1 #ifndef __LINUX_USB_H
2 #define __LINUX_USB_H
3
4 #include <linux/mod_devicetable.h>
5 #include <linux/usb/ch9.h>
6
7 #define USB_MAJOR 180
8 #define USB_DEVICE_MAJOR 189
9
10
11 #ifdef __KERNEL__
12
13 #include <linux/errno.h> /* for -ENODEV */
14 #include <linux/delay.h> /* for mdelay() */
15 #include <linux/interrupt.h> /* for in_interrupt() */
16 #include <linux/list.h> /* for struct list_head */
17 #include <linux/kref.h> /* for struct kref */
18 #include <linux/device.h> /* for struct device */
19 #include <linux/fs.h> /* for struct file_operations */
20 #include <linux/completion.h> /* for struct completion */
21 #include <linux/sched.h> /* for current && schedule_timeout */
22 #include <linux/mutex.h> /* for struct mutex */
23 #include <linux/pm_runtime.h> /* for runtime PM */
24
25 struct usb_device;
26 struct usb_driver;
27 struct wusb_dev;
28
29 /*-------------------------------------------------------------------------*/
30
31 /*
32 * Host-side wrappers for standard USB descriptors ... these are parsed
33 * from the data provided by devices. Parsing turns them from a flat
34 * sequence of descriptors into a hierarchy:
35 *
36 * - devices have one (usually) or more configs;
37 * - configs have one (often) or more interfaces;
38 * - interfaces have one (usually) or more settings;
39 * - each interface setting has zero or (usually) more endpoints.
40 * - a SuperSpeed endpoint has a companion descriptor
41 *
42 * And there might be other descriptors mixed in with those.
43 *
44 * Devices may also have class-specific or vendor-specific descriptors.
45 */
46
47 struct ep_device;
48
49 /**
50 * struct usb_host_endpoint - host-side endpoint descriptor and queue
51 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
52 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
53 * @urb_list: urbs queued to this endpoint; maintained by usbcore
54 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
55 * with one or more transfer descriptors (TDs) per urb
56 * @ep_dev: ep_device for sysfs info
57 * @extra: descriptors following this endpoint in the configuration
58 * @extralen: how many bytes of "extra" are valid
59 * @enabled: URBs may be submitted to this endpoint
60 *
61 * USB requests are always queued to a given endpoint, identified by a
62 * descriptor within an active interface in a given USB configuration.
63 */
64 struct usb_host_endpoint {
65 struct usb_endpoint_descriptor desc;
66 struct usb_ss_ep_comp_descriptor ss_ep_comp;
67 struct list_head urb_list;
68 void *hcpriv;
69 struct ep_device *ep_dev; /* For sysfs info */
70
71 unsigned char *extra; /* Extra descriptors */
72 int extralen;
73 int enabled;
74 };
75
76 /* host-side wrapper for one interface setting's parsed descriptors */
77 struct usb_host_interface {
78 struct usb_interface_descriptor desc;
79
80 /* array of desc.bNumEndpoint endpoints associated with this
81 * interface setting. these will be in no particular order.
82 */
83 struct usb_host_endpoint *endpoint;
84
85 char *string; /* iInterface string, if present */
86 unsigned char *extra; /* Extra descriptors */
87 int extralen;
88 };
89
90 enum usb_interface_condition {
91 USB_INTERFACE_UNBOUND = 0,
92 USB_INTERFACE_BINDING,
93 USB_INTERFACE_BOUND,
94 USB_INTERFACE_UNBINDING,
95 };
96
97 /**
98 * struct usb_interface - what usb device drivers talk to
99 * @altsetting: array of interface structures, one for each alternate
100 * setting that may be selected. Each one includes a set of
101 * endpoint configurations. They will be in no particular order.
102 * @cur_altsetting: the current altsetting.
103 * @num_altsetting: number of altsettings defined.
104 * @intf_assoc: interface association descriptor
105 * @minor: the minor number assigned to this interface, if this
106 * interface is bound to a driver that uses the USB major number.
107 * If this interface does not use the USB major, this field should
108 * be unused. The driver should set this value in the probe()
109 * function of the driver, after it has been assigned a minor
110 * number from the USB core by calling usb_register_dev().
111 * @condition: binding state of the interface: not bound, binding
112 * (in probe()), bound to a driver, or unbinding (in disconnect())
113 * @sysfs_files_created: sysfs attributes exist
114 * @ep_devs_created: endpoint child pseudo-devices exist
115 * @unregistering: flag set when the interface is being unregistered
116 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
117 * capability during autosuspend.
118 * @needs_altsetting0: flag set when a set-interface request for altsetting 0
119 * has been deferred.
120 * @needs_binding: flag set when the driver should be re-probed or unbound
121 * following a reset or suspend operation it doesn't support.
122 * @dev: driver model's view of this device
123 * @usb_dev: if an interface is bound to the USB major, this will point
124 * to the sysfs representation for that device.
125 * @pm_usage_cnt: PM usage counter for this interface
126 * @reset_ws: Used for scheduling resets from atomic context.
127 * @reset_running: set to 1 if the interface is currently running a
128 * queued reset so that usb_cancel_queued_reset() doesn't try to
129 * remove from the workqueue when running inside the worker
130 * thread. See __usb_queue_reset_device().
131 * @resetting_device: USB core reset the device, so use alt setting 0 as
132 * current; needs bandwidth alloc after reset.
133 *
134 * USB device drivers attach to interfaces on a physical device. Each
135 * interface encapsulates a single high level function, such as feeding
136 * an audio stream to a speaker or reporting a change in a volume control.
137 * Many USB devices only have one interface. The protocol used to talk to
138 * an interface's endpoints can be defined in a usb "class" specification,
139 * or by a product's vendor. The (default) control endpoint is part of
140 * every interface, but is never listed among the interface's descriptors.
141 *
142 * The driver that is bound to the interface can use standard driver model
143 * calls such as dev_get_drvdata() on the dev member of this structure.
144 *
145 * Each interface may have alternate settings. The initial configuration
146 * of a device sets altsetting 0, but the device driver can change
147 * that setting using usb_set_interface(). Alternate settings are often
148 * used to control the use of periodic endpoints, such as by having
149 * different endpoints use different amounts of reserved USB bandwidth.
150 * All standards-conformant USB devices that use isochronous endpoints
151 * will use them in non-default settings.
152 *
153 * The USB specification says that alternate setting numbers must run from
154 * 0 to one less than the total number of alternate settings. But some
155 * devices manage to mess this up, and the structures aren't necessarily
156 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to
157 * look up an alternate setting in the altsetting array based on its number.
158 */
159 struct usb_interface {
160 /* array of alternate settings for this interface,
161 * stored in no particular order */
162 struct usb_host_interface *altsetting;
163
164 struct usb_host_interface *cur_altsetting; /* the currently
165 * active alternate setting */
166 unsigned num_altsetting; /* number of alternate settings */
167
168 /* If there is an interface association descriptor then it will list
169 * the associated interfaces */
170 struct usb_interface_assoc_descriptor *intf_assoc;
171
172 int minor; /* minor number this interface is
173 * bound to */
174 enum usb_interface_condition condition; /* state of binding */
175 unsigned sysfs_files_created:1; /* the sysfs attributes exist */
176 unsigned ep_devs_created:1; /* endpoint "devices" exist */
177 unsigned unregistering:1; /* unregistration is in progress */
178 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
179 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */
180 unsigned needs_binding:1; /* needs delayed unbind/rebind */
181 unsigned reset_running:1;
182 unsigned resetting_device:1; /* true: bandwidth alloc after reset */
183
184 struct device dev; /* interface specific device info */
185 struct device *usb_dev;
186 atomic_t pm_usage_cnt; /* usage counter for autosuspend */
187 struct work_struct reset_ws; /* for resets in atomic context */
188 };
189 #define to_usb_interface(d) container_of(d, struct usb_interface, dev)
190
usb_get_intfdata(struct usb_interface * intf)191 static inline void *usb_get_intfdata(struct usb_interface *intf)
192 {
193 return dev_get_drvdata(&intf->dev);
194 }
195
usb_set_intfdata(struct usb_interface * intf,void * data)196 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
197 {
198 dev_set_drvdata(&intf->dev, data);
199 }
200
201 struct usb_interface *usb_get_intf(struct usb_interface *intf);
202 void usb_put_intf(struct usb_interface *intf);
203
204 /* this maximum is arbitrary */
205 #define USB_MAXINTERFACES 32
206 #define USB_MAXIADS (USB_MAXINTERFACES/2)
207
208 /**
209 * struct usb_interface_cache - long-term representation of a device interface
210 * @num_altsetting: number of altsettings defined.
211 * @ref: reference counter.
212 * @altsetting: variable-length array of interface structures, one for
213 * each alternate setting that may be selected. Each one includes a
214 * set of endpoint configurations. They will be in no particular order.
215 *
216 * These structures persist for the lifetime of a usb_device, unlike
217 * struct usb_interface (which persists only as long as its configuration
218 * is installed). The altsetting arrays can be accessed through these
219 * structures at any time, permitting comparison of configurations and
220 * providing support for the /proc/bus/usb/devices pseudo-file.
221 */
222 struct usb_interface_cache {
223 unsigned num_altsetting; /* number of alternate settings */
224 struct kref ref; /* reference counter */
225
226 /* variable-length array of alternate settings for this interface,
227 * stored in no particular order */
228 struct usb_host_interface altsetting[0];
229 };
230 #define ref_to_usb_interface_cache(r) \
231 container_of(r, struct usb_interface_cache, ref)
232 #define altsetting_to_usb_interface_cache(a) \
233 container_of(a, struct usb_interface_cache, altsetting[0])
234
235 /**
236 * struct usb_host_config - representation of a device's configuration
237 * @desc: the device's configuration descriptor.
238 * @string: pointer to the cached version of the iConfiguration string, if
239 * present for this configuration.
240 * @intf_assoc: list of any interface association descriptors in this config
241 * @interface: array of pointers to usb_interface structures, one for each
242 * interface in the configuration. The number of interfaces is stored
243 * in desc.bNumInterfaces. These pointers are valid only while the
244 * the configuration is active.
245 * @intf_cache: array of pointers to usb_interface_cache structures, one
246 * for each interface in the configuration. These structures exist
247 * for the entire life of the device.
248 * @extra: pointer to buffer containing all extra descriptors associated
249 * with this configuration (those preceding the first interface
250 * descriptor).
251 * @extralen: length of the extra descriptors buffer.
252 *
253 * USB devices may have multiple configurations, but only one can be active
254 * at any time. Each encapsulates a different operational environment;
255 * for example, a dual-speed device would have separate configurations for
256 * full-speed and high-speed operation. The number of configurations
257 * available is stored in the device descriptor as bNumConfigurations.
258 *
259 * A configuration can contain multiple interfaces. Each corresponds to
260 * a different function of the USB device, and all are available whenever
261 * the configuration is active. The USB standard says that interfaces
262 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
263 * of devices get this wrong. In addition, the interface array is not
264 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to
265 * look up an interface entry based on its number.
266 *
267 * Device drivers should not attempt to activate configurations. The choice
268 * of which configuration to install is a policy decision based on such
269 * considerations as available power, functionality provided, and the user's
270 * desires (expressed through userspace tools). However, drivers can call
271 * usb_reset_configuration() to reinitialize the current configuration and
272 * all its interfaces.
273 */
274 struct usb_host_config {
275 struct usb_config_descriptor desc;
276
277 char *string; /* iConfiguration string, if present */
278
279 /* List of any Interface Association Descriptors in this
280 * configuration. */
281 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
282
283 /* the interfaces associated with this configuration,
284 * stored in no particular order */
285 struct usb_interface *interface[USB_MAXINTERFACES];
286
287 /* Interface information available even when this is not the
288 * active configuration */
289 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
290
291 unsigned char *extra; /* Extra descriptors */
292 int extralen;
293 };
294
295 int __usb_get_extra_descriptor(char *buffer, unsigned size,
296 unsigned char type, void **ptr);
297 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
298 __usb_get_extra_descriptor((ifpoint)->extra, \
299 (ifpoint)->extralen, \
300 type, (void **)ptr)
301
302 /* ----------------------------------------------------------------------- */
303
304 /* USB device number allocation bitmap */
305 struct usb_devmap {
306 unsigned long devicemap[128 / (8*sizeof(unsigned long))];
307 };
308
309 /*
310 * Allocated per bus (tree of devices) we have:
311 */
312 struct usb_bus {
313 struct device *controller; /* host/master side hardware */
314 int busnum; /* Bus number (in order of reg) */
315 const char *bus_name; /* stable id (PCI slot_name etc) */
316 u8 uses_dma; /* Does the host controller use DMA? */
317 u8 uses_pio_for_control; /*
318 * Does the host controller use PIO
319 * for control transfers?
320 */
321 u8 otg_port; /* 0, or number of OTG/HNP port */
322 unsigned is_b_host:1; /* true during some HNP roleswitches */
323 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */
324 unsigned sg_tablesize; /* 0 or largest number of sg list entries */
325
326 int devnum_next; /* Next open device number in
327 * round-robin allocation */
328
329 struct usb_devmap devmap; /* device address allocation map */
330 struct usb_device *root_hub; /* Root hub */
331 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */
332 struct list_head bus_list; /* list of busses */
333
334 int bandwidth_allocated; /* on this bus: how much of the time
335 * reserved for periodic (intr/iso)
336 * requests is used, on average?
337 * Units: microseconds/frame.
338 * Limits: Full/low speed reserve 90%,
339 * while high speed reserves 80%.
340 */
341 int bandwidth_int_reqs; /* number of Interrupt requests */
342 int bandwidth_isoc_reqs; /* number of Isoc. requests */
343
344 #ifdef CONFIG_USB_DEVICEFS
345 struct dentry *usbfs_dentry; /* usbfs dentry entry for the bus */
346 #endif
347
348 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
349 struct mon_bus *mon_bus; /* non-null when associated */
350 int monitored; /* non-zero when monitored */
351 #endif
352 };
353
354 /* ----------------------------------------------------------------------- */
355
356 /* This is arbitrary.
357 * From USB 2.0 spec Table 11-13, offset 7, a hub can
358 * have up to 255 ports. The most yet reported is 10.
359 *
360 * Current Wireless USB host hardware (Intel i1480 for example) allows
361 * up to 22 devices to connect. Upcoming hardware might raise that
362 * limit. Because the arrays need to add a bit for hub status data, we
363 * do 31, so plus one evens out to four bytes.
364 */
365 #define USB_MAXCHILDREN (31)
366
367 struct usb_tt;
368
369 /**
370 * struct usb_device - kernel's representation of a USB device
371 * @devnum: device number; address on a USB bus
372 * @devpath: device ID string for use in messages (e.g., /port/...)
373 * @route: tree topology hex string for use with xHCI
374 * @state: device state: configured, not attached, etc.
375 * @speed: device speed: high/full/low (or error)
376 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
377 * @ttport: device port on that tt hub
378 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
379 * @parent: our hub, unless we're the root
380 * @bus: bus we're part of
381 * @ep0: endpoint 0 data (default control pipe)
382 * @dev: generic device interface
383 * @descriptor: USB device descriptor
384 * @config: all of the device's configs
385 * @actconfig: the active configuration
386 * @ep_in: array of IN endpoints
387 * @ep_out: array of OUT endpoints
388 * @rawdescriptors: raw descriptors for each config
389 * @bus_mA: Current available from the bus
390 * @portnum: parent port number (origin 1)
391 * @level: number of USB hub ancestors
392 * @can_submit: URBs may be submitted
393 * @persist_enabled: USB_PERSIST enabled for this device
394 * @have_langid: whether string_langid is valid
395 * @authorized: policy has said we can use it;
396 * (user space) policy determines if we authorize this device to be
397 * used or not. By default, wired USB devices are authorized.
398 * WUSB devices are not, until we authorize them from user space.
399 * FIXME -- complete doc
400 * @authenticated: Crypto authentication passed
401 * @wusb: device is Wireless USB
402 * @string_langid: language ID for strings
403 * @product: iProduct string, if present (static)
404 * @manufacturer: iManufacturer string, if present (static)
405 * @serial: iSerialNumber string, if present (static)
406 * @filelist: usbfs files that are open to this device
407 * @usb_classdev: USB class device that was created for usbfs device
408 * access from userspace
409 * @usbfs_dentry: usbfs dentry entry for the device
410 * @maxchild: number of ports if hub
411 * @children: child devices - USB devices that are attached to this hub
412 * @quirks: quirks of the whole device
413 * @urbnum: number of URBs submitted for the whole device
414 * @active_duration: total time device is not suspended
415 * @connect_time: time device was first connected
416 * @do_remote_wakeup: remote wakeup should be enabled
417 * @reset_resume: needs reset instead of resume
418 * @wusb_dev: if this is a Wireless USB device, link to the WUSB
419 * specific data for the device.
420 * @slot_id: Slot ID assigned by xHCI
421 *
422 * Notes:
423 * Usbcore drivers should not set usbdev->state directly. Instead use
424 * usb_set_device_state().
425 */
426 struct usb_device {
427 int devnum;
428 char devpath[16];
429 u32 route;
430 enum usb_device_state state;
431 enum usb_device_speed speed;
432
433 struct usb_tt *tt;
434 int ttport;
435
436 unsigned int toggle[2];
437
438 struct usb_device *parent;
439 struct usb_bus *bus;
440 struct usb_host_endpoint ep0;
441
442 struct device dev;
443
444 struct usb_device_descriptor descriptor;
445 struct usb_host_config *config;
446
447 struct usb_host_config *actconfig;
448 struct usb_host_endpoint *ep_in[16];
449 struct usb_host_endpoint *ep_out[16];
450
451 char **rawdescriptors;
452
453 unsigned short bus_mA;
454 u8 portnum;
455 u8 level;
456
457 unsigned can_submit:1;
458 unsigned persist_enabled:1;
459 unsigned have_langid:1;
460 unsigned authorized:1;
461 unsigned authenticated:1;
462 unsigned wusb:1;
463 int string_langid;
464
465 /* static strings from the device */
466 char *product;
467 char *manufacturer;
468 char *serial;
469
470 struct list_head filelist;
471 #ifdef CONFIG_USB_DEVICE_CLASS
472 struct device *usb_classdev;
473 #endif
474 #ifdef CONFIG_USB_DEVICEFS
475 struct dentry *usbfs_dentry;
476 #endif
477
478 int maxchild;
479 struct usb_device *children[USB_MAXCHILDREN];
480
481 u32 quirks;
482 atomic_t urbnum;
483
484 unsigned long active_duration;
485
486 #ifdef CONFIG_PM
487 unsigned long connect_time;
488
489 unsigned do_remote_wakeup:1;
490 unsigned reset_resume:1;
491 #endif
492 struct wusb_dev *wusb_dev;
493 int slot_id;
494 };
495 #define to_usb_device(d) container_of(d, struct usb_device, dev)
496
interface_to_usbdev(struct usb_interface * intf)497 static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
498 {
499 return to_usb_device(intf->dev.parent);
500 }
501
502 extern struct usb_device *usb_get_dev(struct usb_device *dev);
503 extern void usb_put_dev(struct usb_device *dev);
504
505 /* USB device locking */
506 #define usb_lock_device(udev) device_lock(&(udev)->dev)
507 #define usb_unlock_device(udev) device_unlock(&(udev)->dev)
508 #define usb_trylock_device(udev) device_trylock(&(udev)->dev)
509 extern int usb_lock_device_for_reset(struct usb_device *udev,
510 const struct usb_interface *iface);
511
512 /* USB port reset for device reinitialization */
513 extern int usb_reset_device(struct usb_device *dev);
514 extern void usb_queue_reset_device(struct usb_interface *dev);
515
516
517 /* USB autosuspend and autoresume */
518 #ifdef CONFIG_USB_SUSPEND
519 extern void usb_enable_autosuspend(struct usb_device *udev);
520 extern void usb_disable_autosuspend(struct usb_device *udev);
521
522 extern int usb_autopm_get_interface(struct usb_interface *intf);
523 extern void usb_autopm_put_interface(struct usb_interface *intf);
524 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
525 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
526 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
527 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
528
usb_mark_last_busy(struct usb_device * udev)529 static inline void usb_mark_last_busy(struct usb_device *udev)
530 {
531 pm_runtime_mark_last_busy(&udev->dev);
532 }
533
534 #else
535
usb_enable_autosuspend(struct usb_device * udev)536 static inline int usb_enable_autosuspend(struct usb_device *udev)
537 { return 0; }
usb_disable_autosuspend(struct usb_device * udev)538 static inline int usb_disable_autosuspend(struct usb_device *udev)
539 { return 0; }
540
usb_autopm_get_interface(struct usb_interface * intf)541 static inline int usb_autopm_get_interface(struct usb_interface *intf)
542 { return 0; }
usb_autopm_get_interface_async(struct usb_interface * intf)543 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
544 { return 0; }
545
usb_autopm_put_interface(struct usb_interface * intf)546 static inline void usb_autopm_put_interface(struct usb_interface *intf)
547 { }
usb_autopm_put_interface_async(struct usb_interface * intf)548 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
549 { }
usb_autopm_get_interface_no_resume(struct usb_interface * intf)550 static inline void usb_autopm_get_interface_no_resume(
551 struct usb_interface *intf)
552 { }
usb_autopm_put_interface_no_suspend(struct usb_interface * intf)553 static inline void usb_autopm_put_interface_no_suspend(
554 struct usb_interface *intf)
555 { }
usb_mark_last_busy(struct usb_device * udev)556 static inline void usb_mark_last_busy(struct usb_device *udev)
557 { }
558 #endif
559
560 /*-------------------------------------------------------------------------*/
561
562 /* for drivers using iso endpoints */
563 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
564
565 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
566 extern int usb_alloc_streams(struct usb_interface *interface,
567 struct usb_host_endpoint **eps, unsigned int num_eps,
568 unsigned int num_streams, gfp_t mem_flags);
569
570 /* Reverts a group of bulk endpoints back to not using stream IDs. */
571 extern void usb_free_streams(struct usb_interface *interface,
572 struct usb_host_endpoint **eps, unsigned int num_eps,
573 gfp_t mem_flags);
574
575 /* used these for multi-interface device registration */
576 extern int usb_driver_claim_interface(struct usb_driver *driver,
577 struct usb_interface *iface, void *priv);
578
579 /**
580 * usb_interface_claimed - returns true iff an interface is claimed
581 * @iface: the interface being checked
582 *
583 * Returns true (nonzero) iff the interface is claimed, else false (zero).
584 * Callers must own the driver model's usb bus readlock. So driver
585 * probe() entries don't need extra locking, but other call contexts
586 * may need to explicitly claim that lock.
587 *
588 */
usb_interface_claimed(struct usb_interface * iface)589 static inline int usb_interface_claimed(struct usb_interface *iface)
590 {
591 return (iface->dev.driver != NULL);
592 }
593
594 extern void usb_driver_release_interface(struct usb_driver *driver,
595 struct usb_interface *iface);
596 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
597 const struct usb_device_id *id);
598 extern int usb_match_one_id(struct usb_interface *interface,
599 const struct usb_device_id *id);
600
601 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
602 int minor);
603 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
604 unsigned ifnum);
605 extern struct usb_host_interface *usb_altnum_to_altsetting(
606 const struct usb_interface *intf, unsigned int altnum);
607 extern struct usb_host_interface *usb_find_alt_setting(
608 struct usb_host_config *config,
609 unsigned int iface_num,
610 unsigned int alt_num);
611
612
613 /**
614 * usb_make_path - returns stable device path in the usb tree
615 * @dev: the device whose path is being constructed
616 * @buf: where to put the string
617 * @size: how big is "buf"?
618 *
619 * Returns length of the string (> 0) or negative if size was too small.
620 *
621 * This identifier is intended to be "stable", reflecting physical paths in
622 * hardware such as physical bus addresses for host controllers or ports on
623 * USB hubs. That makes it stay the same until systems are physically
624 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
625 * controllers. Adding and removing devices, including virtual root hubs
626 * in host controller driver modules, does not change these path identifiers;
627 * neither does rebooting or re-enumerating. These are more useful identifiers
628 * than changeable ("unstable") ones like bus numbers or device addresses.
629 *
630 * With a partial exception for devices connected to USB 2.0 root hubs, these
631 * identifiers are also predictable. So long as the device tree isn't changed,
632 * plugging any USB device into a given hub port always gives it the same path.
633 * Because of the use of "companion" controllers, devices connected to ports on
634 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
635 * high speed, and a different one if they are full or low speed.
636 */
usb_make_path(struct usb_device * dev,char * buf,size_t size)637 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
638 {
639 int actual;
640 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
641 dev->devpath);
642 return (actual >= (int)size) ? -1 : actual;
643 }
644
645 /*-------------------------------------------------------------------------*/
646
647 #define USB_DEVICE_ID_MATCH_DEVICE \
648 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
649 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
650 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
651 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
652 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
653 #define USB_DEVICE_ID_MATCH_DEV_INFO \
654 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
655 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
656 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
657 #define USB_DEVICE_ID_MATCH_INT_INFO \
658 (USB_DEVICE_ID_MATCH_INT_CLASS | \
659 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
660 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
661
662 /**
663 * USB_DEVICE - macro used to describe a specific usb device
664 * @vend: the 16 bit USB Vendor ID
665 * @prod: the 16 bit USB Product ID
666 *
667 * This macro is used to create a struct usb_device_id that matches a
668 * specific device.
669 */
670 #define USB_DEVICE(vend, prod) \
671 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
672 .idVendor = (vend), \
673 .idProduct = (prod)
674 /**
675 * USB_DEVICE_VER - describe a specific usb device with a version range
676 * @vend: the 16 bit USB Vendor ID
677 * @prod: the 16 bit USB Product ID
678 * @lo: the bcdDevice_lo value
679 * @hi: the bcdDevice_hi value
680 *
681 * This macro is used to create a struct usb_device_id that matches a
682 * specific device, with a version range.
683 */
684 #define USB_DEVICE_VER(vend, prod, lo, hi) \
685 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
686 .idVendor = (vend), \
687 .idProduct = (prod), \
688 .bcdDevice_lo = (lo), \
689 .bcdDevice_hi = (hi)
690
691 /**
692 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
693 * @vend: the 16 bit USB Vendor ID
694 * @prod: the 16 bit USB Product ID
695 * @pr: bInterfaceProtocol value
696 *
697 * This macro is used to create a struct usb_device_id that matches a
698 * specific interface protocol of devices.
699 */
700 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
701 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
702 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
703 .idVendor = (vend), \
704 .idProduct = (prod), \
705 .bInterfaceProtocol = (pr)
706
707 /**
708 * USB_DEVICE_INFO - macro used to describe a class of usb devices
709 * @cl: bDeviceClass value
710 * @sc: bDeviceSubClass value
711 * @pr: bDeviceProtocol value
712 *
713 * This macro is used to create a struct usb_device_id that matches a
714 * specific class of devices.
715 */
716 #define USB_DEVICE_INFO(cl, sc, pr) \
717 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
718 .bDeviceClass = (cl), \
719 .bDeviceSubClass = (sc), \
720 .bDeviceProtocol = (pr)
721
722 /**
723 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
724 * @cl: bInterfaceClass value
725 * @sc: bInterfaceSubClass value
726 * @pr: bInterfaceProtocol value
727 *
728 * This macro is used to create a struct usb_device_id that matches a
729 * specific class of interfaces.
730 */
731 #define USB_INTERFACE_INFO(cl, sc, pr) \
732 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
733 .bInterfaceClass = (cl), \
734 .bInterfaceSubClass = (sc), \
735 .bInterfaceProtocol = (pr)
736
737 /**
738 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
739 * @vend: the 16 bit USB Vendor ID
740 * @prod: the 16 bit USB Product ID
741 * @cl: bInterfaceClass value
742 * @sc: bInterfaceSubClass value
743 * @pr: bInterfaceProtocol value
744 *
745 * This macro is used to create a struct usb_device_id that matches a
746 * specific device with a specific class of interfaces.
747 *
748 * This is especially useful when explicitly matching devices that have
749 * vendor specific bDeviceClass values, but standards-compliant interfaces.
750 */
751 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
752 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
753 | USB_DEVICE_ID_MATCH_DEVICE, \
754 .idVendor = (vend), \
755 .idProduct = (prod), \
756 .bInterfaceClass = (cl), \
757 .bInterfaceSubClass = (sc), \
758 .bInterfaceProtocol = (pr)
759
760 /* ----------------------------------------------------------------------- */
761
762 /* Stuff for dynamic usb ids */
763 struct usb_dynids {
764 spinlock_t lock;
765 struct list_head list;
766 };
767
768 struct usb_dynid {
769 struct list_head node;
770 struct usb_device_id id;
771 };
772
773 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
774 struct device_driver *driver,
775 const char *buf, size_t count);
776
777 /**
778 * struct usbdrv_wrap - wrapper for driver-model structure
779 * @driver: The driver-model core driver structure.
780 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
781 */
782 struct usbdrv_wrap {
783 struct device_driver driver;
784 int for_devices;
785 };
786
787 /**
788 * struct usb_driver - identifies USB interface driver to usbcore
789 * @name: The driver name should be unique among USB drivers,
790 * and should normally be the same as the module name.
791 * @probe: Called to see if the driver is willing to manage a particular
792 * interface on a device. If it is, probe returns zero and uses
793 * usb_set_intfdata() to associate driver-specific data with the
794 * interface. It may also use usb_set_interface() to specify the
795 * appropriate altsetting. If unwilling to manage the interface,
796 * return -ENODEV, if genuine IO errors occurred, an appropriate
797 * negative errno value.
798 * @disconnect: Called when the interface is no longer accessible, usually
799 * because its device has been (or is being) disconnected or the
800 * driver module is being unloaded.
801 * @unlocked_ioctl: Used for drivers that want to talk to userspace through
802 * the "usbfs" filesystem. This lets devices provide ways to
803 * expose information to user space regardless of where they
804 * do (or don't) show up otherwise in the filesystem.
805 * @suspend: Called when the device is going to be suspended by the system.
806 * @resume: Called when the device is being resumed by the system.
807 * @reset_resume: Called when the suspended device has been reset instead
808 * of being resumed.
809 * @pre_reset: Called by usb_reset_device() when the device
810 * is about to be reset.
811 * @post_reset: Called by usb_reset_device() after the device
812 * has been reset
813 * @id_table: USB drivers use ID table to support hotplugging.
814 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set
815 * or your driver's probe function will never get called.
816 * @dynids: used internally to hold the list of dynamically added device
817 * ids for this driver.
818 * @drvwrap: Driver-model core structure wrapper.
819 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
820 * added to this driver by preventing the sysfs file from being created.
821 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
822 * for interfaces bound to this driver.
823 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
824 * endpoints before calling the driver's disconnect method.
825 *
826 * USB interface drivers must provide a name, probe() and disconnect()
827 * methods, and an id_table. Other driver fields are optional.
828 *
829 * The id_table is used in hotplugging. It holds a set of descriptors,
830 * and specialized data may be associated with each entry. That table
831 * is used by both user and kernel mode hotplugging support.
832 *
833 * The probe() and disconnect() methods are called in a context where
834 * they can sleep, but they should avoid abusing the privilege. Most
835 * work to connect to a device should be done when the device is opened,
836 * and undone at the last close. The disconnect code needs to address
837 * concurrency issues with respect to open() and close() methods, as
838 * well as forcing all pending I/O requests to complete (by unlinking
839 * them as necessary, and blocking until the unlinks complete).
840 */
841 struct usb_driver {
842 const char *name;
843
844 int (*probe) (struct usb_interface *intf,
845 const struct usb_device_id *id);
846
847 void (*disconnect) (struct usb_interface *intf);
848
849 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
850 void *buf);
851
852 int (*suspend) (struct usb_interface *intf, pm_message_t message);
853 int (*resume) (struct usb_interface *intf);
854 int (*reset_resume)(struct usb_interface *intf);
855
856 int (*pre_reset)(struct usb_interface *intf);
857 int (*post_reset)(struct usb_interface *intf);
858
859 const struct usb_device_id *id_table;
860
861 struct usb_dynids dynids;
862 struct usbdrv_wrap drvwrap;
863 unsigned int no_dynamic_id:1;
864 unsigned int supports_autosuspend:1;
865 unsigned int soft_unbind:1;
866 };
867 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
868
869 /**
870 * struct usb_device_driver - identifies USB device driver to usbcore
871 * @name: The driver name should be unique among USB drivers,
872 * and should normally be the same as the module name.
873 * @probe: Called to see if the driver is willing to manage a particular
874 * device. If it is, probe returns zero and uses dev_set_drvdata()
875 * to associate driver-specific data with the device. If unwilling
876 * to manage the device, return a negative errno value.
877 * @disconnect: Called when the device is no longer accessible, usually
878 * because it has been (or is being) disconnected or the driver's
879 * module is being unloaded.
880 * @suspend: Called when the device is going to be suspended by the system.
881 * @resume: Called when the device is being resumed by the system.
882 * @drvwrap: Driver-model core structure wrapper.
883 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
884 * for devices bound to this driver.
885 *
886 * USB drivers must provide all the fields listed above except drvwrap.
887 */
888 struct usb_device_driver {
889 const char *name;
890
891 int (*probe) (struct usb_device *udev);
892 void (*disconnect) (struct usb_device *udev);
893
894 int (*suspend) (struct usb_device *udev, pm_message_t message);
895 int (*resume) (struct usb_device *udev, pm_message_t message);
896 struct usbdrv_wrap drvwrap;
897 unsigned int supports_autosuspend:1;
898 };
899 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
900 drvwrap.driver)
901
902 extern struct bus_type usb_bus_type;
903
904 /**
905 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
906 * @name: the usb class device name for this driver. Will show up in sysfs.
907 * @devnode: Callback to provide a naming hint for a possible
908 * device node to create.
909 * @fops: pointer to the struct file_operations of this driver.
910 * @minor_base: the start of the minor range for this driver.
911 *
912 * This structure is used for the usb_register_dev() and
913 * usb_unregister_dev() functions, to consolidate a number of the
914 * parameters used for them.
915 */
916 struct usb_class_driver {
917 char *name;
918 char *(*devnode)(struct device *dev, mode_t *mode);
919 const struct file_operations *fops;
920 int minor_base;
921 };
922
923 /*
924 * use these in module_init()/module_exit()
925 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
926 */
927 extern int usb_register_driver(struct usb_driver *, struct module *,
928 const char *);
usb_register(struct usb_driver * driver)929 static inline int usb_register(struct usb_driver *driver)
930 {
931 return usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME);
932 }
933 extern void usb_deregister(struct usb_driver *);
934
935 extern int usb_register_device_driver(struct usb_device_driver *,
936 struct module *);
937 extern void usb_deregister_device_driver(struct usb_device_driver *);
938
939 extern int usb_register_dev(struct usb_interface *intf,
940 struct usb_class_driver *class_driver);
941 extern void usb_deregister_dev(struct usb_interface *intf,
942 struct usb_class_driver *class_driver);
943
944 extern int usb_disabled(void);
945
946 /* ----------------------------------------------------------------------- */
947
948 /*
949 * URB support, for asynchronous request completions
950 */
951
952 /*
953 * urb->transfer_flags:
954 *
955 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
956 */
957 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */
958 #define URB_ISO_ASAP 0x0002 /* iso-only, urb->start_frame
959 * ignored */
960 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */
961 #define URB_NO_FSBR 0x0020 /* UHCI-specific */
962 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */
963 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt
964 * needed */
965 #define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */
966
967 /* The following flags are used internally by usbcore and HCDs */
968 #define URB_DIR_IN 0x0200 /* Transfer from device to host */
969 #define URB_DIR_OUT 0
970 #define URB_DIR_MASK URB_DIR_IN
971
972 #define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */
973 #define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */
974 #define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */
975 #define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */
976 #define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */
977 #define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */
978 #define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */
979 #define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */
980
981 struct usb_iso_packet_descriptor {
982 unsigned int offset;
983 unsigned int length; /* expected length */
984 unsigned int actual_length;
985 int status;
986 };
987
988 struct urb;
989
990 struct usb_anchor {
991 struct list_head urb_list;
992 wait_queue_head_t wait;
993 spinlock_t lock;
994 unsigned int poisoned:1;
995 };
996
init_usb_anchor(struct usb_anchor * anchor)997 static inline void init_usb_anchor(struct usb_anchor *anchor)
998 {
999 INIT_LIST_HEAD(&anchor->urb_list);
1000 init_waitqueue_head(&anchor->wait);
1001 spin_lock_init(&anchor->lock);
1002 }
1003
1004 typedef void (*usb_complete_t)(struct urb *);
1005
1006 /**
1007 * struct urb - USB Request Block
1008 * @urb_list: For use by current owner of the URB.
1009 * @anchor_list: membership in the list of an anchor
1010 * @anchor: to anchor URBs to a common mooring
1011 * @ep: Points to the endpoint's data structure. Will eventually
1012 * replace @pipe.
1013 * @pipe: Holds endpoint number, direction, type, and more.
1014 * Create these values with the eight macros available;
1015 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1016 * (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1017 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint
1018 * numbers range from zero to fifteen. Note that "in" endpoint two
1019 * is a different endpoint (and pipe) from "out" endpoint two.
1020 * The current configuration controls the existence, type, and
1021 * maximum packet size of any given endpoint.
1022 * @stream_id: the endpoint's stream ID for bulk streams
1023 * @dev: Identifies the USB device to perform the request.
1024 * @status: This is read in non-iso completion functions to get the
1025 * status of the particular request. ISO requests only use it
1026 * to tell whether the URB was unlinked; detailed status for
1027 * each frame is in the fields of the iso_frame-desc.
1028 * @transfer_flags: A variety of flags may be used to affect how URB
1029 * submission, unlinking, or operation are handled. Different
1030 * kinds of URB can use different flags.
1031 * @transfer_buffer: This identifies the buffer to (or from) which the I/O
1032 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1033 * (however, do not leave garbage in transfer_buffer even then).
1034 * This buffer must be suitable for DMA; allocate it with
1035 * kmalloc() or equivalent. For transfers to "in" endpoints, contents
1036 * of this buffer will be modified. This buffer is used for the data
1037 * stage of control transfers.
1038 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1039 * the device driver is saying that it provided this DMA address,
1040 * which the host controller driver should use in preference to the
1041 * transfer_buffer.
1042 * @sg: scatter gather buffer list
1043 * @num_sgs: number of entries in the sg list
1044 * @transfer_buffer_length: How big is transfer_buffer. The transfer may
1045 * be broken up into chunks according to the current maximum packet
1046 * size for the endpoint, which is a function of the configuration
1047 * and is encoded in the pipe. When the length is zero, neither
1048 * transfer_buffer nor transfer_dma is used.
1049 * @actual_length: This is read in non-iso completion functions, and
1050 * it tells how many bytes (out of transfer_buffer_length) were
1051 * transferred. It will normally be the same as requested, unless
1052 * either an error was reported or a short read was performed.
1053 * The URB_SHORT_NOT_OK transfer flag may be used to make such
1054 * short reads be reported as errors.
1055 * @setup_packet: Only used for control transfers, this points to eight bytes
1056 * of setup data. Control transfers always start by sending this data
1057 * to the device. Then transfer_buffer is read or written, if needed.
1058 * @setup_dma: DMA pointer for the setup packet. The caller must not use
1059 * this field; setup_packet must point to a valid buffer.
1060 * @start_frame: Returns the initial frame for isochronous transfers.
1061 * @number_of_packets: Lists the number of ISO transfer buffers.
1062 * @interval: Specifies the polling interval for interrupt or isochronous
1063 * transfers. The units are frames (milliseconds) for full and low
1064 * speed devices, and microframes (1/8 millisecond) for highspeed
1065 * and SuperSpeed devices.
1066 * @error_count: Returns the number of ISO transfers that reported errors.
1067 * @context: For use in completion functions. This normally points to
1068 * request-specific driver context.
1069 * @complete: Completion handler. This URB is passed as the parameter to the
1070 * completion function. The completion function may then do what
1071 * it likes with the URB, including resubmitting or freeing it.
1072 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1073 * collect the transfer status for each buffer.
1074 *
1075 * This structure identifies USB transfer requests. URBs must be allocated by
1076 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1077 * Initialization may be done using various usb_fill_*_urb() functions. URBs
1078 * are submitted using usb_submit_urb(), and pending requests may be canceled
1079 * using usb_unlink_urb() or usb_kill_urb().
1080 *
1081 * Data Transfer Buffers:
1082 *
1083 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1084 * taken from the general page pool. That is provided by transfer_buffer
1085 * (control requests also use setup_packet), and host controller drivers
1086 * perform a dma mapping (and unmapping) for each buffer transferred. Those
1087 * mapping operations can be expensive on some platforms (perhaps using a dma
1088 * bounce buffer or talking to an IOMMU),
1089 * although they're cheap on commodity x86 and ppc hardware.
1090 *
1091 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1092 * which tells the host controller driver that no such mapping is needed for
1093 * the transfer_buffer since
1094 * the device driver is DMA-aware. For example, a device driver might
1095 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1096 * When this transfer flag is provided, host controller drivers will
1097 * attempt to use the dma address found in the transfer_dma
1098 * field rather than determining a dma address themselves.
1099 *
1100 * Note that transfer_buffer must still be set if the controller
1101 * does not support DMA (as indicated by bus.uses_dma) and when talking
1102 * to root hub. If you have to trasfer between highmem zone and the device
1103 * on such controller, create a bounce buffer or bail out with an error.
1104 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1105 * capable, assign NULL to it, so that usbmon knows not to use the value.
1106 * The setup_packet must always be set, so it cannot be located in highmem.
1107 *
1108 * Initialization:
1109 *
1110 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1111 * zero), and complete fields. All URBs must also initialize
1112 * transfer_buffer and transfer_buffer_length. They may provide the
1113 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1114 * to be treated as errors; that flag is invalid for write requests.
1115 *
1116 * Bulk URBs may
1117 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1118 * should always terminate with a short packet, even if it means adding an
1119 * extra zero length packet.
1120 *
1121 * Control URBs must provide a valid pointer in the setup_packet field.
1122 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1123 * beforehand.
1124 *
1125 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1126 * or, for highspeed devices, 125 microsecond units)
1127 * to poll for transfers. After the URB has been submitted, the interval
1128 * field reflects how the transfer was actually scheduled.
1129 * The polling interval may be more frequent than requested.
1130 * For example, some controllers have a maximum interval of 32 milliseconds,
1131 * while others support intervals of up to 1024 milliseconds.
1132 * Isochronous URBs also have transfer intervals. (Note that for isochronous
1133 * endpoints, as well as high speed interrupt endpoints, the encoding of
1134 * the transfer interval in the endpoint descriptor is logarithmic.
1135 * Device drivers must convert that value to linear units themselves.)
1136 *
1137 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling
1138 * the host controller to schedule the transfer as soon as bandwidth
1139 * utilization allows, and then set start_frame to reflect the actual frame
1140 * selected during submission. Otherwise drivers must specify the start_frame
1141 * and handle the case where the transfer can't begin then. However, drivers
1142 * won't know how bandwidth is currently allocated, and while they can
1143 * find the current frame using usb_get_current_frame_number () they can't
1144 * know the range for that frame number. (Ranges for frame counter values
1145 * are HC-specific, and can go from 256 to 65536 frames from "now".)
1146 *
1147 * Isochronous URBs have a different data transfer model, in part because
1148 * the quality of service is only "best effort". Callers provide specially
1149 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1150 * at the end. Each such packet is an individual ISO transfer. Isochronous
1151 * URBs are normally queued, submitted by drivers to arrange that
1152 * transfers are at least double buffered, and then explicitly resubmitted
1153 * in completion handlers, so
1154 * that data (such as audio or video) streams at as constant a rate as the
1155 * host controller scheduler can support.
1156 *
1157 * Completion Callbacks:
1158 *
1159 * The completion callback is made in_interrupt(), and one of the first
1160 * things that a completion handler should do is check the status field.
1161 * The status field is provided for all URBs. It is used to report
1162 * unlinked URBs, and status for all non-ISO transfers. It should not
1163 * be examined before the URB is returned to the completion handler.
1164 *
1165 * The context field is normally used to link URBs back to the relevant
1166 * driver or request state.
1167 *
1168 * When the completion callback is invoked for non-isochronous URBs, the
1169 * actual_length field tells how many bytes were transferred. This field
1170 * is updated even when the URB terminated with an error or was unlinked.
1171 *
1172 * ISO transfer status is reported in the status and actual_length fields
1173 * of the iso_frame_desc array, and the number of errors is reported in
1174 * error_count. Completion callbacks for ISO transfers will normally
1175 * (re)submit URBs to ensure a constant transfer rate.
1176 *
1177 * Note that even fields marked "public" should not be touched by the driver
1178 * when the urb is owned by the hcd, that is, since the call to
1179 * usb_submit_urb() till the entry into the completion routine.
1180 */
1181 struct urb {
1182 /* private: usb core and host controller only fields in the urb */
1183 struct kref kref; /* reference count of the URB */
1184 void *hcpriv; /* private data for host controller */
1185 atomic_t use_count; /* concurrent submissions counter */
1186 atomic_t reject; /* submissions will fail */
1187 int unlinked; /* unlink error code */
1188
1189 /* public: documented fields in the urb that can be used by drivers */
1190 struct list_head urb_list; /* list head for use by the urb's
1191 * current owner */
1192 struct list_head anchor_list; /* the URB may be anchored */
1193 struct usb_anchor *anchor;
1194 struct usb_device *dev; /* (in) pointer to associated device */
1195 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */
1196 unsigned int pipe; /* (in) pipe information */
1197 unsigned int stream_id; /* (in) stream ID */
1198 int status; /* (return) non-ISO status */
1199 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
1200 void *transfer_buffer; /* (in) associated data buffer */
1201 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
1202 struct scatterlist *sg; /* (in) scatter gather buffer list */
1203 int num_sgs; /* (in) number of entries in the sg list */
1204 u32 transfer_buffer_length; /* (in) data buffer length */
1205 u32 actual_length; /* (return) actual transfer length */
1206 unsigned char *setup_packet; /* (in) setup packet (control only) */
1207 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */
1208 int start_frame; /* (modify) start frame (ISO) */
1209 int number_of_packets; /* (in) number of ISO packets */
1210 int interval; /* (modify) transfer interval
1211 * (INT/ISO) */
1212 int error_count; /* (return) number of ISO errors */
1213 void *context; /* (in) context for completion */
1214 usb_complete_t complete; /* (in) completion routine */
1215 struct usb_iso_packet_descriptor iso_frame_desc[0];
1216 /* (in) ISO ONLY */
1217 };
1218
1219 /* ----------------------------------------------------------------------- */
1220
1221 /**
1222 * usb_fill_control_urb - initializes a control urb
1223 * @urb: pointer to the urb to initialize.
1224 * @dev: pointer to the struct usb_device for this urb.
1225 * @pipe: the endpoint pipe
1226 * @setup_packet: pointer to the setup_packet buffer
1227 * @transfer_buffer: pointer to the transfer buffer
1228 * @buffer_length: length of the transfer buffer
1229 * @complete_fn: pointer to the usb_complete_t function
1230 * @context: what to set the urb context to.
1231 *
1232 * Initializes a control urb with the proper information needed to submit
1233 * it to a device.
1234 */
usb_fill_control_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,unsigned char * setup_packet,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context)1235 static inline void usb_fill_control_urb(struct urb *urb,
1236 struct usb_device *dev,
1237 unsigned int pipe,
1238 unsigned char *setup_packet,
1239 void *transfer_buffer,
1240 int buffer_length,
1241 usb_complete_t complete_fn,
1242 void *context)
1243 {
1244 urb->dev = dev;
1245 urb->pipe = pipe;
1246 urb->setup_packet = setup_packet;
1247 urb->transfer_buffer = transfer_buffer;
1248 urb->transfer_buffer_length = buffer_length;
1249 urb->complete = complete_fn;
1250 urb->context = context;
1251 }
1252
1253 /**
1254 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1255 * @urb: pointer to the urb to initialize.
1256 * @dev: pointer to the struct usb_device for this urb.
1257 * @pipe: the endpoint pipe
1258 * @transfer_buffer: pointer to the transfer buffer
1259 * @buffer_length: length of the transfer buffer
1260 * @complete_fn: pointer to the usb_complete_t function
1261 * @context: what to set the urb context to.
1262 *
1263 * Initializes a bulk urb with the proper information needed to submit it
1264 * to a device.
1265 */
usb_fill_bulk_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context)1266 static inline void usb_fill_bulk_urb(struct urb *urb,
1267 struct usb_device *dev,
1268 unsigned int pipe,
1269 void *transfer_buffer,
1270 int buffer_length,
1271 usb_complete_t complete_fn,
1272 void *context)
1273 {
1274 urb->dev = dev;
1275 urb->pipe = pipe;
1276 urb->transfer_buffer = transfer_buffer;
1277 urb->transfer_buffer_length = buffer_length;
1278 urb->complete = complete_fn;
1279 urb->context = context;
1280 }
1281
1282 /**
1283 * usb_fill_int_urb - macro to help initialize a interrupt urb
1284 * @urb: pointer to the urb to initialize.
1285 * @dev: pointer to the struct usb_device for this urb.
1286 * @pipe: the endpoint pipe
1287 * @transfer_buffer: pointer to the transfer buffer
1288 * @buffer_length: length of the transfer buffer
1289 * @complete_fn: pointer to the usb_complete_t function
1290 * @context: what to set the urb context to.
1291 * @interval: what to set the urb interval to, encoded like
1292 * the endpoint descriptor's bInterval value.
1293 *
1294 * Initializes a interrupt urb with the proper information needed to submit
1295 * it to a device.
1296 *
1297 * Note that High Speed and SuperSpeed interrupt endpoints use a logarithmic
1298 * encoding of the endpoint interval, and express polling intervals in
1299 * microframes (eight per millisecond) rather than in frames (one per
1300 * millisecond).
1301 *
1302 * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1303 * 128us instead of 125us. For Wireless USB devices, the interval is passed
1304 * through to the host controller, rather than being translated into microframe
1305 * units.
1306 */
usb_fill_int_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context,int interval)1307 static inline void usb_fill_int_urb(struct urb *urb,
1308 struct usb_device *dev,
1309 unsigned int pipe,
1310 void *transfer_buffer,
1311 int buffer_length,
1312 usb_complete_t complete_fn,
1313 void *context,
1314 int interval)
1315 {
1316 urb->dev = dev;
1317 urb->pipe = pipe;
1318 urb->transfer_buffer = transfer_buffer;
1319 urb->transfer_buffer_length = buffer_length;
1320 urb->complete = complete_fn;
1321 urb->context = context;
1322 if (dev->speed == USB_SPEED_HIGH || dev->speed == USB_SPEED_SUPER)
1323 urb->interval = 1 << (interval - 1);
1324 else
1325 urb->interval = interval;
1326 urb->start_frame = -1;
1327 }
1328
1329 extern void usb_init_urb(struct urb *urb);
1330 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1331 extern void usb_free_urb(struct urb *urb);
1332 #define usb_put_urb usb_free_urb
1333 extern struct urb *usb_get_urb(struct urb *urb);
1334 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1335 extern int usb_unlink_urb(struct urb *urb);
1336 extern void usb_kill_urb(struct urb *urb);
1337 extern void usb_poison_urb(struct urb *urb);
1338 extern void usb_unpoison_urb(struct urb *urb);
1339 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1340 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1341 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1342 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1343 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1344 extern void usb_unanchor_urb(struct urb *urb);
1345 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1346 unsigned int timeout);
1347 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1348 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1349 extern int usb_anchor_empty(struct usb_anchor *anchor);
1350
1351 /**
1352 * usb_urb_dir_in - check if an URB describes an IN transfer
1353 * @urb: URB to be checked
1354 *
1355 * Returns 1 if @urb describes an IN transfer (device-to-host),
1356 * otherwise 0.
1357 */
usb_urb_dir_in(struct urb * urb)1358 static inline int usb_urb_dir_in(struct urb *urb)
1359 {
1360 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1361 }
1362
1363 /**
1364 * usb_urb_dir_out - check if an URB describes an OUT transfer
1365 * @urb: URB to be checked
1366 *
1367 * Returns 1 if @urb describes an OUT transfer (host-to-device),
1368 * otherwise 0.
1369 */
usb_urb_dir_out(struct urb * urb)1370 static inline int usb_urb_dir_out(struct urb *urb)
1371 {
1372 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1373 }
1374
1375 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1376 gfp_t mem_flags, dma_addr_t *dma);
1377 void usb_free_coherent(struct usb_device *dev, size_t size,
1378 void *addr, dma_addr_t dma);
1379
1380 #if 0
1381 struct urb *usb_buffer_map(struct urb *urb);
1382 void usb_buffer_dmasync(struct urb *urb);
1383 void usb_buffer_unmap(struct urb *urb);
1384 #endif
1385
1386 struct scatterlist;
1387 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1388 struct scatterlist *sg, int nents);
1389 #if 0
1390 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1391 struct scatterlist *sg, int n_hw_ents);
1392 #endif
1393 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1394 struct scatterlist *sg, int n_hw_ents);
1395
1396 /*-------------------------------------------------------------------*
1397 * SYNCHRONOUS CALL SUPPORT *
1398 *-------------------------------------------------------------------*/
1399
1400 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1401 __u8 request, __u8 requesttype, __u16 value, __u16 index,
1402 void *data, __u16 size, int timeout);
1403 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1404 void *data, int len, int *actual_length, int timeout);
1405 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1406 void *data, int len, int *actual_length,
1407 int timeout);
1408
1409 /* wrappers around usb_control_msg() for the most common standard requests */
1410 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1411 unsigned char descindex, void *buf, int size);
1412 extern int usb_get_status(struct usb_device *dev,
1413 int type, int target, void *data);
1414 extern int usb_string(struct usb_device *dev, int index,
1415 char *buf, size_t size);
1416
1417 /* wrappers that also update important state inside usbcore */
1418 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1419 extern int usb_reset_configuration(struct usb_device *dev);
1420 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1421 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1422
1423 /* this request isn't really synchronous, but it belongs with the others */
1424 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1425
1426 /*
1427 * timeouts, in milliseconds, used for sending/receiving control messages
1428 * they typically complete within a few frames (msec) after they're issued
1429 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1430 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1431 */
1432 #define USB_CTRL_GET_TIMEOUT 5000
1433 #define USB_CTRL_SET_TIMEOUT 5000
1434
1435
1436 /**
1437 * struct usb_sg_request - support for scatter/gather I/O
1438 * @status: zero indicates success, else negative errno
1439 * @bytes: counts bytes transferred.
1440 *
1441 * These requests are initialized using usb_sg_init(), and then are used
1442 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most
1443 * members of the request object aren't for driver access.
1444 *
1445 * The status and bytecount values are valid only after usb_sg_wait()
1446 * returns. If the status is zero, then the bytecount matches the total
1447 * from the request.
1448 *
1449 * After an error completion, drivers may need to clear a halt condition
1450 * on the endpoint.
1451 */
1452 struct usb_sg_request {
1453 int status;
1454 size_t bytes;
1455
1456 /* private:
1457 * members below are private to usbcore,
1458 * and are not provided for driver access!
1459 */
1460 spinlock_t lock;
1461
1462 struct usb_device *dev;
1463 int pipe;
1464
1465 int entries;
1466 struct urb **urbs;
1467
1468 int count;
1469 struct completion complete;
1470 };
1471
1472 int usb_sg_init(
1473 struct usb_sg_request *io,
1474 struct usb_device *dev,
1475 unsigned pipe,
1476 unsigned period,
1477 struct scatterlist *sg,
1478 int nents,
1479 size_t length,
1480 gfp_t mem_flags
1481 );
1482 void usb_sg_cancel(struct usb_sg_request *io);
1483 void usb_sg_wait(struct usb_sg_request *io);
1484
1485
1486 /* ----------------------------------------------------------------------- */
1487
1488 /*
1489 * For various legacy reasons, Linux has a small cookie that's paired with
1490 * a struct usb_device to identify an endpoint queue. Queue characteristics
1491 * are defined by the endpoint's descriptor. This cookie is called a "pipe",
1492 * an unsigned int encoded as:
1493 *
1494 * - direction: bit 7 (0 = Host-to-Device [Out],
1495 * 1 = Device-to-Host [In] ...
1496 * like endpoint bEndpointAddress)
1497 * - device address: bits 8-14 ... bit positions known to uhci-hcd
1498 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd
1499 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt,
1500 * 10 = control, 11 = bulk)
1501 *
1502 * Given the device address and endpoint descriptor, pipes are redundant.
1503 */
1504
1505 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */
1506 /* (yet ... they're the values used by usbfs) */
1507 #define PIPE_ISOCHRONOUS 0
1508 #define PIPE_INTERRUPT 1
1509 #define PIPE_CONTROL 2
1510 #define PIPE_BULK 3
1511
1512 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN)
1513 #define usb_pipeout(pipe) (!usb_pipein(pipe))
1514
1515 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f)
1516 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf)
1517
1518 #define usb_pipetype(pipe) (((pipe) >> 30) & 3)
1519 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1520 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1521 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL)
1522 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK)
1523
__create_pipe(struct usb_device * dev,unsigned int endpoint)1524 static inline unsigned int __create_pipe(struct usb_device *dev,
1525 unsigned int endpoint)
1526 {
1527 return (dev->devnum << 8) | (endpoint << 15);
1528 }
1529
1530 /* Create various pipes... */
1531 #define usb_sndctrlpipe(dev, endpoint) \
1532 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1533 #define usb_rcvctrlpipe(dev, endpoint) \
1534 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1535 #define usb_sndisocpipe(dev, endpoint) \
1536 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1537 #define usb_rcvisocpipe(dev, endpoint) \
1538 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1539 #define usb_sndbulkpipe(dev, endpoint) \
1540 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1541 #define usb_rcvbulkpipe(dev, endpoint) \
1542 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1543 #define usb_sndintpipe(dev, endpoint) \
1544 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1545 #define usb_rcvintpipe(dev, endpoint) \
1546 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1547
1548 static inline struct usb_host_endpoint *
usb_pipe_endpoint(struct usb_device * dev,unsigned int pipe)1549 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1550 {
1551 struct usb_host_endpoint **eps;
1552 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1553 return eps[usb_pipeendpoint(pipe)];
1554 }
1555
1556 /*-------------------------------------------------------------------------*/
1557
1558 static inline __u16
usb_maxpacket(struct usb_device * udev,int pipe,int is_out)1559 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1560 {
1561 struct usb_host_endpoint *ep;
1562 unsigned epnum = usb_pipeendpoint(pipe);
1563
1564 if (is_out) {
1565 WARN_ON(usb_pipein(pipe));
1566 ep = udev->ep_out[epnum];
1567 } else {
1568 WARN_ON(usb_pipeout(pipe));
1569 ep = udev->ep_in[epnum];
1570 }
1571 if (!ep)
1572 return 0;
1573
1574 /* NOTE: only 0x07ff bits are for packet size... */
1575 return le16_to_cpu(ep->desc.wMaxPacketSize);
1576 }
1577
1578 /* ----------------------------------------------------------------------- */
1579
1580 /* Events from the usb core */
1581 #define USB_DEVICE_ADD 0x0001
1582 #define USB_DEVICE_REMOVE 0x0002
1583 #define USB_BUS_ADD 0x0003
1584 #define USB_BUS_REMOVE 0x0004
1585 extern void usb_register_notify(struct notifier_block *nb);
1586 extern void usb_unregister_notify(struct notifier_block *nb);
1587
1588 #ifdef DEBUG
1589 #define dbg(format, arg...) \
1590 printk(KERN_DEBUG "%s: " format "\n", __FILE__, ##arg)
1591 #else
1592 #define dbg(format, arg...) \
1593 do { \
1594 if (0) \
1595 printk(KERN_DEBUG "%s: " format "\n", __FILE__, ##arg); \
1596 } while (0)
1597 #endif
1598
1599 #define err(format, arg...) \
1600 printk(KERN_ERR KBUILD_MODNAME ": " format "\n", ##arg)
1601
1602 /* debugfs stuff */
1603 extern struct dentry *usb_debug_root;
1604
1605 #endif /* __KERNEL__ */
1606
1607 #endif
1608