1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * S390 version
4 * Copyright IBM Corp. 1999, 2000
5 * Author(s): Hartmut Penner (hp@de.ibm.com)
6 * Ulrich Weigand (weigand@de.ibm.com)
7 * Martin Schwidefsky (schwidefsky@de.ibm.com)
8 *
9 * Derived from "include/asm-i386/pgtable.h"
10 */
11
12 #ifndef _ASM_S390_PGTABLE_H
13 #define _ASM_S390_PGTABLE_H
14
15 #include <linux/sched.h>
16 #include <linux/mm_types.h>
17 #include <linux/page-flags.h>
18 #include <linux/radix-tree.h>
19 #include <linux/atomic.h>
20 #include <asm/sections.h>
21 #include <asm/bug.h>
22 #include <asm/page.h>
23 #include <asm/uv.h>
24
25 extern pgd_t swapper_pg_dir[];
26 extern void paging_init(void);
27 extern unsigned long s390_invalid_asce;
28
29 enum {
30 PG_DIRECT_MAP_4K = 0,
31 PG_DIRECT_MAP_1M,
32 PG_DIRECT_MAP_2G,
33 PG_DIRECT_MAP_MAX
34 };
35
36 extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
37
update_page_count(int level,long count)38 static inline void update_page_count(int level, long count)
39 {
40 if (IS_ENABLED(CONFIG_PROC_FS))
41 atomic_long_add(count, &direct_pages_count[level]);
42 }
43
44 struct seq_file;
45 void arch_report_meminfo(struct seq_file *m);
46
47 /*
48 * The S390 doesn't have any external MMU info: the kernel page
49 * tables contain all the necessary information.
50 */
51 #define update_mmu_cache(vma, address, ptep) do { } while (0)
52 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
53
54 /*
55 * ZERO_PAGE is a global shared page that is always zero; used
56 * for zero-mapped memory areas etc..
57 */
58
59 extern unsigned long empty_zero_page;
60 extern unsigned long zero_page_mask;
61
62 #define ZERO_PAGE(vaddr) \
63 (virt_to_page((void *)(empty_zero_page + \
64 (((unsigned long)(vaddr)) &zero_page_mask))))
65 #define __HAVE_COLOR_ZERO_PAGE
66
67 /* TODO: s390 cannot support io_remap_pfn_range... */
68
69 #define pte_ERROR(e) \
70 pr_err("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
71 #define pmd_ERROR(e) \
72 pr_err("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
73 #define pud_ERROR(e) \
74 pr_err("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e))
75 #define p4d_ERROR(e) \
76 pr_err("%s:%d: bad p4d %016lx.\n", __FILE__, __LINE__, p4d_val(e))
77 #define pgd_ERROR(e) \
78 pr_err("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
79
80 /*
81 * The vmalloc and module area will always be on the topmost area of the
82 * kernel mapping. 512GB are reserved for vmalloc by default.
83 * At the top of the vmalloc area a 2GB area is reserved where modules
84 * will reside. That makes sure that inter module branches always
85 * happen without trampolines and in addition the placement within a
86 * 2GB frame is branch prediction unit friendly.
87 */
88 extern unsigned long __bootdata_preserved(VMALLOC_START);
89 extern unsigned long __bootdata_preserved(VMALLOC_END);
90 #define VMALLOC_DEFAULT_SIZE ((512UL << 30) - MODULES_LEN)
91 extern struct page *__bootdata_preserved(vmemmap);
92 extern unsigned long __bootdata_preserved(vmemmap_size);
93
94 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
95
96 extern unsigned long __bootdata_preserved(MODULES_VADDR);
97 extern unsigned long __bootdata_preserved(MODULES_END);
98 #define MODULES_VADDR MODULES_VADDR
99 #define MODULES_END MODULES_END
100 #define MODULES_LEN (1UL << 31)
101
is_module_addr(void * addr)102 static inline int is_module_addr(void *addr)
103 {
104 BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
105 if (addr < (void *)MODULES_VADDR)
106 return 0;
107 if (addr > (void *)MODULES_END)
108 return 0;
109 return 1;
110 }
111
112 /*
113 * A 64 bit pagetable entry of S390 has following format:
114 * | PFRA |0IPC| OS |
115 * 0000000000111111111122222222223333333333444444444455555555556666
116 * 0123456789012345678901234567890123456789012345678901234567890123
117 *
118 * I Page-Invalid Bit: Page is not available for address-translation
119 * P Page-Protection Bit: Store access not possible for page
120 * C Change-bit override: HW is not required to set change bit
121 *
122 * A 64 bit segmenttable entry of S390 has following format:
123 * | P-table origin | TT
124 * 0000000000111111111122222222223333333333444444444455555555556666
125 * 0123456789012345678901234567890123456789012345678901234567890123
126 *
127 * I Segment-Invalid Bit: Segment is not available for address-translation
128 * C Common-Segment Bit: Segment is not private (PoP 3-30)
129 * P Page-Protection Bit: Store access not possible for page
130 * TT Type 00
131 *
132 * A 64 bit region table entry of S390 has following format:
133 * | S-table origin | TF TTTL
134 * 0000000000111111111122222222223333333333444444444455555555556666
135 * 0123456789012345678901234567890123456789012345678901234567890123
136 *
137 * I Segment-Invalid Bit: Segment is not available for address-translation
138 * TT Type 01
139 * TF
140 * TL Table length
141 *
142 * The 64 bit regiontable origin of S390 has following format:
143 * | region table origon | DTTL
144 * 0000000000111111111122222222223333333333444444444455555555556666
145 * 0123456789012345678901234567890123456789012345678901234567890123
146 *
147 * X Space-Switch event:
148 * G Segment-Invalid Bit:
149 * P Private-Space Bit:
150 * S Storage-Alteration:
151 * R Real space
152 * TL Table-Length:
153 *
154 * A storage key has the following format:
155 * | ACC |F|R|C|0|
156 * 0 3 4 5 6 7
157 * ACC: access key
158 * F : fetch protection bit
159 * R : referenced bit
160 * C : changed bit
161 */
162
163 /* Hardware bits in the page table entry */
164 #define _PAGE_NOEXEC 0x100 /* HW no-execute bit */
165 #define _PAGE_PROTECT 0x200 /* HW read-only bit */
166 #define _PAGE_INVALID 0x400 /* HW invalid bit */
167 #define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
168
169 /* Software bits in the page table entry */
170 #define _PAGE_PRESENT 0x001 /* SW pte present bit */
171 #define _PAGE_YOUNG 0x004 /* SW pte young bit */
172 #define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
173 #define _PAGE_READ 0x010 /* SW pte read bit */
174 #define _PAGE_WRITE 0x020 /* SW pte write bit */
175 #define _PAGE_SPECIAL 0x040 /* SW associated with special page */
176 #define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
177
178 #ifdef CONFIG_MEM_SOFT_DIRTY
179 #define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */
180 #else
181 #define _PAGE_SOFT_DIRTY 0x000
182 #endif
183
184 #define _PAGE_SWP_EXCLUSIVE _PAGE_LARGE /* SW pte exclusive swap bit */
185
186 /* Set of bits not changed in pte_modify */
187 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
188 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
189
190 /*
191 * handle_pte_fault uses pte_present and pte_none to find out the pte type
192 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
193 * distinguish present from not-present ptes. It is changed only with the page
194 * table lock held.
195 *
196 * The following table gives the different possible bit combinations for
197 * the pte hardware and software bits in the last 12 bits of a pte
198 * (. unassigned bit, x don't care, t swap type):
199 *
200 * 842100000000
201 * 000084210000
202 * 000000008421
203 * .IR.uswrdy.p
204 * empty .10.00000000
205 * swap .11..ttttt.0
206 * prot-none, clean, old .11.xx0000.1
207 * prot-none, clean, young .11.xx0001.1
208 * prot-none, dirty, old .11.xx0010.1
209 * prot-none, dirty, young .11.xx0011.1
210 * read-only, clean, old .11.xx0100.1
211 * read-only, clean, young .01.xx0101.1
212 * read-only, dirty, old .11.xx0110.1
213 * read-only, dirty, young .01.xx0111.1
214 * read-write, clean, old .11.xx1100.1
215 * read-write, clean, young .01.xx1101.1
216 * read-write, dirty, old .10.xx1110.1
217 * read-write, dirty, young .00.xx1111.1
218 * HW-bits: R read-only, I invalid
219 * SW-bits: p present, y young, d dirty, r read, w write, s special,
220 * u unused, l large
221 *
222 * pte_none is true for the bit pattern .10.00000000, pte == 0x400
223 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
224 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
225 */
226
227 /* Bits in the segment/region table address-space-control-element */
228 #define _ASCE_ORIGIN ~0xfffUL/* region/segment table origin */
229 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
230 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
231 #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
232 #define _ASCE_REAL_SPACE 0x20 /* real space control */
233 #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
234 #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
235 #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
236 #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
237 #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
238 #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
239
240 /* Bits in the region table entry */
241 #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
242 #define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
243 #define _REGION_ENTRY_NOEXEC 0x100 /* region no-execute bit */
244 #define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */
245 #define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
246 #define _REGION_ENTRY_TYPE_MASK 0x0c /* region table type mask */
247 #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
248 #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
249 #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
250 #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
251
252 #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
253 #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
254 #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
255 #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
256 #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
257 #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
258
259 #define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */
260 #define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */
261 #define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */
262 #define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */
263 #define _REGION3_ENTRY_READ 0x0002 /* SW region read bit */
264 #define _REGION3_ENTRY_WRITE 0x0001 /* SW region write bit */
265
266 #ifdef CONFIG_MEM_SOFT_DIRTY
267 #define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
268 #else
269 #define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
270 #endif
271
272 #define _REGION_ENTRY_BITS 0xfffffffffffff22fUL
273
274 /* Bits in the segment table entry */
275 #define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
276 #define _SEGMENT_ENTRY_HARDWARE_BITS 0xfffffffffffffe30UL
277 #define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE 0xfffffffffff00730UL
278 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
279 #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* page table origin */
280 #define _SEGMENT_ENTRY_PROTECT 0x200 /* segment protection bit */
281 #define _SEGMENT_ENTRY_NOEXEC 0x100 /* segment no-execute bit */
282 #define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
283 #define _SEGMENT_ENTRY_TYPE_MASK 0x0c /* segment table type mask */
284
285 #define _SEGMENT_ENTRY (0)
286 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
287
288 #define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
289 #define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
290 #define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
291 #define _SEGMENT_ENTRY_WRITE 0x0002 /* SW segment write bit */
292 #define _SEGMENT_ENTRY_READ 0x0001 /* SW segment read bit */
293
294 #ifdef CONFIG_MEM_SOFT_DIRTY
295 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
296 #else
297 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
298 #endif
299
300 #define _CRST_ENTRIES 2048 /* number of region/segment table entries */
301 #define _PAGE_ENTRIES 256 /* number of page table entries */
302
303 #define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
304 #define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
305
306 #define _REGION1_SHIFT 53
307 #define _REGION2_SHIFT 42
308 #define _REGION3_SHIFT 31
309 #define _SEGMENT_SHIFT 20
310
311 #define _REGION1_INDEX (0x7ffUL << _REGION1_SHIFT)
312 #define _REGION2_INDEX (0x7ffUL << _REGION2_SHIFT)
313 #define _REGION3_INDEX (0x7ffUL << _REGION3_SHIFT)
314 #define _SEGMENT_INDEX (0x7ffUL << _SEGMENT_SHIFT)
315 #define _PAGE_INDEX (0xffUL << _PAGE_SHIFT)
316
317 #define _REGION1_SIZE (1UL << _REGION1_SHIFT)
318 #define _REGION2_SIZE (1UL << _REGION2_SHIFT)
319 #define _REGION3_SIZE (1UL << _REGION3_SHIFT)
320 #define _SEGMENT_SIZE (1UL << _SEGMENT_SHIFT)
321
322 #define _REGION1_MASK (~(_REGION1_SIZE - 1))
323 #define _REGION2_MASK (~(_REGION2_SIZE - 1))
324 #define _REGION3_MASK (~(_REGION3_SIZE - 1))
325 #define _SEGMENT_MASK (~(_SEGMENT_SIZE - 1))
326
327 #define PMD_SHIFT _SEGMENT_SHIFT
328 #define PUD_SHIFT _REGION3_SHIFT
329 #define P4D_SHIFT _REGION2_SHIFT
330 #define PGDIR_SHIFT _REGION1_SHIFT
331
332 #define PMD_SIZE _SEGMENT_SIZE
333 #define PUD_SIZE _REGION3_SIZE
334 #define P4D_SIZE _REGION2_SIZE
335 #define PGDIR_SIZE _REGION1_SIZE
336
337 #define PMD_MASK _SEGMENT_MASK
338 #define PUD_MASK _REGION3_MASK
339 #define P4D_MASK _REGION2_MASK
340 #define PGDIR_MASK _REGION1_MASK
341
342 #define PTRS_PER_PTE _PAGE_ENTRIES
343 #define PTRS_PER_PMD _CRST_ENTRIES
344 #define PTRS_PER_PUD _CRST_ENTRIES
345 #define PTRS_PER_P4D _CRST_ENTRIES
346 #define PTRS_PER_PGD _CRST_ENTRIES
347
348 /*
349 * Segment table and region3 table entry encoding
350 * (R = read-only, I = invalid, y = young bit):
351 * dy..R...I...wr
352 * prot-none, clean, old 00..1...1...00
353 * prot-none, clean, young 01..1...1...00
354 * prot-none, dirty, old 10..1...1...00
355 * prot-none, dirty, young 11..1...1...00
356 * read-only, clean, old 00..1...1...01
357 * read-only, clean, young 01..1...0...01
358 * read-only, dirty, old 10..1...1...01
359 * read-only, dirty, young 11..1...0...01
360 * read-write, clean, old 00..1...1...11
361 * read-write, clean, young 01..1...0...11
362 * read-write, dirty, old 10..0...1...11
363 * read-write, dirty, young 11..0...0...11
364 * The segment table origin is used to distinguish empty (origin==0) from
365 * read-write, old segment table entries (origin!=0)
366 * HW-bits: R read-only, I invalid
367 * SW-bits: y young, d dirty, r read, w write
368 */
369
370 /* Page status table bits for virtualization */
371 #define PGSTE_ACC_BITS 0xf000000000000000UL
372 #define PGSTE_FP_BIT 0x0800000000000000UL
373 #define PGSTE_PCL_BIT 0x0080000000000000UL
374 #define PGSTE_HR_BIT 0x0040000000000000UL
375 #define PGSTE_HC_BIT 0x0020000000000000UL
376 #define PGSTE_GR_BIT 0x0004000000000000UL
377 #define PGSTE_GC_BIT 0x0002000000000000UL
378 #define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
379 #define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
380 #define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */
381
382 /* Guest Page State used for virtualization */
383 #define _PGSTE_GPS_ZERO 0x0000000080000000UL
384 #define _PGSTE_GPS_NODAT 0x0000000040000000UL
385 #define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
386 #define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
387 #define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
388 #define _PGSTE_GPS_USAGE_POT_VOLATILE 0x0000000002000000UL
389 #define _PGSTE_GPS_USAGE_VOLATILE _PGSTE_GPS_USAGE_MASK
390
391 /*
392 * A user page table pointer has the space-switch-event bit, the
393 * private-space-control bit and the storage-alteration-event-control
394 * bit set. A kernel page table pointer doesn't need them.
395 */
396 #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
397 _ASCE_ALT_EVENT)
398
399 /*
400 * Page protection definitions.
401 */
402 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
403 #define PAGE_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | \
404 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
405 #define PAGE_RX __pgprot(_PAGE_PRESENT | _PAGE_READ | \
406 _PAGE_INVALID | _PAGE_PROTECT)
407 #define PAGE_RW __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
408 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
409 #define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
410 _PAGE_INVALID | _PAGE_PROTECT)
411
412 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
413 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
414 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
415 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
416 #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
417 _PAGE_PROTECT | _PAGE_NOEXEC)
418 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
419 _PAGE_YOUNG | _PAGE_DIRTY)
420
421 /*
422 * On s390 the page table entry has an invalid bit and a read-only bit.
423 * Read permission implies execute permission and write permission
424 * implies read permission.
425 */
426 /*xwr*/
427 #define __P000 PAGE_NONE
428 #define __P001 PAGE_RO
429 #define __P010 PAGE_RO
430 #define __P011 PAGE_RO
431 #define __P100 PAGE_RX
432 #define __P101 PAGE_RX
433 #define __P110 PAGE_RX
434 #define __P111 PAGE_RX
435
436 #define __S000 PAGE_NONE
437 #define __S001 PAGE_RO
438 #define __S010 PAGE_RW
439 #define __S011 PAGE_RW
440 #define __S100 PAGE_RX
441 #define __S101 PAGE_RX
442 #define __S110 PAGE_RWX
443 #define __S111 PAGE_RWX
444
445 /*
446 * Segment entry (large page) protection definitions.
447 */
448 #define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
449 _SEGMENT_ENTRY_PROTECT)
450 #define SEGMENT_RO __pgprot(_SEGMENT_ENTRY_PROTECT | \
451 _SEGMENT_ENTRY_READ | \
452 _SEGMENT_ENTRY_NOEXEC)
453 #define SEGMENT_RX __pgprot(_SEGMENT_ENTRY_PROTECT | \
454 _SEGMENT_ENTRY_READ)
455 #define SEGMENT_RW __pgprot(_SEGMENT_ENTRY_READ | \
456 _SEGMENT_ENTRY_WRITE | \
457 _SEGMENT_ENTRY_NOEXEC)
458 #define SEGMENT_RWX __pgprot(_SEGMENT_ENTRY_READ | \
459 _SEGMENT_ENTRY_WRITE)
460 #define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \
461 _SEGMENT_ENTRY_LARGE | \
462 _SEGMENT_ENTRY_READ | \
463 _SEGMENT_ENTRY_WRITE | \
464 _SEGMENT_ENTRY_YOUNG | \
465 _SEGMENT_ENTRY_DIRTY | \
466 _SEGMENT_ENTRY_NOEXEC)
467 #define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \
468 _SEGMENT_ENTRY_LARGE | \
469 _SEGMENT_ENTRY_READ | \
470 _SEGMENT_ENTRY_YOUNG | \
471 _SEGMENT_ENTRY_PROTECT | \
472 _SEGMENT_ENTRY_NOEXEC)
473 #define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY | \
474 _SEGMENT_ENTRY_LARGE | \
475 _SEGMENT_ENTRY_READ | \
476 _SEGMENT_ENTRY_WRITE | \
477 _SEGMENT_ENTRY_YOUNG | \
478 _SEGMENT_ENTRY_DIRTY)
479
480 /*
481 * Region3 entry (large page) protection definitions.
482 */
483
484 #define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \
485 _REGION3_ENTRY_LARGE | \
486 _REGION3_ENTRY_READ | \
487 _REGION3_ENTRY_WRITE | \
488 _REGION3_ENTRY_YOUNG | \
489 _REGION3_ENTRY_DIRTY | \
490 _REGION_ENTRY_NOEXEC)
491 #define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
492 _REGION3_ENTRY_LARGE | \
493 _REGION3_ENTRY_READ | \
494 _REGION3_ENTRY_YOUNG | \
495 _REGION_ENTRY_PROTECT | \
496 _REGION_ENTRY_NOEXEC)
497
mm_p4d_folded(struct mm_struct * mm)498 static inline bool mm_p4d_folded(struct mm_struct *mm)
499 {
500 return mm->context.asce_limit <= _REGION1_SIZE;
501 }
502 #define mm_p4d_folded(mm) mm_p4d_folded(mm)
503
mm_pud_folded(struct mm_struct * mm)504 static inline bool mm_pud_folded(struct mm_struct *mm)
505 {
506 return mm->context.asce_limit <= _REGION2_SIZE;
507 }
508 #define mm_pud_folded(mm) mm_pud_folded(mm)
509
mm_pmd_folded(struct mm_struct * mm)510 static inline bool mm_pmd_folded(struct mm_struct *mm)
511 {
512 return mm->context.asce_limit <= _REGION3_SIZE;
513 }
514 #define mm_pmd_folded(mm) mm_pmd_folded(mm)
515
mm_has_pgste(struct mm_struct * mm)516 static inline int mm_has_pgste(struct mm_struct *mm)
517 {
518 #ifdef CONFIG_PGSTE
519 if (unlikely(mm->context.has_pgste))
520 return 1;
521 #endif
522 return 0;
523 }
524
mm_is_protected(struct mm_struct * mm)525 static inline int mm_is_protected(struct mm_struct *mm)
526 {
527 #ifdef CONFIG_PGSTE
528 if (unlikely(atomic_read(&mm->context.is_protected)))
529 return 1;
530 #endif
531 return 0;
532 }
533
mm_alloc_pgste(struct mm_struct * mm)534 static inline int mm_alloc_pgste(struct mm_struct *mm)
535 {
536 #ifdef CONFIG_PGSTE
537 if (unlikely(mm->context.alloc_pgste))
538 return 1;
539 #endif
540 return 0;
541 }
542
clear_pte_bit(pte_t pte,pgprot_t prot)543 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
544 {
545 return __pte(pte_val(pte) & ~pgprot_val(prot));
546 }
547
set_pte_bit(pte_t pte,pgprot_t prot)548 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
549 {
550 return __pte(pte_val(pte) | pgprot_val(prot));
551 }
552
clear_pmd_bit(pmd_t pmd,pgprot_t prot)553 static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
554 {
555 return __pmd(pmd_val(pmd) & ~pgprot_val(prot));
556 }
557
set_pmd_bit(pmd_t pmd,pgprot_t prot)558 static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
559 {
560 return __pmd(pmd_val(pmd) | pgprot_val(prot));
561 }
562
clear_pud_bit(pud_t pud,pgprot_t prot)563 static inline pud_t clear_pud_bit(pud_t pud, pgprot_t prot)
564 {
565 return __pud(pud_val(pud) & ~pgprot_val(prot));
566 }
567
set_pud_bit(pud_t pud,pgprot_t prot)568 static inline pud_t set_pud_bit(pud_t pud, pgprot_t prot)
569 {
570 return __pud(pud_val(pud) | pgprot_val(prot));
571 }
572
573 /*
574 * In the case that a guest uses storage keys
575 * faults should no longer be backed by zero pages
576 */
577 #define mm_forbids_zeropage mm_has_pgste
mm_uses_skeys(struct mm_struct * mm)578 static inline int mm_uses_skeys(struct mm_struct *mm)
579 {
580 #ifdef CONFIG_PGSTE
581 if (mm->context.uses_skeys)
582 return 1;
583 #endif
584 return 0;
585 }
586
csp(unsigned int * ptr,unsigned int old,unsigned int new)587 static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
588 {
589 union register_pair r1 = { .even = old, .odd = new, };
590 unsigned long address = (unsigned long)ptr | 1;
591
592 asm volatile(
593 " csp %[r1],%[address]"
594 : [r1] "+&d" (r1.pair), "+m" (*ptr)
595 : [address] "d" (address)
596 : "cc");
597 }
598
cspg(unsigned long * ptr,unsigned long old,unsigned long new)599 static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
600 {
601 union register_pair r1 = { .even = old, .odd = new, };
602 unsigned long address = (unsigned long)ptr | 1;
603
604 asm volatile(
605 " cspg %[r1],%[address]"
606 : [r1] "+&d" (r1.pair), "+m" (*ptr)
607 : [address] "d" (address)
608 : "cc");
609 }
610
611 #define CRDTE_DTT_PAGE 0x00UL
612 #define CRDTE_DTT_SEGMENT 0x10UL
613 #define CRDTE_DTT_REGION3 0x14UL
614 #define CRDTE_DTT_REGION2 0x18UL
615 #define CRDTE_DTT_REGION1 0x1cUL
616
crdte(unsigned long old,unsigned long new,unsigned long * table,unsigned long dtt,unsigned long address,unsigned long asce)617 static inline void crdte(unsigned long old, unsigned long new,
618 unsigned long *table, unsigned long dtt,
619 unsigned long address, unsigned long asce)
620 {
621 union register_pair r1 = { .even = old, .odd = new, };
622 union register_pair r2 = { .even = __pa(table) | dtt, .odd = address, };
623
624 asm volatile(".insn rrf,0xb98f0000,%[r1],%[r2],%[asce],0"
625 : [r1] "+&d" (r1.pair)
626 : [r2] "d" (r2.pair), [asce] "a" (asce)
627 : "memory", "cc");
628 }
629
630 /*
631 * pgd/p4d/pud/pmd/pte query functions
632 */
pgd_folded(pgd_t pgd)633 static inline int pgd_folded(pgd_t pgd)
634 {
635 return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
636 }
637
pgd_present(pgd_t pgd)638 static inline int pgd_present(pgd_t pgd)
639 {
640 if (pgd_folded(pgd))
641 return 1;
642 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
643 }
644
pgd_none(pgd_t pgd)645 static inline int pgd_none(pgd_t pgd)
646 {
647 if (pgd_folded(pgd))
648 return 0;
649 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
650 }
651
pgd_bad(pgd_t pgd)652 static inline int pgd_bad(pgd_t pgd)
653 {
654 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1)
655 return 0;
656 return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0;
657 }
658
pgd_pfn(pgd_t pgd)659 static inline unsigned long pgd_pfn(pgd_t pgd)
660 {
661 unsigned long origin_mask;
662
663 origin_mask = _REGION_ENTRY_ORIGIN;
664 return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT;
665 }
666
p4d_folded(p4d_t p4d)667 static inline int p4d_folded(p4d_t p4d)
668 {
669 return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
670 }
671
p4d_present(p4d_t p4d)672 static inline int p4d_present(p4d_t p4d)
673 {
674 if (p4d_folded(p4d))
675 return 1;
676 return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
677 }
678
p4d_none(p4d_t p4d)679 static inline int p4d_none(p4d_t p4d)
680 {
681 if (p4d_folded(p4d))
682 return 0;
683 return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
684 }
685
p4d_pfn(p4d_t p4d)686 static inline unsigned long p4d_pfn(p4d_t p4d)
687 {
688 unsigned long origin_mask;
689
690 origin_mask = _REGION_ENTRY_ORIGIN;
691 return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
692 }
693
pud_folded(pud_t pud)694 static inline int pud_folded(pud_t pud)
695 {
696 return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
697 }
698
pud_present(pud_t pud)699 static inline int pud_present(pud_t pud)
700 {
701 if (pud_folded(pud))
702 return 1;
703 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
704 }
705
pud_none(pud_t pud)706 static inline int pud_none(pud_t pud)
707 {
708 if (pud_folded(pud))
709 return 0;
710 return pud_val(pud) == _REGION3_ENTRY_EMPTY;
711 }
712
713 #define pud_leaf pud_large
pud_large(pud_t pud)714 static inline int pud_large(pud_t pud)
715 {
716 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
717 return 0;
718 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
719 }
720
721 #define pmd_leaf pmd_large
pmd_large(pmd_t pmd)722 static inline int pmd_large(pmd_t pmd)
723 {
724 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
725 }
726
pmd_bad(pmd_t pmd)727 static inline int pmd_bad(pmd_t pmd)
728 {
729 if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0 || pmd_large(pmd))
730 return 1;
731 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
732 }
733
pud_bad(pud_t pud)734 static inline int pud_bad(pud_t pud)
735 {
736 unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK;
737
738 if (type > _REGION_ENTRY_TYPE_R3 || pud_large(pud))
739 return 1;
740 if (type < _REGION_ENTRY_TYPE_R3)
741 return 0;
742 return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
743 }
744
p4d_bad(p4d_t p4d)745 static inline int p4d_bad(p4d_t p4d)
746 {
747 unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK;
748
749 if (type > _REGION_ENTRY_TYPE_R2)
750 return 1;
751 if (type < _REGION_ENTRY_TYPE_R2)
752 return 0;
753 return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
754 }
755
pmd_present(pmd_t pmd)756 static inline int pmd_present(pmd_t pmd)
757 {
758 return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
759 }
760
pmd_none(pmd_t pmd)761 static inline int pmd_none(pmd_t pmd)
762 {
763 return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
764 }
765
766 #define pmd_write pmd_write
pmd_write(pmd_t pmd)767 static inline int pmd_write(pmd_t pmd)
768 {
769 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
770 }
771
772 #define pud_write pud_write
pud_write(pud_t pud)773 static inline int pud_write(pud_t pud)
774 {
775 return (pud_val(pud) & _REGION3_ENTRY_WRITE) != 0;
776 }
777
pmd_dirty(pmd_t pmd)778 static inline int pmd_dirty(pmd_t pmd)
779 {
780 return (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
781 }
782
pmd_young(pmd_t pmd)783 static inline int pmd_young(pmd_t pmd)
784 {
785 return (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
786 }
787
pte_present(pte_t pte)788 static inline int pte_present(pte_t pte)
789 {
790 /* Bit pattern: (pte & 0x001) == 0x001 */
791 return (pte_val(pte) & _PAGE_PRESENT) != 0;
792 }
793
pte_none(pte_t pte)794 static inline int pte_none(pte_t pte)
795 {
796 /* Bit pattern: pte == 0x400 */
797 return pte_val(pte) == _PAGE_INVALID;
798 }
799
pte_swap(pte_t pte)800 static inline int pte_swap(pte_t pte)
801 {
802 /* Bit pattern: (pte & 0x201) == 0x200 */
803 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
804 == _PAGE_PROTECT;
805 }
806
pte_special(pte_t pte)807 static inline int pte_special(pte_t pte)
808 {
809 return (pte_val(pte) & _PAGE_SPECIAL);
810 }
811
812 #define __HAVE_ARCH_PTE_SAME
pte_same(pte_t a,pte_t b)813 static inline int pte_same(pte_t a, pte_t b)
814 {
815 return pte_val(a) == pte_val(b);
816 }
817
818 #ifdef CONFIG_NUMA_BALANCING
pte_protnone(pte_t pte)819 static inline int pte_protnone(pte_t pte)
820 {
821 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
822 }
823
pmd_protnone(pmd_t pmd)824 static inline int pmd_protnone(pmd_t pmd)
825 {
826 /* pmd_large(pmd) implies pmd_present(pmd) */
827 return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
828 }
829 #endif
830
831 #define __HAVE_ARCH_PTE_SWP_EXCLUSIVE
pte_swp_exclusive(pte_t pte)832 static inline int pte_swp_exclusive(pte_t pte)
833 {
834 return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
835 }
836
pte_swp_mkexclusive(pte_t pte)837 static inline pte_t pte_swp_mkexclusive(pte_t pte)
838 {
839 return set_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE));
840 }
841
pte_swp_clear_exclusive(pte_t pte)842 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
843 {
844 return clear_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE));
845 }
846
pte_soft_dirty(pte_t pte)847 static inline int pte_soft_dirty(pte_t pte)
848 {
849 return pte_val(pte) & _PAGE_SOFT_DIRTY;
850 }
851 #define pte_swp_soft_dirty pte_soft_dirty
852
pte_mksoft_dirty(pte_t pte)853 static inline pte_t pte_mksoft_dirty(pte_t pte)
854 {
855 return set_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY));
856 }
857 #define pte_swp_mksoft_dirty pte_mksoft_dirty
858
pte_clear_soft_dirty(pte_t pte)859 static inline pte_t pte_clear_soft_dirty(pte_t pte)
860 {
861 return clear_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY));
862 }
863 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
864
pmd_soft_dirty(pmd_t pmd)865 static inline int pmd_soft_dirty(pmd_t pmd)
866 {
867 return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
868 }
869
pmd_mksoft_dirty(pmd_t pmd)870 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
871 {
872 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY));
873 }
874
pmd_clear_soft_dirty(pmd_t pmd)875 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
876 {
877 return clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY));
878 }
879
880 /*
881 * query functions pte_write/pte_dirty/pte_young only work if
882 * pte_present() is true. Undefined behaviour if not..
883 */
pte_write(pte_t pte)884 static inline int pte_write(pte_t pte)
885 {
886 return (pte_val(pte) & _PAGE_WRITE) != 0;
887 }
888
pte_dirty(pte_t pte)889 static inline int pte_dirty(pte_t pte)
890 {
891 return (pte_val(pte) & _PAGE_DIRTY) != 0;
892 }
893
pte_young(pte_t pte)894 static inline int pte_young(pte_t pte)
895 {
896 return (pte_val(pte) & _PAGE_YOUNG) != 0;
897 }
898
899 #define __HAVE_ARCH_PTE_UNUSED
pte_unused(pte_t pte)900 static inline int pte_unused(pte_t pte)
901 {
902 return pte_val(pte) & _PAGE_UNUSED;
903 }
904
905 /*
906 * Extract the pgprot value from the given pte while at the same time making it
907 * usable for kernel address space mappings where fault driven dirty and
908 * young/old accounting is not supported, i.e _PAGE_PROTECT and _PAGE_INVALID
909 * must not be set.
910 */
pte_pgprot(pte_t pte)911 static inline pgprot_t pte_pgprot(pte_t pte)
912 {
913 unsigned long pte_flags = pte_val(pte) & _PAGE_CHG_MASK;
914
915 if (pte_write(pte))
916 pte_flags |= pgprot_val(PAGE_KERNEL);
917 else
918 pte_flags |= pgprot_val(PAGE_KERNEL_RO);
919 pte_flags |= pte_val(pte) & mio_wb_bit_mask;
920
921 return __pgprot(pte_flags);
922 }
923
924 /*
925 * pgd/pmd/pte modification functions
926 */
927
set_pgd(pgd_t * pgdp,pgd_t pgd)928 static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
929 {
930 WRITE_ONCE(*pgdp, pgd);
931 }
932
set_p4d(p4d_t * p4dp,p4d_t p4d)933 static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
934 {
935 WRITE_ONCE(*p4dp, p4d);
936 }
937
set_pud(pud_t * pudp,pud_t pud)938 static inline void set_pud(pud_t *pudp, pud_t pud)
939 {
940 WRITE_ONCE(*pudp, pud);
941 }
942
set_pmd(pmd_t * pmdp,pmd_t pmd)943 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
944 {
945 WRITE_ONCE(*pmdp, pmd);
946 }
947
set_pte(pte_t * ptep,pte_t pte)948 static inline void set_pte(pte_t *ptep, pte_t pte)
949 {
950 WRITE_ONCE(*ptep, pte);
951 }
952
pgd_clear(pgd_t * pgd)953 static inline void pgd_clear(pgd_t *pgd)
954 {
955 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
956 set_pgd(pgd, __pgd(_REGION1_ENTRY_EMPTY));
957 }
958
p4d_clear(p4d_t * p4d)959 static inline void p4d_clear(p4d_t *p4d)
960 {
961 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
962 set_p4d(p4d, __p4d(_REGION2_ENTRY_EMPTY));
963 }
964
pud_clear(pud_t * pud)965 static inline void pud_clear(pud_t *pud)
966 {
967 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
968 set_pud(pud, __pud(_REGION3_ENTRY_EMPTY));
969 }
970
pmd_clear(pmd_t * pmdp)971 static inline void pmd_clear(pmd_t *pmdp)
972 {
973 set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
974 }
975
pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)976 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
977 {
978 set_pte(ptep, __pte(_PAGE_INVALID));
979 }
980
981 /*
982 * The following pte modification functions only work if
983 * pte_present() is true. Undefined behaviour if not..
984 */
pte_modify(pte_t pte,pgprot_t newprot)985 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
986 {
987 pte = clear_pte_bit(pte, __pgprot(~_PAGE_CHG_MASK));
988 pte = set_pte_bit(pte, newprot);
989 /*
990 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
991 * has the invalid bit set, clear it again for readable, young pages
992 */
993 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
994 pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID));
995 /*
996 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
997 * protection bit set, clear it again for writable, dirty pages
998 */
999 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
1000 pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1001 return pte;
1002 }
1003
pte_wrprotect(pte_t pte)1004 static inline pte_t pte_wrprotect(pte_t pte)
1005 {
1006 pte = clear_pte_bit(pte, __pgprot(_PAGE_WRITE));
1007 return set_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1008 }
1009
pte_mkwrite(pte_t pte)1010 static inline pte_t pte_mkwrite(pte_t pte)
1011 {
1012 pte = set_pte_bit(pte, __pgprot(_PAGE_WRITE));
1013 if (pte_val(pte) & _PAGE_DIRTY)
1014 pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1015 return pte;
1016 }
1017
pte_mkclean(pte_t pte)1018 static inline pte_t pte_mkclean(pte_t pte)
1019 {
1020 pte = clear_pte_bit(pte, __pgprot(_PAGE_DIRTY));
1021 return set_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1022 }
1023
pte_mkdirty(pte_t pte)1024 static inline pte_t pte_mkdirty(pte_t pte)
1025 {
1026 pte = set_pte_bit(pte, __pgprot(_PAGE_DIRTY | _PAGE_SOFT_DIRTY));
1027 if (pte_val(pte) & _PAGE_WRITE)
1028 pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1029 return pte;
1030 }
1031
pte_mkold(pte_t pte)1032 static inline pte_t pte_mkold(pte_t pte)
1033 {
1034 pte = clear_pte_bit(pte, __pgprot(_PAGE_YOUNG));
1035 return set_pte_bit(pte, __pgprot(_PAGE_INVALID));
1036 }
1037
pte_mkyoung(pte_t pte)1038 static inline pte_t pte_mkyoung(pte_t pte)
1039 {
1040 pte = set_pte_bit(pte, __pgprot(_PAGE_YOUNG));
1041 if (pte_val(pte) & _PAGE_READ)
1042 pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID));
1043 return pte;
1044 }
1045
pte_mkspecial(pte_t pte)1046 static inline pte_t pte_mkspecial(pte_t pte)
1047 {
1048 return set_pte_bit(pte, __pgprot(_PAGE_SPECIAL));
1049 }
1050
1051 #ifdef CONFIG_HUGETLB_PAGE
pte_mkhuge(pte_t pte)1052 static inline pte_t pte_mkhuge(pte_t pte)
1053 {
1054 return set_pte_bit(pte, __pgprot(_PAGE_LARGE));
1055 }
1056 #endif
1057
1058 #define IPTE_GLOBAL 0
1059 #define IPTE_LOCAL 1
1060
1061 #define IPTE_NODAT 0x400
1062 #define IPTE_GUEST_ASCE 0x800
1063
__ptep_ipte(unsigned long address,pte_t * ptep,unsigned long opt,unsigned long asce,int local)1064 static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep,
1065 unsigned long opt, unsigned long asce,
1066 int local)
1067 {
1068 unsigned long pto = __pa(ptep);
1069
1070 if (__builtin_constant_p(opt) && opt == 0) {
1071 /* Invalidation + TLB flush for the pte */
1072 asm volatile(
1073 " ipte %[r1],%[r2],0,%[m4]"
1074 : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
1075 [m4] "i" (local));
1076 return;
1077 }
1078
1079 /* Invalidate ptes with options + TLB flush of the ptes */
1080 opt = opt | (asce & _ASCE_ORIGIN);
1081 asm volatile(
1082 " ipte %[r1],%[r2],%[r3],%[m4]"
1083 : [r2] "+a" (address), [r3] "+a" (opt)
1084 : [r1] "a" (pto), [m4] "i" (local) : "memory");
1085 }
1086
__ptep_ipte_range(unsigned long address,int nr,pte_t * ptep,int local)1087 static __always_inline void __ptep_ipte_range(unsigned long address, int nr,
1088 pte_t *ptep, int local)
1089 {
1090 unsigned long pto = __pa(ptep);
1091
1092 /* Invalidate a range of ptes + TLB flush of the ptes */
1093 do {
1094 asm volatile(
1095 " ipte %[r1],%[r2],%[r3],%[m4]"
1096 : [r2] "+a" (address), [r3] "+a" (nr)
1097 : [r1] "a" (pto), [m4] "i" (local) : "memory");
1098 } while (nr != 255);
1099 }
1100
1101 /*
1102 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1103 * both clear the TLB for the unmapped pte. The reason is that
1104 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1105 * to modify an active pte. The sequence is
1106 * 1) ptep_get_and_clear
1107 * 2) set_pte_at
1108 * 3) flush_tlb_range
1109 * On s390 the tlb needs to get flushed with the modification of the pte
1110 * if the pte is active. The only way how this can be implemented is to
1111 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1112 * is a nop.
1113 */
1114 pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1115 pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1116
1117 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1118 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1119 unsigned long addr, pte_t *ptep)
1120 {
1121 pte_t pte = *ptep;
1122
1123 pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1124 return pte_young(pte);
1125 }
1126
1127 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)1128 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1129 unsigned long address, pte_t *ptep)
1130 {
1131 return ptep_test_and_clear_young(vma, address, ptep);
1132 }
1133
1134 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1135 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1136 unsigned long addr, pte_t *ptep)
1137 {
1138 pte_t res;
1139
1140 res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1141 /* At this point the reference through the mapping is still present */
1142 if (mm_is_protected(mm) && pte_present(res))
1143 uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
1144 return res;
1145 }
1146
1147 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1148 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1149 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1150 pte_t *, pte_t, pte_t);
1151
1152 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
ptep_clear_flush(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1153 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1154 unsigned long addr, pte_t *ptep)
1155 {
1156 pte_t res;
1157
1158 res = ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1159 /* At this point the reference through the mapping is still present */
1160 if (mm_is_protected(vma->vm_mm) && pte_present(res))
1161 uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
1162 return res;
1163 }
1164
1165 /*
1166 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1167 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1168 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1169 * cannot be accessed while the batched unmap is running. In this case
1170 * full==1 and a simple pte_clear is enough. See tlb.h.
1171 */
1172 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
ptep_get_and_clear_full(struct mm_struct * mm,unsigned long addr,pte_t * ptep,int full)1173 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1174 unsigned long addr,
1175 pte_t *ptep, int full)
1176 {
1177 pte_t res;
1178
1179 if (full) {
1180 res = *ptep;
1181 set_pte(ptep, __pte(_PAGE_INVALID));
1182 } else {
1183 res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1184 }
1185 /* At this point the reference through the mapping is still present */
1186 if (mm_is_protected(mm) && pte_present(res))
1187 uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
1188 return res;
1189 }
1190
1191 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1192 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1193 unsigned long addr, pte_t *ptep)
1194 {
1195 pte_t pte = *ptep;
1196
1197 if (pte_write(pte))
1198 ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1199 }
1200
1201 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
ptep_set_access_flags(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t entry,int dirty)1202 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1203 unsigned long addr, pte_t *ptep,
1204 pte_t entry, int dirty)
1205 {
1206 if (pte_same(*ptep, entry))
1207 return 0;
1208 ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1209 return 1;
1210 }
1211
1212 /*
1213 * Additional functions to handle KVM guest page tables
1214 */
1215 void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1216 pte_t *ptep, pte_t entry);
1217 void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1218 void ptep_notify(struct mm_struct *mm, unsigned long addr,
1219 pte_t *ptep, unsigned long bits);
1220 int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1221 pte_t *ptep, int prot, unsigned long bit);
1222 void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1223 pte_t *ptep , int reset);
1224 void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1225 int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1226 pte_t *sptep, pte_t *tptep, pte_t pte);
1227 void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1228
1229 bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address,
1230 pte_t *ptep);
1231 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1232 unsigned char key, bool nq);
1233 int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1234 unsigned char key, unsigned char *oldkey,
1235 bool nq, bool mr, bool mc);
1236 int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1237 int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1238 unsigned char *key);
1239
1240 int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1241 unsigned long bits, unsigned long value);
1242 int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1243 int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1244 unsigned long *oldpte, unsigned long *oldpgste);
1245 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr);
1246 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr);
1247 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr);
1248 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr);
1249
1250 #define pgprot_writecombine pgprot_writecombine
1251 pgprot_t pgprot_writecombine(pgprot_t prot);
1252
1253 #define pgprot_writethrough pgprot_writethrough
1254 pgprot_t pgprot_writethrough(pgprot_t prot);
1255
1256 /*
1257 * Certain architectures need to do special things when PTEs
1258 * within a page table are directly modified. Thus, the following
1259 * hook is made available.
1260 */
set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t entry)1261 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1262 pte_t *ptep, pte_t entry)
1263 {
1264 if (pte_present(entry))
1265 entry = clear_pte_bit(entry, __pgprot(_PAGE_UNUSED));
1266 if (mm_has_pgste(mm))
1267 ptep_set_pte_at(mm, addr, ptep, entry);
1268 else
1269 set_pte(ptep, entry);
1270 }
1271
1272 /*
1273 * Conversion functions: convert a page and protection to a page entry,
1274 * and a page entry and page directory to the page they refer to.
1275 */
mk_pte_phys(unsigned long physpage,pgprot_t pgprot)1276 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1277 {
1278 pte_t __pte;
1279
1280 __pte = __pte(physpage | pgprot_val(pgprot));
1281 if (!MACHINE_HAS_NX)
1282 __pte = clear_pte_bit(__pte, __pgprot(_PAGE_NOEXEC));
1283 return pte_mkyoung(__pte);
1284 }
1285
mk_pte(struct page * page,pgprot_t pgprot)1286 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1287 {
1288 unsigned long physpage = page_to_phys(page);
1289 pte_t __pte = mk_pte_phys(physpage, pgprot);
1290
1291 if (pte_write(__pte) && PageDirty(page))
1292 __pte = pte_mkdirty(__pte);
1293 return __pte;
1294 }
1295
1296 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1297 #define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1298 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1299 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1300
1301 #define p4d_deref(pud) ((unsigned long)__va(p4d_val(pud) & _REGION_ENTRY_ORIGIN))
1302 #define pgd_deref(pgd) ((unsigned long)__va(pgd_val(pgd) & _REGION_ENTRY_ORIGIN))
1303
pmd_deref(pmd_t pmd)1304 static inline unsigned long pmd_deref(pmd_t pmd)
1305 {
1306 unsigned long origin_mask;
1307
1308 origin_mask = _SEGMENT_ENTRY_ORIGIN;
1309 if (pmd_large(pmd))
1310 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
1311 return (unsigned long)__va(pmd_val(pmd) & origin_mask);
1312 }
1313
pmd_pfn(pmd_t pmd)1314 static inline unsigned long pmd_pfn(pmd_t pmd)
1315 {
1316 return __pa(pmd_deref(pmd)) >> PAGE_SHIFT;
1317 }
1318
pud_deref(pud_t pud)1319 static inline unsigned long pud_deref(pud_t pud)
1320 {
1321 unsigned long origin_mask;
1322
1323 origin_mask = _REGION_ENTRY_ORIGIN;
1324 if (pud_large(pud))
1325 origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
1326 return (unsigned long)__va(pud_val(pud) & origin_mask);
1327 }
1328
pud_pfn(pud_t pud)1329 static inline unsigned long pud_pfn(pud_t pud)
1330 {
1331 return __pa(pud_deref(pud)) >> PAGE_SHIFT;
1332 }
1333
1334 /*
1335 * The pgd_offset function *always* adds the index for the top-level
1336 * region/segment table. This is done to get a sequence like the
1337 * following to work:
1338 * pgdp = pgd_offset(current->mm, addr);
1339 * pgd = READ_ONCE(*pgdp);
1340 * p4dp = p4d_offset(&pgd, addr);
1341 * ...
1342 * The subsequent p4d_offset, pud_offset and pmd_offset functions
1343 * only add an index if they dereferenced the pointer.
1344 */
pgd_offset_raw(pgd_t * pgd,unsigned long address)1345 static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address)
1346 {
1347 unsigned long rste;
1348 unsigned int shift;
1349
1350 /* Get the first entry of the top level table */
1351 rste = pgd_val(*pgd);
1352 /* Pick up the shift from the table type of the first entry */
1353 shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20;
1354 return pgd + ((address >> shift) & (PTRS_PER_PGD - 1));
1355 }
1356
1357 #define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address)
1358
p4d_offset_lockless(pgd_t * pgdp,pgd_t pgd,unsigned long address)1359 static inline p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long address)
1360 {
1361 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1)
1362 return (p4d_t *) pgd_deref(pgd) + p4d_index(address);
1363 return (p4d_t *) pgdp;
1364 }
1365 #define p4d_offset_lockless p4d_offset_lockless
1366
p4d_offset(pgd_t * pgdp,unsigned long address)1367 static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long address)
1368 {
1369 return p4d_offset_lockless(pgdp, *pgdp, address);
1370 }
1371
pud_offset_lockless(p4d_t * p4dp,p4d_t p4d,unsigned long address)1372 static inline pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long address)
1373 {
1374 if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2)
1375 return (pud_t *) p4d_deref(p4d) + pud_index(address);
1376 return (pud_t *) p4dp;
1377 }
1378 #define pud_offset_lockless pud_offset_lockless
1379
pud_offset(p4d_t * p4dp,unsigned long address)1380 static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long address)
1381 {
1382 return pud_offset_lockless(p4dp, *p4dp, address);
1383 }
1384 #define pud_offset pud_offset
1385
pmd_offset_lockless(pud_t * pudp,pud_t pud,unsigned long address)1386 static inline pmd_t *pmd_offset_lockless(pud_t *pudp, pud_t pud, unsigned long address)
1387 {
1388 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3)
1389 return (pmd_t *) pud_deref(pud) + pmd_index(address);
1390 return (pmd_t *) pudp;
1391 }
1392 #define pmd_offset_lockless pmd_offset_lockless
1393
pmd_offset(pud_t * pudp,unsigned long address)1394 static inline pmd_t *pmd_offset(pud_t *pudp, unsigned long address)
1395 {
1396 return pmd_offset_lockless(pudp, *pudp, address);
1397 }
1398 #define pmd_offset pmd_offset
1399
pmd_page_vaddr(pmd_t pmd)1400 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
1401 {
1402 return (unsigned long) pmd_deref(pmd);
1403 }
1404
gup_fast_permitted(unsigned long start,unsigned long end)1405 static inline bool gup_fast_permitted(unsigned long start, unsigned long end)
1406 {
1407 return end <= current->mm->context.asce_limit;
1408 }
1409 #define gup_fast_permitted gup_fast_permitted
1410
1411 #define pfn_pte(pfn, pgprot) mk_pte_phys(((pfn) << PAGE_SHIFT), (pgprot))
1412 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1413 #define pte_page(x) pfn_to_page(pte_pfn(x))
1414
1415 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1416 #define pud_page(pud) pfn_to_page(pud_pfn(pud))
1417 #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
1418 #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
1419
pmd_wrprotect(pmd_t pmd)1420 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1421 {
1422 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE));
1423 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1424 }
1425
pmd_mkwrite(pmd_t pmd)1426 static inline pmd_t pmd_mkwrite(pmd_t pmd)
1427 {
1428 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE));
1429 if (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)
1430 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1431 return pmd;
1432 }
1433
pmd_mkclean(pmd_t pmd)1434 static inline pmd_t pmd_mkclean(pmd_t pmd)
1435 {
1436 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY));
1437 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1438 }
1439
pmd_mkdirty(pmd_t pmd)1440 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1441 {
1442 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_SOFT_DIRTY));
1443 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1444 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1445 return pmd;
1446 }
1447
pud_wrprotect(pud_t pud)1448 static inline pud_t pud_wrprotect(pud_t pud)
1449 {
1450 pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE));
1451 return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1452 }
1453
pud_mkwrite(pud_t pud)1454 static inline pud_t pud_mkwrite(pud_t pud)
1455 {
1456 pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE));
1457 if (pud_val(pud) & _REGION3_ENTRY_DIRTY)
1458 pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1459 return pud;
1460 }
1461
pud_mkclean(pud_t pud)1462 static inline pud_t pud_mkclean(pud_t pud)
1463 {
1464 pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY));
1465 return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1466 }
1467
pud_mkdirty(pud_t pud)1468 static inline pud_t pud_mkdirty(pud_t pud)
1469 {
1470 pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY | _REGION3_ENTRY_SOFT_DIRTY));
1471 if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1472 pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1473 return pud;
1474 }
1475
1476 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
massage_pgprot_pmd(pgprot_t pgprot)1477 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1478 {
1479 /*
1480 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1481 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1482 */
1483 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1484 return pgprot_val(SEGMENT_NONE);
1485 if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1486 return pgprot_val(SEGMENT_RO);
1487 if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1488 return pgprot_val(SEGMENT_RX);
1489 if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1490 return pgprot_val(SEGMENT_RW);
1491 return pgprot_val(SEGMENT_RWX);
1492 }
1493
pmd_mkyoung(pmd_t pmd)1494 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1495 {
1496 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1497 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1498 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1499 return pmd;
1500 }
1501
pmd_mkold(pmd_t pmd)1502 static inline pmd_t pmd_mkold(pmd_t pmd)
1503 {
1504 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1505 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1506 }
1507
pmd_modify(pmd_t pmd,pgprot_t newprot)1508 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1509 {
1510 unsigned long mask;
1511
1512 mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
1513 mask |= _SEGMENT_ENTRY_DIRTY;
1514 mask |= _SEGMENT_ENTRY_YOUNG;
1515 mask |= _SEGMENT_ENTRY_LARGE;
1516 mask |= _SEGMENT_ENTRY_SOFT_DIRTY;
1517 pmd = __pmd(pmd_val(pmd) & mask);
1518 pmd = set_pmd_bit(pmd, __pgprot(massage_pgprot_pmd(newprot)));
1519 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1520 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1521 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1522 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1523 return pmd;
1524 }
1525
mk_pmd_phys(unsigned long physpage,pgprot_t pgprot)1526 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1527 {
1528 return __pmd(physpage + massage_pgprot_pmd(pgprot));
1529 }
1530
1531 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1532
__pmdp_csp(pmd_t * pmdp)1533 static inline void __pmdp_csp(pmd_t *pmdp)
1534 {
1535 csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1536 pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1537 }
1538
1539 #define IDTE_GLOBAL 0
1540 #define IDTE_LOCAL 1
1541
1542 #define IDTE_PTOA 0x0800
1543 #define IDTE_NODAT 0x1000
1544 #define IDTE_GUEST_ASCE 0x2000
1545
__pmdp_idte(unsigned long addr,pmd_t * pmdp,unsigned long opt,unsigned long asce,int local)1546 static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1547 unsigned long opt, unsigned long asce,
1548 int local)
1549 {
1550 unsigned long sto;
1551
1552 sto = __pa(pmdp) - pmd_index(addr) * sizeof(pmd_t);
1553 if (__builtin_constant_p(opt) && opt == 0) {
1554 /* flush without guest asce */
1555 asm volatile(
1556 " idte %[r1],0,%[r2],%[m4]"
1557 : "+m" (*pmdp)
1558 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1559 [m4] "i" (local)
1560 : "cc" );
1561 } else {
1562 /* flush with guest asce */
1563 asm volatile(
1564 " idte %[r1],%[r3],%[r2],%[m4]"
1565 : "+m" (*pmdp)
1566 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1567 [r3] "a" (asce), [m4] "i" (local)
1568 : "cc" );
1569 }
1570 }
1571
__pudp_idte(unsigned long addr,pud_t * pudp,unsigned long opt,unsigned long asce,int local)1572 static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1573 unsigned long opt, unsigned long asce,
1574 int local)
1575 {
1576 unsigned long r3o;
1577
1578 r3o = __pa(pudp) - pud_index(addr) * sizeof(pud_t);
1579 r3o |= _ASCE_TYPE_REGION3;
1580 if (__builtin_constant_p(opt) && opt == 0) {
1581 /* flush without guest asce */
1582 asm volatile(
1583 " idte %[r1],0,%[r2],%[m4]"
1584 : "+m" (*pudp)
1585 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1586 [m4] "i" (local)
1587 : "cc");
1588 } else {
1589 /* flush with guest asce */
1590 asm volatile(
1591 " idte %[r1],%[r3],%[r2],%[m4]"
1592 : "+m" (*pudp)
1593 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1594 [r3] "a" (asce), [m4] "i" (local)
1595 : "cc" );
1596 }
1597 }
1598
1599 pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1600 pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1601 pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1602
1603 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1604
1605 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1606 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1607 pgtable_t pgtable);
1608
1609 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1610 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1611
1612 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,pmd_t entry,int dirty)1613 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1614 unsigned long addr, pmd_t *pmdp,
1615 pmd_t entry, int dirty)
1616 {
1617 VM_BUG_ON(addr & ~HPAGE_MASK);
1618
1619 entry = pmd_mkyoung(entry);
1620 if (dirty)
1621 entry = pmd_mkdirty(entry);
1622 if (pmd_val(*pmdp) == pmd_val(entry))
1623 return 0;
1624 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1625 return 1;
1626 }
1627
1628 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1629 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1630 unsigned long addr, pmd_t *pmdp)
1631 {
1632 pmd_t pmd = *pmdp;
1633
1634 pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1635 return pmd_young(pmd);
1636 }
1637
1638 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
pmdp_clear_flush_young(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1639 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1640 unsigned long addr, pmd_t *pmdp)
1641 {
1642 VM_BUG_ON(addr & ~HPAGE_MASK);
1643 return pmdp_test_and_clear_young(vma, addr, pmdp);
1644 }
1645
set_pmd_at(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,pmd_t entry)1646 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1647 pmd_t *pmdp, pmd_t entry)
1648 {
1649 if (!MACHINE_HAS_NX)
1650 entry = clear_pmd_bit(entry, __pgprot(_SEGMENT_ENTRY_NOEXEC));
1651 set_pmd(pmdp, entry);
1652 }
1653
pmd_mkhuge(pmd_t pmd)1654 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1655 {
1656 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_LARGE));
1657 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1658 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1659 }
1660
1661 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1662 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1663 unsigned long addr, pmd_t *pmdp)
1664 {
1665 return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1666 }
1667
1668 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
pmdp_huge_get_and_clear_full(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,int full)1669 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1670 unsigned long addr,
1671 pmd_t *pmdp, int full)
1672 {
1673 if (full) {
1674 pmd_t pmd = *pmdp;
1675 set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1676 return pmd;
1677 }
1678 return pmdp_xchg_lazy(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1679 }
1680
1681 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
pmdp_huge_clear_flush(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1682 static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1683 unsigned long addr, pmd_t *pmdp)
1684 {
1685 return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1686 }
1687
1688 #define __HAVE_ARCH_PMDP_INVALIDATE
pmdp_invalidate(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1689 static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
1690 unsigned long addr, pmd_t *pmdp)
1691 {
1692 pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1693
1694 return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1695 }
1696
1697 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1698 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1699 unsigned long addr, pmd_t *pmdp)
1700 {
1701 pmd_t pmd = *pmdp;
1702
1703 if (pmd_write(pmd))
1704 pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1705 }
1706
pmdp_collapse_flush(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)1707 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1708 unsigned long address,
1709 pmd_t *pmdp)
1710 {
1711 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1712 }
1713 #define pmdp_collapse_flush pmdp_collapse_flush
1714
1715 #define pfn_pmd(pfn, pgprot) mk_pmd_phys(((pfn) << PAGE_SHIFT), (pgprot))
1716 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1717
pmd_trans_huge(pmd_t pmd)1718 static inline int pmd_trans_huge(pmd_t pmd)
1719 {
1720 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1721 }
1722
1723 #define has_transparent_hugepage has_transparent_hugepage
has_transparent_hugepage(void)1724 static inline int has_transparent_hugepage(void)
1725 {
1726 return MACHINE_HAS_EDAT1 ? 1 : 0;
1727 }
1728 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1729
1730 /*
1731 * 64 bit swap entry format:
1732 * A page-table entry has some bits we have to treat in a special way.
1733 * Bits 54 and 63 are used to indicate the page type. Bit 53 marks the pte
1734 * as invalid.
1735 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1736 * | offset |E11XX|type |S0|
1737 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1738 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1739 *
1740 * Bits 0-51 store the offset.
1741 * Bit 52 (E) is used to remember PG_anon_exclusive.
1742 * Bits 57-61 store the type.
1743 * Bit 62 (S) is used for softdirty tracking.
1744 * Bits 55 and 56 (X) are unused.
1745 */
1746
1747 #define __SWP_OFFSET_MASK ((1UL << 52) - 1)
1748 #define __SWP_OFFSET_SHIFT 12
1749 #define __SWP_TYPE_MASK ((1UL << 5) - 1)
1750 #define __SWP_TYPE_SHIFT 2
1751
mk_swap_pte(unsigned long type,unsigned long offset)1752 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1753 {
1754 unsigned long pteval;
1755
1756 pteval = _PAGE_INVALID | _PAGE_PROTECT;
1757 pteval |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1758 pteval |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1759 return __pte(pteval);
1760 }
1761
__swp_type(swp_entry_t entry)1762 static inline unsigned long __swp_type(swp_entry_t entry)
1763 {
1764 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1765 }
1766
__swp_offset(swp_entry_t entry)1767 static inline unsigned long __swp_offset(swp_entry_t entry)
1768 {
1769 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1770 }
1771
__swp_entry(unsigned long type,unsigned long offset)1772 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1773 {
1774 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1775 }
1776
1777 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1778 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1779
1780 #define kern_addr_valid(addr) (1)
1781
1782 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1783 extern void vmem_remove_mapping(unsigned long start, unsigned long size);
1784 extern int s390_enable_sie(void);
1785 extern int s390_enable_skey(void);
1786 extern void s390_reset_cmma(struct mm_struct *mm);
1787
1788 /* s390 has a private copy of get unmapped area to deal with cache synonyms */
1789 #define HAVE_ARCH_UNMAPPED_AREA
1790 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1791
1792 #define pmd_pgtable(pmd) \
1793 ((pgtable_t)__va(pmd_val(pmd) & -sizeof(pte_t)*PTRS_PER_PTE))
1794
1795 #endif /* _S390_PAGE_H */
1796