1 #ifndef __LINUX_USB_H
2 #define __LINUX_USB_H
3 
4 #include <linux/mod_devicetable.h>
5 #include <linux/usb/ch9.h>
6 
7 #define USB_MAJOR			180
8 #define USB_DEVICE_MAJOR		189
9 
10 
11 #ifdef __KERNEL__
12 
13 #include <linux/errno.h>        /* for -ENODEV */
14 #include <linux/delay.h>	/* for mdelay() */
15 #include <linux/interrupt.h>	/* for in_interrupt() */
16 #include <linux/list.h>		/* for struct list_head */
17 #include <linux/kref.h>		/* for struct kref */
18 #include <linux/device.h>	/* for struct device */
19 #include <linux/fs.h>		/* for struct file_operations */
20 #include <linux/completion.h>	/* for struct completion */
21 #include <linux/sched.h>	/* for current && schedule_timeout */
22 #include <linux/mutex.h>	/* for struct mutex */
23 #include <linux/pm_runtime.h>	/* for runtime PM */
24 
25 struct usb_device;
26 struct usb_driver;
27 struct wusb_dev;
28 
29 /*-------------------------------------------------------------------------*/
30 
31 /*
32  * Host-side wrappers for standard USB descriptors ... these are parsed
33  * from the data provided by devices.  Parsing turns them from a flat
34  * sequence of descriptors into a hierarchy:
35  *
36  *  - devices have one (usually) or more configs;
37  *  - configs have one (often) or more interfaces;
38  *  - interfaces have one (usually) or more settings;
39  *  - each interface setting has zero or (usually) more endpoints.
40  *  - a SuperSpeed endpoint has a companion descriptor
41  *
42  * And there might be other descriptors mixed in with those.
43  *
44  * Devices may also have class-specific or vendor-specific descriptors.
45  */
46 
47 struct ep_device;
48 
49 /**
50  * struct usb_host_endpoint - host-side endpoint descriptor and queue
51  * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
52  * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
53  * @urb_list: urbs queued to this endpoint; maintained by usbcore
54  * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
55  *	with one or more transfer descriptors (TDs) per urb
56  * @ep_dev: ep_device for sysfs info
57  * @extra: descriptors following this endpoint in the configuration
58  * @extralen: how many bytes of "extra" are valid
59  * @enabled: URBs may be submitted to this endpoint
60  *
61  * USB requests are always queued to a given endpoint, identified by a
62  * descriptor within an active interface in a given USB configuration.
63  */
64 struct usb_host_endpoint {
65 	struct usb_endpoint_descriptor		desc;
66 	struct usb_ss_ep_comp_descriptor	ss_ep_comp;
67 	struct list_head		urb_list;
68 	void				*hcpriv;
69 	struct ep_device		*ep_dev;	/* For sysfs info */
70 
71 	unsigned char *extra;   /* Extra descriptors */
72 	int extralen;
73 	int enabled;
74 };
75 
76 /* host-side wrapper for one interface setting's parsed descriptors */
77 struct usb_host_interface {
78 	struct usb_interface_descriptor	desc;
79 
80 	/* array of desc.bNumEndpoint endpoints associated with this
81 	 * interface setting.  these will be in no particular order.
82 	 */
83 	struct usb_host_endpoint *endpoint;
84 
85 	char *string;		/* iInterface string, if present */
86 	unsigned char *extra;   /* Extra descriptors */
87 	int extralen;
88 };
89 
90 enum usb_interface_condition {
91 	USB_INTERFACE_UNBOUND = 0,
92 	USB_INTERFACE_BINDING,
93 	USB_INTERFACE_BOUND,
94 	USB_INTERFACE_UNBINDING,
95 };
96 
97 /**
98  * struct usb_interface - what usb device drivers talk to
99  * @altsetting: array of interface structures, one for each alternate
100  *	setting that may be selected.  Each one includes a set of
101  *	endpoint configurations.  They will be in no particular order.
102  * @cur_altsetting: the current altsetting.
103  * @num_altsetting: number of altsettings defined.
104  * @intf_assoc: interface association descriptor
105  * @minor: the minor number assigned to this interface, if this
106  *	interface is bound to a driver that uses the USB major number.
107  *	If this interface does not use the USB major, this field should
108  *	be unused.  The driver should set this value in the probe()
109  *	function of the driver, after it has been assigned a minor
110  *	number from the USB core by calling usb_register_dev().
111  * @condition: binding state of the interface: not bound, binding
112  *	(in probe()), bound to a driver, or unbinding (in disconnect())
113  * @sysfs_files_created: sysfs attributes exist
114  * @ep_devs_created: endpoint child pseudo-devices exist
115  * @unregistering: flag set when the interface is being unregistered
116  * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
117  *	capability during autosuspend.
118  * @needs_altsetting0: flag set when a set-interface request for altsetting 0
119  *	has been deferred.
120  * @needs_binding: flag set when the driver should be re-probed or unbound
121  *	following a reset or suspend operation it doesn't support.
122  * @dev: driver model's view of this device
123  * @usb_dev: if an interface is bound to the USB major, this will point
124  *	to the sysfs representation for that device.
125  * @pm_usage_cnt: PM usage counter for this interface
126  * @reset_ws: Used for scheduling resets from atomic context.
127  * @reset_running: set to 1 if the interface is currently running a
128  *      queued reset so that usb_cancel_queued_reset() doesn't try to
129  *      remove from the workqueue when running inside the worker
130  *      thread. See __usb_queue_reset_device().
131  * @resetting_device: USB core reset the device, so use alt setting 0 as
132  *	current; needs bandwidth alloc after reset.
133  *
134  * USB device drivers attach to interfaces on a physical device.  Each
135  * interface encapsulates a single high level function, such as feeding
136  * an audio stream to a speaker or reporting a change in a volume control.
137  * Many USB devices only have one interface.  The protocol used to talk to
138  * an interface's endpoints can be defined in a usb "class" specification,
139  * or by a product's vendor.  The (default) control endpoint is part of
140  * every interface, but is never listed among the interface's descriptors.
141  *
142  * The driver that is bound to the interface can use standard driver model
143  * calls such as dev_get_drvdata() on the dev member of this structure.
144  *
145  * Each interface may have alternate settings.  The initial configuration
146  * of a device sets altsetting 0, but the device driver can change
147  * that setting using usb_set_interface().  Alternate settings are often
148  * used to control the use of periodic endpoints, such as by having
149  * different endpoints use different amounts of reserved USB bandwidth.
150  * All standards-conformant USB devices that use isochronous endpoints
151  * will use them in non-default settings.
152  *
153  * The USB specification says that alternate setting numbers must run from
154  * 0 to one less than the total number of alternate settings.  But some
155  * devices manage to mess this up, and the structures aren't necessarily
156  * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
157  * look up an alternate setting in the altsetting array based on its number.
158  */
159 struct usb_interface {
160 	/* array of alternate settings for this interface,
161 	 * stored in no particular order */
162 	struct usb_host_interface *altsetting;
163 
164 	struct usb_host_interface *cur_altsetting;	/* the currently
165 					 * active alternate setting */
166 	unsigned num_altsetting;	/* number of alternate settings */
167 
168 	/* If there is an interface association descriptor then it will list
169 	 * the associated interfaces */
170 	struct usb_interface_assoc_descriptor *intf_assoc;
171 
172 	int minor;			/* minor number this interface is
173 					 * bound to */
174 	enum usb_interface_condition condition;		/* state of binding */
175 	unsigned sysfs_files_created:1;	/* the sysfs attributes exist */
176 	unsigned ep_devs_created:1;	/* endpoint "devices" exist */
177 	unsigned unregistering:1;	/* unregistration is in progress */
178 	unsigned needs_remote_wakeup:1;	/* driver requires remote wakeup */
179 	unsigned needs_altsetting0:1;	/* switch to altsetting 0 is pending */
180 	unsigned needs_binding:1;	/* needs delayed unbind/rebind */
181 	unsigned reset_running:1;
182 	unsigned resetting_device:1;	/* true: bandwidth alloc after reset */
183 
184 	struct device dev;		/* interface specific device info */
185 	struct device *usb_dev;
186 	atomic_t pm_usage_cnt;		/* usage counter for autosuspend */
187 	struct work_struct reset_ws;	/* for resets in atomic context */
188 };
189 #define	to_usb_interface(d) container_of(d, struct usb_interface, dev)
190 
usb_get_intfdata(struct usb_interface * intf)191 static inline void *usb_get_intfdata(struct usb_interface *intf)
192 {
193 	return dev_get_drvdata(&intf->dev);
194 }
195 
usb_set_intfdata(struct usb_interface * intf,void * data)196 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
197 {
198 	dev_set_drvdata(&intf->dev, data);
199 }
200 
201 struct usb_interface *usb_get_intf(struct usb_interface *intf);
202 void usb_put_intf(struct usb_interface *intf);
203 
204 /* this maximum is arbitrary */
205 #define USB_MAXINTERFACES	32
206 #define USB_MAXIADS		(USB_MAXINTERFACES/2)
207 
208 /**
209  * struct usb_interface_cache - long-term representation of a device interface
210  * @num_altsetting: number of altsettings defined.
211  * @ref: reference counter.
212  * @altsetting: variable-length array of interface structures, one for
213  *	each alternate setting that may be selected.  Each one includes a
214  *	set of endpoint configurations.  They will be in no particular order.
215  *
216  * These structures persist for the lifetime of a usb_device, unlike
217  * struct usb_interface (which persists only as long as its configuration
218  * is installed).  The altsetting arrays can be accessed through these
219  * structures at any time, permitting comparison of configurations and
220  * providing support for the /proc/bus/usb/devices pseudo-file.
221  */
222 struct usb_interface_cache {
223 	unsigned num_altsetting;	/* number of alternate settings */
224 	struct kref ref;		/* reference counter */
225 
226 	/* variable-length array of alternate settings for this interface,
227 	 * stored in no particular order */
228 	struct usb_host_interface altsetting[0];
229 };
230 #define	ref_to_usb_interface_cache(r) \
231 		container_of(r, struct usb_interface_cache, ref)
232 #define	altsetting_to_usb_interface_cache(a) \
233 		container_of(a, struct usb_interface_cache, altsetting[0])
234 
235 /**
236  * struct usb_host_config - representation of a device's configuration
237  * @desc: the device's configuration descriptor.
238  * @string: pointer to the cached version of the iConfiguration string, if
239  *	present for this configuration.
240  * @intf_assoc: list of any interface association descriptors in this config
241  * @interface: array of pointers to usb_interface structures, one for each
242  *	interface in the configuration.  The number of interfaces is stored
243  *	in desc.bNumInterfaces.  These pointers are valid only while the
244  *	the configuration is active.
245  * @intf_cache: array of pointers to usb_interface_cache structures, one
246  *	for each interface in the configuration.  These structures exist
247  *	for the entire life of the device.
248  * @extra: pointer to buffer containing all extra descriptors associated
249  *	with this configuration (those preceding the first interface
250  *	descriptor).
251  * @extralen: length of the extra descriptors buffer.
252  *
253  * USB devices may have multiple configurations, but only one can be active
254  * at any time.  Each encapsulates a different operational environment;
255  * for example, a dual-speed device would have separate configurations for
256  * full-speed and high-speed operation.  The number of configurations
257  * available is stored in the device descriptor as bNumConfigurations.
258  *
259  * A configuration can contain multiple interfaces.  Each corresponds to
260  * a different function of the USB device, and all are available whenever
261  * the configuration is active.  The USB standard says that interfaces
262  * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
263  * of devices get this wrong.  In addition, the interface array is not
264  * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
265  * look up an interface entry based on its number.
266  *
267  * Device drivers should not attempt to activate configurations.  The choice
268  * of which configuration to install is a policy decision based on such
269  * considerations as available power, functionality provided, and the user's
270  * desires (expressed through userspace tools).  However, drivers can call
271  * usb_reset_configuration() to reinitialize the current configuration and
272  * all its interfaces.
273  */
274 struct usb_host_config {
275 	struct usb_config_descriptor	desc;
276 
277 	char *string;		/* iConfiguration string, if present */
278 
279 	/* List of any Interface Association Descriptors in this
280 	 * configuration. */
281 	struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
282 
283 	/* the interfaces associated with this configuration,
284 	 * stored in no particular order */
285 	struct usb_interface *interface[USB_MAXINTERFACES];
286 
287 	/* Interface information available even when this is not the
288 	 * active configuration */
289 	struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
290 
291 	unsigned char *extra;   /* Extra descriptors */
292 	int extralen;
293 };
294 
295 /* USB2.0 and USB3.0 device BOS descriptor set */
296 struct usb_host_bos {
297 	struct usb_bos_descriptor	*desc;
298 
299 	/* wireless cap descriptor is handled by wusb */
300 	struct usb_ext_cap_descriptor	*ext_cap;
301 	struct usb_ss_cap_descriptor	*ss_cap;
302 	struct usb_ss_container_id_descriptor	*ss_id;
303 };
304 
305 int __usb_get_extra_descriptor(char *buffer, unsigned size,
306 	unsigned char type, void **ptr);
307 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
308 				__usb_get_extra_descriptor((ifpoint)->extra, \
309 				(ifpoint)->extralen, \
310 				type, (void **)ptr)
311 
312 /* ----------------------------------------------------------------------- */
313 
314 /* USB device number allocation bitmap */
315 struct usb_devmap {
316 	unsigned long devicemap[128 / (8*sizeof(unsigned long))];
317 };
318 
319 /*
320  * Allocated per bus (tree of devices) we have:
321  */
322 struct usb_bus {
323 	struct device *controller;	/* host/master side hardware */
324 	int busnum;			/* Bus number (in order of reg) */
325 	const char *bus_name;		/* stable id (PCI slot_name etc) */
326 	u8 uses_dma;			/* Does the host controller use DMA? */
327 	u8 uses_pio_for_control;	/*
328 					 * Does the host controller use PIO
329 					 * for control transfers?
330 					 */
331 	u8 otg_port;			/* 0, or number of OTG/HNP port */
332 	unsigned is_b_host:1;		/* true during some HNP roleswitches */
333 	unsigned b_hnp_enable:1;	/* OTG: did A-Host enable HNP? */
334 	unsigned sg_tablesize;		/* 0 or largest number of sg list entries */
335 
336 	int devnum_next;		/* Next open device number in
337 					 * round-robin allocation */
338 
339 	struct usb_devmap devmap;	/* device address allocation map */
340 	struct usb_device *root_hub;	/* Root hub */
341 	struct usb_bus *hs_companion;	/* Companion EHCI bus, if any */
342 	struct list_head bus_list;	/* list of busses */
343 
344 	int bandwidth_allocated;	/* on this bus: how much of the time
345 					 * reserved for periodic (intr/iso)
346 					 * requests is used, on average?
347 					 * Units: microseconds/frame.
348 					 * Limits: Full/low speed reserve 90%,
349 					 * while high speed reserves 80%.
350 					 */
351 	int bandwidth_int_reqs;		/* number of Interrupt requests */
352 	int bandwidth_isoc_reqs;	/* number of Isoc. requests */
353 
354 #ifdef CONFIG_USB_DEVICEFS
355 	struct dentry *usbfs_dentry;	/* usbfs dentry entry for the bus */
356 #endif
357 
358 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
359 	struct mon_bus *mon_bus;	/* non-null when associated */
360 	int monitored;			/* non-zero when monitored */
361 #endif
362 };
363 
364 /* ----------------------------------------------------------------------- */
365 
366 /* This is arbitrary.
367  * From USB 2.0 spec Table 11-13, offset 7, a hub can
368  * have up to 255 ports. The most yet reported is 10.
369  *
370  * Current Wireless USB host hardware (Intel i1480 for example) allows
371  * up to 22 devices to connect. Upcoming hardware might raise that
372  * limit. Because the arrays need to add a bit for hub status data, we
373  * do 31, so plus one evens out to four bytes.
374  */
375 #define USB_MAXCHILDREN		(31)
376 
377 struct usb_tt;
378 
379 enum usb_device_removable {
380 	USB_DEVICE_REMOVABLE_UNKNOWN = 0,
381 	USB_DEVICE_REMOVABLE,
382 	USB_DEVICE_FIXED,
383 };
384 
385 /**
386  * struct usb_device - kernel's representation of a USB device
387  * @devnum: device number; address on a USB bus
388  * @devpath: device ID string for use in messages (e.g., /port/...)
389  * @route: tree topology hex string for use with xHCI
390  * @state: device state: configured, not attached, etc.
391  * @speed: device speed: high/full/low (or error)
392  * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
393  * @ttport: device port on that tt hub
394  * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
395  * @parent: our hub, unless we're the root
396  * @bus: bus we're part of
397  * @ep0: endpoint 0 data (default control pipe)
398  * @dev: generic device interface
399  * @descriptor: USB device descriptor
400  * @bos: USB device BOS descriptor set
401  * @config: all of the device's configs
402  * @actconfig: the active configuration
403  * @ep_in: array of IN endpoints
404  * @ep_out: array of OUT endpoints
405  * @rawdescriptors: raw descriptors for each config
406  * @bus_mA: Current available from the bus
407  * @portnum: parent port number (origin 1)
408  * @level: number of USB hub ancestors
409  * @can_submit: URBs may be submitted
410  * @persist_enabled:  USB_PERSIST enabled for this device
411  * @have_langid: whether string_langid is valid
412  * @authorized: policy has said we can use it;
413  *	(user space) policy determines if we authorize this device to be
414  *	used or not. By default, wired USB devices are authorized.
415  *	WUSB devices are not, until we authorize them from user space.
416  *	FIXME -- complete doc
417  * @authenticated: Crypto authentication passed
418  * @wusb: device is Wireless USB
419  * @lpm_capable: device supports LPM
420  * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
421  * @usb2_hw_lpm_enabled: USB2 hardware LPM enabled
422  * @string_langid: language ID for strings
423  * @product: iProduct string, if present (static)
424  * @manufacturer: iManufacturer string, if present (static)
425  * @serial: iSerialNumber string, if present (static)
426  * @filelist: usbfs files that are open to this device
427  * @usb_classdev: USB class device that was created for usbfs device
428  *	access from userspace
429  * @usbfs_dentry: usbfs dentry entry for the device
430  * @maxchild: number of ports if hub
431  * @children: child devices - USB devices that are attached to this hub
432  * @quirks: quirks of the whole device
433  * @urbnum: number of URBs submitted for the whole device
434  * @active_duration: total time device is not suspended
435  * @connect_time: time device was first connected
436  * @do_remote_wakeup:  remote wakeup should be enabled
437  * @reset_resume: needs reset instead of resume
438  * @wusb_dev: if this is a Wireless USB device, link to the WUSB
439  *	specific data for the device.
440  * @slot_id: Slot ID assigned by xHCI
441  * @removable: Device can be physically removed from this port
442  *
443  * Notes:
444  * Usbcore drivers should not set usbdev->state directly.  Instead use
445  * usb_set_device_state().
446  */
447 struct usb_device {
448 	int		devnum;
449 	char		devpath[16];
450 	u32		route;
451 	enum usb_device_state	state;
452 	enum usb_device_speed	speed;
453 
454 	struct usb_tt	*tt;
455 	int		ttport;
456 
457 	unsigned int toggle[2];
458 
459 	struct usb_device *parent;
460 	struct usb_bus *bus;
461 	struct usb_host_endpoint ep0;
462 
463 	struct device dev;
464 
465 	struct usb_device_descriptor descriptor;
466 	struct usb_host_bos *bos;
467 	struct usb_host_config *config;
468 
469 	struct usb_host_config *actconfig;
470 	struct usb_host_endpoint *ep_in[16];
471 	struct usb_host_endpoint *ep_out[16];
472 
473 	char **rawdescriptors;
474 
475 	unsigned short bus_mA;
476 	u8 portnum;
477 	u8 level;
478 
479 	unsigned can_submit:1;
480 	unsigned persist_enabled:1;
481 	unsigned have_langid:1;
482 	unsigned authorized:1;
483 	unsigned authenticated:1;
484 	unsigned wusb:1;
485 	unsigned lpm_capable:1;
486 	unsigned usb2_hw_lpm_capable:1;
487 	unsigned usb2_hw_lpm_enabled:1;
488 	int string_langid;
489 
490 	/* static strings from the device */
491 	char *product;
492 	char *manufacturer;
493 	char *serial;
494 
495 	struct list_head filelist;
496 #ifdef CONFIG_USB_DEVICE_CLASS
497 	struct device *usb_classdev;
498 #endif
499 #ifdef CONFIG_USB_DEVICEFS
500 	struct dentry *usbfs_dentry;
501 #endif
502 
503 	int maxchild;
504 	struct usb_device **children;
505 
506 	u32 quirks;
507 	atomic_t urbnum;
508 
509 	unsigned long active_duration;
510 
511 #ifdef CONFIG_PM
512 	unsigned long connect_time;
513 
514 	unsigned do_remote_wakeup:1;
515 	unsigned reset_resume:1;
516 #endif
517 	struct wusb_dev *wusb_dev;
518 	int slot_id;
519 	enum usb_device_removable removable;
520 };
521 #define	to_usb_device(d) container_of(d, struct usb_device, dev)
522 
interface_to_usbdev(struct usb_interface * intf)523 static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
524 {
525 	return to_usb_device(intf->dev.parent);
526 }
527 
528 extern struct usb_device *usb_get_dev(struct usb_device *dev);
529 extern void usb_put_dev(struct usb_device *dev);
530 
531 /* USB device locking */
532 #define usb_lock_device(udev)		device_lock(&(udev)->dev)
533 #define usb_unlock_device(udev)		device_unlock(&(udev)->dev)
534 #define usb_trylock_device(udev)	device_trylock(&(udev)->dev)
535 extern int usb_lock_device_for_reset(struct usb_device *udev,
536 				     const struct usb_interface *iface);
537 
538 /* USB port reset for device reinitialization */
539 extern int usb_reset_device(struct usb_device *dev);
540 extern void usb_queue_reset_device(struct usb_interface *dev);
541 
542 
543 /* USB autosuspend and autoresume */
544 #ifdef CONFIG_USB_SUSPEND
545 extern void usb_enable_autosuspend(struct usb_device *udev);
546 extern void usb_disable_autosuspend(struct usb_device *udev);
547 
548 extern int usb_autopm_get_interface(struct usb_interface *intf);
549 extern void usb_autopm_put_interface(struct usb_interface *intf);
550 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
551 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
552 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
553 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
554 
usb_mark_last_busy(struct usb_device * udev)555 static inline void usb_mark_last_busy(struct usb_device *udev)
556 {
557 	pm_runtime_mark_last_busy(&udev->dev);
558 }
559 
560 #else
561 
usb_enable_autosuspend(struct usb_device * udev)562 static inline int usb_enable_autosuspend(struct usb_device *udev)
563 { return 0; }
usb_disable_autosuspend(struct usb_device * udev)564 static inline int usb_disable_autosuspend(struct usb_device *udev)
565 { return 0; }
566 
usb_autopm_get_interface(struct usb_interface * intf)567 static inline int usb_autopm_get_interface(struct usb_interface *intf)
568 { return 0; }
usb_autopm_get_interface_async(struct usb_interface * intf)569 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
570 { return 0; }
571 
usb_autopm_put_interface(struct usb_interface * intf)572 static inline void usb_autopm_put_interface(struct usb_interface *intf)
573 { }
usb_autopm_put_interface_async(struct usb_interface * intf)574 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
575 { }
usb_autopm_get_interface_no_resume(struct usb_interface * intf)576 static inline void usb_autopm_get_interface_no_resume(
577 		struct usb_interface *intf)
578 { }
usb_autopm_put_interface_no_suspend(struct usb_interface * intf)579 static inline void usb_autopm_put_interface_no_suspend(
580 		struct usb_interface *intf)
581 { }
usb_mark_last_busy(struct usb_device * udev)582 static inline void usb_mark_last_busy(struct usb_device *udev)
583 { }
584 #endif
585 
586 /*-------------------------------------------------------------------------*/
587 
588 /* for drivers using iso endpoints */
589 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
590 
591 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
592 extern int usb_alloc_streams(struct usb_interface *interface,
593 		struct usb_host_endpoint **eps, unsigned int num_eps,
594 		unsigned int num_streams, gfp_t mem_flags);
595 
596 /* Reverts a group of bulk endpoints back to not using stream IDs. */
597 extern void usb_free_streams(struct usb_interface *interface,
598 		struct usb_host_endpoint **eps, unsigned int num_eps,
599 		gfp_t mem_flags);
600 
601 /* used these for multi-interface device registration */
602 extern int usb_driver_claim_interface(struct usb_driver *driver,
603 			struct usb_interface *iface, void *priv);
604 
605 /**
606  * usb_interface_claimed - returns true iff an interface is claimed
607  * @iface: the interface being checked
608  *
609  * Returns true (nonzero) iff the interface is claimed, else false (zero).
610  * Callers must own the driver model's usb bus readlock.  So driver
611  * probe() entries don't need extra locking, but other call contexts
612  * may need to explicitly claim that lock.
613  *
614  */
usb_interface_claimed(struct usb_interface * iface)615 static inline int usb_interface_claimed(struct usb_interface *iface)
616 {
617 	return (iface->dev.driver != NULL);
618 }
619 
620 extern void usb_driver_release_interface(struct usb_driver *driver,
621 			struct usb_interface *iface);
622 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
623 					 const struct usb_device_id *id);
624 extern int usb_match_one_id(struct usb_interface *interface,
625 			    const struct usb_device_id *id);
626 
627 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
628 		int minor);
629 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
630 		unsigned ifnum);
631 extern struct usb_host_interface *usb_altnum_to_altsetting(
632 		const struct usb_interface *intf, unsigned int altnum);
633 extern struct usb_host_interface *usb_find_alt_setting(
634 		struct usb_host_config *config,
635 		unsigned int iface_num,
636 		unsigned int alt_num);
637 
638 
639 /**
640  * usb_make_path - returns stable device path in the usb tree
641  * @dev: the device whose path is being constructed
642  * @buf: where to put the string
643  * @size: how big is "buf"?
644  *
645  * Returns length of the string (> 0) or negative if size was too small.
646  *
647  * This identifier is intended to be "stable", reflecting physical paths in
648  * hardware such as physical bus addresses for host controllers or ports on
649  * USB hubs.  That makes it stay the same until systems are physically
650  * reconfigured, by re-cabling a tree of USB devices or by moving USB host
651  * controllers.  Adding and removing devices, including virtual root hubs
652  * in host controller driver modules, does not change these path identifiers;
653  * neither does rebooting or re-enumerating.  These are more useful identifiers
654  * than changeable ("unstable") ones like bus numbers or device addresses.
655  *
656  * With a partial exception for devices connected to USB 2.0 root hubs, these
657  * identifiers are also predictable.  So long as the device tree isn't changed,
658  * plugging any USB device into a given hub port always gives it the same path.
659  * Because of the use of "companion" controllers, devices connected to ports on
660  * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
661  * high speed, and a different one if they are full or low speed.
662  */
usb_make_path(struct usb_device * dev,char * buf,size_t size)663 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
664 {
665 	int actual;
666 	actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
667 			  dev->devpath);
668 	return (actual >= (int)size) ? -1 : actual;
669 }
670 
671 /*-------------------------------------------------------------------------*/
672 
673 #define USB_DEVICE_ID_MATCH_DEVICE \
674 		(USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
675 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
676 		(USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
677 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
678 		(USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
679 #define USB_DEVICE_ID_MATCH_DEV_INFO \
680 		(USB_DEVICE_ID_MATCH_DEV_CLASS | \
681 		USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
682 		USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
683 #define USB_DEVICE_ID_MATCH_INT_INFO \
684 		(USB_DEVICE_ID_MATCH_INT_CLASS | \
685 		USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
686 		USB_DEVICE_ID_MATCH_INT_PROTOCOL)
687 
688 /**
689  * USB_DEVICE - macro used to describe a specific usb device
690  * @vend: the 16 bit USB Vendor ID
691  * @prod: the 16 bit USB Product ID
692  *
693  * This macro is used to create a struct usb_device_id that matches a
694  * specific device.
695  */
696 #define USB_DEVICE(vend, prod) \
697 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
698 	.idVendor = (vend), \
699 	.idProduct = (prod)
700 /**
701  * USB_DEVICE_VER - describe a specific usb device with a version range
702  * @vend: the 16 bit USB Vendor ID
703  * @prod: the 16 bit USB Product ID
704  * @lo: the bcdDevice_lo value
705  * @hi: the bcdDevice_hi value
706  *
707  * This macro is used to create a struct usb_device_id that matches a
708  * specific device, with a version range.
709  */
710 #define USB_DEVICE_VER(vend, prod, lo, hi) \
711 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
712 	.idVendor = (vend), \
713 	.idProduct = (prod), \
714 	.bcdDevice_lo = (lo), \
715 	.bcdDevice_hi = (hi)
716 
717 /**
718  * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
719  * @vend: the 16 bit USB Vendor ID
720  * @prod: the 16 bit USB Product ID
721  * @cl: bInterfaceClass value
722  *
723  * This macro is used to create a struct usb_device_id that matches a
724  * specific interface class of devices.
725  */
726 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
727 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
728 		       USB_DEVICE_ID_MATCH_INT_CLASS, \
729 	.idVendor = (vend), \
730 	.idProduct = (prod), \
731 	.bInterfaceClass = (cl)
732 
733 /**
734  * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
735  * @vend: the 16 bit USB Vendor ID
736  * @prod: the 16 bit USB Product ID
737  * @pr: bInterfaceProtocol value
738  *
739  * This macro is used to create a struct usb_device_id that matches a
740  * specific interface protocol of devices.
741  */
742 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
743 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
744 		       USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
745 	.idVendor = (vend), \
746 	.idProduct = (prod), \
747 	.bInterfaceProtocol = (pr)
748 
749 /**
750  * USB_DEVICE_INFO - macro used to describe a class of usb devices
751  * @cl: bDeviceClass value
752  * @sc: bDeviceSubClass value
753  * @pr: bDeviceProtocol value
754  *
755  * This macro is used to create a struct usb_device_id that matches a
756  * specific class of devices.
757  */
758 #define USB_DEVICE_INFO(cl, sc, pr) \
759 	.match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
760 	.bDeviceClass = (cl), \
761 	.bDeviceSubClass = (sc), \
762 	.bDeviceProtocol = (pr)
763 
764 /**
765  * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
766  * @cl: bInterfaceClass value
767  * @sc: bInterfaceSubClass value
768  * @pr: bInterfaceProtocol value
769  *
770  * This macro is used to create a struct usb_device_id that matches a
771  * specific class of interfaces.
772  */
773 #define USB_INTERFACE_INFO(cl, sc, pr) \
774 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
775 	.bInterfaceClass = (cl), \
776 	.bInterfaceSubClass = (sc), \
777 	.bInterfaceProtocol = (pr)
778 
779 /**
780  * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
781  * @vend: the 16 bit USB Vendor ID
782  * @prod: the 16 bit USB Product ID
783  * @cl: bInterfaceClass value
784  * @sc: bInterfaceSubClass value
785  * @pr: bInterfaceProtocol value
786  *
787  * This macro is used to create a struct usb_device_id that matches a
788  * specific device with a specific class of interfaces.
789  *
790  * This is especially useful when explicitly matching devices that have
791  * vendor specific bDeviceClass values, but standards-compliant interfaces.
792  */
793 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
794 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
795 		| USB_DEVICE_ID_MATCH_DEVICE, \
796 	.idVendor = (vend), \
797 	.idProduct = (prod), \
798 	.bInterfaceClass = (cl), \
799 	.bInterfaceSubClass = (sc), \
800 	.bInterfaceProtocol = (pr)
801 
802 /**
803  * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
804  * @vend: the 16 bit USB Vendor ID
805  * @cl: bInterfaceClass value
806  * @sc: bInterfaceSubClass value
807  * @pr: bInterfaceProtocol value
808  *
809  * This macro is used to create a struct usb_device_id that matches a
810  * specific vendor with a specific class of interfaces.
811  *
812  * This is especially useful when explicitly matching devices that have
813  * vendor specific bDeviceClass values, but standards-compliant interfaces.
814  */
815 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
816 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
817 		| USB_DEVICE_ID_MATCH_VENDOR, \
818 	.idVendor = (vend), \
819 	.bInterfaceClass = (cl), \
820 	.bInterfaceSubClass = (sc), \
821 	.bInterfaceProtocol = (pr)
822 
823 /* ----------------------------------------------------------------------- */
824 
825 /* Stuff for dynamic usb ids */
826 struct usb_dynids {
827 	spinlock_t lock;
828 	struct list_head list;
829 };
830 
831 struct usb_dynid {
832 	struct list_head node;
833 	struct usb_device_id id;
834 };
835 
836 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
837 				struct device_driver *driver,
838 				const char *buf, size_t count);
839 
840 /**
841  * struct usbdrv_wrap - wrapper for driver-model structure
842  * @driver: The driver-model core driver structure.
843  * @for_devices: Non-zero for device drivers, 0 for interface drivers.
844  */
845 struct usbdrv_wrap {
846 	struct device_driver driver;
847 	int for_devices;
848 };
849 
850 /**
851  * struct usb_driver - identifies USB interface driver to usbcore
852  * @name: The driver name should be unique among USB drivers,
853  *	and should normally be the same as the module name.
854  * @probe: Called to see if the driver is willing to manage a particular
855  *	interface on a device.  If it is, probe returns zero and uses
856  *	usb_set_intfdata() to associate driver-specific data with the
857  *	interface.  It may also use usb_set_interface() to specify the
858  *	appropriate altsetting.  If unwilling to manage the interface,
859  *	return -ENODEV, if genuine IO errors occurred, an appropriate
860  *	negative errno value.
861  * @disconnect: Called when the interface is no longer accessible, usually
862  *	because its device has been (or is being) disconnected or the
863  *	driver module is being unloaded.
864  * @unlocked_ioctl: Used for drivers that want to talk to userspace through
865  *	the "usbfs" filesystem.  This lets devices provide ways to
866  *	expose information to user space regardless of where they
867  *	do (or don't) show up otherwise in the filesystem.
868  * @suspend: Called when the device is going to be suspended by the system.
869  * @resume: Called when the device is being resumed by the system.
870  * @reset_resume: Called when the suspended device has been reset instead
871  *	of being resumed.
872  * @pre_reset: Called by usb_reset_device() when the device is about to be
873  *	reset.  This routine must not return until the driver has no active
874  *	URBs for the device, and no more URBs may be submitted until the
875  *	post_reset method is called.
876  * @post_reset: Called by usb_reset_device() after the device
877  *	has been reset
878  * @id_table: USB drivers use ID table to support hotplugging.
879  *	Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
880  *	or your driver's probe function will never get called.
881  * @dynids: used internally to hold the list of dynamically added device
882  *	ids for this driver.
883  * @drvwrap: Driver-model core structure wrapper.
884  * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
885  *	added to this driver by preventing the sysfs file from being created.
886  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
887  *	for interfaces bound to this driver.
888  * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
889  *	endpoints before calling the driver's disconnect method.
890  *
891  * USB interface drivers must provide a name, probe() and disconnect()
892  * methods, and an id_table.  Other driver fields are optional.
893  *
894  * The id_table is used in hotplugging.  It holds a set of descriptors,
895  * and specialized data may be associated with each entry.  That table
896  * is used by both user and kernel mode hotplugging support.
897  *
898  * The probe() and disconnect() methods are called in a context where
899  * they can sleep, but they should avoid abusing the privilege.  Most
900  * work to connect to a device should be done when the device is opened,
901  * and undone at the last close.  The disconnect code needs to address
902  * concurrency issues with respect to open() and close() methods, as
903  * well as forcing all pending I/O requests to complete (by unlinking
904  * them as necessary, and blocking until the unlinks complete).
905  */
906 struct usb_driver {
907 	const char *name;
908 
909 	int (*probe) (struct usb_interface *intf,
910 		      const struct usb_device_id *id);
911 
912 	void (*disconnect) (struct usb_interface *intf);
913 
914 	int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
915 			void *buf);
916 
917 	int (*suspend) (struct usb_interface *intf, pm_message_t message);
918 	int (*resume) (struct usb_interface *intf);
919 	int (*reset_resume)(struct usb_interface *intf);
920 
921 	int (*pre_reset)(struct usb_interface *intf);
922 	int (*post_reset)(struct usb_interface *intf);
923 
924 	const struct usb_device_id *id_table;
925 
926 	struct usb_dynids dynids;
927 	struct usbdrv_wrap drvwrap;
928 	unsigned int no_dynamic_id:1;
929 	unsigned int supports_autosuspend:1;
930 	unsigned int soft_unbind:1;
931 };
932 #define	to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
933 
934 /**
935  * struct usb_device_driver - identifies USB device driver to usbcore
936  * @name: The driver name should be unique among USB drivers,
937  *	and should normally be the same as the module name.
938  * @probe: Called to see if the driver is willing to manage a particular
939  *	device.  If it is, probe returns zero and uses dev_set_drvdata()
940  *	to associate driver-specific data with the device.  If unwilling
941  *	to manage the device, return a negative errno value.
942  * @disconnect: Called when the device is no longer accessible, usually
943  *	because it has been (or is being) disconnected or the driver's
944  *	module is being unloaded.
945  * @suspend: Called when the device is going to be suspended by the system.
946  * @resume: Called when the device is being resumed by the system.
947  * @drvwrap: Driver-model core structure wrapper.
948  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
949  *	for devices bound to this driver.
950  *
951  * USB drivers must provide all the fields listed above except drvwrap.
952  */
953 struct usb_device_driver {
954 	const char *name;
955 
956 	int (*probe) (struct usb_device *udev);
957 	void (*disconnect) (struct usb_device *udev);
958 
959 	int (*suspend) (struct usb_device *udev, pm_message_t message);
960 	int (*resume) (struct usb_device *udev, pm_message_t message);
961 	struct usbdrv_wrap drvwrap;
962 	unsigned int supports_autosuspend:1;
963 };
964 #define	to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
965 		drvwrap.driver)
966 
967 extern struct bus_type usb_bus_type;
968 
969 /**
970  * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
971  * @name: the usb class device name for this driver.  Will show up in sysfs.
972  * @devnode: Callback to provide a naming hint for a possible
973  *	device node to create.
974  * @fops: pointer to the struct file_operations of this driver.
975  * @minor_base: the start of the minor range for this driver.
976  *
977  * This structure is used for the usb_register_dev() and
978  * usb_unregister_dev() functions, to consolidate a number of the
979  * parameters used for them.
980  */
981 struct usb_class_driver {
982 	char *name;
983 	char *(*devnode)(struct device *dev, umode_t *mode);
984 	const struct file_operations *fops;
985 	int minor_base;
986 };
987 
988 /*
989  * use these in module_init()/module_exit()
990  * and don't forget MODULE_DEVICE_TABLE(usb, ...)
991  */
992 extern int usb_register_driver(struct usb_driver *, struct module *,
993 			       const char *);
994 
995 /* use a define to avoid include chaining to get THIS_MODULE & friends */
996 #define usb_register(driver) \
997 	usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
998 
999 extern void usb_deregister(struct usb_driver *);
1000 
1001 /**
1002  * module_usb_driver() - Helper macro for registering a USB driver
1003  * @__usb_driver: usb_driver struct
1004  *
1005  * Helper macro for USB drivers which do not do anything special in module
1006  * init/exit. This eliminates a lot of boilerplate. Each module may only
1007  * use this macro once, and calling it replaces module_init() and module_exit()
1008  */
1009 #define module_usb_driver(__usb_driver) \
1010 	module_driver(__usb_driver, usb_register, \
1011 		       usb_deregister)
1012 
1013 extern int usb_register_device_driver(struct usb_device_driver *,
1014 			struct module *);
1015 extern void usb_deregister_device_driver(struct usb_device_driver *);
1016 
1017 extern int usb_register_dev(struct usb_interface *intf,
1018 			    struct usb_class_driver *class_driver);
1019 extern void usb_deregister_dev(struct usb_interface *intf,
1020 			       struct usb_class_driver *class_driver);
1021 
1022 extern int usb_disabled(void);
1023 
1024 /* ----------------------------------------------------------------------- */
1025 
1026 /*
1027  * URB support, for asynchronous request completions
1028  */
1029 
1030 /*
1031  * urb->transfer_flags:
1032  *
1033  * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1034  */
1035 #define URB_SHORT_NOT_OK	0x0001	/* report short reads as errors */
1036 #define URB_ISO_ASAP		0x0002	/* iso-only, urb->start_frame
1037 					 * ignored */
1038 #define URB_NO_TRANSFER_DMA_MAP	0x0004	/* urb->transfer_dma valid on submit */
1039 #define URB_NO_FSBR		0x0020	/* UHCI-specific */
1040 #define URB_ZERO_PACKET		0x0040	/* Finish bulk OUT with short packet */
1041 #define URB_NO_INTERRUPT	0x0080	/* HINT: no non-error interrupt
1042 					 * needed */
1043 #define URB_FREE_BUFFER		0x0100	/* Free transfer buffer with the URB */
1044 
1045 /* The following flags are used internally by usbcore and HCDs */
1046 #define URB_DIR_IN		0x0200	/* Transfer from device to host */
1047 #define URB_DIR_OUT		0
1048 #define URB_DIR_MASK		URB_DIR_IN
1049 
1050 #define URB_DMA_MAP_SINGLE	0x00010000	/* Non-scatter-gather mapping */
1051 #define URB_DMA_MAP_PAGE	0x00020000	/* HCD-unsupported S-G */
1052 #define URB_DMA_MAP_SG		0x00040000	/* HCD-supported S-G */
1053 #define URB_MAP_LOCAL		0x00080000	/* HCD-local-memory mapping */
1054 #define URB_SETUP_MAP_SINGLE	0x00100000	/* Setup packet DMA mapped */
1055 #define URB_SETUP_MAP_LOCAL	0x00200000	/* HCD-local setup packet */
1056 #define URB_DMA_SG_COMBINED	0x00400000	/* S-G entries were combined */
1057 #define URB_ALIGNED_TEMP_BUFFER	0x00800000	/* Temp buffer was alloc'd */
1058 
1059 struct usb_iso_packet_descriptor {
1060 	unsigned int offset;
1061 	unsigned int length;		/* expected length */
1062 	unsigned int actual_length;
1063 	int status;
1064 };
1065 
1066 struct urb;
1067 
1068 struct usb_anchor {
1069 	struct list_head urb_list;
1070 	wait_queue_head_t wait;
1071 	spinlock_t lock;
1072 	unsigned int poisoned:1;
1073 };
1074 
init_usb_anchor(struct usb_anchor * anchor)1075 static inline void init_usb_anchor(struct usb_anchor *anchor)
1076 {
1077 	INIT_LIST_HEAD(&anchor->urb_list);
1078 	init_waitqueue_head(&anchor->wait);
1079 	spin_lock_init(&anchor->lock);
1080 }
1081 
1082 typedef void (*usb_complete_t)(struct urb *);
1083 
1084 /**
1085  * struct urb - USB Request Block
1086  * @urb_list: For use by current owner of the URB.
1087  * @anchor_list: membership in the list of an anchor
1088  * @anchor: to anchor URBs to a common mooring
1089  * @ep: Points to the endpoint's data structure.  Will eventually
1090  *	replace @pipe.
1091  * @pipe: Holds endpoint number, direction, type, and more.
1092  *	Create these values with the eight macros available;
1093  *	usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1094  *	(control), "bulk", "int" (interrupt), or "iso" (isochronous).
1095  *	For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
1096  *	numbers range from zero to fifteen.  Note that "in" endpoint two
1097  *	is a different endpoint (and pipe) from "out" endpoint two.
1098  *	The current configuration controls the existence, type, and
1099  *	maximum packet size of any given endpoint.
1100  * @stream_id: the endpoint's stream ID for bulk streams
1101  * @dev: Identifies the USB device to perform the request.
1102  * @status: This is read in non-iso completion functions to get the
1103  *	status of the particular request.  ISO requests only use it
1104  *	to tell whether the URB was unlinked; detailed status for
1105  *	each frame is in the fields of the iso_frame-desc.
1106  * @transfer_flags: A variety of flags may be used to affect how URB
1107  *	submission, unlinking, or operation are handled.  Different
1108  *	kinds of URB can use different flags.
1109  * @transfer_buffer:  This identifies the buffer to (or from) which the I/O
1110  *	request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1111  *	(however, do not leave garbage in transfer_buffer even then).
1112  *	This buffer must be suitable for DMA; allocate it with
1113  *	kmalloc() or equivalent.  For transfers to "in" endpoints, contents
1114  *	of this buffer will be modified.  This buffer is used for the data
1115  *	stage of control transfers.
1116  * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1117  *	the device driver is saying that it provided this DMA address,
1118  *	which the host controller driver should use in preference to the
1119  *	transfer_buffer.
1120  * @sg: scatter gather buffer list
1121  * @num_mapped_sgs: (internal) number of mapped sg entries
1122  * @num_sgs: number of entries in the sg list
1123  * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
1124  *	be broken up into chunks according to the current maximum packet
1125  *	size for the endpoint, which is a function of the configuration
1126  *	and is encoded in the pipe.  When the length is zero, neither
1127  *	transfer_buffer nor transfer_dma is used.
1128  * @actual_length: This is read in non-iso completion functions, and
1129  *	it tells how many bytes (out of transfer_buffer_length) were
1130  *	transferred.  It will normally be the same as requested, unless
1131  *	either an error was reported or a short read was performed.
1132  *	The URB_SHORT_NOT_OK transfer flag may be used to make such
1133  *	short reads be reported as errors.
1134  * @setup_packet: Only used for control transfers, this points to eight bytes
1135  *	of setup data.  Control transfers always start by sending this data
1136  *	to the device.  Then transfer_buffer is read or written, if needed.
1137  * @setup_dma: DMA pointer for the setup packet.  The caller must not use
1138  *	this field; setup_packet must point to a valid buffer.
1139  * @start_frame: Returns the initial frame for isochronous transfers.
1140  * @number_of_packets: Lists the number of ISO transfer buffers.
1141  * @interval: Specifies the polling interval for interrupt or isochronous
1142  *	transfers.  The units are frames (milliseconds) for full and low
1143  *	speed devices, and microframes (1/8 millisecond) for highspeed
1144  *	and SuperSpeed devices.
1145  * @error_count: Returns the number of ISO transfers that reported errors.
1146  * @context: For use in completion functions.  This normally points to
1147  *	request-specific driver context.
1148  * @complete: Completion handler. This URB is passed as the parameter to the
1149  *	completion function.  The completion function may then do what
1150  *	it likes with the URB, including resubmitting or freeing it.
1151  * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1152  *	collect the transfer status for each buffer.
1153  *
1154  * This structure identifies USB transfer requests.  URBs must be allocated by
1155  * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1156  * Initialization may be done using various usb_fill_*_urb() functions.  URBs
1157  * are submitted using usb_submit_urb(), and pending requests may be canceled
1158  * using usb_unlink_urb() or usb_kill_urb().
1159  *
1160  * Data Transfer Buffers:
1161  *
1162  * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1163  * taken from the general page pool.  That is provided by transfer_buffer
1164  * (control requests also use setup_packet), and host controller drivers
1165  * perform a dma mapping (and unmapping) for each buffer transferred.  Those
1166  * mapping operations can be expensive on some platforms (perhaps using a dma
1167  * bounce buffer or talking to an IOMMU),
1168  * although they're cheap on commodity x86 and ppc hardware.
1169  *
1170  * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1171  * which tells the host controller driver that no such mapping is needed for
1172  * the transfer_buffer since
1173  * the device driver is DMA-aware.  For example, a device driver might
1174  * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1175  * When this transfer flag is provided, host controller drivers will
1176  * attempt to use the dma address found in the transfer_dma
1177  * field rather than determining a dma address themselves.
1178  *
1179  * Note that transfer_buffer must still be set if the controller
1180  * does not support DMA (as indicated by bus.uses_dma) and when talking
1181  * to root hub. If you have to trasfer between highmem zone and the device
1182  * on such controller, create a bounce buffer or bail out with an error.
1183  * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1184  * capable, assign NULL to it, so that usbmon knows not to use the value.
1185  * The setup_packet must always be set, so it cannot be located in highmem.
1186  *
1187  * Initialization:
1188  *
1189  * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1190  * zero), and complete fields.  All URBs must also initialize
1191  * transfer_buffer and transfer_buffer_length.  They may provide the
1192  * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1193  * to be treated as errors; that flag is invalid for write requests.
1194  *
1195  * Bulk URBs may
1196  * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1197  * should always terminate with a short packet, even if it means adding an
1198  * extra zero length packet.
1199  *
1200  * Control URBs must provide a valid pointer in the setup_packet field.
1201  * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1202  * beforehand.
1203  *
1204  * Interrupt URBs must provide an interval, saying how often (in milliseconds
1205  * or, for highspeed devices, 125 microsecond units)
1206  * to poll for transfers.  After the URB has been submitted, the interval
1207  * field reflects how the transfer was actually scheduled.
1208  * The polling interval may be more frequent than requested.
1209  * For example, some controllers have a maximum interval of 32 milliseconds,
1210  * while others support intervals of up to 1024 milliseconds.
1211  * Isochronous URBs also have transfer intervals.  (Note that for isochronous
1212  * endpoints, as well as high speed interrupt endpoints, the encoding of
1213  * the transfer interval in the endpoint descriptor is logarithmic.
1214  * Device drivers must convert that value to linear units themselves.)
1215  *
1216  * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling
1217  * the host controller to schedule the transfer as soon as bandwidth
1218  * utilization allows, and then set start_frame to reflect the actual frame
1219  * selected during submission.  Otherwise drivers must specify the start_frame
1220  * and handle the case where the transfer can't begin then.  However, drivers
1221  * won't know how bandwidth is currently allocated, and while they can
1222  * find the current frame using usb_get_current_frame_number () they can't
1223  * know the range for that frame number.  (Ranges for frame counter values
1224  * are HC-specific, and can go from 256 to 65536 frames from "now".)
1225  *
1226  * Isochronous URBs have a different data transfer model, in part because
1227  * the quality of service is only "best effort".  Callers provide specially
1228  * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1229  * at the end.  Each such packet is an individual ISO transfer.  Isochronous
1230  * URBs are normally queued, submitted by drivers to arrange that
1231  * transfers are at least double buffered, and then explicitly resubmitted
1232  * in completion handlers, so
1233  * that data (such as audio or video) streams at as constant a rate as the
1234  * host controller scheduler can support.
1235  *
1236  * Completion Callbacks:
1237  *
1238  * The completion callback is made in_interrupt(), and one of the first
1239  * things that a completion handler should do is check the status field.
1240  * The status field is provided for all URBs.  It is used to report
1241  * unlinked URBs, and status for all non-ISO transfers.  It should not
1242  * be examined before the URB is returned to the completion handler.
1243  *
1244  * The context field is normally used to link URBs back to the relevant
1245  * driver or request state.
1246  *
1247  * When the completion callback is invoked for non-isochronous URBs, the
1248  * actual_length field tells how many bytes were transferred.  This field
1249  * is updated even when the URB terminated with an error or was unlinked.
1250  *
1251  * ISO transfer status is reported in the status and actual_length fields
1252  * of the iso_frame_desc array, and the number of errors is reported in
1253  * error_count.  Completion callbacks for ISO transfers will normally
1254  * (re)submit URBs to ensure a constant transfer rate.
1255  *
1256  * Note that even fields marked "public" should not be touched by the driver
1257  * when the urb is owned by the hcd, that is, since the call to
1258  * usb_submit_urb() till the entry into the completion routine.
1259  */
1260 struct urb {
1261 	/* private: usb core and host controller only fields in the urb */
1262 	struct kref kref;		/* reference count of the URB */
1263 	void *hcpriv;			/* private data for host controller */
1264 	atomic_t use_count;		/* concurrent submissions counter */
1265 	atomic_t reject;		/* submissions will fail */
1266 	int unlinked;			/* unlink error code */
1267 
1268 	/* public: documented fields in the urb that can be used by drivers */
1269 	struct list_head urb_list;	/* list head for use by the urb's
1270 					 * current owner */
1271 	struct list_head anchor_list;	/* the URB may be anchored */
1272 	struct usb_anchor *anchor;
1273 	struct usb_device *dev;		/* (in) pointer to associated device */
1274 	struct usb_host_endpoint *ep;	/* (internal) pointer to endpoint */
1275 	unsigned int pipe;		/* (in) pipe information */
1276 	unsigned int stream_id;		/* (in) stream ID */
1277 	int status;			/* (return) non-ISO status */
1278 	unsigned int transfer_flags;	/* (in) URB_SHORT_NOT_OK | ...*/
1279 	void *transfer_buffer;		/* (in) associated data buffer */
1280 	dma_addr_t transfer_dma;	/* (in) dma addr for transfer_buffer */
1281 	struct scatterlist *sg;		/* (in) scatter gather buffer list */
1282 	int num_mapped_sgs;		/* (internal) mapped sg entries */
1283 	int num_sgs;			/* (in) number of entries in the sg list */
1284 	u32 transfer_buffer_length;	/* (in) data buffer length */
1285 	u32 actual_length;		/* (return) actual transfer length */
1286 	unsigned char *setup_packet;	/* (in) setup packet (control only) */
1287 	dma_addr_t setup_dma;		/* (in) dma addr for setup_packet */
1288 	int start_frame;		/* (modify) start frame (ISO) */
1289 	int number_of_packets;		/* (in) number of ISO packets */
1290 	int interval;			/* (modify) transfer interval
1291 					 * (INT/ISO) */
1292 	int error_count;		/* (return) number of ISO errors */
1293 	void *context;			/* (in) context for completion */
1294 	usb_complete_t complete;	/* (in) completion routine */
1295 	struct usb_iso_packet_descriptor iso_frame_desc[0];
1296 					/* (in) ISO ONLY */
1297 };
1298 
1299 /* ----------------------------------------------------------------------- */
1300 
1301 /**
1302  * usb_fill_control_urb - initializes a control urb
1303  * @urb: pointer to the urb to initialize.
1304  * @dev: pointer to the struct usb_device for this urb.
1305  * @pipe: the endpoint pipe
1306  * @setup_packet: pointer to the setup_packet buffer
1307  * @transfer_buffer: pointer to the transfer buffer
1308  * @buffer_length: length of the transfer buffer
1309  * @complete_fn: pointer to the usb_complete_t function
1310  * @context: what to set the urb context to.
1311  *
1312  * Initializes a control urb with the proper information needed to submit
1313  * it to a device.
1314  */
usb_fill_control_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,unsigned char * setup_packet,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context)1315 static inline void usb_fill_control_urb(struct urb *urb,
1316 					struct usb_device *dev,
1317 					unsigned int pipe,
1318 					unsigned char *setup_packet,
1319 					void *transfer_buffer,
1320 					int buffer_length,
1321 					usb_complete_t complete_fn,
1322 					void *context)
1323 {
1324 	urb->dev = dev;
1325 	urb->pipe = pipe;
1326 	urb->setup_packet = setup_packet;
1327 	urb->transfer_buffer = transfer_buffer;
1328 	urb->transfer_buffer_length = buffer_length;
1329 	urb->complete = complete_fn;
1330 	urb->context = context;
1331 }
1332 
1333 /**
1334  * usb_fill_bulk_urb - macro to help initialize a bulk urb
1335  * @urb: pointer to the urb to initialize.
1336  * @dev: pointer to the struct usb_device for this urb.
1337  * @pipe: the endpoint pipe
1338  * @transfer_buffer: pointer to the transfer buffer
1339  * @buffer_length: length of the transfer buffer
1340  * @complete_fn: pointer to the usb_complete_t function
1341  * @context: what to set the urb context to.
1342  *
1343  * Initializes a bulk urb with the proper information needed to submit it
1344  * to a device.
1345  */
usb_fill_bulk_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context)1346 static inline void usb_fill_bulk_urb(struct urb *urb,
1347 				     struct usb_device *dev,
1348 				     unsigned int pipe,
1349 				     void *transfer_buffer,
1350 				     int buffer_length,
1351 				     usb_complete_t complete_fn,
1352 				     void *context)
1353 {
1354 	urb->dev = dev;
1355 	urb->pipe = pipe;
1356 	urb->transfer_buffer = transfer_buffer;
1357 	urb->transfer_buffer_length = buffer_length;
1358 	urb->complete = complete_fn;
1359 	urb->context = context;
1360 }
1361 
1362 /**
1363  * usb_fill_int_urb - macro to help initialize a interrupt urb
1364  * @urb: pointer to the urb to initialize.
1365  * @dev: pointer to the struct usb_device for this urb.
1366  * @pipe: the endpoint pipe
1367  * @transfer_buffer: pointer to the transfer buffer
1368  * @buffer_length: length of the transfer buffer
1369  * @complete_fn: pointer to the usb_complete_t function
1370  * @context: what to set the urb context to.
1371  * @interval: what to set the urb interval to, encoded like
1372  *	the endpoint descriptor's bInterval value.
1373  *
1374  * Initializes a interrupt urb with the proper information needed to submit
1375  * it to a device.
1376  *
1377  * Note that High Speed and SuperSpeed interrupt endpoints use a logarithmic
1378  * encoding of the endpoint interval, and express polling intervals in
1379  * microframes (eight per millisecond) rather than in frames (one per
1380  * millisecond).
1381  *
1382  * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1383  * 128us instead of 125us.  For Wireless USB devices, the interval is passed
1384  * through to the host controller, rather than being translated into microframe
1385  * units.
1386  */
usb_fill_int_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context,int interval)1387 static inline void usb_fill_int_urb(struct urb *urb,
1388 				    struct usb_device *dev,
1389 				    unsigned int pipe,
1390 				    void *transfer_buffer,
1391 				    int buffer_length,
1392 				    usb_complete_t complete_fn,
1393 				    void *context,
1394 				    int interval)
1395 {
1396 	urb->dev = dev;
1397 	urb->pipe = pipe;
1398 	urb->transfer_buffer = transfer_buffer;
1399 	urb->transfer_buffer_length = buffer_length;
1400 	urb->complete = complete_fn;
1401 	urb->context = context;
1402 	if (dev->speed == USB_SPEED_HIGH || dev->speed == USB_SPEED_SUPER)
1403 		urb->interval = 1 << (interval - 1);
1404 	else
1405 		urb->interval = interval;
1406 	urb->start_frame = -1;
1407 }
1408 
1409 extern void usb_init_urb(struct urb *urb);
1410 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1411 extern void usb_free_urb(struct urb *urb);
1412 #define usb_put_urb usb_free_urb
1413 extern struct urb *usb_get_urb(struct urb *urb);
1414 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1415 extern int usb_unlink_urb(struct urb *urb);
1416 extern void usb_kill_urb(struct urb *urb);
1417 extern void usb_poison_urb(struct urb *urb);
1418 extern void usb_unpoison_urb(struct urb *urb);
1419 extern void usb_block_urb(struct urb *urb);
1420 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1421 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1422 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1423 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1424 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1425 extern void usb_unanchor_urb(struct urb *urb);
1426 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1427 					 unsigned int timeout);
1428 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1429 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1430 extern int usb_anchor_empty(struct usb_anchor *anchor);
1431 
1432 #define usb_unblock_urb	usb_unpoison_urb
1433 
1434 /**
1435  * usb_urb_dir_in - check if an URB describes an IN transfer
1436  * @urb: URB to be checked
1437  *
1438  * Returns 1 if @urb describes an IN transfer (device-to-host),
1439  * otherwise 0.
1440  */
usb_urb_dir_in(struct urb * urb)1441 static inline int usb_urb_dir_in(struct urb *urb)
1442 {
1443 	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1444 }
1445 
1446 /**
1447  * usb_urb_dir_out - check if an URB describes an OUT transfer
1448  * @urb: URB to be checked
1449  *
1450  * Returns 1 if @urb describes an OUT transfer (host-to-device),
1451  * otherwise 0.
1452  */
usb_urb_dir_out(struct urb * urb)1453 static inline int usb_urb_dir_out(struct urb *urb)
1454 {
1455 	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1456 }
1457 
1458 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1459 	gfp_t mem_flags, dma_addr_t *dma);
1460 void usb_free_coherent(struct usb_device *dev, size_t size,
1461 	void *addr, dma_addr_t dma);
1462 
1463 #if 0
1464 struct urb *usb_buffer_map(struct urb *urb);
1465 void usb_buffer_dmasync(struct urb *urb);
1466 void usb_buffer_unmap(struct urb *urb);
1467 #endif
1468 
1469 struct scatterlist;
1470 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1471 		      struct scatterlist *sg, int nents);
1472 #if 0
1473 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1474 			   struct scatterlist *sg, int n_hw_ents);
1475 #endif
1476 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1477 			 struct scatterlist *sg, int n_hw_ents);
1478 
1479 /*-------------------------------------------------------------------*
1480  *                         SYNCHRONOUS CALL SUPPORT                  *
1481  *-------------------------------------------------------------------*/
1482 
1483 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1484 	__u8 request, __u8 requesttype, __u16 value, __u16 index,
1485 	void *data, __u16 size, int timeout);
1486 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1487 	void *data, int len, int *actual_length, int timeout);
1488 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1489 	void *data, int len, int *actual_length,
1490 	int timeout);
1491 
1492 /* wrappers around usb_control_msg() for the most common standard requests */
1493 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1494 	unsigned char descindex, void *buf, int size);
1495 extern int usb_get_status(struct usb_device *dev,
1496 	int type, int target, void *data);
1497 extern int usb_string(struct usb_device *dev, int index,
1498 	char *buf, size_t size);
1499 
1500 /* wrappers that also update important state inside usbcore */
1501 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1502 extern int usb_reset_configuration(struct usb_device *dev);
1503 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1504 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1505 
1506 /* this request isn't really synchronous, but it belongs with the others */
1507 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1508 
1509 /*
1510  * timeouts, in milliseconds, used for sending/receiving control messages
1511  * they typically complete within a few frames (msec) after they're issued
1512  * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1513  * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1514  */
1515 #define USB_CTRL_GET_TIMEOUT	5000
1516 #define USB_CTRL_SET_TIMEOUT	5000
1517 
1518 
1519 /**
1520  * struct usb_sg_request - support for scatter/gather I/O
1521  * @status: zero indicates success, else negative errno
1522  * @bytes: counts bytes transferred.
1523  *
1524  * These requests are initialized using usb_sg_init(), and then are used
1525  * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1526  * members of the request object aren't for driver access.
1527  *
1528  * The status and bytecount values are valid only after usb_sg_wait()
1529  * returns.  If the status is zero, then the bytecount matches the total
1530  * from the request.
1531  *
1532  * After an error completion, drivers may need to clear a halt condition
1533  * on the endpoint.
1534  */
1535 struct usb_sg_request {
1536 	int			status;
1537 	size_t			bytes;
1538 
1539 	/* private:
1540 	 * members below are private to usbcore,
1541 	 * and are not provided for driver access!
1542 	 */
1543 	spinlock_t		lock;
1544 
1545 	struct usb_device	*dev;
1546 	int			pipe;
1547 
1548 	int			entries;
1549 	struct urb		**urbs;
1550 
1551 	int			count;
1552 	struct completion	complete;
1553 };
1554 
1555 int usb_sg_init(
1556 	struct usb_sg_request	*io,
1557 	struct usb_device	*dev,
1558 	unsigned		pipe,
1559 	unsigned		period,
1560 	struct scatterlist	*sg,
1561 	int			nents,
1562 	size_t			length,
1563 	gfp_t			mem_flags
1564 );
1565 void usb_sg_cancel(struct usb_sg_request *io);
1566 void usb_sg_wait(struct usb_sg_request *io);
1567 
1568 
1569 /* ----------------------------------------------------------------------- */
1570 
1571 /*
1572  * For various legacy reasons, Linux has a small cookie that's paired with
1573  * a struct usb_device to identify an endpoint queue.  Queue characteristics
1574  * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1575  * an unsigned int encoded as:
1576  *
1577  *  - direction:	bit 7		(0 = Host-to-Device [Out],
1578  *					 1 = Device-to-Host [In] ...
1579  *					like endpoint bEndpointAddress)
1580  *  - device address:	bits 8-14       ... bit positions known to uhci-hcd
1581  *  - endpoint:		bits 15-18      ... bit positions known to uhci-hcd
1582  *  - pipe type:	bits 30-31	(00 = isochronous, 01 = interrupt,
1583  *					 10 = control, 11 = bulk)
1584  *
1585  * Given the device address and endpoint descriptor, pipes are redundant.
1586  */
1587 
1588 /* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1589 /* (yet ... they're the values used by usbfs) */
1590 #define PIPE_ISOCHRONOUS		0
1591 #define PIPE_INTERRUPT			1
1592 #define PIPE_CONTROL			2
1593 #define PIPE_BULK			3
1594 
1595 #define usb_pipein(pipe)	((pipe) & USB_DIR_IN)
1596 #define usb_pipeout(pipe)	(!usb_pipein(pipe))
1597 
1598 #define usb_pipedevice(pipe)	(((pipe) >> 8) & 0x7f)
1599 #define usb_pipeendpoint(pipe)	(((pipe) >> 15) & 0xf)
1600 
1601 #define usb_pipetype(pipe)	(((pipe) >> 30) & 3)
1602 #define usb_pipeisoc(pipe)	(usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1603 #define usb_pipeint(pipe)	(usb_pipetype((pipe)) == PIPE_INTERRUPT)
1604 #define usb_pipecontrol(pipe)	(usb_pipetype((pipe)) == PIPE_CONTROL)
1605 #define usb_pipebulk(pipe)	(usb_pipetype((pipe)) == PIPE_BULK)
1606 
__create_pipe(struct usb_device * dev,unsigned int endpoint)1607 static inline unsigned int __create_pipe(struct usb_device *dev,
1608 		unsigned int endpoint)
1609 {
1610 	return (dev->devnum << 8) | (endpoint << 15);
1611 }
1612 
1613 /* Create various pipes... */
1614 #define usb_sndctrlpipe(dev, endpoint)	\
1615 	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1616 #define usb_rcvctrlpipe(dev, endpoint)	\
1617 	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1618 #define usb_sndisocpipe(dev, endpoint)	\
1619 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1620 #define usb_rcvisocpipe(dev, endpoint)	\
1621 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1622 #define usb_sndbulkpipe(dev, endpoint)	\
1623 	((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1624 #define usb_rcvbulkpipe(dev, endpoint)	\
1625 	((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1626 #define usb_sndintpipe(dev, endpoint)	\
1627 	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1628 #define usb_rcvintpipe(dev, endpoint)	\
1629 	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1630 
1631 static inline struct usb_host_endpoint *
usb_pipe_endpoint(struct usb_device * dev,unsigned int pipe)1632 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1633 {
1634 	struct usb_host_endpoint **eps;
1635 	eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1636 	return eps[usb_pipeendpoint(pipe)];
1637 }
1638 
1639 /*-------------------------------------------------------------------------*/
1640 
1641 static inline __u16
usb_maxpacket(struct usb_device * udev,int pipe,int is_out)1642 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1643 {
1644 	struct usb_host_endpoint	*ep;
1645 	unsigned			epnum = usb_pipeendpoint(pipe);
1646 
1647 	if (is_out) {
1648 		WARN_ON(usb_pipein(pipe));
1649 		ep = udev->ep_out[epnum];
1650 	} else {
1651 		WARN_ON(usb_pipeout(pipe));
1652 		ep = udev->ep_in[epnum];
1653 	}
1654 	if (!ep)
1655 		return 0;
1656 
1657 	/* NOTE:  only 0x07ff bits are for packet size... */
1658 	return usb_endpoint_maxp(&ep->desc);
1659 }
1660 
1661 /* ----------------------------------------------------------------------- */
1662 
1663 /* translate USB error codes to codes user space understands */
usb_translate_errors(int error_code)1664 static inline int usb_translate_errors(int error_code)
1665 {
1666 	switch (error_code) {
1667 	case 0:
1668 	case -ENOMEM:
1669 	case -ENODEV:
1670 		return error_code;
1671 	default:
1672 		return -EIO;
1673 	}
1674 }
1675 
1676 /* Events from the usb core */
1677 #define USB_DEVICE_ADD		0x0001
1678 #define USB_DEVICE_REMOVE	0x0002
1679 #define USB_BUS_ADD		0x0003
1680 #define USB_BUS_REMOVE		0x0004
1681 extern void usb_register_notify(struct notifier_block *nb);
1682 extern void usb_unregister_notify(struct notifier_block *nb);
1683 
1684 #ifdef DEBUG
1685 #define dbg(format, arg...)						\
1686 	printk(KERN_DEBUG "%s: " format "\n", __FILE__, ##arg)
1687 #else
1688 #define dbg(format, arg...)						\
1689 do {									\
1690 	if (0)								\
1691 		printk(KERN_DEBUG "%s: " format "\n", __FILE__, ##arg); \
1692 } while (0)
1693 #endif
1694 
1695 #define err(format, arg...)					\
1696 	printk(KERN_ERR KBUILD_MODNAME ": " format "\n", ##arg)
1697 
1698 /* debugfs stuff */
1699 extern struct dentry *usb_debug_root;
1700 
1701 #endif  /* __KERNEL__ */
1702 
1703 #endif
1704