1479 rgn_size = (swap_reg >> 20) & 0x7f;
1480 tmp_addr = sys_addr >> 27;
1481
1482 if (!(sys_addr >> 34) &&
1483 (((tmp_addr >= swap_base) &&
1484 (tmp_addr <= swap_limit)) ||
1485 (tmp_addr < rgn_size)))
1486 return sys_addr ^ (u64)swap_base << 27;
1487
1488 return sys_addr;
1489 }
1490
1491 /* For a given @dram_range, check if @sys_addr falls within it. */
f1x_match_to_this_node(struct amd64_pvt * pvt,unsigned range,u64 sys_addr,int * nid,int * chan_sel)1492 static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1493 u64 sys_addr, int *nid, int *chan_sel)
1494 {
1495 int cs_found = -EINVAL;
1496 u64 chan_addr;
1497 u32 dct_sel_base;
1498 u8 channel;
1499 bool high_range = false;
1500
1501 u8 node_id = dram_dst_node(pvt, range);
1502 u8 intlv_en = dram_intlv_en(pvt, range);
1503 u32 intlv_sel = dram_intlv_sel(pvt, range);
1504
1505 debugf1("(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1506 range, sys_addr, get_dram_limit(pvt, range));
1507
1508 if (dhar_valid(pvt) &&
1509 dhar_base(pvt) <= sys_addr &&
1510 sys_addr < BIT_64(32)) {
1511 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1512 sys_addr);
1513 return -EINVAL;
1514 }
1515
1516 if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1517 return -EINVAL;
1518
1519 sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
1520
1521 dct_sel_base = dct_sel_baseaddr(pvt);
1522
1523 /*
1524 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1525 * select between DCT0 and DCT1.
1526 */
1527 if (dct_high_range_enabled(pvt) &&
1528 !dct_ganging_enabled(pvt) &&
1529 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1530 high_range = true;
1531
1532 channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
1533
1534 chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
1535 high_range, dct_sel_base);
1536
1537 /* Remove node interleaving, see F1x120 */
1538 if (intlv_en)
1539 chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
1540 (chan_addr & 0xfff);
1541
1542 /* remove channel interleave */
1543 if (dct_interleave_enabled(pvt) &&
1544 !dct_high_range_enabled(pvt) &&
1545 !dct_ganging_enabled(pvt)) {
1546
1547 if (dct_sel_interleave_addr(pvt) != 1) {
1548 if (dct_sel_interleave_addr(pvt) == 0x3)
1549 /* hash 9 */
1550 chan_addr = ((chan_addr >> 10) << 9) |
1551 (chan_addr & 0x1ff);
1552 else
1553 /* A[6] or hash 6 */
1554 chan_addr = ((chan_addr >> 7) << 6) |
1555 (chan_addr & 0x3f);
1556 } else
1557 /* A[12] */
1558 chan_addr = ((chan_addr >> 13) << 12) |
1559 (chan_addr & 0xfff);
1560 }
1561
1562 debugf1(" Normalized DCT addr: 0x%llx\n", chan_addr);
1563
1564 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
1565
1566 if (cs_found >= 0) {
1567 *nid = node_id;
1568 *chan_sel = channel;
1569 }
1570 return cs_found;
1571 }
1572
f1x_translate_sysaddr_to_cs(struct amd64_pvt * pvt,u64 sys_addr,int * node,int * chan_sel)1573 static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1574 int *node, int *chan_sel)
1575 {
1576 int cs_found = -EINVAL;
1577 unsigned range;
1578
1579 for (range = 0; range < DRAM_RANGES; range++) {
1580
1581 if (!dram_rw(pvt, range))
1582 continue;
1583
1584 if ((get_dram_base(pvt, range) <= sys_addr) &&
1585 (get_dram_limit(pvt, range) >= sys_addr)) {
1586
1587 cs_found = f1x_match_to_this_node(pvt, range,
1588 sys_addr, node,
1589 chan_sel);
1590 if (cs_found >= 0)
1591 break;
1592 }
1593 }
1594 return cs_found;
1595 }
1596
1597 /*
1598 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1599 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
1600 *
1601 * The @sys_addr is usually an error address received from the hardware
1602 * (MCX_ADDR).
1603 */
f1x_map_sysaddr_to_csrow(struct mem_ctl_info * mci,u64 sys_addr,u16 syndrome)1604 static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1605 u16 syndrome)
1606 {
1607 struct amd64_pvt *pvt = mci->pvt_info;
1608 u32 page, offset;
1609 int nid, csrow, chan = 0;
1610
1611 csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1612
1613 if (csrow < 0) {
1614 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1615 return;
1616 }
1617
1618 error_address_to_page_and_offset(sys_addr, &page, &offset);
1619
1620 /*
1621 * We need the syndromes for channel detection only when we're
1622 * ganged. Otherwise @chan should already contain the channel at
1623 * this point.
1624 */
1625 if (dct_ganging_enabled(pvt))
1626 chan = get_channel_from_ecc_syndrome(mci, syndrome);
1627
1628 if (chan >= 0)
1629 edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
1630 EDAC_MOD_STR);
1631 else
1632 /*
1633 * Channel unknown, report all channels on this CSROW as failed.
1634 */
1635 for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
1636 edac_mc_handle_ce(mci, page, offset, syndrome,
1637 csrow, chan, EDAC_MOD_STR);
1638 }
1639
1640 /*
1641 * debug routine to display the memory sizes of all logical DIMMs and its
1642 * CSROWs
1643 */
amd64_debug_display_dimm_sizes(struct amd64_pvt * pvt,u8 ctrl)1644 static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
1645 {
1646 int dimm, size0, size1, factor = 0;
1647 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
1648 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
1649
1650 if (boot_cpu_data.x86 == 0xf) {
1651 if (pvt->dclr0 & WIDTH_128)
1652 factor = 1;
1653
1654 /* K8 families < revF not supported yet */
1655 if (pvt->ext_model < K8_REV_F)
1656 return;
1657 else
1658 WARN_ON(ctrl != 0);
1659 }
1660
1661 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
1662 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
1663 : pvt->csels[0].csbases;
1664
1665 debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam);
1666
1667 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1668
1669 /* Dump memory sizes for DIMM and its CSROWs */
1670 for (dimm = 0; dimm < 4; dimm++) {
1671
1672 size0 = 0;
1673 if (dcsb[dimm*2] & DCSB_CS_ENABLE)
1674 size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
1675 DBAM_DIMM(dimm, dbam));
1676
1677 size1 = 0;
1678 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
1679 size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
1680 DBAM_DIMM(dimm, dbam));
1681
1682 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1683 dimm * 2, size0 << factor,
1684 dimm * 2 + 1, size1 << factor);
1685 }
1686 }
1687
1688 static struct amd64_family_type amd64_family_types[] = {
1689 [K8_CPUS] = {
1690 .ctl_name = "K8",
1691 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1692 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1693 .ops = {
1694 .early_channel_count = k8_early_channel_count,
1695 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1696 .dbam_to_cs = k8_dbam_to_chip_select,
1697 .read_dct_pci_cfg = k8_read_dct_pci_cfg,
1698 }
1699 },
1700 [F10_CPUS] = {
1701 .ctl_name = "F10h",
1702 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1703 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1704 .ops = {
1705 .early_channel_count = f1x_early_channel_count,
1706 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1707 .dbam_to_cs = f10_dbam_to_chip_select,
1708 .read_dct_pci_cfg = f10_read_dct_pci_cfg,
1709 }
1710 },
1711 [F15_CPUS] = {
1712 .ctl_name = "F15h",
1713 .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
1714 .f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
1715 .ops = {
1716 .early_channel_count = f1x_early_channel_count,
1717 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1718 .dbam_to_cs = f15_dbam_to_chip_select,
1719 .read_dct_pci_cfg = f15_read_dct_pci_cfg,
1720 }
1721 },
1722 };
1723
pci_get_related_function(unsigned int vendor,unsigned int device,struct pci_dev * related)1724 static struct pci_dev *pci_get_related_function(unsigned int vendor,
1725 unsigned int device,
1726 struct pci_dev *related)
1727 {
1728 struct pci_dev *dev = NULL;
1729
1730 dev = pci_get_device(vendor, device, dev);
1731 while (dev) {
1732 if ((dev->bus->number == related->bus->number) &&
1733 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1734 break;
1735 dev = pci_get_device(vendor, device, dev);
1736 }
1737
1738 return dev;
1739 }
1740
1741 /*
1742 * These are tables of eigenvectors (one per line) which can be used for the
1743 * construction of the syndrome tables. The modified syndrome search algorithm
1744 * uses those to find the symbol in error and thus the DIMM.
1745 *
1746 * Algorithm courtesy of Ross LaFetra from AMD.
1747 */
1748 static u16 x4_vectors[] = {
1749 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1750 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1751 0x0001, 0x0002, 0x0004, 0x0008,
1752 0x1013, 0x3032, 0x4044, 0x8088,
1753 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1754 0x4857, 0xc4fe, 0x13cc, 0x3288,
1755 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1756 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1757 0x15c1, 0x2a42, 0x89ac, 0x4758,
1758 0x2b03, 0x1602, 0x4f0c, 0xca08,
1759 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1760 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1761 0x2b87, 0x164e, 0x642c, 0xdc18,
1762 0x40b9, 0x80de, 0x1094, 0x20e8,
1763 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1764 0x11c1, 0x2242, 0x84ac, 0x4c58,
1765 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1766 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1767 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1768 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1769 0x16b3, 0x3d62, 0x4f34, 0x8518,
1770 0x1e2f, 0x391a, 0x5cac, 0xf858,
1771 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1772 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1773 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1774 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1775 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1776 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1777 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1778 0x185d, 0x2ca6, 0x7914, 0x9e28,
1779 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1780 0x4199, 0x82ee, 0x19f4, 0x2e58,
1781 0x4807, 0xc40e, 0x130c, 0x3208,
1782 0x1905, 0x2e0a, 0x5804, 0xac08,
1783 0x213f, 0x132a, 0xadfc, 0x5ba8,
1784 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
1785 };
1786
1787 static u16 x8_vectors[] = {
1788 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1789 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1790 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1791 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1792 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1793 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1794 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1795 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1796 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1797 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1798 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1799 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1800 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1801 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1802 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1803 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1804 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1805 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1806 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1807 };
1808
decode_syndrome(u16 syndrome,u16 * vectors,unsigned num_vecs,unsigned v_dim)1809 static int decode_syndrome(u16 syndrome, u16 *vectors, unsigned num_vecs,
1810 unsigned v_dim)
1811 {
1812 unsigned int i, err_sym;
1813
1814 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1815 u16 s = syndrome;
1816 unsigned v_idx = err_sym * v_dim;
1817 unsigned v_end = (err_sym + 1) * v_dim;
1818
1819 /* walk over all 16 bits of the syndrome */
1820 for (i = 1; i < (1U << 16); i <<= 1) {
1821
1822 /* if bit is set in that eigenvector... */
1823 if (v_idx < v_end && vectors[v_idx] & i) {
1824 u16 ev_comp = vectors[v_idx++];
1825
1826 /* ... and bit set in the modified syndrome, */
1827 if (s & i) {
1828 /* remove it. */
1829 s ^= ev_comp;
1830
1831 if (!s)
1832 return err_sym;
1833 }
1834
1835 } else if (s & i)
1836 /* can't get to zero, move to next symbol */
1837 break;
1838 }
1839 }
1840
1841 debugf0("syndrome(%x) not found\n", syndrome);
1842 return -1;
1843 }
1844
map_err_sym_to_channel(int err_sym,int sym_size)1845 static int map_err_sym_to_channel(int err_sym, int sym_size)
1846 {
1847 if (sym_size == 4)
1848 switch (err_sym) {
1849 case 0x20:
1850 case 0x21:
1851 return 0;
1852 break;
1853 case 0x22:
1854 case 0x23:
1855 return 1;
1856 break;
1857 default:
1858 return err_sym >> 4;
1859 break;
1860 }
1861 /* x8 symbols */
1862 else
1863 switch (err_sym) {
1864 /* imaginary bits not in a DIMM */
1865 case 0x10:
1866 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1867 err_sym);
1868 return -1;
1869 break;
1870
1871 case 0x11:
1872 return 0;
1873 break;
1874 case 0x12:
1875 return 1;
1876 break;
1877 default:
1878 return err_sym >> 3;
1879 break;
1880 }
1881 return -1;
1882 }
1883
get_channel_from_ecc_syndrome(struct mem_ctl_info * mci,u16 syndrome)1884 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1885 {
1886 struct amd64_pvt *pvt = mci->pvt_info;
1887 int err_sym = -1;
1888
1889 if (pvt->ecc_sym_sz == 8)
1890 err_sym = decode_syndrome(syndrome, x8_vectors,
1891 ARRAY_SIZE(x8_vectors),
1892 pvt->ecc_sym_sz);
1893 else if (pvt->ecc_sym_sz == 4)
1894 err_sym = decode_syndrome(syndrome, x4_vectors,
1895 ARRAY_SIZE(x4_vectors),
1896 pvt->ecc_sym_sz);
1897 else {
1898 amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
1899 return err_sym;
1900 }
1901
1902 return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
1903 }
1904
1905 /*
1906 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
1907 * ADDRESS and process.
1908 */
amd64_handle_ce(struct mem_ctl_info * mci,struct mce * m)1909 static void amd64_handle_ce(struct mem_ctl_info *mci, struct mce *m)
1910 {
1911 struct amd64_pvt *pvt = mci->pvt_info;
1912 u64 sys_addr;
1913 u16 syndrome;
1914
1915 /* Ensure that the Error Address is VALID */
1916 if (!(m->status & MCI_STATUS_ADDRV)) {
1917 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1918 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1919 return;
1920 }
1921
1922 sys_addr = get_error_address(m);
1923 syndrome = extract_syndrome(m->status);
1924
1925 amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
1926
1927 pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, syndrome);
1928 }
1929
1930 /* Handle any Un-correctable Errors (UEs) */
amd64_handle_ue(struct mem_ctl_info * mci,struct mce * m)1931 static void amd64_handle_ue(struct mem_ctl_info *mci, struct mce *m)
1932 {
1933 struct mem_ctl_info *log_mci, *src_mci = NULL;
1934 int csrow;
1935 u64 sys_addr;
1936 u32 page, offset;
1937
1938 log_mci = mci;
1939
1940 if (!(m->status & MCI_STATUS_ADDRV)) {
1941 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1942 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1943 return;
1944 }
1945
1946 sys_addr = get_error_address(m);
1947
1948 /*
1949 * Find out which node the error address belongs to. This may be
1950 * different from the node that detected the error.
1951 */
1952 src_mci = find_mc_by_sys_addr(mci, sys_addr);
1953 if (!src_mci) {
1954 amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
1955 (unsigned long)sys_addr);
1956 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1957 return;
1958 }
1959
1960 log_mci = src_mci;
1961
1962 csrow = sys_addr_to_csrow(log_mci, sys_addr);
1963 if (csrow < 0) {
1964 amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
1965 (unsigned long)sys_addr);
1966 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1967 } else {
1968 error_address_to_page_and_offset(sys_addr, &page, &offset);
1969 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
1970 }
1971 }
1972
__amd64_decode_bus_error(struct mem_ctl_info * mci,struct mce * m)1973 static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
1974 struct mce *m)
1975 {
1976 u16 ec = EC(m->status);
1977 u8 xec = XEC(m->status, 0x1f);
1978 u8 ecc_type = (m->status >> 45) & 0x3;
1979
1980 /* Bail early out if this was an 'observed' error */
1981 if (PP(ec) == NBSL_PP_OBS)
1982 return;
1983
1984 /* Do only ECC errors */
1985 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
1986 return;
1987
1988 if (ecc_type == 2)
1989 amd64_handle_ce(mci, m);
1990 else if (ecc_type == 1)
1991 amd64_handle_ue(mci, m);
1992 }
1993
amd64_decode_bus_error(int node_id,struct mce * m)1994 void amd64_decode_bus_error(int node_id, struct mce *m)
1995 {
1996 __amd64_decode_bus_error(mcis[node_id], m);
1997 }
1998
1999 /*
2000 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
2001 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
2002 */
reserve_mc_sibling_devs(struct amd64_pvt * pvt,u16 f1_id,u16 f3_id)2003 static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
2004 {
2005 /* Reserve the ADDRESS MAP Device */
2006 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
2007 if (!pvt->F1) {
2008 amd64_err("error address map device not found: "
2009 "vendor %x device 0x%x (broken BIOS?)\n",
2010 PCI_VENDOR_ID_AMD, f1_id);
2011 return -ENODEV;
2012 }
2013
2014 /* Reserve the MISC Device */
2015 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
2016 if (!pvt->F3) {
2017 pci_dev_put(pvt->F1);
2018 pvt->F1 = NULL;
2019
2020 amd64_err("error F3 device not found: "
2021 "vendor %x device 0x%x (broken BIOS?)\n",
2022 PCI_VENDOR_ID_AMD, f3_id);
2023
2024 return -ENODEV;
2025 }
2026 debugf1("F1: %s\n", pci_name(pvt->F1));
2027 debugf1("F2: %s\n", pci_name(pvt->F2));
2028 debugf1("F3: %s\n", pci_name(pvt->F3));
2029
2030 return 0;
2031 }
2032
free_mc_sibling_devs(struct amd64_pvt * pvt)2033 static void free_mc_sibling_devs(struct amd64_pvt *pvt)
2034 {
2035 pci_dev_put(pvt->F1);
2036 pci_dev_put(pvt->F3);
2037 }
2038
2039 /*
2040 * Retrieve the hardware registers of the memory controller (this includes the
2041 * 'Address Map' and 'Misc' device regs)
2042 */
read_mc_regs(struct amd64_pvt * pvt)2043 static void read_mc_regs(struct amd64_pvt *pvt)
2044 {
2045 struct cpuinfo_x86 *c = &boot_cpu_data;
2046 u64 msr_val;
2047 u32 tmp;
2048 unsigned range;
2049
2050 /*
2051 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2052 * those are Read-As-Zero
2053 */
2054 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2055 debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
2056
2057 /* check first whether TOP_MEM2 is enabled */
2058 rdmsrl(MSR_K8_SYSCFG, msr_val);
2059 if (msr_val & (1U << 21)) {
2060 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2061 debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
2062 } else
2063 debugf0(" TOP_MEM2 disabled.\n");
2064
2065 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
2066
2067 read_dram_ctl_register(pvt);
2068
2069 for (range = 0; range < DRAM_RANGES; range++) {
2070 u8 rw;
2071
2072 /* read settings for this DRAM range */
2073 read_dram_base_limit_regs(pvt, range);
2074
2075 rw = dram_rw(pvt, range);
2076 if (!rw)
2077 continue;
2078
2079 debugf1(" DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
2080 range,
2081 get_dram_base(pvt, range),
2082 get_dram_limit(pvt, range));
2083
2084 debugf1(" IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
2085 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
2086 (rw & 0x1) ? "R" : "-",
2087 (rw & 0x2) ? "W" : "-",
2088 dram_intlv_sel(pvt, range),
2089 dram_dst_node(pvt, range));
2090 }
2091
2092 read_dct_base_mask(pvt);
2093
2094 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
2095 amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
2096
2097 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
2098
2099 amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
2100 amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
2101
2102 if (!dct_ganging_enabled(pvt)) {
2103 amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
2104 amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
2105 }
2106
2107 pvt->ecc_sym_sz = 4;
2108
2109 if (c->x86 >= 0x10) {
2110 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
2111 amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
2112
2113 /* F10h, revD and later can do x8 ECC too */
2114 if ((c->x86 > 0x10 || c->x86_model > 7) && tmp & BIT(25))
2115 pvt->ecc_sym_sz = 8;
2116 }
2117 dump_misc_regs(pvt);
2118 }
2119
2120 /*
2121 * NOTE: CPU Revision Dependent code
2122 *
2123 * Input:
2124 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
2125 * k8 private pointer to -->
2126 * DRAM Bank Address mapping register
2127 * node_id
2128 * DCL register where dual_channel_active is
2129 *
2130 * The DBAM register consists of 4 sets of 4 bits each definitions:
2131 *
2132 * Bits: CSROWs
2133 * 0-3 CSROWs 0 and 1
2134 * 4-7 CSROWs 2 and 3
2135 * 8-11 CSROWs 4 and 5
2136 * 12-15 CSROWs 6 and 7
2137 *
2138 * Values range from: 0 to 15
2139 * The meaning of the values depends on CPU revision and dual-channel state,
2140 * see relevant BKDG more info.
2141 *
2142 * The memory controller provides for total of only 8 CSROWs in its current
2143 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2144 * single channel or two (2) DIMMs in dual channel mode.
2145 *
2146 * The following code logic collapses the various tables for CSROW based on CPU
2147 * revision.
2148 *
2149 * Returns:
2150 * The number of PAGE_SIZE pages on the specified CSROW number it
2151 * encompasses
2152 *
2153 */
amd64_csrow_nr_pages(struct amd64_pvt * pvt,u8 dct,int csrow_nr)2154 static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
2155 {
2156 u32 cs_mode, nr_pages;
2157 u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
2158
2159 /*
2160 * The math on this doesn't look right on the surface because x/2*4 can
2161 * be simplified to x*2 but this expression makes use of the fact that
2162 * it is integral math where 1/2=0. This intermediate value becomes the
2163 * number of bits to shift the DBAM register to extract the proper CSROW
2164 * field.
2165 */
2166 cs_mode = (dbam >> ((csrow_nr / 2) * 4)) & 0xF;
2167
2168 nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
2169
2170 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
2171 debugf0(" nr_pages= %u channel-count = %d\n",
2172 nr_pages, pvt->channel_count);
2173
2174 return nr_pages;
2175 }
2176
2177 /*
2178 * Initialize the array of csrow attribute instances, based on the values
2179 * from pci config hardware registers.
2180 */
init_csrows(struct mem_ctl_info * mci)2181 static int init_csrows(struct mem_ctl_info *mci)
2182 {
2183 struct csrow_info *csrow;
2184 struct amd64_pvt *pvt = mci->pvt_info;
2185 u64 input_addr_min, input_addr_max, sys_addr, base, mask;
2186 u32 val;
2187 int i, empty = 1;
2188
2189 amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
2190
2191 pvt->nbcfg = val;
2192
2193 debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2194 pvt->mc_node_id, val,
2195 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
2196
2197 for_each_chip_select(i, 0, pvt) {
2198 csrow = &mci->csrows[i];
2199
2200 if (!csrow_enabled(i, 0, pvt) && !csrow_enabled(i, 1, pvt)) {
2201 debugf1("----CSROW %d EMPTY for node %d\n", i,
2202 pvt->mc_node_id);
2203 continue;
2204 }
2205
2206 debugf1("----CSROW %d VALID for MC node %d\n",
2207 i, pvt->mc_node_id);
2208
2209 empty = 0;
2210 if (csrow_enabled(i, 0, pvt))
2211 csrow->nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
2212 if (csrow_enabled(i, 1, pvt))
2213 csrow->nr_pages += amd64_csrow_nr_pages(pvt, 1, i);
2214 find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2215 sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2216 csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2217 sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2218 csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
2219
2220 get_cs_base_and_mask(pvt, i, 0, &base, &mask);
2221 csrow->page_mask = ~mask;
2222 /* 8 bytes of resolution */
2223
2224 csrow->mtype = amd64_determine_memory_type(pvt, i);
2225
2226 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2227 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2228 (unsigned long)input_addr_min,
2229 (unsigned long)input_addr_max);
2230 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
2231 (unsigned long)sys_addr, csrow->page_mask);
2232 debugf1(" nr_pages: %u first_page: 0x%lx "
2233 "last_page: 0x%lx\n",
2234 (unsigned)csrow->nr_pages,
2235 csrow->first_page, csrow->last_page);
2236
2237 /*
2238 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2239 */
2240 if (pvt->nbcfg & NBCFG_ECC_ENABLE)
2241 csrow->edac_mode =
2242 (pvt->nbcfg & NBCFG_CHIPKILL) ?
2243 EDAC_S4ECD4ED : EDAC_SECDED;
2244 else
2245 csrow->edac_mode = EDAC_NONE;
2246 }
2247
2248 return empty;
2249 }
2250
2251 /* get all cores on this DCT */
get_cpus_on_this_dct_cpumask(struct cpumask * mask,unsigned nid)2252 static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, unsigned nid)
2253 {
2254 int cpu;
2255
2256 for_each_online_cpu(cpu)
2257 if (amd_get_nb_id(cpu) == nid)
2258 cpumask_set_cpu(cpu, mask);
2259 }
2260
2261 /* check MCG_CTL on all the cpus on this node */
amd64_nb_mce_bank_enabled_on_node(unsigned nid)2262 static bool amd64_nb_mce_bank_enabled_on_node(unsigned nid)
2263 {
2264 cpumask_var_t mask;
2265 int cpu, nbe;
2266 bool ret = false;
2267
2268 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2269 amd64_warn("%s: Error allocating mask\n", __func__);
2270 return false;
2271 }
2272
2273 get_cpus_on_this_dct_cpumask(mask, nid);
2274
2275 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2276
2277 for_each_cpu(cpu, mask) {
2278 struct msr *reg = per_cpu_ptr(msrs, cpu);
2279 nbe = reg->l & MSR_MCGCTL_NBE;
2280
2281 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2282 cpu, reg->q,
2283 (nbe ? "enabled" : "disabled"));
2284
2285 if (!nbe)
2286 goto out;
2287 }
2288 ret = true;
2289
2290 out:
2291 free_cpumask_var(mask);
2292 return ret;
2293 }
2294
toggle_ecc_err_reporting(struct ecc_settings * s,u8 nid,bool on)2295 static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
2296 {
2297 cpumask_var_t cmask;
2298 int cpu;
2299
2300 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2301 amd64_warn("%s: error allocating mask\n", __func__);
2302 return false;
2303 }
2304
2305 get_cpus_on_this_dct_cpumask(cmask, nid);
2306
2307 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2308
2309 for_each_cpu(cpu, cmask) {
2310
2311 struct msr *reg = per_cpu_ptr(msrs, cpu);
2312
2313 if (on) {
2314 if (reg->l & MSR_MCGCTL_NBE)
2315 s->flags.nb_mce_enable = 1;
2316
2317 reg->l |= MSR_MCGCTL_NBE;
2318 } else {
2319 /*
2320 * Turn off NB MCE reporting only when it was off before
2321 */
2322 if (!s->flags.nb_mce_enable)
2323 reg->l &= ~MSR_MCGCTL_NBE;
2324 }
2325 }
2326 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2327
2328 free_cpumask_var(cmask);
2329
2330 return 0;
2331 }
2332
enable_ecc_error_reporting(struct ecc_settings * s,u8 nid,struct pci_dev * F3)2333 static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2334 struct pci_dev *F3)
2335 {
2336 bool ret = true;
2337 u32 value, mask = 0x3; /* UECC/CECC enable */
2338
2339 if (toggle_ecc_err_reporting(s, nid, ON)) {
2340 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2341 return false;
2342 }
2343
2344 amd64_read_pci_cfg(F3, NBCTL, &value);
2345
2346 s->old_nbctl = value & mask;
2347 s->nbctl_valid = true;
2348
2349 value |= mask;
2350 amd64_write_pci_cfg(F3, NBCTL, value);
2351
2352 amd64_read_pci_cfg(F3, NBCFG, &value);
2353
2354 debugf0("1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2355 nid, value, !!(value & NBCFG_ECC_ENABLE));
2356
2357 if (!(value & NBCFG_ECC_ENABLE)) {
2358 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2359
2360 s->flags.nb_ecc_prev = 0;
2361
2362 /* Attempt to turn on DRAM ECC Enable */
2363 value |= NBCFG_ECC_ENABLE;
2364 amd64_write_pci_cfg(F3, NBCFG, value);
2365
2366 amd64_read_pci_cfg(F3, NBCFG, &value);
2367
2368 if (!(value & NBCFG_ECC_ENABLE)) {
2369 amd64_warn("Hardware rejected DRAM ECC enable,"
2370 "check memory DIMM configuration.\n");
2371 ret = false;
2372 } else {
2373 amd64_info("Hardware accepted DRAM ECC Enable\n");
2374 }
2375 } else {
2376 s->flags.nb_ecc_prev = 1;
2377 }
2378
2379 debugf0("2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2380 nid, value, !!(value & NBCFG_ECC_ENABLE));
2381
2382 return ret;
2383 }
2384
restore_ecc_error_reporting(struct ecc_settings * s,u8 nid,struct pci_dev * F3)2385 static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2386 struct pci_dev *F3)
2387 {
2388 u32 value, mask = 0x3; /* UECC/CECC enable */
2389
2390
2391 if (!s->nbctl_valid)
2392 return;
2393
2394 amd64_read_pci_cfg(F3, NBCTL, &value);
2395 value &= ~mask;
2396 value |= s->old_nbctl;
2397
2398 amd64_write_pci_cfg(F3, NBCTL, value);
2399
2400 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2401 if (!s->flags.nb_ecc_prev) {
2402 amd64_read_pci_cfg(F3, NBCFG, &value);
2403 value &= ~NBCFG_ECC_ENABLE;
2404 amd64_write_pci_cfg(F3, NBCFG, value);
2405 }
2406
2407 /* restore the NB Enable MCGCTL bit */
2408 if (toggle_ecc_err_reporting(s, nid, OFF))
2409 amd64_warn("Error restoring NB MCGCTL settings!\n");
2410 }
2411
2412 /*
2413 * EDAC requires that the BIOS have ECC enabled before
2414 * taking over the processing of ECC errors. A command line
2415 * option allows to force-enable hardware ECC later in
2416 * enable_ecc_error_reporting().
2417 */
2418 static const char *ecc_msg =
2419 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2420 " Either enable ECC checking or force module loading by setting "
2421 "'ecc_enable_override'.\n"
2422 " (Note that use of the override may cause unknown side effects.)\n";
2423
ecc_enabled(struct pci_dev * F3,u8 nid)2424 static bool ecc_enabled(struct pci_dev *F3, u8 nid)
2425 {
2426 u32 value;
2427 u8 ecc_en = 0;
2428 bool nb_mce_en = false;
2429
2430 amd64_read_pci_cfg(F3, NBCFG, &value);
2431
2432 ecc_en = !!(value & NBCFG_ECC_ENABLE);
2433 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
2434
2435 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
2436 if (!nb_mce_en)
2437 amd64_notice("NB MCE bank disabled, set MSR "
2438 "0x%08x[4] on node %d to enable.\n",
2439 MSR_IA32_MCG_CTL, nid);
2440
2441 if (!ecc_en || !nb_mce_en) {
2442 amd64_notice("%s", ecc_msg);
2443 return false;
2444 }
2445 return true;
2446 }
2447
2448 struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2449 ARRAY_SIZE(amd64_inj_attrs) +
2450 1];
2451
2452 struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2453
set_mc_sysfs_attrs(struct mem_ctl_info * mci)2454 static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
2455 {
2456 unsigned int i = 0, j = 0;
2457
2458 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2459 sysfs_attrs[i] = amd64_dbg_attrs[i];
2460
2461 if (boot_cpu_data.x86 >= 0x10)
2462 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2463 sysfs_attrs[i] = amd64_inj_attrs[j];
2464
2465 sysfs_attrs[i] = terminator;
2466
2467 mci->mc_driver_sysfs_attributes = sysfs_attrs;
2468 }
2469
setup_mci_misc_attrs(struct mem_ctl_info * mci,struct amd64_family_type * fam)2470 static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
2471 struct amd64_family_type *fam)
2472 {
2473 struct amd64_pvt *pvt = mci->pvt_info;
2474
2475 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2476 mci->edac_ctl_cap = EDAC_FLAG_NONE;
2477
2478 if (pvt->nbcap & NBCAP_SECDED)
2479 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2480
2481 if (pvt->nbcap & NBCAP_CHIPKILL)
2482 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2483
2484 mci->edac_cap = amd64_determine_edac_cap(pvt);
2485 mci->mod_name = EDAC_MOD_STR;
2486 mci->mod_ver = EDAC_AMD64_VERSION;
2487 mci->ctl_name = fam->ctl_name;
2488 mci->dev_name = pci_name(pvt->F2);
2489 mci->ctl_page_to_phys = NULL;
2490
2491 /* memory scrubber interface */
2492 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2493 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2494 }
2495
2496 /*
2497 * returns a pointer to the family descriptor on success, NULL otherwise.
2498 */
amd64_per_family_init(struct amd64_pvt * pvt)2499 static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
2500 {
2501 u8 fam = boot_cpu_data.x86;
2502 struct amd64_family_type *fam_type = NULL;
2503
2504 switch (fam) {
2505 case 0xf:
2506 fam_type = &amd64_family_types[K8_CPUS];
2507 pvt->ops = &amd64_family_types[K8_CPUS].ops;
2508 break;
2509
2510 case 0x10:
2511 fam_type = &amd64_family_types[F10_CPUS];
2512 pvt->ops = &amd64_family_types[F10_CPUS].ops;
2513 break;
2514
2515 case 0x15:
2516 fam_type = &amd64_family_types[F15_CPUS];
2517 pvt->ops = &amd64_family_types[F15_CPUS].ops;
2518 break;
2519
2520 default:
2521 amd64_err("Unsupported family!\n");
2522 return NULL;
2523 }
2524
2525 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2526
2527 amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
2528 (fam == 0xf ?
2529 (pvt->ext_model >= K8_REV_F ? "revF or later "
2530 : "revE or earlier ")
2531 : ""), pvt->mc_node_id);
2532 return fam_type;
2533 }
2534
amd64_init_one_instance(struct pci_dev * F2)2535 static int amd64_init_one_instance(struct pci_dev *F2)
2536 {
2537 struct amd64_pvt *pvt = NULL;
2538 struct amd64_family_type *fam_type = NULL;
2539 struct mem_ctl_info *mci = NULL;
2540 int err = 0, ret;
2541 u8 nid = get_node_id(F2);
2542
2543 ret = -ENOMEM;
2544 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2545 if (!pvt)
2546 goto err_ret;
2547
2548 pvt->mc_node_id = nid;
2549 pvt->F2 = F2;
2550
2551 ret = -EINVAL;
2552 fam_type = amd64_per_family_init(pvt);
2553 if (!fam_type)
2554 goto err_free;
2555
2556 ret = -ENODEV;
2557 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
2558 if (err)
2559 goto err_free;
2560
2561 read_mc_regs(pvt);
2562
2563 /*
2564 * We need to determine how many memory channels there are. Then use
2565 * that information for calculating the size of the dynamic instance
2566 * tables in the 'mci' structure.
2567 */
2568 ret = -EINVAL;
2569 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2570 if (pvt->channel_count < 0)
2571 goto err_siblings;
2572
2573 ret = -ENOMEM;
2574 mci = edac_mc_alloc(0, pvt->csels[0].b_cnt, pvt->channel_count, nid);
2575 if (!mci)
2576 goto err_siblings;
2577
2578 mci->pvt_info = pvt;
2579 mci->dev = &pvt->F2->dev;
2580
2581 setup_mci_misc_attrs(mci, fam_type);
2582
2583 if (init_csrows(mci))
2584 mci->edac_cap = EDAC_FLAG_NONE;
2585
2586 set_mc_sysfs_attrs(mci);
2587
2588 ret = -ENODEV;
2589 if (edac_mc_add_mc(mci)) {
2590 debugf1("failed edac_mc_add_mc()\n");
2591 goto err_add_mc;
2592 }
2593
2594 /* register stuff with EDAC MCE */
2595 if (report_gart_errors)
2596 amd_report_gart_errors(true);
2597
2598 amd_register_ecc_decoder(amd64_decode_bus_error);
2599
2600 mcis[nid] = mci;
2601
2602 atomic_inc(&drv_instances);
2603
2604 return 0;
2605
2606 err_add_mc:
2607 edac_mc_free(mci);
2608
2609 err_siblings:
2610 free_mc_sibling_devs(pvt);
2611
2612 err_free:
2613 kfree(pvt);
2614
2615 err_ret:
2616 return ret;
2617 }
2618
amd64_probe_one_instance(struct pci_dev * pdev,const struct pci_device_id * mc_type)2619 static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
2620 const struct pci_device_id *mc_type)
2621 {
2622 u8 nid = get_node_id(pdev);
2623 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2624 struct ecc_settings *s;
2625 int ret = 0;
2626
2627 ret = pci_enable_device(pdev);
2628 if (ret < 0) {
2629 debugf0("ret=%d\n", ret);
2630 return -EIO;
2631 }
2632
2633 ret = -ENOMEM;
2634 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2635 if (!s)
2636 goto err_out;
2637
2638 ecc_stngs[nid] = s;
2639
2640 if (!ecc_enabled(F3, nid)) {
2641 ret = -ENODEV;
2642
2643 if (!ecc_enable_override)
2644 goto err_enable;
2645
2646 amd64_warn("Forcing ECC on!\n");
2647
2648 if (!enable_ecc_error_reporting(s, nid, F3))
2649 goto err_enable;
2650 }
2651
2652 ret = amd64_init_one_instance(pdev);
2653 if (ret < 0) {
2654 amd64_err("Error probing instance: %d\n", nid);
2655 restore_ecc_error_reporting(s, nid, F3);
2656 }
2657
2658 return ret;
2659
2660 err_enable:
2661 kfree(s);
2662 ecc_stngs[nid] = NULL;
2663
2664 err_out:
2665 return ret;
2666 }
2667
amd64_remove_one_instance(struct pci_dev * pdev)2668 static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2669 {
2670 struct mem_ctl_info *mci;
2671 struct amd64_pvt *pvt;
2672 u8 nid = get_node_id(pdev);
2673 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2674 struct ecc_settings *s = ecc_stngs[nid];
2675
2676 /* Remove from EDAC CORE tracking list */
2677 mci = edac_mc_del_mc(&pdev->dev);
2678 if (!mci)
2679 return;
2680
2681 pvt = mci->pvt_info;
2682
2683 restore_ecc_error_reporting(s, nid, F3);
2684
2685 free_mc_sibling_devs(pvt);
2686
2687 /* unregister from EDAC MCE */
2688 amd_report_gart_errors(false);
2689 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2690
2691 kfree(ecc_stngs[nid]);
2692 ecc_stngs[nid] = NULL;
2693
2694 /* Free the EDAC CORE resources */
2695 mci->pvt_info = NULL;
2696 mcis[nid] = NULL;
2697
2698 kfree(pvt);
2699 edac_mc_free(mci);
2700 }
2701
2702 /*
2703 * This table is part of the interface for loading drivers for PCI devices. The
2704 * PCI core identifies what devices are on a system during boot, and then
2705 * inquiry this table to see if this driver is for a given device found.
2706 */
2707 static DEFINE_PCI_DEVICE_TABLE(amd64_pci_table) = {
2708 {
2709 .vendor = PCI_VENDOR_ID_AMD,
2710 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2711 .subvendor = PCI_ANY_ID,
2712 .subdevice = PCI_ANY_ID,
2713 .class = 0,
2714 .class_mask = 0,
2715 },
2716 {
2717 .vendor = PCI_VENDOR_ID_AMD,
2718 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2719 .subvendor = PCI_ANY_ID,
2720 .subdevice = PCI_ANY_ID,
2721 .class = 0,
2722 .class_mask = 0,
2723 },
2724 {
2725 .vendor = PCI_VENDOR_ID_AMD,
2726 .device = PCI_DEVICE_ID_AMD_15H_NB_F2,
2727 .subvendor = PCI_ANY_ID,
2728 .subdevice = PCI_ANY_ID,
2729 .class = 0,
2730 .class_mask = 0,
2731 },
2732
2733 {0, }
2734 };
2735 MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2736
2737 static struct pci_driver amd64_pci_driver = {
2738 .name = EDAC_MOD_STR,
2739 .probe = amd64_probe_one_instance,
2740 .remove = __devexit_p(amd64_remove_one_instance),
2741 .id_table = amd64_pci_table,
2742 };
2743
setup_pci_device(void)2744 static void setup_pci_device(void)
2745 {
2746 struct mem_ctl_info *mci;
2747 struct amd64_pvt *pvt;
2748
2749 if (amd64_ctl_pci)
2750 return;
2751
2752 mci = mcis[0];
2753 if (mci) {
2754
2755 pvt = mci->pvt_info;
2756 amd64_ctl_pci =
2757 edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
2758
2759 if (!amd64_ctl_pci) {
2760 pr_warning("%s(): Unable to create PCI control\n",
2761 __func__);
2762
2763 pr_warning("%s(): PCI error report via EDAC not set\n",
2764 __func__);
2765 }
2766 }
2767 }
2768
amd64_edac_init(void)2769 static int __init amd64_edac_init(void)
2770 {
2771 int err = -ENODEV;
2772
2773 printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
2774
2775 opstate_init();
2776
2777 if (amd_cache_northbridges() < 0)
2778 goto err_ret;
2779
2780 err = -ENOMEM;
2781 mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
2782 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
2783 if (!(mcis && ecc_stngs))
2784 goto err_free;
2785
2786 msrs = msrs_alloc();
2787 if (!msrs)
2788 goto err_free;
2789
2790 err = pci_register_driver(&amd64_pci_driver);
2791 if (err)
2792 goto err_pci;
2793
2794 err = -ENODEV;
2795 if (!atomic_read(&drv_instances))
2796 goto err_no_instances;
2797
2798 setup_pci_device();
2799 return 0;
2800
2801 err_no_instances:
2802 pci_unregister_driver(&amd64_pci_driver);
2803
2804 err_pci:
2805 msrs_free(msrs);
2806 msrs = NULL;
2807
2808 err_free:
2809 kfree(mcis);
2810 mcis = NULL;
2811
2812 kfree(ecc_stngs);
2813 ecc_stngs = NULL;
2814
2815 err_ret:
2816 return err;
2817 }
2818
amd64_edac_exit(void)2819 static void __exit amd64_edac_exit(void)
2820 {
2821 if (amd64_ctl_pci)
2822 edac_pci_release_generic_ctl(amd64_ctl_pci);
2823
2824 pci_unregister_driver(&amd64_pci_driver);
2825
2826 kfree(ecc_stngs);
2827 ecc_stngs = NULL;
2828
2829 kfree(mcis);
2830 mcis = NULL;
2831
2832 msrs_free(msrs);
2833 msrs = NULL;
2834 }
2835
2836 module_init(amd64_edac_init);
2837 module_exit(amd64_edac_exit);
2838
2839 MODULE_LICENSE("GPL");
2840 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2841 "Dave Peterson, Thayne Harbaugh");
2842 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2843 EDAC_AMD64_VERSION);
2844
2845 module_param(edac_op_state, int, 0444);
2846 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
2847