1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ 2 /* 3 * VFIO API definition 4 * 5 * Copyright (C) 2012 Red Hat, Inc. All rights reserved. 6 * Author: Alex Williamson <alex.williamson@redhat.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 #ifndef _UAPIVFIO_H 13 #define _UAPIVFIO_H 14 15 #include <linux/types.h> 16 #include <linux/ioctl.h> 17 18 #define VFIO_API_VERSION 0 19 20 21 /* Kernel & User level defines for VFIO IOCTLs. */ 22 23 /* Extensions */ 24 25 #define VFIO_TYPE1_IOMMU 1 26 #define VFIO_SPAPR_TCE_IOMMU 2 27 #define VFIO_TYPE1v2_IOMMU 3 28 /* 29 * IOMMU enforces DMA cache coherence (ex. PCIe NoSnoop stripping). This 30 * capability is subject to change as groups are added or removed. 31 */ 32 #define VFIO_DMA_CC_IOMMU 4 33 34 /* Check if EEH is supported */ 35 #define VFIO_EEH 5 36 37 /* Two-stage IOMMU */ 38 #define VFIO_TYPE1_NESTING_IOMMU 6 /* Implies v2 */ 39 40 #define VFIO_SPAPR_TCE_v2_IOMMU 7 41 42 /* 43 * The No-IOMMU IOMMU offers no translation or isolation for devices and 44 * supports no ioctls outside of VFIO_CHECK_EXTENSION. Use of VFIO's No-IOMMU 45 * code will taint the host kernel and should be used with extreme caution. 46 */ 47 #define VFIO_NOIOMMU_IOMMU 8 48 49 /* Supports VFIO_DMA_UNMAP_FLAG_ALL */ 50 #define VFIO_UNMAP_ALL 9 51 52 /* Supports the vaddr flag for DMA map and unmap */ 53 #define VFIO_UPDATE_VADDR 10 54 55 /* 56 * The IOCTL interface is designed for extensibility by embedding the 57 * structure length (argsz) and flags into structures passed between 58 * kernel and userspace. We therefore use the _IO() macro for these 59 * defines to avoid implicitly embedding a size into the ioctl request. 60 * As structure fields are added, argsz will increase to match and flag 61 * bits will be defined to indicate additional fields with valid data. 62 * It's *always* the caller's responsibility to indicate the size of 63 * the structure passed by setting argsz appropriately. 64 */ 65 66 #define VFIO_TYPE (';') 67 #define VFIO_BASE 100 68 69 /* 70 * For extension of INFO ioctls, VFIO makes use of a capability chain 71 * designed after PCI/e capabilities. A flag bit indicates whether 72 * this capability chain is supported and a field defined in the fixed 73 * structure defines the offset of the first capability in the chain. 74 * This field is only valid when the corresponding bit in the flags 75 * bitmap is set. This offset field is relative to the start of the 76 * INFO buffer, as is the next field within each capability header. 77 * The id within the header is a shared address space per INFO ioctl, 78 * while the version field is specific to the capability id. The 79 * contents following the header are specific to the capability id. 80 */ 81 struct vfio_info_cap_header { 82 __u16 id; /* Identifies capability */ 83 __u16 version; /* Version specific to the capability ID */ 84 __u32 next; /* Offset of next capability */ 85 }; 86 87 /* 88 * Callers of INFO ioctls passing insufficiently sized buffers will see 89 * the capability chain flag bit set, a zero value for the first capability 90 * offset (if available within the provided argsz), and argsz will be 91 * updated to report the necessary buffer size. For compatibility, the 92 * INFO ioctl will not report error in this case, but the capability chain 93 * will not be available. 94 */ 95 96 /* -------- IOCTLs for VFIO file descriptor (/dev/vfio/vfio) -------- */ 97 98 /** 99 * VFIO_GET_API_VERSION - _IO(VFIO_TYPE, VFIO_BASE + 0) 100 * 101 * Report the version of the VFIO API. This allows us to bump the entire 102 * API version should we later need to add or change features in incompatible 103 * ways. 104 * Return: VFIO_API_VERSION 105 * Availability: Always 106 */ 107 #define VFIO_GET_API_VERSION _IO(VFIO_TYPE, VFIO_BASE + 0) 108 109 /** 110 * VFIO_CHECK_EXTENSION - _IOW(VFIO_TYPE, VFIO_BASE + 1, __u32) 111 * 112 * Check whether an extension is supported. 113 * Return: 0 if not supported, 1 (or some other positive integer) if supported. 114 * Availability: Always 115 */ 116 #define VFIO_CHECK_EXTENSION _IO(VFIO_TYPE, VFIO_BASE + 1) 117 118 /** 119 * VFIO_SET_IOMMU - _IOW(VFIO_TYPE, VFIO_BASE + 2, __s32) 120 * 121 * Set the iommu to the given type. The type must be supported by an 122 * iommu driver as verified by calling CHECK_EXTENSION using the same 123 * type. A group must be set to this file descriptor before this 124 * ioctl is available. The IOMMU interfaces enabled by this call are 125 * specific to the value set. 126 * Return: 0 on success, -errno on failure 127 * Availability: When VFIO group attached 128 */ 129 #define VFIO_SET_IOMMU _IO(VFIO_TYPE, VFIO_BASE + 2) 130 131 /* -------- IOCTLs for GROUP file descriptors (/dev/vfio/$GROUP) -------- */ 132 133 /** 134 * VFIO_GROUP_GET_STATUS - _IOR(VFIO_TYPE, VFIO_BASE + 3, 135 * struct vfio_group_status) 136 * 137 * Retrieve information about the group. Fills in provided 138 * struct vfio_group_info. Caller sets argsz. 139 * Return: 0 on succes, -errno on failure. 140 * Availability: Always 141 */ 142 struct vfio_group_status { 143 __u32 argsz; 144 __u32 flags; 145 #define VFIO_GROUP_FLAGS_VIABLE (1 << 0) 146 #define VFIO_GROUP_FLAGS_CONTAINER_SET (1 << 1) 147 }; 148 #define VFIO_GROUP_GET_STATUS _IO(VFIO_TYPE, VFIO_BASE + 3) 149 150 /** 151 * VFIO_GROUP_SET_CONTAINER - _IOW(VFIO_TYPE, VFIO_BASE + 4, __s32) 152 * 153 * Set the container for the VFIO group to the open VFIO file 154 * descriptor provided. Groups may only belong to a single 155 * container. Containers may, at their discretion, support multiple 156 * groups. Only when a container is set are all of the interfaces 157 * of the VFIO file descriptor and the VFIO group file descriptor 158 * available to the user. 159 * Return: 0 on success, -errno on failure. 160 * Availability: Always 161 */ 162 #define VFIO_GROUP_SET_CONTAINER _IO(VFIO_TYPE, VFIO_BASE + 4) 163 164 /** 165 * VFIO_GROUP_UNSET_CONTAINER - _IO(VFIO_TYPE, VFIO_BASE + 5) 166 * 167 * Remove the group from the attached container. This is the 168 * opposite of the SET_CONTAINER call and returns the group to 169 * an initial state. All device file descriptors must be released 170 * prior to calling this interface. When removing the last group 171 * from a container, the IOMMU will be disabled and all state lost, 172 * effectively also returning the VFIO file descriptor to an initial 173 * state. 174 * Return: 0 on success, -errno on failure. 175 * Availability: When attached to container 176 */ 177 #define VFIO_GROUP_UNSET_CONTAINER _IO(VFIO_TYPE, VFIO_BASE + 5) 178 179 /** 180 * VFIO_GROUP_GET_DEVICE_FD - _IOW(VFIO_TYPE, VFIO_BASE + 6, char) 181 * 182 * Return a new file descriptor for the device object described by 183 * the provided string. The string should match a device listed in 184 * the devices subdirectory of the IOMMU group sysfs entry. The 185 * group containing the device must already be added to this context. 186 * Return: new file descriptor on success, -errno on failure. 187 * Availability: When attached to container 188 */ 189 #define VFIO_GROUP_GET_DEVICE_FD _IO(VFIO_TYPE, VFIO_BASE + 6) 190 191 /* --------------- IOCTLs for DEVICE file descriptors --------------- */ 192 193 /** 194 * VFIO_DEVICE_GET_INFO - _IOR(VFIO_TYPE, VFIO_BASE + 7, 195 * struct vfio_device_info) 196 * 197 * Retrieve information about the device. Fills in provided 198 * struct vfio_device_info. Caller sets argsz. 199 * Return: 0 on success, -errno on failure. 200 */ 201 struct vfio_device_info { 202 __u32 argsz; 203 __u32 flags; 204 #define VFIO_DEVICE_FLAGS_RESET (1 << 0) /* Device supports reset */ 205 #define VFIO_DEVICE_FLAGS_PCI (1 << 1) /* vfio-pci device */ 206 #define VFIO_DEVICE_FLAGS_PLATFORM (1 << 2) /* vfio-platform device */ 207 #define VFIO_DEVICE_FLAGS_AMBA (1 << 3) /* vfio-amba device */ 208 #define VFIO_DEVICE_FLAGS_CCW (1 << 4) /* vfio-ccw device */ 209 #define VFIO_DEVICE_FLAGS_AP (1 << 5) /* vfio-ap device */ 210 #define VFIO_DEVICE_FLAGS_FSL_MC (1 << 6) /* vfio-fsl-mc device */ 211 #define VFIO_DEVICE_FLAGS_CAPS (1 << 7) /* Info supports caps */ 212 __u32 num_regions; /* Max region index + 1 */ 213 __u32 num_irqs; /* Max IRQ index + 1 */ 214 __u32 cap_offset; /* Offset within info struct of first cap */ 215 }; 216 #define VFIO_DEVICE_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 7) 217 218 /* 219 * Vendor driver using Mediated device framework should provide device_api 220 * attribute in supported type attribute groups. Device API string should be one 221 * of the following corresponding to device flags in vfio_device_info structure. 222 */ 223 224 #define VFIO_DEVICE_API_PCI_STRING "vfio-pci" 225 #define VFIO_DEVICE_API_PLATFORM_STRING "vfio-platform" 226 #define VFIO_DEVICE_API_AMBA_STRING "vfio-amba" 227 #define VFIO_DEVICE_API_CCW_STRING "vfio-ccw" 228 #define VFIO_DEVICE_API_AP_STRING "vfio-ap" 229 230 /* 231 * The following capabilities are unique to s390 zPCI devices. Their contents 232 * are further-defined in vfio_zdev.h 233 */ 234 #define VFIO_DEVICE_INFO_CAP_ZPCI_BASE 1 235 #define VFIO_DEVICE_INFO_CAP_ZPCI_GROUP 2 236 #define VFIO_DEVICE_INFO_CAP_ZPCI_UTIL 3 237 #define VFIO_DEVICE_INFO_CAP_ZPCI_PFIP 4 238 239 /** 240 * VFIO_DEVICE_GET_REGION_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 8, 241 * struct vfio_region_info) 242 * 243 * Retrieve information about a device region. Caller provides 244 * struct vfio_region_info with index value set. Caller sets argsz. 245 * Implementation of region mapping is bus driver specific. This is 246 * intended to describe MMIO, I/O port, as well as bus specific 247 * regions (ex. PCI config space). Zero sized regions may be used 248 * to describe unimplemented regions (ex. unimplemented PCI BARs). 249 * Return: 0 on success, -errno on failure. 250 */ 251 struct vfio_region_info { 252 __u32 argsz; 253 __u32 flags; 254 #define VFIO_REGION_INFO_FLAG_READ (1 << 0) /* Region supports read */ 255 #define VFIO_REGION_INFO_FLAG_WRITE (1 << 1) /* Region supports write */ 256 #define VFIO_REGION_INFO_FLAG_MMAP (1 << 2) /* Region supports mmap */ 257 #define VFIO_REGION_INFO_FLAG_CAPS (1 << 3) /* Info supports caps */ 258 __u32 index; /* Region index */ 259 __u32 cap_offset; /* Offset within info struct of first cap */ 260 __u64 size; /* Region size (bytes) */ 261 __u64 offset; /* Region offset from start of device fd */ 262 }; 263 #define VFIO_DEVICE_GET_REGION_INFO _IO(VFIO_TYPE, VFIO_BASE + 8) 264 265 /* 266 * The sparse mmap capability allows finer granularity of specifying areas 267 * within a region with mmap support. When specified, the user should only 268 * mmap the offset ranges specified by the areas array. mmaps outside of the 269 * areas specified may fail (such as the range covering a PCI MSI-X table) or 270 * may result in improper device behavior. 271 * 272 * The structures below define version 1 of this capability. 273 */ 274 #define VFIO_REGION_INFO_CAP_SPARSE_MMAP 1 275 276 struct vfio_region_sparse_mmap_area { 277 __u64 offset; /* Offset of mmap'able area within region */ 278 __u64 size; /* Size of mmap'able area */ 279 }; 280 281 struct vfio_region_info_cap_sparse_mmap { 282 struct vfio_info_cap_header header; 283 __u32 nr_areas; 284 __u32 reserved; 285 struct vfio_region_sparse_mmap_area areas[]; 286 }; 287 288 /* 289 * The device specific type capability allows regions unique to a specific 290 * device or class of devices to be exposed. This helps solve the problem for 291 * vfio bus drivers of defining which region indexes correspond to which region 292 * on the device, without needing to resort to static indexes, as done by 293 * vfio-pci. For instance, if we were to go back in time, we might remove 294 * VFIO_PCI_VGA_REGION_INDEX and let vfio-pci simply define that all indexes 295 * greater than or equal to VFIO_PCI_NUM_REGIONS are device specific and we'd 296 * make a "VGA" device specific type to describe the VGA access space. This 297 * means that non-VGA devices wouldn't need to waste this index, and thus the 298 * address space associated with it due to implementation of device file 299 * descriptor offsets in vfio-pci. 300 * 301 * The current implementation is now part of the user ABI, so we can't use this 302 * for VGA, but there are other upcoming use cases, such as opregions for Intel 303 * IGD devices and framebuffers for vGPU devices. We missed VGA, but we'll 304 * use this for future additions. 305 * 306 * The structure below defines version 1 of this capability. 307 */ 308 #define VFIO_REGION_INFO_CAP_TYPE 2 309 310 struct vfio_region_info_cap_type { 311 struct vfio_info_cap_header header; 312 __u32 type; /* global per bus driver */ 313 __u32 subtype; /* type specific */ 314 }; 315 316 /* 317 * List of region types, global per bus driver. 318 * If you introduce a new type, please add it here. 319 */ 320 321 /* PCI region type containing a PCI vendor part */ 322 #define VFIO_REGION_TYPE_PCI_VENDOR_TYPE (1 << 31) 323 #define VFIO_REGION_TYPE_PCI_VENDOR_MASK (0xffff) 324 #define VFIO_REGION_TYPE_GFX (1) 325 #define VFIO_REGION_TYPE_CCW (2) 326 #define VFIO_REGION_TYPE_MIGRATION_DEPRECATED (3) 327 328 /* sub-types for VFIO_REGION_TYPE_PCI_* */ 329 330 /* 8086 vendor PCI sub-types */ 331 #define VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION (1) 332 #define VFIO_REGION_SUBTYPE_INTEL_IGD_HOST_CFG (2) 333 #define VFIO_REGION_SUBTYPE_INTEL_IGD_LPC_CFG (3) 334 335 /* 10de vendor PCI sub-types */ 336 /* 337 * NVIDIA GPU NVlink2 RAM is coherent RAM mapped onto the host address space. 338 * 339 * Deprecated, region no longer provided 340 */ 341 #define VFIO_REGION_SUBTYPE_NVIDIA_NVLINK2_RAM (1) 342 343 /* 1014 vendor PCI sub-types */ 344 /* 345 * IBM NPU NVlink2 ATSD (Address Translation Shootdown) register of NPU 346 * to do TLB invalidation on a GPU. 347 * 348 * Deprecated, region no longer provided 349 */ 350 #define VFIO_REGION_SUBTYPE_IBM_NVLINK2_ATSD (1) 351 352 /* sub-types for VFIO_REGION_TYPE_GFX */ 353 #define VFIO_REGION_SUBTYPE_GFX_EDID (1) 354 355 /** 356 * struct vfio_region_gfx_edid - EDID region layout. 357 * 358 * Set display link state and EDID blob. 359 * 360 * The EDID blob has monitor information such as brand, name, serial 361 * number, physical size, supported video modes and more. 362 * 363 * This special region allows userspace (typically qemu) set a virtual 364 * EDID for the virtual monitor, which allows a flexible display 365 * configuration. 366 * 367 * For the edid blob spec look here: 368 * https://en.wikipedia.org/wiki/Extended_Display_Identification_Data 369 * 370 * On linux systems you can find the EDID blob in sysfs: 371 * /sys/class/drm/${card}/${connector}/edid 372 * 373 * You can use the edid-decode ulility (comes with xorg-x11-utils) to 374 * decode the EDID blob. 375 * 376 * @edid_offset: location of the edid blob, relative to the 377 * start of the region (readonly). 378 * @edid_max_size: max size of the edid blob (readonly). 379 * @edid_size: actual edid size (read/write). 380 * @link_state: display link state (read/write). 381 * VFIO_DEVICE_GFX_LINK_STATE_UP: Monitor is turned on. 382 * VFIO_DEVICE_GFX_LINK_STATE_DOWN: Monitor is turned off. 383 * @max_xres: max display width (0 == no limitation, readonly). 384 * @max_yres: max display height (0 == no limitation, readonly). 385 * 386 * EDID update protocol: 387 * (1) set link-state to down. 388 * (2) update edid blob and size. 389 * (3) set link-state to up. 390 */ 391 struct vfio_region_gfx_edid { 392 __u32 edid_offset; 393 __u32 edid_max_size; 394 __u32 edid_size; 395 __u32 max_xres; 396 __u32 max_yres; 397 __u32 link_state; 398 #define VFIO_DEVICE_GFX_LINK_STATE_UP 1 399 #define VFIO_DEVICE_GFX_LINK_STATE_DOWN 2 400 }; 401 402 /* sub-types for VFIO_REGION_TYPE_CCW */ 403 #define VFIO_REGION_SUBTYPE_CCW_ASYNC_CMD (1) 404 #define VFIO_REGION_SUBTYPE_CCW_SCHIB (2) 405 #define VFIO_REGION_SUBTYPE_CCW_CRW (3) 406 407 /* sub-types for VFIO_REGION_TYPE_MIGRATION */ 408 #define VFIO_REGION_SUBTYPE_MIGRATION_DEPRECATED (1) 409 410 struct vfio_device_migration_info { 411 __u32 device_state; /* VFIO device state */ 412 #define VFIO_DEVICE_STATE_V1_STOP (0) 413 #define VFIO_DEVICE_STATE_V1_RUNNING (1 << 0) 414 #define VFIO_DEVICE_STATE_V1_SAVING (1 << 1) 415 #define VFIO_DEVICE_STATE_V1_RESUMING (1 << 2) 416 #define VFIO_DEVICE_STATE_MASK (VFIO_DEVICE_STATE_V1_RUNNING | \ 417 VFIO_DEVICE_STATE_V1_SAVING | \ 418 VFIO_DEVICE_STATE_V1_RESUMING) 419 420 #define VFIO_DEVICE_STATE_VALID(state) \ 421 (state & VFIO_DEVICE_STATE_V1_RESUMING ? \ 422 (state & VFIO_DEVICE_STATE_MASK) == VFIO_DEVICE_STATE_V1_RESUMING : 1) 423 424 #define VFIO_DEVICE_STATE_IS_ERROR(state) \ 425 ((state & VFIO_DEVICE_STATE_MASK) == (VFIO_DEVICE_STATE_V1_SAVING | \ 426 VFIO_DEVICE_STATE_V1_RESUMING)) 427 428 #define VFIO_DEVICE_STATE_SET_ERROR(state) \ 429 ((state & ~VFIO_DEVICE_STATE_MASK) | VFIO_DEVICE_STATE_V1_SAVING | \ 430 VFIO_DEVICE_STATE_V1_RESUMING) 431 432 __u32 reserved; 433 __u64 pending_bytes; 434 __u64 data_offset; 435 __u64 data_size; 436 }; 437 438 /* 439 * The MSIX mappable capability informs that MSIX data of a BAR can be mmapped 440 * which allows direct access to non-MSIX registers which happened to be within 441 * the same system page. 442 * 443 * Even though the userspace gets direct access to the MSIX data, the existing 444 * VFIO_DEVICE_SET_IRQS interface must still be used for MSIX configuration. 445 */ 446 #define VFIO_REGION_INFO_CAP_MSIX_MAPPABLE 3 447 448 /* 449 * Capability with compressed real address (aka SSA - small system address) 450 * where GPU RAM is mapped on a system bus. Used by a GPU for DMA routing 451 * and by the userspace to associate a NVLink bridge with a GPU. 452 * 453 * Deprecated, capability no longer provided 454 */ 455 #define VFIO_REGION_INFO_CAP_NVLINK2_SSATGT 4 456 457 struct vfio_region_info_cap_nvlink2_ssatgt { 458 struct vfio_info_cap_header header; 459 __u64 tgt; 460 }; 461 462 /* 463 * Capability with an NVLink link speed. The value is read by 464 * the NVlink2 bridge driver from the bridge's "ibm,nvlink-speed" 465 * property in the device tree. The value is fixed in the hardware 466 * and failing to provide the correct value results in the link 467 * not working with no indication from the driver why. 468 * 469 * Deprecated, capability no longer provided 470 */ 471 #define VFIO_REGION_INFO_CAP_NVLINK2_LNKSPD 5 472 473 struct vfio_region_info_cap_nvlink2_lnkspd { 474 struct vfio_info_cap_header header; 475 __u32 link_speed; 476 __u32 __pad; 477 }; 478 479 /** 480 * VFIO_DEVICE_GET_IRQ_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 9, 481 * struct vfio_irq_info) 482 * 483 * Retrieve information about a device IRQ. Caller provides 484 * struct vfio_irq_info with index value set. Caller sets argsz. 485 * Implementation of IRQ mapping is bus driver specific. Indexes 486 * using multiple IRQs are primarily intended to support MSI-like 487 * interrupt blocks. Zero count irq blocks may be used to describe 488 * unimplemented interrupt types. 489 * 490 * The EVENTFD flag indicates the interrupt index supports eventfd based 491 * signaling. 492 * 493 * The MASKABLE flags indicates the index supports MASK and UNMASK 494 * actions described below. 495 * 496 * AUTOMASKED indicates that after signaling, the interrupt line is 497 * automatically masked by VFIO and the user needs to unmask the line 498 * to receive new interrupts. This is primarily intended to distinguish 499 * level triggered interrupts. 500 * 501 * The NORESIZE flag indicates that the interrupt lines within the index 502 * are setup as a set and new subindexes cannot be enabled without first 503 * disabling the entire index. This is used for interrupts like PCI MSI 504 * and MSI-X where the driver may only use a subset of the available 505 * indexes, but VFIO needs to enable a specific number of vectors 506 * upfront. In the case of MSI-X, where the user can enable MSI-X and 507 * then add and unmask vectors, it's up to userspace to make the decision 508 * whether to allocate the maximum supported number of vectors or tear 509 * down setup and incrementally increase the vectors as each is enabled. 510 */ 511 struct vfio_irq_info { 512 __u32 argsz; 513 __u32 flags; 514 #define VFIO_IRQ_INFO_EVENTFD (1 << 0) 515 #define VFIO_IRQ_INFO_MASKABLE (1 << 1) 516 #define VFIO_IRQ_INFO_AUTOMASKED (1 << 2) 517 #define VFIO_IRQ_INFO_NORESIZE (1 << 3) 518 __u32 index; /* IRQ index */ 519 __u32 count; /* Number of IRQs within this index */ 520 }; 521 #define VFIO_DEVICE_GET_IRQ_INFO _IO(VFIO_TYPE, VFIO_BASE + 9) 522 523 /** 524 * VFIO_DEVICE_SET_IRQS - _IOW(VFIO_TYPE, VFIO_BASE + 10, struct vfio_irq_set) 525 * 526 * Set signaling, masking, and unmasking of interrupts. Caller provides 527 * struct vfio_irq_set with all fields set. 'start' and 'count' indicate 528 * the range of subindexes being specified. 529 * 530 * The DATA flags specify the type of data provided. If DATA_NONE, the 531 * operation performs the specified action immediately on the specified 532 * interrupt(s). For example, to unmask AUTOMASKED interrupt [0,0]: 533 * flags = (DATA_NONE|ACTION_UNMASK), index = 0, start = 0, count = 1. 534 * 535 * DATA_BOOL allows sparse support for the same on arrays of interrupts. 536 * For example, to mask interrupts [0,1] and [0,3] (but not [0,2]): 537 * flags = (DATA_BOOL|ACTION_MASK), index = 0, start = 1, count = 3, 538 * data = {1,0,1} 539 * 540 * DATA_EVENTFD binds the specified ACTION to the provided __s32 eventfd. 541 * A value of -1 can be used to either de-assign interrupts if already 542 * assigned or skip un-assigned interrupts. For example, to set an eventfd 543 * to be trigger for interrupts [0,0] and [0,2]: 544 * flags = (DATA_EVENTFD|ACTION_TRIGGER), index = 0, start = 0, count = 3, 545 * data = {fd1, -1, fd2} 546 * If index [0,1] is previously set, two count = 1 ioctls calls would be 547 * required to set [0,0] and [0,2] without changing [0,1]. 548 * 549 * Once a signaling mechanism is set, DATA_BOOL or DATA_NONE can be used 550 * with ACTION_TRIGGER to perform kernel level interrupt loopback testing 551 * from userspace (ie. simulate hardware triggering). 552 * 553 * Setting of an event triggering mechanism to userspace for ACTION_TRIGGER 554 * enables the interrupt index for the device. Individual subindex interrupts 555 * can be disabled using the -1 value for DATA_EVENTFD or the index can be 556 * disabled as a whole with: flags = (DATA_NONE|ACTION_TRIGGER), count = 0. 557 * 558 * Note that ACTION_[UN]MASK specify user->kernel signaling (irqfds) while 559 * ACTION_TRIGGER specifies kernel->user signaling. 560 */ 561 struct vfio_irq_set { 562 __u32 argsz; 563 __u32 flags; 564 #define VFIO_IRQ_SET_DATA_NONE (1 << 0) /* Data not present */ 565 #define VFIO_IRQ_SET_DATA_BOOL (1 << 1) /* Data is bool (u8) */ 566 #define VFIO_IRQ_SET_DATA_EVENTFD (1 << 2) /* Data is eventfd (s32) */ 567 #define VFIO_IRQ_SET_ACTION_MASK (1 << 3) /* Mask interrupt */ 568 #define VFIO_IRQ_SET_ACTION_UNMASK (1 << 4) /* Unmask interrupt */ 569 #define VFIO_IRQ_SET_ACTION_TRIGGER (1 << 5) /* Trigger interrupt */ 570 __u32 index; 571 __u32 start; 572 __u32 count; 573 __u8 data[]; 574 }; 575 #define VFIO_DEVICE_SET_IRQS _IO(VFIO_TYPE, VFIO_BASE + 10) 576 577 #define VFIO_IRQ_SET_DATA_TYPE_MASK (VFIO_IRQ_SET_DATA_NONE | \ 578 VFIO_IRQ_SET_DATA_BOOL | \ 579 VFIO_IRQ_SET_DATA_EVENTFD) 580 #define VFIO_IRQ_SET_ACTION_TYPE_MASK (VFIO_IRQ_SET_ACTION_MASK | \ 581 VFIO_IRQ_SET_ACTION_UNMASK | \ 582 VFIO_IRQ_SET_ACTION_TRIGGER) 583 /** 584 * VFIO_DEVICE_RESET - _IO(VFIO_TYPE, VFIO_BASE + 11) 585 * 586 * Reset a device. 587 */ 588 #define VFIO_DEVICE_RESET _IO(VFIO_TYPE, VFIO_BASE + 11) 589 590 /* 591 * The VFIO-PCI bus driver makes use of the following fixed region and 592 * IRQ index mapping. Unimplemented regions return a size of zero. 593 * Unimplemented IRQ types return a count of zero. 594 */ 595 596 enum { 597 VFIO_PCI_BAR0_REGION_INDEX, 598 VFIO_PCI_BAR1_REGION_INDEX, 599 VFIO_PCI_BAR2_REGION_INDEX, 600 VFIO_PCI_BAR3_REGION_INDEX, 601 VFIO_PCI_BAR4_REGION_INDEX, 602 VFIO_PCI_BAR5_REGION_INDEX, 603 VFIO_PCI_ROM_REGION_INDEX, 604 VFIO_PCI_CONFIG_REGION_INDEX, 605 /* 606 * Expose VGA regions defined for PCI base class 03, subclass 00. 607 * This includes I/O port ranges 0x3b0 to 0x3bb and 0x3c0 to 0x3df 608 * as well as the MMIO range 0xa0000 to 0xbffff. Each implemented 609 * range is found at it's identity mapped offset from the region 610 * offset, for example 0x3b0 is region_info.offset + 0x3b0. Areas 611 * between described ranges are unimplemented. 612 */ 613 VFIO_PCI_VGA_REGION_INDEX, 614 VFIO_PCI_NUM_REGIONS = 9 /* Fixed user ABI, region indexes >=9 use */ 615 /* device specific cap to define content. */ 616 }; 617 618 enum { 619 VFIO_PCI_INTX_IRQ_INDEX, 620 VFIO_PCI_MSI_IRQ_INDEX, 621 VFIO_PCI_MSIX_IRQ_INDEX, 622 VFIO_PCI_ERR_IRQ_INDEX, 623 VFIO_PCI_REQ_IRQ_INDEX, 624 VFIO_PCI_NUM_IRQS 625 }; 626 627 /* 628 * The vfio-ccw bus driver makes use of the following fixed region and 629 * IRQ index mapping. Unimplemented regions return a size of zero. 630 * Unimplemented IRQ types return a count of zero. 631 */ 632 633 enum { 634 VFIO_CCW_CONFIG_REGION_INDEX, 635 VFIO_CCW_NUM_REGIONS 636 }; 637 638 enum { 639 VFIO_CCW_IO_IRQ_INDEX, 640 VFIO_CCW_CRW_IRQ_INDEX, 641 VFIO_CCW_REQ_IRQ_INDEX, 642 VFIO_CCW_NUM_IRQS 643 }; 644 645 /** 646 * VFIO_DEVICE_GET_PCI_HOT_RESET_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 12, 647 * struct vfio_pci_hot_reset_info) 648 * 649 * Return: 0 on success, -errno on failure: 650 * -enospc = insufficient buffer, -enodev = unsupported for device. 651 */ 652 struct vfio_pci_dependent_device { 653 __u32 group_id; 654 __u16 segment; 655 __u8 bus; 656 __u8 devfn; /* Use PCI_SLOT/PCI_FUNC */ 657 }; 658 659 struct vfio_pci_hot_reset_info { 660 __u32 argsz; 661 __u32 flags; 662 __u32 count; 663 struct vfio_pci_dependent_device devices[]; 664 }; 665 666 #define VFIO_DEVICE_GET_PCI_HOT_RESET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12) 667 668 /** 669 * VFIO_DEVICE_PCI_HOT_RESET - _IOW(VFIO_TYPE, VFIO_BASE + 13, 670 * struct vfio_pci_hot_reset) 671 * 672 * Return: 0 on success, -errno on failure. 673 */ 674 struct vfio_pci_hot_reset { 675 __u32 argsz; 676 __u32 flags; 677 __u32 count; 678 __s32 group_fds[]; 679 }; 680 681 #define VFIO_DEVICE_PCI_HOT_RESET _IO(VFIO_TYPE, VFIO_BASE + 13) 682 683 /** 684 * VFIO_DEVICE_QUERY_GFX_PLANE - _IOW(VFIO_TYPE, VFIO_BASE + 14, 685 * struct vfio_device_query_gfx_plane) 686 * 687 * Set the drm_plane_type and flags, then retrieve the gfx plane info. 688 * 689 * flags supported: 690 * - VFIO_GFX_PLANE_TYPE_PROBE and VFIO_GFX_PLANE_TYPE_DMABUF are set 691 * to ask if the mdev supports dma-buf. 0 on support, -EINVAL on no 692 * support for dma-buf. 693 * - VFIO_GFX_PLANE_TYPE_PROBE and VFIO_GFX_PLANE_TYPE_REGION are set 694 * to ask if the mdev supports region. 0 on support, -EINVAL on no 695 * support for region. 696 * - VFIO_GFX_PLANE_TYPE_DMABUF or VFIO_GFX_PLANE_TYPE_REGION is set 697 * with each call to query the plane info. 698 * - Others are invalid and return -EINVAL. 699 * 700 * Note: 701 * 1. Plane could be disabled by guest. In that case, success will be 702 * returned with zero-initialized drm_format, size, width and height 703 * fields. 704 * 2. x_hot/y_hot is set to 0xFFFFFFFF if no hotspot information available 705 * 706 * Return: 0 on success, -errno on other failure. 707 */ 708 struct vfio_device_gfx_plane_info { 709 __u32 argsz; 710 __u32 flags; 711 #define VFIO_GFX_PLANE_TYPE_PROBE (1 << 0) 712 #define VFIO_GFX_PLANE_TYPE_DMABUF (1 << 1) 713 #define VFIO_GFX_PLANE_TYPE_REGION (1 << 2) 714 /* in */ 715 __u32 drm_plane_type; /* type of plane: DRM_PLANE_TYPE_* */ 716 /* out */ 717 __u32 drm_format; /* drm format of plane */ 718 __u64 drm_format_mod; /* tiled mode */ 719 __u32 width; /* width of plane */ 720 __u32 height; /* height of plane */ 721 __u32 stride; /* stride of plane */ 722 __u32 size; /* size of plane in bytes, align on page*/ 723 __u32 x_pos; /* horizontal position of cursor plane */ 724 __u32 y_pos; /* vertical position of cursor plane*/ 725 __u32 x_hot; /* horizontal position of cursor hotspot */ 726 __u32 y_hot; /* vertical position of cursor hotspot */ 727 union { 728 __u32 region_index; /* region index */ 729 __u32 dmabuf_id; /* dma-buf id */ 730 }; 731 }; 732 733 #define VFIO_DEVICE_QUERY_GFX_PLANE _IO(VFIO_TYPE, VFIO_BASE + 14) 734 735 /** 736 * VFIO_DEVICE_GET_GFX_DMABUF - _IOW(VFIO_TYPE, VFIO_BASE + 15, __u32) 737 * 738 * Return a new dma-buf file descriptor for an exposed guest framebuffer 739 * described by the provided dmabuf_id. The dmabuf_id is returned from VFIO_ 740 * DEVICE_QUERY_GFX_PLANE as a token of the exposed guest framebuffer. 741 */ 742 743 #define VFIO_DEVICE_GET_GFX_DMABUF _IO(VFIO_TYPE, VFIO_BASE + 15) 744 745 /** 746 * VFIO_DEVICE_IOEVENTFD - _IOW(VFIO_TYPE, VFIO_BASE + 16, 747 * struct vfio_device_ioeventfd) 748 * 749 * Perform a write to the device at the specified device fd offset, with 750 * the specified data and width when the provided eventfd is triggered. 751 * vfio bus drivers may not support this for all regions, for all widths, 752 * or at all. vfio-pci currently only enables support for BAR regions, 753 * excluding the MSI-X vector table. 754 * 755 * Return: 0 on success, -errno on failure. 756 */ 757 struct vfio_device_ioeventfd { 758 __u32 argsz; 759 __u32 flags; 760 #define VFIO_DEVICE_IOEVENTFD_8 (1 << 0) /* 1-byte write */ 761 #define VFIO_DEVICE_IOEVENTFD_16 (1 << 1) /* 2-byte write */ 762 #define VFIO_DEVICE_IOEVENTFD_32 (1 << 2) /* 4-byte write */ 763 #define VFIO_DEVICE_IOEVENTFD_64 (1 << 3) /* 8-byte write */ 764 #define VFIO_DEVICE_IOEVENTFD_SIZE_MASK (0xf) 765 __u64 offset; /* device fd offset of write */ 766 __u64 data; /* data to be written */ 767 __s32 fd; /* -1 for de-assignment */ 768 }; 769 770 #define VFIO_DEVICE_IOEVENTFD _IO(VFIO_TYPE, VFIO_BASE + 16) 771 772 /** 773 * VFIO_DEVICE_FEATURE - _IOWR(VFIO_TYPE, VFIO_BASE + 17, 774 * struct vfio_device_feature) 775 * 776 * Get, set, or probe feature data of the device. The feature is selected 777 * using the FEATURE_MASK portion of the flags field. Support for a feature 778 * can be probed by setting both the FEATURE_MASK and PROBE bits. A probe 779 * may optionally include the GET and/or SET bits to determine read vs write 780 * access of the feature respectively. Probing a feature will return success 781 * if the feature is supported and all of the optionally indicated GET/SET 782 * methods are supported. The format of the data portion of the structure is 783 * specific to the given feature. The data portion is not required for 784 * probing. GET and SET are mutually exclusive, except for use with PROBE. 785 * 786 * Return 0 on success, -errno on failure. 787 */ 788 struct vfio_device_feature { 789 __u32 argsz; 790 __u32 flags; 791 #define VFIO_DEVICE_FEATURE_MASK (0xffff) /* 16-bit feature index */ 792 #define VFIO_DEVICE_FEATURE_GET (1 << 16) /* Get feature into data[] */ 793 #define VFIO_DEVICE_FEATURE_SET (1 << 17) /* Set feature from data[] */ 794 #define VFIO_DEVICE_FEATURE_PROBE (1 << 18) /* Probe feature support */ 795 __u8 data[]; 796 }; 797 798 #define VFIO_DEVICE_FEATURE _IO(VFIO_TYPE, VFIO_BASE + 17) 799 800 /* 801 * Provide support for setting a PCI VF Token, which is used as a shared 802 * secret between PF and VF drivers. This feature may only be set on a 803 * PCI SR-IOV PF when SR-IOV is enabled on the PF and there are no existing 804 * open VFs. Data provided when setting this feature is a 16-byte array 805 * (__u8 b[16]), representing a UUID. 806 */ 807 #define VFIO_DEVICE_FEATURE_PCI_VF_TOKEN (0) 808 809 /* 810 * Indicates the device can support the migration API through 811 * VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE. If this GET succeeds, the RUNNING and 812 * ERROR states are always supported. Support for additional states is 813 * indicated via the flags field; at least VFIO_MIGRATION_STOP_COPY must be 814 * set. 815 * 816 * VFIO_MIGRATION_STOP_COPY means that STOP, STOP_COPY and 817 * RESUMING are supported. 818 * 819 * VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_P2P means that RUNNING_P2P 820 * is supported in addition to the STOP_COPY states. 821 * 822 * Other combinations of flags have behavior to be defined in the future. 823 */ 824 struct vfio_device_feature_migration { 825 __aligned_u64 flags; 826 #define VFIO_MIGRATION_STOP_COPY (1 << 0) 827 #define VFIO_MIGRATION_P2P (1 << 1) 828 }; 829 #define VFIO_DEVICE_FEATURE_MIGRATION 1 830 831 /* 832 * Upon VFIO_DEVICE_FEATURE_SET, execute a migration state change on the VFIO 833 * device. The new state is supplied in device_state, see enum 834 * vfio_device_mig_state for details 835 * 836 * The kernel migration driver must fully transition the device to the new state 837 * value before the operation returns to the user. 838 * 839 * The kernel migration driver must not generate asynchronous device state 840 * transitions outside of manipulation by the user or the VFIO_DEVICE_RESET 841 * ioctl as described above. 842 * 843 * If this function fails then current device_state may be the original 844 * operating state or some other state along the combination transition path. 845 * The user can then decide if it should execute a VFIO_DEVICE_RESET, attempt 846 * to return to the original state, or attempt to return to some other state 847 * such as RUNNING or STOP. 848 * 849 * If the new_state starts a new data transfer session then the FD associated 850 * with that session is returned in data_fd. The user is responsible to close 851 * this FD when it is finished. The user must consider the migration data stream 852 * carried over the FD to be opaque and must preserve the byte order of the 853 * stream. The user is not required to preserve buffer segmentation when writing 854 * the data stream during the RESUMING operation. 855 * 856 * Upon VFIO_DEVICE_FEATURE_GET, get the current migration state of the VFIO 857 * device, data_fd will be -1. 858 */ 859 struct vfio_device_feature_mig_state { 860 __u32 device_state; /* From enum vfio_device_mig_state */ 861 __s32 data_fd; 862 }; 863 #define VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE 2 864 865 /* 866 * The device migration Finite State Machine is described by the enum 867 * vfio_device_mig_state. Some of the FSM arcs will create a migration data 868 * transfer session by returning a FD, in this case the migration data will 869 * flow over the FD using read() and write() as discussed below. 870 * 871 * There are 5 states to support VFIO_MIGRATION_STOP_COPY: 872 * RUNNING - The device is running normally 873 * STOP - The device does not change the internal or external state 874 * STOP_COPY - The device internal state can be read out 875 * RESUMING - The device is stopped and is loading a new internal state 876 * ERROR - The device has failed and must be reset 877 * 878 * And 1 optional state to support VFIO_MIGRATION_P2P: 879 * RUNNING_P2P - RUNNING, except the device cannot do peer to peer DMA 880 * 881 * The FSM takes actions on the arcs between FSM states. The driver implements 882 * the following behavior for the FSM arcs: 883 * 884 * RUNNING_P2P -> STOP 885 * STOP_COPY -> STOP 886 * While in STOP the device must stop the operation of the device. The device 887 * must not generate interrupts, DMA, or any other change to external state. 888 * It must not change its internal state. When stopped the device and kernel 889 * migration driver must accept and respond to interaction to support external 890 * subsystems in the STOP state, for example PCI MSI-X and PCI config space. 891 * Failure by the user to restrict device access while in STOP must not result 892 * in error conditions outside the user context (ex. host system faults). 893 * 894 * The STOP_COPY arc will terminate a data transfer session. 895 * 896 * RESUMING -> STOP 897 * Leaving RESUMING terminates a data transfer session and indicates the 898 * device should complete processing of the data delivered by write(). The 899 * kernel migration driver should complete the incorporation of data written 900 * to the data transfer FD into the device internal state and perform 901 * final validity and consistency checking of the new device state. If the 902 * user provided data is found to be incomplete, inconsistent, or otherwise 903 * invalid, the migration driver must fail the SET_STATE ioctl and 904 * optionally go to the ERROR state as described below. 905 * 906 * While in STOP the device has the same behavior as other STOP states 907 * described above. 908 * 909 * To abort a RESUMING session the device must be reset. 910 * 911 * RUNNING_P2P -> RUNNING 912 * While in RUNNING the device is fully operational, the device may generate 913 * interrupts, DMA, respond to MMIO, all vfio device regions are functional, 914 * and the device may advance its internal state. 915 * 916 * RUNNING -> RUNNING_P2P 917 * STOP -> RUNNING_P2P 918 * While in RUNNING_P2P the device is partially running in the P2P quiescent 919 * state defined below. 920 * 921 * STOP -> STOP_COPY 922 * This arc begin the process of saving the device state and will return a 923 * new data_fd. 924 * 925 * While in the STOP_COPY state the device has the same behavior as STOP 926 * with the addition that the data transfers session continues to stream the 927 * migration state. End of stream on the FD indicates the entire device 928 * state has been transferred. 929 * 930 * The user should take steps to restrict access to vfio device regions while 931 * the device is in STOP_COPY or risk corruption of the device migration data 932 * stream. 933 * 934 * STOP -> RESUMING 935 * Entering the RESUMING state starts a process of restoring the device state 936 * and will return a new data_fd. The data stream fed into the data_fd should 937 * be taken from the data transfer output of a single FD during saving from 938 * a compatible device. The migration driver may alter/reset the internal 939 * device state for this arc if required to prepare the device to receive the 940 * migration data. 941 * 942 * any -> ERROR 943 * ERROR cannot be specified as a device state, however any transition request 944 * can be failed with an errno return and may then move the device_state into 945 * ERROR. In this case the device was unable to execute the requested arc and 946 * was also unable to restore the device to any valid device_state. 947 * To recover from ERROR VFIO_DEVICE_RESET must be used to return the 948 * device_state back to RUNNING. 949 * 950 * The optional peer to peer (P2P) quiescent state is intended to be a quiescent 951 * state for the device for the purposes of managing multiple devices within a 952 * user context where peer-to-peer DMA between devices may be active. The 953 * RUNNING_P2P states must prevent the device from initiating 954 * any new P2P DMA transactions. If the device can identify P2P transactions 955 * then it can stop only P2P DMA, otherwise it must stop all DMA. The migration 956 * driver must complete any such outstanding operations prior to completing the 957 * FSM arc into a P2P state. For the purpose of specification the states 958 * behave as though the device was fully running if not supported. Like while in 959 * STOP or STOP_COPY the user must not touch the device, otherwise the state 960 * can be exited. 961 * 962 * The remaining possible transitions are interpreted as combinations of the 963 * above FSM arcs. As there are multiple paths through the FSM arcs the path 964 * should be selected based on the following rules: 965 * - Select the shortest path. 966 * Refer to vfio_mig_get_next_state() for the result of the algorithm. 967 * 968 * The automatic transit through the FSM arcs that make up the combination 969 * transition is invisible to the user. When working with combination arcs the 970 * user may see any step along the path in the device_state if SET_STATE 971 * fails. When handling these types of errors users should anticipate future 972 * revisions of this protocol using new states and those states becoming 973 * visible in this case. 974 * 975 * The optional states cannot be used with SET_STATE if the device does not 976 * support them. The user can discover if these states are supported by using 977 * VFIO_DEVICE_FEATURE_MIGRATION. By using combination transitions the user can 978 * avoid knowing about these optional states if the kernel driver supports them. 979 */ 980 enum vfio_device_mig_state { 981 VFIO_DEVICE_STATE_ERROR = 0, 982 VFIO_DEVICE_STATE_STOP = 1, 983 VFIO_DEVICE_STATE_RUNNING = 2, 984 VFIO_DEVICE_STATE_STOP_COPY = 3, 985 VFIO_DEVICE_STATE_RESUMING = 4, 986 VFIO_DEVICE_STATE_RUNNING_P2P = 5, 987 }; 988 989 /* 990 * Upon VFIO_DEVICE_FEATURE_SET, allow the device to be moved into a low power 991 * state with the platform-based power management. Device use of lower power 992 * states depends on factors managed by the runtime power management core, 993 * including system level support and coordinating support among dependent 994 * devices. Enabling device low power entry does not guarantee lower power 995 * usage by the device, nor is a mechanism provided through this feature to 996 * know the current power state of the device. If any device access happens 997 * (either from the host or through the vfio uAPI) when the device is in the 998 * low power state, then the host will move the device out of the low power 999 * state as necessary prior to the access. Once the access is completed, the 1000 * device may re-enter the low power state. For single shot low power support 1001 * with wake-up notification, see 1002 * VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP below. Access to mmap'd 1003 * device regions is disabled on LOW_POWER_ENTRY and may only be resumed after 1004 * calling LOW_POWER_EXIT. 1005 */ 1006 #define VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY 3 1007 1008 /* 1009 * This device feature has the same behavior as 1010 * VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY with the exception that the user 1011 * provides an eventfd for wake-up notification. When the device moves out of 1012 * the low power state for the wake-up, the host will not allow the device to 1013 * re-enter a low power state without a subsequent user call to one of the low 1014 * power entry device feature IOCTLs. Access to mmap'd device regions is 1015 * disabled on LOW_POWER_ENTRY_WITH_WAKEUP and may only be resumed after the 1016 * low power exit. The low power exit can happen either through LOW_POWER_EXIT 1017 * or through any other access (where the wake-up notification has been 1018 * generated). The access to mmap'd device regions will not trigger low power 1019 * exit. 1020 * 1021 * The notification through the provided eventfd will be generated only when 1022 * the device has entered and is resumed from a low power state after 1023 * calling this device feature IOCTL. A device that has not entered low power 1024 * state, as managed through the runtime power management core, will not 1025 * generate a notification through the provided eventfd on access. Calling the 1026 * LOW_POWER_EXIT feature is optional in the case where notification has been 1027 * signaled on the provided eventfd that a resume from low power has occurred. 1028 */ 1029 struct vfio_device_low_power_entry_with_wakeup { 1030 __s32 wakeup_eventfd; 1031 __u32 reserved; 1032 }; 1033 1034 #define VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP 4 1035 1036 /* 1037 * Upon VFIO_DEVICE_FEATURE_SET, disallow use of device low power states as 1038 * previously enabled via VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY or 1039 * VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP device features. 1040 * This device feature IOCTL may itself generate a wakeup eventfd notification 1041 * in the latter case if the device had previously entered a low power state. 1042 */ 1043 #define VFIO_DEVICE_FEATURE_LOW_POWER_EXIT 5 1044 1045 /* 1046 * Upon VFIO_DEVICE_FEATURE_SET start/stop device DMA logging. 1047 * VFIO_DEVICE_FEATURE_PROBE can be used to detect if the device supports 1048 * DMA logging. 1049 * 1050 * DMA logging allows a device to internally record what DMAs the device is 1051 * initiating and report them back to userspace. It is part of the VFIO 1052 * migration infrastructure that allows implementing dirty page tracking 1053 * during the pre copy phase of live migration. Only DMA WRITEs are logged, 1054 * and this API is not connected to VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE. 1055 * 1056 * When DMA logging is started a range of IOVAs to monitor is provided and the 1057 * device can optimize its logging to cover only the IOVA range given. Each 1058 * DMA that the device initiates inside the range will be logged by the device 1059 * for later retrieval. 1060 * 1061 * page_size is an input that hints what tracking granularity the device 1062 * should try to achieve. If the device cannot do the hinted page size then 1063 * it's the driver choice which page size to pick based on its support. 1064 * On output the device will return the page size it selected. 1065 * 1066 * ranges is a pointer to an array of 1067 * struct vfio_device_feature_dma_logging_range. 1068 * 1069 * The core kernel code guarantees to support by minimum num_ranges that fit 1070 * into a single kernel page. User space can try higher values but should give 1071 * up if the above can't be achieved as of some driver limitations. 1072 * 1073 * A single call to start device DMA logging can be issued and a matching stop 1074 * should follow at the end. Another start is not allowed in the meantime. 1075 */ 1076 struct vfio_device_feature_dma_logging_control { 1077 __aligned_u64 page_size; 1078 __u32 num_ranges; 1079 __u32 __reserved; 1080 __aligned_u64 ranges; 1081 }; 1082 1083 struct vfio_device_feature_dma_logging_range { 1084 __aligned_u64 iova; 1085 __aligned_u64 length; 1086 }; 1087 1088 #define VFIO_DEVICE_FEATURE_DMA_LOGGING_START 6 1089 1090 /* 1091 * Upon VFIO_DEVICE_FEATURE_SET stop device DMA logging that was started 1092 * by VFIO_DEVICE_FEATURE_DMA_LOGGING_START 1093 */ 1094 #define VFIO_DEVICE_FEATURE_DMA_LOGGING_STOP 7 1095 1096 /* 1097 * Upon VFIO_DEVICE_FEATURE_GET read back and clear the device DMA log 1098 * 1099 * Query the device's DMA log for written pages within the given IOVA range. 1100 * During querying the log is cleared for the IOVA range. 1101 * 1102 * bitmap is a pointer to an array of u64s that will hold the output bitmap 1103 * with 1 bit reporting a page_size unit of IOVA. The mapping of IOVA to bits 1104 * is given by: 1105 * bitmap[(addr - iova)/page_size] & (1ULL << (addr % 64)) 1106 * 1107 * The input page_size can be any power of two value and does not have to 1108 * match the value given to VFIO_DEVICE_FEATURE_DMA_LOGGING_START. The driver 1109 * will format its internal logging to match the reporting page size, possibly 1110 * by replicating bits if the internal page size is lower than requested. 1111 * 1112 * The LOGGING_REPORT will only set bits in the bitmap and never clear or 1113 * perform any initialization of the user provided bitmap. 1114 * 1115 * If any error is returned userspace should assume that the dirty log is 1116 * corrupted. Error recovery is to consider all memory dirty and try to 1117 * restart the dirty tracking, or to abort/restart the whole migration. 1118 * 1119 * If DMA logging is not enabled, an error will be returned. 1120 * 1121 */ 1122 struct vfio_device_feature_dma_logging_report { 1123 __aligned_u64 iova; 1124 __aligned_u64 length; 1125 __aligned_u64 page_size; 1126 __aligned_u64 bitmap; 1127 }; 1128 1129 #define VFIO_DEVICE_FEATURE_DMA_LOGGING_REPORT 8 1130 1131 /* -------- API for Type1 VFIO IOMMU -------- */ 1132 1133 /** 1134 * VFIO_IOMMU_GET_INFO - _IOR(VFIO_TYPE, VFIO_BASE + 12, struct vfio_iommu_info) 1135 * 1136 * Retrieve information about the IOMMU object. Fills in provided 1137 * struct vfio_iommu_info. Caller sets argsz. 1138 * 1139 * XXX Should we do these by CHECK_EXTENSION too? 1140 */ 1141 struct vfio_iommu_type1_info { 1142 __u32 argsz; 1143 __u32 flags; 1144 #define VFIO_IOMMU_INFO_PGSIZES (1 << 0) /* supported page sizes info */ 1145 #define VFIO_IOMMU_INFO_CAPS (1 << 1) /* Info supports caps */ 1146 __u64 iova_pgsizes; /* Bitmap of supported page sizes */ 1147 __u32 cap_offset; /* Offset within info struct of first cap */ 1148 }; 1149 1150 /* 1151 * The IOVA capability allows to report the valid IOVA range(s) 1152 * excluding any non-relaxable reserved regions exposed by 1153 * devices attached to the container. Any DMA map attempt 1154 * outside the valid iova range will return error. 1155 * 1156 * The structures below define version 1 of this capability. 1157 */ 1158 #define VFIO_IOMMU_TYPE1_INFO_CAP_IOVA_RANGE 1 1159 1160 struct vfio_iova_range { 1161 __u64 start; 1162 __u64 end; 1163 }; 1164 1165 struct vfio_iommu_type1_info_cap_iova_range { 1166 struct vfio_info_cap_header header; 1167 __u32 nr_iovas; 1168 __u32 reserved; 1169 struct vfio_iova_range iova_ranges[]; 1170 }; 1171 1172 /* 1173 * The migration capability allows to report supported features for migration. 1174 * 1175 * The structures below define version 1 of this capability. 1176 * 1177 * The existence of this capability indicates that IOMMU kernel driver supports 1178 * dirty page logging. 1179 * 1180 * pgsize_bitmap: Kernel driver returns bitmap of supported page sizes for dirty 1181 * page logging. 1182 * max_dirty_bitmap_size: Kernel driver returns maximum supported dirty bitmap 1183 * size in bytes that can be used by user applications when getting the dirty 1184 * bitmap. 1185 */ 1186 #define VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION 2 1187 1188 struct vfio_iommu_type1_info_cap_migration { 1189 struct vfio_info_cap_header header; 1190 __u32 flags; 1191 __u64 pgsize_bitmap; 1192 __u64 max_dirty_bitmap_size; /* in bytes */ 1193 }; 1194 1195 /* 1196 * The DMA available capability allows to report the current number of 1197 * simultaneously outstanding DMA mappings that are allowed. 1198 * 1199 * The structure below defines version 1 of this capability. 1200 * 1201 * avail: specifies the current number of outstanding DMA mappings allowed. 1202 */ 1203 #define VFIO_IOMMU_TYPE1_INFO_DMA_AVAIL 3 1204 1205 struct vfio_iommu_type1_info_dma_avail { 1206 struct vfio_info_cap_header header; 1207 __u32 avail; 1208 }; 1209 1210 #define VFIO_IOMMU_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12) 1211 1212 /** 1213 * VFIO_IOMMU_MAP_DMA - _IOW(VFIO_TYPE, VFIO_BASE + 13, struct vfio_dma_map) 1214 * 1215 * Map process virtual addresses to IO virtual addresses using the 1216 * provided struct vfio_dma_map. Caller sets argsz. READ &/ WRITE required. 1217 * 1218 * If flags & VFIO_DMA_MAP_FLAG_VADDR, update the base vaddr for iova, and 1219 * unblock translation of host virtual addresses in the iova range. The vaddr 1220 * must have previously been invalidated with VFIO_DMA_UNMAP_FLAG_VADDR. To 1221 * maintain memory consistency within the user application, the updated vaddr 1222 * must address the same memory object as originally mapped. Failure to do so 1223 * will result in user memory corruption and/or device misbehavior. iova and 1224 * size must match those in the original MAP_DMA call. Protection is not 1225 * changed, and the READ & WRITE flags must be 0. 1226 */ 1227 struct vfio_iommu_type1_dma_map { 1228 __u32 argsz; 1229 __u32 flags; 1230 #define VFIO_DMA_MAP_FLAG_READ (1 << 0) /* readable from device */ 1231 #define VFIO_DMA_MAP_FLAG_WRITE (1 << 1) /* writable from device */ 1232 #define VFIO_DMA_MAP_FLAG_VADDR (1 << 2) 1233 __u64 vaddr; /* Process virtual address */ 1234 __u64 iova; /* IO virtual address */ 1235 __u64 size; /* Size of mapping (bytes) */ 1236 }; 1237 1238 #define VFIO_IOMMU_MAP_DMA _IO(VFIO_TYPE, VFIO_BASE + 13) 1239 1240 struct vfio_bitmap { 1241 __u64 pgsize; /* page size for bitmap in bytes */ 1242 __u64 size; /* in bytes */ 1243 __u64 __user *data; /* one bit per page */ 1244 }; 1245 1246 /** 1247 * VFIO_IOMMU_UNMAP_DMA - _IOWR(VFIO_TYPE, VFIO_BASE + 14, 1248 * struct vfio_dma_unmap) 1249 * 1250 * Unmap IO virtual addresses using the provided struct vfio_dma_unmap. 1251 * Caller sets argsz. The actual unmapped size is returned in the size 1252 * field. No guarantee is made to the user that arbitrary unmaps of iova 1253 * or size different from those used in the original mapping call will 1254 * succeed. 1255 * 1256 * VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP should be set to get the dirty bitmap 1257 * before unmapping IO virtual addresses. When this flag is set, the user must 1258 * provide a struct vfio_bitmap in data[]. User must provide zero-allocated 1259 * memory via vfio_bitmap.data and its size in the vfio_bitmap.size field. 1260 * A bit in the bitmap represents one page, of user provided page size in 1261 * vfio_bitmap.pgsize field, consecutively starting from iova offset. Bit set 1262 * indicates that the page at that offset from iova is dirty. A Bitmap of the 1263 * pages in the range of unmapped size is returned in the user-provided 1264 * vfio_bitmap.data. 1265 * 1266 * If flags & VFIO_DMA_UNMAP_FLAG_ALL, unmap all addresses. iova and size 1267 * must be 0. This cannot be combined with the get-dirty-bitmap flag. 1268 * 1269 * If flags & VFIO_DMA_UNMAP_FLAG_VADDR, do not unmap, but invalidate host 1270 * virtual addresses in the iova range. Tasks that attempt to translate an 1271 * iova's vaddr will block. DMA to already-mapped pages continues. This 1272 * cannot be combined with the get-dirty-bitmap flag. 1273 */ 1274 struct vfio_iommu_type1_dma_unmap { 1275 __u32 argsz; 1276 __u32 flags; 1277 #define VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP (1 << 0) 1278 #define VFIO_DMA_UNMAP_FLAG_ALL (1 << 1) 1279 #define VFIO_DMA_UNMAP_FLAG_VADDR (1 << 2) 1280 __u64 iova; /* IO virtual address */ 1281 __u64 size; /* Size of mapping (bytes) */ 1282 __u8 data[]; 1283 }; 1284 1285 #define VFIO_IOMMU_UNMAP_DMA _IO(VFIO_TYPE, VFIO_BASE + 14) 1286 1287 /* 1288 * IOCTLs to enable/disable IOMMU container usage. 1289 * No parameters are supported. 1290 */ 1291 #define VFIO_IOMMU_ENABLE _IO(VFIO_TYPE, VFIO_BASE + 15) 1292 #define VFIO_IOMMU_DISABLE _IO(VFIO_TYPE, VFIO_BASE + 16) 1293 1294 /** 1295 * VFIO_IOMMU_DIRTY_PAGES - _IOWR(VFIO_TYPE, VFIO_BASE + 17, 1296 * struct vfio_iommu_type1_dirty_bitmap) 1297 * IOCTL is used for dirty pages logging. 1298 * Caller should set flag depending on which operation to perform, details as 1299 * below: 1300 * 1301 * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_START flag set, instructs 1302 * the IOMMU driver to log pages that are dirtied or potentially dirtied by 1303 * the device; designed to be used when a migration is in progress. Dirty pages 1304 * are logged until logging is disabled by user application by calling the IOCTL 1305 * with VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP flag. 1306 * 1307 * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP flag set, instructs 1308 * the IOMMU driver to stop logging dirtied pages. 1309 * 1310 * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP flag set 1311 * returns the dirty pages bitmap for IOMMU container for a given IOVA range. 1312 * The user must specify the IOVA range and the pgsize through the structure 1313 * vfio_iommu_type1_dirty_bitmap_get in the data[] portion. This interface 1314 * supports getting a bitmap of the smallest supported pgsize only and can be 1315 * modified in future to get a bitmap of any specified supported pgsize. The 1316 * user must provide a zeroed memory area for the bitmap memory and specify its 1317 * size in bitmap.size. One bit is used to represent one page consecutively 1318 * starting from iova offset. The user should provide page size in bitmap.pgsize 1319 * field. A bit set in the bitmap indicates that the page at that offset from 1320 * iova is dirty. The caller must set argsz to a value including the size of 1321 * structure vfio_iommu_type1_dirty_bitmap_get, but excluding the size of the 1322 * actual bitmap. If dirty pages logging is not enabled, an error will be 1323 * returned. 1324 * 1325 * Only one of the flags _START, _STOP and _GET may be specified at a time. 1326 * 1327 */ 1328 struct vfio_iommu_type1_dirty_bitmap { 1329 __u32 argsz; 1330 __u32 flags; 1331 #define VFIO_IOMMU_DIRTY_PAGES_FLAG_START (1 << 0) 1332 #define VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP (1 << 1) 1333 #define VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP (1 << 2) 1334 __u8 data[]; 1335 }; 1336 1337 struct vfio_iommu_type1_dirty_bitmap_get { 1338 __u64 iova; /* IO virtual address */ 1339 __u64 size; /* Size of iova range */ 1340 struct vfio_bitmap bitmap; 1341 }; 1342 1343 #define VFIO_IOMMU_DIRTY_PAGES _IO(VFIO_TYPE, VFIO_BASE + 17) 1344 1345 /* -------- Additional API for SPAPR TCE (Server POWERPC) IOMMU -------- */ 1346 1347 /* 1348 * The SPAPR TCE DDW info struct provides the information about 1349 * the details of Dynamic DMA window capability. 1350 * 1351 * @pgsizes contains a page size bitmask, 4K/64K/16M are supported. 1352 * @max_dynamic_windows_supported tells the maximum number of windows 1353 * which the platform can create. 1354 * @levels tells the maximum number of levels in multi-level IOMMU tables; 1355 * this allows splitting a table into smaller chunks which reduces 1356 * the amount of physically contiguous memory required for the table. 1357 */ 1358 struct vfio_iommu_spapr_tce_ddw_info { 1359 __u64 pgsizes; /* Bitmap of supported page sizes */ 1360 __u32 max_dynamic_windows_supported; 1361 __u32 levels; 1362 }; 1363 1364 /* 1365 * The SPAPR TCE info struct provides the information about the PCI bus 1366 * address ranges available for DMA, these values are programmed into 1367 * the hardware so the guest has to know that information. 1368 * 1369 * The DMA 32 bit window start is an absolute PCI bus address. 1370 * The IOVA address passed via map/unmap ioctls are absolute PCI bus 1371 * addresses too so the window works as a filter rather than an offset 1372 * for IOVA addresses. 1373 * 1374 * Flags supported: 1375 * - VFIO_IOMMU_SPAPR_INFO_DDW: informs the userspace that dynamic DMA windows 1376 * (DDW) support is present. @ddw is only supported when DDW is present. 1377 */ 1378 struct vfio_iommu_spapr_tce_info { 1379 __u32 argsz; 1380 __u32 flags; 1381 #define VFIO_IOMMU_SPAPR_INFO_DDW (1 << 0) /* DDW supported */ 1382 __u32 dma32_window_start; /* 32 bit window start (bytes) */ 1383 __u32 dma32_window_size; /* 32 bit window size (bytes) */ 1384 struct vfio_iommu_spapr_tce_ddw_info ddw; 1385 }; 1386 1387 #define VFIO_IOMMU_SPAPR_TCE_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12) 1388 1389 /* 1390 * EEH PE operation struct provides ways to: 1391 * - enable/disable EEH functionality; 1392 * - unfreeze IO/DMA for frozen PE; 1393 * - read PE state; 1394 * - reset PE; 1395 * - configure PE; 1396 * - inject EEH error. 1397 */ 1398 struct vfio_eeh_pe_err { 1399 __u32 type; 1400 __u32 func; 1401 __u64 addr; 1402 __u64 mask; 1403 }; 1404 1405 struct vfio_eeh_pe_op { 1406 __u32 argsz; 1407 __u32 flags; 1408 __u32 op; 1409 union { 1410 struct vfio_eeh_pe_err err; 1411 }; 1412 }; 1413 1414 #define VFIO_EEH_PE_DISABLE 0 /* Disable EEH functionality */ 1415 #define VFIO_EEH_PE_ENABLE 1 /* Enable EEH functionality */ 1416 #define VFIO_EEH_PE_UNFREEZE_IO 2 /* Enable IO for frozen PE */ 1417 #define VFIO_EEH_PE_UNFREEZE_DMA 3 /* Enable DMA for frozen PE */ 1418 #define VFIO_EEH_PE_GET_STATE 4 /* PE state retrieval */ 1419 #define VFIO_EEH_PE_STATE_NORMAL 0 /* PE in functional state */ 1420 #define VFIO_EEH_PE_STATE_RESET 1 /* PE reset in progress */ 1421 #define VFIO_EEH_PE_STATE_STOPPED 2 /* Stopped DMA and IO */ 1422 #define VFIO_EEH_PE_STATE_STOPPED_DMA 4 /* Stopped DMA only */ 1423 #define VFIO_EEH_PE_STATE_UNAVAIL 5 /* State unavailable */ 1424 #define VFIO_EEH_PE_RESET_DEACTIVATE 5 /* Deassert PE reset */ 1425 #define VFIO_EEH_PE_RESET_HOT 6 /* Assert hot reset */ 1426 #define VFIO_EEH_PE_RESET_FUNDAMENTAL 7 /* Assert fundamental reset */ 1427 #define VFIO_EEH_PE_CONFIGURE 8 /* PE configuration */ 1428 #define VFIO_EEH_PE_INJECT_ERR 9 /* Inject EEH error */ 1429 1430 #define VFIO_EEH_PE_OP _IO(VFIO_TYPE, VFIO_BASE + 21) 1431 1432 /** 1433 * VFIO_IOMMU_SPAPR_REGISTER_MEMORY - _IOW(VFIO_TYPE, VFIO_BASE + 17, struct vfio_iommu_spapr_register_memory) 1434 * 1435 * Registers user space memory where DMA is allowed. It pins 1436 * user pages and does the locked memory accounting so 1437 * subsequent VFIO_IOMMU_MAP_DMA/VFIO_IOMMU_UNMAP_DMA calls 1438 * get faster. 1439 */ 1440 struct vfio_iommu_spapr_register_memory { 1441 __u32 argsz; 1442 __u32 flags; 1443 __u64 vaddr; /* Process virtual address */ 1444 __u64 size; /* Size of mapping (bytes) */ 1445 }; 1446 #define VFIO_IOMMU_SPAPR_REGISTER_MEMORY _IO(VFIO_TYPE, VFIO_BASE + 17) 1447 1448 /** 1449 * VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY - _IOW(VFIO_TYPE, VFIO_BASE + 18, struct vfio_iommu_spapr_register_memory) 1450 * 1451 * Unregisters user space memory registered with 1452 * VFIO_IOMMU_SPAPR_REGISTER_MEMORY. 1453 * Uses vfio_iommu_spapr_register_memory for parameters. 1454 */ 1455 #define VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY _IO(VFIO_TYPE, VFIO_BASE + 18) 1456 1457 /** 1458 * VFIO_IOMMU_SPAPR_TCE_CREATE - _IOWR(VFIO_TYPE, VFIO_BASE + 19, struct vfio_iommu_spapr_tce_create) 1459 * 1460 * Creates an additional TCE table and programs it (sets a new DMA window) 1461 * to every IOMMU group in the container. It receives page shift, window 1462 * size and number of levels in the TCE table being created. 1463 * 1464 * It allocates and returns an offset on a PCI bus of the new DMA window. 1465 */ 1466 struct vfio_iommu_spapr_tce_create { 1467 __u32 argsz; 1468 __u32 flags; 1469 /* in */ 1470 __u32 page_shift; 1471 __u32 __resv1; 1472 __u64 window_size; 1473 __u32 levels; 1474 __u32 __resv2; 1475 /* out */ 1476 __u64 start_addr; 1477 }; 1478 #define VFIO_IOMMU_SPAPR_TCE_CREATE _IO(VFIO_TYPE, VFIO_BASE + 19) 1479 1480 /** 1481 * VFIO_IOMMU_SPAPR_TCE_REMOVE - _IOW(VFIO_TYPE, VFIO_BASE + 20, struct vfio_iommu_spapr_tce_remove) 1482 * 1483 * Unprograms a TCE table from all groups in the container and destroys it. 1484 * It receives a PCI bus offset as a window id. 1485 */ 1486 struct vfio_iommu_spapr_tce_remove { 1487 __u32 argsz; 1488 __u32 flags; 1489 /* in */ 1490 __u64 start_addr; 1491 }; 1492 #define VFIO_IOMMU_SPAPR_TCE_REMOVE _IO(VFIO_TYPE, VFIO_BASE + 20) 1493 1494 /* ***************************************************************** */ 1495 1496 #endif /* _UAPIVFIO_H */ 1497