1 #include "wb35reg_f.h"
2
3 #include <linux/usb.h>
4 #include <linux/slab.h>
5
6 extern void phy_calibration_winbond(struct hw_data *phw_data, u32 frequency);
7
8 /*
9 * true : read command process successfully
10 * false : register not support
11 * RegisterNo : start base
12 * pRegisterData : data point
13 * NumberOfData : number of register data
14 * Flag : AUTO_INCREMENT - RegisterNo will auto increment 4
15 * NO_INCREMENT - Function will write data into the same register
16 */
Wb35Reg_BurstWrite(struct hw_data * pHwData,u16 RegisterNo,u32 * pRegisterData,u8 NumberOfData,u8 Flag)17 unsigned char Wb35Reg_BurstWrite(struct hw_data *pHwData, u16 RegisterNo, u32 *pRegisterData, u8 NumberOfData, u8 Flag)
18 {
19 struct wb35_reg *reg = &pHwData->reg;
20 struct urb *urb = NULL;
21 struct wb35_reg_queue *reg_queue = NULL;
22 u16 UrbSize;
23 struct usb_ctrlrequest *dr;
24 u16 i, DataSize = NumberOfData * 4;
25
26 /* Module shutdown */
27 if (pHwData->SurpriseRemove)
28 return false;
29
30 /* Trying to use burst write function if use new hardware */
31 UrbSize = sizeof(struct wb35_reg_queue) + DataSize + sizeof(struct usb_ctrlrequest);
32 reg_queue = kzalloc(UrbSize, GFP_ATOMIC);
33 urb = usb_alloc_urb(0, GFP_ATOMIC);
34 if (urb && reg_queue) {
35 reg_queue->DIRECT = 2; /* burst write register */
36 reg_queue->INDEX = RegisterNo;
37 reg_queue->pBuffer = (u32 *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue));
38 memcpy(reg_queue->pBuffer, pRegisterData, DataSize);
39 /* the function for reversing register data from little endian to big endian */
40 for (i = 0; i < NumberOfData ; i++)
41 reg_queue->pBuffer[i] = cpu_to_le32(reg_queue->pBuffer[i]);
42
43 dr = (struct usb_ctrlrequest *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue) + DataSize);
44 dr->bRequestType = USB_TYPE_VENDOR | USB_DIR_OUT | USB_RECIP_DEVICE;
45 dr->bRequest = 0x04; /* USB or vendor-defined request code, burst mode */
46 dr->wValue = cpu_to_le16(Flag); /* 0: Register number auto-increment, 1: No auto increment */
47 dr->wIndex = cpu_to_le16(RegisterNo);
48 dr->wLength = cpu_to_le16(DataSize);
49 reg_queue->Next = NULL;
50 reg_queue->pUsbReq = dr;
51 reg_queue->urb = urb;
52
53 spin_lock_irq(®->EP0VM_spin_lock);
54 if (reg->reg_first == NULL)
55 reg->reg_first = reg_queue;
56 else
57 reg->reg_last->Next = reg_queue;
58 reg->reg_last = reg_queue;
59
60 spin_unlock_irq(®->EP0VM_spin_lock);
61
62 /* Start EP0VM */
63 Wb35Reg_EP0VM_start(pHwData);
64
65 return true;
66 } else {
67 if (urb)
68 usb_free_urb(urb);
69 kfree(reg_queue);
70 return false;
71 }
72 return false;
73 }
74
Wb35Reg_Update(struct hw_data * pHwData,u16 RegisterNo,u32 RegisterValue)75 void Wb35Reg_Update(struct hw_data *pHwData, u16 RegisterNo, u32 RegisterValue)
76 {
77 struct wb35_reg *reg = &pHwData->reg;
78 switch (RegisterNo) {
79 case 0x3b0: reg->U1B0 = RegisterValue; break;
80 case 0x3bc: reg->U1BC_LEDConfigure = RegisterValue; break;
81 case 0x400: reg->D00_DmaControl = RegisterValue; break;
82 case 0x800: reg->M00_MacControl = RegisterValue; break;
83 case 0x804: reg->M04_MulticastAddress1 = RegisterValue; break;
84 case 0x808: reg->M08_MulticastAddress2 = RegisterValue; break;
85 case 0x824: reg->M24_MacControl = RegisterValue; break;
86 case 0x828: reg->M28_MacControl = RegisterValue; break;
87 case 0x82c: reg->M2C_MacControl = RegisterValue; break;
88 case 0x838: reg->M38_MacControl = RegisterValue; break;
89 case 0x840: reg->M40_MacControl = RegisterValue; break;
90 case 0x844: reg->M44_MacControl = RegisterValue; break;
91 case 0x848: reg->M48_MacControl = RegisterValue; break;
92 case 0x84c: reg->M4C_MacStatus = RegisterValue; break;
93 case 0x860: reg->M60_MacControl = RegisterValue; break;
94 case 0x868: reg->M68_MacControl = RegisterValue; break;
95 case 0x870: reg->M70_MacControl = RegisterValue; break;
96 case 0x874: reg->M74_MacControl = RegisterValue; break;
97 case 0x878: reg->M78_ERPInformation = RegisterValue; break;
98 case 0x87C: reg->M7C_MacControl = RegisterValue; break;
99 case 0x880: reg->M80_MacControl = RegisterValue; break;
100 case 0x884: reg->M84_MacControl = RegisterValue; break;
101 case 0x888: reg->M88_MacControl = RegisterValue; break;
102 case 0x898: reg->M98_MacControl = RegisterValue; break;
103 case 0x100c: reg->BB0C = RegisterValue; break;
104 case 0x102c: reg->BB2C = RegisterValue; break;
105 case 0x1030: reg->BB30 = RegisterValue; break;
106 case 0x103c: reg->BB3C = RegisterValue; break;
107 case 0x1048: reg->BB48 = RegisterValue; break;
108 case 0x104c: reg->BB4C = RegisterValue; break;
109 case 0x1050: reg->BB50 = RegisterValue; break;
110 case 0x1054: reg->BB54 = RegisterValue; break;
111 case 0x1058: reg->BB58 = RegisterValue; break;
112 case 0x105c: reg->BB5C = RegisterValue; break;
113 case 0x1060: reg->BB60 = RegisterValue; break;
114 }
115 }
116
117 /*
118 * true : read command process successfully
119 * false : register not support
120 */
Wb35Reg_WriteSync(struct hw_data * pHwData,u16 RegisterNo,u32 RegisterValue)121 unsigned char Wb35Reg_WriteSync(struct hw_data *pHwData, u16 RegisterNo, u32 RegisterValue)
122 {
123 struct wb35_reg *reg = &pHwData->reg;
124 int ret = -1;
125
126 /* Module shutdown */
127 if (pHwData->SurpriseRemove)
128 return false;
129
130 RegisterValue = cpu_to_le32(RegisterValue);
131
132 /* update the register by send usb message */
133 reg->SyncIoPause = 1;
134
135 /* Wait until EP0VM stop */
136 while (reg->EP0vm_state != VM_STOP)
137 msleep(10);
138
139 /* Sync IoCallDriver */
140 reg->EP0vm_state = VM_RUNNING;
141 ret = usb_control_msg(pHwData->udev,
142 usb_sndctrlpipe(pHwData->udev, 0),
143 0x03, USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_OUT,
144 0x0, RegisterNo, &RegisterValue, 4, HZ * 100);
145 reg->EP0vm_state = VM_STOP;
146 reg->SyncIoPause = 0;
147
148 Wb35Reg_EP0VM_start(pHwData);
149
150 if (ret < 0) {
151 pr_debug("EP0 Write register usb message sending error\n");
152 pHwData->SurpriseRemove = 1;
153 return false;
154 }
155 return true;
156 }
157
158 /*
159 * true : read command process successfully
160 * false : register not support
161 */
Wb35Reg_Write(struct hw_data * pHwData,u16 RegisterNo,u32 RegisterValue)162 unsigned char Wb35Reg_Write(struct hw_data *pHwData, u16 RegisterNo, u32 RegisterValue)
163 {
164 struct wb35_reg *reg = &pHwData->reg;
165 struct usb_ctrlrequest *dr;
166 struct urb *urb = NULL;
167 struct wb35_reg_queue *reg_queue = NULL;
168 u16 UrbSize;
169
170 /* Module shutdown */
171 if (pHwData->SurpriseRemove)
172 return false;
173
174 /* update the register by send urb request */
175 UrbSize = sizeof(struct wb35_reg_queue) + sizeof(struct usb_ctrlrequest);
176 reg_queue = kzalloc(UrbSize, GFP_ATOMIC);
177 urb = usb_alloc_urb(0, GFP_ATOMIC);
178 if (urb && reg_queue) {
179 reg_queue->DIRECT = 1; /* burst write register */
180 reg_queue->INDEX = RegisterNo;
181 reg_queue->VALUE = cpu_to_le32(RegisterValue);
182 reg_queue->RESERVED_VALID = false;
183 dr = (struct usb_ctrlrequest *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue));
184 dr->bRequestType = USB_TYPE_VENDOR | USB_DIR_OUT | USB_RECIP_DEVICE;
185 dr->bRequest = 0x03; /* USB or vendor-defined request code, burst mode */
186 dr->wValue = cpu_to_le16(0x0);
187 dr->wIndex = cpu_to_le16(RegisterNo);
188 dr->wLength = cpu_to_le16(4);
189
190 /* Enter the sending queue */
191 reg_queue->Next = NULL;
192 reg_queue->pUsbReq = dr;
193 reg_queue->urb = urb;
194
195 spin_lock_irq(®->EP0VM_spin_lock);
196 if (reg->reg_first == NULL)
197 reg->reg_first = reg_queue;
198 else
199 reg->reg_last->Next = reg_queue;
200 reg->reg_last = reg_queue;
201
202 spin_unlock_irq(®->EP0VM_spin_lock);
203
204 /* Start EP0VM */
205 Wb35Reg_EP0VM_start(pHwData);
206
207 return true;
208 } else {
209 if (urb)
210 usb_free_urb(urb);
211 kfree(reg_queue);
212 return false;
213 }
214 }
215
216 /*
217 * This command will be executed with a user defined value. When it completes,
218 * this value is useful. For example, hal_set_current_channel will use it.
219 * true : read command process successfully
220 * false : register not support
221 */
Wb35Reg_WriteWithCallbackValue(struct hw_data * pHwData,u16 RegisterNo,u32 RegisterValue,s8 * pValue,s8 Len)222 unsigned char Wb35Reg_WriteWithCallbackValue(struct hw_data *pHwData,
223 u16 RegisterNo,
224 u32 RegisterValue,
225 s8 *pValue,
226 s8 Len)
227 {
228 struct wb35_reg *reg = &pHwData->reg;
229 struct usb_ctrlrequest *dr;
230 struct urb *urb = NULL;
231 struct wb35_reg_queue *reg_queue = NULL;
232 u16 UrbSize;
233
234 /* Module shutdown */
235 if (pHwData->SurpriseRemove)
236 return false;
237
238 /* update the register by send urb request */
239 UrbSize = sizeof(struct wb35_reg_queue) + sizeof(struct usb_ctrlrequest);
240 reg_queue = kzalloc(UrbSize, GFP_ATOMIC);
241 urb = usb_alloc_urb(0, GFP_ATOMIC);
242 if (urb && reg_queue) {
243 reg_queue->DIRECT = 1; /* burst write register */
244 reg_queue->INDEX = RegisterNo;
245 reg_queue->VALUE = cpu_to_le32(RegisterValue);
246 /* NOTE : Users must guarantee the size of value will not exceed the buffer size. */
247 memcpy(reg_queue->RESERVED, pValue, Len);
248 reg_queue->RESERVED_VALID = true;
249 dr = (struct usb_ctrlrequest *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue));
250 dr->bRequestType = USB_TYPE_VENDOR | USB_DIR_OUT | USB_RECIP_DEVICE;
251 dr->bRequest = 0x03; /* USB or vendor-defined request code, burst mode */
252 dr->wValue = cpu_to_le16(0x0);
253 dr->wIndex = cpu_to_le16(RegisterNo);
254 dr->wLength = cpu_to_le16(4);
255
256 /* Enter the sending queue */
257 reg_queue->Next = NULL;
258 reg_queue->pUsbReq = dr;
259 reg_queue->urb = urb;
260 spin_lock_irq(®->EP0VM_spin_lock);
261 if (reg->reg_first == NULL)
262 reg->reg_first = reg_queue;
263 else
264 reg->reg_last->Next = reg_queue;
265 reg->reg_last = reg_queue;
266
267 spin_unlock_irq(®->EP0VM_spin_lock);
268
269 /* Start EP0VM */
270 Wb35Reg_EP0VM_start(pHwData);
271 return true;
272 } else {
273 if (urb)
274 usb_free_urb(urb);
275 kfree(reg_queue);
276 return false;
277 }
278 }
279
280 /*
281 * true : read command process successfully
282 * false : register not support
283 * pRegisterValue : It must be a resident buffer due to
284 * asynchronous read register.
285 */
Wb35Reg_ReadSync(struct hw_data * pHwData,u16 RegisterNo,u32 * pRegisterValue)286 unsigned char Wb35Reg_ReadSync(struct hw_data *pHwData, u16 RegisterNo, u32 *pRegisterValue)
287 {
288 struct wb35_reg *reg = &pHwData->reg;
289 u32 *pltmp = pRegisterValue;
290 int ret = -1;
291
292 /* Module shutdown */
293 if (pHwData->SurpriseRemove)
294 return false;
295
296 /* Read the register by send usb message */
297 reg->SyncIoPause = 1;
298
299 /* Wait until EP0VM stop */
300 while (reg->EP0vm_state != VM_STOP)
301 msleep(10);
302
303 reg->EP0vm_state = VM_RUNNING;
304 ret = usb_control_msg(pHwData->udev,
305 usb_rcvctrlpipe(pHwData->udev, 0),
306 0x01, USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_IN,
307 0x0, RegisterNo, pltmp, 4, HZ * 100);
308
309 *pRegisterValue = cpu_to_le32(*pltmp);
310
311 reg->EP0vm_state = VM_STOP;
312
313 Wb35Reg_Update(pHwData, RegisterNo, *pRegisterValue);
314 reg->SyncIoPause = 0;
315
316 Wb35Reg_EP0VM_start(pHwData);
317
318 if (ret < 0) {
319 pr_debug("EP0 Read register usb message sending error\n");
320 pHwData->SurpriseRemove = 1;
321 return false;
322 }
323 return true;
324 }
325
326 /*
327 * true : read command process successfully
328 * false : register not support
329 * pRegisterValue : It must be a resident buffer due to
330 * asynchronous read register.
331 */
Wb35Reg_Read(struct hw_data * pHwData,u16 RegisterNo,u32 * pRegisterValue)332 unsigned char Wb35Reg_Read(struct hw_data *pHwData, u16 RegisterNo, u32 *pRegisterValue)
333 {
334 struct wb35_reg *reg = &pHwData->reg;
335 struct usb_ctrlrequest *dr;
336 struct urb *urb;
337 struct wb35_reg_queue *reg_queue;
338 u16 UrbSize;
339
340 /* Module shutdown */
341 if (pHwData->SurpriseRemove)
342 return false;
343
344 /* update the variable by send Urb to read register */
345 UrbSize = sizeof(struct wb35_reg_queue) + sizeof(struct usb_ctrlrequest);
346 reg_queue = kzalloc(UrbSize, GFP_ATOMIC);
347 urb = usb_alloc_urb(0, GFP_ATOMIC);
348 if (urb && reg_queue) {
349 reg_queue->DIRECT = 0; /* read register */
350 reg_queue->INDEX = RegisterNo;
351 reg_queue->pBuffer = pRegisterValue;
352 dr = (struct usb_ctrlrequest *)((u8 *)reg_queue + sizeof(struct wb35_reg_queue));
353 dr->bRequestType = USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_IN;
354 dr->bRequest = 0x01; /* USB or vendor-defined request code, burst mode */
355 dr->wValue = cpu_to_le16(0x0);
356 dr->wIndex = cpu_to_le16(RegisterNo);
357 dr->wLength = cpu_to_le16(4);
358
359 /* Enter the sending queue */
360 reg_queue->Next = NULL;
361 reg_queue->pUsbReq = dr;
362 reg_queue->urb = urb;
363 spin_lock_irq(®->EP0VM_spin_lock);
364 if (reg->reg_first == NULL)
365 reg->reg_first = reg_queue;
366 else
367 reg->reg_last->Next = reg_queue;
368 reg->reg_last = reg_queue;
369
370 spin_unlock_irq(®->EP0VM_spin_lock);
371
372 /* Start EP0VM */
373 Wb35Reg_EP0VM_start(pHwData);
374
375 return true;
376 } else {
377 if (urb)
378 usb_free_urb(urb);
379 kfree(reg_queue);
380 return false;
381 }
382 }
383
384
Wb35Reg_EP0VM_start(struct hw_data * pHwData)385 void Wb35Reg_EP0VM_start(struct hw_data *pHwData)
386 {
387 struct wb35_reg *reg = &pHwData->reg;
388
389 if (atomic_inc_return(®->RegFireCount) == 1) {
390 reg->EP0vm_state = VM_RUNNING;
391 Wb35Reg_EP0VM(pHwData);
392 } else
393 atomic_dec(®->RegFireCount);
394 }
395
Wb35Reg_EP0VM(struct hw_data * pHwData)396 void Wb35Reg_EP0VM(struct hw_data *pHwData)
397 {
398 struct wb35_reg *reg = &pHwData->reg;
399 struct urb *urb;
400 struct usb_ctrlrequest *dr;
401 u32 *pBuffer;
402 int ret = -1;
403 struct wb35_reg_queue *reg_queue;
404
405
406 if (reg->SyncIoPause)
407 goto cleanup;
408
409 if (pHwData->SurpriseRemove)
410 goto cleanup;
411
412 /* Get the register data and send to USB through Irp */
413 spin_lock_irq(®->EP0VM_spin_lock);
414 reg_queue = reg->reg_first;
415 spin_unlock_irq(®->EP0VM_spin_lock);
416
417 if (!reg_queue)
418 goto cleanup;
419
420 /* Get an Urb, send it */
421 urb = (struct urb *)reg_queue->urb;
422
423 dr = reg_queue->pUsbReq;
424 urb = reg_queue->urb;
425 pBuffer = reg_queue->pBuffer;
426 if (reg_queue->DIRECT == 1) /* output */
427 pBuffer = ®_queue->VALUE;
428
429 usb_fill_control_urb(urb, pHwData->udev,
430 REG_DIRECTION(pHwData->udev, reg_queue),
431 (u8 *)dr, pBuffer, cpu_to_le16(dr->wLength),
432 Wb35Reg_EP0VM_complete, (void *)pHwData);
433
434 reg->EP0vm_state = VM_RUNNING;
435
436 ret = usb_submit_urb(urb, GFP_ATOMIC);
437
438 if (ret < 0) {
439 pr_debug("EP0 Irp sending error\n");
440 goto cleanup;
441 }
442 return;
443
444 cleanup:
445 reg->EP0vm_state = VM_STOP;
446 atomic_dec(®->RegFireCount);
447 }
448
449
Wb35Reg_EP0VM_complete(struct urb * urb)450 void Wb35Reg_EP0VM_complete(struct urb *urb)
451 {
452 struct hw_data *pHwData = (struct hw_data *)urb->context;
453 struct wb35_reg *reg = &pHwData->reg;
454 struct wb35_reg_queue *reg_queue;
455
456
457 /* Variable setting */
458 reg->EP0vm_state = VM_COMPLETED;
459 reg->EP0VM_status = urb->status;
460
461 if (pHwData->SurpriseRemove) { /* Let WbWlanHalt to handle surprise remove */
462 reg->EP0vm_state = VM_STOP;
463 atomic_dec(®->RegFireCount);
464 } else {
465 /* Complete to send, remove the URB from the first */
466 spin_lock_irq(®->EP0VM_spin_lock);
467 reg_queue = reg->reg_first;
468 if (reg_queue == reg->reg_last)
469 reg->reg_last = NULL;
470 reg->reg_first = reg->reg_first->Next;
471 spin_unlock_irq(®->EP0VM_spin_lock);
472
473 if (reg->EP0VM_status) {
474 pr_debug("EP0 IoCompleteRoutine return error\n");
475 reg->EP0vm_state = VM_STOP;
476 pHwData->SurpriseRemove = 1;
477 } else {
478 /* Success. Update the result */
479
480 /* Start the next send */
481 Wb35Reg_EP0VM(pHwData);
482 }
483
484 kfree(reg_queue);
485 }
486
487 usb_free_urb(urb);
488 }
489
490
Wb35Reg_destroy(struct hw_data * pHwData)491 void Wb35Reg_destroy(struct hw_data *pHwData)
492 {
493 struct wb35_reg *reg = &pHwData->reg;
494 struct urb *urb;
495 struct wb35_reg_queue *reg_queue;
496
497 Uxx_power_off_procedure(pHwData);
498
499 /* Wait for Reg operation completed */
500 do {
501 msleep(10); /* Delay for waiting function enter */
502 } while (reg->EP0vm_state != VM_STOP);
503 msleep(10); /* Delay for waiting function enter */
504
505 /* Release all the data in RegQueue */
506 spin_lock_irq(®->EP0VM_spin_lock);
507 reg_queue = reg->reg_first;
508 while (reg_queue) {
509 if (reg_queue == reg->reg_last)
510 reg->reg_last = NULL;
511 reg->reg_first = reg->reg_first->Next;
512
513 urb = reg_queue->urb;
514 spin_unlock_irq(®->EP0VM_spin_lock);
515 if (urb) {
516 usb_free_urb(urb);
517 kfree(reg_queue);
518 } else {
519 pr_debug("EP0 queue release error\n");
520 }
521 spin_lock_irq(®->EP0VM_spin_lock);
522
523 reg_queue = reg->reg_first;
524 }
525 spin_unlock_irq(®->EP0VM_spin_lock);
526 }
527
528 /*
529 * =======================================================================
530 * The function can be run in passive-level only.
531 * =========================================================================
532 */
Wb35Reg_initial(struct hw_data * pHwData)533 unsigned char Wb35Reg_initial(struct hw_data *pHwData)
534 {
535 struct wb35_reg *reg = &pHwData->reg;
536 u32 ltmp;
537 u32 SoftwareSet, VCO_trim, TxVga, Region_ScanInterval;
538
539 /* Spin lock is acquired for read and write IRP command */
540 spin_lock_init(®->EP0VM_spin_lock);
541
542 /* Getting RF module type from EEPROM */
543 Wb35Reg_WriteSync(pHwData, 0x03b4, 0x080d0000); /* Start EEPROM access + Read + address(0x0d) */
544 Wb35Reg_ReadSync(pHwData, 0x03b4, <mp);
545
546 /* Update RF module type and determine the PHY type by inf or EEPROM */
547 reg->EEPROMPhyType = (u8)(ltmp & 0xff);
548 /*
549 * 0 V MAX2825, 1 V MAX2827, 2 V MAX2828, 3 V MAX2829
550 * 16V AL2230, 17 - AL7230, 18 - AL2230S
551 * 32 Reserved
552 * 33 - W89RF242(TxVGA 0~19), 34 - W89RF242(TxVGA 0~34)
553 */
554 if (reg->EEPROMPhyType != RF_DECIDE_BY_INF) {
555 if ((reg->EEPROMPhyType == RF_MAXIM_2825) ||
556 (reg->EEPROMPhyType == RF_MAXIM_2827) ||
557 (reg->EEPROMPhyType == RF_MAXIM_2828) ||
558 (reg->EEPROMPhyType == RF_MAXIM_2829) ||
559 (reg->EEPROMPhyType == RF_MAXIM_V1) ||
560 (reg->EEPROMPhyType == RF_AIROHA_2230) ||
561 (reg->EEPROMPhyType == RF_AIROHA_2230S) ||
562 (reg->EEPROMPhyType == RF_AIROHA_7230) ||
563 (reg->EEPROMPhyType == RF_WB_242) ||
564 (reg->EEPROMPhyType == RF_WB_242_1))
565 pHwData->phy_type = reg->EEPROMPhyType;
566 }
567
568 /* Power On procedure running. The relative parameter will be set according to phy_type */
569 Uxx_power_on_procedure(pHwData);
570
571 /* Reading MAC address */
572 Uxx_ReadEthernetAddress(pHwData);
573
574 /* Read VCO trim for RF parameter */
575 Wb35Reg_WriteSync(pHwData, 0x03b4, 0x08200000);
576 Wb35Reg_ReadSync(pHwData, 0x03b4, &VCO_trim);
577
578 /* Read Antenna On/Off of software flag */
579 Wb35Reg_WriteSync(pHwData, 0x03b4, 0x08210000);
580 Wb35Reg_ReadSync(pHwData, 0x03b4, &SoftwareSet);
581
582 /* Read TXVGA */
583 Wb35Reg_WriteSync(pHwData, 0x03b4, 0x08100000);
584 Wb35Reg_ReadSync(pHwData, 0x03b4, &TxVga);
585
586 /* Get Scan interval setting from EEPROM offset 0x1c */
587 Wb35Reg_WriteSync(pHwData, 0x03b4, 0x081d0000);
588 Wb35Reg_ReadSync(pHwData, 0x03b4, &Region_ScanInterval);
589
590 /* Update Ethernet address */
591 memcpy(pHwData->CurrentMacAddress, pHwData->PermanentMacAddress, ETH_ALEN);
592
593 /* Update software variable */
594 pHwData->SoftwareSet = (u16)(SoftwareSet & 0xffff);
595 TxVga &= 0x000000ff;
596 pHwData->PowerIndexFromEEPROM = (u8)TxVga;
597 pHwData->VCO_trim = (u8)VCO_trim & 0xff;
598 if (pHwData->VCO_trim == 0xff)
599 pHwData->VCO_trim = 0x28;
600
601 reg->EEPROMRegion = (u8)(Region_ScanInterval >> 8);
602 if (reg->EEPROMRegion < 1 || reg->EEPROMRegion > 6)
603 reg->EEPROMRegion = REGION_AUTO;
604
605 /* For Get Tx VGA from EEPROM */
606 GetTxVgaFromEEPROM(pHwData);
607
608 /* Set Scan Interval */
609 pHwData->Scan_Interval = (u8)(Region_ScanInterval & 0xff) * 10;
610 if ((pHwData->Scan_Interval == 2550) || (pHwData->Scan_Interval < 10)) /* Is default setting 0xff * 10 */
611 pHwData->Scan_Interval = SCAN_MAX_CHNL_TIME;
612
613 /* Initial register */
614 RFSynthesizer_initial(pHwData);
615
616 BBProcessor_initial(pHwData); /* Async write, must wait until complete */
617
618 Wb35Reg_phy_calibration(pHwData);
619
620 Mxx_initial(pHwData);
621 Dxx_initial(pHwData);
622
623 if (pHwData->SurpriseRemove)
624 return false;
625 else
626 return true; /* Initial fail */
627 }
628
629 /*
630 * ================================================================
631 * CardComputeCrc --
632 *
633 * Description:
634 * Runs the AUTODIN II CRC algorithm on buffer Buffer of length, Length.
635 *
636 * Arguments:
637 * Buffer - the input buffer
638 * Length - the length of Buffer
639 *
640 * Return Value:
641 * The 32-bit CRC value.
642 * ===================================================================
643 */
CardComputeCrc(u8 * Buffer,u32 Length)644 u32 CardComputeCrc(u8 *Buffer, u32 Length)
645 {
646 u32 Crc, Carry;
647 u32 i, j;
648 u8 CurByte;
649
650 Crc = 0xffffffff;
651
652 for (i = 0; i < Length; i++) {
653 CurByte = Buffer[i];
654 for (j = 0; j < 8; j++) {
655 Carry = ((Crc & 0x80000000) ? 1 : 0) ^ (CurByte & 0x01);
656 Crc <<= 1;
657 CurByte >>= 1;
658 if (Carry)
659 Crc = (Crc ^ 0x04c11db6) | Carry;
660 }
661 }
662 return Crc;
663 }
664
665
666 /*
667 * ==================================================================
668 * BitReverse --
669 * Reverse the bits in the input argument, dwData, which is
670 * regarded as a string of bits with the length, DataLength.
671 *
672 * Arguments:
673 * dwData :
674 * DataLength :
675 *
676 * Return:
677 * The converted value.
678 * ==================================================================
679 */
BitReverse(u32 dwData,u32 DataLength)680 u32 BitReverse(u32 dwData, u32 DataLength)
681 {
682 u32 HalfLength, i, j;
683 u32 BitA, BitB;
684
685 if (DataLength <= 0)
686 return 0; /* No conversion is done. */
687 dwData = dwData & (0xffffffff >> (32 - DataLength));
688
689 HalfLength = DataLength / 2;
690 for (i = 0, j = DataLength - 1; i < HalfLength; i++, j--) {
691 BitA = GetBit(dwData, i);
692 BitB = GetBit(dwData, j);
693 if (BitA && !BitB) {
694 dwData = ClearBit(dwData, i);
695 dwData = SetBit(dwData, j);
696 } else if (!BitA && BitB) {
697 dwData = SetBit(dwData, i);
698 dwData = ClearBit(dwData, j);
699 } else {
700 /* Do nothing since these two bits are of the save values. */
701 }
702 }
703 return dwData;
704 }
705
Wb35Reg_phy_calibration(struct hw_data * pHwData)706 void Wb35Reg_phy_calibration(struct hw_data *pHwData)
707 {
708 u32 BB3c, BB54;
709
710 if ((pHwData->phy_type == RF_WB_242) ||
711 (pHwData->phy_type == RF_WB_242_1)) {
712 phy_calibration_winbond(pHwData, 2412); /* Sync operation */
713 Wb35Reg_ReadSync(pHwData, 0x103c, &BB3c);
714 Wb35Reg_ReadSync(pHwData, 0x1054, &BB54);
715
716 pHwData->BB3c_cal = BB3c;
717 pHwData->BB54_cal = BB54;
718
719 RFSynthesizer_initial(pHwData);
720 BBProcessor_initial(pHwData); /* Async operation */
721
722 Wb35Reg_WriteSync(pHwData, 0x103c, BB3c);
723 Wb35Reg_WriteSync(pHwData, 0x1054, BB54);
724 }
725 }
726
727
728