1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * scan.c - support for transforming the ACPI namespace into individual objects
4 */
5
6 #define pr_fmt(fmt) "ACPI: " fmt
7
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/slab.h>
11 #include <linux/kernel.h>
12 #include <linux/acpi.h>
13 #include <linux/acpi_iort.h>
14 #include <linux/acpi_viot.h>
15 #include <linux/iommu.h>
16 #include <linux/signal.h>
17 #include <linux/kthread.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-map-ops.h>
20 #include <linux/platform_data/x86/apple.h>
21 #include <linux/pgtable.h>
22 #include <linux/crc32.h>
23 #include <linux/dma-direct.h>
24
25 #include "internal.h"
26 #include "sleep.h"
27
28 #define ACPI_BUS_CLASS "system_bus"
29 #define ACPI_BUS_HID "LNXSYBUS"
30 #define ACPI_BUS_DEVICE_NAME "System Bus"
31
32 #define INVALID_ACPI_HANDLE ((acpi_handle)ZERO_PAGE(0))
33
34 static const char *dummy_hid = "device";
35
36 static LIST_HEAD(acpi_dep_list);
37 static DEFINE_MUTEX(acpi_dep_list_lock);
38 LIST_HEAD(acpi_bus_id_list);
39 static DEFINE_MUTEX(acpi_scan_lock);
40 static LIST_HEAD(acpi_scan_handlers_list);
41 DEFINE_MUTEX(acpi_device_lock);
42 LIST_HEAD(acpi_wakeup_device_list);
43 static DEFINE_MUTEX(acpi_hp_context_lock);
44
45 /*
46 * The UART device described by the SPCR table is the only object which needs
47 * special-casing. Everything else is covered by ACPI namespace paths in STAO
48 * table.
49 */
50 static u64 spcr_uart_addr;
51
acpi_scan_lock_acquire(void)52 void acpi_scan_lock_acquire(void)
53 {
54 mutex_lock(&acpi_scan_lock);
55 }
56 EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire);
57
acpi_scan_lock_release(void)58 void acpi_scan_lock_release(void)
59 {
60 mutex_unlock(&acpi_scan_lock);
61 }
62 EXPORT_SYMBOL_GPL(acpi_scan_lock_release);
63
acpi_lock_hp_context(void)64 void acpi_lock_hp_context(void)
65 {
66 mutex_lock(&acpi_hp_context_lock);
67 }
68
acpi_unlock_hp_context(void)69 void acpi_unlock_hp_context(void)
70 {
71 mutex_unlock(&acpi_hp_context_lock);
72 }
73
acpi_initialize_hp_context(struct acpi_device * adev,struct acpi_hotplug_context * hp,int (* notify)(struct acpi_device *,u32),void (* uevent)(struct acpi_device *,u32))74 void acpi_initialize_hp_context(struct acpi_device *adev,
75 struct acpi_hotplug_context *hp,
76 int (*notify)(struct acpi_device *, u32),
77 void (*uevent)(struct acpi_device *, u32))
78 {
79 acpi_lock_hp_context();
80 hp->notify = notify;
81 hp->uevent = uevent;
82 acpi_set_hp_context(adev, hp);
83 acpi_unlock_hp_context();
84 }
85 EXPORT_SYMBOL_GPL(acpi_initialize_hp_context);
86
acpi_scan_add_handler(struct acpi_scan_handler * handler)87 int acpi_scan_add_handler(struct acpi_scan_handler *handler)
88 {
89 if (!handler)
90 return -EINVAL;
91
92 list_add_tail(&handler->list_node, &acpi_scan_handlers_list);
93 return 0;
94 }
95
acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler * handler,const char * hotplug_profile_name)96 int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler,
97 const char *hotplug_profile_name)
98 {
99 int error;
100
101 error = acpi_scan_add_handler(handler);
102 if (error)
103 return error;
104
105 acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name);
106 return 0;
107 }
108
acpi_scan_is_offline(struct acpi_device * adev,bool uevent)109 bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent)
110 {
111 struct acpi_device_physical_node *pn;
112 bool offline = true;
113 char *envp[] = { "EVENT=offline", NULL };
114
115 /*
116 * acpi_container_offline() calls this for all of the container's
117 * children under the container's physical_node_lock lock.
118 */
119 mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING);
120
121 list_for_each_entry(pn, &adev->physical_node_list, node)
122 if (device_supports_offline(pn->dev) && !pn->dev->offline) {
123 if (uevent)
124 kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp);
125
126 offline = false;
127 break;
128 }
129
130 mutex_unlock(&adev->physical_node_lock);
131 return offline;
132 }
133
acpi_bus_offline(acpi_handle handle,u32 lvl,void * data,void ** ret_p)134 static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data,
135 void **ret_p)
136 {
137 struct acpi_device *device = acpi_fetch_acpi_dev(handle);
138 struct acpi_device_physical_node *pn;
139 bool second_pass = (bool)data;
140 acpi_status status = AE_OK;
141
142 if (!device)
143 return AE_OK;
144
145 if (device->handler && !device->handler->hotplug.enabled) {
146 *ret_p = &device->dev;
147 return AE_SUPPORT;
148 }
149
150 mutex_lock(&device->physical_node_lock);
151
152 list_for_each_entry(pn, &device->physical_node_list, node) {
153 int ret;
154
155 if (second_pass) {
156 /* Skip devices offlined by the first pass. */
157 if (pn->put_online)
158 continue;
159 } else {
160 pn->put_online = false;
161 }
162 ret = device_offline(pn->dev);
163 if (ret >= 0) {
164 pn->put_online = !ret;
165 } else {
166 *ret_p = pn->dev;
167 if (second_pass) {
168 status = AE_ERROR;
169 break;
170 }
171 }
172 }
173
174 mutex_unlock(&device->physical_node_lock);
175
176 return status;
177 }
178
acpi_bus_online(acpi_handle handle,u32 lvl,void * data,void ** ret_p)179 static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data,
180 void **ret_p)
181 {
182 struct acpi_device *device = acpi_fetch_acpi_dev(handle);
183 struct acpi_device_physical_node *pn;
184
185 if (!device)
186 return AE_OK;
187
188 mutex_lock(&device->physical_node_lock);
189
190 list_for_each_entry(pn, &device->physical_node_list, node)
191 if (pn->put_online) {
192 device_online(pn->dev);
193 pn->put_online = false;
194 }
195
196 mutex_unlock(&device->physical_node_lock);
197
198 return AE_OK;
199 }
200
acpi_scan_try_to_offline(struct acpi_device * device)201 static int acpi_scan_try_to_offline(struct acpi_device *device)
202 {
203 acpi_handle handle = device->handle;
204 struct device *errdev = NULL;
205 acpi_status status;
206
207 /*
208 * Carry out two passes here and ignore errors in the first pass,
209 * because if the devices in question are memory blocks and
210 * CONFIG_MEMCG is set, one of the blocks may hold data structures
211 * that the other blocks depend on, but it is not known in advance which
212 * block holds them.
213 *
214 * If the first pass is successful, the second one isn't needed, though.
215 */
216 status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
217 NULL, acpi_bus_offline, (void *)false,
218 (void **)&errdev);
219 if (status == AE_SUPPORT) {
220 dev_warn(errdev, "Offline disabled.\n");
221 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
222 acpi_bus_online, NULL, NULL, NULL);
223 return -EPERM;
224 }
225 acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev);
226 if (errdev) {
227 errdev = NULL;
228 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
229 NULL, acpi_bus_offline, (void *)true,
230 (void **)&errdev);
231 if (!errdev)
232 acpi_bus_offline(handle, 0, (void *)true,
233 (void **)&errdev);
234
235 if (errdev) {
236 dev_warn(errdev, "Offline failed.\n");
237 acpi_bus_online(handle, 0, NULL, NULL);
238 acpi_walk_namespace(ACPI_TYPE_ANY, handle,
239 ACPI_UINT32_MAX, acpi_bus_online,
240 NULL, NULL, NULL);
241 return -EBUSY;
242 }
243 }
244 return 0;
245 }
246
acpi_scan_hot_remove(struct acpi_device * device)247 static int acpi_scan_hot_remove(struct acpi_device *device)
248 {
249 acpi_handle handle = device->handle;
250 unsigned long long sta;
251 acpi_status status;
252
253 if (device->handler && device->handler->hotplug.demand_offline) {
254 if (!acpi_scan_is_offline(device, true))
255 return -EBUSY;
256 } else {
257 int error = acpi_scan_try_to_offline(device);
258 if (error)
259 return error;
260 }
261
262 acpi_handle_debug(handle, "Ejecting\n");
263
264 acpi_bus_trim(device);
265
266 acpi_evaluate_lck(handle, 0);
267 /*
268 * TBD: _EJD support.
269 */
270 status = acpi_evaluate_ej0(handle);
271 if (status == AE_NOT_FOUND)
272 return -ENODEV;
273 else if (ACPI_FAILURE(status))
274 return -EIO;
275
276 /*
277 * Verify if eject was indeed successful. If not, log an error
278 * message. No need to call _OST since _EJ0 call was made OK.
279 */
280 status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
281 if (ACPI_FAILURE(status)) {
282 acpi_handle_warn(handle,
283 "Status check after eject failed (0x%x)\n", status);
284 } else if (sta & ACPI_STA_DEVICE_ENABLED) {
285 acpi_handle_warn(handle,
286 "Eject incomplete - status 0x%llx\n", sta);
287 }
288
289 return 0;
290 }
291
acpi_scan_device_not_present(struct acpi_device * adev)292 static int acpi_scan_device_not_present(struct acpi_device *adev)
293 {
294 if (!acpi_device_enumerated(adev)) {
295 dev_warn(&adev->dev, "Still not present\n");
296 return -EALREADY;
297 }
298 acpi_bus_trim(adev);
299 return 0;
300 }
301
acpi_scan_device_check(struct acpi_device * adev)302 static int acpi_scan_device_check(struct acpi_device *adev)
303 {
304 int error;
305
306 acpi_bus_get_status(adev);
307 if (adev->status.present || adev->status.functional) {
308 /*
309 * This function is only called for device objects for which
310 * matching scan handlers exist. The only situation in which
311 * the scan handler is not attached to this device object yet
312 * is when the device has just appeared (either it wasn't
313 * present at all before or it was removed and then added
314 * again).
315 */
316 if (adev->handler) {
317 dev_warn(&adev->dev, "Already enumerated\n");
318 return -EALREADY;
319 }
320 error = acpi_bus_scan(adev->handle);
321 if (error) {
322 dev_warn(&adev->dev, "Namespace scan failure\n");
323 return error;
324 }
325 if (!adev->handler) {
326 dev_warn(&adev->dev, "Enumeration failure\n");
327 error = -ENODEV;
328 }
329 } else {
330 error = acpi_scan_device_not_present(adev);
331 }
332 return error;
333 }
334
acpi_scan_bus_check(struct acpi_device * adev,void * not_used)335 static int acpi_scan_bus_check(struct acpi_device *adev, void *not_used)
336 {
337 struct acpi_scan_handler *handler = adev->handler;
338 int error;
339
340 acpi_bus_get_status(adev);
341 if (!(adev->status.present || adev->status.functional)) {
342 acpi_scan_device_not_present(adev);
343 return 0;
344 }
345 if (handler && handler->hotplug.scan_dependent)
346 return handler->hotplug.scan_dependent(adev);
347
348 error = acpi_bus_scan(adev->handle);
349 if (error) {
350 dev_warn(&adev->dev, "Namespace scan failure\n");
351 return error;
352 }
353 return acpi_dev_for_each_child(adev, acpi_scan_bus_check, NULL);
354 }
355
acpi_generic_hotplug_event(struct acpi_device * adev,u32 type)356 static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type)
357 {
358 switch (type) {
359 case ACPI_NOTIFY_BUS_CHECK:
360 return acpi_scan_bus_check(adev, NULL);
361 case ACPI_NOTIFY_DEVICE_CHECK:
362 return acpi_scan_device_check(adev);
363 case ACPI_NOTIFY_EJECT_REQUEST:
364 case ACPI_OST_EC_OSPM_EJECT:
365 if (adev->handler && !adev->handler->hotplug.enabled) {
366 dev_info(&adev->dev, "Eject disabled\n");
367 return -EPERM;
368 }
369 acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST,
370 ACPI_OST_SC_EJECT_IN_PROGRESS, NULL);
371 return acpi_scan_hot_remove(adev);
372 }
373 return -EINVAL;
374 }
375
acpi_device_hotplug(struct acpi_device * adev,u32 src)376 void acpi_device_hotplug(struct acpi_device *adev, u32 src)
377 {
378 u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
379 int error = -ENODEV;
380
381 lock_device_hotplug();
382 mutex_lock(&acpi_scan_lock);
383
384 /*
385 * The device object's ACPI handle cannot become invalid as long as we
386 * are holding acpi_scan_lock, but it might have become invalid before
387 * that lock was acquired.
388 */
389 if (adev->handle == INVALID_ACPI_HANDLE)
390 goto err_out;
391
392 if (adev->flags.is_dock_station) {
393 error = dock_notify(adev, src);
394 } else if (adev->flags.hotplug_notify) {
395 error = acpi_generic_hotplug_event(adev, src);
396 } else {
397 int (*notify)(struct acpi_device *, u32);
398
399 acpi_lock_hp_context();
400 notify = adev->hp ? adev->hp->notify : NULL;
401 acpi_unlock_hp_context();
402 /*
403 * There may be additional notify handlers for device objects
404 * without the .event() callback, so ignore them here.
405 */
406 if (notify)
407 error = notify(adev, src);
408 else
409 goto out;
410 }
411 switch (error) {
412 case 0:
413 ost_code = ACPI_OST_SC_SUCCESS;
414 break;
415 case -EPERM:
416 ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED;
417 break;
418 case -EBUSY:
419 ost_code = ACPI_OST_SC_DEVICE_BUSY;
420 break;
421 default:
422 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
423 break;
424 }
425
426 err_out:
427 acpi_evaluate_ost(adev->handle, src, ost_code, NULL);
428
429 out:
430 acpi_put_acpi_dev(adev);
431 mutex_unlock(&acpi_scan_lock);
432 unlock_device_hotplug();
433 }
434
acpi_free_power_resources_lists(struct acpi_device * device)435 static void acpi_free_power_resources_lists(struct acpi_device *device)
436 {
437 int i;
438
439 if (device->wakeup.flags.valid)
440 acpi_power_resources_list_free(&device->wakeup.resources);
441
442 if (!device->power.flags.power_resources)
443 return;
444
445 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
446 struct acpi_device_power_state *ps = &device->power.states[i];
447 acpi_power_resources_list_free(&ps->resources);
448 }
449 }
450
acpi_device_release(struct device * dev)451 static void acpi_device_release(struct device *dev)
452 {
453 struct acpi_device *acpi_dev = to_acpi_device(dev);
454
455 acpi_free_properties(acpi_dev);
456 acpi_free_pnp_ids(&acpi_dev->pnp);
457 acpi_free_power_resources_lists(acpi_dev);
458 kfree(acpi_dev);
459 }
460
acpi_device_del(struct acpi_device * device)461 static void acpi_device_del(struct acpi_device *device)
462 {
463 struct acpi_device_bus_id *acpi_device_bus_id;
464
465 mutex_lock(&acpi_device_lock);
466
467 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node)
468 if (!strcmp(acpi_device_bus_id->bus_id,
469 acpi_device_hid(device))) {
470 ida_free(&acpi_device_bus_id->instance_ida,
471 device->pnp.instance_no);
472 if (ida_is_empty(&acpi_device_bus_id->instance_ida)) {
473 list_del(&acpi_device_bus_id->node);
474 kfree_const(acpi_device_bus_id->bus_id);
475 kfree(acpi_device_bus_id);
476 }
477 break;
478 }
479
480 list_del(&device->wakeup_list);
481
482 mutex_unlock(&acpi_device_lock);
483
484 acpi_power_add_remove_device(device, false);
485 acpi_device_remove_files(device);
486 if (device->remove)
487 device->remove(device);
488
489 device_del(&device->dev);
490 }
491
492 static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain);
493
494 static LIST_HEAD(acpi_device_del_list);
495 static DEFINE_MUTEX(acpi_device_del_lock);
496
acpi_device_del_work_fn(struct work_struct * work_not_used)497 static void acpi_device_del_work_fn(struct work_struct *work_not_used)
498 {
499 for (;;) {
500 struct acpi_device *adev;
501
502 mutex_lock(&acpi_device_del_lock);
503
504 if (list_empty(&acpi_device_del_list)) {
505 mutex_unlock(&acpi_device_del_lock);
506 break;
507 }
508 adev = list_first_entry(&acpi_device_del_list,
509 struct acpi_device, del_list);
510 list_del(&adev->del_list);
511
512 mutex_unlock(&acpi_device_del_lock);
513
514 blocking_notifier_call_chain(&acpi_reconfig_chain,
515 ACPI_RECONFIG_DEVICE_REMOVE, adev);
516
517 acpi_device_del(adev);
518 /*
519 * Drop references to all power resources that might have been
520 * used by the device.
521 */
522 acpi_power_transition(adev, ACPI_STATE_D3_COLD);
523 acpi_dev_put(adev);
524 }
525 }
526
527 /**
528 * acpi_scan_drop_device - Drop an ACPI device object.
529 * @handle: Handle of an ACPI namespace node, not used.
530 * @context: Address of the ACPI device object to drop.
531 *
532 * This is invoked by acpi_ns_delete_node() during the removal of the ACPI
533 * namespace node the device object pointed to by @context is attached to.
534 *
535 * The unregistration is carried out asynchronously to avoid running
536 * acpi_device_del() under the ACPICA's namespace mutex and the list is used to
537 * ensure the correct ordering (the device objects must be unregistered in the
538 * same order in which the corresponding namespace nodes are deleted).
539 */
acpi_scan_drop_device(acpi_handle handle,void * context)540 static void acpi_scan_drop_device(acpi_handle handle, void *context)
541 {
542 static DECLARE_WORK(work, acpi_device_del_work_fn);
543 struct acpi_device *adev = context;
544
545 mutex_lock(&acpi_device_del_lock);
546
547 /*
548 * Use the ACPI hotplug workqueue which is ordered, so this work item
549 * won't run after any hotplug work items submitted subsequently. That
550 * prevents attempts to register device objects identical to those being
551 * deleted from happening concurrently (such attempts result from
552 * hotplug events handled via the ACPI hotplug workqueue). It also will
553 * run after all of the work items submitted previously, which helps
554 * those work items to ensure that they are not accessing stale device
555 * objects.
556 */
557 if (list_empty(&acpi_device_del_list))
558 acpi_queue_hotplug_work(&work);
559
560 list_add_tail(&adev->del_list, &acpi_device_del_list);
561 /* Make acpi_ns_validate_handle() return NULL for this handle. */
562 adev->handle = INVALID_ACPI_HANDLE;
563
564 mutex_unlock(&acpi_device_del_lock);
565 }
566
handle_to_device(acpi_handle handle,void (* callback)(void *))567 static struct acpi_device *handle_to_device(acpi_handle handle,
568 void (*callback)(void *))
569 {
570 struct acpi_device *adev = NULL;
571 acpi_status status;
572
573 status = acpi_get_data_full(handle, acpi_scan_drop_device,
574 (void **)&adev, callback);
575 if (ACPI_FAILURE(status) || !adev) {
576 acpi_handle_debug(handle, "No context!\n");
577 return NULL;
578 }
579 return adev;
580 }
581
582 /**
583 * acpi_fetch_acpi_dev - Retrieve ACPI device object.
584 * @handle: ACPI handle associated with the requested ACPI device object.
585 *
586 * Return a pointer to the ACPI device object associated with @handle, if
587 * present, or NULL otherwise.
588 */
acpi_fetch_acpi_dev(acpi_handle handle)589 struct acpi_device *acpi_fetch_acpi_dev(acpi_handle handle)
590 {
591 return handle_to_device(handle, NULL);
592 }
593 EXPORT_SYMBOL_GPL(acpi_fetch_acpi_dev);
594
get_acpi_device(void * dev)595 static void get_acpi_device(void *dev)
596 {
597 acpi_dev_get(dev);
598 }
599
600 /**
601 * acpi_get_acpi_dev - Retrieve ACPI device object and reference count it.
602 * @handle: ACPI handle associated with the requested ACPI device object.
603 *
604 * Return a pointer to the ACPI device object associated with @handle and bump
605 * up that object's reference counter (under the ACPI Namespace lock), if
606 * present, or return NULL otherwise.
607 *
608 * The ACPI device object reference acquired by this function needs to be
609 * dropped via acpi_dev_put().
610 */
acpi_get_acpi_dev(acpi_handle handle)611 struct acpi_device *acpi_get_acpi_dev(acpi_handle handle)
612 {
613 return handle_to_device(handle, get_acpi_device);
614 }
615 EXPORT_SYMBOL_GPL(acpi_get_acpi_dev);
616
acpi_device_bus_id_match(const char * dev_id)617 static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id)
618 {
619 struct acpi_device_bus_id *acpi_device_bus_id;
620
621 /* Find suitable bus_id and instance number in acpi_bus_id_list. */
622 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) {
623 if (!strcmp(acpi_device_bus_id->bus_id, dev_id))
624 return acpi_device_bus_id;
625 }
626 return NULL;
627 }
628
acpi_device_set_name(struct acpi_device * device,struct acpi_device_bus_id * acpi_device_bus_id)629 static int acpi_device_set_name(struct acpi_device *device,
630 struct acpi_device_bus_id *acpi_device_bus_id)
631 {
632 struct ida *instance_ida = &acpi_device_bus_id->instance_ida;
633 int result;
634
635 result = ida_alloc(instance_ida, GFP_KERNEL);
636 if (result < 0)
637 return result;
638
639 device->pnp.instance_no = result;
640 dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result);
641 return 0;
642 }
643
acpi_tie_acpi_dev(struct acpi_device * adev)644 int acpi_tie_acpi_dev(struct acpi_device *adev)
645 {
646 acpi_handle handle = adev->handle;
647 acpi_status status;
648
649 if (!handle)
650 return 0;
651
652 status = acpi_attach_data(handle, acpi_scan_drop_device, adev);
653 if (ACPI_FAILURE(status)) {
654 acpi_handle_err(handle, "Unable to attach device data\n");
655 return -ENODEV;
656 }
657
658 return 0;
659 }
660
acpi_store_pld_crc(struct acpi_device * adev)661 static void acpi_store_pld_crc(struct acpi_device *adev)
662 {
663 struct acpi_pld_info *pld;
664 acpi_status status;
665
666 status = acpi_get_physical_device_location(adev->handle, &pld);
667 if (ACPI_FAILURE(status))
668 return;
669
670 adev->pld_crc = crc32(~0, pld, sizeof(*pld));
671 ACPI_FREE(pld);
672 }
673
acpi_device_add(struct acpi_device * device)674 int acpi_device_add(struct acpi_device *device)
675 {
676 struct acpi_device_bus_id *acpi_device_bus_id;
677 int result;
678
679 /*
680 * Linkage
681 * -------
682 * Link this device to its parent and siblings.
683 */
684 INIT_LIST_HEAD(&device->wakeup_list);
685 INIT_LIST_HEAD(&device->physical_node_list);
686 INIT_LIST_HEAD(&device->del_list);
687 mutex_init(&device->physical_node_lock);
688
689 mutex_lock(&acpi_device_lock);
690
691 acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device));
692 if (acpi_device_bus_id) {
693 result = acpi_device_set_name(device, acpi_device_bus_id);
694 if (result)
695 goto err_unlock;
696 } else {
697 acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id),
698 GFP_KERNEL);
699 if (!acpi_device_bus_id) {
700 result = -ENOMEM;
701 goto err_unlock;
702 }
703 acpi_device_bus_id->bus_id =
704 kstrdup_const(acpi_device_hid(device), GFP_KERNEL);
705 if (!acpi_device_bus_id->bus_id) {
706 kfree(acpi_device_bus_id);
707 result = -ENOMEM;
708 goto err_unlock;
709 }
710
711 ida_init(&acpi_device_bus_id->instance_ida);
712
713 result = acpi_device_set_name(device, acpi_device_bus_id);
714 if (result) {
715 kfree_const(acpi_device_bus_id->bus_id);
716 kfree(acpi_device_bus_id);
717 goto err_unlock;
718 }
719
720 list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list);
721 }
722
723 if (device->wakeup.flags.valid)
724 list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list);
725
726 acpi_store_pld_crc(device);
727
728 mutex_unlock(&acpi_device_lock);
729
730 result = device_add(&device->dev);
731 if (result) {
732 dev_err(&device->dev, "Error registering device\n");
733 goto err;
734 }
735
736 result = acpi_device_setup_files(device);
737 if (result)
738 pr_err("Error creating sysfs interface for device %s\n",
739 dev_name(&device->dev));
740
741 return 0;
742
743 err:
744 mutex_lock(&acpi_device_lock);
745
746 list_del(&device->wakeup_list);
747
748 err_unlock:
749 mutex_unlock(&acpi_device_lock);
750
751 acpi_detach_data(device->handle, acpi_scan_drop_device);
752
753 return result;
754 }
755
756 /* --------------------------------------------------------------------------
757 Device Enumeration
758 -------------------------------------------------------------------------- */
acpi_info_matches_ids(struct acpi_device_info * info,const char * const ids[])759 static bool acpi_info_matches_ids(struct acpi_device_info *info,
760 const char * const ids[])
761 {
762 struct acpi_pnp_device_id_list *cid_list = NULL;
763 int i, index;
764
765 if (!(info->valid & ACPI_VALID_HID))
766 return false;
767
768 index = match_string(ids, -1, info->hardware_id.string);
769 if (index >= 0)
770 return true;
771
772 if (info->valid & ACPI_VALID_CID)
773 cid_list = &info->compatible_id_list;
774
775 if (!cid_list)
776 return false;
777
778 for (i = 0; i < cid_list->count; i++) {
779 index = match_string(ids, -1, cid_list->ids[i].string);
780 if (index >= 0)
781 return true;
782 }
783
784 return false;
785 }
786
787 /* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */
788 static const char * const acpi_ignore_dep_ids[] = {
789 "PNP0D80", /* Windows-compatible System Power Management Controller */
790 "INT33BD", /* Intel Baytrail Mailbox Device */
791 "LATT2021", /* Lattice FW Update Client Driver */
792 NULL
793 };
794
795 /* List of HIDs for which we honor deps of matching ACPI devs, when checking _DEP lists. */
796 static const char * const acpi_honor_dep_ids[] = {
797 "INT3472", /* Camera sensor PMIC / clk and regulator info */
798 "INTC1059", /* IVSC (TGL) driver must be loaded to allow i2c access to camera sensors */
799 "INTC1095", /* IVSC (ADL) driver must be loaded to allow i2c access to camera sensors */
800 "INTC100A", /* IVSC (RPL) driver must be loaded to allow i2c access to camera sensors */
801 NULL
802 };
803
acpi_find_parent_acpi_dev(acpi_handle handle)804 static struct acpi_device *acpi_find_parent_acpi_dev(acpi_handle handle)
805 {
806 struct acpi_device *adev;
807
808 /*
809 * Fixed hardware devices do not appear in the namespace and do not
810 * have handles, but we fabricate acpi_devices for them, so we have
811 * to deal with them specially.
812 */
813 if (!handle)
814 return acpi_root;
815
816 do {
817 acpi_status status;
818
819 status = acpi_get_parent(handle, &handle);
820 if (ACPI_FAILURE(status)) {
821 if (status != AE_NULL_ENTRY)
822 return acpi_root;
823
824 return NULL;
825 }
826 adev = acpi_fetch_acpi_dev(handle);
827 } while (!adev);
828 return adev;
829 }
830
831 acpi_status
acpi_bus_get_ejd(acpi_handle handle,acpi_handle * ejd)832 acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd)
833 {
834 acpi_status status;
835 acpi_handle tmp;
836 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
837 union acpi_object *obj;
838
839 status = acpi_get_handle(handle, "_EJD", &tmp);
840 if (ACPI_FAILURE(status))
841 return status;
842
843 status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer);
844 if (ACPI_SUCCESS(status)) {
845 obj = buffer.pointer;
846 status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer,
847 ejd);
848 kfree(buffer.pointer);
849 }
850 return status;
851 }
852 EXPORT_SYMBOL_GPL(acpi_bus_get_ejd);
853
acpi_bus_extract_wakeup_device_power_package(struct acpi_device * dev)854 static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev)
855 {
856 acpi_handle handle = dev->handle;
857 struct acpi_device_wakeup *wakeup = &dev->wakeup;
858 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
859 union acpi_object *package = NULL;
860 union acpi_object *element = NULL;
861 acpi_status status;
862 int err = -ENODATA;
863
864 INIT_LIST_HEAD(&wakeup->resources);
865
866 /* _PRW */
867 status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer);
868 if (ACPI_FAILURE(status)) {
869 acpi_handle_info(handle, "_PRW evaluation failed: %s\n",
870 acpi_format_exception(status));
871 return err;
872 }
873
874 package = (union acpi_object *)buffer.pointer;
875
876 if (!package || package->package.count < 2)
877 goto out;
878
879 element = &(package->package.elements[0]);
880 if (!element)
881 goto out;
882
883 if (element->type == ACPI_TYPE_PACKAGE) {
884 if ((element->package.count < 2) ||
885 (element->package.elements[0].type !=
886 ACPI_TYPE_LOCAL_REFERENCE)
887 || (element->package.elements[1].type != ACPI_TYPE_INTEGER))
888 goto out;
889
890 wakeup->gpe_device =
891 element->package.elements[0].reference.handle;
892 wakeup->gpe_number =
893 (u32) element->package.elements[1].integer.value;
894 } else if (element->type == ACPI_TYPE_INTEGER) {
895 wakeup->gpe_device = NULL;
896 wakeup->gpe_number = element->integer.value;
897 } else {
898 goto out;
899 }
900
901 element = &(package->package.elements[1]);
902 if (element->type != ACPI_TYPE_INTEGER)
903 goto out;
904
905 wakeup->sleep_state = element->integer.value;
906
907 err = acpi_extract_power_resources(package, 2, &wakeup->resources);
908 if (err)
909 goto out;
910
911 if (!list_empty(&wakeup->resources)) {
912 int sleep_state;
913
914 err = acpi_power_wakeup_list_init(&wakeup->resources,
915 &sleep_state);
916 if (err) {
917 acpi_handle_warn(handle, "Retrieving current states "
918 "of wakeup power resources failed\n");
919 acpi_power_resources_list_free(&wakeup->resources);
920 goto out;
921 }
922 if (sleep_state < wakeup->sleep_state) {
923 acpi_handle_warn(handle, "Overriding _PRW sleep state "
924 "(S%d) by S%d from power resources\n",
925 (int)wakeup->sleep_state, sleep_state);
926 wakeup->sleep_state = sleep_state;
927 }
928 }
929
930 out:
931 kfree(buffer.pointer);
932 return err;
933 }
934
935 /* Do not use a button for S5 wakeup */
936 #define ACPI_AVOID_WAKE_FROM_S5 BIT(0)
937
acpi_wakeup_gpe_init(struct acpi_device * device)938 static bool acpi_wakeup_gpe_init(struct acpi_device *device)
939 {
940 static const struct acpi_device_id button_device_ids[] = {
941 {"PNP0C0C", 0}, /* Power button */
942 {"PNP0C0D", ACPI_AVOID_WAKE_FROM_S5}, /* Lid */
943 {"PNP0C0E", ACPI_AVOID_WAKE_FROM_S5}, /* Sleep button */
944 {"", 0},
945 };
946 struct acpi_device_wakeup *wakeup = &device->wakeup;
947 const struct acpi_device_id *match;
948 acpi_status status;
949
950 wakeup->flags.notifier_present = 0;
951
952 /* Power button, Lid switch always enable wakeup */
953 match = acpi_match_acpi_device(button_device_ids, device);
954 if (match) {
955 if ((match->driver_data & ACPI_AVOID_WAKE_FROM_S5) &&
956 wakeup->sleep_state == ACPI_STATE_S5)
957 wakeup->sleep_state = ACPI_STATE_S4;
958 acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number);
959 device_set_wakeup_capable(&device->dev, true);
960 return true;
961 }
962
963 status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device,
964 wakeup->gpe_number);
965 return ACPI_SUCCESS(status);
966 }
967
acpi_bus_get_wakeup_device_flags(struct acpi_device * device)968 static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device)
969 {
970 int err;
971
972 /* Presence of _PRW indicates wake capable */
973 if (!acpi_has_method(device->handle, "_PRW"))
974 return;
975
976 err = acpi_bus_extract_wakeup_device_power_package(device);
977 if (err) {
978 dev_err(&device->dev, "Unable to extract wakeup power resources");
979 return;
980 }
981
982 device->wakeup.flags.valid = acpi_wakeup_gpe_init(device);
983 device->wakeup.prepare_count = 0;
984 /*
985 * Call _PSW/_DSW object to disable its ability to wake the sleeping
986 * system for the ACPI device with the _PRW object.
987 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW.
988 * So it is necessary to call _DSW object first. Only when it is not
989 * present will the _PSW object used.
990 */
991 err = acpi_device_sleep_wake(device, 0, 0, 0);
992 if (err)
993 pr_debug("error in _DSW or _PSW evaluation\n");
994 }
995
acpi_bus_init_power_state(struct acpi_device * device,int state)996 static void acpi_bus_init_power_state(struct acpi_device *device, int state)
997 {
998 struct acpi_device_power_state *ps = &device->power.states[state];
999 char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' };
1000 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1001 acpi_status status;
1002
1003 INIT_LIST_HEAD(&ps->resources);
1004
1005 /* Evaluate "_PRx" to get referenced power resources */
1006 status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer);
1007 if (ACPI_SUCCESS(status)) {
1008 union acpi_object *package = buffer.pointer;
1009
1010 if (buffer.length && package
1011 && package->type == ACPI_TYPE_PACKAGE
1012 && package->package.count)
1013 acpi_extract_power_resources(package, 0, &ps->resources);
1014
1015 ACPI_FREE(buffer.pointer);
1016 }
1017
1018 /* Evaluate "_PSx" to see if we can do explicit sets */
1019 pathname[2] = 'S';
1020 if (acpi_has_method(device->handle, pathname))
1021 ps->flags.explicit_set = 1;
1022
1023 /* State is valid if there are means to put the device into it. */
1024 if (!list_empty(&ps->resources) || ps->flags.explicit_set)
1025 ps->flags.valid = 1;
1026
1027 ps->power = -1; /* Unknown - driver assigned */
1028 ps->latency = -1; /* Unknown - driver assigned */
1029 }
1030
acpi_bus_get_power_flags(struct acpi_device * device)1031 static void acpi_bus_get_power_flags(struct acpi_device *device)
1032 {
1033 unsigned long long dsc = ACPI_STATE_D0;
1034 u32 i;
1035
1036 /* Presence of _PS0|_PR0 indicates 'power manageable' */
1037 if (!acpi_has_method(device->handle, "_PS0") &&
1038 !acpi_has_method(device->handle, "_PR0"))
1039 return;
1040
1041 device->flags.power_manageable = 1;
1042
1043 /*
1044 * Power Management Flags
1045 */
1046 if (acpi_has_method(device->handle, "_PSC"))
1047 device->power.flags.explicit_get = 1;
1048
1049 if (acpi_has_method(device->handle, "_IRC"))
1050 device->power.flags.inrush_current = 1;
1051
1052 if (acpi_has_method(device->handle, "_DSW"))
1053 device->power.flags.dsw_present = 1;
1054
1055 acpi_evaluate_integer(device->handle, "_DSC", NULL, &dsc);
1056 device->power.state_for_enumeration = dsc;
1057
1058 /*
1059 * Enumerate supported power management states
1060 */
1061 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++)
1062 acpi_bus_init_power_state(device, i);
1063
1064 INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources);
1065
1066 /* Set the defaults for D0 and D3hot (always supported). */
1067 device->power.states[ACPI_STATE_D0].flags.valid = 1;
1068 device->power.states[ACPI_STATE_D0].power = 100;
1069 device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1;
1070
1071 /*
1072 * Use power resources only if the D0 list of them is populated, because
1073 * some platforms may provide _PR3 only to indicate D3cold support and
1074 * in those cases the power resources list returned by it may be bogus.
1075 */
1076 if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) {
1077 device->power.flags.power_resources = 1;
1078 /*
1079 * D3cold is supported if the D3hot list of power resources is
1080 * not empty.
1081 */
1082 if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources))
1083 device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1;
1084 }
1085
1086 if (acpi_bus_init_power(device))
1087 device->flags.power_manageable = 0;
1088 }
1089
acpi_bus_get_flags(struct acpi_device * device)1090 static void acpi_bus_get_flags(struct acpi_device *device)
1091 {
1092 /* Presence of _STA indicates 'dynamic_status' */
1093 if (acpi_has_method(device->handle, "_STA"))
1094 device->flags.dynamic_status = 1;
1095
1096 /* Presence of _RMV indicates 'removable' */
1097 if (acpi_has_method(device->handle, "_RMV"))
1098 device->flags.removable = 1;
1099
1100 /* Presence of _EJD|_EJ0 indicates 'ejectable' */
1101 if (acpi_has_method(device->handle, "_EJD") ||
1102 acpi_has_method(device->handle, "_EJ0"))
1103 device->flags.ejectable = 1;
1104 }
1105
acpi_device_get_busid(struct acpi_device * device)1106 static void acpi_device_get_busid(struct acpi_device *device)
1107 {
1108 char bus_id[5] = { '?', 0 };
1109 struct acpi_buffer buffer = { sizeof(bus_id), bus_id };
1110 int i = 0;
1111
1112 /*
1113 * Bus ID
1114 * ------
1115 * The device's Bus ID is simply the object name.
1116 * TBD: Shouldn't this value be unique (within the ACPI namespace)?
1117 */
1118 if (!acpi_dev_parent(device)) {
1119 strcpy(device->pnp.bus_id, "ACPI");
1120 return;
1121 }
1122
1123 switch (device->device_type) {
1124 case ACPI_BUS_TYPE_POWER_BUTTON:
1125 strcpy(device->pnp.bus_id, "PWRF");
1126 break;
1127 case ACPI_BUS_TYPE_SLEEP_BUTTON:
1128 strcpy(device->pnp.bus_id, "SLPF");
1129 break;
1130 case ACPI_BUS_TYPE_ECDT_EC:
1131 strcpy(device->pnp.bus_id, "ECDT");
1132 break;
1133 default:
1134 acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer);
1135 /* Clean up trailing underscores (if any) */
1136 for (i = 3; i > 1; i--) {
1137 if (bus_id[i] == '_')
1138 bus_id[i] = '\0';
1139 else
1140 break;
1141 }
1142 strcpy(device->pnp.bus_id, bus_id);
1143 break;
1144 }
1145 }
1146
1147 /*
1148 * acpi_ata_match - see if an acpi object is an ATA device
1149 *
1150 * If an acpi object has one of the ACPI ATA methods defined,
1151 * then we can safely call it an ATA device.
1152 */
acpi_ata_match(acpi_handle handle)1153 bool acpi_ata_match(acpi_handle handle)
1154 {
1155 return acpi_has_method(handle, "_GTF") ||
1156 acpi_has_method(handle, "_GTM") ||
1157 acpi_has_method(handle, "_STM") ||
1158 acpi_has_method(handle, "_SDD");
1159 }
1160
1161 /*
1162 * acpi_bay_match - see if an acpi object is an ejectable driver bay
1163 *
1164 * If an acpi object is ejectable and has one of the ACPI ATA methods defined,
1165 * then we can safely call it an ejectable drive bay
1166 */
acpi_bay_match(acpi_handle handle)1167 bool acpi_bay_match(acpi_handle handle)
1168 {
1169 acpi_handle phandle;
1170
1171 if (!acpi_has_method(handle, "_EJ0"))
1172 return false;
1173 if (acpi_ata_match(handle))
1174 return true;
1175 if (ACPI_FAILURE(acpi_get_parent(handle, &phandle)))
1176 return false;
1177
1178 return acpi_ata_match(phandle);
1179 }
1180
acpi_device_is_battery(struct acpi_device * adev)1181 bool acpi_device_is_battery(struct acpi_device *adev)
1182 {
1183 struct acpi_hardware_id *hwid;
1184
1185 list_for_each_entry(hwid, &adev->pnp.ids, list)
1186 if (!strcmp("PNP0C0A", hwid->id))
1187 return true;
1188
1189 return false;
1190 }
1191
is_ejectable_bay(struct acpi_device * adev)1192 static bool is_ejectable_bay(struct acpi_device *adev)
1193 {
1194 acpi_handle handle = adev->handle;
1195
1196 if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev))
1197 return true;
1198
1199 return acpi_bay_match(handle);
1200 }
1201
1202 /*
1203 * acpi_dock_match - see if an acpi object has a _DCK method
1204 */
acpi_dock_match(acpi_handle handle)1205 bool acpi_dock_match(acpi_handle handle)
1206 {
1207 return acpi_has_method(handle, "_DCK");
1208 }
1209
1210 static acpi_status
acpi_backlight_cap_match(acpi_handle handle,u32 level,void * context,void ** return_value)1211 acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context,
1212 void **return_value)
1213 {
1214 long *cap = context;
1215
1216 if (acpi_has_method(handle, "_BCM") &&
1217 acpi_has_method(handle, "_BCL")) {
1218 acpi_handle_debug(handle, "Found generic backlight support\n");
1219 *cap |= ACPI_VIDEO_BACKLIGHT;
1220 /* We have backlight support, no need to scan further */
1221 return AE_CTRL_TERMINATE;
1222 }
1223 return 0;
1224 }
1225
1226 /* Returns true if the ACPI object is a video device which can be
1227 * handled by video.ko.
1228 * The device will get a Linux specific CID added in scan.c to
1229 * identify the device as an ACPI graphics device
1230 * Be aware that the graphics device may not be physically present
1231 * Use acpi_video_get_capabilities() to detect general ACPI video
1232 * capabilities of present cards
1233 */
acpi_is_video_device(acpi_handle handle)1234 long acpi_is_video_device(acpi_handle handle)
1235 {
1236 long video_caps = 0;
1237
1238 /* Is this device able to support video switching ? */
1239 if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS"))
1240 video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING;
1241
1242 /* Is this device able to retrieve a video ROM ? */
1243 if (acpi_has_method(handle, "_ROM"))
1244 video_caps |= ACPI_VIDEO_ROM_AVAILABLE;
1245
1246 /* Is this device able to configure which video head to be POSTed ? */
1247 if (acpi_has_method(handle, "_VPO") &&
1248 acpi_has_method(handle, "_GPD") &&
1249 acpi_has_method(handle, "_SPD"))
1250 video_caps |= ACPI_VIDEO_DEVICE_POSTING;
1251
1252 /* Only check for backlight functionality if one of the above hit. */
1253 if (video_caps)
1254 acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
1255 ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL,
1256 &video_caps, NULL);
1257
1258 return video_caps;
1259 }
1260 EXPORT_SYMBOL(acpi_is_video_device);
1261
acpi_device_hid(struct acpi_device * device)1262 const char *acpi_device_hid(struct acpi_device *device)
1263 {
1264 struct acpi_hardware_id *hid;
1265
1266 if (list_empty(&device->pnp.ids))
1267 return dummy_hid;
1268
1269 hid = list_first_entry(&device->pnp.ids, struct acpi_hardware_id, list);
1270 return hid->id;
1271 }
1272 EXPORT_SYMBOL(acpi_device_hid);
1273
acpi_add_id(struct acpi_device_pnp * pnp,const char * dev_id)1274 static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id)
1275 {
1276 struct acpi_hardware_id *id;
1277
1278 id = kmalloc(sizeof(*id), GFP_KERNEL);
1279 if (!id)
1280 return;
1281
1282 id->id = kstrdup_const(dev_id, GFP_KERNEL);
1283 if (!id->id) {
1284 kfree(id);
1285 return;
1286 }
1287
1288 list_add_tail(&id->list, &pnp->ids);
1289 pnp->type.hardware_id = 1;
1290 }
1291
1292 /*
1293 * Old IBM workstations have a DSDT bug wherein the SMBus object
1294 * lacks the SMBUS01 HID and the methods do not have the necessary "_"
1295 * prefix. Work around this.
1296 */
acpi_ibm_smbus_match(acpi_handle handle)1297 static bool acpi_ibm_smbus_match(acpi_handle handle)
1298 {
1299 char node_name[ACPI_PATH_SEGMENT_LENGTH];
1300 struct acpi_buffer path = { sizeof(node_name), node_name };
1301
1302 if (!dmi_name_in_vendors("IBM"))
1303 return false;
1304
1305 /* Look for SMBS object */
1306 if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) ||
1307 strcmp("SMBS", path.pointer))
1308 return false;
1309
1310 /* Does it have the necessary (but misnamed) methods? */
1311 if (acpi_has_method(handle, "SBI") &&
1312 acpi_has_method(handle, "SBR") &&
1313 acpi_has_method(handle, "SBW"))
1314 return true;
1315
1316 return false;
1317 }
1318
acpi_object_is_system_bus(acpi_handle handle)1319 static bool acpi_object_is_system_bus(acpi_handle handle)
1320 {
1321 acpi_handle tmp;
1322
1323 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) &&
1324 tmp == handle)
1325 return true;
1326 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) &&
1327 tmp == handle)
1328 return true;
1329
1330 return false;
1331 }
1332
acpi_set_pnp_ids(acpi_handle handle,struct acpi_device_pnp * pnp,int device_type)1333 static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp,
1334 int device_type)
1335 {
1336 struct acpi_device_info *info = NULL;
1337 struct acpi_pnp_device_id_list *cid_list;
1338 int i;
1339
1340 switch (device_type) {
1341 case ACPI_BUS_TYPE_DEVICE:
1342 if (handle == ACPI_ROOT_OBJECT) {
1343 acpi_add_id(pnp, ACPI_SYSTEM_HID);
1344 break;
1345 }
1346
1347 acpi_get_object_info(handle, &info);
1348 if (!info) {
1349 pr_err("%s: Error reading device info\n", __func__);
1350 return;
1351 }
1352
1353 if (info->valid & ACPI_VALID_HID) {
1354 acpi_add_id(pnp, info->hardware_id.string);
1355 pnp->type.platform_id = 1;
1356 }
1357 if (info->valid & ACPI_VALID_CID) {
1358 cid_list = &info->compatible_id_list;
1359 for (i = 0; i < cid_list->count; i++)
1360 acpi_add_id(pnp, cid_list->ids[i].string);
1361 }
1362 if (info->valid & ACPI_VALID_ADR) {
1363 pnp->bus_address = info->address;
1364 pnp->type.bus_address = 1;
1365 }
1366 if (info->valid & ACPI_VALID_UID)
1367 pnp->unique_id = kstrdup(info->unique_id.string,
1368 GFP_KERNEL);
1369 if (info->valid & ACPI_VALID_CLS)
1370 acpi_add_id(pnp, info->class_code.string);
1371
1372 kfree(info);
1373
1374 /*
1375 * Some devices don't reliably have _HIDs & _CIDs, so add
1376 * synthetic HIDs to make sure drivers can find them.
1377 */
1378 if (acpi_is_video_device(handle)) {
1379 acpi_add_id(pnp, ACPI_VIDEO_HID);
1380 pnp->type.backlight = 1;
1381 break;
1382 }
1383 if (acpi_bay_match(handle))
1384 acpi_add_id(pnp, ACPI_BAY_HID);
1385 else if (acpi_dock_match(handle))
1386 acpi_add_id(pnp, ACPI_DOCK_HID);
1387 else if (acpi_ibm_smbus_match(handle))
1388 acpi_add_id(pnp, ACPI_SMBUS_IBM_HID);
1389 else if (list_empty(&pnp->ids) &&
1390 acpi_object_is_system_bus(handle)) {
1391 /* \_SB, \_TZ, LNXSYBUS */
1392 acpi_add_id(pnp, ACPI_BUS_HID);
1393 strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME);
1394 strcpy(pnp->device_class, ACPI_BUS_CLASS);
1395 }
1396
1397 break;
1398 case ACPI_BUS_TYPE_POWER:
1399 acpi_add_id(pnp, ACPI_POWER_HID);
1400 break;
1401 case ACPI_BUS_TYPE_PROCESSOR:
1402 acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID);
1403 break;
1404 case ACPI_BUS_TYPE_THERMAL:
1405 acpi_add_id(pnp, ACPI_THERMAL_HID);
1406 break;
1407 case ACPI_BUS_TYPE_POWER_BUTTON:
1408 acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF);
1409 break;
1410 case ACPI_BUS_TYPE_SLEEP_BUTTON:
1411 acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF);
1412 break;
1413 case ACPI_BUS_TYPE_ECDT_EC:
1414 acpi_add_id(pnp, ACPI_ECDT_HID);
1415 break;
1416 }
1417 }
1418
acpi_free_pnp_ids(struct acpi_device_pnp * pnp)1419 void acpi_free_pnp_ids(struct acpi_device_pnp *pnp)
1420 {
1421 struct acpi_hardware_id *id, *tmp;
1422
1423 list_for_each_entry_safe(id, tmp, &pnp->ids, list) {
1424 kfree_const(id->id);
1425 kfree(id);
1426 }
1427 kfree(pnp->unique_id);
1428 }
1429
1430 /**
1431 * acpi_dma_supported - Check DMA support for the specified device.
1432 * @adev: The pointer to acpi device
1433 *
1434 * Return false if DMA is not supported. Otherwise, return true
1435 */
acpi_dma_supported(const struct acpi_device * adev)1436 bool acpi_dma_supported(const struct acpi_device *adev)
1437 {
1438 if (!adev)
1439 return false;
1440
1441 if (adev->flags.cca_seen)
1442 return true;
1443
1444 /*
1445 * Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent
1446 * DMA on "Intel platforms". Presumably that includes all x86 and
1447 * ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y.
1448 */
1449 if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1450 return true;
1451
1452 return false;
1453 }
1454
1455 /**
1456 * acpi_get_dma_attr - Check the supported DMA attr for the specified device.
1457 * @adev: The pointer to acpi device
1458 *
1459 * Return enum dev_dma_attr.
1460 */
acpi_get_dma_attr(struct acpi_device * adev)1461 enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev)
1462 {
1463 if (!acpi_dma_supported(adev))
1464 return DEV_DMA_NOT_SUPPORTED;
1465
1466 if (adev->flags.coherent_dma)
1467 return DEV_DMA_COHERENT;
1468 else
1469 return DEV_DMA_NON_COHERENT;
1470 }
1471
1472 /**
1473 * acpi_dma_get_range() - Get device DMA parameters.
1474 *
1475 * @dev: device to configure
1476 * @map: pointer to DMA ranges result
1477 *
1478 * Evaluate DMA regions and return pointer to DMA regions on
1479 * parsing success; it does not update the passed in values on failure.
1480 *
1481 * Return 0 on success, < 0 on failure.
1482 */
acpi_dma_get_range(struct device * dev,const struct bus_dma_region ** map)1483 int acpi_dma_get_range(struct device *dev, const struct bus_dma_region **map)
1484 {
1485 struct acpi_device *adev;
1486 LIST_HEAD(list);
1487 struct resource_entry *rentry;
1488 int ret;
1489 struct device *dma_dev = dev;
1490 struct bus_dma_region *r;
1491
1492 /*
1493 * Walk the device tree chasing an ACPI companion with a _DMA
1494 * object while we go. Stop if we find a device with an ACPI
1495 * companion containing a _DMA method.
1496 */
1497 do {
1498 adev = ACPI_COMPANION(dma_dev);
1499 if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA))
1500 break;
1501
1502 dma_dev = dma_dev->parent;
1503 } while (dma_dev);
1504
1505 if (!dma_dev)
1506 return -ENODEV;
1507
1508 if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) {
1509 acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n");
1510 return -EINVAL;
1511 }
1512
1513 ret = acpi_dev_get_dma_resources(adev, &list);
1514 if (ret > 0) {
1515 r = kcalloc(ret + 1, sizeof(*r), GFP_KERNEL);
1516 if (!r) {
1517 ret = -ENOMEM;
1518 goto out;
1519 }
1520
1521 *map = r;
1522
1523 list_for_each_entry(rentry, &list, node) {
1524 if (rentry->res->start >= rentry->res->end) {
1525 kfree(*map);
1526 *map = NULL;
1527 ret = -EINVAL;
1528 dev_dbg(dma_dev, "Invalid DMA regions configuration\n");
1529 goto out;
1530 }
1531
1532 r->cpu_start = rentry->res->start;
1533 r->dma_start = rentry->res->start - rentry->offset;
1534 r->size = resource_size(rentry->res);
1535 r->offset = rentry->offset;
1536 r++;
1537 }
1538 }
1539 out:
1540 acpi_dev_free_resource_list(&list);
1541
1542 return ret >= 0 ? 0 : ret;
1543 }
1544
1545 #ifdef CONFIG_IOMMU_API
acpi_iommu_fwspec_init(struct device * dev,u32 id,struct fwnode_handle * fwnode,const struct iommu_ops * ops)1546 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1547 struct fwnode_handle *fwnode,
1548 const struct iommu_ops *ops)
1549 {
1550 int ret = iommu_fwspec_init(dev, fwnode, ops);
1551
1552 if (!ret)
1553 ret = iommu_fwspec_add_ids(dev, &id, 1);
1554
1555 return ret;
1556 }
1557
acpi_iommu_fwspec_ops(struct device * dev)1558 static inline const struct iommu_ops *acpi_iommu_fwspec_ops(struct device *dev)
1559 {
1560 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1561
1562 return fwspec ? fwspec->ops : NULL;
1563 }
1564
acpi_iommu_configure_id(struct device * dev,const u32 * id_in)1565 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev,
1566 const u32 *id_in)
1567 {
1568 int err;
1569 const struct iommu_ops *ops;
1570
1571 /* Serialise to make dev->iommu stable under our potential fwspec */
1572 mutex_lock(&iommu_probe_device_lock);
1573 /*
1574 * If we already translated the fwspec there is nothing left to do,
1575 * return the iommu_ops.
1576 */
1577 ops = acpi_iommu_fwspec_ops(dev);
1578 if (ops) {
1579 mutex_unlock(&iommu_probe_device_lock);
1580 return ops;
1581 }
1582
1583 err = iort_iommu_configure_id(dev, id_in);
1584 if (err && err != -EPROBE_DEFER)
1585 err = viot_iommu_configure(dev);
1586 mutex_unlock(&iommu_probe_device_lock);
1587
1588 /*
1589 * If we have reason to believe the IOMMU driver missed the initial
1590 * iommu_probe_device() call for dev, replay it to get things in order.
1591 */
1592 if (!err && dev->bus)
1593 err = iommu_probe_device(dev);
1594
1595 /* Ignore all other errors apart from EPROBE_DEFER */
1596 if (err == -EPROBE_DEFER) {
1597 return ERR_PTR(err);
1598 } else if (err) {
1599 dev_dbg(dev, "Adding to IOMMU failed: %d\n", err);
1600 return NULL;
1601 }
1602 return acpi_iommu_fwspec_ops(dev);
1603 }
1604
1605 #else /* !CONFIG_IOMMU_API */
1606
acpi_iommu_fwspec_init(struct device * dev,u32 id,struct fwnode_handle * fwnode,const struct iommu_ops * ops)1607 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1608 struct fwnode_handle *fwnode,
1609 const struct iommu_ops *ops)
1610 {
1611 return -ENODEV;
1612 }
1613
acpi_iommu_configure_id(struct device * dev,const u32 * id_in)1614 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev,
1615 const u32 *id_in)
1616 {
1617 return NULL;
1618 }
1619
1620 #endif /* !CONFIG_IOMMU_API */
1621
1622 /**
1623 * acpi_dma_configure_id - Set-up DMA configuration for the device.
1624 * @dev: The pointer to the device
1625 * @attr: device dma attributes
1626 * @input_id: input device id const value pointer
1627 */
acpi_dma_configure_id(struct device * dev,enum dev_dma_attr attr,const u32 * input_id)1628 int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr,
1629 const u32 *input_id)
1630 {
1631 const struct iommu_ops *iommu;
1632
1633 if (attr == DEV_DMA_NOT_SUPPORTED) {
1634 set_dma_ops(dev, &dma_dummy_ops);
1635 return 0;
1636 }
1637
1638 acpi_arch_dma_setup(dev);
1639
1640 iommu = acpi_iommu_configure_id(dev, input_id);
1641 if (PTR_ERR(iommu) == -EPROBE_DEFER)
1642 return -EPROBE_DEFER;
1643
1644 arch_setup_dma_ops(dev, 0, U64_MAX,
1645 iommu, attr == DEV_DMA_COHERENT);
1646
1647 return 0;
1648 }
1649 EXPORT_SYMBOL_GPL(acpi_dma_configure_id);
1650
acpi_init_coherency(struct acpi_device * adev)1651 static void acpi_init_coherency(struct acpi_device *adev)
1652 {
1653 unsigned long long cca = 0;
1654 acpi_status status;
1655 struct acpi_device *parent = acpi_dev_parent(adev);
1656
1657 if (parent && parent->flags.cca_seen) {
1658 /*
1659 * From ACPI spec, OSPM will ignore _CCA if an ancestor
1660 * already saw one.
1661 */
1662 adev->flags.cca_seen = 1;
1663 cca = parent->flags.coherent_dma;
1664 } else {
1665 status = acpi_evaluate_integer(adev->handle, "_CCA",
1666 NULL, &cca);
1667 if (ACPI_SUCCESS(status))
1668 adev->flags.cca_seen = 1;
1669 else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1670 /*
1671 * If architecture does not specify that _CCA is
1672 * required for DMA-able devices (e.g. x86),
1673 * we default to _CCA=1.
1674 */
1675 cca = 1;
1676 else
1677 acpi_handle_debug(adev->handle,
1678 "ACPI device is missing _CCA.\n");
1679 }
1680
1681 adev->flags.coherent_dma = cca;
1682 }
1683
acpi_check_serial_bus_slave(struct acpi_resource * ares,void * data)1684 static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data)
1685 {
1686 bool *is_serial_bus_slave_p = data;
1687
1688 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
1689 return 1;
1690
1691 *is_serial_bus_slave_p = true;
1692
1693 /* no need to do more checking */
1694 return -1;
1695 }
1696
acpi_is_indirect_io_slave(struct acpi_device * device)1697 static bool acpi_is_indirect_io_slave(struct acpi_device *device)
1698 {
1699 struct acpi_device *parent = acpi_dev_parent(device);
1700 static const struct acpi_device_id indirect_io_hosts[] = {
1701 {"HISI0191", 0},
1702 {}
1703 };
1704
1705 return parent && !acpi_match_device_ids(parent, indirect_io_hosts);
1706 }
1707
acpi_device_enumeration_by_parent(struct acpi_device * device)1708 static bool acpi_device_enumeration_by_parent(struct acpi_device *device)
1709 {
1710 struct list_head resource_list;
1711 bool is_serial_bus_slave = false;
1712 static const struct acpi_device_id ignore_serial_bus_ids[] = {
1713 /*
1714 * These devices have multiple SerialBus resources and a client
1715 * device must be instantiated for each of them, each with
1716 * its own device id.
1717 * Normally we only instantiate one client device for the first
1718 * resource, using the ACPI HID as id. These special cases are handled
1719 * by the drivers/platform/x86/serial-multi-instantiate.c driver, which
1720 * knows which client device id to use for each resource.
1721 */
1722 {"BSG1160", },
1723 {"BSG2150", },
1724 {"CSC3551", },
1725 {"CSC3556", },
1726 {"INT33FE", },
1727 {"INT3515", },
1728 /* Non-conforming _HID for Cirrus Logic already released */
1729 {"CLSA0100", },
1730 {"CLSA0101", },
1731 /*
1732 * Some ACPI devs contain SerialBus resources even though they are not
1733 * attached to a serial bus at all.
1734 */
1735 {"MSHW0028", },
1736 /*
1737 * HIDs of device with an UartSerialBusV2 resource for which userspace
1738 * expects a regular tty cdev to be created (instead of the in kernel
1739 * serdev) and which have a kernel driver which expects a platform_dev
1740 * such as the rfkill-gpio driver.
1741 */
1742 {"BCM4752", },
1743 {"LNV4752", },
1744 {}
1745 };
1746
1747 if (acpi_is_indirect_io_slave(device))
1748 return true;
1749
1750 /* Macs use device properties in lieu of _CRS resources */
1751 if (x86_apple_machine &&
1752 (fwnode_property_present(&device->fwnode, "spiSclkPeriod") ||
1753 fwnode_property_present(&device->fwnode, "i2cAddress") ||
1754 fwnode_property_present(&device->fwnode, "baud")))
1755 return true;
1756
1757 if (!acpi_match_device_ids(device, ignore_serial_bus_ids))
1758 return false;
1759
1760 INIT_LIST_HEAD(&resource_list);
1761 acpi_dev_get_resources(device, &resource_list,
1762 acpi_check_serial_bus_slave,
1763 &is_serial_bus_slave);
1764 acpi_dev_free_resource_list(&resource_list);
1765
1766 return is_serial_bus_slave;
1767 }
1768
acpi_init_device_object(struct acpi_device * device,acpi_handle handle,int type,void (* release)(struct device *))1769 void acpi_init_device_object(struct acpi_device *device, acpi_handle handle,
1770 int type, void (*release)(struct device *))
1771 {
1772 struct acpi_device *parent = acpi_find_parent_acpi_dev(handle);
1773
1774 INIT_LIST_HEAD(&device->pnp.ids);
1775 device->device_type = type;
1776 device->handle = handle;
1777 device->dev.parent = parent ? &parent->dev : NULL;
1778 device->dev.release = release;
1779 device->dev.bus = &acpi_bus_type;
1780 fwnode_init(&device->fwnode, &acpi_device_fwnode_ops);
1781 acpi_set_device_status(device, ACPI_STA_DEFAULT);
1782 acpi_device_get_busid(device);
1783 acpi_set_pnp_ids(handle, &device->pnp, type);
1784 acpi_init_properties(device);
1785 acpi_bus_get_flags(device);
1786 device->flags.match_driver = false;
1787 device->flags.initialized = true;
1788 device->flags.enumeration_by_parent =
1789 acpi_device_enumeration_by_parent(device);
1790 acpi_device_clear_enumerated(device);
1791 device_initialize(&device->dev);
1792 dev_set_uevent_suppress(&device->dev, true);
1793 acpi_init_coherency(device);
1794 }
1795
acpi_scan_dep_init(struct acpi_device * adev)1796 static void acpi_scan_dep_init(struct acpi_device *adev)
1797 {
1798 struct acpi_dep_data *dep;
1799
1800 list_for_each_entry(dep, &acpi_dep_list, node) {
1801 if (dep->consumer == adev->handle) {
1802 if (dep->honor_dep)
1803 adev->flags.honor_deps = 1;
1804
1805 adev->dep_unmet++;
1806 }
1807 }
1808 }
1809
acpi_device_add_finalize(struct acpi_device * device)1810 void acpi_device_add_finalize(struct acpi_device *device)
1811 {
1812 dev_set_uevent_suppress(&device->dev, false);
1813 kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1814 }
1815
acpi_scan_init_status(struct acpi_device * adev)1816 static void acpi_scan_init_status(struct acpi_device *adev)
1817 {
1818 if (acpi_bus_get_status(adev))
1819 acpi_set_device_status(adev, 0);
1820 }
1821
acpi_add_single_object(struct acpi_device ** child,acpi_handle handle,int type,bool dep_init)1822 static int acpi_add_single_object(struct acpi_device **child,
1823 acpi_handle handle, int type, bool dep_init)
1824 {
1825 struct acpi_device *device;
1826 bool release_dep_lock = false;
1827 int result;
1828
1829 device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL);
1830 if (!device)
1831 return -ENOMEM;
1832
1833 acpi_init_device_object(device, handle, type, acpi_device_release);
1834 /*
1835 * Getting the status is delayed till here so that we can call
1836 * acpi_bus_get_status() and use its quirk handling. Note that
1837 * this must be done before the get power-/wakeup_dev-flags calls.
1838 */
1839 if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) {
1840 if (dep_init) {
1841 mutex_lock(&acpi_dep_list_lock);
1842 /*
1843 * Hold the lock until the acpi_tie_acpi_dev() call
1844 * below to prevent concurrent acpi_scan_clear_dep()
1845 * from deleting a dependency list entry without
1846 * updating dep_unmet for the device.
1847 */
1848 release_dep_lock = true;
1849 acpi_scan_dep_init(device);
1850 }
1851 acpi_scan_init_status(device);
1852 }
1853
1854 acpi_bus_get_power_flags(device);
1855 acpi_bus_get_wakeup_device_flags(device);
1856
1857 result = acpi_tie_acpi_dev(device);
1858
1859 if (release_dep_lock)
1860 mutex_unlock(&acpi_dep_list_lock);
1861
1862 if (!result)
1863 result = acpi_device_add(device);
1864
1865 if (result) {
1866 acpi_device_release(&device->dev);
1867 return result;
1868 }
1869
1870 acpi_power_add_remove_device(device, true);
1871 acpi_device_add_finalize(device);
1872
1873 acpi_handle_debug(handle, "Added as %s, parent %s\n",
1874 dev_name(&device->dev), device->dev.parent ?
1875 dev_name(device->dev.parent) : "(null)");
1876
1877 *child = device;
1878 return 0;
1879 }
1880
acpi_get_resource_memory(struct acpi_resource * ares,void * context)1881 static acpi_status acpi_get_resource_memory(struct acpi_resource *ares,
1882 void *context)
1883 {
1884 struct resource *res = context;
1885
1886 if (acpi_dev_resource_memory(ares, res))
1887 return AE_CTRL_TERMINATE;
1888
1889 return AE_OK;
1890 }
1891
acpi_device_should_be_hidden(acpi_handle handle)1892 static bool acpi_device_should_be_hidden(acpi_handle handle)
1893 {
1894 acpi_status status;
1895 struct resource res;
1896
1897 /* Check if it should ignore the UART device */
1898 if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS)))
1899 return false;
1900
1901 /*
1902 * The UART device described in SPCR table is assumed to have only one
1903 * memory resource present. So we only look for the first one here.
1904 */
1905 status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1906 acpi_get_resource_memory, &res);
1907 if (ACPI_FAILURE(status) || res.start != spcr_uart_addr)
1908 return false;
1909
1910 acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n",
1911 &res.start);
1912
1913 return true;
1914 }
1915
acpi_device_is_present(const struct acpi_device * adev)1916 bool acpi_device_is_present(const struct acpi_device *adev)
1917 {
1918 return adev->status.present || adev->status.functional;
1919 }
1920
acpi_scan_handler_matching(struct acpi_scan_handler * handler,const char * idstr,const struct acpi_device_id ** matchid)1921 static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler,
1922 const char *idstr,
1923 const struct acpi_device_id **matchid)
1924 {
1925 const struct acpi_device_id *devid;
1926
1927 if (handler->match)
1928 return handler->match(idstr, matchid);
1929
1930 for (devid = handler->ids; devid->id[0]; devid++)
1931 if (!strcmp((char *)devid->id, idstr)) {
1932 if (matchid)
1933 *matchid = devid;
1934
1935 return true;
1936 }
1937
1938 return false;
1939 }
1940
acpi_scan_match_handler(const char * idstr,const struct acpi_device_id ** matchid)1941 static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr,
1942 const struct acpi_device_id **matchid)
1943 {
1944 struct acpi_scan_handler *handler;
1945
1946 list_for_each_entry(handler, &acpi_scan_handlers_list, list_node)
1947 if (acpi_scan_handler_matching(handler, idstr, matchid))
1948 return handler;
1949
1950 return NULL;
1951 }
1952
acpi_scan_hotplug_enabled(struct acpi_hotplug_profile * hotplug,bool val)1953 void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val)
1954 {
1955 if (!!hotplug->enabled == !!val)
1956 return;
1957
1958 mutex_lock(&acpi_scan_lock);
1959
1960 hotplug->enabled = val;
1961
1962 mutex_unlock(&acpi_scan_lock);
1963 }
1964
acpi_scan_init_hotplug(struct acpi_device * adev)1965 static void acpi_scan_init_hotplug(struct acpi_device *adev)
1966 {
1967 struct acpi_hardware_id *hwid;
1968
1969 if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) {
1970 acpi_dock_add(adev);
1971 return;
1972 }
1973 list_for_each_entry(hwid, &adev->pnp.ids, list) {
1974 struct acpi_scan_handler *handler;
1975
1976 handler = acpi_scan_match_handler(hwid->id, NULL);
1977 if (handler) {
1978 adev->flags.hotplug_notify = true;
1979 break;
1980 }
1981 }
1982 }
1983
acpi_scan_check_dep(acpi_handle handle,bool check_dep)1984 static u32 acpi_scan_check_dep(acpi_handle handle, bool check_dep)
1985 {
1986 struct acpi_handle_list dep_devices;
1987 acpi_status status;
1988 u32 count;
1989 int i;
1990
1991 /*
1992 * Check for _HID here to avoid deferring the enumeration of:
1993 * 1. PCI devices.
1994 * 2. ACPI nodes describing USB ports.
1995 * Still, checking for _HID catches more then just these cases ...
1996 */
1997 if (!check_dep || !acpi_has_method(handle, "_DEP") ||
1998 !acpi_has_method(handle, "_HID"))
1999 return 0;
2000
2001 status = acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices);
2002 if (ACPI_FAILURE(status)) {
2003 acpi_handle_debug(handle, "Failed to evaluate _DEP.\n");
2004 return 0;
2005 }
2006
2007 for (count = 0, i = 0; i < dep_devices.count; i++) {
2008 struct acpi_device_info *info;
2009 struct acpi_dep_data *dep;
2010 bool skip, honor_dep;
2011
2012 status = acpi_get_object_info(dep_devices.handles[i], &info);
2013 if (ACPI_FAILURE(status)) {
2014 acpi_handle_debug(handle, "Error reading _DEP device info\n");
2015 continue;
2016 }
2017
2018 skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids);
2019 honor_dep = acpi_info_matches_ids(info, acpi_honor_dep_ids);
2020 kfree(info);
2021
2022 if (skip)
2023 continue;
2024
2025 dep = kzalloc(sizeof(*dep), GFP_KERNEL);
2026 if (!dep)
2027 continue;
2028
2029 count++;
2030
2031 dep->supplier = dep_devices.handles[i];
2032 dep->consumer = handle;
2033 dep->honor_dep = honor_dep;
2034
2035 mutex_lock(&acpi_dep_list_lock);
2036 list_add_tail(&dep->node , &acpi_dep_list);
2037 mutex_unlock(&acpi_dep_list_lock);
2038 }
2039
2040 return count;
2041 }
2042
acpi_bus_check_add(acpi_handle handle,bool check_dep,struct acpi_device ** adev_p)2043 static acpi_status acpi_bus_check_add(acpi_handle handle, bool check_dep,
2044 struct acpi_device **adev_p)
2045 {
2046 struct acpi_device *device = acpi_fetch_acpi_dev(handle);
2047 acpi_object_type acpi_type;
2048 int type;
2049
2050 if (device)
2051 goto out;
2052
2053 if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type)))
2054 return AE_OK;
2055
2056 switch (acpi_type) {
2057 case ACPI_TYPE_DEVICE:
2058 if (acpi_device_should_be_hidden(handle))
2059 return AE_OK;
2060
2061 /* Bail out if there are dependencies. */
2062 if (acpi_scan_check_dep(handle, check_dep) > 0)
2063 return AE_CTRL_DEPTH;
2064
2065 fallthrough;
2066 case ACPI_TYPE_ANY: /* for ACPI_ROOT_OBJECT */
2067 type = ACPI_BUS_TYPE_DEVICE;
2068 break;
2069
2070 case ACPI_TYPE_PROCESSOR:
2071 type = ACPI_BUS_TYPE_PROCESSOR;
2072 break;
2073
2074 case ACPI_TYPE_THERMAL:
2075 type = ACPI_BUS_TYPE_THERMAL;
2076 break;
2077
2078 case ACPI_TYPE_POWER:
2079 acpi_add_power_resource(handle);
2080 fallthrough;
2081 default:
2082 return AE_OK;
2083 }
2084
2085 /*
2086 * If check_dep is true at this point, the device has no dependencies,
2087 * or the creation of the device object would have been postponed above.
2088 */
2089 acpi_add_single_object(&device, handle, type, !check_dep);
2090 if (!device)
2091 return AE_CTRL_DEPTH;
2092
2093 acpi_scan_init_hotplug(device);
2094
2095 out:
2096 if (!*adev_p)
2097 *adev_p = device;
2098
2099 return AE_OK;
2100 }
2101
acpi_bus_check_add_1(acpi_handle handle,u32 lvl_not_used,void * not_used,void ** ret_p)2102 static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used,
2103 void *not_used, void **ret_p)
2104 {
2105 return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p);
2106 }
2107
acpi_bus_check_add_2(acpi_handle handle,u32 lvl_not_used,void * not_used,void ** ret_p)2108 static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used,
2109 void *not_used, void **ret_p)
2110 {
2111 return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p);
2112 }
2113
acpi_default_enumeration(struct acpi_device * device)2114 static void acpi_default_enumeration(struct acpi_device *device)
2115 {
2116 /*
2117 * Do not enumerate devices with enumeration_by_parent flag set as
2118 * they will be enumerated by their respective parents.
2119 */
2120 if (!device->flags.enumeration_by_parent) {
2121 acpi_create_platform_device(device, NULL);
2122 acpi_device_set_enumerated(device);
2123 } else {
2124 blocking_notifier_call_chain(&acpi_reconfig_chain,
2125 ACPI_RECONFIG_DEVICE_ADD, device);
2126 }
2127 }
2128
2129 static const struct acpi_device_id generic_device_ids[] = {
2130 {ACPI_DT_NAMESPACE_HID, },
2131 {"", },
2132 };
2133
acpi_generic_device_attach(struct acpi_device * adev,const struct acpi_device_id * not_used)2134 static int acpi_generic_device_attach(struct acpi_device *adev,
2135 const struct acpi_device_id *not_used)
2136 {
2137 /*
2138 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test
2139 * below can be unconditional.
2140 */
2141 if (adev->data.of_compatible)
2142 acpi_default_enumeration(adev);
2143
2144 return 1;
2145 }
2146
2147 static struct acpi_scan_handler generic_device_handler = {
2148 .ids = generic_device_ids,
2149 .attach = acpi_generic_device_attach,
2150 };
2151
acpi_scan_attach_handler(struct acpi_device * device)2152 static int acpi_scan_attach_handler(struct acpi_device *device)
2153 {
2154 struct acpi_hardware_id *hwid;
2155 int ret = 0;
2156
2157 list_for_each_entry(hwid, &device->pnp.ids, list) {
2158 const struct acpi_device_id *devid;
2159 struct acpi_scan_handler *handler;
2160
2161 handler = acpi_scan_match_handler(hwid->id, &devid);
2162 if (handler) {
2163 if (!handler->attach) {
2164 device->pnp.type.platform_id = 0;
2165 continue;
2166 }
2167 device->handler = handler;
2168 ret = handler->attach(device, devid);
2169 if (ret > 0)
2170 break;
2171
2172 device->handler = NULL;
2173 if (ret < 0)
2174 break;
2175 }
2176 }
2177
2178 return ret;
2179 }
2180
acpi_bus_attach(struct acpi_device * device,void * first_pass)2181 static int acpi_bus_attach(struct acpi_device *device, void *first_pass)
2182 {
2183 bool skip = !first_pass && device->flags.visited;
2184 acpi_handle ejd;
2185 int ret;
2186
2187 if (skip)
2188 goto ok;
2189
2190 if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd)))
2191 register_dock_dependent_device(device, ejd);
2192
2193 acpi_bus_get_status(device);
2194 /* Skip devices that are not ready for enumeration (e.g. not present) */
2195 if (!acpi_dev_ready_for_enumeration(device)) {
2196 device->flags.initialized = false;
2197 acpi_device_clear_enumerated(device);
2198 device->flags.power_manageable = 0;
2199 return 0;
2200 }
2201 if (device->handler)
2202 goto ok;
2203
2204 if (!device->flags.initialized) {
2205 device->flags.power_manageable =
2206 device->power.states[ACPI_STATE_D0].flags.valid;
2207 if (acpi_bus_init_power(device))
2208 device->flags.power_manageable = 0;
2209
2210 device->flags.initialized = true;
2211 } else if (device->flags.visited) {
2212 goto ok;
2213 }
2214
2215 ret = acpi_scan_attach_handler(device);
2216 if (ret < 0)
2217 return 0;
2218
2219 device->flags.match_driver = true;
2220 if (ret > 0 && !device->flags.enumeration_by_parent) {
2221 acpi_device_set_enumerated(device);
2222 goto ok;
2223 }
2224
2225 ret = device_attach(&device->dev);
2226 if (ret < 0)
2227 return 0;
2228
2229 if (device->pnp.type.platform_id || device->flags.enumeration_by_parent)
2230 acpi_default_enumeration(device);
2231 else
2232 acpi_device_set_enumerated(device);
2233
2234 ok:
2235 acpi_dev_for_each_child(device, acpi_bus_attach, first_pass);
2236
2237 if (!skip && device->handler && device->handler->hotplug.notify_online)
2238 device->handler->hotplug.notify_online(device);
2239
2240 return 0;
2241 }
2242
acpi_dev_get_next_consumer_dev_cb(struct acpi_dep_data * dep,void * data)2243 static int acpi_dev_get_next_consumer_dev_cb(struct acpi_dep_data *dep, void *data)
2244 {
2245 struct acpi_device **adev_p = data;
2246 struct acpi_device *adev = *adev_p;
2247
2248 /*
2249 * If we're passed a 'previous' consumer device then we need to skip
2250 * any consumers until we meet the previous one, and then NULL @data
2251 * so the next one can be returned.
2252 */
2253 if (adev) {
2254 if (dep->consumer == adev->handle)
2255 *adev_p = NULL;
2256
2257 return 0;
2258 }
2259
2260 adev = acpi_get_acpi_dev(dep->consumer);
2261 if (adev) {
2262 *(struct acpi_device **)data = adev;
2263 return 1;
2264 }
2265 /* Continue parsing if the device object is not present. */
2266 return 0;
2267 }
2268
2269 struct acpi_scan_clear_dep_work {
2270 struct work_struct work;
2271 struct acpi_device *adev;
2272 };
2273
acpi_scan_clear_dep_fn(struct work_struct * work)2274 static void acpi_scan_clear_dep_fn(struct work_struct *work)
2275 {
2276 struct acpi_scan_clear_dep_work *cdw;
2277
2278 cdw = container_of(work, struct acpi_scan_clear_dep_work, work);
2279
2280 acpi_scan_lock_acquire();
2281 acpi_bus_attach(cdw->adev, (void *)true);
2282 acpi_scan_lock_release();
2283
2284 acpi_dev_put(cdw->adev);
2285 kfree(cdw);
2286 }
2287
acpi_scan_clear_dep_queue(struct acpi_device * adev)2288 static bool acpi_scan_clear_dep_queue(struct acpi_device *adev)
2289 {
2290 struct acpi_scan_clear_dep_work *cdw;
2291
2292 if (adev->dep_unmet)
2293 return false;
2294
2295 cdw = kmalloc(sizeof(*cdw), GFP_KERNEL);
2296 if (!cdw)
2297 return false;
2298
2299 cdw->adev = adev;
2300 INIT_WORK(&cdw->work, acpi_scan_clear_dep_fn);
2301 /*
2302 * Since the work function may block on the lock until the entire
2303 * initial enumeration of devices is complete, put it into the unbound
2304 * workqueue.
2305 */
2306 queue_work(system_unbound_wq, &cdw->work);
2307
2308 return true;
2309 }
2310
acpi_scan_delete_dep_data(struct acpi_dep_data * dep)2311 static void acpi_scan_delete_dep_data(struct acpi_dep_data *dep)
2312 {
2313 list_del(&dep->node);
2314 kfree(dep);
2315 }
2316
acpi_scan_clear_dep(struct acpi_dep_data * dep,void * data)2317 static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data)
2318 {
2319 struct acpi_device *adev = acpi_get_acpi_dev(dep->consumer);
2320
2321 if (adev) {
2322 adev->dep_unmet--;
2323 if (!acpi_scan_clear_dep_queue(adev))
2324 acpi_dev_put(adev);
2325 }
2326
2327 if (dep->free_when_met)
2328 acpi_scan_delete_dep_data(dep);
2329 else
2330 dep->met = true;
2331
2332 return 0;
2333 }
2334
2335 /**
2336 * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list
2337 * @handle: The ACPI handle of the supplier device
2338 * @callback: Pointer to the callback function to apply
2339 * @data: Pointer to some data to pass to the callback
2340 *
2341 * The return value of the callback determines this function's behaviour. If 0
2342 * is returned we continue to iterate over acpi_dep_list. If a positive value
2343 * is returned then the loop is broken but this function returns 0. If a
2344 * negative value is returned by the callback then the loop is broken and that
2345 * value is returned as the final error.
2346 */
acpi_walk_dep_device_list(acpi_handle handle,int (* callback)(struct acpi_dep_data *,void *),void * data)2347 static int acpi_walk_dep_device_list(acpi_handle handle,
2348 int (*callback)(struct acpi_dep_data *, void *),
2349 void *data)
2350 {
2351 struct acpi_dep_data *dep, *tmp;
2352 int ret = 0;
2353
2354 mutex_lock(&acpi_dep_list_lock);
2355 list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2356 if (dep->supplier == handle) {
2357 ret = callback(dep, data);
2358 if (ret)
2359 break;
2360 }
2361 }
2362 mutex_unlock(&acpi_dep_list_lock);
2363
2364 return ret > 0 ? 0 : ret;
2365 }
2366
2367 /**
2368 * acpi_dev_clear_dependencies - Inform consumers that the device is now active
2369 * @supplier: Pointer to the supplier &struct acpi_device
2370 *
2371 * Clear dependencies on the given device.
2372 */
acpi_dev_clear_dependencies(struct acpi_device * supplier)2373 void acpi_dev_clear_dependencies(struct acpi_device *supplier)
2374 {
2375 acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL);
2376 }
2377 EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies);
2378
2379 /**
2380 * acpi_dev_ready_for_enumeration - Check if the ACPI device is ready for enumeration
2381 * @device: Pointer to the &struct acpi_device to check
2382 *
2383 * Check if the device is present and has no unmet dependencies.
2384 *
2385 * Return true if the device is ready for enumeratino. Otherwise, return false.
2386 */
acpi_dev_ready_for_enumeration(const struct acpi_device * device)2387 bool acpi_dev_ready_for_enumeration(const struct acpi_device *device)
2388 {
2389 if (device->flags.honor_deps && device->dep_unmet)
2390 return false;
2391
2392 return acpi_device_is_present(device);
2393 }
2394 EXPORT_SYMBOL_GPL(acpi_dev_ready_for_enumeration);
2395
2396 /**
2397 * acpi_dev_get_next_consumer_dev - Return the next adev dependent on @supplier
2398 * @supplier: Pointer to the dependee device
2399 * @start: Pointer to the current dependent device
2400 *
2401 * Returns the next &struct acpi_device which declares itself dependent on
2402 * @supplier via the _DEP buffer, parsed from the acpi_dep_list.
2403 *
2404 * If the returned adev is not passed as @start to this function, the caller is
2405 * responsible for putting the reference to adev when it is no longer needed.
2406 */
acpi_dev_get_next_consumer_dev(struct acpi_device * supplier,struct acpi_device * start)2407 struct acpi_device *acpi_dev_get_next_consumer_dev(struct acpi_device *supplier,
2408 struct acpi_device *start)
2409 {
2410 struct acpi_device *adev = start;
2411
2412 acpi_walk_dep_device_list(supplier->handle,
2413 acpi_dev_get_next_consumer_dev_cb, &adev);
2414
2415 acpi_dev_put(start);
2416
2417 if (adev == start)
2418 return NULL;
2419
2420 return adev;
2421 }
2422 EXPORT_SYMBOL_GPL(acpi_dev_get_next_consumer_dev);
2423
acpi_scan_postponed_branch(acpi_handle handle)2424 static void acpi_scan_postponed_branch(acpi_handle handle)
2425 {
2426 struct acpi_device *adev = NULL;
2427
2428 if (ACPI_FAILURE(acpi_bus_check_add(handle, false, &adev)))
2429 return;
2430
2431 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2432 acpi_bus_check_add_2, NULL, NULL, (void **)&adev);
2433 acpi_bus_attach(adev, NULL);
2434 }
2435
acpi_scan_postponed(void)2436 static void acpi_scan_postponed(void)
2437 {
2438 struct acpi_dep_data *dep, *tmp;
2439
2440 mutex_lock(&acpi_dep_list_lock);
2441
2442 list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2443 acpi_handle handle = dep->consumer;
2444
2445 /*
2446 * In case there are multiple acpi_dep_list entries with the
2447 * same consumer, skip the current entry if the consumer device
2448 * object corresponding to it is present already.
2449 */
2450 if (!acpi_fetch_acpi_dev(handle)) {
2451 /*
2452 * Even though the lock is released here, tmp is
2453 * guaranteed to be valid, because none of the list
2454 * entries following dep is marked as "free when met"
2455 * and so they cannot be deleted.
2456 */
2457 mutex_unlock(&acpi_dep_list_lock);
2458
2459 acpi_scan_postponed_branch(handle);
2460
2461 mutex_lock(&acpi_dep_list_lock);
2462 }
2463
2464 if (dep->met)
2465 acpi_scan_delete_dep_data(dep);
2466 else
2467 dep->free_when_met = true;
2468 }
2469
2470 mutex_unlock(&acpi_dep_list_lock);
2471 }
2472
2473 /**
2474 * acpi_bus_scan - Add ACPI device node objects in a given namespace scope.
2475 * @handle: Root of the namespace scope to scan.
2476 *
2477 * Scan a given ACPI tree (probably recently hot-plugged) and create and add
2478 * found devices.
2479 *
2480 * If no devices were found, -ENODEV is returned, but it does not mean that
2481 * there has been a real error. There just have been no suitable ACPI objects
2482 * in the table trunk from which the kernel could create a device and add an
2483 * appropriate driver.
2484 *
2485 * Must be called under acpi_scan_lock.
2486 */
acpi_bus_scan(acpi_handle handle)2487 int acpi_bus_scan(acpi_handle handle)
2488 {
2489 struct acpi_device *device = NULL;
2490
2491 /* Pass 1: Avoid enumerating devices with missing dependencies. */
2492
2493 if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device)))
2494 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2495 acpi_bus_check_add_1, NULL, NULL,
2496 (void **)&device);
2497
2498 if (!device)
2499 return -ENODEV;
2500
2501 acpi_bus_attach(device, (void *)true);
2502
2503 /* Pass 2: Enumerate all of the remaining devices. */
2504
2505 acpi_scan_postponed();
2506
2507 return 0;
2508 }
2509 EXPORT_SYMBOL(acpi_bus_scan);
2510
acpi_bus_trim_one(struct acpi_device * adev,void * not_used)2511 static int acpi_bus_trim_one(struct acpi_device *adev, void *not_used)
2512 {
2513 struct acpi_scan_handler *handler = adev->handler;
2514
2515 acpi_dev_for_each_child_reverse(adev, acpi_bus_trim_one, NULL);
2516
2517 adev->flags.match_driver = false;
2518 if (handler) {
2519 if (handler->detach)
2520 handler->detach(adev);
2521
2522 adev->handler = NULL;
2523 } else {
2524 device_release_driver(&adev->dev);
2525 }
2526 /*
2527 * Most likely, the device is going away, so put it into D3cold before
2528 * that.
2529 */
2530 acpi_device_set_power(adev, ACPI_STATE_D3_COLD);
2531 adev->flags.initialized = false;
2532 acpi_device_clear_enumerated(adev);
2533
2534 return 0;
2535 }
2536
2537 /**
2538 * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects.
2539 * @adev: Root of the ACPI namespace scope to walk.
2540 *
2541 * Must be called under acpi_scan_lock.
2542 */
acpi_bus_trim(struct acpi_device * adev)2543 void acpi_bus_trim(struct acpi_device *adev)
2544 {
2545 acpi_bus_trim_one(adev, NULL);
2546 }
2547 EXPORT_SYMBOL_GPL(acpi_bus_trim);
2548
acpi_bus_register_early_device(int type)2549 int acpi_bus_register_early_device(int type)
2550 {
2551 struct acpi_device *device = NULL;
2552 int result;
2553
2554 result = acpi_add_single_object(&device, NULL, type, false);
2555 if (result)
2556 return result;
2557
2558 device->flags.match_driver = true;
2559 return device_attach(&device->dev);
2560 }
2561 EXPORT_SYMBOL_GPL(acpi_bus_register_early_device);
2562
acpi_bus_scan_fixed(void)2563 static void acpi_bus_scan_fixed(void)
2564 {
2565 if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) {
2566 struct acpi_device *adev = NULL;
2567
2568 acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_POWER_BUTTON,
2569 false);
2570 if (adev) {
2571 adev->flags.match_driver = true;
2572 if (device_attach(&adev->dev) >= 0)
2573 device_init_wakeup(&adev->dev, true);
2574 else
2575 dev_dbg(&adev->dev, "No driver\n");
2576 }
2577 }
2578
2579 if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) {
2580 struct acpi_device *adev = NULL;
2581
2582 acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_SLEEP_BUTTON,
2583 false);
2584 if (adev) {
2585 adev->flags.match_driver = true;
2586 if (device_attach(&adev->dev) < 0)
2587 dev_dbg(&adev->dev, "No driver\n");
2588 }
2589 }
2590 }
2591
acpi_get_spcr_uart_addr(void)2592 static void __init acpi_get_spcr_uart_addr(void)
2593 {
2594 acpi_status status;
2595 struct acpi_table_spcr *spcr_ptr;
2596
2597 status = acpi_get_table(ACPI_SIG_SPCR, 0,
2598 (struct acpi_table_header **)&spcr_ptr);
2599 if (ACPI_FAILURE(status)) {
2600 pr_warn("STAO table present, but SPCR is missing\n");
2601 return;
2602 }
2603
2604 spcr_uart_addr = spcr_ptr->serial_port.address;
2605 acpi_put_table((struct acpi_table_header *)spcr_ptr);
2606 }
2607
2608 static bool acpi_scan_initialized;
2609
acpi_scan_init(void)2610 void __init acpi_scan_init(void)
2611 {
2612 acpi_status status;
2613 struct acpi_table_stao *stao_ptr;
2614
2615 acpi_pci_root_init();
2616 acpi_pci_link_init();
2617 acpi_processor_init();
2618 acpi_platform_init();
2619 acpi_lpss_init();
2620 acpi_apd_init();
2621 acpi_cmos_rtc_init();
2622 acpi_container_init();
2623 acpi_memory_hotplug_init();
2624 acpi_watchdog_init();
2625 acpi_pnp_init();
2626 acpi_int340x_thermal_init();
2627 acpi_init_lpit();
2628
2629 acpi_scan_add_handler(&generic_device_handler);
2630
2631 /*
2632 * If there is STAO table, check whether it needs to ignore the UART
2633 * device in SPCR table.
2634 */
2635 status = acpi_get_table(ACPI_SIG_STAO, 0,
2636 (struct acpi_table_header **)&stao_ptr);
2637 if (ACPI_SUCCESS(status)) {
2638 if (stao_ptr->header.length > sizeof(struct acpi_table_stao))
2639 pr_info("STAO Name List not yet supported.\n");
2640
2641 if (stao_ptr->ignore_uart)
2642 acpi_get_spcr_uart_addr();
2643
2644 acpi_put_table((struct acpi_table_header *)stao_ptr);
2645 }
2646
2647 acpi_gpe_apply_masked_gpes();
2648 acpi_update_all_gpes();
2649
2650 /*
2651 * Although we call __add_memory() that is documented to require the
2652 * device_hotplug_lock, it is not necessary here because this is an
2653 * early code when userspace or any other code path cannot trigger
2654 * hotplug/hotunplug operations.
2655 */
2656 mutex_lock(&acpi_scan_lock);
2657 /*
2658 * Enumerate devices in the ACPI namespace.
2659 */
2660 if (acpi_bus_scan(ACPI_ROOT_OBJECT))
2661 goto unlock;
2662
2663 acpi_root = acpi_fetch_acpi_dev(ACPI_ROOT_OBJECT);
2664 if (!acpi_root)
2665 goto unlock;
2666
2667 /* Fixed feature devices do not exist on HW-reduced platform */
2668 if (!acpi_gbl_reduced_hardware)
2669 acpi_bus_scan_fixed();
2670
2671 acpi_turn_off_unused_power_resources();
2672
2673 acpi_scan_initialized = true;
2674
2675 unlock:
2676 mutex_unlock(&acpi_scan_lock);
2677 }
2678
2679 static struct acpi_probe_entry *ape;
2680 static int acpi_probe_count;
2681 static DEFINE_MUTEX(acpi_probe_mutex);
2682
acpi_match_madt(union acpi_subtable_headers * header,const unsigned long end)2683 static int __init acpi_match_madt(union acpi_subtable_headers *header,
2684 const unsigned long end)
2685 {
2686 if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape))
2687 if (!ape->probe_subtbl(header, end))
2688 acpi_probe_count++;
2689
2690 return 0;
2691 }
2692
__acpi_probe_device_table(struct acpi_probe_entry * ap_head,int nr)2693 int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr)
2694 {
2695 int count = 0;
2696
2697 if (acpi_disabled)
2698 return 0;
2699
2700 mutex_lock(&acpi_probe_mutex);
2701 for (ape = ap_head; nr; ape++, nr--) {
2702 if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) {
2703 acpi_probe_count = 0;
2704 acpi_table_parse_madt(ape->type, acpi_match_madt, 0);
2705 count += acpi_probe_count;
2706 } else {
2707 int res;
2708 res = acpi_table_parse(ape->id, ape->probe_table);
2709 if (!res)
2710 count++;
2711 }
2712 }
2713 mutex_unlock(&acpi_probe_mutex);
2714
2715 return count;
2716 }
2717
acpi_table_events_fn(struct work_struct * work)2718 static void acpi_table_events_fn(struct work_struct *work)
2719 {
2720 acpi_scan_lock_acquire();
2721 acpi_bus_scan(ACPI_ROOT_OBJECT);
2722 acpi_scan_lock_release();
2723
2724 kfree(work);
2725 }
2726
acpi_scan_table_notify(void)2727 void acpi_scan_table_notify(void)
2728 {
2729 struct work_struct *work;
2730
2731 if (!acpi_scan_initialized)
2732 return;
2733
2734 work = kmalloc(sizeof(*work), GFP_KERNEL);
2735 if (!work)
2736 return;
2737
2738 INIT_WORK(work, acpi_table_events_fn);
2739 schedule_work(work);
2740 }
2741
acpi_reconfig_notifier_register(struct notifier_block * nb)2742 int acpi_reconfig_notifier_register(struct notifier_block *nb)
2743 {
2744 return blocking_notifier_chain_register(&acpi_reconfig_chain, nb);
2745 }
2746 EXPORT_SYMBOL(acpi_reconfig_notifier_register);
2747
acpi_reconfig_notifier_unregister(struct notifier_block * nb)2748 int acpi_reconfig_notifier_unregister(struct notifier_block *nb)
2749 {
2750 return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb);
2751 }
2752 EXPORT_SYMBOL(acpi_reconfig_notifier_unregister);
2753