1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_PGTABLE_H
3 #define _ASM_X86_PGTABLE_H
4
5 #include <linux/mem_encrypt.h>
6 #include <asm/page.h>
7 #include <asm/pgtable_types.h>
8
9 /*
10 * Macro to mark a page protection value as UC-
11 */
12 #define pgprot_noncached(prot) \
13 ((boot_cpu_data.x86 > 3) \
14 ? (__pgprot(pgprot_val(prot) | \
15 cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS))) \
16 : (prot))
17
18 #ifndef __ASSEMBLY__
19 #include <linux/spinlock.h>
20 #include <asm/x86_init.h>
21 #include <asm/pkru.h>
22 #include <asm/fpu/api.h>
23 #include <asm/coco.h>
24 #include <asm-generic/pgtable_uffd.h>
25 #include <linux/page_table_check.h>
26
27 extern pgd_t early_top_pgt[PTRS_PER_PGD];
28 bool __init __early_make_pgtable(unsigned long address, pmdval_t pmd);
29
30 struct seq_file;
31 void ptdump_walk_pgd_level(struct seq_file *m, struct mm_struct *mm);
32 void ptdump_walk_pgd_level_debugfs(struct seq_file *m, struct mm_struct *mm,
33 bool user);
34 void ptdump_walk_pgd_level_checkwx(void);
35 void ptdump_walk_user_pgd_level_checkwx(void);
36
37 /*
38 * Macros to add or remove encryption attribute
39 */
40 #define pgprot_encrypted(prot) __pgprot(cc_mkenc(pgprot_val(prot)))
41 #define pgprot_decrypted(prot) __pgprot(cc_mkdec(pgprot_val(prot)))
42
43 #ifdef CONFIG_DEBUG_WX
44 #define debug_checkwx() ptdump_walk_pgd_level_checkwx()
45 #define debug_checkwx_user() ptdump_walk_user_pgd_level_checkwx()
46 #else
47 #define debug_checkwx() do { } while (0)
48 #define debug_checkwx_user() do { } while (0)
49 #endif
50
51 /*
52 * ZERO_PAGE is a global shared page that is always zero: used
53 * for zero-mapped memory areas etc..
54 */
55 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]
56 __visible;
57 #define ZERO_PAGE(vaddr) ((void)(vaddr),virt_to_page(empty_zero_page))
58
59 extern spinlock_t pgd_lock;
60 extern struct list_head pgd_list;
61
62 extern struct mm_struct *pgd_page_get_mm(struct page *page);
63
64 extern pmdval_t early_pmd_flags;
65
66 #ifdef CONFIG_PARAVIRT_XXL
67 #include <asm/paravirt.h>
68 #else /* !CONFIG_PARAVIRT_XXL */
69 #define set_pte(ptep, pte) native_set_pte(ptep, pte)
70
71 #define set_pte_atomic(ptep, pte) \
72 native_set_pte_atomic(ptep, pte)
73
74 #define set_pmd(pmdp, pmd) native_set_pmd(pmdp, pmd)
75
76 #ifndef __PAGETABLE_P4D_FOLDED
77 #define set_pgd(pgdp, pgd) native_set_pgd(pgdp, pgd)
78 #define pgd_clear(pgd) (pgtable_l5_enabled() ? native_pgd_clear(pgd) : 0)
79 #endif
80
81 #ifndef set_p4d
82 # define set_p4d(p4dp, p4d) native_set_p4d(p4dp, p4d)
83 #endif
84
85 #ifndef __PAGETABLE_PUD_FOLDED
86 #define p4d_clear(p4d) native_p4d_clear(p4d)
87 #endif
88
89 #ifndef set_pud
90 # define set_pud(pudp, pud) native_set_pud(pudp, pud)
91 #endif
92
93 #ifndef __PAGETABLE_PUD_FOLDED
94 #define pud_clear(pud) native_pud_clear(pud)
95 #endif
96
97 #define pte_clear(mm, addr, ptep) native_pte_clear(mm, addr, ptep)
98 #define pmd_clear(pmd) native_pmd_clear(pmd)
99
100 #define pgd_val(x) native_pgd_val(x)
101 #define __pgd(x) native_make_pgd(x)
102
103 #ifndef __PAGETABLE_P4D_FOLDED
104 #define p4d_val(x) native_p4d_val(x)
105 #define __p4d(x) native_make_p4d(x)
106 #endif
107
108 #ifndef __PAGETABLE_PUD_FOLDED
109 #define pud_val(x) native_pud_val(x)
110 #define __pud(x) native_make_pud(x)
111 #endif
112
113 #ifndef __PAGETABLE_PMD_FOLDED
114 #define pmd_val(x) native_pmd_val(x)
115 #define __pmd(x) native_make_pmd(x)
116 #endif
117
118 #define pte_val(x) native_pte_val(x)
119 #define __pte(x) native_make_pte(x)
120
121 #define arch_end_context_switch(prev) do {} while(0)
122 #endif /* CONFIG_PARAVIRT_XXL */
123
124 /*
125 * The following only work if pte_present() is true.
126 * Undefined behaviour if not..
127 */
pte_dirty(pte_t pte)128 static inline bool pte_dirty(pte_t pte)
129 {
130 return pte_flags(pte) & _PAGE_DIRTY_BITS;
131 }
132
pte_shstk(pte_t pte)133 static inline bool pte_shstk(pte_t pte)
134 {
135 return cpu_feature_enabled(X86_FEATURE_SHSTK) &&
136 (pte_flags(pte) & (_PAGE_RW | _PAGE_DIRTY)) == _PAGE_DIRTY;
137 }
138
pte_young(pte_t pte)139 static inline int pte_young(pte_t pte)
140 {
141 return pte_flags(pte) & _PAGE_ACCESSED;
142 }
143
pmd_dirty(pmd_t pmd)144 static inline bool pmd_dirty(pmd_t pmd)
145 {
146 return pmd_flags(pmd) & _PAGE_DIRTY_BITS;
147 }
148
pmd_shstk(pmd_t pmd)149 static inline bool pmd_shstk(pmd_t pmd)
150 {
151 return cpu_feature_enabled(X86_FEATURE_SHSTK) &&
152 (pmd_flags(pmd) & (_PAGE_RW | _PAGE_DIRTY | _PAGE_PSE)) ==
153 (_PAGE_DIRTY | _PAGE_PSE);
154 }
155
156 #define pmd_young pmd_young
pmd_young(pmd_t pmd)157 static inline int pmd_young(pmd_t pmd)
158 {
159 return pmd_flags(pmd) & _PAGE_ACCESSED;
160 }
161
pud_dirty(pud_t pud)162 static inline bool pud_dirty(pud_t pud)
163 {
164 return pud_flags(pud) & _PAGE_DIRTY_BITS;
165 }
166
pud_young(pud_t pud)167 static inline int pud_young(pud_t pud)
168 {
169 return pud_flags(pud) & _PAGE_ACCESSED;
170 }
171
pte_write(pte_t pte)172 static inline int pte_write(pte_t pte)
173 {
174 /*
175 * Shadow stack pages are logically writable, but do not have
176 * _PAGE_RW. Check for them separately from _PAGE_RW itself.
177 */
178 return (pte_flags(pte) & _PAGE_RW) || pte_shstk(pte);
179 }
180
181 #define pmd_write pmd_write
pmd_write(pmd_t pmd)182 static inline int pmd_write(pmd_t pmd)
183 {
184 /*
185 * Shadow stack pages are logically writable, but do not have
186 * _PAGE_RW. Check for them separately from _PAGE_RW itself.
187 */
188 return (pmd_flags(pmd) & _PAGE_RW) || pmd_shstk(pmd);
189 }
190
191 #define pud_write pud_write
pud_write(pud_t pud)192 static inline int pud_write(pud_t pud)
193 {
194 return pud_flags(pud) & _PAGE_RW;
195 }
196
pte_huge(pte_t pte)197 static inline int pte_huge(pte_t pte)
198 {
199 return pte_flags(pte) & _PAGE_PSE;
200 }
201
pte_global(pte_t pte)202 static inline int pte_global(pte_t pte)
203 {
204 return pte_flags(pte) & _PAGE_GLOBAL;
205 }
206
pte_exec(pte_t pte)207 static inline int pte_exec(pte_t pte)
208 {
209 return !(pte_flags(pte) & _PAGE_NX);
210 }
211
pte_special(pte_t pte)212 static inline int pte_special(pte_t pte)
213 {
214 return pte_flags(pte) & _PAGE_SPECIAL;
215 }
216
217 /* Entries that were set to PROT_NONE are inverted */
218
219 static inline u64 protnone_mask(u64 val);
220
221 #define PFN_PTE_SHIFT PAGE_SHIFT
222
pte_pfn(pte_t pte)223 static inline unsigned long pte_pfn(pte_t pte)
224 {
225 phys_addr_t pfn = pte_val(pte);
226 pfn ^= protnone_mask(pfn);
227 return (pfn & PTE_PFN_MASK) >> PAGE_SHIFT;
228 }
229
pmd_pfn(pmd_t pmd)230 static inline unsigned long pmd_pfn(pmd_t pmd)
231 {
232 phys_addr_t pfn = pmd_val(pmd);
233 pfn ^= protnone_mask(pfn);
234 return (pfn & pmd_pfn_mask(pmd)) >> PAGE_SHIFT;
235 }
236
pud_pfn(pud_t pud)237 static inline unsigned long pud_pfn(pud_t pud)
238 {
239 phys_addr_t pfn = pud_val(pud);
240 pfn ^= protnone_mask(pfn);
241 return (pfn & pud_pfn_mask(pud)) >> PAGE_SHIFT;
242 }
243
p4d_pfn(p4d_t p4d)244 static inline unsigned long p4d_pfn(p4d_t p4d)
245 {
246 return (p4d_val(p4d) & p4d_pfn_mask(p4d)) >> PAGE_SHIFT;
247 }
248
pgd_pfn(pgd_t pgd)249 static inline unsigned long pgd_pfn(pgd_t pgd)
250 {
251 return (pgd_val(pgd) & PTE_PFN_MASK) >> PAGE_SHIFT;
252 }
253
254 #define p4d_leaf p4d_large
p4d_large(p4d_t p4d)255 static inline int p4d_large(p4d_t p4d)
256 {
257 /* No 512 GiB pages yet */
258 return 0;
259 }
260
261 #define pte_page(pte) pfn_to_page(pte_pfn(pte))
262
263 #define pmd_leaf pmd_large
pmd_large(pmd_t pte)264 static inline int pmd_large(pmd_t pte)
265 {
266 return pmd_flags(pte) & _PAGE_PSE;
267 }
268
269 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
270 /* NOTE: when predicate huge page, consider also pmd_devmap, or use pmd_large */
pmd_trans_huge(pmd_t pmd)271 static inline int pmd_trans_huge(pmd_t pmd)
272 {
273 return (pmd_val(pmd) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE;
274 }
275
276 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
pud_trans_huge(pud_t pud)277 static inline int pud_trans_huge(pud_t pud)
278 {
279 return (pud_val(pud) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE;
280 }
281 #endif
282
283 #define has_transparent_hugepage has_transparent_hugepage
has_transparent_hugepage(void)284 static inline int has_transparent_hugepage(void)
285 {
286 return boot_cpu_has(X86_FEATURE_PSE);
287 }
288
289 #ifdef CONFIG_ARCH_HAS_PTE_DEVMAP
pmd_devmap(pmd_t pmd)290 static inline int pmd_devmap(pmd_t pmd)
291 {
292 return !!(pmd_val(pmd) & _PAGE_DEVMAP);
293 }
294
295 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
pud_devmap(pud_t pud)296 static inline int pud_devmap(pud_t pud)
297 {
298 return !!(pud_val(pud) & _PAGE_DEVMAP);
299 }
300 #else
pud_devmap(pud_t pud)301 static inline int pud_devmap(pud_t pud)
302 {
303 return 0;
304 }
305 #endif
306
pgd_devmap(pgd_t pgd)307 static inline int pgd_devmap(pgd_t pgd)
308 {
309 return 0;
310 }
311 #endif
312 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
313
pte_set_flags(pte_t pte,pteval_t set)314 static inline pte_t pte_set_flags(pte_t pte, pteval_t set)
315 {
316 pteval_t v = native_pte_val(pte);
317
318 return native_make_pte(v | set);
319 }
320
pte_clear_flags(pte_t pte,pteval_t clear)321 static inline pte_t pte_clear_flags(pte_t pte, pteval_t clear)
322 {
323 pteval_t v = native_pte_val(pte);
324
325 return native_make_pte(v & ~clear);
326 }
327
328 /*
329 * Write protection operations can result in Dirty=1,Write=0 PTEs. But in the
330 * case of X86_FEATURE_USER_SHSTK, these PTEs denote shadow stack memory. So
331 * when creating dirty, write-protected memory, a software bit is used:
332 * _PAGE_BIT_SAVED_DIRTY. The following functions take a PTE and transition the
333 * Dirty bit to SavedDirty, and vice-vesra.
334 *
335 * This shifting is only done if needed. In the case of shifting
336 * Dirty->SavedDirty, the condition is if the PTE is Write=0. In the case of
337 * shifting SavedDirty->Dirty, the condition is Write=1.
338 */
mksaveddirty_shift(pgprotval_t v)339 static inline pgprotval_t mksaveddirty_shift(pgprotval_t v)
340 {
341 pgprotval_t cond = (~v >> _PAGE_BIT_RW) & 1;
342
343 v |= ((v >> _PAGE_BIT_DIRTY) & cond) << _PAGE_BIT_SAVED_DIRTY;
344 v &= ~(cond << _PAGE_BIT_DIRTY);
345
346 return v;
347 }
348
clear_saveddirty_shift(pgprotval_t v)349 static inline pgprotval_t clear_saveddirty_shift(pgprotval_t v)
350 {
351 pgprotval_t cond = (v >> _PAGE_BIT_RW) & 1;
352
353 v |= ((v >> _PAGE_BIT_SAVED_DIRTY) & cond) << _PAGE_BIT_DIRTY;
354 v &= ~(cond << _PAGE_BIT_SAVED_DIRTY);
355
356 return v;
357 }
358
pte_mksaveddirty(pte_t pte)359 static inline pte_t pte_mksaveddirty(pte_t pte)
360 {
361 pteval_t v = native_pte_val(pte);
362
363 v = mksaveddirty_shift(v);
364 return native_make_pte(v);
365 }
366
pte_clear_saveddirty(pte_t pte)367 static inline pte_t pte_clear_saveddirty(pte_t pte)
368 {
369 pteval_t v = native_pte_val(pte);
370
371 v = clear_saveddirty_shift(v);
372 return native_make_pte(v);
373 }
374
pte_wrprotect(pte_t pte)375 static inline pte_t pte_wrprotect(pte_t pte)
376 {
377 pte = pte_clear_flags(pte, _PAGE_RW);
378
379 /*
380 * Blindly clearing _PAGE_RW might accidentally create
381 * a shadow stack PTE (Write=0,Dirty=1). Move the hardware
382 * dirty value to the software bit, if present.
383 */
384 return pte_mksaveddirty(pte);
385 }
386
387 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
pte_uffd_wp(pte_t pte)388 static inline int pte_uffd_wp(pte_t pte)
389 {
390 bool wp = pte_flags(pte) & _PAGE_UFFD_WP;
391
392 #ifdef CONFIG_DEBUG_VM
393 /*
394 * Having write bit for wr-protect-marked present ptes is fatal,
395 * because it means the uffd-wp bit will be ignored and write will
396 * just go through.
397 *
398 * Use any chance of pgtable walking to verify this (e.g., when
399 * page swapped out or being migrated for all purposes). It means
400 * something is already wrong. Tell the admin even before the
401 * process crashes. We also nail it with wrong pgtable setup.
402 */
403 WARN_ON_ONCE(wp && pte_write(pte));
404 #endif
405
406 return wp;
407 }
408
pte_mkuffd_wp(pte_t pte)409 static inline pte_t pte_mkuffd_wp(pte_t pte)
410 {
411 return pte_wrprotect(pte_set_flags(pte, _PAGE_UFFD_WP));
412 }
413
pte_clear_uffd_wp(pte_t pte)414 static inline pte_t pte_clear_uffd_wp(pte_t pte)
415 {
416 return pte_clear_flags(pte, _PAGE_UFFD_WP);
417 }
418 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
419
pte_mkclean(pte_t pte)420 static inline pte_t pte_mkclean(pte_t pte)
421 {
422 return pte_clear_flags(pte, _PAGE_DIRTY_BITS);
423 }
424
pte_mkold(pte_t pte)425 static inline pte_t pte_mkold(pte_t pte)
426 {
427 return pte_clear_flags(pte, _PAGE_ACCESSED);
428 }
429
pte_mkexec(pte_t pte)430 static inline pte_t pte_mkexec(pte_t pte)
431 {
432 return pte_clear_flags(pte, _PAGE_NX);
433 }
434
pte_mkdirty(pte_t pte)435 static inline pte_t pte_mkdirty(pte_t pte)
436 {
437 pte = pte_set_flags(pte, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
438
439 return pte_mksaveddirty(pte);
440 }
441
pte_mkwrite_shstk(pte_t pte)442 static inline pte_t pte_mkwrite_shstk(pte_t pte)
443 {
444 pte = pte_clear_flags(pte, _PAGE_RW);
445
446 return pte_set_flags(pte, _PAGE_DIRTY);
447 }
448
pte_mkyoung(pte_t pte)449 static inline pte_t pte_mkyoung(pte_t pte)
450 {
451 return pte_set_flags(pte, _PAGE_ACCESSED);
452 }
453
pte_mkwrite_novma(pte_t pte)454 static inline pte_t pte_mkwrite_novma(pte_t pte)
455 {
456 return pte_set_flags(pte, _PAGE_RW);
457 }
458
459 struct vm_area_struct;
460 pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma);
461 #define pte_mkwrite pte_mkwrite
462
pte_mkhuge(pte_t pte)463 static inline pte_t pte_mkhuge(pte_t pte)
464 {
465 return pte_set_flags(pte, _PAGE_PSE);
466 }
467
pte_clrhuge(pte_t pte)468 static inline pte_t pte_clrhuge(pte_t pte)
469 {
470 return pte_clear_flags(pte, _PAGE_PSE);
471 }
472
pte_mkglobal(pte_t pte)473 static inline pte_t pte_mkglobal(pte_t pte)
474 {
475 return pte_set_flags(pte, _PAGE_GLOBAL);
476 }
477
pte_clrglobal(pte_t pte)478 static inline pte_t pte_clrglobal(pte_t pte)
479 {
480 return pte_clear_flags(pte, _PAGE_GLOBAL);
481 }
482
pte_mkspecial(pte_t pte)483 static inline pte_t pte_mkspecial(pte_t pte)
484 {
485 return pte_set_flags(pte, _PAGE_SPECIAL);
486 }
487
pte_mkdevmap(pte_t pte)488 static inline pte_t pte_mkdevmap(pte_t pte)
489 {
490 return pte_set_flags(pte, _PAGE_SPECIAL|_PAGE_DEVMAP);
491 }
492
pmd_set_flags(pmd_t pmd,pmdval_t set)493 static inline pmd_t pmd_set_flags(pmd_t pmd, pmdval_t set)
494 {
495 pmdval_t v = native_pmd_val(pmd);
496
497 return native_make_pmd(v | set);
498 }
499
pmd_clear_flags(pmd_t pmd,pmdval_t clear)500 static inline pmd_t pmd_clear_flags(pmd_t pmd, pmdval_t clear)
501 {
502 pmdval_t v = native_pmd_val(pmd);
503
504 return native_make_pmd(v & ~clear);
505 }
506
507 /* See comments above mksaveddirty_shift() */
pmd_mksaveddirty(pmd_t pmd)508 static inline pmd_t pmd_mksaveddirty(pmd_t pmd)
509 {
510 pmdval_t v = native_pmd_val(pmd);
511
512 v = mksaveddirty_shift(v);
513 return native_make_pmd(v);
514 }
515
516 /* See comments above mksaveddirty_shift() */
pmd_clear_saveddirty(pmd_t pmd)517 static inline pmd_t pmd_clear_saveddirty(pmd_t pmd)
518 {
519 pmdval_t v = native_pmd_val(pmd);
520
521 v = clear_saveddirty_shift(v);
522 return native_make_pmd(v);
523 }
524
pmd_wrprotect(pmd_t pmd)525 static inline pmd_t pmd_wrprotect(pmd_t pmd)
526 {
527 pmd = pmd_clear_flags(pmd, _PAGE_RW);
528
529 /*
530 * Blindly clearing _PAGE_RW might accidentally create
531 * a shadow stack PMD (RW=0, Dirty=1). Move the hardware
532 * dirty value to the software bit.
533 */
534 return pmd_mksaveddirty(pmd);
535 }
536
537 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
pmd_uffd_wp(pmd_t pmd)538 static inline int pmd_uffd_wp(pmd_t pmd)
539 {
540 return pmd_flags(pmd) & _PAGE_UFFD_WP;
541 }
542
pmd_mkuffd_wp(pmd_t pmd)543 static inline pmd_t pmd_mkuffd_wp(pmd_t pmd)
544 {
545 return pmd_wrprotect(pmd_set_flags(pmd, _PAGE_UFFD_WP));
546 }
547
pmd_clear_uffd_wp(pmd_t pmd)548 static inline pmd_t pmd_clear_uffd_wp(pmd_t pmd)
549 {
550 return pmd_clear_flags(pmd, _PAGE_UFFD_WP);
551 }
552 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
553
pmd_mkold(pmd_t pmd)554 static inline pmd_t pmd_mkold(pmd_t pmd)
555 {
556 return pmd_clear_flags(pmd, _PAGE_ACCESSED);
557 }
558
pmd_mkclean(pmd_t pmd)559 static inline pmd_t pmd_mkclean(pmd_t pmd)
560 {
561 return pmd_clear_flags(pmd, _PAGE_DIRTY_BITS);
562 }
563
pmd_mkdirty(pmd_t pmd)564 static inline pmd_t pmd_mkdirty(pmd_t pmd)
565 {
566 pmd = pmd_set_flags(pmd, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
567
568 return pmd_mksaveddirty(pmd);
569 }
570
pmd_mkwrite_shstk(pmd_t pmd)571 static inline pmd_t pmd_mkwrite_shstk(pmd_t pmd)
572 {
573 pmd = pmd_clear_flags(pmd, _PAGE_RW);
574
575 return pmd_set_flags(pmd, _PAGE_DIRTY);
576 }
577
pmd_mkdevmap(pmd_t pmd)578 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
579 {
580 return pmd_set_flags(pmd, _PAGE_DEVMAP);
581 }
582
pmd_mkhuge(pmd_t pmd)583 static inline pmd_t pmd_mkhuge(pmd_t pmd)
584 {
585 return pmd_set_flags(pmd, _PAGE_PSE);
586 }
587
pmd_mkyoung(pmd_t pmd)588 static inline pmd_t pmd_mkyoung(pmd_t pmd)
589 {
590 return pmd_set_flags(pmd, _PAGE_ACCESSED);
591 }
592
pmd_mkwrite_novma(pmd_t pmd)593 static inline pmd_t pmd_mkwrite_novma(pmd_t pmd)
594 {
595 return pmd_set_flags(pmd, _PAGE_RW);
596 }
597
598 pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
599 #define pmd_mkwrite pmd_mkwrite
600
pud_set_flags(pud_t pud,pudval_t set)601 static inline pud_t pud_set_flags(pud_t pud, pudval_t set)
602 {
603 pudval_t v = native_pud_val(pud);
604
605 return native_make_pud(v | set);
606 }
607
pud_clear_flags(pud_t pud,pudval_t clear)608 static inline pud_t pud_clear_flags(pud_t pud, pudval_t clear)
609 {
610 pudval_t v = native_pud_val(pud);
611
612 return native_make_pud(v & ~clear);
613 }
614
615 /* See comments above mksaveddirty_shift() */
pud_mksaveddirty(pud_t pud)616 static inline pud_t pud_mksaveddirty(pud_t pud)
617 {
618 pudval_t v = native_pud_val(pud);
619
620 v = mksaveddirty_shift(v);
621 return native_make_pud(v);
622 }
623
624 /* See comments above mksaveddirty_shift() */
pud_clear_saveddirty(pud_t pud)625 static inline pud_t pud_clear_saveddirty(pud_t pud)
626 {
627 pudval_t v = native_pud_val(pud);
628
629 v = clear_saveddirty_shift(v);
630 return native_make_pud(v);
631 }
632
pud_mkold(pud_t pud)633 static inline pud_t pud_mkold(pud_t pud)
634 {
635 return pud_clear_flags(pud, _PAGE_ACCESSED);
636 }
637
pud_mkclean(pud_t pud)638 static inline pud_t pud_mkclean(pud_t pud)
639 {
640 return pud_clear_flags(pud, _PAGE_DIRTY_BITS);
641 }
642
pud_wrprotect(pud_t pud)643 static inline pud_t pud_wrprotect(pud_t pud)
644 {
645 pud = pud_clear_flags(pud, _PAGE_RW);
646
647 /*
648 * Blindly clearing _PAGE_RW might accidentally create
649 * a shadow stack PUD (RW=0, Dirty=1). Move the hardware
650 * dirty value to the software bit.
651 */
652 return pud_mksaveddirty(pud);
653 }
654
pud_mkdirty(pud_t pud)655 static inline pud_t pud_mkdirty(pud_t pud)
656 {
657 pud = pud_set_flags(pud, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
658
659 return pud_mksaveddirty(pud);
660 }
661
pud_mkdevmap(pud_t pud)662 static inline pud_t pud_mkdevmap(pud_t pud)
663 {
664 return pud_set_flags(pud, _PAGE_DEVMAP);
665 }
666
pud_mkhuge(pud_t pud)667 static inline pud_t pud_mkhuge(pud_t pud)
668 {
669 return pud_set_flags(pud, _PAGE_PSE);
670 }
671
pud_mkyoung(pud_t pud)672 static inline pud_t pud_mkyoung(pud_t pud)
673 {
674 return pud_set_flags(pud, _PAGE_ACCESSED);
675 }
676
pud_mkwrite(pud_t pud)677 static inline pud_t pud_mkwrite(pud_t pud)
678 {
679 pud = pud_set_flags(pud, _PAGE_RW);
680
681 return pud_clear_saveddirty(pud);
682 }
683
684 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
pte_soft_dirty(pte_t pte)685 static inline int pte_soft_dirty(pte_t pte)
686 {
687 return pte_flags(pte) & _PAGE_SOFT_DIRTY;
688 }
689
pmd_soft_dirty(pmd_t pmd)690 static inline int pmd_soft_dirty(pmd_t pmd)
691 {
692 return pmd_flags(pmd) & _PAGE_SOFT_DIRTY;
693 }
694
pud_soft_dirty(pud_t pud)695 static inline int pud_soft_dirty(pud_t pud)
696 {
697 return pud_flags(pud) & _PAGE_SOFT_DIRTY;
698 }
699
pte_mksoft_dirty(pte_t pte)700 static inline pte_t pte_mksoft_dirty(pte_t pte)
701 {
702 return pte_set_flags(pte, _PAGE_SOFT_DIRTY);
703 }
704
pmd_mksoft_dirty(pmd_t pmd)705 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
706 {
707 return pmd_set_flags(pmd, _PAGE_SOFT_DIRTY);
708 }
709
pud_mksoft_dirty(pud_t pud)710 static inline pud_t pud_mksoft_dirty(pud_t pud)
711 {
712 return pud_set_flags(pud, _PAGE_SOFT_DIRTY);
713 }
714
pte_clear_soft_dirty(pte_t pte)715 static inline pte_t pte_clear_soft_dirty(pte_t pte)
716 {
717 return pte_clear_flags(pte, _PAGE_SOFT_DIRTY);
718 }
719
pmd_clear_soft_dirty(pmd_t pmd)720 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
721 {
722 return pmd_clear_flags(pmd, _PAGE_SOFT_DIRTY);
723 }
724
pud_clear_soft_dirty(pud_t pud)725 static inline pud_t pud_clear_soft_dirty(pud_t pud)
726 {
727 return pud_clear_flags(pud, _PAGE_SOFT_DIRTY);
728 }
729
730 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
731
732 /*
733 * Mask out unsupported bits in a present pgprot. Non-present pgprots
734 * can use those bits for other purposes, so leave them be.
735 */
massage_pgprot(pgprot_t pgprot)736 static inline pgprotval_t massage_pgprot(pgprot_t pgprot)
737 {
738 pgprotval_t protval = pgprot_val(pgprot);
739
740 if (protval & _PAGE_PRESENT)
741 protval &= __supported_pte_mask;
742
743 return protval;
744 }
745
check_pgprot(pgprot_t pgprot)746 static inline pgprotval_t check_pgprot(pgprot_t pgprot)
747 {
748 pgprotval_t massaged_val = massage_pgprot(pgprot);
749
750 /* mmdebug.h can not be included here because of dependencies */
751 #ifdef CONFIG_DEBUG_VM
752 WARN_ONCE(pgprot_val(pgprot) != massaged_val,
753 "attempted to set unsupported pgprot: %016llx "
754 "bits: %016llx supported: %016llx\n",
755 (u64)pgprot_val(pgprot),
756 (u64)pgprot_val(pgprot) ^ massaged_val,
757 (u64)__supported_pte_mask);
758 #endif
759
760 return massaged_val;
761 }
762
pfn_pte(unsigned long page_nr,pgprot_t pgprot)763 static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot)
764 {
765 phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT;
766 pfn ^= protnone_mask(pgprot_val(pgprot));
767 pfn &= PTE_PFN_MASK;
768 return __pte(pfn | check_pgprot(pgprot));
769 }
770
pfn_pmd(unsigned long page_nr,pgprot_t pgprot)771 static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot)
772 {
773 phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT;
774 pfn ^= protnone_mask(pgprot_val(pgprot));
775 pfn &= PHYSICAL_PMD_PAGE_MASK;
776 return __pmd(pfn | check_pgprot(pgprot));
777 }
778
pfn_pud(unsigned long page_nr,pgprot_t pgprot)779 static inline pud_t pfn_pud(unsigned long page_nr, pgprot_t pgprot)
780 {
781 phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT;
782 pfn ^= protnone_mask(pgprot_val(pgprot));
783 pfn &= PHYSICAL_PUD_PAGE_MASK;
784 return __pud(pfn | check_pgprot(pgprot));
785 }
786
pmd_mkinvalid(pmd_t pmd)787 static inline pmd_t pmd_mkinvalid(pmd_t pmd)
788 {
789 return pfn_pmd(pmd_pfn(pmd),
790 __pgprot(pmd_flags(pmd) & ~(_PAGE_PRESENT|_PAGE_PROTNONE)));
791 }
792
793 static inline u64 flip_protnone_guard(u64 oldval, u64 val, u64 mask);
794
pte_modify(pte_t pte,pgprot_t newprot)795 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
796 {
797 pteval_t val = pte_val(pte), oldval = val;
798 pte_t pte_result;
799
800 /*
801 * Chop off the NX bit (if present), and add the NX portion of
802 * the newprot (if present):
803 */
804 val &= _PAGE_CHG_MASK;
805 val |= check_pgprot(newprot) & ~_PAGE_CHG_MASK;
806 val = flip_protnone_guard(oldval, val, PTE_PFN_MASK);
807
808 pte_result = __pte(val);
809
810 /*
811 * To avoid creating Write=0,Dirty=1 PTEs, pte_modify() needs to avoid:
812 * 1. Marking Write=0 PTEs Dirty=1
813 * 2. Marking Dirty=1 PTEs Write=0
814 *
815 * The first case cannot happen because the _PAGE_CHG_MASK will filter
816 * out any Dirty bit passed in newprot. Handle the second case by
817 * going through the mksaveddirty exercise. Only do this if the old
818 * value was Write=1 to avoid doing this on Shadow Stack PTEs.
819 */
820 if (oldval & _PAGE_RW)
821 pte_result = pte_mksaveddirty(pte_result);
822 else
823 pte_result = pte_clear_saveddirty(pte_result);
824
825 return pte_result;
826 }
827
pmd_modify(pmd_t pmd,pgprot_t newprot)828 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
829 {
830 pmdval_t val = pmd_val(pmd), oldval = val;
831 pmd_t pmd_result;
832
833 val &= (_HPAGE_CHG_MASK & ~_PAGE_DIRTY);
834 val |= check_pgprot(newprot) & ~_HPAGE_CHG_MASK;
835 val = flip_protnone_guard(oldval, val, PHYSICAL_PMD_PAGE_MASK);
836
837 pmd_result = __pmd(val);
838
839 /*
840 * To avoid creating Write=0,Dirty=1 PMDs, pte_modify() needs to avoid:
841 * 1. Marking Write=0 PMDs Dirty=1
842 * 2. Marking Dirty=1 PMDs Write=0
843 *
844 * The first case cannot happen because the _PAGE_CHG_MASK will filter
845 * out any Dirty bit passed in newprot. Handle the second case by
846 * going through the mksaveddirty exercise. Only do this if the old
847 * value was Write=1 to avoid doing this on Shadow Stack PTEs.
848 */
849 if (oldval & _PAGE_RW)
850 pmd_result = pmd_mksaveddirty(pmd_result);
851 else
852 pmd_result = pmd_clear_saveddirty(pmd_result);
853
854 return pmd_result;
855 }
856
857 /*
858 * mprotect needs to preserve PAT and encryption bits when updating
859 * vm_page_prot
860 */
861 #define pgprot_modify pgprot_modify
pgprot_modify(pgprot_t oldprot,pgprot_t newprot)862 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
863 {
864 pgprotval_t preservebits = pgprot_val(oldprot) & _PAGE_CHG_MASK;
865 pgprotval_t addbits = pgprot_val(newprot) & ~_PAGE_CHG_MASK;
866 return __pgprot(preservebits | addbits);
867 }
868
869 #define pte_pgprot(x) __pgprot(pte_flags(x))
870 #define pmd_pgprot(x) __pgprot(pmd_flags(x))
871 #define pud_pgprot(x) __pgprot(pud_flags(x))
872 #define p4d_pgprot(x) __pgprot(p4d_flags(x))
873
874 #define canon_pgprot(p) __pgprot(massage_pgprot(p))
875
is_new_memtype_allowed(u64 paddr,unsigned long size,enum page_cache_mode pcm,enum page_cache_mode new_pcm)876 static inline int is_new_memtype_allowed(u64 paddr, unsigned long size,
877 enum page_cache_mode pcm,
878 enum page_cache_mode new_pcm)
879 {
880 /*
881 * PAT type is always WB for untracked ranges, so no need to check.
882 */
883 if (x86_platform.is_untracked_pat_range(paddr, paddr + size))
884 return 1;
885
886 /*
887 * Certain new memtypes are not allowed with certain
888 * requested memtype:
889 * - request is uncached, return cannot be write-back
890 * - request is write-combine, return cannot be write-back
891 * - request is write-through, return cannot be write-back
892 * - request is write-through, return cannot be write-combine
893 */
894 if ((pcm == _PAGE_CACHE_MODE_UC_MINUS &&
895 new_pcm == _PAGE_CACHE_MODE_WB) ||
896 (pcm == _PAGE_CACHE_MODE_WC &&
897 new_pcm == _PAGE_CACHE_MODE_WB) ||
898 (pcm == _PAGE_CACHE_MODE_WT &&
899 new_pcm == _PAGE_CACHE_MODE_WB) ||
900 (pcm == _PAGE_CACHE_MODE_WT &&
901 new_pcm == _PAGE_CACHE_MODE_WC)) {
902 return 0;
903 }
904
905 return 1;
906 }
907
908 pmd_t *populate_extra_pmd(unsigned long vaddr);
909 pte_t *populate_extra_pte(unsigned long vaddr);
910
911 #ifdef CONFIG_PAGE_TABLE_ISOLATION
912 pgd_t __pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd);
913
914 /*
915 * Take a PGD location (pgdp) and a pgd value that needs to be set there.
916 * Populates the user and returns the resulting PGD that must be set in
917 * the kernel copy of the page tables.
918 */
pti_set_user_pgtbl(pgd_t * pgdp,pgd_t pgd)919 static inline pgd_t pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd)
920 {
921 if (!static_cpu_has(X86_FEATURE_PTI))
922 return pgd;
923 return __pti_set_user_pgtbl(pgdp, pgd);
924 }
925 #else /* CONFIG_PAGE_TABLE_ISOLATION */
pti_set_user_pgtbl(pgd_t * pgdp,pgd_t pgd)926 static inline pgd_t pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd)
927 {
928 return pgd;
929 }
930 #endif /* CONFIG_PAGE_TABLE_ISOLATION */
931
932 #endif /* __ASSEMBLY__ */
933
934
935 #ifdef CONFIG_X86_32
936 # include <asm/pgtable_32.h>
937 #else
938 # include <asm/pgtable_64.h>
939 #endif
940
941 #ifndef __ASSEMBLY__
942 #include <linux/mm_types.h>
943 #include <linux/mmdebug.h>
944 #include <linux/log2.h>
945 #include <asm/fixmap.h>
946
pte_none(pte_t pte)947 static inline int pte_none(pte_t pte)
948 {
949 return !(pte.pte & ~(_PAGE_KNL_ERRATUM_MASK));
950 }
951
952 #define __HAVE_ARCH_PTE_SAME
pte_same(pte_t a,pte_t b)953 static inline int pte_same(pte_t a, pte_t b)
954 {
955 return a.pte == b.pte;
956 }
957
pte_next_pfn(pte_t pte)958 static inline pte_t pte_next_pfn(pte_t pte)
959 {
960 if (__pte_needs_invert(pte_val(pte)))
961 return __pte(pte_val(pte) - (1UL << PFN_PTE_SHIFT));
962 return __pte(pte_val(pte) + (1UL << PFN_PTE_SHIFT));
963 }
964 #define pte_next_pfn pte_next_pfn
965
pte_present(pte_t a)966 static inline int pte_present(pte_t a)
967 {
968 return pte_flags(a) & (_PAGE_PRESENT | _PAGE_PROTNONE);
969 }
970
971 #ifdef CONFIG_ARCH_HAS_PTE_DEVMAP
pte_devmap(pte_t a)972 static inline int pte_devmap(pte_t a)
973 {
974 return (pte_flags(a) & _PAGE_DEVMAP) == _PAGE_DEVMAP;
975 }
976 #endif
977
978 #define pte_accessible pte_accessible
pte_accessible(struct mm_struct * mm,pte_t a)979 static inline bool pte_accessible(struct mm_struct *mm, pte_t a)
980 {
981 if (pte_flags(a) & _PAGE_PRESENT)
982 return true;
983
984 if ((pte_flags(a) & _PAGE_PROTNONE) &&
985 atomic_read(&mm->tlb_flush_pending))
986 return true;
987
988 return false;
989 }
990
pmd_present(pmd_t pmd)991 static inline int pmd_present(pmd_t pmd)
992 {
993 /*
994 * Checking for _PAGE_PSE is needed too because
995 * split_huge_page will temporarily clear the present bit (but
996 * the _PAGE_PSE flag will remain set at all times while the
997 * _PAGE_PRESENT bit is clear).
998 */
999 return pmd_flags(pmd) & (_PAGE_PRESENT | _PAGE_PROTNONE | _PAGE_PSE);
1000 }
1001
1002 #ifdef CONFIG_NUMA_BALANCING
1003 /*
1004 * These work without NUMA balancing but the kernel does not care. See the
1005 * comment in include/linux/pgtable.h
1006 */
pte_protnone(pte_t pte)1007 static inline int pte_protnone(pte_t pte)
1008 {
1009 return (pte_flags(pte) & (_PAGE_PROTNONE | _PAGE_PRESENT))
1010 == _PAGE_PROTNONE;
1011 }
1012
pmd_protnone(pmd_t pmd)1013 static inline int pmd_protnone(pmd_t pmd)
1014 {
1015 return (pmd_flags(pmd) & (_PAGE_PROTNONE | _PAGE_PRESENT))
1016 == _PAGE_PROTNONE;
1017 }
1018 #endif /* CONFIG_NUMA_BALANCING */
1019
pmd_none(pmd_t pmd)1020 static inline int pmd_none(pmd_t pmd)
1021 {
1022 /* Only check low word on 32-bit platforms, since it might be
1023 out of sync with upper half. */
1024 unsigned long val = native_pmd_val(pmd);
1025 return (val & ~_PAGE_KNL_ERRATUM_MASK) == 0;
1026 }
1027
pmd_page_vaddr(pmd_t pmd)1028 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
1029 {
1030 return (unsigned long)__va(pmd_val(pmd) & pmd_pfn_mask(pmd));
1031 }
1032
1033 /*
1034 * Currently stuck as a macro due to indirect forward reference to
1035 * linux/mmzone.h's __section_mem_map_addr() definition:
1036 */
1037 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1038
1039 /*
1040 * Conversion functions: convert a page and protection to a page entry,
1041 * and a page entry and page directory to the page they refer to.
1042 *
1043 * (Currently stuck as a macro because of indirect forward reference
1044 * to linux/mm.h:page_to_nid())
1045 */
1046 #define mk_pte(page, pgprot) \
1047 ({ \
1048 pgprot_t __pgprot = pgprot; \
1049 \
1050 WARN_ON_ONCE((pgprot_val(__pgprot) & (_PAGE_DIRTY | _PAGE_RW)) == \
1051 _PAGE_DIRTY); \
1052 pfn_pte(page_to_pfn(page), __pgprot); \
1053 })
1054
pmd_bad(pmd_t pmd)1055 static inline int pmd_bad(pmd_t pmd)
1056 {
1057 return (pmd_flags(pmd) & ~(_PAGE_USER | _PAGE_ACCESSED)) !=
1058 (_KERNPG_TABLE & ~_PAGE_ACCESSED);
1059 }
1060
pages_to_mb(unsigned long npg)1061 static inline unsigned long pages_to_mb(unsigned long npg)
1062 {
1063 return npg >> (20 - PAGE_SHIFT);
1064 }
1065
1066 #if CONFIG_PGTABLE_LEVELS > 2
pud_none(pud_t pud)1067 static inline int pud_none(pud_t pud)
1068 {
1069 return (native_pud_val(pud) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0;
1070 }
1071
pud_present(pud_t pud)1072 static inline int pud_present(pud_t pud)
1073 {
1074 return pud_flags(pud) & _PAGE_PRESENT;
1075 }
1076
pud_pgtable(pud_t pud)1077 static inline pmd_t *pud_pgtable(pud_t pud)
1078 {
1079 return (pmd_t *)__va(pud_val(pud) & pud_pfn_mask(pud));
1080 }
1081
1082 /*
1083 * Currently stuck as a macro due to indirect forward reference to
1084 * linux/mmzone.h's __section_mem_map_addr() definition:
1085 */
1086 #define pud_page(pud) pfn_to_page(pud_pfn(pud))
1087
1088 #define pud_leaf pud_large
pud_large(pud_t pud)1089 static inline int pud_large(pud_t pud)
1090 {
1091 return (pud_val(pud) & (_PAGE_PSE | _PAGE_PRESENT)) ==
1092 (_PAGE_PSE | _PAGE_PRESENT);
1093 }
1094
pud_bad(pud_t pud)1095 static inline int pud_bad(pud_t pud)
1096 {
1097 return (pud_flags(pud) & ~(_KERNPG_TABLE | _PAGE_USER)) != 0;
1098 }
1099 #else
1100 #define pud_leaf pud_large
pud_large(pud_t pud)1101 static inline int pud_large(pud_t pud)
1102 {
1103 return 0;
1104 }
1105 #endif /* CONFIG_PGTABLE_LEVELS > 2 */
1106
1107 #if CONFIG_PGTABLE_LEVELS > 3
p4d_none(p4d_t p4d)1108 static inline int p4d_none(p4d_t p4d)
1109 {
1110 return (native_p4d_val(p4d) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0;
1111 }
1112
p4d_present(p4d_t p4d)1113 static inline int p4d_present(p4d_t p4d)
1114 {
1115 return p4d_flags(p4d) & _PAGE_PRESENT;
1116 }
1117
p4d_pgtable(p4d_t p4d)1118 static inline pud_t *p4d_pgtable(p4d_t p4d)
1119 {
1120 return (pud_t *)__va(p4d_val(p4d) & p4d_pfn_mask(p4d));
1121 }
1122
1123 /*
1124 * Currently stuck as a macro due to indirect forward reference to
1125 * linux/mmzone.h's __section_mem_map_addr() definition:
1126 */
1127 #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
1128
p4d_bad(p4d_t p4d)1129 static inline int p4d_bad(p4d_t p4d)
1130 {
1131 unsigned long ignore_flags = _KERNPG_TABLE | _PAGE_USER;
1132
1133 if (IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
1134 ignore_flags |= _PAGE_NX;
1135
1136 return (p4d_flags(p4d) & ~ignore_flags) != 0;
1137 }
1138 #endif /* CONFIG_PGTABLE_LEVELS > 3 */
1139
p4d_index(unsigned long address)1140 static inline unsigned long p4d_index(unsigned long address)
1141 {
1142 return (address >> P4D_SHIFT) & (PTRS_PER_P4D - 1);
1143 }
1144
1145 #if CONFIG_PGTABLE_LEVELS > 4
pgd_present(pgd_t pgd)1146 static inline int pgd_present(pgd_t pgd)
1147 {
1148 if (!pgtable_l5_enabled())
1149 return 1;
1150 return pgd_flags(pgd) & _PAGE_PRESENT;
1151 }
1152
pgd_page_vaddr(pgd_t pgd)1153 static inline unsigned long pgd_page_vaddr(pgd_t pgd)
1154 {
1155 return (unsigned long)__va((unsigned long)pgd_val(pgd) & PTE_PFN_MASK);
1156 }
1157
1158 /*
1159 * Currently stuck as a macro due to indirect forward reference to
1160 * linux/mmzone.h's __section_mem_map_addr() definition:
1161 */
1162 #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
1163
1164 /* to find an entry in a page-table-directory. */
p4d_offset(pgd_t * pgd,unsigned long address)1165 static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address)
1166 {
1167 if (!pgtable_l5_enabled())
1168 return (p4d_t *)pgd;
1169 return (p4d_t *)pgd_page_vaddr(*pgd) + p4d_index(address);
1170 }
1171
pgd_bad(pgd_t pgd)1172 static inline int pgd_bad(pgd_t pgd)
1173 {
1174 unsigned long ignore_flags = _PAGE_USER;
1175
1176 if (!pgtable_l5_enabled())
1177 return 0;
1178
1179 if (IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
1180 ignore_flags |= _PAGE_NX;
1181
1182 return (pgd_flags(pgd) & ~ignore_flags) != _KERNPG_TABLE;
1183 }
1184
pgd_none(pgd_t pgd)1185 static inline int pgd_none(pgd_t pgd)
1186 {
1187 if (!pgtable_l5_enabled())
1188 return 0;
1189 /*
1190 * There is no need to do a workaround for the KNL stray
1191 * A/D bit erratum here. PGDs only point to page tables
1192 * except on 32-bit non-PAE which is not supported on
1193 * KNL.
1194 */
1195 return !native_pgd_val(pgd);
1196 }
1197 #endif /* CONFIG_PGTABLE_LEVELS > 4 */
1198
1199 #endif /* __ASSEMBLY__ */
1200
1201 #define KERNEL_PGD_BOUNDARY pgd_index(PAGE_OFFSET)
1202 #define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_BOUNDARY)
1203
1204 #ifndef __ASSEMBLY__
1205
1206 extern int direct_gbpages;
1207 void init_mem_mapping(void);
1208 void early_alloc_pgt_buf(void);
1209 extern void memblock_find_dma_reserve(void);
1210 void __init poking_init(void);
1211 unsigned long init_memory_mapping(unsigned long start,
1212 unsigned long end, pgprot_t prot);
1213
1214 #ifdef CONFIG_X86_64
1215 extern pgd_t trampoline_pgd_entry;
1216 #endif
1217
1218 /* local pte updates need not use xchg for locking */
native_local_ptep_get_and_clear(pte_t * ptep)1219 static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep)
1220 {
1221 pte_t res = *ptep;
1222
1223 /* Pure native function needs no input for mm, addr */
1224 native_pte_clear(NULL, 0, ptep);
1225 return res;
1226 }
1227
native_local_pmdp_get_and_clear(pmd_t * pmdp)1228 static inline pmd_t native_local_pmdp_get_and_clear(pmd_t *pmdp)
1229 {
1230 pmd_t res = *pmdp;
1231
1232 native_pmd_clear(pmdp);
1233 return res;
1234 }
1235
native_local_pudp_get_and_clear(pud_t * pudp)1236 static inline pud_t native_local_pudp_get_and_clear(pud_t *pudp)
1237 {
1238 pud_t res = *pudp;
1239
1240 native_pud_clear(pudp);
1241 return res;
1242 }
1243
set_pmd_at(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,pmd_t pmd)1244 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1245 pmd_t *pmdp, pmd_t pmd)
1246 {
1247 page_table_check_pmd_set(mm, pmdp, pmd);
1248 set_pmd(pmdp, pmd);
1249 }
1250
set_pud_at(struct mm_struct * mm,unsigned long addr,pud_t * pudp,pud_t pud)1251 static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
1252 pud_t *pudp, pud_t pud)
1253 {
1254 page_table_check_pud_set(mm, pudp, pud);
1255 native_set_pud(pudp, pud);
1256 }
1257
1258 /*
1259 * We only update the dirty/accessed state if we set
1260 * the dirty bit by hand in the kernel, since the hardware
1261 * will do the accessed bit for us, and we don't want to
1262 * race with other CPU's that might be updating the dirty
1263 * bit at the same time.
1264 */
1265 struct vm_area_struct;
1266
1267 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1268 extern int ptep_set_access_flags(struct vm_area_struct *vma,
1269 unsigned long address, pte_t *ptep,
1270 pte_t entry, int dirty);
1271
1272 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1273 extern int ptep_test_and_clear_young(struct vm_area_struct *vma,
1274 unsigned long addr, pte_t *ptep);
1275
1276 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1277 extern int ptep_clear_flush_young(struct vm_area_struct *vma,
1278 unsigned long address, pte_t *ptep);
1279
1280 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1281 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
1282 pte_t *ptep)
1283 {
1284 pte_t pte = native_ptep_get_and_clear(ptep);
1285 page_table_check_pte_clear(mm, pte);
1286 return pte;
1287 }
1288
1289 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
ptep_get_and_clear_full(struct mm_struct * mm,unsigned long addr,pte_t * ptep,int full)1290 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1291 unsigned long addr, pte_t *ptep,
1292 int full)
1293 {
1294 pte_t pte;
1295 if (full) {
1296 /*
1297 * Full address destruction in progress; paravirt does not
1298 * care about updates and native needs no locking
1299 */
1300 pte = native_local_ptep_get_and_clear(ptep);
1301 page_table_check_pte_clear(mm, pte);
1302 } else {
1303 pte = ptep_get_and_clear(mm, addr, ptep);
1304 }
1305 return pte;
1306 }
1307
1308 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1309 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1310 unsigned long addr, pte_t *ptep)
1311 {
1312 /*
1313 * Avoid accidentally creating shadow stack PTEs
1314 * (Write=0,Dirty=1). Use cmpxchg() to prevent races with
1315 * the hardware setting Dirty=1.
1316 */
1317 pte_t old_pte, new_pte;
1318
1319 old_pte = READ_ONCE(*ptep);
1320 do {
1321 new_pte = pte_wrprotect(old_pte);
1322 } while (!try_cmpxchg((long *)&ptep->pte, (long *)&old_pte, *(long *)&new_pte));
1323 }
1324
1325 #define flush_tlb_fix_spurious_fault(vma, address, ptep) do { } while (0)
1326
1327 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1328
1329 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1330 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1331 unsigned long address, pmd_t *pmdp,
1332 pmd_t entry, int dirty);
1333 extern int pudp_set_access_flags(struct vm_area_struct *vma,
1334 unsigned long address, pud_t *pudp,
1335 pud_t entry, int dirty);
1336
1337 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1338 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1339 unsigned long addr, pmd_t *pmdp);
1340 extern int pudp_test_and_clear_young(struct vm_area_struct *vma,
1341 unsigned long addr, pud_t *pudp);
1342
1343 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1344 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
1345 unsigned long address, pmd_t *pmdp);
1346
1347
1348 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1349 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, unsigned long addr,
1350 pmd_t *pmdp)
1351 {
1352 pmd_t pmd = native_pmdp_get_and_clear(pmdp);
1353
1354 page_table_check_pmd_clear(mm, pmd);
1355
1356 return pmd;
1357 }
1358
1359 #define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
pudp_huge_get_and_clear(struct mm_struct * mm,unsigned long addr,pud_t * pudp)1360 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
1361 unsigned long addr, pud_t *pudp)
1362 {
1363 pud_t pud = native_pudp_get_and_clear(pudp);
1364
1365 page_table_check_pud_clear(mm, pud);
1366
1367 return pud;
1368 }
1369
1370 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1371 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1372 unsigned long addr, pmd_t *pmdp)
1373 {
1374 /*
1375 * Avoid accidentally creating shadow stack PTEs
1376 * (Write=0,Dirty=1). Use cmpxchg() to prevent races with
1377 * the hardware setting Dirty=1.
1378 */
1379 pmd_t old_pmd, new_pmd;
1380
1381 old_pmd = READ_ONCE(*pmdp);
1382 do {
1383 new_pmd = pmd_wrprotect(old_pmd);
1384 } while (!try_cmpxchg((long *)pmdp, (long *)&old_pmd, *(long *)&new_pmd));
1385 }
1386
1387 #ifndef pmdp_establish
1388 #define pmdp_establish pmdp_establish
pmdp_establish(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t pmd)1389 static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
1390 unsigned long address, pmd_t *pmdp, pmd_t pmd)
1391 {
1392 page_table_check_pmd_set(vma->vm_mm, pmdp, pmd);
1393 if (IS_ENABLED(CONFIG_SMP)) {
1394 return xchg(pmdp, pmd);
1395 } else {
1396 pmd_t old = *pmdp;
1397 WRITE_ONCE(*pmdp, pmd);
1398 return old;
1399 }
1400 }
1401 #endif
1402
1403 #define __HAVE_ARCH_PMDP_INVALIDATE_AD
1404 extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma,
1405 unsigned long address, pmd_t *pmdp);
1406
1407 /*
1408 * Page table pages are page-aligned. The lower half of the top
1409 * level is used for userspace and the top half for the kernel.
1410 *
1411 * Returns true for parts of the PGD that map userspace and
1412 * false for the parts that map the kernel.
1413 */
pgdp_maps_userspace(void * __ptr)1414 static inline bool pgdp_maps_userspace(void *__ptr)
1415 {
1416 unsigned long ptr = (unsigned long)__ptr;
1417
1418 return (((ptr & ~PAGE_MASK) / sizeof(pgd_t)) < PGD_KERNEL_START);
1419 }
1420
1421 #define pgd_leaf pgd_large
pgd_large(pgd_t pgd)1422 static inline int pgd_large(pgd_t pgd) { return 0; }
1423
1424 #ifdef CONFIG_PAGE_TABLE_ISOLATION
1425 /*
1426 * All top-level PAGE_TABLE_ISOLATION page tables are order-1 pages
1427 * (8k-aligned and 8k in size). The kernel one is at the beginning 4k and
1428 * the user one is in the last 4k. To switch between them, you
1429 * just need to flip the 12th bit in their addresses.
1430 */
1431 #define PTI_PGTABLE_SWITCH_BIT PAGE_SHIFT
1432
1433 /*
1434 * This generates better code than the inline assembly in
1435 * __set_bit().
1436 */
ptr_set_bit(void * ptr,int bit)1437 static inline void *ptr_set_bit(void *ptr, int bit)
1438 {
1439 unsigned long __ptr = (unsigned long)ptr;
1440
1441 __ptr |= BIT(bit);
1442 return (void *)__ptr;
1443 }
ptr_clear_bit(void * ptr,int bit)1444 static inline void *ptr_clear_bit(void *ptr, int bit)
1445 {
1446 unsigned long __ptr = (unsigned long)ptr;
1447
1448 __ptr &= ~BIT(bit);
1449 return (void *)__ptr;
1450 }
1451
kernel_to_user_pgdp(pgd_t * pgdp)1452 static inline pgd_t *kernel_to_user_pgdp(pgd_t *pgdp)
1453 {
1454 return ptr_set_bit(pgdp, PTI_PGTABLE_SWITCH_BIT);
1455 }
1456
user_to_kernel_pgdp(pgd_t * pgdp)1457 static inline pgd_t *user_to_kernel_pgdp(pgd_t *pgdp)
1458 {
1459 return ptr_clear_bit(pgdp, PTI_PGTABLE_SWITCH_BIT);
1460 }
1461
kernel_to_user_p4dp(p4d_t * p4dp)1462 static inline p4d_t *kernel_to_user_p4dp(p4d_t *p4dp)
1463 {
1464 return ptr_set_bit(p4dp, PTI_PGTABLE_SWITCH_BIT);
1465 }
1466
user_to_kernel_p4dp(p4d_t * p4dp)1467 static inline p4d_t *user_to_kernel_p4dp(p4d_t *p4dp)
1468 {
1469 return ptr_clear_bit(p4dp, PTI_PGTABLE_SWITCH_BIT);
1470 }
1471 #endif /* CONFIG_PAGE_TABLE_ISOLATION */
1472
1473 /*
1474 * clone_pgd_range(pgd_t *dst, pgd_t *src, int count);
1475 *
1476 * dst - pointer to pgd range anywhere on a pgd page
1477 * src - ""
1478 * count - the number of pgds to copy.
1479 *
1480 * dst and src can be on the same page, but the range must not overlap,
1481 * and must not cross a page boundary.
1482 */
clone_pgd_range(pgd_t * dst,pgd_t * src,int count)1483 static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count)
1484 {
1485 memcpy(dst, src, count * sizeof(pgd_t));
1486 #ifdef CONFIG_PAGE_TABLE_ISOLATION
1487 if (!static_cpu_has(X86_FEATURE_PTI))
1488 return;
1489 /* Clone the user space pgd as well */
1490 memcpy(kernel_to_user_pgdp(dst), kernel_to_user_pgdp(src),
1491 count * sizeof(pgd_t));
1492 #endif
1493 }
1494
1495 #define PTE_SHIFT ilog2(PTRS_PER_PTE)
page_level_shift(enum pg_level level)1496 static inline int page_level_shift(enum pg_level level)
1497 {
1498 return (PAGE_SHIFT - PTE_SHIFT) + level * PTE_SHIFT;
1499 }
page_level_size(enum pg_level level)1500 static inline unsigned long page_level_size(enum pg_level level)
1501 {
1502 return 1UL << page_level_shift(level);
1503 }
page_level_mask(enum pg_level level)1504 static inline unsigned long page_level_mask(enum pg_level level)
1505 {
1506 return ~(page_level_size(level) - 1);
1507 }
1508
1509 /*
1510 * The x86 doesn't have any external MMU info: the kernel page
1511 * tables contain all the necessary information.
1512 */
update_mmu_cache(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1513 static inline void update_mmu_cache(struct vm_area_struct *vma,
1514 unsigned long addr, pte_t *ptep)
1515 {
1516 }
update_mmu_cache_range(struct vm_fault * vmf,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,unsigned int nr)1517 static inline void update_mmu_cache_range(struct vm_fault *vmf,
1518 struct vm_area_struct *vma, unsigned long addr,
1519 pte_t *ptep, unsigned int nr)
1520 {
1521 }
update_mmu_cache_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd)1522 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
1523 unsigned long addr, pmd_t *pmd)
1524 {
1525 }
update_mmu_cache_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud)1526 static inline void update_mmu_cache_pud(struct vm_area_struct *vma,
1527 unsigned long addr, pud_t *pud)
1528 {
1529 }
pte_swp_mkexclusive(pte_t pte)1530 static inline pte_t pte_swp_mkexclusive(pte_t pte)
1531 {
1532 return pte_set_flags(pte, _PAGE_SWP_EXCLUSIVE);
1533 }
1534
pte_swp_exclusive(pte_t pte)1535 static inline int pte_swp_exclusive(pte_t pte)
1536 {
1537 return pte_flags(pte) & _PAGE_SWP_EXCLUSIVE;
1538 }
1539
pte_swp_clear_exclusive(pte_t pte)1540 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
1541 {
1542 return pte_clear_flags(pte, _PAGE_SWP_EXCLUSIVE);
1543 }
1544
1545 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
pte_swp_mksoft_dirty(pte_t pte)1546 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1547 {
1548 return pte_set_flags(pte, _PAGE_SWP_SOFT_DIRTY);
1549 }
1550
pte_swp_soft_dirty(pte_t pte)1551 static inline int pte_swp_soft_dirty(pte_t pte)
1552 {
1553 return pte_flags(pte) & _PAGE_SWP_SOFT_DIRTY;
1554 }
1555
pte_swp_clear_soft_dirty(pte_t pte)1556 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1557 {
1558 return pte_clear_flags(pte, _PAGE_SWP_SOFT_DIRTY);
1559 }
1560
1561 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
pmd_swp_mksoft_dirty(pmd_t pmd)1562 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1563 {
1564 return pmd_set_flags(pmd, _PAGE_SWP_SOFT_DIRTY);
1565 }
1566
pmd_swp_soft_dirty(pmd_t pmd)1567 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1568 {
1569 return pmd_flags(pmd) & _PAGE_SWP_SOFT_DIRTY;
1570 }
1571
pmd_swp_clear_soft_dirty(pmd_t pmd)1572 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1573 {
1574 return pmd_clear_flags(pmd, _PAGE_SWP_SOFT_DIRTY);
1575 }
1576 #endif
1577 #endif
1578
1579 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
pte_swp_mkuffd_wp(pte_t pte)1580 static inline pte_t pte_swp_mkuffd_wp(pte_t pte)
1581 {
1582 return pte_set_flags(pte, _PAGE_SWP_UFFD_WP);
1583 }
1584
pte_swp_uffd_wp(pte_t pte)1585 static inline int pte_swp_uffd_wp(pte_t pte)
1586 {
1587 return pte_flags(pte) & _PAGE_SWP_UFFD_WP;
1588 }
1589
pte_swp_clear_uffd_wp(pte_t pte)1590 static inline pte_t pte_swp_clear_uffd_wp(pte_t pte)
1591 {
1592 return pte_clear_flags(pte, _PAGE_SWP_UFFD_WP);
1593 }
1594
pmd_swp_mkuffd_wp(pmd_t pmd)1595 static inline pmd_t pmd_swp_mkuffd_wp(pmd_t pmd)
1596 {
1597 return pmd_set_flags(pmd, _PAGE_SWP_UFFD_WP);
1598 }
1599
pmd_swp_uffd_wp(pmd_t pmd)1600 static inline int pmd_swp_uffd_wp(pmd_t pmd)
1601 {
1602 return pmd_flags(pmd) & _PAGE_SWP_UFFD_WP;
1603 }
1604
pmd_swp_clear_uffd_wp(pmd_t pmd)1605 static inline pmd_t pmd_swp_clear_uffd_wp(pmd_t pmd)
1606 {
1607 return pmd_clear_flags(pmd, _PAGE_SWP_UFFD_WP);
1608 }
1609 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
1610
pte_flags_pkey(unsigned long pte_flags)1611 static inline u16 pte_flags_pkey(unsigned long pte_flags)
1612 {
1613 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
1614 /* ifdef to avoid doing 59-bit shift on 32-bit values */
1615 return (pte_flags & _PAGE_PKEY_MASK) >> _PAGE_BIT_PKEY_BIT0;
1616 #else
1617 return 0;
1618 #endif
1619 }
1620
__pkru_allows_pkey(u16 pkey,bool write)1621 static inline bool __pkru_allows_pkey(u16 pkey, bool write)
1622 {
1623 u32 pkru = read_pkru();
1624
1625 if (!__pkru_allows_read(pkru, pkey))
1626 return false;
1627 if (write && !__pkru_allows_write(pkru, pkey))
1628 return false;
1629
1630 return true;
1631 }
1632
1633 /*
1634 * 'pteval' can come from a PTE, PMD or PUD. We only check
1635 * _PAGE_PRESENT, _PAGE_USER, and _PAGE_RW in here which are the
1636 * same value on all 3 types.
1637 */
__pte_access_permitted(unsigned long pteval,bool write)1638 static inline bool __pte_access_permitted(unsigned long pteval, bool write)
1639 {
1640 unsigned long need_pte_bits = _PAGE_PRESENT|_PAGE_USER;
1641
1642 /*
1643 * Write=0,Dirty=1 PTEs are shadow stack, which the kernel
1644 * shouldn't generally allow access to, but since they
1645 * are already Write=0, the below logic covers both cases.
1646 */
1647 if (write)
1648 need_pte_bits |= _PAGE_RW;
1649
1650 if ((pteval & need_pte_bits) != need_pte_bits)
1651 return 0;
1652
1653 return __pkru_allows_pkey(pte_flags_pkey(pteval), write);
1654 }
1655
1656 #define pte_access_permitted pte_access_permitted
pte_access_permitted(pte_t pte,bool write)1657 static inline bool pte_access_permitted(pte_t pte, bool write)
1658 {
1659 return __pte_access_permitted(pte_val(pte), write);
1660 }
1661
1662 #define pmd_access_permitted pmd_access_permitted
pmd_access_permitted(pmd_t pmd,bool write)1663 static inline bool pmd_access_permitted(pmd_t pmd, bool write)
1664 {
1665 return __pte_access_permitted(pmd_val(pmd), write);
1666 }
1667
1668 #define pud_access_permitted pud_access_permitted
pud_access_permitted(pud_t pud,bool write)1669 static inline bool pud_access_permitted(pud_t pud, bool write)
1670 {
1671 return __pte_access_permitted(pud_val(pud), write);
1672 }
1673
1674 #define __HAVE_ARCH_PFN_MODIFY_ALLOWED 1
1675 extern bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot);
1676
arch_has_pfn_modify_check(void)1677 static inline bool arch_has_pfn_modify_check(void)
1678 {
1679 return boot_cpu_has_bug(X86_BUG_L1TF);
1680 }
1681
1682 #define arch_has_hw_pte_young arch_has_hw_pte_young
arch_has_hw_pte_young(void)1683 static inline bool arch_has_hw_pte_young(void)
1684 {
1685 return true;
1686 }
1687
1688 #define arch_check_zapped_pte arch_check_zapped_pte
1689 void arch_check_zapped_pte(struct vm_area_struct *vma, pte_t pte);
1690
1691 #define arch_check_zapped_pmd arch_check_zapped_pmd
1692 void arch_check_zapped_pmd(struct vm_area_struct *vma, pmd_t pmd);
1693
1694 #ifdef CONFIG_XEN_PV
1695 #define arch_has_hw_nonleaf_pmd_young arch_has_hw_nonleaf_pmd_young
arch_has_hw_nonleaf_pmd_young(void)1696 static inline bool arch_has_hw_nonleaf_pmd_young(void)
1697 {
1698 return !cpu_feature_enabled(X86_FEATURE_XENPV);
1699 }
1700 #endif
1701
1702 #ifdef CONFIG_PAGE_TABLE_CHECK
pte_user_accessible_page(pte_t pte)1703 static inline bool pte_user_accessible_page(pte_t pte)
1704 {
1705 return (pte_val(pte) & _PAGE_PRESENT) && (pte_val(pte) & _PAGE_USER);
1706 }
1707
pmd_user_accessible_page(pmd_t pmd)1708 static inline bool pmd_user_accessible_page(pmd_t pmd)
1709 {
1710 return pmd_leaf(pmd) && (pmd_val(pmd) & _PAGE_PRESENT) && (pmd_val(pmd) & _PAGE_USER);
1711 }
1712
pud_user_accessible_page(pud_t pud)1713 static inline bool pud_user_accessible_page(pud_t pud)
1714 {
1715 return pud_leaf(pud) && (pud_val(pud) & _PAGE_PRESENT) && (pud_val(pud) & _PAGE_USER);
1716 }
1717 #endif
1718
1719 #endif /* __ASSEMBLY__ */
1720
1721 #endif /* _ASM_X86_PGTABLE_H */
1722