1 /*
2  *  include/asm-s390/pgtable.h
3  *
4  *  S390 version
5  *    Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation
6  *    Author(s): Hartmut Penner (hp@de.ibm.com)
7  *               Ulrich Weigand (weigand@de.ibm.com)
8  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
9  *
10  *  Derived from "include/asm-i386/pgtable.h"
11  */
12 
13 #ifndef _ASM_S390_PGTABLE_H
14 #define _ASM_S390_PGTABLE_H
15 
16 /*
17  * The Linux memory management assumes a three-level page table setup. For
18  * s390 31 bit we "fold" the mid level into the top-level page table, so
19  * that we physically have the same two-level page table as the s390 mmu
20  * expects in 31 bit mode. For s390 64 bit we use three of the five levels
21  * the hardware provides (region first and region second tables are not
22  * used).
23  *
24  * The "pgd_xxx()" functions are trivial for a folded two-level
25  * setup: the pgd is never bad, and a pmd always exists (as it's folded
26  * into the pgd entry)
27  *
28  * This file contains the functions and defines necessary to modify and use
29  * the S390 page table tree.
30  */
31 #ifndef __ASSEMBLY__
32 #include <linux/sched.h>
33 #include <linux/mm_types.h>
34 #include <asm/bug.h>
35 #include <asm/page.h>
36 
37 extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
38 extern void paging_init(void);
39 extern void vmem_map_init(void);
40 extern void fault_init(void);
41 
42 /*
43  * The S390 doesn't have any external MMU info: the kernel page
44  * tables contain all the necessary information.
45  */
46 #define update_mmu_cache(vma, address, ptep)     do { } while (0)
47 
48 /*
49  * ZERO_PAGE is a global shared page that is always zero; used
50  * for zero-mapped memory areas etc..
51  */
52 
53 extern unsigned long empty_zero_page;
54 extern unsigned long zero_page_mask;
55 
56 #define ZERO_PAGE(vaddr) \
57 	(virt_to_page((void *)(empty_zero_page + \
58 	 (((unsigned long)(vaddr)) &zero_page_mask))))
59 
60 #define is_zero_pfn is_zero_pfn
is_zero_pfn(unsigned long pfn)61 static inline int is_zero_pfn(unsigned long pfn)
62 {
63 	extern unsigned long zero_pfn;
64 	unsigned long offset_from_zero_pfn = pfn - zero_pfn;
65 	return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
66 }
67 
68 #define my_zero_pfn(addr)	page_to_pfn(ZERO_PAGE(addr))
69 
70 /* TODO: s390 cannot support io_remap_pfn_range... */
71 #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) 	       \
72 	remap_pfn_range(vma, vaddr, pfn, size, prot)
73 
74 #endif /* !__ASSEMBLY__ */
75 
76 /*
77  * PMD_SHIFT determines the size of the area a second-level page
78  * table can map
79  * PGDIR_SHIFT determines what a third-level page table entry can map
80  */
81 #ifndef __s390x__
82 # define PMD_SHIFT	20
83 # define PUD_SHIFT	20
84 # define PGDIR_SHIFT	20
85 #else /* __s390x__ */
86 # define PMD_SHIFT	20
87 # define PUD_SHIFT	31
88 # define PGDIR_SHIFT	42
89 #endif /* __s390x__ */
90 
91 #define PMD_SIZE        (1UL << PMD_SHIFT)
92 #define PMD_MASK        (~(PMD_SIZE-1))
93 #define PUD_SIZE	(1UL << PUD_SHIFT)
94 #define PUD_MASK	(~(PUD_SIZE-1))
95 #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
96 #define PGDIR_MASK	(~(PGDIR_SIZE-1))
97 
98 /*
99  * entries per page directory level: the S390 is two-level, so
100  * we don't really have any PMD directory physically.
101  * for S390 segment-table entries are combined to one PGD
102  * that leads to 1024 pte per pgd
103  */
104 #define PTRS_PER_PTE	256
105 #ifndef __s390x__
106 #define PTRS_PER_PMD	1
107 #define PTRS_PER_PUD	1
108 #else /* __s390x__ */
109 #define PTRS_PER_PMD	2048
110 #define PTRS_PER_PUD	2048
111 #endif /* __s390x__ */
112 #define PTRS_PER_PGD	2048
113 
114 #define FIRST_USER_ADDRESS  0
115 
116 #define pte_ERROR(e) \
117 	printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
118 #define pmd_ERROR(e) \
119 	printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
120 #define pud_ERROR(e) \
121 	printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
122 #define pgd_ERROR(e) \
123 	printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
124 
125 #ifndef __ASSEMBLY__
126 /*
127  * The vmalloc area will always be on the topmost area of the kernel
128  * mapping. We reserve 96MB (31bit) / 128GB (64bit) for vmalloc,
129  * which should be enough for any sane case.
130  * By putting vmalloc at the top, we maximise the gap between physical
131  * memory and vmalloc to catch misplaced memory accesses. As a side
132  * effect, this also makes sure that 64 bit module code cannot be used
133  * as system call address.
134  */
135 extern unsigned long VMALLOC_START;
136 extern unsigned long VMALLOC_END;
137 extern struct page *vmemmap;
138 
139 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
140 
141 /*
142  * A 31 bit pagetable entry of S390 has following format:
143  *  |   PFRA          |    |  OS  |
144  * 0                   0IP0
145  * 00000000001111111111222222222233
146  * 01234567890123456789012345678901
147  *
148  * I Page-Invalid Bit:    Page is not available for address-translation
149  * P Page-Protection Bit: Store access not possible for page
150  *
151  * A 31 bit segmenttable entry of S390 has following format:
152  *  |   P-table origin      |  |PTL
153  * 0                         IC
154  * 00000000001111111111222222222233
155  * 01234567890123456789012345678901
156  *
157  * I Segment-Invalid Bit:    Segment is not available for address-translation
158  * C Common-Segment Bit:     Segment is not private (PoP 3-30)
159  * PTL Page-Table-Length:    Page-table length (PTL+1*16 entries -> up to 256)
160  *
161  * The 31 bit segmenttable origin of S390 has following format:
162  *
163  *  |S-table origin   |     | STL |
164  * X                   **GPS
165  * 00000000001111111111222222222233
166  * 01234567890123456789012345678901
167  *
168  * X Space-Switch event:
169  * G Segment-Invalid Bit:     *
170  * P Private-Space Bit:       Segment is not private (PoP 3-30)
171  * S Storage-Alteration:
172  * STL Segment-Table-Length:  Segment-table length (STL+1*16 entries -> up to 2048)
173  *
174  * A 64 bit pagetable entry of S390 has following format:
175  * |			 PFRA			      |0IPC|  OS  |
176  * 0000000000111111111122222222223333333333444444444455555555556666
177  * 0123456789012345678901234567890123456789012345678901234567890123
178  *
179  * I Page-Invalid Bit:    Page is not available for address-translation
180  * P Page-Protection Bit: Store access not possible for page
181  * C Change-bit override: HW is not required to set change bit
182  *
183  * A 64 bit segmenttable entry of S390 has following format:
184  * |        P-table origin                              |      TT
185  * 0000000000111111111122222222223333333333444444444455555555556666
186  * 0123456789012345678901234567890123456789012345678901234567890123
187  *
188  * I Segment-Invalid Bit:    Segment is not available for address-translation
189  * C Common-Segment Bit:     Segment is not private (PoP 3-30)
190  * P Page-Protection Bit: Store access not possible for page
191  * TT Type 00
192  *
193  * A 64 bit region table entry of S390 has following format:
194  * |        S-table origin                             |   TF  TTTL
195  * 0000000000111111111122222222223333333333444444444455555555556666
196  * 0123456789012345678901234567890123456789012345678901234567890123
197  *
198  * I Segment-Invalid Bit:    Segment is not available for address-translation
199  * TT Type 01
200  * TF
201  * TL Table length
202  *
203  * The 64 bit regiontable origin of S390 has following format:
204  * |      region table origon                          |       DTTL
205  * 0000000000111111111122222222223333333333444444444455555555556666
206  * 0123456789012345678901234567890123456789012345678901234567890123
207  *
208  * X Space-Switch event:
209  * G Segment-Invalid Bit:
210  * P Private-Space Bit:
211  * S Storage-Alteration:
212  * R Real space
213  * TL Table-Length:
214  *
215  * A storage key has the following format:
216  * | ACC |F|R|C|0|
217  *  0   3 4 5 6 7
218  * ACC: access key
219  * F  : fetch protection bit
220  * R  : referenced bit
221  * C  : changed bit
222  */
223 
224 /* Hardware bits in the page table entry */
225 #define _PAGE_CO	0x100		/* HW Change-bit override */
226 #define _PAGE_RO	0x200		/* HW read-only bit  */
227 #define _PAGE_INVALID	0x400		/* HW invalid bit    */
228 
229 /* Software bits in the page table entry */
230 #define _PAGE_SWT	0x001		/* SW pte type bit t */
231 #define _PAGE_SWX	0x002		/* SW pte type bit x */
232 #define _PAGE_SWC	0x004		/* SW pte changed bit (for KVM) */
233 #define _PAGE_SWR	0x008		/* SW pte referenced bit (for KVM) */
234 #define _PAGE_SPECIAL	0x010		/* SW associated with special page */
235 #define __HAVE_ARCH_PTE_SPECIAL
236 
237 /* Set of bits not changed in pte_modify */
238 #define _PAGE_CHG_MASK	(PAGE_MASK | _PAGE_SPECIAL | _PAGE_SWC | _PAGE_SWR)
239 
240 /* Six different types of pages. */
241 #define _PAGE_TYPE_EMPTY	0x400
242 #define _PAGE_TYPE_NONE		0x401
243 #define _PAGE_TYPE_SWAP		0x403
244 #define _PAGE_TYPE_FILE		0x601	/* bit 0x002 is used for offset !! */
245 #define _PAGE_TYPE_RO		0x200
246 #define _PAGE_TYPE_RW		0x000
247 
248 /*
249  * Only four types for huge pages, using the invalid bit and protection bit
250  * of a segment table entry.
251  */
252 #define _HPAGE_TYPE_EMPTY	0x020	/* _SEGMENT_ENTRY_INV */
253 #define _HPAGE_TYPE_NONE	0x220
254 #define _HPAGE_TYPE_RO		0x200	/* _SEGMENT_ENTRY_RO  */
255 #define _HPAGE_TYPE_RW		0x000
256 
257 /*
258  * PTE type bits are rather complicated. handle_pte_fault uses pte_present,
259  * pte_none and pte_file to find out the pte type WITHOUT holding the page
260  * table lock. ptep_clear_flush on the other hand uses ptep_clear_flush to
261  * invalidate a given pte. ipte sets the hw invalid bit and clears all tlbs
262  * for the page. The page table entry is set to _PAGE_TYPE_EMPTY afterwards.
263  * This change is done while holding the lock, but the intermediate step
264  * of a previously valid pte with the hw invalid bit set can be observed by
265  * handle_pte_fault. That makes it necessary that all valid pte types with
266  * the hw invalid bit set must be distinguishable from the four pte types
267  * empty, none, swap and file.
268  *
269  *			irxt  ipte  irxt
270  * _PAGE_TYPE_EMPTY	1000   ->   1000
271  * _PAGE_TYPE_NONE	1001   ->   1001
272  * _PAGE_TYPE_SWAP	1011   ->   1011
273  * _PAGE_TYPE_FILE	11?1   ->   11?1
274  * _PAGE_TYPE_RO	0100   ->   1100
275  * _PAGE_TYPE_RW	0000   ->   1000
276  *
277  * pte_none is true for bits combinations 1000, 1010, 1100, 1110
278  * pte_present is true for bits combinations 0000, 0010, 0100, 0110, 1001
279  * pte_file is true for bits combinations 1101, 1111
280  * swap pte is 1011 and 0001, 0011, 0101, 0111 are invalid.
281  */
282 
283 #ifndef __s390x__
284 
285 /* Bits in the segment table address-space-control-element */
286 #define _ASCE_SPACE_SWITCH	0x80000000UL	/* space switch event	    */
287 #define _ASCE_ORIGIN_MASK	0x7ffff000UL	/* segment table origin	    */
288 #define _ASCE_PRIVATE_SPACE	0x100	/* private space control	    */
289 #define _ASCE_ALT_EVENT		0x80	/* storage alteration event control */
290 #define _ASCE_TABLE_LENGTH	0x7f	/* 128 x 64 entries = 8k	    */
291 
292 /* Bits in the segment table entry */
293 #define _SEGMENT_ENTRY_ORIGIN	0x7fffffc0UL	/* page table origin	    */
294 #define _SEGMENT_ENTRY_RO	0x200	/* page protection bit		    */
295 #define _SEGMENT_ENTRY_INV	0x20	/* invalid segment table entry	    */
296 #define _SEGMENT_ENTRY_COMMON	0x10	/* common segment bit		    */
297 #define _SEGMENT_ENTRY_PTL	0x0f	/* page table length		    */
298 
299 #define _SEGMENT_ENTRY		(_SEGMENT_ENTRY_PTL)
300 #define _SEGMENT_ENTRY_EMPTY	(_SEGMENT_ENTRY_INV)
301 
302 /* Page status table bits for virtualization */
303 #define RCP_ACC_BITS	0xf0000000UL
304 #define RCP_FP_BIT	0x08000000UL
305 #define RCP_PCL_BIT	0x00800000UL
306 #define RCP_HR_BIT	0x00400000UL
307 #define RCP_HC_BIT	0x00200000UL
308 #define RCP_GR_BIT	0x00040000UL
309 #define RCP_GC_BIT	0x00020000UL
310 
311 /* User dirty / referenced bit for KVM's migration feature */
312 #define KVM_UR_BIT	0x00008000UL
313 #define KVM_UC_BIT	0x00004000UL
314 
315 #else /* __s390x__ */
316 
317 /* Bits in the segment/region table address-space-control-element */
318 #define _ASCE_ORIGIN		~0xfffUL/* segment table origin		    */
319 #define _ASCE_PRIVATE_SPACE	0x100	/* private space control	    */
320 #define _ASCE_ALT_EVENT		0x80	/* storage alteration event control */
321 #define _ASCE_SPACE_SWITCH	0x40	/* space switch event		    */
322 #define _ASCE_REAL_SPACE	0x20	/* real space control		    */
323 #define _ASCE_TYPE_MASK		0x0c	/* asce table type mask		    */
324 #define _ASCE_TYPE_REGION1	0x0c	/* region first table type	    */
325 #define _ASCE_TYPE_REGION2	0x08	/* region second table type	    */
326 #define _ASCE_TYPE_REGION3	0x04	/* region third table type	    */
327 #define _ASCE_TYPE_SEGMENT	0x00	/* segment table type		    */
328 #define _ASCE_TABLE_LENGTH	0x03	/* region table length		    */
329 
330 /* Bits in the region table entry */
331 #define _REGION_ENTRY_ORIGIN	~0xfffUL/* region/segment table origin	    */
332 #define _REGION_ENTRY_INV	0x20	/* invalid region table entry	    */
333 #define _REGION_ENTRY_TYPE_MASK	0x0c	/* region/segment table type mask   */
334 #define _REGION_ENTRY_TYPE_R1	0x0c	/* region first table type	    */
335 #define _REGION_ENTRY_TYPE_R2	0x08	/* region second table type	    */
336 #define _REGION_ENTRY_TYPE_R3	0x04	/* region third table type	    */
337 #define _REGION_ENTRY_LENGTH	0x03	/* region third length		    */
338 
339 #define _REGION1_ENTRY		(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
340 #define _REGION1_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INV)
341 #define _REGION2_ENTRY		(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
342 #define _REGION2_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INV)
343 #define _REGION3_ENTRY		(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
344 #define _REGION3_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INV)
345 
346 /* Bits in the segment table entry */
347 #define _SEGMENT_ENTRY_ORIGIN	~0x7ffUL/* segment table origin		    */
348 #define _SEGMENT_ENTRY_RO	0x200	/* page protection bit		    */
349 #define _SEGMENT_ENTRY_INV	0x20	/* invalid segment table entry	    */
350 
351 #define _SEGMENT_ENTRY		(0)
352 #define _SEGMENT_ENTRY_EMPTY	(_SEGMENT_ENTRY_INV)
353 
354 #define _SEGMENT_ENTRY_LARGE	0x400	/* STE-format control, large page   */
355 #define _SEGMENT_ENTRY_CO	0x100	/* change-recording override   */
356 
357 /* Page status table bits for virtualization */
358 #define RCP_ACC_BITS	0xf000000000000000UL
359 #define RCP_FP_BIT	0x0800000000000000UL
360 #define RCP_PCL_BIT	0x0080000000000000UL
361 #define RCP_HR_BIT	0x0040000000000000UL
362 #define RCP_HC_BIT	0x0020000000000000UL
363 #define RCP_GR_BIT	0x0004000000000000UL
364 #define RCP_GC_BIT	0x0002000000000000UL
365 
366 /* User dirty / referenced bit for KVM's migration feature */
367 #define KVM_UR_BIT	0x0000800000000000UL
368 #define KVM_UC_BIT	0x0000400000000000UL
369 
370 #endif /* __s390x__ */
371 
372 /*
373  * A user page table pointer has the space-switch-event bit, the
374  * private-space-control bit and the storage-alteration-event-control
375  * bit set. A kernel page table pointer doesn't need them.
376  */
377 #define _ASCE_USER_BITS		(_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
378 				 _ASCE_ALT_EVENT)
379 
380 /*
381  * Page protection definitions.
382  */
383 #define PAGE_NONE	__pgprot(_PAGE_TYPE_NONE)
384 #define PAGE_RO		__pgprot(_PAGE_TYPE_RO)
385 #define PAGE_RW		__pgprot(_PAGE_TYPE_RW)
386 
387 #define PAGE_KERNEL	PAGE_RW
388 #define PAGE_COPY	PAGE_RO
389 
390 /*
391  * On s390 the page table entry has an invalid bit and a read-only bit.
392  * Read permission implies execute permission and write permission
393  * implies read permission.
394  */
395          /*xwr*/
396 #define __P000	PAGE_NONE
397 #define __P001	PAGE_RO
398 #define __P010	PAGE_RO
399 #define __P011	PAGE_RO
400 #define __P100	PAGE_RO
401 #define __P101	PAGE_RO
402 #define __P110	PAGE_RO
403 #define __P111	PAGE_RO
404 
405 #define __S000	PAGE_NONE
406 #define __S001	PAGE_RO
407 #define __S010	PAGE_RW
408 #define __S011	PAGE_RW
409 #define __S100	PAGE_RO
410 #define __S101	PAGE_RO
411 #define __S110	PAGE_RW
412 #define __S111	PAGE_RW
413 
mm_exclusive(struct mm_struct * mm)414 static inline int mm_exclusive(struct mm_struct *mm)
415 {
416 	return likely(mm == current->active_mm &&
417 		      atomic_read(&mm->context.attach_count) <= 1);
418 }
419 
mm_has_pgste(struct mm_struct * mm)420 static inline int mm_has_pgste(struct mm_struct *mm)
421 {
422 #ifdef CONFIG_PGSTE
423 	if (unlikely(mm->context.has_pgste))
424 		return 1;
425 #endif
426 	return 0;
427 }
428 /*
429  * pgd/pmd/pte query functions
430  */
431 #ifndef __s390x__
432 
pgd_present(pgd_t pgd)433 static inline int pgd_present(pgd_t pgd) { return 1; }
pgd_none(pgd_t pgd)434 static inline int pgd_none(pgd_t pgd)    { return 0; }
pgd_bad(pgd_t pgd)435 static inline int pgd_bad(pgd_t pgd)     { return 0; }
436 
pud_present(pud_t pud)437 static inline int pud_present(pud_t pud) { return 1; }
pud_none(pud_t pud)438 static inline int pud_none(pud_t pud)	 { return 0; }
pud_bad(pud_t pud)439 static inline int pud_bad(pud_t pud)	 { return 0; }
440 
441 #else /* __s390x__ */
442 
pgd_present(pgd_t pgd)443 static inline int pgd_present(pgd_t pgd)
444 {
445 	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
446 		return 1;
447 	return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
448 }
449 
pgd_none(pgd_t pgd)450 static inline int pgd_none(pgd_t pgd)
451 {
452 	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
453 		return 0;
454 	return (pgd_val(pgd) & _REGION_ENTRY_INV) != 0UL;
455 }
456 
pgd_bad(pgd_t pgd)457 static inline int pgd_bad(pgd_t pgd)
458 {
459 	/*
460 	 * With dynamic page table levels the pgd can be a region table
461 	 * entry or a segment table entry. Check for the bit that are
462 	 * invalid for either table entry.
463 	 */
464 	unsigned long mask =
465 		~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
466 		~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
467 	return (pgd_val(pgd) & mask) != 0;
468 }
469 
pud_present(pud_t pud)470 static inline int pud_present(pud_t pud)
471 {
472 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
473 		return 1;
474 	return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
475 }
476 
pud_none(pud_t pud)477 static inline int pud_none(pud_t pud)
478 {
479 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
480 		return 0;
481 	return (pud_val(pud) & _REGION_ENTRY_INV) != 0UL;
482 }
483 
pud_bad(pud_t pud)484 static inline int pud_bad(pud_t pud)
485 {
486 	/*
487 	 * With dynamic page table levels the pud can be a region table
488 	 * entry or a segment table entry. Check for the bit that are
489 	 * invalid for either table entry.
490 	 */
491 	unsigned long mask =
492 		~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
493 		~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
494 	return (pud_val(pud) & mask) != 0;
495 }
496 
497 #endif /* __s390x__ */
498 
pmd_present(pmd_t pmd)499 static inline int pmd_present(pmd_t pmd)
500 {
501 	return (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN) != 0UL;
502 }
503 
pmd_none(pmd_t pmd)504 static inline int pmd_none(pmd_t pmd)
505 {
506 	return (pmd_val(pmd) & _SEGMENT_ENTRY_INV) != 0UL;
507 }
508 
pmd_bad(pmd_t pmd)509 static inline int pmd_bad(pmd_t pmd)
510 {
511 	unsigned long mask = ~_SEGMENT_ENTRY_ORIGIN & ~_SEGMENT_ENTRY_INV;
512 	return (pmd_val(pmd) & mask) != _SEGMENT_ENTRY;
513 }
514 
pte_none(pte_t pte)515 static inline int pte_none(pte_t pte)
516 {
517 	return (pte_val(pte) & _PAGE_INVALID) && !(pte_val(pte) & _PAGE_SWT);
518 }
519 
pte_present(pte_t pte)520 static inline int pte_present(pte_t pte)
521 {
522 	unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT | _PAGE_SWX;
523 	return (pte_val(pte) & mask) == _PAGE_TYPE_NONE ||
524 		(!(pte_val(pte) & _PAGE_INVALID) &&
525 		 !(pte_val(pte) & _PAGE_SWT));
526 }
527 
pte_file(pte_t pte)528 static inline int pte_file(pte_t pte)
529 {
530 	unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT;
531 	return (pte_val(pte) & mask) == _PAGE_TYPE_FILE;
532 }
533 
pte_special(pte_t pte)534 static inline int pte_special(pte_t pte)
535 {
536 	return (pte_val(pte) & _PAGE_SPECIAL);
537 }
538 
539 #define __HAVE_ARCH_PTE_SAME
pte_same(pte_t a,pte_t b)540 static inline int pte_same(pte_t a, pte_t b)
541 {
542 	return pte_val(a) == pte_val(b);
543 }
544 
pgste_get_lock(pte_t * ptep)545 static inline pgste_t pgste_get_lock(pte_t *ptep)
546 {
547 	unsigned long new = 0;
548 #ifdef CONFIG_PGSTE
549 	unsigned long old;
550 
551 	preempt_disable();
552 	asm(
553 		"	lg	%0,%2\n"
554 		"0:	lgr	%1,%0\n"
555 		"	nihh	%0,0xff7f\n"	/* clear RCP_PCL_BIT in old */
556 		"	oihh	%1,0x0080\n"	/* set RCP_PCL_BIT in new */
557 		"	csg	%0,%1,%2\n"
558 		"	jl	0b\n"
559 		: "=&d" (old), "=&d" (new), "=Q" (ptep[PTRS_PER_PTE])
560 		: "Q" (ptep[PTRS_PER_PTE]) : "cc");
561 #endif
562 	return __pgste(new);
563 }
564 
pgste_set_unlock(pte_t * ptep,pgste_t pgste)565 static inline void pgste_set_unlock(pte_t *ptep, pgste_t pgste)
566 {
567 #ifdef CONFIG_PGSTE
568 	asm(
569 		"	nihh	%1,0xff7f\n"	/* clear RCP_PCL_BIT */
570 		"	stg	%1,%0\n"
571 		: "=Q" (ptep[PTRS_PER_PTE])
572 		: "d" (pgste_val(pgste)), "Q" (ptep[PTRS_PER_PTE]) : "cc");
573 	preempt_enable();
574 #endif
575 }
576 
pgste_update_all(pte_t * ptep,pgste_t pgste)577 static inline pgste_t pgste_update_all(pte_t *ptep, pgste_t pgste)
578 {
579 #ifdef CONFIG_PGSTE
580 	unsigned long address, bits;
581 	unsigned char skey;
582 
583 	if (!pte_present(*ptep))
584 		return pgste;
585 	address = pte_val(*ptep) & PAGE_MASK;
586 	skey = page_get_storage_key(address);
587 	bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED);
588 	/* Clear page changed & referenced bit in the storage key */
589 	if (bits & _PAGE_CHANGED)
590 		page_set_storage_key(address, skey ^ bits, 1);
591 	else if (bits)
592 		page_reset_referenced(address);
593 	/* Transfer page changed & referenced bit to guest bits in pgste */
594 	pgste_val(pgste) |= bits << 48;		/* RCP_GR_BIT & RCP_GC_BIT */
595 	/* Get host changed & referenced bits from pgste */
596 	bits |= (pgste_val(pgste) & (RCP_HR_BIT | RCP_HC_BIT)) >> 52;
597 	/* Clear host bits in pgste. */
598 	pgste_val(pgste) &= ~(RCP_HR_BIT | RCP_HC_BIT);
599 	pgste_val(pgste) &= ~(RCP_ACC_BITS | RCP_FP_BIT);
600 	/* Copy page access key and fetch protection bit to pgste */
601 	pgste_val(pgste) |=
602 		(unsigned long) (skey & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56;
603 	/* Transfer changed and referenced to kvm user bits */
604 	pgste_val(pgste) |= bits << 45;		/* KVM_UR_BIT & KVM_UC_BIT */
605 	/* Transfer changed & referenced to pte sofware bits */
606 	pte_val(*ptep) |= bits << 1;		/* _PAGE_SWR & _PAGE_SWC */
607 #endif
608 	return pgste;
609 
610 }
611 
pgste_update_young(pte_t * ptep,pgste_t pgste)612 static inline pgste_t pgste_update_young(pte_t *ptep, pgste_t pgste)
613 {
614 #ifdef CONFIG_PGSTE
615 	int young;
616 
617 	if (!pte_present(*ptep))
618 		return pgste;
619 	young = page_reset_referenced(pte_val(*ptep) & PAGE_MASK);
620 	/* Transfer page referenced bit to pte software bit (host view) */
621 	if (young || (pgste_val(pgste) & RCP_HR_BIT))
622 		pte_val(*ptep) |= _PAGE_SWR;
623 	/* Clear host referenced bit in pgste. */
624 	pgste_val(pgste) &= ~RCP_HR_BIT;
625 	/* Transfer page referenced bit to guest bit in pgste */
626 	pgste_val(pgste) |= (unsigned long) young << 50; /* set RCP_GR_BIT */
627 #endif
628 	return pgste;
629 
630 }
631 
pgste_set_pte(pte_t * ptep,pgste_t pgste,pte_t entry)632 static inline void pgste_set_pte(pte_t *ptep, pgste_t pgste, pte_t entry)
633 {
634 #ifdef CONFIG_PGSTE
635 	unsigned long address;
636 	unsigned long okey, nkey;
637 
638 	if (!pte_present(entry))
639 		return;
640 	address = pte_val(entry) & PAGE_MASK;
641 	okey = nkey = page_get_storage_key(address);
642 	nkey &= ~(_PAGE_ACC_BITS | _PAGE_FP_BIT);
643 	/* Set page access key and fetch protection bit from pgste */
644 	nkey |= (pgste_val(pgste) & (RCP_ACC_BITS | RCP_FP_BIT)) >> 56;
645 	if (okey != nkey)
646 		page_set_storage_key(address, nkey, 1);
647 #endif
648 }
649 
650 /**
651  * struct gmap_struct - guest address space
652  * @mm: pointer to the parent mm_struct
653  * @table: pointer to the page directory
654  * @asce: address space control element for gmap page table
655  * @crst_list: list of all crst tables used in the guest address space
656  */
657 struct gmap {
658 	struct list_head list;
659 	struct mm_struct *mm;
660 	unsigned long *table;
661 	unsigned long asce;
662 	struct list_head crst_list;
663 };
664 
665 /**
666  * struct gmap_rmap - reverse mapping for segment table entries
667  * @next: pointer to the next gmap_rmap structure in the list
668  * @entry: pointer to a segment table entry
669  */
670 struct gmap_rmap {
671 	struct list_head list;
672 	unsigned long *entry;
673 };
674 
675 /**
676  * struct gmap_pgtable - gmap information attached to a page table
677  * @vmaddr: address of the 1MB segment in the process virtual memory
678  * @mapper: list of segment table entries maping a page table
679  */
680 struct gmap_pgtable {
681 	unsigned long vmaddr;
682 	struct list_head mapper;
683 };
684 
685 struct gmap *gmap_alloc(struct mm_struct *mm);
686 void gmap_free(struct gmap *gmap);
687 void gmap_enable(struct gmap *gmap);
688 void gmap_disable(struct gmap *gmap);
689 int gmap_map_segment(struct gmap *gmap, unsigned long from,
690 		     unsigned long to, unsigned long length);
691 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len);
692 unsigned long __gmap_fault(unsigned long address, struct gmap *);
693 unsigned long gmap_fault(unsigned long address, struct gmap *);
694 void gmap_discard(unsigned long from, unsigned long to, struct gmap *);
695 
696 /*
697  * Certain architectures need to do special things when PTEs
698  * within a page table are directly modified.  Thus, the following
699  * hook is made available.
700  */
set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t entry)701 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
702 			      pte_t *ptep, pte_t entry)
703 {
704 	pgste_t pgste;
705 
706 	if (mm_has_pgste(mm)) {
707 		pgste = pgste_get_lock(ptep);
708 		pgste_set_pte(ptep, pgste, entry);
709 		*ptep = entry;
710 		pgste_set_unlock(ptep, pgste);
711 	} else
712 		*ptep = entry;
713 }
714 
715 /*
716  * query functions pte_write/pte_dirty/pte_young only work if
717  * pte_present() is true. Undefined behaviour if not..
718  */
pte_write(pte_t pte)719 static inline int pte_write(pte_t pte)
720 {
721 	return (pte_val(pte) & _PAGE_RO) == 0;
722 }
723 
pte_dirty(pte_t pte)724 static inline int pte_dirty(pte_t pte)
725 {
726 #ifdef CONFIG_PGSTE
727 	if (pte_val(pte) & _PAGE_SWC)
728 		return 1;
729 #endif
730 	return 0;
731 }
732 
pte_young(pte_t pte)733 static inline int pte_young(pte_t pte)
734 {
735 #ifdef CONFIG_PGSTE
736 	if (pte_val(pte) & _PAGE_SWR)
737 		return 1;
738 #endif
739 	return 0;
740 }
741 
742 /*
743  * pgd/pmd/pte modification functions
744  */
745 
pgd_clear(pgd_t * pgd)746 static inline void pgd_clear(pgd_t *pgd)
747 {
748 #ifdef __s390x__
749 	if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
750 		pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
751 #endif
752 }
753 
pud_clear(pud_t * pud)754 static inline void pud_clear(pud_t *pud)
755 {
756 #ifdef __s390x__
757 	if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
758 		pud_val(*pud) = _REGION3_ENTRY_EMPTY;
759 #endif
760 }
761 
pmd_clear(pmd_t * pmdp)762 static inline void pmd_clear(pmd_t *pmdp)
763 {
764 	pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
765 }
766 
pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)767 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
768 {
769 	pte_val(*ptep) = _PAGE_TYPE_EMPTY;
770 }
771 
772 /*
773  * The following pte modification functions only work if
774  * pte_present() is true. Undefined behaviour if not..
775  */
pte_modify(pte_t pte,pgprot_t newprot)776 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
777 {
778 	pte_val(pte) &= _PAGE_CHG_MASK;
779 	pte_val(pte) |= pgprot_val(newprot);
780 	return pte;
781 }
782 
pte_wrprotect(pte_t pte)783 static inline pte_t pte_wrprotect(pte_t pte)
784 {
785 	/* Do not clobber _PAGE_TYPE_NONE pages!  */
786 	if (!(pte_val(pte) & _PAGE_INVALID))
787 		pte_val(pte) |= _PAGE_RO;
788 	return pte;
789 }
790 
pte_mkwrite(pte_t pte)791 static inline pte_t pte_mkwrite(pte_t pte)
792 {
793 	pte_val(pte) &= ~_PAGE_RO;
794 	return pte;
795 }
796 
pte_mkclean(pte_t pte)797 static inline pte_t pte_mkclean(pte_t pte)
798 {
799 #ifdef CONFIG_PGSTE
800 	pte_val(pte) &= ~_PAGE_SWC;
801 #endif
802 	return pte;
803 }
804 
pte_mkdirty(pte_t pte)805 static inline pte_t pte_mkdirty(pte_t pte)
806 {
807 	return pte;
808 }
809 
pte_mkold(pte_t pte)810 static inline pte_t pte_mkold(pte_t pte)
811 {
812 #ifdef CONFIG_PGSTE
813 	pte_val(pte) &= ~_PAGE_SWR;
814 #endif
815 	return pte;
816 }
817 
pte_mkyoung(pte_t pte)818 static inline pte_t pte_mkyoung(pte_t pte)
819 {
820 	return pte;
821 }
822 
pte_mkspecial(pte_t pte)823 static inline pte_t pte_mkspecial(pte_t pte)
824 {
825 	pte_val(pte) |= _PAGE_SPECIAL;
826 	return pte;
827 }
828 
829 #ifdef CONFIG_HUGETLB_PAGE
pte_mkhuge(pte_t pte)830 static inline pte_t pte_mkhuge(pte_t pte)
831 {
832 	/*
833 	 * PROT_NONE needs to be remapped from the pte type to the ste type.
834 	 * The HW invalid bit is also different for pte and ste. The pte
835 	 * invalid bit happens to be the same as the ste _SEGMENT_ENTRY_LARGE
836 	 * bit, so we don't have to clear it.
837 	 */
838 	if (pte_val(pte) & _PAGE_INVALID) {
839 		if (pte_val(pte) & _PAGE_SWT)
840 			pte_val(pte) |= _HPAGE_TYPE_NONE;
841 		pte_val(pte) |= _SEGMENT_ENTRY_INV;
842 	}
843 	/*
844 	 * Clear SW pte bits SWT and SWX, there are no SW bits in a segment
845 	 * table entry.
846 	 */
847 	pte_val(pte) &= ~(_PAGE_SWT | _PAGE_SWX);
848 	/*
849 	 * Also set the change-override bit because we don't need dirty bit
850 	 * tracking for hugetlbfs pages.
851 	 */
852 	pte_val(pte) |= (_SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_CO);
853 	return pte;
854 }
855 #endif
856 
857 /*
858  * Get (and clear) the user dirty bit for a pte.
859  */
ptep_test_and_clear_user_dirty(struct mm_struct * mm,pte_t * ptep)860 static inline int ptep_test_and_clear_user_dirty(struct mm_struct *mm,
861 						 pte_t *ptep)
862 {
863 	pgste_t pgste;
864 	int dirty = 0;
865 
866 	if (mm_has_pgste(mm)) {
867 		pgste = pgste_get_lock(ptep);
868 		pgste = pgste_update_all(ptep, pgste);
869 		dirty = !!(pgste_val(pgste) & KVM_UC_BIT);
870 		pgste_val(pgste) &= ~KVM_UC_BIT;
871 		pgste_set_unlock(ptep, pgste);
872 		return dirty;
873 	}
874 	return dirty;
875 }
876 
877 /*
878  * Get (and clear) the user referenced bit for a pte.
879  */
ptep_test_and_clear_user_young(struct mm_struct * mm,pte_t * ptep)880 static inline int ptep_test_and_clear_user_young(struct mm_struct *mm,
881 						 pte_t *ptep)
882 {
883 	pgste_t pgste;
884 	int young = 0;
885 
886 	if (mm_has_pgste(mm)) {
887 		pgste = pgste_get_lock(ptep);
888 		pgste = pgste_update_young(ptep, pgste);
889 		young = !!(pgste_val(pgste) & KVM_UR_BIT);
890 		pgste_val(pgste) &= ~KVM_UR_BIT;
891 		pgste_set_unlock(ptep, pgste);
892 	}
893 	return young;
894 }
895 
896 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)897 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
898 					    unsigned long addr, pte_t *ptep)
899 {
900 	pgste_t pgste;
901 	pte_t pte;
902 
903 	if (mm_has_pgste(vma->vm_mm)) {
904 		pgste = pgste_get_lock(ptep);
905 		pgste = pgste_update_young(ptep, pgste);
906 		pte = *ptep;
907 		*ptep = pte_mkold(pte);
908 		pgste_set_unlock(ptep, pgste);
909 		return pte_young(pte);
910 	}
911 	return 0;
912 }
913 
914 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)915 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
916 					 unsigned long address, pte_t *ptep)
917 {
918 	/* No need to flush TLB
919 	 * On s390 reference bits are in storage key and never in TLB
920 	 * With virtualization we handle the reference bit, without we
921 	 * we can simply return */
922 	return ptep_test_and_clear_young(vma, address, ptep);
923 }
924 
__ptep_ipte(unsigned long address,pte_t * ptep)925 static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
926 {
927 	if (!(pte_val(*ptep) & _PAGE_INVALID)) {
928 #ifndef __s390x__
929 		/* pto must point to the start of the segment table */
930 		pte_t *pto = (pte_t *) (((unsigned long) ptep) & 0x7ffffc00);
931 #else
932 		/* ipte in zarch mode can do the math */
933 		pte_t *pto = ptep;
934 #endif
935 		asm volatile(
936 			"	ipte	%2,%3"
937 			: "=m" (*ptep) : "m" (*ptep),
938 			  "a" (pto), "a" (address));
939 	}
940 }
941 
942 /*
943  * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
944  * both clear the TLB for the unmapped pte. The reason is that
945  * ptep_get_and_clear is used in common code (e.g. change_pte_range)
946  * to modify an active pte. The sequence is
947  *   1) ptep_get_and_clear
948  *   2) set_pte_at
949  *   3) flush_tlb_range
950  * On s390 the tlb needs to get flushed with the modification of the pte
951  * if the pte is active. The only way how this can be implemented is to
952  * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
953  * is a nop.
954  */
955 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long address,pte_t * ptep)956 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
957 				       unsigned long address, pte_t *ptep)
958 {
959 	pgste_t pgste;
960 	pte_t pte;
961 
962 	mm->context.flush_mm = 1;
963 	if (mm_has_pgste(mm))
964 		pgste = pgste_get_lock(ptep);
965 
966 	pte = *ptep;
967 	if (!mm_exclusive(mm))
968 		__ptep_ipte(address, ptep);
969 	pte_val(*ptep) = _PAGE_TYPE_EMPTY;
970 
971 	if (mm_has_pgste(mm)) {
972 		pgste = pgste_update_all(&pte, pgste);
973 		pgste_set_unlock(ptep, pgste);
974 	}
975 	return pte;
976 }
977 
978 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
ptep_modify_prot_start(struct mm_struct * mm,unsigned long address,pte_t * ptep)979 static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
980 					   unsigned long address,
981 					   pte_t *ptep)
982 {
983 	pte_t pte;
984 
985 	mm->context.flush_mm = 1;
986 	if (mm_has_pgste(mm))
987 		pgste_get_lock(ptep);
988 
989 	pte = *ptep;
990 	if (!mm_exclusive(mm))
991 		__ptep_ipte(address, ptep);
992 	return pte;
993 }
994 
ptep_modify_prot_commit(struct mm_struct * mm,unsigned long address,pte_t * ptep,pte_t pte)995 static inline void ptep_modify_prot_commit(struct mm_struct *mm,
996 					   unsigned long address,
997 					   pte_t *ptep, pte_t pte)
998 {
999 	*ptep = pte;
1000 	if (mm_has_pgste(mm))
1001 		pgste_set_unlock(ptep, *(pgste_t *)(ptep + PTRS_PER_PTE));
1002 }
1003 
1004 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
ptep_clear_flush(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)1005 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1006 				     unsigned long address, pte_t *ptep)
1007 {
1008 	pgste_t pgste;
1009 	pte_t pte;
1010 
1011 	if (mm_has_pgste(vma->vm_mm))
1012 		pgste = pgste_get_lock(ptep);
1013 
1014 	pte = *ptep;
1015 	__ptep_ipte(address, ptep);
1016 	pte_val(*ptep) = _PAGE_TYPE_EMPTY;
1017 
1018 	if (mm_has_pgste(vma->vm_mm)) {
1019 		pgste = pgste_update_all(&pte, pgste);
1020 		pgste_set_unlock(ptep, pgste);
1021 	}
1022 	return pte;
1023 }
1024 
1025 /*
1026  * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1027  * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1028  * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1029  * cannot be accessed while the batched unmap is running. In this case
1030  * full==1 and a simple pte_clear is enough. See tlb.h.
1031  */
1032 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
ptep_get_and_clear_full(struct mm_struct * mm,unsigned long address,pte_t * ptep,int full)1033 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1034 					    unsigned long address,
1035 					    pte_t *ptep, int full)
1036 {
1037 	pgste_t pgste;
1038 	pte_t pte;
1039 
1040 	if (mm_has_pgste(mm))
1041 		pgste = pgste_get_lock(ptep);
1042 
1043 	pte = *ptep;
1044 	if (!full)
1045 		__ptep_ipte(address, ptep);
1046 	pte_val(*ptep) = _PAGE_TYPE_EMPTY;
1047 
1048 	if (mm_has_pgste(mm)) {
1049 		pgste = pgste_update_all(&pte, pgste);
1050 		pgste_set_unlock(ptep, pgste);
1051 	}
1052 	return pte;
1053 }
1054 
1055 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long address,pte_t * ptep)1056 static inline pte_t ptep_set_wrprotect(struct mm_struct *mm,
1057 				       unsigned long address, pte_t *ptep)
1058 {
1059 	pgste_t pgste;
1060 	pte_t pte = *ptep;
1061 
1062 	if (pte_write(pte)) {
1063 		mm->context.flush_mm = 1;
1064 		if (mm_has_pgste(mm))
1065 			pgste = pgste_get_lock(ptep);
1066 
1067 		if (!mm_exclusive(mm))
1068 			__ptep_ipte(address, ptep);
1069 		*ptep = pte_wrprotect(pte);
1070 
1071 		if (mm_has_pgste(mm))
1072 			pgste_set_unlock(ptep, pgste);
1073 	}
1074 	return pte;
1075 }
1076 
1077 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
ptep_set_access_flags(struct vm_area_struct * vma,unsigned long address,pte_t * ptep,pte_t entry,int dirty)1078 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1079 					unsigned long address, pte_t *ptep,
1080 					pte_t entry, int dirty)
1081 {
1082 	pgste_t pgste;
1083 
1084 	if (pte_same(*ptep, entry))
1085 		return 0;
1086 	if (mm_has_pgste(vma->vm_mm))
1087 		pgste = pgste_get_lock(ptep);
1088 
1089 	__ptep_ipte(address, ptep);
1090 	*ptep = entry;
1091 
1092 	if (mm_has_pgste(vma->vm_mm))
1093 		pgste_set_unlock(ptep, pgste);
1094 	return 1;
1095 }
1096 
1097 /*
1098  * Conversion functions: convert a page and protection to a page entry,
1099  * and a page entry and page directory to the page they refer to.
1100  */
mk_pte_phys(unsigned long physpage,pgprot_t pgprot)1101 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1102 {
1103 	pte_t __pte;
1104 	pte_val(__pte) = physpage + pgprot_val(pgprot);
1105 	return __pte;
1106 }
1107 
mk_pte(struct page * page,pgprot_t pgprot)1108 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1109 {
1110 	unsigned long physpage = page_to_phys(page);
1111 
1112 	return mk_pte_phys(physpage, pgprot);
1113 }
1114 
1115 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1116 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1117 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1118 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1119 
1120 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1121 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
1122 
1123 #ifndef __s390x__
1124 
1125 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1126 #define pud_deref(pmd) ({ BUG(); 0UL; })
1127 #define pgd_deref(pmd) ({ BUG(); 0UL; })
1128 
1129 #define pud_offset(pgd, address) ((pud_t *) pgd)
1130 #define pmd_offset(pud, address) ((pmd_t *) pud + pmd_index(address))
1131 
1132 #else /* __s390x__ */
1133 
1134 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1135 #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1136 #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1137 
pud_offset(pgd_t * pgd,unsigned long address)1138 static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
1139 {
1140 	pud_t *pud = (pud_t *) pgd;
1141 	if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1142 		pud = (pud_t *) pgd_deref(*pgd);
1143 	return pud  + pud_index(address);
1144 }
1145 
pmd_offset(pud_t * pud,unsigned long address)1146 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1147 {
1148 	pmd_t *pmd = (pmd_t *) pud;
1149 	if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1150 		pmd = (pmd_t *) pud_deref(*pud);
1151 	return pmd + pmd_index(address);
1152 }
1153 
1154 #endif /* __s390x__ */
1155 
1156 #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1157 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1158 #define pte_page(x) pfn_to_page(pte_pfn(x))
1159 
1160 #define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
1161 
1162 /* Find an entry in the lowest level page table.. */
1163 #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1164 #define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1165 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1166 #define pte_unmap(pte) do { } while (0)
1167 
1168 /*
1169  * 31 bit swap entry format:
1170  * A page-table entry has some bits we have to treat in a special way.
1171  * Bits 0, 20 and bit 23 have to be zero, otherwise an specification
1172  * exception will occur instead of a page translation exception. The
1173  * specifiation exception has the bad habit not to store necessary
1174  * information in the lowcore.
1175  * Bit 21 and bit 22 are the page invalid bit and the page protection
1176  * bit. We set both to indicate a swapped page.
1177  * Bit 30 and 31 are used to distinguish the different page types. For
1178  * a swapped page these bits need to be zero.
1179  * This leaves the bits 1-19 and bits 24-29 to store type and offset.
1180  * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19
1181  * plus 24 for the offset.
1182  * 0|     offset        |0110|o|type |00|
1183  * 0 0000000001111111111 2222 2 22222 33
1184  * 0 1234567890123456789 0123 4 56789 01
1185  *
1186  * 64 bit swap entry format:
1187  * A page-table entry has some bits we have to treat in a special way.
1188  * Bits 52 and bit 55 have to be zero, otherwise an specification
1189  * exception will occur instead of a page translation exception. The
1190  * specifiation exception has the bad habit not to store necessary
1191  * information in the lowcore.
1192  * Bit 53 and bit 54 are the page invalid bit and the page protection
1193  * bit. We set both to indicate a swapped page.
1194  * Bit 62 and 63 are used to distinguish the different page types. For
1195  * a swapped page these bits need to be zero.
1196  * This leaves the bits 0-51 and bits 56-61 to store type and offset.
1197  * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51
1198  * plus 56 for the offset.
1199  * |                      offset                        |0110|o|type |00|
1200  *  0000000000111111111122222222223333333333444444444455 5555 5 55566 66
1201  *  0123456789012345678901234567890123456789012345678901 2345 6 78901 23
1202  */
1203 #ifndef __s390x__
1204 #define __SWP_OFFSET_MASK (~0UL >> 12)
1205 #else
1206 #define __SWP_OFFSET_MASK (~0UL >> 11)
1207 #endif
mk_swap_pte(unsigned long type,unsigned long offset)1208 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1209 {
1210 	pte_t pte;
1211 	offset &= __SWP_OFFSET_MASK;
1212 	pte_val(pte) = _PAGE_TYPE_SWAP | ((type & 0x1f) << 2) |
1213 		((offset & 1UL) << 7) | ((offset & ~1UL) << 11);
1214 	return pte;
1215 }
1216 
1217 #define __swp_type(entry)	(((entry).val >> 2) & 0x1f)
1218 #define __swp_offset(entry)	(((entry).val >> 11) | (((entry).val >> 7) & 1))
1219 #define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
1220 
1221 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
1222 #define __swp_entry_to_pte(x)	((pte_t) { (x).val })
1223 
1224 #ifndef __s390x__
1225 # define PTE_FILE_MAX_BITS	26
1226 #else /* __s390x__ */
1227 # define PTE_FILE_MAX_BITS	59
1228 #endif /* __s390x__ */
1229 
1230 #define pte_to_pgoff(__pte) \
1231 	((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f))
1232 
1233 #define pgoff_to_pte(__off) \
1234 	((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \
1235 		   | _PAGE_TYPE_FILE })
1236 
1237 #endif /* !__ASSEMBLY__ */
1238 
1239 #define kern_addr_valid(addr)   (1)
1240 
1241 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1242 extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1243 extern int s390_enable_sie(void);
1244 
1245 /*
1246  * No page table caches to initialise
1247  */
1248 #define pgtable_cache_init()	do { } while (0)
1249 
1250 #include <asm-generic/pgtable.h>
1251 
1252 #endif /* _S390_PAGE_H */
1253