1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/mm.h>
3 #include <linux/gfp.h>
4 #include <linux/hugetlb.h>
5 #include <asm/pgalloc.h>
6 #include <asm/tlb.h>
7 #include <asm/fixmap.h>
8 #include <asm/mtrr.h>
9
10 #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
11 phys_addr_t physical_mask __ro_after_init = (1ULL << __PHYSICAL_MASK_SHIFT) - 1;
12 EXPORT_SYMBOL(physical_mask);
13 #endif
14
15 #ifdef CONFIG_HIGHPTE
16 #define PGTABLE_HIGHMEM __GFP_HIGHMEM
17 #else
18 #define PGTABLE_HIGHMEM 0
19 #endif
20
21 #ifndef CONFIG_PARAVIRT
22 static inline
paravirt_tlb_remove_table(struct mmu_gather * tlb,void * table)23 void paravirt_tlb_remove_table(struct mmu_gather *tlb, void *table)
24 {
25 tlb_remove_page(tlb, table);
26 }
27 #endif
28
29 gfp_t __userpte_alloc_gfp = GFP_PGTABLE_USER | PGTABLE_HIGHMEM;
30
pte_alloc_one(struct mm_struct * mm)31 pgtable_t pte_alloc_one(struct mm_struct *mm)
32 {
33 return __pte_alloc_one(mm, __userpte_alloc_gfp);
34 }
35
setup_userpte(char * arg)36 static int __init setup_userpte(char *arg)
37 {
38 if (!arg)
39 return -EINVAL;
40
41 /*
42 * "userpte=nohigh" disables allocation of user pagetables in
43 * high memory.
44 */
45 if (strcmp(arg, "nohigh") == 0)
46 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
47 else
48 return -EINVAL;
49 return 0;
50 }
51 early_param("userpte", setup_userpte);
52
___pte_free_tlb(struct mmu_gather * tlb,struct page * pte)53 void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
54 {
55 pgtable_pte_page_dtor(pte);
56 paravirt_release_pte(page_to_pfn(pte));
57 paravirt_tlb_remove_table(tlb, pte);
58 }
59
60 #if CONFIG_PGTABLE_LEVELS > 2
___pmd_free_tlb(struct mmu_gather * tlb,pmd_t * pmd)61 void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
62 {
63 struct page *page = virt_to_page(pmd);
64 paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
65 /*
66 * NOTE! For PAE, any changes to the top page-directory-pointer-table
67 * entries need a full cr3 reload to flush.
68 */
69 #ifdef CONFIG_X86_PAE
70 tlb->need_flush_all = 1;
71 #endif
72 pgtable_pmd_page_dtor(page);
73 paravirt_tlb_remove_table(tlb, page);
74 }
75
76 #if CONFIG_PGTABLE_LEVELS > 3
___pud_free_tlb(struct mmu_gather * tlb,pud_t * pud)77 void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
78 {
79 paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
80 paravirt_tlb_remove_table(tlb, virt_to_page(pud));
81 }
82
83 #if CONFIG_PGTABLE_LEVELS > 4
___p4d_free_tlb(struct mmu_gather * tlb,p4d_t * p4d)84 void ___p4d_free_tlb(struct mmu_gather *tlb, p4d_t *p4d)
85 {
86 paravirt_release_p4d(__pa(p4d) >> PAGE_SHIFT);
87 paravirt_tlb_remove_table(tlb, virt_to_page(p4d));
88 }
89 #endif /* CONFIG_PGTABLE_LEVELS > 4 */
90 #endif /* CONFIG_PGTABLE_LEVELS > 3 */
91 #endif /* CONFIG_PGTABLE_LEVELS > 2 */
92
pgd_list_add(pgd_t * pgd)93 static inline void pgd_list_add(pgd_t *pgd)
94 {
95 struct page *page = virt_to_page(pgd);
96
97 list_add(&page->lru, &pgd_list);
98 }
99
pgd_list_del(pgd_t * pgd)100 static inline void pgd_list_del(pgd_t *pgd)
101 {
102 struct page *page = virt_to_page(pgd);
103
104 list_del(&page->lru);
105 }
106
107 #define UNSHARED_PTRS_PER_PGD \
108 (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
109 #define MAX_UNSHARED_PTRS_PER_PGD \
110 max_t(size_t, KERNEL_PGD_BOUNDARY, PTRS_PER_PGD)
111
112
pgd_set_mm(pgd_t * pgd,struct mm_struct * mm)113 static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
114 {
115 virt_to_page(pgd)->pt_mm = mm;
116 }
117
pgd_page_get_mm(struct page * page)118 struct mm_struct *pgd_page_get_mm(struct page *page)
119 {
120 return page->pt_mm;
121 }
122
pgd_ctor(struct mm_struct * mm,pgd_t * pgd)123 static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
124 {
125 /* If the pgd points to a shared pagetable level (either the
126 ptes in non-PAE, or shared PMD in PAE), then just copy the
127 references from swapper_pg_dir. */
128 if (CONFIG_PGTABLE_LEVELS == 2 ||
129 (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
130 CONFIG_PGTABLE_LEVELS >= 4) {
131 clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
132 swapper_pg_dir + KERNEL_PGD_BOUNDARY,
133 KERNEL_PGD_PTRS);
134 }
135
136 /* list required to sync kernel mapping updates */
137 if (!SHARED_KERNEL_PMD) {
138 pgd_set_mm(pgd, mm);
139 pgd_list_add(pgd);
140 }
141 }
142
pgd_dtor(pgd_t * pgd)143 static void pgd_dtor(pgd_t *pgd)
144 {
145 if (SHARED_KERNEL_PMD)
146 return;
147
148 spin_lock(&pgd_lock);
149 pgd_list_del(pgd);
150 spin_unlock(&pgd_lock);
151 }
152
153 /*
154 * List of all pgd's needed for non-PAE so it can invalidate entries
155 * in both cached and uncached pgd's; not needed for PAE since the
156 * kernel pmd is shared. If PAE were not to share the pmd a similar
157 * tactic would be needed. This is essentially codepath-based locking
158 * against pageattr.c; it is the unique case in which a valid change
159 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
160 * vmalloc faults work because attached pagetables are never freed.
161 * -- nyc
162 */
163
164 #ifdef CONFIG_X86_PAE
165 /*
166 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
167 * updating the top-level pagetable entries to guarantee the
168 * processor notices the update. Since this is expensive, and
169 * all 4 top-level entries are used almost immediately in a
170 * new process's life, we just pre-populate them here.
171 *
172 * Also, if we're in a paravirt environment where the kernel pmd is
173 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
174 * and initialize the kernel pmds here.
175 */
176 #define PREALLOCATED_PMDS UNSHARED_PTRS_PER_PGD
177 #define MAX_PREALLOCATED_PMDS MAX_UNSHARED_PTRS_PER_PGD
178
179 /*
180 * We allocate separate PMDs for the kernel part of the user page-table
181 * when PTI is enabled. We need them to map the per-process LDT into the
182 * user-space page-table.
183 */
184 #define PREALLOCATED_USER_PMDS (boot_cpu_has(X86_FEATURE_PTI) ? \
185 KERNEL_PGD_PTRS : 0)
186 #define MAX_PREALLOCATED_USER_PMDS KERNEL_PGD_PTRS
187
pud_populate(struct mm_struct * mm,pud_t * pudp,pmd_t * pmd)188 void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
189 {
190 paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
191
192 /* Note: almost everything apart from _PAGE_PRESENT is
193 reserved at the pmd (PDPT) level. */
194 set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
195
196 /*
197 * According to Intel App note "TLBs, Paging-Structure Caches,
198 * and Their Invalidation", April 2007, document 317080-001,
199 * section 8.1: in PAE mode we explicitly have to flush the
200 * TLB via cr3 if the top-level pgd is changed...
201 */
202 flush_tlb_mm(mm);
203 }
204 #else /* !CONFIG_X86_PAE */
205
206 /* No need to prepopulate any pagetable entries in non-PAE modes. */
207 #define PREALLOCATED_PMDS 0
208 #define MAX_PREALLOCATED_PMDS 0
209 #define PREALLOCATED_USER_PMDS 0
210 #define MAX_PREALLOCATED_USER_PMDS 0
211 #endif /* CONFIG_X86_PAE */
212
free_pmds(struct mm_struct * mm,pmd_t * pmds[],int count)213 static void free_pmds(struct mm_struct *mm, pmd_t *pmds[], int count)
214 {
215 int i;
216
217 for (i = 0; i < count; i++)
218 if (pmds[i]) {
219 pgtable_pmd_page_dtor(virt_to_page(pmds[i]));
220 free_page((unsigned long)pmds[i]);
221 mm_dec_nr_pmds(mm);
222 }
223 }
224
preallocate_pmds(struct mm_struct * mm,pmd_t * pmds[],int count)225 static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[], int count)
226 {
227 int i;
228 bool failed = false;
229 gfp_t gfp = GFP_PGTABLE_USER;
230
231 if (mm == &init_mm)
232 gfp &= ~__GFP_ACCOUNT;
233
234 for (i = 0; i < count; i++) {
235 pmd_t *pmd = (pmd_t *)__get_free_page(gfp);
236 if (!pmd)
237 failed = true;
238 if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) {
239 free_page((unsigned long)pmd);
240 pmd = NULL;
241 failed = true;
242 }
243 if (pmd)
244 mm_inc_nr_pmds(mm);
245 pmds[i] = pmd;
246 }
247
248 if (failed) {
249 free_pmds(mm, pmds, count);
250 return -ENOMEM;
251 }
252
253 return 0;
254 }
255
256 /*
257 * Mop up any pmd pages which may still be attached to the pgd.
258 * Normally they will be freed by munmap/exit_mmap, but any pmd we
259 * preallocate which never got a corresponding vma will need to be
260 * freed manually.
261 */
mop_up_one_pmd(struct mm_struct * mm,pgd_t * pgdp)262 static void mop_up_one_pmd(struct mm_struct *mm, pgd_t *pgdp)
263 {
264 pgd_t pgd = *pgdp;
265
266 if (pgd_val(pgd) != 0) {
267 pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
268
269 pgd_clear(pgdp);
270
271 paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
272 pmd_free(mm, pmd);
273 mm_dec_nr_pmds(mm);
274 }
275 }
276
pgd_mop_up_pmds(struct mm_struct * mm,pgd_t * pgdp)277 static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
278 {
279 int i;
280
281 for (i = 0; i < PREALLOCATED_PMDS; i++)
282 mop_up_one_pmd(mm, &pgdp[i]);
283
284 #ifdef CONFIG_PAGE_TABLE_ISOLATION
285
286 if (!boot_cpu_has(X86_FEATURE_PTI))
287 return;
288
289 pgdp = kernel_to_user_pgdp(pgdp);
290
291 for (i = 0; i < PREALLOCATED_USER_PMDS; i++)
292 mop_up_one_pmd(mm, &pgdp[i + KERNEL_PGD_BOUNDARY]);
293 #endif
294 }
295
pgd_prepopulate_pmd(struct mm_struct * mm,pgd_t * pgd,pmd_t * pmds[])296 static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
297 {
298 p4d_t *p4d;
299 pud_t *pud;
300 int i;
301
302 if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
303 return;
304
305 p4d = p4d_offset(pgd, 0);
306 pud = pud_offset(p4d, 0);
307
308 for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
309 pmd_t *pmd = pmds[i];
310
311 if (i >= KERNEL_PGD_BOUNDARY)
312 memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
313 sizeof(pmd_t) * PTRS_PER_PMD);
314
315 pud_populate(mm, pud, pmd);
316 }
317 }
318
319 #ifdef CONFIG_PAGE_TABLE_ISOLATION
pgd_prepopulate_user_pmd(struct mm_struct * mm,pgd_t * k_pgd,pmd_t * pmds[])320 static void pgd_prepopulate_user_pmd(struct mm_struct *mm,
321 pgd_t *k_pgd, pmd_t *pmds[])
322 {
323 pgd_t *s_pgd = kernel_to_user_pgdp(swapper_pg_dir);
324 pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd);
325 p4d_t *u_p4d;
326 pud_t *u_pud;
327 int i;
328
329 u_p4d = p4d_offset(u_pgd, 0);
330 u_pud = pud_offset(u_p4d, 0);
331
332 s_pgd += KERNEL_PGD_BOUNDARY;
333 u_pud += KERNEL_PGD_BOUNDARY;
334
335 for (i = 0; i < PREALLOCATED_USER_PMDS; i++, u_pud++, s_pgd++) {
336 pmd_t *pmd = pmds[i];
337
338 memcpy(pmd, (pmd_t *)pgd_page_vaddr(*s_pgd),
339 sizeof(pmd_t) * PTRS_PER_PMD);
340
341 pud_populate(mm, u_pud, pmd);
342 }
343
344 }
345 #else
pgd_prepopulate_user_pmd(struct mm_struct * mm,pgd_t * k_pgd,pmd_t * pmds[])346 static void pgd_prepopulate_user_pmd(struct mm_struct *mm,
347 pgd_t *k_pgd, pmd_t *pmds[])
348 {
349 }
350 #endif
351 /*
352 * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also
353 * assumes that pgd should be in one page.
354 *
355 * But kernel with PAE paging that is not running as a Xen domain
356 * only needs to allocate 32 bytes for pgd instead of one page.
357 */
358 #ifdef CONFIG_X86_PAE
359
360 #include <linux/slab.h>
361
362 #define PGD_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
363 #define PGD_ALIGN 32
364
365 static struct kmem_cache *pgd_cache;
366
pgtable_cache_init(void)367 void __init pgtable_cache_init(void)
368 {
369 /*
370 * When PAE kernel is running as a Xen domain, it does not use
371 * shared kernel pmd. And this requires a whole page for pgd.
372 */
373 if (!SHARED_KERNEL_PMD)
374 return;
375
376 /*
377 * when PAE kernel is not running as a Xen domain, it uses
378 * shared kernel pmd. Shared kernel pmd does not require a whole
379 * page for pgd. We are able to just allocate a 32-byte for pgd.
380 * During boot time, we create a 32-byte slab for pgd table allocation.
381 */
382 pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN,
383 SLAB_PANIC, NULL);
384 }
385
_pgd_alloc(void)386 static inline pgd_t *_pgd_alloc(void)
387 {
388 /*
389 * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain.
390 * We allocate one page for pgd.
391 */
392 if (!SHARED_KERNEL_PMD)
393 return (pgd_t *)__get_free_pages(GFP_PGTABLE_USER,
394 PGD_ALLOCATION_ORDER);
395
396 /*
397 * Now PAE kernel is not running as a Xen domain. We can allocate
398 * a 32-byte slab for pgd to save memory space.
399 */
400 return kmem_cache_alloc(pgd_cache, GFP_PGTABLE_USER);
401 }
402
_pgd_free(pgd_t * pgd)403 static inline void _pgd_free(pgd_t *pgd)
404 {
405 if (!SHARED_KERNEL_PMD)
406 free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER);
407 else
408 kmem_cache_free(pgd_cache, pgd);
409 }
410 #else
411
_pgd_alloc(void)412 static inline pgd_t *_pgd_alloc(void)
413 {
414 return (pgd_t *)__get_free_pages(GFP_PGTABLE_USER,
415 PGD_ALLOCATION_ORDER);
416 }
417
_pgd_free(pgd_t * pgd)418 static inline void _pgd_free(pgd_t *pgd)
419 {
420 free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER);
421 }
422 #endif /* CONFIG_X86_PAE */
423
pgd_alloc(struct mm_struct * mm)424 pgd_t *pgd_alloc(struct mm_struct *mm)
425 {
426 pgd_t *pgd;
427 pmd_t *u_pmds[MAX_PREALLOCATED_USER_PMDS];
428 pmd_t *pmds[MAX_PREALLOCATED_PMDS];
429
430 pgd = _pgd_alloc();
431
432 if (pgd == NULL)
433 goto out;
434
435 mm->pgd = pgd;
436
437 if (preallocate_pmds(mm, pmds, PREALLOCATED_PMDS) != 0)
438 goto out_free_pgd;
439
440 if (preallocate_pmds(mm, u_pmds, PREALLOCATED_USER_PMDS) != 0)
441 goto out_free_pmds;
442
443 if (paravirt_pgd_alloc(mm) != 0)
444 goto out_free_user_pmds;
445
446 /*
447 * Make sure that pre-populating the pmds is atomic with
448 * respect to anything walking the pgd_list, so that they
449 * never see a partially populated pgd.
450 */
451 spin_lock(&pgd_lock);
452
453 pgd_ctor(mm, pgd);
454 pgd_prepopulate_pmd(mm, pgd, pmds);
455 pgd_prepopulate_user_pmd(mm, pgd, u_pmds);
456
457 spin_unlock(&pgd_lock);
458
459 return pgd;
460
461 out_free_user_pmds:
462 free_pmds(mm, u_pmds, PREALLOCATED_USER_PMDS);
463 out_free_pmds:
464 free_pmds(mm, pmds, PREALLOCATED_PMDS);
465 out_free_pgd:
466 _pgd_free(pgd);
467 out:
468 return NULL;
469 }
470
pgd_free(struct mm_struct * mm,pgd_t * pgd)471 void pgd_free(struct mm_struct *mm, pgd_t *pgd)
472 {
473 pgd_mop_up_pmds(mm, pgd);
474 pgd_dtor(pgd);
475 paravirt_pgd_free(mm, pgd);
476 _pgd_free(pgd);
477 }
478
479 /*
480 * Used to set accessed or dirty bits in the page table entries
481 * on other architectures. On x86, the accessed and dirty bits
482 * are tracked by hardware. However, do_wp_page calls this function
483 * to also make the pte writeable at the same time the dirty bit is
484 * set. In that case we do actually need to write the PTE.
485 */
ptep_set_access_flags(struct vm_area_struct * vma,unsigned long address,pte_t * ptep,pte_t entry,int dirty)486 int ptep_set_access_flags(struct vm_area_struct *vma,
487 unsigned long address, pte_t *ptep,
488 pte_t entry, int dirty)
489 {
490 int changed = !pte_same(*ptep, entry);
491
492 if (changed && dirty)
493 set_pte(ptep, entry);
494
495 return changed;
496 }
497
498 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t entry,int dirty)499 int pmdp_set_access_flags(struct vm_area_struct *vma,
500 unsigned long address, pmd_t *pmdp,
501 pmd_t entry, int dirty)
502 {
503 int changed = !pmd_same(*pmdp, entry);
504
505 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
506
507 if (changed && dirty) {
508 set_pmd(pmdp, entry);
509 /*
510 * We had a write-protection fault here and changed the pmd
511 * to to more permissive. No need to flush the TLB for that,
512 * #PF is architecturally guaranteed to do that and in the
513 * worst-case we'll generate a spurious fault.
514 */
515 }
516
517 return changed;
518 }
519
pudp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pud_t * pudp,pud_t entry,int dirty)520 int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
521 pud_t *pudp, pud_t entry, int dirty)
522 {
523 int changed = !pud_same(*pudp, entry);
524
525 VM_BUG_ON(address & ~HPAGE_PUD_MASK);
526
527 if (changed && dirty) {
528 set_pud(pudp, entry);
529 /*
530 * We had a write-protection fault here and changed the pud
531 * to to more permissive. No need to flush the TLB for that,
532 * #PF is architecturally guaranteed to do that and in the
533 * worst-case we'll generate a spurious fault.
534 */
535 }
536
537 return changed;
538 }
539 #endif
540
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)541 int ptep_test_and_clear_young(struct vm_area_struct *vma,
542 unsigned long addr, pte_t *ptep)
543 {
544 int ret = 0;
545
546 if (pte_young(*ptep))
547 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
548 (unsigned long *) &ptep->pte);
549
550 return ret;
551 }
552
553 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)554 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
555 unsigned long addr, pmd_t *pmdp)
556 {
557 int ret = 0;
558
559 if (pmd_young(*pmdp))
560 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
561 (unsigned long *)pmdp);
562
563 return ret;
564 }
565 #endif
566
567 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pudp_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pud_t * pudp)568 int pudp_test_and_clear_young(struct vm_area_struct *vma,
569 unsigned long addr, pud_t *pudp)
570 {
571 int ret = 0;
572
573 if (pud_young(*pudp))
574 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
575 (unsigned long *)pudp);
576
577 return ret;
578 }
579 #endif
580
ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)581 int ptep_clear_flush_young(struct vm_area_struct *vma,
582 unsigned long address, pte_t *ptep)
583 {
584 /*
585 * On x86 CPUs, clearing the accessed bit without a TLB flush
586 * doesn't cause data corruption. [ It could cause incorrect
587 * page aging and the (mistaken) reclaim of hot pages, but the
588 * chance of that should be relatively low. ]
589 *
590 * So as a performance optimization don't flush the TLB when
591 * clearing the accessed bit, it will eventually be flushed by
592 * a context switch or a VM operation anyway. [ In the rare
593 * event of it not getting flushed for a long time the delay
594 * shouldn't really matter because there's no real memory
595 * pressure for swapout to react to. ]
596 */
597 return ptep_test_and_clear_young(vma, address, ptep);
598 }
599
600 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmdp_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)601 int pmdp_clear_flush_young(struct vm_area_struct *vma,
602 unsigned long address, pmd_t *pmdp)
603 {
604 int young;
605
606 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
607
608 young = pmdp_test_and_clear_young(vma, address, pmdp);
609 if (young)
610 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
611
612 return young;
613 }
614
pmdp_invalidate_ad(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)615 pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma, unsigned long address,
616 pmd_t *pmdp)
617 {
618 /*
619 * No flush is necessary. Once an invalid PTE is established, the PTE's
620 * access and dirty bits cannot be updated.
621 */
622 return pmdp_establish(vma, address, pmdp, pmd_mkinvalid(*pmdp));
623 }
624 #endif
625
626 /**
627 * reserve_top_address - reserves a hole in the top of kernel address space
628 * @reserve - size of hole to reserve
629 *
630 * Can be used to relocate the fixmap area and poke a hole in the top
631 * of kernel address space to make room for a hypervisor.
632 */
reserve_top_address(unsigned long reserve)633 void __init reserve_top_address(unsigned long reserve)
634 {
635 #ifdef CONFIG_X86_32
636 BUG_ON(fixmaps_set > 0);
637 __FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE;
638 printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n",
639 -reserve, __FIXADDR_TOP + PAGE_SIZE);
640 #endif
641 }
642
643 int fixmaps_set;
644
__native_set_fixmap(enum fixed_addresses idx,pte_t pte)645 void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
646 {
647 unsigned long address = __fix_to_virt(idx);
648
649 #ifdef CONFIG_X86_64
650 /*
651 * Ensure that the static initial page tables are covering the
652 * fixmap completely.
653 */
654 BUILD_BUG_ON(__end_of_permanent_fixed_addresses >
655 (FIXMAP_PMD_NUM * PTRS_PER_PTE));
656 #endif
657
658 if (idx >= __end_of_fixed_addresses) {
659 BUG();
660 return;
661 }
662 set_pte_vaddr(address, pte);
663 fixmaps_set++;
664 }
665
native_set_fixmap(unsigned idx,phys_addr_t phys,pgprot_t flags)666 void native_set_fixmap(unsigned /* enum fixed_addresses */ idx,
667 phys_addr_t phys, pgprot_t flags)
668 {
669 /* Sanitize 'prot' against any unsupported bits: */
670 pgprot_val(flags) &= __default_kernel_pte_mask;
671
672 __native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
673 }
674
675 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
676 #ifdef CONFIG_X86_5LEVEL
677 /**
678 * p4d_set_huge - setup kernel P4D mapping
679 *
680 * No 512GB pages yet -- always return 0
681 */
p4d_set_huge(p4d_t * p4d,phys_addr_t addr,pgprot_t prot)682 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
683 {
684 return 0;
685 }
686
687 /**
688 * p4d_clear_huge - clear kernel P4D mapping when it is set
689 *
690 * No 512GB pages yet -- always return 0
691 */
p4d_clear_huge(p4d_t * p4d)692 void p4d_clear_huge(p4d_t *p4d)
693 {
694 }
695 #endif
696
697 /**
698 * pud_set_huge - setup kernel PUD mapping
699 *
700 * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this
701 * function sets up a huge page only if any of the following conditions are met:
702 *
703 * - MTRRs are disabled, or
704 *
705 * - MTRRs are enabled and the range is completely covered by a single MTRR, or
706 *
707 * - MTRRs are enabled and the corresponding MTRR memory type is WB, which
708 * has no effect on the requested PAT memory type.
709 *
710 * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger
711 * page mapping attempt fails.
712 *
713 * Returns 1 on success and 0 on failure.
714 */
pud_set_huge(pud_t * pud,phys_addr_t addr,pgprot_t prot)715 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
716 {
717 u8 mtrr, uniform;
718
719 mtrr = mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform);
720 if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
721 (mtrr != MTRR_TYPE_WRBACK))
722 return 0;
723
724 /* Bail out if we are we on a populated non-leaf entry: */
725 if (pud_present(*pud) && !pud_huge(*pud))
726 return 0;
727
728 set_pte((pte_t *)pud, pfn_pte(
729 (u64)addr >> PAGE_SHIFT,
730 __pgprot(protval_4k_2_large(pgprot_val(prot)) | _PAGE_PSE)));
731
732 return 1;
733 }
734
735 /**
736 * pmd_set_huge - setup kernel PMD mapping
737 *
738 * See text over pud_set_huge() above.
739 *
740 * Returns 1 on success and 0 on failure.
741 */
pmd_set_huge(pmd_t * pmd,phys_addr_t addr,pgprot_t prot)742 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
743 {
744 u8 mtrr, uniform;
745
746 mtrr = mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform);
747 if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
748 (mtrr != MTRR_TYPE_WRBACK)) {
749 pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n",
750 __func__, addr, addr + PMD_SIZE);
751 return 0;
752 }
753
754 /* Bail out if we are we on a populated non-leaf entry: */
755 if (pmd_present(*pmd) && !pmd_huge(*pmd))
756 return 0;
757
758 set_pte((pte_t *)pmd, pfn_pte(
759 (u64)addr >> PAGE_SHIFT,
760 __pgprot(protval_4k_2_large(pgprot_val(prot)) | _PAGE_PSE)));
761
762 return 1;
763 }
764
765 /**
766 * pud_clear_huge - clear kernel PUD mapping when it is set
767 *
768 * Returns 1 on success and 0 on failure (no PUD map is found).
769 */
pud_clear_huge(pud_t * pud)770 int pud_clear_huge(pud_t *pud)
771 {
772 if (pud_large(*pud)) {
773 pud_clear(pud);
774 return 1;
775 }
776
777 return 0;
778 }
779
780 /**
781 * pmd_clear_huge - clear kernel PMD mapping when it is set
782 *
783 * Returns 1 on success and 0 on failure (no PMD map is found).
784 */
pmd_clear_huge(pmd_t * pmd)785 int pmd_clear_huge(pmd_t *pmd)
786 {
787 if (pmd_large(*pmd)) {
788 pmd_clear(pmd);
789 return 1;
790 }
791
792 return 0;
793 }
794
795 #ifdef CONFIG_X86_64
796 /**
797 * pud_free_pmd_page - Clear pud entry and free pmd page.
798 * @pud: Pointer to a PUD.
799 * @addr: Virtual address associated with pud.
800 *
801 * Context: The pud range has been unmapped and TLB purged.
802 * Return: 1 if clearing the entry succeeded. 0 otherwise.
803 *
804 * NOTE: Callers must allow a single page allocation.
805 */
pud_free_pmd_page(pud_t * pud,unsigned long addr)806 int pud_free_pmd_page(pud_t *pud, unsigned long addr)
807 {
808 pmd_t *pmd, *pmd_sv;
809 pte_t *pte;
810 int i;
811
812 pmd = pud_pgtable(*pud);
813 pmd_sv = (pmd_t *)__get_free_page(GFP_KERNEL);
814 if (!pmd_sv)
815 return 0;
816
817 for (i = 0; i < PTRS_PER_PMD; i++) {
818 pmd_sv[i] = pmd[i];
819 if (!pmd_none(pmd[i]))
820 pmd_clear(&pmd[i]);
821 }
822
823 pud_clear(pud);
824
825 /* INVLPG to clear all paging-structure caches */
826 flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1);
827
828 for (i = 0; i < PTRS_PER_PMD; i++) {
829 if (!pmd_none(pmd_sv[i])) {
830 pte = (pte_t *)pmd_page_vaddr(pmd_sv[i]);
831 free_page((unsigned long)pte);
832 }
833 }
834
835 free_page((unsigned long)pmd_sv);
836
837 pgtable_pmd_page_dtor(virt_to_page(pmd));
838 free_page((unsigned long)pmd);
839
840 return 1;
841 }
842
843 /**
844 * pmd_free_pte_page - Clear pmd entry and free pte page.
845 * @pmd: Pointer to a PMD.
846 * @addr: Virtual address associated with pmd.
847 *
848 * Context: The pmd range has been unmapped and TLB purged.
849 * Return: 1 if clearing the entry succeeded. 0 otherwise.
850 */
pmd_free_pte_page(pmd_t * pmd,unsigned long addr)851 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
852 {
853 pte_t *pte;
854
855 pte = (pte_t *)pmd_page_vaddr(*pmd);
856 pmd_clear(pmd);
857
858 /* INVLPG to clear all paging-structure caches */
859 flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1);
860
861 free_page((unsigned long)pte);
862
863 return 1;
864 }
865
866 #else /* !CONFIG_X86_64 */
867
868 /*
869 * Disable free page handling on x86-PAE. This assures that ioremap()
870 * does not update sync'd pmd entries. See vmalloc_sync_one().
871 */
pmd_free_pte_page(pmd_t * pmd,unsigned long addr)872 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
873 {
874 return pmd_none(*pmd);
875 }
876
877 #endif /* CONFIG_X86_64 */
878 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
879