1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*******************************************************************************
3  *
4  * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
5  * Copyright(c) 2013 - 2014 Intel Corporation.
6  *
7  * Contact Information:
8  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
9  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
10  *
11  ******************************************************************************/
12 
13 #ifndef _VIRTCHNL_H_
14 #define _VIRTCHNL_H_
15 
16 /* Description:
17  * This header file describes the VF-PF communication protocol used
18  * by the drivers for all devices starting from our 40G product line
19  *
20  * Admin queue buffer usage:
21  * desc->opcode is always aqc_opc_send_msg_to_pf
22  * flags, retval, datalen, and data addr are all used normally.
23  * The Firmware copies the cookie fields when sending messages between the
24  * PF and VF, but uses all other fields internally. Due to this limitation,
25  * we must send all messages as "indirect", i.e. using an external buffer.
26  *
27  * All the VSI indexes are relative to the VF. Each VF can have maximum of
28  * three VSIs. All the queue indexes are relative to the VSI.  Each VF can
29  * have a maximum of sixteen queues for all of its VSIs.
30  *
31  * The PF is required to return a status code in v_retval for all messages
32  * except RESET_VF, which does not require any response. The return value
33  * is of status_code type, defined in the shared type.h.
34  *
35  * In general, VF driver initialization should roughly follow the order of
36  * these opcodes. The VF driver must first validate the API version of the
37  * PF driver, then request a reset, then get resources, then configure
38  * queues and interrupts. After these operations are complete, the VF
39  * driver may start its queues, optionally add MAC and VLAN filters, and
40  * process traffic.
41  */
42 
43 /* START GENERIC DEFINES
44  * Need to ensure the following enums and defines hold the same meaning and
45  * value in current and future projects
46  */
47 
48 /* Error Codes */
49 enum virtchnl_status_code {
50 	VIRTCHNL_STATUS_SUCCESS				= 0,
51 	VIRTCHNL_STATUS_ERR_PARAM			= -5,
52 	VIRTCHNL_STATUS_ERR_NO_MEMORY			= -18,
53 	VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH		= -38,
54 	VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR		= -39,
55 	VIRTCHNL_STATUS_ERR_INVALID_VF_ID		= -40,
56 	VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR		= -53,
57 	VIRTCHNL_STATUS_ERR_NOT_SUPPORTED		= -64,
58 };
59 
60 /* Backward compatibility */
61 #define VIRTCHNL_ERR_PARAM VIRTCHNL_STATUS_ERR_PARAM
62 #define VIRTCHNL_STATUS_NOT_SUPPORTED VIRTCHNL_STATUS_ERR_NOT_SUPPORTED
63 
64 #define VIRTCHNL_LINK_SPEED_2_5GB_SHIFT		0x0
65 #define VIRTCHNL_LINK_SPEED_100MB_SHIFT		0x1
66 #define VIRTCHNL_LINK_SPEED_1000MB_SHIFT	0x2
67 #define VIRTCHNL_LINK_SPEED_10GB_SHIFT		0x3
68 #define VIRTCHNL_LINK_SPEED_40GB_SHIFT		0x4
69 #define VIRTCHNL_LINK_SPEED_20GB_SHIFT		0x5
70 #define VIRTCHNL_LINK_SPEED_25GB_SHIFT		0x6
71 #define VIRTCHNL_LINK_SPEED_5GB_SHIFT		0x7
72 
73 enum virtchnl_link_speed {
74 	VIRTCHNL_LINK_SPEED_UNKNOWN	= 0,
75 	VIRTCHNL_LINK_SPEED_100MB	= BIT(VIRTCHNL_LINK_SPEED_100MB_SHIFT),
76 	VIRTCHNL_LINK_SPEED_1GB		= BIT(VIRTCHNL_LINK_SPEED_1000MB_SHIFT),
77 	VIRTCHNL_LINK_SPEED_10GB	= BIT(VIRTCHNL_LINK_SPEED_10GB_SHIFT),
78 	VIRTCHNL_LINK_SPEED_40GB	= BIT(VIRTCHNL_LINK_SPEED_40GB_SHIFT),
79 	VIRTCHNL_LINK_SPEED_20GB	= BIT(VIRTCHNL_LINK_SPEED_20GB_SHIFT),
80 	VIRTCHNL_LINK_SPEED_25GB	= BIT(VIRTCHNL_LINK_SPEED_25GB_SHIFT),
81 	VIRTCHNL_LINK_SPEED_2_5GB	= BIT(VIRTCHNL_LINK_SPEED_2_5GB_SHIFT),
82 	VIRTCHNL_LINK_SPEED_5GB		= BIT(VIRTCHNL_LINK_SPEED_5GB_SHIFT),
83 };
84 
85 /* for hsplit_0 field of Rx HMC context */
86 /* deprecated with AVF 1.0 */
87 enum virtchnl_rx_hsplit {
88 	VIRTCHNL_RX_HSPLIT_NO_SPLIT      = 0,
89 	VIRTCHNL_RX_HSPLIT_SPLIT_L2      = 1,
90 	VIRTCHNL_RX_HSPLIT_SPLIT_IP      = 2,
91 	VIRTCHNL_RX_HSPLIT_SPLIT_TCP_UDP = 4,
92 	VIRTCHNL_RX_HSPLIT_SPLIT_SCTP    = 8,
93 };
94 
95 /* END GENERIC DEFINES */
96 
97 /* Opcodes for VF-PF communication. These are placed in the v_opcode field
98  * of the virtchnl_msg structure.
99  */
100 enum virtchnl_ops {
101 /* The PF sends status change events to VFs using
102  * the VIRTCHNL_OP_EVENT opcode.
103  * VFs send requests to the PF using the other ops.
104  * Use of "advanced opcode" features must be negotiated as part of capabilities
105  * exchange and are not considered part of base mode feature set.
106  */
107 	VIRTCHNL_OP_UNKNOWN = 0,
108 	VIRTCHNL_OP_VERSION = 1, /* must ALWAYS be 1 */
109 	VIRTCHNL_OP_RESET_VF = 2,
110 	VIRTCHNL_OP_GET_VF_RESOURCES = 3,
111 	VIRTCHNL_OP_CONFIG_TX_QUEUE = 4,
112 	VIRTCHNL_OP_CONFIG_RX_QUEUE = 5,
113 	VIRTCHNL_OP_CONFIG_VSI_QUEUES = 6,
114 	VIRTCHNL_OP_CONFIG_IRQ_MAP = 7,
115 	VIRTCHNL_OP_ENABLE_QUEUES = 8,
116 	VIRTCHNL_OP_DISABLE_QUEUES = 9,
117 	VIRTCHNL_OP_ADD_ETH_ADDR = 10,
118 	VIRTCHNL_OP_DEL_ETH_ADDR = 11,
119 	VIRTCHNL_OP_ADD_VLAN = 12,
120 	VIRTCHNL_OP_DEL_VLAN = 13,
121 	VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE = 14,
122 	VIRTCHNL_OP_GET_STATS = 15,
123 	VIRTCHNL_OP_RSVD = 16,
124 	VIRTCHNL_OP_EVENT = 17, /* must ALWAYS be 17 */
125 	VIRTCHNL_OP_IWARP = 20, /* advanced opcode */
126 	VIRTCHNL_OP_CONFIG_IWARP_IRQ_MAP = 21, /* advanced opcode */
127 	VIRTCHNL_OP_RELEASE_IWARP_IRQ_MAP = 22, /* advanced opcode */
128 	VIRTCHNL_OP_CONFIG_RSS_KEY = 23,
129 	VIRTCHNL_OP_CONFIG_RSS_LUT = 24,
130 	VIRTCHNL_OP_GET_RSS_HENA_CAPS = 25,
131 	VIRTCHNL_OP_SET_RSS_HENA = 26,
132 	VIRTCHNL_OP_ENABLE_VLAN_STRIPPING = 27,
133 	VIRTCHNL_OP_DISABLE_VLAN_STRIPPING = 28,
134 	VIRTCHNL_OP_REQUEST_QUEUES = 29,
135 	VIRTCHNL_OP_ENABLE_CHANNELS = 30,
136 	VIRTCHNL_OP_DISABLE_CHANNELS = 31,
137 	VIRTCHNL_OP_ADD_CLOUD_FILTER = 32,
138 	VIRTCHNL_OP_DEL_CLOUD_FILTER = 33,
139 	/* opcode 34 - 44 are reserved */
140 	VIRTCHNL_OP_ADD_RSS_CFG = 45,
141 	VIRTCHNL_OP_DEL_RSS_CFG = 46,
142 	VIRTCHNL_OP_ADD_FDIR_FILTER = 47,
143 	VIRTCHNL_OP_DEL_FDIR_FILTER = 48,
144 	VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS = 51,
145 	VIRTCHNL_OP_ADD_VLAN_V2 = 52,
146 	VIRTCHNL_OP_DEL_VLAN_V2 = 53,
147 	VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 = 54,
148 	VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 = 55,
149 	VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 = 56,
150 	VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 = 57,
151 	VIRTCHNL_OP_MAX,
152 };
153 
154 /* These macros are used to generate compilation errors if a structure/union
155  * is not exactly the correct length. It gives a divide by zero error if the
156  * structure/union is not of the correct size, otherwise it creates an enum
157  * that is never used.
158  */
159 #define VIRTCHNL_CHECK_STRUCT_LEN(n, X) enum virtchnl_static_assert_enum_##X \
160 	{ virtchnl_static_assert_##X = (n)/((sizeof(struct X) == (n)) ? 1 : 0) }
161 #define VIRTCHNL_CHECK_UNION_LEN(n, X) enum virtchnl_static_asset_enum_##X \
162 	{ virtchnl_static_assert_##X = (n)/((sizeof(union X) == (n)) ? 1 : 0) }
163 
164 /* Virtual channel message descriptor. This overlays the admin queue
165  * descriptor. All other data is passed in external buffers.
166  */
167 
168 struct virtchnl_msg {
169 	u8 pad[8];			 /* AQ flags/opcode/len/retval fields */
170 	enum virtchnl_ops v_opcode; /* avoid confusion with desc->opcode */
171 	enum virtchnl_status_code v_retval;  /* ditto for desc->retval */
172 	u32 vfid;			 /* used by PF when sending to VF */
173 };
174 
175 VIRTCHNL_CHECK_STRUCT_LEN(20, virtchnl_msg);
176 
177 /* Message descriptions and data structures. */
178 
179 /* VIRTCHNL_OP_VERSION
180  * VF posts its version number to the PF. PF responds with its version number
181  * in the same format, along with a return code.
182  * Reply from PF has its major/minor versions also in param0 and param1.
183  * If there is a major version mismatch, then the VF cannot operate.
184  * If there is a minor version mismatch, then the VF can operate but should
185  * add a warning to the system log.
186  *
187  * This enum element MUST always be specified as == 1, regardless of other
188  * changes in the API. The PF must always respond to this message without
189  * error regardless of version mismatch.
190  */
191 #define VIRTCHNL_VERSION_MAJOR		1
192 #define VIRTCHNL_VERSION_MINOR		1
193 #define VIRTCHNL_VERSION_MINOR_NO_VF_CAPS	0
194 
195 struct virtchnl_version_info {
196 	u32 major;
197 	u32 minor;
198 };
199 
200 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_version_info);
201 
202 #define VF_IS_V10(_v) (((_v)->major == 1) && ((_v)->minor == 0))
203 #define VF_IS_V11(_ver) (((_ver)->major == 1) && ((_ver)->minor == 1))
204 
205 /* VIRTCHNL_OP_RESET_VF
206  * VF sends this request to PF with no parameters
207  * PF does NOT respond! VF driver must delay then poll VFGEN_RSTAT register
208  * until reset completion is indicated. The admin queue must be reinitialized
209  * after this operation.
210  *
211  * When reset is complete, PF must ensure that all queues in all VSIs associated
212  * with the VF are stopped, all queue configurations in the HMC are set to 0,
213  * and all MAC and VLAN filters (except the default MAC address) on all VSIs
214  * are cleared.
215  */
216 
217 /* VSI types that use VIRTCHNL interface for VF-PF communication. VSI_SRIOV
218  * vsi_type should always be 6 for backward compatibility. Add other fields
219  * as needed.
220  */
221 enum virtchnl_vsi_type {
222 	VIRTCHNL_VSI_TYPE_INVALID = 0,
223 	VIRTCHNL_VSI_SRIOV = 6,
224 };
225 
226 /* VIRTCHNL_OP_GET_VF_RESOURCES
227  * Version 1.0 VF sends this request to PF with no parameters
228  * Version 1.1 VF sends this request to PF with u32 bitmap of its capabilities
229  * PF responds with an indirect message containing
230  * virtchnl_vf_resource and one or more
231  * virtchnl_vsi_resource structures.
232  */
233 
234 struct virtchnl_vsi_resource {
235 	u16 vsi_id;
236 	u16 num_queue_pairs;
237 	enum virtchnl_vsi_type vsi_type;
238 	u16 qset_handle;
239 	u8 default_mac_addr[ETH_ALEN];
240 };
241 
242 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vsi_resource);
243 
244 /* VF capability flags
245  * VIRTCHNL_VF_OFFLOAD_L2 flag is inclusive of base mode L2 offloads including
246  * TX/RX Checksum offloading and TSO for non-tunnelled packets.
247  */
248 #define VIRTCHNL_VF_OFFLOAD_L2			BIT(0)
249 #define VIRTCHNL_VF_OFFLOAD_IWARP		BIT(1)
250 #define VIRTCHNL_VF_OFFLOAD_RSS_AQ		BIT(3)
251 #define VIRTCHNL_VF_OFFLOAD_RSS_REG		BIT(4)
252 #define VIRTCHNL_VF_OFFLOAD_WB_ON_ITR		BIT(5)
253 #define VIRTCHNL_VF_OFFLOAD_REQ_QUEUES		BIT(6)
254 /* used to negotiate communicating link speeds in Mbps */
255 #define VIRTCHNL_VF_CAP_ADV_LINK_SPEED		BIT(7)
256 #define VIRTCHNL_VF_OFFLOAD_VLAN_V2		BIT(15)
257 #define VIRTCHNL_VF_OFFLOAD_VLAN		BIT(16)
258 #define VIRTCHNL_VF_OFFLOAD_RX_POLLING		BIT(17)
259 #define VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2	BIT(18)
260 #define VIRTCHNL_VF_OFFLOAD_RSS_PF		BIT(19)
261 #define VIRTCHNL_VF_OFFLOAD_ENCAP		BIT(20)
262 #define VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM		BIT(21)
263 #define VIRTCHNL_VF_OFFLOAD_RX_ENCAP_CSUM	BIT(22)
264 #define VIRTCHNL_VF_OFFLOAD_ADQ			BIT(23)
265 #define VIRTCHNL_VF_OFFLOAD_USO			BIT(25)
266 #define VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF		BIT(27)
267 #define VIRTCHNL_VF_OFFLOAD_FDIR_PF		BIT(28)
268 
269 #define VF_BASE_MODE_OFFLOADS (VIRTCHNL_VF_OFFLOAD_L2 | \
270 			       VIRTCHNL_VF_OFFLOAD_VLAN | \
271 			       VIRTCHNL_VF_OFFLOAD_RSS_PF)
272 
273 struct virtchnl_vf_resource {
274 	u16 num_vsis;
275 	u16 num_queue_pairs;
276 	u16 max_vectors;
277 	u16 max_mtu;
278 
279 	u32 vf_cap_flags;
280 	u32 rss_key_size;
281 	u32 rss_lut_size;
282 
283 	struct virtchnl_vsi_resource vsi_res[1];
284 };
285 
286 VIRTCHNL_CHECK_STRUCT_LEN(36, virtchnl_vf_resource);
287 
288 /* VIRTCHNL_OP_CONFIG_TX_QUEUE
289  * VF sends this message to set up parameters for one TX queue.
290  * External data buffer contains one instance of virtchnl_txq_info.
291  * PF configures requested queue and returns a status code.
292  */
293 
294 /* Tx queue config info */
295 struct virtchnl_txq_info {
296 	u16 vsi_id;
297 	u16 queue_id;
298 	u16 ring_len;		/* number of descriptors, multiple of 8 */
299 	u16 headwb_enabled; /* deprecated with AVF 1.0 */
300 	u64 dma_ring_addr;
301 	u64 dma_headwb_addr; /* deprecated with AVF 1.0 */
302 };
303 
304 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_txq_info);
305 
306 /* VIRTCHNL_OP_CONFIG_RX_QUEUE
307  * VF sends this message to set up parameters for one RX queue.
308  * External data buffer contains one instance of virtchnl_rxq_info.
309  * PF configures requested queue and returns a status code.
310  */
311 
312 /* Rx queue config info */
313 struct virtchnl_rxq_info {
314 	u16 vsi_id;
315 	u16 queue_id;
316 	u32 ring_len;		/* number of descriptors, multiple of 32 */
317 	u16 hdr_size;
318 	u16 splithdr_enabled; /* deprecated with AVF 1.0 */
319 	u32 databuffer_size;
320 	u32 max_pkt_size;
321 	u32 pad1;
322 	u64 dma_ring_addr;
323 	enum virtchnl_rx_hsplit rx_split_pos; /* deprecated with AVF 1.0 */
324 	u32 pad2;
325 };
326 
327 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_rxq_info);
328 
329 /* VIRTCHNL_OP_CONFIG_VSI_QUEUES
330  * VF sends this message to set parameters for all active TX and RX queues
331  * associated with the specified VSI.
332  * PF configures queues and returns status.
333  * If the number of queues specified is greater than the number of queues
334  * associated with the VSI, an error is returned and no queues are configured.
335  */
336 struct virtchnl_queue_pair_info {
337 	/* NOTE: vsi_id and queue_id should be identical for both queues. */
338 	struct virtchnl_txq_info txq;
339 	struct virtchnl_rxq_info rxq;
340 };
341 
342 VIRTCHNL_CHECK_STRUCT_LEN(64, virtchnl_queue_pair_info);
343 
344 struct virtchnl_vsi_queue_config_info {
345 	u16 vsi_id;
346 	u16 num_queue_pairs;
347 	u32 pad;
348 	struct virtchnl_queue_pair_info qpair[1];
349 };
350 
351 VIRTCHNL_CHECK_STRUCT_LEN(72, virtchnl_vsi_queue_config_info);
352 
353 /* VIRTCHNL_OP_REQUEST_QUEUES
354  * VF sends this message to request the PF to allocate additional queues to
355  * this VF.  Each VF gets a guaranteed number of queues on init but asking for
356  * additional queues must be negotiated.  This is a best effort request as it
357  * is possible the PF does not have enough queues left to support the request.
358  * If the PF cannot support the number requested it will respond with the
359  * maximum number it is able to support.  If the request is successful, PF will
360  * then reset the VF to institute required changes.
361  */
362 
363 /* VF resource request */
364 struct virtchnl_vf_res_request {
365 	u16 num_queue_pairs;
366 };
367 
368 /* VIRTCHNL_OP_CONFIG_IRQ_MAP
369  * VF uses this message to map vectors to queues.
370  * The rxq_map and txq_map fields are bitmaps used to indicate which queues
371  * are to be associated with the specified vector.
372  * The "other" causes are always mapped to vector 0.
373  * PF configures interrupt mapping and returns status.
374  */
375 struct virtchnl_vector_map {
376 	u16 vsi_id;
377 	u16 vector_id;
378 	u16 rxq_map;
379 	u16 txq_map;
380 	u16 rxitr_idx;
381 	u16 txitr_idx;
382 };
383 
384 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_vector_map);
385 
386 struct virtchnl_irq_map_info {
387 	u16 num_vectors;
388 	struct virtchnl_vector_map vecmap[1];
389 };
390 
391 VIRTCHNL_CHECK_STRUCT_LEN(14, virtchnl_irq_map_info);
392 
393 /* VIRTCHNL_OP_ENABLE_QUEUES
394  * VIRTCHNL_OP_DISABLE_QUEUES
395  * VF sends these message to enable or disable TX/RX queue pairs.
396  * The queues fields are bitmaps indicating which queues to act upon.
397  * (Currently, we only support 16 queues per VF, but we make the field
398  * u32 to allow for expansion.)
399  * PF performs requested action and returns status.
400  */
401 struct virtchnl_queue_select {
402 	u16 vsi_id;
403 	u16 pad;
404 	u32 rx_queues;
405 	u32 tx_queues;
406 };
407 
408 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_select);
409 
410 /* VIRTCHNL_OP_ADD_ETH_ADDR
411  * VF sends this message in order to add one or more unicast or multicast
412  * address filters for the specified VSI.
413  * PF adds the filters and returns status.
414  */
415 
416 /* VIRTCHNL_OP_DEL_ETH_ADDR
417  * VF sends this message in order to remove one or more unicast or multicast
418  * filters for the specified VSI.
419  * PF removes the filters and returns status.
420  */
421 
422 /* VIRTCHNL_ETHER_ADDR_LEGACY
423  * Prior to adding the @type member to virtchnl_ether_addr, there were 2 pad
424  * bytes. Moving forward all VF drivers should not set type to
425  * VIRTCHNL_ETHER_ADDR_LEGACY. This is only here to not break previous/legacy
426  * behavior. The control plane function (i.e. PF) can use a best effort method
427  * of tracking the primary/device unicast in this case, but there is no
428  * guarantee and functionality depends on the implementation of the PF.
429  */
430 
431 /* VIRTCHNL_ETHER_ADDR_PRIMARY
432  * All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_PRIMARY for the
433  * primary/device unicast MAC address filter for VIRTCHNL_OP_ADD_ETH_ADDR and
434  * VIRTCHNL_OP_DEL_ETH_ADDR. This allows for the underlying control plane
435  * function (i.e. PF) to accurately track and use this MAC address for
436  * displaying on the host and for VM/function reset.
437  */
438 
439 /* VIRTCHNL_ETHER_ADDR_EXTRA
440  * All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_EXTRA for any extra
441  * unicast and/or multicast filters that are being added/deleted via
442  * VIRTCHNL_OP_DEL_ETH_ADDR/VIRTCHNL_OP_ADD_ETH_ADDR respectively.
443  */
444 struct virtchnl_ether_addr {
445 	u8 addr[ETH_ALEN];
446 	u8 type;
447 #define VIRTCHNL_ETHER_ADDR_LEGACY	0
448 #define VIRTCHNL_ETHER_ADDR_PRIMARY	1
449 #define VIRTCHNL_ETHER_ADDR_EXTRA	2
450 #define VIRTCHNL_ETHER_ADDR_TYPE_MASK	3 /* first two bits of type are valid */
451 	u8 pad;
452 };
453 
454 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_ether_addr);
455 
456 struct virtchnl_ether_addr_list {
457 	u16 vsi_id;
458 	u16 num_elements;
459 	struct virtchnl_ether_addr list[1];
460 };
461 
462 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_ether_addr_list);
463 
464 /* VIRTCHNL_OP_ADD_VLAN
465  * VF sends this message to add one or more VLAN tag filters for receives.
466  * PF adds the filters and returns status.
467  * If a port VLAN is configured by the PF, this operation will return an
468  * error to the VF.
469  */
470 
471 /* VIRTCHNL_OP_DEL_VLAN
472  * VF sends this message to remove one or more VLAN tag filters for receives.
473  * PF removes the filters and returns status.
474  * If a port VLAN is configured by the PF, this operation will return an
475  * error to the VF.
476  */
477 
478 struct virtchnl_vlan_filter_list {
479 	u16 vsi_id;
480 	u16 num_elements;
481 	u16 vlan_id[1];
482 };
483 
484 VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_vlan_filter_list);
485 
486 /* This enum is used for all of the VIRTCHNL_VF_OFFLOAD_VLAN_V2_CAPS related
487  * structures and opcodes.
488  *
489  * VIRTCHNL_VLAN_UNSUPPORTED - This field is not supported and if a VF driver
490  * populates it the PF should return VIRTCHNL_STATUS_ERR_NOT_SUPPORTED.
491  *
492  * VIRTCHNL_VLAN_ETHERTYPE_8100 - This field supports 0x8100 ethertype.
493  * VIRTCHNL_VLAN_ETHERTYPE_88A8 - This field supports 0x88A8 ethertype.
494  * VIRTCHNL_VLAN_ETHERTYPE_9100 - This field supports 0x9100 ethertype.
495  *
496  * VIRTCHNL_VLAN_ETHERTYPE_AND - Used when multiple ethertypes can be supported
497  * by the PF concurrently. For example, if the PF can support
498  * VIRTCHNL_VLAN_ETHERTYPE_8100 AND VIRTCHNL_VLAN_ETHERTYPE_88A8 filters it
499  * would OR the following bits:
500  *
501  *	VIRTHCNL_VLAN_ETHERTYPE_8100 |
502  *	VIRTCHNL_VLAN_ETHERTYPE_88A8 |
503  *	VIRTCHNL_VLAN_ETHERTYPE_AND;
504  *
505  * The VF would interpret this as VLAN filtering can be supported on both 0x8100
506  * and 0x88A8 VLAN ethertypes.
507  *
508  * VIRTCHNL_ETHERTYPE_XOR - Used when only a single ethertype can be supported
509  * by the PF concurrently. For example if the PF can support
510  * VIRTCHNL_VLAN_ETHERTYPE_8100 XOR VIRTCHNL_VLAN_ETHERTYPE_88A8 stripping
511  * offload it would OR the following bits:
512  *
513  *	VIRTCHNL_VLAN_ETHERTYPE_8100 |
514  *	VIRTCHNL_VLAN_ETHERTYPE_88A8 |
515  *	VIRTCHNL_VLAN_ETHERTYPE_XOR;
516  *
517  * The VF would interpret this as VLAN stripping can be supported on either
518  * 0x8100 or 0x88a8 VLAN ethertypes. So when requesting VLAN stripping via
519  * VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 the specified ethertype will override
520  * the previously set value.
521  *
522  * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1 - Used to tell the VF to insert and/or
523  * strip the VLAN tag using the L2TAG1 field of the Tx/Rx descriptors.
524  *
525  * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 - Used to tell the VF to insert hardware
526  * offloaded VLAN tags using the L2TAG2 field of the Tx descriptor.
527  *
528  * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 - Used to tell the VF to strip hardware
529  * offloaded VLAN tags using the L2TAG2_2 field of the Rx descriptor.
530  *
531  * VIRTCHNL_VLAN_PRIO - This field supports VLAN priority bits. This is used for
532  * VLAN filtering if the underlying PF supports it.
533  *
534  * VIRTCHNL_VLAN_TOGGLE_ALLOWED - This field is used to say whether a
535  * certain VLAN capability can be toggled. For example if the underlying PF/CP
536  * allows the VF to toggle VLAN filtering, stripping, and/or insertion it should
537  * set this bit along with the supported ethertypes.
538  */
539 enum virtchnl_vlan_support {
540 	VIRTCHNL_VLAN_UNSUPPORTED =		0,
541 	VIRTCHNL_VLAN_ETHERTYPE_8100 =		BIT(0),
542 	VIRTCHNL_VLAN_ETHERTYPE_88A8 =		BIT(1),
543 	VIRTCHNL_VLAN_ETHERTYPE_9100 =		BIT(2),
544 	VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1 =	BIT(8),
545 	VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 =	BIT(9),
546 	VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 =	BIT(10),
547 	VIRTCHNL_VLAN_PRIO =			BIT(24),
548 	VIRTCHNL_VLAN_FILTER_MASK =		BIT(28),
549 	VIRTCHNL_VLAN_ETHERTYPE_AND =		BIT(29),
550 	VIRTCHNL_VLAN_ETHERTYPE_XOR =		BIT(30),
551 	VIRTCHNL_VLAN_TOGGLE =			BIT(31),
552 };
553 
554 /* This structure is used as part of the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS
555  * for filtering, insertion, and stripping capabilities.
556  *
557  * If only outer capabilities are supported (for filtering, insertion, and/or
558  * stripping) then this refers to the outer most or single VLAN from the VF's
559  * perspective.
560  *
561  * If only inner capabilities are supported (for filtering, insertion, and/or
562  * stripping) then this refers to the outer most or single VLAN from the VF's
563  * perspective. Functionally this is the same as if only outer capabilities are
564  * supported. The VF driver is just forced to use the inner fields when
565  * adding/deleting filters and enabling/disabling offloads (if supported).
566  *
567  * If both outer and inner capabilities are supported (for filtering, insertion,
568  * and/or stripping) then outer refers to the outer most or single VLAN and
569  * inner refers to the second VLAN, if it exists, in the packet.
570  *
571  * There is no support for tunneled VLAN offloads, so outer or inner are never
572  * referring to a tunneled packet from the VF's perspective.
573  */
574 struct virtchnl_vlan_supported_caps {
575 	u32 outer;
576 	u32 inner;
577 };
578 
579 /* The PF populates these fields based on the supported VLAN filtering. If a
580  * field is VIRTCHNL_VLAN_UNSUPPORTED then it's not supported and the PF will
581  * reject any VIRTCHNL_OP_ADD_VLAN_V2 or VIRTCHNL_OP_DEL_VLAN_V2 messages using
582  * the unsupported fields.
583  *
584  * Also, a VF is only allowed to toggle its VLAN filtering setting if the
585  * VIRTCHNL_VLAN_TOGGLE bit is set.
586  *
587  * The ethertype(s) specified in the ethertype_init field are the ethertypes
588  * enabled for VLAN filtering. VLAN filtering in this case refers to the outer
589  * most VLAN from the VF's perspective. If both inner and outer filtering are
590  * allowed then ethertype_init only refers to the outer most VLAN as only
591  * VLAN ethertype supported for inner VLAN filtering is
592  * VIRTCHNL_VLAN_ETHERTYPE_8100. By default, inner VLAN filtering is disabled
593  * when both inner and outer filtering are allowed.
594  *
595  * The max_filters field tells the VF how many VLAN filters it's allowed to have
596  * at any one time. If it exceeds this amount and tries to add another filter,
597  * then the request will be rejected by the PF. To prevent failures, the VF
598  * should keep track of how many VLAN filters it has added and not attempt to
599  * add more than max_filters.
600  */
601 struct virtchnl_vlan_filtering_caps {
602 	struct virtchnl_vlan_supported_caps filtering_support;
603 	u32 ethertype_init;
604 	u16 max_filters;
605 	u8 pad[2];
606 };
607 
608 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vlan_filtering_caps);
609 
610 /* This enum is used for the virtchnl_vlan_offload_caps structure to specify
611  * if the PF supports a different ethertype for stripping and insertion.
612  *
613  * VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION - The ethertype(s) specified
614  * for stripping affect the ethertype(s) specified for insertion and visa versa
615  * as well. If the VF tries to configure VLAN stripping via
616  * VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 with VIRTCHNL_VLAN_ETHERTYPE_8100 then
617  * that will be the ethertype for both stripping and insertion.
618  *
619  * VIRTCHNL_ETHERTYPE_MATCH_NOT_REQUIRED - The ethertype(s) specified for
620  * stripping do not affect the ethertype(s) specified for insertion and visa
621  * versa.
622  */
623 enum virtchnl_vlan_ethertype_match {
624 	VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION = 0,
625 	VIRTCHNL_ETHERTYPE_MATCH_NOT_REQUIRED = 1,
626 };
627 
628 /* The PF populates these fields based on the supported VLAN offloads. If a
629  * field is VIRTCHNL_VLAN_UNSUPPORTED then it's not supported and the PF will
630  * reject any VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 or
631  * VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 messages using the unsupported fields.
632  *
633  * Also, a VF is only allowed to toggle its VLAN offload setting if the
634  * VIRTCHNL_VLAN_TOGGLE_ALLOWED bit is set.
635  *
636  * The VF driver needs to be aware of how the tags are stripped by hardware and
637  * inserted by the VF driver based on the level of offload support. The PF will
638  * populate these fields based on where the VLAN tags are expected to be
639  * offloaded via the VIRTHCNL_VLAN_TAG_LOCATION_* bits. The VF will need to
640  * interpret these fields. See the definition of the
641  * VIRTCHNL_VLAN_TAG_LOCATION_* bits above the virtchnl_vlan_support
642  * enumeration.
643  */
644 struct virtchnl_vlan_offload_caps {
645 	struct virtchnl_vlan_supported_caps stripping_support;
646 	struct virtchnl_vlan_supported_caps insertion_support;
647 	u32 ethertype_init;
648 	u8 ethertype_match;
649 	u8 pad[3];
650 };
651 
652 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_vlan_offload_caps);
653 
654 /* VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS
655  * VF sends this message to determine its VLAN capabilities.
656  *
657  * PF will mark which capabilities it supports based on hardware support and
658  * current configuration. For example, if a port VLAN is configured the PF will
659  * not allow outer VLAN filtering, stripping, or insertion to be configured so
660  * it will block these features from the VF.
661  *
662  * The VF will need to cross reference its capabilities with the PFs
663  * capabilities in the response message from the PF to determine the VLAN
664  * support.
665  */
666 struct virtchnl_vlan_caps {
667 	struct virtchnl_vlan_filtering_caps filtering;
668 	struct virtchnl_vlan_offload_caps offloads;
669 };
670 
671 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_vlan_caps);
672 
673 struct virtchnl_vlan {
674 	u16 tci;	/* tci[15:13] = PCP and tci[11:0] = VID */
675 	u16 tci_mask;	/* only valid if VIRTCHNL_VLAN_FILTER_MASK set in
676 			 * filtering caps
677 			 */
678 	u16 tpid;	/* 0x8100, 0x88a8, etc. and only type(s) set in
679 			 * filtering caps. Note that tpid here does not refer to
680 			 * VIRTCHNL_VLAN_ETHERTYPE_*, but it refers to the
681 			 * actual 2-byte VLAN TPID
682 			 */
683 	u8 pad[2];
684 };
685 
686 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_vlan);
687 
688 struct virtchnl_vlan_filter {
689 	struct virtchnl_vlan inner;
690 	struct virtchnl_vlan outer;
691 	u8 pad[16];
692 };
693 
694 VIRTCHNL_CHECK_STRUCT_LEN(32, virtchnl_vlan_filter);
695 
696 /* VIRTCHNL_OP_ADD_VLAN_V2
697  * VIRTCHNL_OP_DEL_VLAN_V2
698  *
699  * VF sends these messages to add/del one or more VLAN tag filters for Rx
700  * traffic.
701  *
702  * The PF attempts to add the filters and returns status.
703  *
704  * The VF should only ever attempt to add/del virtchnl_vlan_filter(s) using the
705  * supported fields negotiated via VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS.
706  */
707 struct virtchnl_vlan_filter_list_v2 {
708 	u16 vport_id;
709 	u16 num_elements;
710 	u8 pad[4];
711 	struct virtchnl_vlan_filter filters[1];
712 };
713 
714 VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_vlan_filter_list_v2);
715 
716 /* VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2
717  * VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2
718  * VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2
719  * VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2
720  *
721  * VF sends this message to enable or disable VLAN stripping or insertion. It
722  * also needs to specify an ethertype. The VF knows which VLAN ethertypes are
723  * allowed and whether or not it's allowed to enable/disable the specific
724  * offload via the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS message. The VF needs to
725  * parse the virtchnl_vlan_caps.offloads fields to determine which offload
726  * messages are allowed.
727  *
728  * For example, if the PF populates the virtchnl_vlan_caps.offloads in the
729  * following manner the VF will be allowed to enable and/or disable 0x8100 inner
730  * VLAN insertion and/or stripping via the opcodes listed above. Inner in this
731  * case means the outer most or single VLAN from the VF's perspective. This is
732  * because no outer offloads are supported. See the comments above the
733  * virtchnl_vlan_supported_caps structure for more details.
734  *
735  * virtchnl_vlan_caps.offloads.stripping_support.inner =
736  *			VIRTCHNL_VLAN_TOGGLE |
737  *			VIRTCHNL_VLAN_ETHERTYPE_8100;
738  *
739  * virtchnl_vlan_caps.offloads.insertion_support.inner =
740  *			VIRTCHNL_VLAN_TOGGLE |
741  *			VIRTCHNL_VLAN_ETHERTYPE_8100;
742  *
743  * In order to enable inner (again note that in this case inner is the outer
744  * most or single VLAN from the VF's perspective) VLAN stripping for 0x8100
745  * VLANs, the VF would populate the virtchnl_vlan_setting structure in the
746  * following manner and send the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 message.
747  *
748  * virtchnl_vlan_setting.inner_ethertype_setting =
749  *			VIRTCHNL_VLAN_ETHERTYPE_8100;
750  *
751  * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on
752  * initialization.
753  *
754  * The reason that VLAN TPID(s) are not being used for the
755  * outer_ethertype_setting and inner_ethertype_setting fields is because it's
756  * possible a device could support VLAN insertion and/or stripping offload on
757  * multiple ethertypes concurrently, so this method allows a VF to request
758  * multiple ethertypes in one message using the virtchnl_vlan_support
759  * enumeration.
760  *
761  * For example, if the PF populates the virtchnl_vlan_caps.offloads in the
762  * following manner the VF will be allowed to enable 0x8100 and 0x88a8 outer
763  * VLAN insertion and stripping simultaneously. The
764  * virtchnl_vlan_caps.offloads.ethertype_match field will also have to be
765  * populated based on what the PF can support.
766  *
767  * virtchnl_vlan_caps.offloads.stripping_support.outer =
768  *			VIRTCHNL_VLAN_TOGGLE |
769  *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
770  *			VIRTCHNL_VLAN_ETHERTYPE_88A8 |
771  *			VIRTCHNL_VLAN_ETHERTYPE_AND;
772  *
773  * virtchnl_vlan_caps.offloads.insertion_support.outer =
774  *			VIRTCHNL_VLAN_TOGGLE |
775  *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
776  *			VIRTCHNL_VLAN_ETHERTYPE_88A8 |
777  *			VIRTCHNL_VLAN_ETHERTYPE_AND;
778  *
779  * In order to enable outer VLAN stripping for 0x8100 and 0x88a8 VLANs, the VF
780  * would populate the virthcnl_vlan_offload_structure in the following manner
781  * and send the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 message.
782  *
783  * virtchnl_vlan_setting.outer_ethertype_setting =
784  *			VIRTHCNL_VLAN_ETHERTYPE_8100 |
785  *			VIRTHCNL_VLAN_ETHERTYPE_88A8;
786  *
787  * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on
788  * initialization.
789  *
790  * There is also the case where a PF and the underlying hardware can support
791  * VLAN offloads on multiple ethertypes, but not concurrently. For example, if
792  * the PF populates the virtchnl_vlan_caps.offloads in the following manner the
793  * VF will be allowed to enable and/or disable 0x8100 XOR 0x88a8 outer VLAN
794  * offloads. The ethertypes must match for stripping and insertion.
795  *
796  * virtchnl_vlan_caps.offloads.stripping_support.outer =
797  *			VIRTCHNL_VLAN_TOGGLE |
798  *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
799  *			VIRTCHNL_VLAN_ETHERTYPE_88A8 |
800  *			VIRTCHNL_VLAN_ETHERTYPE_XOR;
801  *
802  * virtchnl_vlan_caps.offloads.insertion_support.outer =
803  *			VIRTCHNL_VLAN_TOGGLE |
804  *			VIRTCHNL_VLAN_ETHERTYPE_8100 |
805  *			VIRTCHNL_VLAN_ETHERTYPE_88A8 |
806  *			VIRTCHNL_VLAN_ETHERTYPE_XOR;
807  *
808  * virtchnl_vlan_caps.offloads.ethertype_match =
809  *			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
810  *
811  * In order to enable outer VLAN stripping for 0x88a8 VLANs, the VF would
812  * populate the virtchnl_vlan_setting structure in the following manner and send
813  * the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2. Also, this will change the
814  * ethertype for VLAN insertion if it's enabled. So, for completeness, a
815  * VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 with the same ethertype should be sent.
816  *
817  * virtchnl_vlan_setting.outer_ethertype_setting = VIRTHCNL_VLAN_ETHERTYPE_88A8;
818  *
819  * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on
820  * initialization.
821  */
822 struct virtchnl_vlan_setting {
823 	u32 outer_ethertype_setting;
824 	u32 inner_ethertype_setting;
825 	u16 vport_id;
826 	u8 pad[6];
827 };
828 
829 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vlan_setting);
830 
831 /* VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE
832  * VF sends VSI id and flags.
833  * PF returns status code in retval.
834  * Note: we assume that broadcast accept mode is always enabled.
835  */
836 struct virtchnl_promisc_info {
837 	u16 vsi_id;
838 	u16 flags;
839 };
840 
841 VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_promisc_info);
842 
843 #define FLAG_VF_UNICAST_PROMISC	0x00000001
844 #define FLAG_VF_MULTICAST_PROMISC	0x00000002
845 
846 /* VIRTCHNL_OP_GET_STATS
847  * VF sends this message to request stats for the selected VSI. VF uses
848  * the virtchnl_queue_select struct to specify the VSI. The queue_id
849  * field is ignored by the PF.
850  *
851  * PF replies with struct eth_stats in an external buffer.
852  */
853 
854 /* VIRTCHNL_OP_CONFIG_RSS_KEY
855  * VIRTCHNL_OP_CONFIG_RSS_LUT
856  * VF sends these messages to configure RSS. Only supported if both PF
857  * and VF drivers set the VIRTCHNL_VF_OFFLOAD_RSS_PF bit during
858  * configuration negotiation. If this is the case, then the RSS fields in
859  * the VF resource struct are valid.
860  * Both the key and LUT are initialized to 0 by the PF, meaning that
861  * RSS is effectively disabled until set up by the VF.
862  */
863 struct virtchnl_rss_key {
864 	u16 vsi_id;
865 	u16 key_len;
866 	u8 key[1];         /* RSS hash key, packed bytes */
867 };
868 
869 VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_rss_key);
870 
871 struct virtchnl_rss_lut {
872 	u16 vsi_id;
873 	u16 lut_entries;
874 	u8 lut[1];        /* RSS lookup table */
875 };
876 
877 VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_rss_lut);
878 
879 /* VIRTCHNL_OP_GET_RSS_HENA_CAPS
880  * VIRTCHNL_OP_SET_RSS_HENA
881  * VF sends these messages to get and set the hash filter enable bits for RSS.
882  * By default, the PF sets these to all possible traffic types that the
883  * hardware supports. The VF can query this value if it wants to change the
884  * traffic types that are hashed by the hardware.
885  */
886 struct virtchnl_rss_hena {
887 	u64 hena;
888 };
889 
890 VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_rss_hena);
891 
892 /* VIRTCHNL_OP_ENABLE_CHANNELS
893  * VIRTCHNL_OP_DISABLE_CHANNELS
894  * VF sends these messages to enable or disable channels based on
895  * the user specified queue count and queue offset for each traffic class.
896  * This struct encompasses all the information that the PF needs from
897  * VF to create a channel.
898  */
899 struct virtchnl_channel_info {
900 	u16 count; /* number of queues in a channel */
901 	u16 offset; /* queues in a channel start from 'offset' */
902 	u32 pad;
903 	u64 max_tx_rate;
904 };
905 
906 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_channel_info);
907 
908 struct virtchnl_tc_info {
909 	u32	num_tc;
910 	u32	pad;
911 	struct	virtchnl_channel_info list[1];
912 };
913 
914 VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_tc_info);
915 
916 /* VIRTCHNL_ADD_CLOUD_FILTER
917  * VIRTCHNL_DEL_CLOUD_FILTER
918  * VF sends these messages to add or delete a cloud filter based on the
919  * user specified match and action filters. These structures encompass
920  * all the information that the PF needs from the VF to add/delete a
921  * cloud filter.
922  */
923 
924 struct virtchnl_l4_spec {
925 	u8	src_mac[ETH_ALEN];
926 	u8	dst_mac[ETH_ALEN];
927 	__be16	vlan_id;
928 	__be16	pad; /* reserved for future use */
929 	__be32	src_ip[4];
930 	__be32	dst_ip[4];
931 	__be16	src_port;
932 	__be16	dst_port;
933 };
934 
935 VIRTCHNL_CHECK_STRUCT_LEN(52, virtchnl_l4_spec);
936 
937 union virtchnl_flow_spec {
938 	struct	virtchnl_l4_spec tcp_spec;
939 	u8	buffer[128]; /* reserved for future use */
940 };
941 
942 VIRTCHNL_CHECK_UNION_LEN(128, virtchnl_flow_spec);
943 
944 enum virtchnl_action {
945 	/* action types */
946 	VIRTCHNL_ACTION_DROP = 0,
947 	VIRTCHNL_ACTION_TC_REDIRECT,
948 	VIRTCHNL_ACTION_PASSTHRU,
949 	VIRTCHNL_ACTION_QUEUE,
950 	VIRTCHNL_ACTION_Q_REGION,
951 	VIRTCHNL_ACTION_MARK,
952 	VIRTCHNL_ACTION_COUNT,
953 };
954 
955 enum virtchnl_flow_type {
956 	/* flow types */
957 	VIRTCHNL_TCP_V4_FLOW = 0,
958 	VIRTCHNL_TCP_V6_FLOW,
959 };
960 
961 struct virtchnl_filter {
962 	union	virtchnl_flow_spec data;
963 	union	virtchnl_flow_spec mask;
964 	enum	virtchnl_flow_type flow_type;
965 	enum	virtchnl_action action;
966 	u32	action_meta;
967 	u8	field_flags;
968 	u8	pad[3];
969 };
970 
971 VIRTCHNL_CHECK_STRUCT_LEN(272, virtchnl_filter);
972 
973 /* VIRTCHNL_OP_EVENT
974  * PF sends this message to inform the VF driver of events that may affect it.
975  * No direct response is expected from the VF, though it may generate other
976  * messages in response to this one.
977  */
978 enum virtchnl_event_codes {
979 	VIRTCHNL_EVENT_UNKNOWN = 0,
980 	VIRTCHNL_EVENT_LINK_CHANGE,
981 	VIRTCHNL_EVENT_RESET_IMPENDING,
982 	VIRTCHNL_EVENT_PF_DRIVER_CLOSE,
983 };
984 
985 #define PF_EVENT_SEVERITY_INFO		0
986 #define PF_EVENT_SEVERITY_CERTAIN_DOOM	255
987 
988 struct virtchnl_pf_event {
989 	enum virtchnl_event_codes event;
990 	union {
991 		/* If the PF driver does not support the new speed reporting
992 		 * capabilities then use link_event else use link_event_adv to
993 		 * get the speed and link information. The ability to understand
994 		 * new speeds is indicated by setting the capability flag
995 		 * VIRTCHNL_VF_CAP_ADV_LINK_SPEED in vf_cap_flags parameter
996 		 * in virtchnl_vf_resource struct and can be used to determine
997 		 * which link event struct to use below.
998 		 */
999 		struct {
1000 			enum virtchnl_link_speed link_speed;
1001 			bool link_status;
1002 		} link_event;
1003 		struct {
1004 			/* link_speed provided in Mbps */
1005 			u32 link_speed;
1006 			u8 link_status;
1007 			u8 pad[3];
1008 		} link_event_adv;
1009 	} event_data;
1010 
1011 	int severity;
1012 };
1013 
1014 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_pf_event);
1015 
1016 /* VIRTCHNL_OP_CONFIG_IWARP_IRQ_MAP
1017  * VF uses this message to request PF to map IWARP vectors to IWARP queues.
1018  * The request for this originates from the VF IWARP driver through
1019  * a client interface between VF LAN and VF IWARP driver.
1020  * A vector could have an AEQ and CEQ attached to it although
1021  * there is a single AEQ per VF IWARP instance in which case
1022  * most vectors will have an INVALID_IDX for aeq and valid idx for ceq.
1023  * There will never be a case where there will be multiple CEQs attached
1024  * to a single vector.
1025  * PF configures interrupt mapping and returns status.
1026  */
1027 
1028 struct virtchnl_iwarp_qv_info {
1029 	u32 v_idx; /* msix_vector */
1030 	u16 ceq_idx;
1031 	u16 aeq_idx;
1032 	u8 itr_idx;
1033 	u8 pad[3];
1034 };
1035 
1036 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_iwarp_qv_info);
1037 
1038 struct virtchnl_iwarp_qvlist_info {
1039 	u32 num_vectors;
1040 	struct virtchnl_iwarp_qv_info qv_info[1];
1041 };
1042 
1043 VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_iwarp_qvlist_info);
1044 
1045 /* VF reset states - these are written into the RSTAT register:
1046  * VFGEN_RSTAT on the VF
1047  * When the PF initiates a reset, it writes 0
1048  * When the reset is complete, it writes 1
1049  * When the PF detects that the VF has recovered, it writes 2
1050  * VF checks this register periodically to determine if a reset has occurred,
1051  * then polls it to know when the reset is complete.
1052  * If either the PF or VF reads the register while the hardware
1053  * is in a reset state, it will return DEADBEEF, which, when masked
1054  * will result in 3.
1055  */
1056 enum virtchnl_vfr_states {
1057 	VIRTCHNL_VFR_INPROGRESS = 0,
1058 	VIRTCHNL_VFR_COMPLETED,
1059 	VIRTCHNL_VFR_VFACTIVE,
1060 };
1061 
1062 /* Type of RSS algorithm */
1063 enum virtchnl_rss_algorithm {
1064 	VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC	= 0,
1065 	VIRTCHNL_RSS_ALG_R_ASYMMETRIC		= 1,
1066 	VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC	= 2,
1067 	VIRTCHNL_RSS_ALG_XOR_SYMMETRIC		= 3,
1068 };
1069 
1070 #define VIRTCHNL_MAX_NUM_PROTO_HDRS	32
1071 #define PROTO_HDR_SHIFT			5
1072 #define PROTO_HDR_FIELD_START(proto_hdr_type) ((proto_hdr_type) << PROTO_HDR_SHIFT)
1073 #define PROTO_HDR_FIELD_MASK ((1UL << PROTO_HDR_SHIFT) - 1)
1074 
1075 /* VF use these macros to configure each protocol header.
1076  * Specify which protocol headers and protocol header fields base on
1077  * virtchnl_proto_hdr_type and virtchnl_proto_hdr_field.
1078  * @param hdr: a struct of virtchnl_proto_hdr
1079  * @param hdr_type: ETH/IPV4/TCP, etc
1080  * @param field: SRC/DST/TEID/SPI, etc
1081  */
1082 #define VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, field) \
1083 	((hdr)->field_selector |= BIT((field) & PROTO_HDR_FIELD_MASK))
1084 #define VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, field) \
1085 	((hdr)->field_selector &= ~BIT((field) & PROTO_HDR_FIELD_MASK))
1086 #define VIRTCHNL_TEST_PROTO_HDR_FIELD(hdr, val) \
1087 	((hdr)->field_selector & BIT((val) & PROTO_HDR_FIELD_MASK))
1088 #define VIRTCHNL_GET_PROTO_HDR_FIELD(hdr)	((hdr)->field_selector)
1089 
1090 #define VIRTCHNL_ADD_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \
1091 	(VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, \
1092 		VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field))
1093 #define VIRTCHNL_DEL_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \
1094 	(VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, \
1095 		VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field))
1096 
1097 #define VIRTCHNL_SET_PROTO_HDR_TYPE(hdr, hdr_type) \
1098 	((hdr)->type = VIRTCHNL_PROTO_HDR_ ## hdr_type)
1099 #define VIRTCHNL_GET_PROTO_HDR_TYPE(hdr) \
1100 	(((hdr)->type) >> PROTO_HDR_SHIFT)
1101 #define VIRTCHNL_TEST_PROTO_HDR_TYPE(hdr, val) \
1102 	((hdr)->type == ((val) >> PROTO_HDR_SHIFT))
1103 #define VIRTCHNL_TEST_PROTO_HDR(hdr, val) \
1104 	(VIRTCHNL_TEST_PROTO_HDR_TYPE((hdr), (val)) && \
1105 	 VIRTCHNL_TEST_PROTO_HDR_FIELD((hdr), (val)))
1106 
1107 /* Protocol header type within a packet segment. A segment consists of one or
1108  * more protocol headers that make up a logical group of protocol headers. Each
1109  * logical group of protocol headers encapsulates or is encapsulated using/by
1110  * tunneling or encapsulation protocols for network virtualization.
1111  */
1112 enum virtchnl_proto_hdr_type {
1113 	VIRTCHNL_PROTO_HDR_NONE,
1114 	VIRTCHNL_PROTO_HDR_ETH,
1115 	VIRTCHNL_PROTO_HDR_S_VLAN,
1116 	VIRTCHNL_PROTO_HDR_C_VLAN,
1117 	VIRTCHNL_PROTO_HDR_IPV4,
1118 	VIRTCHNL_PROTO_HDR_IPV6,
1119 	VIRTCHNL_PROTO_HDR_TCP,
1120 	VIRTCHNL_PROTO_HDR_UDP,
1121 	VIRTCHNL_PROTO_HDR_SCTP,
1122 	VIRTCHNL_PROTO_HDR_GTPU_IP,
1123 	VIRTCHNL_PROTO_HDR_GTPU_EH,
1124 	VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN,
1125 	VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP,
1126 	VIRTCHNL_PROTO_HDR_PPPOE,
1127 	VIRTCHNL_PROTO_HDR_L2TPV3,
1128 	VIRTCHNL_PROTO_HDR_ESP,
1129 	VIRTCHNL_PROTO_HDR_AH,
1130 	VIRTCHNL_PROTO_HDR_PFCP,
1131 };
1132 
1133 /* Protocol header field within a protocol header. */
1134 enum virtchnl_proto_hdr_field {
1135 	/* ETHER */
1136 	VIRTCHNL_PROTO_HDR_ETH_SRC =
1137 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ETH),
1138 	VIRTCHNL_PROTO_HDR_ETH_DST,
1139 	VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE,
1140 	/* S-VLAN */
1141 	VIRTCHNL_PROTO_HDR_S_VLAN_ID =
1142 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_S_VLAN),
1143 	/* C-VLAN */
1144 	VIRTCHNL_PROTO_HDR_C_VLAN_ID =
1145 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_C_VLAN),
1146 	/* IPV4 */
1147 	VIRTCHNL_PROTO_HDR_IPV4_SRC =
1148 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV4),
1149 	VIRTCHNL_PROTO_HDR_IPV4_DST,
1150 	VIRTCHNL_PROTO_HDR_IPV4_DSCP,
1151 	VIRTCHNL_PROTO_HDR_IPV4_TTL,
1152 	VIRTCHNL_PROTO_HDR_IPV4_PROT,
1153 	/* IPV6 */
1154 	VIRTCHNL_PROTO_HDR_IPV6_SRC =
1155 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV6),
1156 	VIRTCHNL_PROTO_HDR_IPV6_DST,
1157 	VIRTCHNL_PROTO_HDR_IPV6_TC,
1158 	VIRTCHNL_PROTO_HDR_IPV6_HOP_LIMIT,
1159 	VIRTCHNL_PROTO_HDR_IPV6_PROT,
1160 	/* TCP */
1161 	VIRTCHNL_PROTO_HDR_TCP_SRC_PORT =
1162 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_TCP),
1163 	VIRTCHNL_PROTO_HDR_TCP_DST_PORT,
1164 	/* UDP */
1165 	VIRTCHNL_PROTO_HDR_UDP_SRC_PORT =
1166 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_UDP),
1167 	VIRTCHNL_PROTO_HDR_UDP_DST_PORT,
1168 	/* SCTP */
1169 	VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT =
1170 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_SCTP),
1171 	VIRTCHNL_PROTO_HDR_SCTP_DST_PORT,
1172 	/* GTPU_IP */
1173 	VIRTCHNL_PROTO_HDR_GTPU_IP_TEID =
1174 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_IP),
1175 	/* GTPU_EH */
1176 	VIRTCHNL_PROTO_HDR_GTPU_EH_PDU =
1177 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_EH),
1178 	VIRTCHNL_PROTO_HDR_GTPU_EH_QFI,
1179 	/* PPPOE */
1180 	VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID =
1181 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PPPOE),
1182 	/* L2TPV3 */
1183 	VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID =
1184 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_L2TPV3),
1185 	/* ESP */
1186 	VIRTCHNL_PROTO_HDR_ESP_SPI =
1187 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ESP),
1188 	/* AH */
1189 	VIRTCHNL_PROTO_HDR_AH_SPI =
1190 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_AH),
1191 	/* PFCP */
1192 	VIRTCHNL_PROTO_HDR_PFCP_S_FIELD =
1193 		PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PFCP),
1194 	VIRTCHNL_PROTO_HDR_PFCP_SEID,
1195 };
1196 
1197 struct virtchnl_proto_hdr {
1198 	enum virtchnl_proto_hdr_type type;
1199 	u32 field_selector; /* a bit mask to select field for header type */
1200 	u8 buffer[64];
1201 	/**
1202 	 * binary buffer in network order for specific header type.
1203 	 * For example, if type = VIRTCHNL_PROTO_HDR_IPV4, a IPv4
1204 	 * header is expected to be copied into the buffer.
1205 	 */
1206 };
1207 
1208 VIRTCHNL_CHECK_STRUCT_LEN(72, virtchnl_proto_hdr);
1209 
1210 struct virtchnl_proto_hdrs {
1211 	u8 tunnel_level;
1212 	u8 pad[3];
1213 	/**
1214 	 * specify where protocol header start from.
1215 	 * 0 - from the outer layer
1216 	 * 1 - from the first inner layer
1217 	 * 2 - from the second inner layer
1218 	 * ....
1219 	 **/
1220 	int count; /* the proto layers must < VIRTCHNL_MAX_NUM_PROTO_HDRS */
1221 	struct virtchnl_proto_hdr proto_hdr[VIRTCHNL_MAX_NUM_PROTO_HDRS];
1222 };
1223 
1224 VIRTCHNL_CHECK_STRUCT_LEN(2312, virtchnl_proto_hdrs);
1225 
1226 struct virtchnl_rss_cfg {
1227 	struct virtchnl_proto_hdrs proto_hdrs;	   /* protocol headers */
1228 	enum virtchnl_rss_algorithm rss_algorithm; /* RSS algorithm type */
1229 	u8 reserved[128];			   /* reserve for future */
1230 };
1231 
1232 VIRTCHNL_CHECK_STRUCT_LEN(2444, virtchnl_rss_cfg);
1233 
1234 /* action configuration for FDIR */
1235 struct virtchnl_filter_action {
1236 	enum virtchnl_action type;
1237 	union {
1238 		/* used for queue and qgroup action */
1239 		struct {
1240 			u16 index;
1241 			u8 region;
1242 		} queue;
1243 		/* used for count action */
1244 		struct {
1245 			/* share counter ID with other flow rules */
1246 			u8 shared;
1247 			u32 id; /* counter ID */
1248 		} count;
1249 		/* used for mark action */
1250 		u32 mark_id;
1251 		u8 reserve[32];
1252 	} act_conf;
1253 };
1254 
1255 VIRTCHNL_CHECK_STRUCT_LEN(36, virtchnl_filter_action);
1256 
1257 #define VIRTCHNL_MAX_NUM_ACTIONS  8
1258 
1259 struct virtchnl_filter_action_set {
1260 	/* action number must be less then VIRTCHNL_MAX_NUM_ACTIONS */
1261 	int count;
1262 	struct virtchnl_filter_action actions[VIRTCHNL_MAX_NUM_ACTIONS];
1263 };
1264 
1265 VIRTCHNL_CHECK_STRUCT_LEN(292, virtchnl_filter_action_set);
1266 
1267 /* pattern and action for FDIR rule */
1268 struct virtchnl_fdir_rule {
1269 	struct virtchnl_proto_hdrs proto_hdrs;
1270 	struct virtchnl_filter_action_set action_set;
1271 };
1272 
1273 VIRTCHNL_CHECK_STRUCT_LEN(2604, virtchnl_fdir_rule);
1274 
1275 /* Status returned to VF after VF requests FDIR commands
1276  * VIRTCHNL_FDIR_SUCCESS
1277  * VF FDIR related request is successfully done by PF
1278  * The request can be OP_ADD/DEL.
1279  *
1280  * VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE
1281  * OP_ADD_FDIR_FILTER request is failed due to no Hardware resource.
1282  *
1283  * VIRTCHNL_FDIR_FAILURE_RULE_EXIST
1284  * OP_ADD_FDIR_FILTER request is failed due to the rule is already existed.
1285  *
1286  * VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT
1287  * OP_ADD_FDIR_FILTER request is failed due to conflict with existing rule.
1288  *
1289  * VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST
1290  * OP_DEL_FDIR_FILTER request is failed due to this rule doesn't exist.
1291  *
1292  * VIRTCHNL_FDIR_FAILURE_RULE_INVALID
1293  * OP_ADD_FDIR_FILTER request is failed due to parameters validation
1294  * or HW doesn't support.
1295  *
1296  * VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT
1297  * OP_ADD/DEL_FDIR_FILTER request is failed due to timing out
1298  * for programming.
1299  */
1300 enum virtchnl_fdir_prgm_status {
1301 	VIRTCHNL_FDIR_SUCCESS = 0,
1302 	VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE,
1303 	VIRTCHNL_FDIR_FAILURE_RULE_EXIST,
1304 	VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT,
1305 	VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST,
1306 	VIRTCHNL_FDIR_FAILURE_RULE_INVALID,
1307 	VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT,
1308 };
1309 
1310 /* VIRTCHNL_OP_ADD_FDIR_FILTER
1311  * VF sends this request to PF by filling out vsi_id,
1312  * validate_only and rule_cfg. PF will return flow_id
1313  * if the request is successfully done and return add_status to VF.
1314  */
1315 struct virtchnl_fdir_add {
1316 	u16 vsi_id;  /* INPUT */
1317 	/*
1318 	 * 1 for validating a fdir rule, 0 for creating a fdir rule.
1319 	 * Validate and create share one ops: VIRTCHNL_OP_ADD_FDIR_FILTER.
1320 	 */
1321 	u16 validate_only; /* INPUT */
1322 	u32 flow_id;       /* OUTPUT */
1323 	struct virtchnl_fdir_rule rule_cfg; /* INPUT */
1324 	enum virtchnl_fdir_prgm_status status; /* OUTPUT */
1325 };
1326 
1327 VIRTCHNL_CHECK_STRUCT_LEN(2616, virtchnl_fdir_add);
1328 
1329 /* VIRTCHNL_OP_DEL_FDIR_FILTER
1330  * VF sends this request to PF by filling out vsi_id
1331  * and flow_id. PF will return del_status to VF.
1332  */
1333 struct virtchnl_fdir_del {
1334 	u16 vsi_id;  /* INPUT */
1335 	u16 pad;
1336 	u32 flow_id; /* INPUT */
1337 	enum virtchnl_fdir_prgm_status status; /* OUTPUT */
1338 };
1339 
1340 VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_fdir_del);
1341 
1342 /**
1343  * virtchnl_vc_validate_vf_msg
1344  * @ver: Virtchnl version info
1345  * @v_opcode: Opcode for the message
1346  * @msg: pointer to the msg buffer
1347  * @msglen: msg length
1348  *
1349  * validate msg format against struct for each opcode
1350  */
1351 static inline int
virtchnl_vc_validate_vf_msg(struct virtchnl_version_info * ver,u32 v_opcode,u8 * msg,u16 msglen)1352 virtchnl_vc_validate_vf_msg(struct virtchnl_version_info *ver, u32 v_opcode,
1353 			    u8 *msg, u16 msglen)
1354 {
1355 	bool err_msg_format = false;
1356 	int valid_len = 0;
1357 
1358 	/* Validate message length. */
1359 	switch (v_opcode) {
1360 	case VIRTCHNL_OP_VERSION:
1361 		valid_len = sizeof(struct virtchnl_version_info);
1362 		break;
1363 	case VIRTCHNL_OP_RESET_VF:
1364 		break;
1365 	case VIRTCHNL_OP_GET_VF_RESOURCES:
1366 		if (VF_IS_V11(ver))
1367 			valid_len = sizeof(u32);
1368 		break;
1369 	case VIRTCHNL_OP_CONFIG_TX_QUEUE:
1370 		valid_len = sizeof(struct virtchnl_txq_info);
1371 		break;
1372 	case VIRTCHNL_OP_CONFIG_RX_QUEUE:
1373 		valid_len = sizeof(struct virtchnl_rxq_info);
1374 		break;
1375 	case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
1376 		valid_len = sizeof(struct virtchnl_vsi_queue_config_info);
1377 		if (msglen >= valid_len) {
1378 			struct virtchnl_vsi_queue_config_info *vqc =
1379 			    (struct virtchnl_vsi_queue_config_info *)msg;
1380 			valid_len += (vqc->num_queue_pairs *
1381 				      sizeof(struct
1382 					     virtchnl_queue_pair_info));
1383 			if (vqc->num_queue_pairs == 0)
1384 				err_msg_format = true;
1385 		}
1386 		break;
1387 	case VIRTCHNL_OP_CONFIG_IRQ_MAP:
1388 		valid_len = sizeof(struct virtchnl_irq_map_info);
1389 		if (msglen >= valid_len) {
1390 			struct virtchnl_irq_map_info *vimi =
1391 			    (struct virtchnl_irq_map_info *)msg;
1392 			valid_len += (vimi->num_vectors *
1393 				      sizeof(struct virtchnl_vector_map));
1394 			if (vimi->num_vectors == 0)
1395 				err_msg_format = true;
1396 		}
1397 		break;
1398 	case VIRTCHNL_OP_ENABLE_QUEUES:
1399 	case VIRTCHNL_OP_DISABLE_QUEUES:
1400 		valid_len = sizeof(struct virtchnl_queue_select);
1401 		break;
1402 	case VIRTCHNL_OP_ADD_ETH_ADDR:
1403 	case VIRTCHNL_OP_DEL_ETH_ADDR:
1404 		valid_len = sizeof(struct virtchnl_ether_addr_list);
1405 		if (msglen >= valid_len) {
1406 			struct virtchnl_ether_addr_list *veal =
1407 			    (struct virtchnl_ether_addr_list *)msg;
1408 			valid_len += veal->num_elements *
1409 			    sizeof(struct virtchnl_ether_addr);
1410 			if (veal->num_elements == 0)
1411 				err_msg_format = true;
1412 		}
1413 		break;
1414 	case VIRTCHNL_OP_ADD_VLAN:
1415 	case VIRTCHNL_OP_DEL_VLAN:
1416 		valid_len = sizeof(struct virtchnl_vlan_filter_list);
1417 		if (msglen >= valid_len) {
1418 			struct virtchnl_vlan_filter_list *vfl =
1419 			    (struct virtchnl_vlan_filter_list *)msg;
1420 			valid_len += vfl->num_elements * sizeof(u16);
1421 			if (vfl->num_elements == 0)
1422 				err_msg_format = true;
1423 		}
1424 		break;
1425 	case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
1426 		valid_len = sizeof(struct virtchnl_promisc_info);
1427 		break;
1428 	case VIRTCHNL_OP_GET_STATS:
1429 		valid_len = sizeof(struct virtchnl_queue_select);
1430 		break;
1431 	case VIRTCHNL_OP_IWARP:
1432 		/* These messages are opaque to us and will be validated in
1433 		 * the RDMA client code. We just need to check for nonzero
1434 		 * length. The firmware will enforce max length restrictions.
1435 		 */
1436 		if (msglen)
1437 			valid_len = msglen;
1438 		else
1439 			err_msg_format = true;
1440 		break;
1441 	case VIRTCHNL_OP_RELEASE_IWARP_IRQ_MAP:
1442 		break;
1443 	case VIRTCHNL_OP_CONFIG_IWARP_IRQ_MAP:
1444 		valid_len = sizeof(struct virtchnl_iwarp_qvlist_info);
1445 		if (msglen >= valid_len) {
1446 			struct virtchnl_iwarp_qvlist_info *qv =
1447 				(struct virtchnl_iwarp_qvlist_info *)msg;
1448 			if (qv->num_vectors == 0) {
1449 				err_msg_format = true;
1450 				break;
1451 			}
1452 			valid_len += ((qv->num_vectors - 1) *
1453 				sizeof(struct virtchnl_iwarp_qv_info));
1454 		}
1455 		break;
1456 	case VIRTCHNL_OP_CONFIG_RSS_KEY:
1457 		valid_len = sizeof(struct virtchnl_rss_key);
1458 		if (msglen >= valid_len) {
1459 			struct virtchnl_rss_key *vrk =
1460 				(struct virtchnl_rss_key *)msg;
1461 			valid_len += vrk->key_len - 1;
1462 		}
1463 		break;
1464 	case VIRTCHNL_OP_CONFIG_RSS_LUT:
1465 		valid_len = sizeof(struct virtchnl_rss_lut);
1466 		if (msglen >= valid_len) {
1467 			struct virtchnl_rss_lut *vrl =
1468 				(struct virtchnl_rss_lut *)msg;
1469 			valid_len += vrl->lut_entries - 1;
1470 		}
1471 		break;
1472 	case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
1473 		break;
1474 	case VIRTCHNL_OP_SET_RSS_HENA:
1475 		valid_len = sizeof(struct virtchnl_rss_hena);
1476 		break;
1477 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
1478 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
1479 		break;
1480 	case VIRTCHNL_OP_REQUEST_QUEUES:
1481 		valid_len = sizeof(struct virtchnl_vf_res_request);
1482 		break;
1483 	case VIRTCHNL_OP_ENABLE_CHANNELS:
1484 		valid_len = sizeof(struct virtchnl_tc_info);
1485 		if (msglen >= valid_len) {
1486 			struct virtchnl_tc_info *vti =
1487 				(struct virtchnl_tc_info *)msg;
1488 			valid_len += (vti->num_tc - 1) *
1489 				     sizeof(struct virtchnl_channel_info);
1490 			if (vti->num_tc == 0)
1491 				err_msg_format = true;
1492 		}
1493 		break;
1494 	case VIRTCHNL_OP_DISABLE_CHANNELS:
1495 		break;
1496 	case VIRTCHNL_OP_ADD_CLOUD_FILTER:
1497 		valid_len = sizeof(struct virtchnl_filter);
1498 		break;
1499 	case VIRTCHNL_OP_DEL_CLOUD_FILTER:
1500 		valid_len = sizeof(struct virtchnl_filter);
1501 		break;
1502 	case VIRTCHNL_OP_ADD_RSS_CFG:
1503 	case VIRTCHNL_OP_DEL_RSS_CFG:
1504 		valid_len = sizeof(struct virtchnl_rss_cfg);
1505 		break;
1506 	case VIRTCHNL_OP_ADD_FDIR_FILTER:
1507 		valid_len = sizeof(struct virtchnl_fdir_add);
1508 		break;
1509 	case VIRTCHNL_OP_DEL_FDIR_FILTER:
1510 		valid_len = sizeof(struct virtchnl_fdir_del);
1511 		break;
1512 	case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
1513 		break;
1514 	case VIRTCHNL_OP_ADD_VLAN_V2:
1515 	case VIRTCHNL_OP_DEL_VLAN_V2:
1516 		valid_len = sizeof(struct virtchnl_vlan_filter_list_v2);
1517 		if (msglen >= valid_len) {
1518 			struct virtchnl_vlan_filter_list_v2 *vfl =
1519 			    (struct virtchnl_vlan_filter_list_v2 *)msg;
1520 
1521 			valid_len += (vfl->num_elements - 1) *
1522 				sizeof(struct virtchnl_vlan_filter);
1523 
1524 			if (vfl->num_elements == 0) {
1525 				err_msg_format = true;
1526 				break;
1527 			}
1528 		}
1529 		break;
1530 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
1531 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
1532 	case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
1533 	case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
1534 		valid_len = sizeof(struct virtchnl_vlan_setting);
1535 		break;
1536 	/* These are always errors coming from the VF. */
1537 	case VIRTCHNL_OP_EVENT:
1538 	case VIRTCHNL_OP_UNKNOWN:
1539 	default:
1540 		return VIRTCHNL_STATUS_ERR_PARAM;
1541 	}
1542 	/* few more checks */
1543 	if (err_msg_format || valid_len != msglen)
1544 		return VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH;
1545 
1546 	return 0;
1547 }
1548 #endif /* _VIRTCHNL_H_ */
1549