1 // SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause
2 /*
3 * Copyright(c) 2020 Cornelis Networks, Inc.
4 * Copyright(c) 2015-2020 Intel Corporation.
5 */
6
7 #include <linux/poll.h>
8 #include <linux/cdev.h>
9 #include <linux/vmalloc.h>
10 #include <linux/io.h>
11 #include <linux/sched/mm.h>
12 #include <linux/bitmap.h>
13
14 #include <rdma/ib.h>
15
16 #include "hfi.h"
17 #include "pio.h"
18 #include "device.h"
19 #include "common.h"
20 #include "trace.h"
21 #include "mmu_rb.h"
22 #include "user_sdma.h"
23 #include "user_exp_rcv.h"
24 #include "aspm.h"
25
26 #undef pr_fmt
27 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
28
29 #define SEND_CTXT_HALT_TIMEOUT 1000 /* msecs */
30
31 /*
32 * File operation functions
33 */
34 static int hfi1_file_open(struct inode *inode, struct file *fp);
35 static int hfi1_file_close(struct inode *inode, struct file *fp);
36 static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from);
37 static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt);
38 static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma);
39
40 static u64 kvirt_to_phys(void *addr);
41 static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len);
42 static void init_subctxts(struct hfi1_ctxtdata *uctxt,
43 const struct hfi1_user_info *uinfo);
44 static int init_user_ctxt(struct hfi1_filedata *fd,
45 struct hfi1_ctxtdata *uctxt);
46 static void user_init(struct hfi1_ctxtdata *uctxt);
47 static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len);
48 static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len);
49 static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg,
50 u32 len);
51 static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg,
52 u32 len);
53 static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg,
54 u32 len);
55 static int setup_base_ctxt(struct hfi1_filedata *fd,
56 struct hfi1_ctxtdata *uctxt);
57 static int setup_subctxt(struct hfi1_ctxtdata *uctxt);
58
59 static int find_sub_ctxt(struct hfi1_filedata *fd,
60 const struct hfi1_user_info *uinfo);
61 static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd,
62 struct hfi1_user_info *uinfo,
63 struct hfi1_ctxtdata **cd);
64 static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt);
65 static __poll_t poll_urgent(struct file *fp, struct poll_table_struct *pt);
66 static __poll_t poll_next(struct file *fp, struct poll_table_struct *pt);
67 static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt,
68 unsigned long arg);
69 static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg);
70 static int ctxt_reset(struct hfi1_ctxtdata *uctxt);
71 static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt,
72 unsigned long arg);
73 static vm_fault_t vma_fault(struct vm_fault *vmf);
74 static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
75 unsigned long arg);
76
77 static const struct file_operations hfi1_file_ops = {
78 .owner = THIS_MODULE,
79 .write_iter = hfi1_write_iter,
80 .open = hfi1_file_open,
81 .release = hfi1_file_close,
82 .unlocked_ioctl = hfi1_file_ioctl,
83 .poll = hfi1_poll,
84 .mmap = hfi1_file_mmap,
85 .llseek = noop_llseek,
86 };
87
88 static const struct vm_operations_struct vm_ops = {
89 .fault = vma_fault,
90 };
91
92 /*
93 * Types of memories mapped into user processes' space
94 */
95 enum mmap_types {
96 PIO_BUFS = 1,
97 PIO_BUFS_SOP,
98 PIO_CRED,
99 RCV_HDRQ,
100 RCV_EGRBUF,
101 UREGS,
102 EVENTS,
103 STATUS,
104 RTAIL,
105 SUBCTXT_UREGS,
106 SUBCTXT_RCV_HDRQ,
107 SUBCTXT_EGRBUF,
108 SDMA_COMP
109 };
110
111 /*
112 * Masks and offsets defining the mmap tokens
113 */
114 #define HFI1_MMAP_OFFSET_MASK 0xfffULL
115 #define HFI1_MMAP_OFFSET_SHIFT 0
116 #define HFI1_MMAP_SUBCTXT_MASK 0xfULL
117 #define HFI1_MMAP_SUBCTXT_SHIFT 12
118 #define HFI1_MMAP_CTXT_MASK 0xffULL
119 #define HFI1_MMAP_CTXT_SHIFT 16
120 #define HFI1_MMAP_TYPE_MASK 0xfULL
121 #define HFI1_MMAP_TYPE_SHIFT 24
122 #define HFI1_MMAP_MAGIC_MASK 0xffffffffULL
123 #define HFI1_MMAP_MAGIC_SHIFT 32
124
125 #define HFI1_MMAP_MAGIC 0xdabbad00
126
127 #define HFI1_MMAP_TOKEN_SET(field, val) \
128 (((val) & HFI1_MMAP_##field##_MASK) << HFI1_MMAP_##field##_SHIFT)
129 #define HFI1_MMAP_TOKEN_GET(field, token) \
130 (((token) >> HFI1_MMAP_##field##_SHIFT) & HFI1_MMAP_##field##_MASK)
131 #define HFI1_MMAP_TOKEN(type, ctxt, subctxt, addr) \
132 (HFI1_MMAP_TOKEN_SET(MAGIC, HFI1_MMAP_MAGIC) | \
133 HFI1_MMAP_TOKEN_SET(TYPE, type) | \
134 HFI1_MMAP_TOKEN_SET(CTXT, ctxt) | \
135 HFI1_MMAP_TOKEN_SET(SUBCTXT, subctxt) | \
136 HFI1_MMAP_TOKEN_SET(OFFSET, (offset_in_page(addr))))
137
138 #define dbg(fmt, ...) \
139 pr_info(fmt, ##__VA_ARGS__)
140
is_valid_mmap(u64 token)141 static inline int is_valid_mmap(u64 token)
142 {
143 return (HFI1_MMAP_TOKEN_GET(MAGIC, token) == HFI1_MMAP_MAGIC);
144 }
145
hfi1_file_open(struct inode * inode,struct file * fp)146 static int hfi1_file_open(struct inode *inode, struct file *fp)
147 {
148 struct hfi1_filedata *fd;
149 struct hfi1_devdata *dd = container_of(inode->i_cdev,
150 struct hfi1_devdata,
151 user_cdev);
152
153 if (!((dd->flags & HFI1_PRESENT) && dd->kregbase1))
154 return -EINVAL;
155
156 if (!refcount_inc_not_zero(&dd->user_refcount))
157 return -ENXIO;
158
159 /* The real work is performed later in assign_ctxt() */
160
161 fd = kzalloc(sizeof(*fd), GFP_KERNEL);
162
163 if (!fd || init_srcu_struct(&fd->pq_srcu))
164 goto nomem;
165 spin_lock_init(&fd->pq_rcu_lock);
166 spin_lock_init(&fd->tid_lock);
167 spin_lock_init(&fd->invalid_lock);
168 fd->rec_cpu_num = -1; /* no cpu affinity by default */
169 fd->dd = dd;
170 fp->private_data = fd;
171 return 0;
172 nomem:
173 kfree(fd);
174 fp->private_data = NULL;
175 if (refcount_dec_and_test(&dd->user_refcount))
176 complete(&dd->user_comp);
177 return -ENOMEM;
178 }
179
hfi1_file_ioctl(struct file * fp,unsigned int cmd,unsigned long arg)180 static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
181 unsigned long arg)
182 {
183 struct hfi1_filedata *fd = fp->private_data;
184 struct hfi1_ctxtdata *uctxt = fd->uctxt;
185 int ret = 0;
186 int uval = 0;
187
188 hfi1_cdbg(IOCTL, "IOCTL recv: 0x%x", cmd);
189 if (cmd != HFI1_IOCTL_ASSIGN_CTXT &&
190 cmd != HFI1_IOCTL_GET_VERS &&
191 !uctxt)
192 return -EINVAL;
193
194 switch (cmd) {
195 case HFI1_IOCTL_ASSIGN_CTXT:
196 ret = assign_ctxt(fd, arg, _IOC_SIZE(cmd));
197 break;
198
199 case HFI1_IOCTL_CTXT_INFO:
200 ret = get_ctxt_info(fd, arg, _IOC_SIZE(cmd));
201 break;
202
203 case HFI1_IOCTL_USER_INFO:
204 ret = get_base_info(fd, arg, _IOC_SIZE(cmd));
205 break;
206
207 case HFI1_IOCTL_CREDIT_UPD:
208 if (uctxt)
209 sc_return_credits(uctxt->sc);
210 break;
211
212 case HFI1_IOCTL_TID_UPDATE:
213 ret = user_exp_rcv_setup(fd, arg, _IOC_SIZE(cmd));
214 break;
215
216 case HFI1_IOCTL_TID_FREE:
217 ret = user_exp_rcv_clear(fd, arg, _IOC_SIZE(cmd));
218 break;
219
220 case HFI1_IOCTL_TID_INVAL_READ:
221 ret = user_exp_rcv_invalid(fd, arg, _IOC_SIZE(cmd));
222 break;
223
224 case HFI1_IOCTL_RECV_CTRL:
225 ret = manage_rcvq(uctxt, fd->subctxt, arg);
226 break;
227
228 case HFI1_IOCTL_POLL_TYPE:
229 if (get_user(uval, (int __user *)arg))
230 return -EFAULT;
231 uctxt->poll_type = (typeof(uctxt->poll_type))uval;
232 break;
233
234 case HFI1_IOCTL_ACK_EVENT:
235 ret = user_event_ack(uctxt, fd->subctxt, arg);
236 break;
237
238 case HFI1_IOCTL_SET_PKEY:
239 ret = set_ctxt_pkey(uctxt, arg);
240 break;
241
242 case HFI1_IOCTL_CTXT_RESET:
243 ret = ctxt_reset(uctxt);
244 break;
245
246 case HFI1_IOCTL_GET_VERS:
247 uval = HFI1_USER_SWVERSION;
248 if (put_user(uval, (int __user *)arg))
249 return -EFAULT;
250 break;
251
252 default:
253 return -EINVAL;
254 }
255
256 return ret;
257 }
258
hfi1_write_iter(struct kiocb * kiocb,struct iov_iter * from)259 static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from)
260 {
261 struct hfi1_filedata *fd = kiocb->ki_filp->private_data;
262 struct hfi1_user_sdma_pkt_q *pq;
263 struct hfi1_user_sdma_comp_q *cq = fd->cq;
264 int done = 0, reqs = 0;
265 unsigned long dim = from->nr_segs;
266 int idx;
267
268 if (!HFI1_CAP_IS_KSET(SDMA))
269 return -EINVAL;
270 idx = srcu_read_lock(&fd->pq_srcu);
271 pq = srcu_dereference(fd->pq, &fd->pq_srcu);
272 if (!cq || !pq) {
273 srcu_read_unlock(&fd->pq_srcu, idx);
274 return -EIO;
275 }
276
277 if (!iter_is_iovec(from) || !dim) {
278 srcu_read_unlock(&fd->pq_srcu, idx);
279 return -EINVAL;
280 }
281
282 trace_hfi1_sdma_request(fd->dd, fd->uctxt->ctxt, fd->subctxt, dim);
283
284 if (atomic_read(&pq->n_reqs) == pq->n_max_reqs) {
285 srcu_read_unlock(&fd->pq_srcu, idx);
286 return -ENOSPC;
287 }
288
289 while (dim) {
290 int ret;
291 unsigned long count = 0;
292
293 ret = hfi1_user_sdma_process_request(
294 fd, (struct iovec *)(from->iov + done),
295 dim, &count);
296 if (ret) {
297 reqs = ret;
298 break;
299 }
300 dim -= count;
301 done += count;
302 reqs++;
303 }
304
305 srcu_read_unlock(&fd->pq_srcu, idx);
306 return reqs;
307 }
308
hfi1_file_mmap(struct file * fp,struct vm_area_struct * vma)309 static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma)
310 {
311 struct hfi1_filedata *fd = fp->private_data;
312 struct hfi1_ctxtdata *uctxt = fd->uctxt;
313 struct hfi1_devdata *dd;
314 unsigned long flags;
315 u64 token = vma->vm_pgoff << PAGE_SHIFT,
316 memaddr = 0;
317 void *memvirt = NULL;
318 u8 subctxt, mapio = 0, vmf = 0, type;
319 ssize_t memlen = 0;
320 int ret = 0;
321 u16 ctxt;
322
323 if (!is_valid_mmap(token) || !uctxt ||
324 !(vma->vm_flags & VM_SHARED)) {
325 ret = -EINVAL;
326 goto done;
327 }
328 dd = uctxt->dd;
329 ctxt = HFI1_MMAP_TOKEN_GET(CTXT, token);
330 subctxt = HFI1_MMAP_TOKEN_GET(SUBCTXT, token);
331 type = HFI1_MMAP_TOKEN_GET(TYPE, token);
332 if (ctxt != uctxt->ctxt || subctxt != fd->subctxt) {
333 ret = -EINVAL;
334 goto done;
335 }
336
337 flags = vma->vm_flags;
338
339 switch (type) {
340 case PIO_BUFS:
341 case PIO_BUFS_SOP:
342 memaddr = ((dd->physaddr + TXE_PIO_SEND) +
343 /* chip pio base */
344 (uctxt->sc->hw_context * BIT(16))) +
345 /* 64K PIO space / ctxt */
346 (type == PIO_BUFS_SOP ?
347 (TXE_PIO_SIZE / 2) : 0); /* sop? */
348 /*
349 * Map only the amount allocated to the context, not the
350 * entire available context's PIO space.
351 */
352 memlen = PAGE_ALIGN(uctxt->sc->credits * PIO_BLOCK_SIZE);
353 flags &= ~VM_MAYREAD;
354 flags |= VM_DONTCOPY | VM_DONTEXPAND;
355 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
356 mapio = 1;
357 break;
358 case PIO_CRED:
359 if (flags & VM_WRITE) {
360 ret = -EPERM;
361 goto done;
362 }
363 /*
364 * The credit return location for this context could be on the
365 * second or third page allocated for credit returns (if number
366 * of enabled contexts > 64 and 128 respectively).
367 */
368 memvirt = dd->cr_base[uctxt->numa_id].va;
369 memaddr = virt_to_phys(memvirt) +
370 (((u64)uctxt->sc->hw_free -
371 (u64)dd->cr_base[uctxt->numa_id].va) & PAGE_MASK);
372 memlen = PAGE_SIZE;
373 flags &= ~VM_MAYWRITE;
374 flags |= VM_DONTCOPY | VM_DONTEXPAND;
375 /*
376 * The driver has already allocated memory for credit
377 * returns and programmed it into the chip. Has that
378 * memory been flagged as non-cached?
379 */
380 /* vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); */
381 mapio = 1;
382 break;
383 case RCV_HDRQ:
384 memlen = rcvhdrq_size(uctxt);
385 memvirt = uctxt->rcvhdrq;
386 break;
387 case RCV_EGRBUF: {
388 unsigned long addr;
389 int i;
390 /*
391 * The RcvEgr buffer need to be handled differently
392 * as multiple non-contiguous pages need to be mapped
393 * into the user process.
394 */
395 memlen = uctxt->egrbufs.size;
396 if ((vma->vm_end - vma->vm_start) != memlen) {
397 dd_dev_err(dd, "Eager buffer map size invalid (%lu != %lu)\n",
398 (vma->vm_end - vma->vm_start), memlen);
399 ret = -EINVAL;
400 goto done;
401 }
402 if (vma->vm_flags & VM_WRITE) {
403 ret = -EPERM;
404 goto done;
405 }
406 vma->vm_flags &= ~VM_MAYWRITE;
407 addr = vma->vm_start;
408 for (i = 0 ; i < uctxt->egrbufs.numbufs; i++) {
409 memlen = uctxt->egrbufs.buffers[i].len;
410 memvirt = uctxt->egrbufs.buffers[i].addr;
411 ret = remap_pfn_range(
412 vma, addr,
413 /*
414 * virt_to_pfn() does the same, but
415 * it's not available on x86_64
416 * when CONFIG_MMU is enabled.
417 */
418 PFN_DOWN(__pa(memvirt)),
419 memlen,
420 vma->vm_page_prot);
421 if (ret < 0)
422 goto done;
423 addr += memlen;
424 }
425 ret = 0;
426 goto done;
427 }
428 case UREGS:
429 /*
430 * Map only the page that contains this context's user
431 * registers.
432 */
433 memaddr = (unsigned long)
434 (dd->physaddr + RXE_PER_CONTEXT_USER)
435 + (uctxt->ctxt * RXE_PER_CONTEXT_SIZE);
436 /*
437 * TidFlow table is on the same page as the rest of the
438 * user registers.
439 */
440 memlen = PAGE_SIZE;
441 flags |= VM_DONTCOPY | VM_DONTEXPAND;
442 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
443 mapio = 1;
444 break;
445 case EVENTS:
446 /*
447 * Use the page where this context's flags are. User level
448 * knows where it's own bitmap is within the page.
449 */
450 memaddr = (unsigned long)
451 (dd->events + uctxt_offset(uctxt)) & PAGE_MASK;
452 memlen = PAGE_SIZE;
453 /*
454 * v3.7 removes VM_RESERVED but the effect is kept by
455 * using VM_IO.
456 */
457 flags |= VM_IO | VM_DONTEXPAND;
458 vmf = 1;
459 break;
460 case STATUS:
461 if (flags & VM_WRITE) {
462 ret = -EPERM;
463 goto done;
464 }
465 memaddr = kvirt_to_phys((void *)dd->status);
466 memlen = PAGE_SIZE;
467 flags |= VM_IO | VM_DONTEXPAND;
468 break;
469 case RTAIL:
470 if (!HFI1_CAP_IS_USET(DMA_RTAIL)) {
471 /*
472 * If the memory allocation failed, the context alloc
473 * also would have failed, so we would never get here
474 */
475 ret = -EINVAL;
476 goto done;
477 }
478 if ((flags & VM_WRITE) || !hfi1_rcvhdrtail_kvaddr(uctxt)) {
479 ret = -EPERM;
480 goto done;
481 }
482 memlen = PAGE_SIZE;
483 memvirt = (void *)hfi1_rcvhdrtail_kvaddr(uctxt);
484 flags &= ~VM_MAYWRITE;
485 break;
486 case SUBCTXT_UREGS:
487 memaddr = (u64)uctxt->subctxt_uregbase;
488 memlen = PAGE_SIZE;
489 flags |= VM_IO | VM_DONTEXPAND;
490 vmf = 1;
491 break;
492 case SUBCTXT_RCV_HDRQ:
493 memaddr = (u64)uctxt->subctxt_rcvhdr_base;
494 memlen = rcvhdrq_size(uctxt) * uctxt->subctxt_cnt;
495 flags |= VM_IO | VM_DONTEXPAND;
496 vmf = 1;
497 break;
498 case SUBCTXT_EGRBUF:
499 memaddr = (u64)uctxt->subctxt_rcvegrbuf;
500 memlen = uctxt->egrbufs.size * uctxt->subctxt_cnt;
501 flags |= VM_IO | VM_DONTEXPAND;
502 flags &= ~VM_MAYWRITE;
503 vmf = 1;
504 break;
505 case SDMA_COMP: {
506 struct hfi1_user_sdma_comp_q *cq = fd->cq;
507
508 if (!cq) {
509 ret = -EFAULT;
510 goto done;
511 }
512 memaddr = (u64)cq->comps;
513 memlen = PAGE_ALIGN(sizeof(*cq->comps) * cq->nentries);
514 flags |= VM_IO | VM_DONTEXPAND;
515 vmf = 1;
516 break;
517 }
518 default:
519 ret = -EINVAL;
520 break;
521 }
522
523 if ((vma->vm_end - vma->vm_start) != memlen) {
524 hfi1_cdbg(PROC, "%u:%u Memory size mismatch %lu:%lu",
525 uctxt->ctxt, fd->subctxt,
526 (vma->vm_end - vma->vm_start), memlen);
527 ret = -EINVAL;
528 goto done;
529 }
530
531 vma->vm_flags = flags;
532 hfi1_cdbg(PROC,
533 "%u:%u type:%u io/vf:%d/%d, addr:0x%llx, len:%lu(%lu), flags:0x%lx\n",
534 ctxt, subctxt, type, mapio, vmf, memaddr, memlen,
535 vma->vm_end - vma->vm_start, vma->vm_flags);
536 if (vmf) {
537 vma->vm_pgoff = PFN_DOWN(memaddr);
538 vma->vm_ops = &vm_ops;
539 ret = 0;
540 } else if (mapio) {
541 ret = io_remap_pfn_range(vma, vma->vm_start,
542 PFN_DOWN(memaddr),
543 memlen,
544 vma->vm_page_prot);
545 } else if (memvirt) {
546 ret = remap_pfn_range(vma, vma->vm_start,
547 PFN_DOWN(__pa(memvirt)),
548 memlen,
549 vma->vm_page_prot);
550 } else {
551 ret = remap_pfn_range(vma, vma->vm_start,
552 PFN_DOWN(memaddr),
553 memlen,
554 vma->vm_page_prot);
555 }
556 done:
557 return ret;
558 }
559
560 /*
561 * Local (non-chip) user memory is not mapped right away but as it is
562 * accessed by the user-level code.
563 */
vma_fault(struct vm_fault * vmf)564 static vm_fault_t vma_fault(struct vm_fault *vmf)
565 {
566 struct page *page;
567
568 page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT));
569 if (!page)
570 return VM_FAULT_SIGBUS;
571
572 get_page(page);
573 vmf->page = page;
574
575 return 0;
576 }
577
hfi1_poll(struct file * fp,struct poll_table_struct * pt)578 static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt)
579 {
580 struct hfi1_ctxtdata *uctxt;
581 __poll_t pollflag;
582
583 uctxt = ((struct hfi1_filedata *)fp->private_data)->uctxt;
584 if (!uctxt)
585 pollflag = EPOLLERR;
586 else if (uctxt->poll_type == HFI1_POLL_TYPE_URGENT)
587 pollflag = poll_urgent(fp, pt);
588 else if (uctxt->poll_type == HFI1_POLL_TYPE_ANYRCV)
589 pollflag = poll_next(fp, pt);
590 else /* invalid */
591 pollflag = EPOLLERR;
592
593 return pollflag;
594 }
595
hfi1_file_close(struct inode * inode,struct file * fp)596 static int hfi1_file_close(struct inode *inode, struct file *fp)
597 {
598 struct hfi1_filedata *fdata = fp->private_data;
599 struct hfi1_ctxtdata *uctxt = fdata->uctxt;
600 struct hfi1_devdata *dd = container_of(inode->i_cdev,
601 struct hfi1_devdata,
602 user_cdev);
603 unsigned long flags, *ev;
604
605 fp->private_data = NULL;
606
607 if (!uctxt)
608 goto done;
609
610 hfi1_cdbg(PROC, "closing ctxt %u:%u", uctxt->ctxt, fdata->subctxt);
611
612 flush_wc();
613 /* drain user sdma queue */
614 hfi1_user_sdma_free_queues(fdata, uctxt);
615
616 /* release the cpu */
617 hfi1_put_proc_affinity(fdata->rec_cpu_num);
618
619 /* clean up rcv side */
620 hfi1_user_exp_rcv_free(fdata);
621
622 /*
623 * fdata->uctxt is used in the above cleanup. It is not ready to be
624 * removed until here.
625 */
626 fdata->uctxt = NULL;
627 hfi1_rcd_put(uctxt);
628
629 /*
630 * Clear any left over, unhandled events so the next process that
631 * gets this context doesn't get confused.
632 */
633 ev = dd->events + uctxt_offset(uctxt) + fdata->subctxt;
634 *ev = 0;
635
636 spin_lock_irqsave(&dd->uctxt_lock, flags);
637 __clear_bit(fdata->subctxt, uctxt->in_use_ctxts);
638 if (!bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) {
639 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
640 goto done;
641 }
642 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
643
644 /*
645 * Disable receive context and interrupt available, reset all
646 * RcvCtxtCtrl bits to default values.
647 */
648 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
649 HFI1_RCVCTRL_TIDFLOW_DIS |
650 HFI1_RCVCTRL_INTRAVAIL_DIS |
651 HFI1_RCVCTRL_TAILUPD_DIS |
652 HFI1_RCVCTRL_ONE_PKT_EGR_DIS |
653 HFI1_RCVCTRL_NO_RHQ_DROP_DIS |
654 HFI1_RCVCTRL_NO_EGR_DROP_DIS |
655 HFI1_RCVCTRL_URGENT_DIS, uctxt);
656 /* Clear the context's J_KEY */
657 hfi1_clear_ctxt_jkey(dd, uctxt);
658 /*
659 * If a send context is allocated, reset context integrity
660 * checks to default and disable the send context.
661 */
662 if (uctxt->sc) {
663 sc_disable(uctxt->sc);
664 set_pio_integrity(uctxt->sc);
665 }
666
667 hfi1_free_ctxt_rcv_groups(uctxt);
668 hfi1_clear_ctxt_pkey(dd, uctxt);
669
670 uctxt->event_flags = 0;
671
672 deallocate_ctxt(uctxt);
673 done:
674
675 if (refcount_dec_and_test(&dd->user_refcount))
676 complete(&dd->user_comp);
677
678 cleanup_srcu_struct(&fdata->pq_srcu);
679 kfree(fdata);
680 return 0;
681 }
682
683 /*
684 * Convert kernel *virtual* addresses to physical addresses.
685 * This is used to vmalloc'ed addresses.
686 */
kvirt_to_phys(void * addr)687 static u64 kvirt_to_phys(void *addr)
688 {
689 struct page *page;
690 u64 paddr = 0;
691
692 page = vmalloc_to_page(addr);
693 if (page)
694 paddr = page_to_pfn(page) << PAGE_SHIFT;
695
696 return paddr;
697 }
698
699 /**
700 * complete_subctxt - complete sub-context info
701 * @fd: valid filedata pointer
702 *
703 * Sub-context info can only be set up after the base context
704 * has been completed. This is indicated by the clearing of the
705 * HFI1_CTXT_BASE_UINIT bit.
706 *
707 * Wait for the bit to be cleared, and then complete the subcontext
708 * initialization.
709 *
710 */
complete_subctxt(struct hfi1_filedata * fd)711 static int complete_subctxt(struct hfi1_filedata *fd)
712 {
713 int ret;
714 unsigned long flags;
715
716 /*
717 * sub-context info can only be set up after the base context
718 * has been completed.
719 */
720 ret = wait_event_interruptible(
721 fd->uctxt->wait,
722 !test_bit(HFI1_CTXT_BASE_UNINIT, &fd->uctxt->event_flags));
723
724 if (test_bit(HFI1_CTXT_BASE_FAILED, &fd->uctxt->event_flags))
725 ret = -ENOMEM;
726
727 /* Finish the sub-context init */
728 if (!ret) {
729 fd->rec_cpu_num = hfi1_get_proc_affinity(fd->uctxt->numa_id);
730 ret = init_user_ctxt(fd, fd->uctxt);
731 }
732
733 if (ret) {
734 spin_lock_irqsave(&fd->dd->uctxt_lock, flags);
735 __clear_bit(fd->subctxt, fd->uctxt->in_use_ctxts);
736 spin_unlock_irqrestore(&fd->dd->uctxt_lock, flags);
737 hfi1_rcd_put(fd->uctxt);
738 fd->uctxt = NULL;
739 }
740
741 return ret;
742 }
743
assign_ctxt(struct hfi1_filedata * fd,unsigned long arg,u32 len)744 static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len)
745 {
746 int ret;
747 unsigned int swmajor;
748 struct hfi1_ctxtdata *uctxt = NULL;
749 struct hfi1_user_info uinfo;
750
751 if (fd->uctxt)
752 return -EINVAL;
753
754 if (sizeof(uinfo) != len)
755 return -EINVAL;
756
757 if (copy_from_user(&uinfo, (void __user *)arg, sizeof(uinfo)))
758 return -EFAULT;
759
760 swmajor = uinfo.userversion >> 16;
761 if (swmajor != HFI1_USER_SWMAJOR)
762 return -ENODEV;
763
764 if (uinfo.subctxt_cnt > HFI1_MAX_SHARED_CTXTS)
765 return -EINVAL;
766
767 /*
768 * Acquire the mutex to protect against multiple creations of what
769 * could be a shared base context.
770 */
771 mutex_lock(&hfi1_mutex);
772 /*
773 * Get a sub context if available (fd->uctxt will be set).
774 * ret < 0 error, 0 no context, 1 sub-context found
775 */
776 ret = find_sub_ctxt(fd, &uinfo);
777
778 /*
779 * Allocate a base context if context sharing is not required or a
780 * sub context wasn't found.
781 */
782 if (!ret)
783 ret = allocate_ctxt(fd, fd->dd, &uinfo, &uctxt);
784
785 mutex_unlock(&hfi1_mutex);
786
787 /* Depending on the context type, finish the appropriate init */
788 switch (ret) {
789 case 0:
790 ret = setup_base_ctxt(fd, uctxt);
791 if (ret)
792 deallocate_ctxt(uctxt);
793 break;
794 case 1:
795 ret = complete_subctxt(fd);
796 break;
797 default:
798 break;
799 }
800
801 return ret;
802 }
803
804 /**
805 * match_ctxt - match context
806 * @fd: valid filedata pointer
807 * @uinfo: user info to compare base context with
808 * @uctxt: context to compare uinfo to.
809 *
810 * Compare the given context with the given information to see if it
811 * can be used for a sub context.
812 */
match_ctxt(struct hfi1_filedata * fd,const struct hfi1_user_info * uinfo,struct hfi1_ctxtdata * uctxt)813 static int match_ctxt(struct hfi1_filedata *fd,
814 const struct hfi1_user_info *uinfo,
815 struct hfi1_ctxtdata *uctxt)
816 {
817 struct hfi1_devdata *dd = fd->dd;
818 unsigned long flags;
819 u16 subctxt;
820
821 /* Skip dynamically allocated kernel contexts */
822 if (uctxt->sc && (uctxt->sc->type == SC_KERNEL))
823 return 0;
824
825 /* Skip ctxt if it doesn't match the requested one */
826 if (memcmp(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid)) ||
827 uctxt->jkey != generate_jkey(current_uid()) ||
828 uctxt->subctxt_id != uinfo->subctxt_id ||
829 uctxt->subctxt_cnt != uinfo->subctxt_cnt)
830 return 0;
831
832 /* Verify the sharing process matches the base */
833 if (uctxt->userversion != uinfo->userversion)
834 return -EINVAL;
835
836 /* Find an unused sub context */
837 spin_lock_irqsave(&dd->uctxt_lock, flags);
838 if (bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) {
839 /* context is being closed, do not use */
840 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
841 return 0;
842 }
843
844 subctxt = find_first_zero_bit(uctxt->in_use_ctxts,
845 HFI1_MAX_SHARED_CTXTS);
846 if (subctxt >= uctxt->subctxt_cnt) {
847 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
848 return -EBUSY;
849 }
850
851 fd->subctxt = subctxt;
852 __set_bit(fd->subctxt, uctxt->in_use_ctxts);
853 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
854
855 fd->uctxt = uctxt;
856 hfi1_rcd_get(uctxt);
857
858 return 1;
859 }
860
861 /**
862 * find_sub_ctxt - fund sub-context
863 * @fd: valid filedata pointer
864 * @uinfo: matching info to use to find a possible context to share.
865 *
866 * The hfi1_mutex must be held when this function is called. It is
867 * necessary to ensure serialized creation of shared contexts.
868 *
869 * Return:
870 * 0 No sub-context found
871 * 1 Subcontext found and allocated
872 * errno EINVAL (incorrect parameters)
873 * EBUSY (all sub contexts in use)
874 */
find_sub_ctxt(struct hfi1_filedata * fd,const struct hfi1_user_info * uinfo)875 static int find_sub_ctxt(struct hfi1_filedata *fd,
876 const struct hfi1_user_info *uinfo)
877 {
878 struct hfi1_ctxtdata *uctxt;
879 struct hfi1_devdata *dd = fd->dd;
880 u16 i;
881 int ret;
882
883 if (!uinfo->subctxt_cnt)
884 return 0;
885
886 for (i = dd->first_dyn_alloc_ctxt; i < dd->num_rcv_contexts; i++) {
887 uctxt = hfi1_rcd_get_by_index(dd, i);
888 if (uctxt) {
889 ret = match_ctxt(fd, uinfo, uctxt);
890 hfi1_rcd_put(uctxt);
891 /* value of != 0 will return */
892 if (ret)
893 return ret;
894 }
895 }
896
897 return 0;
898 }
899
allocate_ctxt(struct hfi1_filedata * fd,struct hfi1_devdata * dd,struct hfi1_user_info * uinfo,struct hfi1_ctxtdata ** rcd)900 static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd,
901 struct hfi1_user_info *uinfo,
902 struct hfi1_ctxtdata **rcd)
903 {
904 struct hfi1_ctxtdata *uctxt;
905 int ret, numa;
906
907 if (dd->flags & HFI1_FROZEN) {
908 /*
909 * Pick an error that is unique from all other errors
910 * that are returned so the user process knows that
911 * it tried to allocate while the SPC was frozen. It
912 * it should be able to retry with success in a short
913 * while.
914 */
915 return -EIO;
916 }
917
918 if (!dd->freectxts)
919 return -EBUSY;
920
921 /*
922 * If we don't have a NUMA node requested, preference is towards
923 * device NUMA node.
924 */
925 fd->rec_cpu_num = hfi1_get_proc_affinity(dd->node);
926 if (fd->rec_cpu_num != -1)
927 numa = cpu_to_node(fd->rec_cpu_num);
928 else
929 numa = numa_node_id();
930 ret = hfi1_create_ctxtdata(dd->pport, numa, &uctxt);
931 if (ret < 0) {
932 dd_dev_err(dd, "user ctxtdata allocation failed\n");
933 return ret;
934 }
935 hfi1_cdbg(PROC, "[%u:%u] pid %u assigned to CPU %d (NUMA %u)",
936 uctxt->ctxt, fd->subctxt, current->pid, fd->rec_cpu_num,
937 uctxt->numa_id);
938
939 /*
940 * Allocate and enable a PIO send context.
941 */
942 uctxt->sc = sc_alloc(dd, SC_USER, uctxt->rcvhdrqentsize, dd->node);
943 if (!uctxt->sc) {
944 ret = -ENOMEM;
945 goto ctxdata_free;
946 }
947 hfi1_cdbg(PROC, "allocated send context %u(%u)\n", uctxt->sc->sw_index,
948 uctxt->sc->hw_context);
949 ret = sc_enable(uctxt->sc);
950 if (ret)
951 goto ctxdata_free;
952
953 /*
954 * Setup sub context information if the user-level has requested
955 * sub contexts.
956 * This has to be done here so the rest of the sub-contexts find the
957 * proper base context.
958 * NOTE: _set_bit() can be used here because the context creation is
959 * protected by the mutex (rather than the spin_lock), and will be the
960 * very first instance of this context.
961 */
962 __set_bit(0, uctxt->in_use_ctxts);
963 if (uinfo->subctxt_cnt)
964 init_subctxts(uctxt, uinfo);
965 uctxt->userversion = uinfo->userversion;
966 uctxt->flags = hfi1_cap_mask; /* save current flag state */
967 init_waitqueue_head(&uctxt->wait);
968 strscpy(uctxt->comm, current->comm, sizeof(uctxt->comm));
969 memcpy(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid));
970 uctxt->jkey = generate_jkey(current_uid());
971 hfi1_stats.sps_ctxts++;
972 /*
973 * Disable ASPM when there are open user/PSM contexts to avoid
974 * issues with ASPM L1 exit latency
975 */
976 if (dd->freectxts-- == dd->num_user_contexts)
977 aspm_disable_all(dd);
978
979 *rcd = uctxt;
980
981 return 0;
982
983 ctxdata_free:
984 hfi1_free_ctxt(uctxt);
985 return ret;
986 }
987
deallocate_ctxt(struct hfi1_ctxtdata * uctxt)988 static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt)
989 {
990 mutex_lock(&hfi1_mutex);
991 hfi1_stats.sps_ctxts--;
992 if (++uctxt->dd->freectxts == uctxt->dd->num_user_contexts)
993 aspm_enable_all(uctxt->dd);
994 mutex_unlock(&hfi1_mutex);
995
996 hfi1_free_ctxt(uctxt);
997 }
998
init_subctxts(struct hfi1_ctxtdata * uctxt,const struct hfi1_user_info * uinfo)999 static void init_subctxts(struct hfi1_ctxtdata *uctxt,
1000 const struct hfi1_user_info *uinfo)
1001 {
1002 uctxt->subctxt_cnt = uinfo->subctxt_cnt;
1003 uctxt->subctxt_id = uinfo->subctxt_id;
1004 set_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags);
1005 }
1006
setup_subctxt(struct hfi1_ctxtdata * uctxt)1007 static int setup_subctxt(struct hfi1_ctxtdata *uctxt)
1008 {
1009 int ret = 0;
1010 u16 num_subctxts = uctxt->subctxt_cnt;
1011
1012 uctxt->subctxt_uregbase = vmalloc_user(PAGE_SIZE);
1013 if (!uctxt->subctxt_uregbase)
1014 return -ENOMEM;
1015
1016 /* We can take the size of the RcvHdr Queue from the master */
1017 uctxt->subctxt_rcvhdr_base = vmalloc_user(rcvhdrq_size(uctxt) *
1018 num_subctxts);
1019 if (!uctxt->subctxt_rcvhdr_base) {
1020 ret = -ENOMEM;
1021 goto bail_ureg;
1022 }
1023
1024 uctxt->subctxt_rcvegrbuf = vmalloc_user(uctxt->egrbufs.size *
1025 num_subctxts);
1026 if (!uctxt->subctxt_rcvegrbuf) {
1027 ret = -ENOMEM;
1028 goto bail_rhdr;
1029 }
1030
1031 return 0;
1032
1033 bail_rhdr:
1034 vfree(uctxt->subctxt_rcvhdr_base);
1035 uctxt->subctxt_rcvhdr_base = NULL;
1036 bail_ureg:
1037 vfree(uctxt->subctxt_uregbase);
1038 uctxt->subctxt_uregbase = NULL;
1039
1040 return ret;
1041 }
1042
user_init(struct hfi1_ctxtdata * uctxt)1043 static void user_init(struct hfi1_ctxtdata *uctxt)
1044 {
1045 unsigned int rcvctrl_ops = 0;
1046
1047 /* initialize poll variables... */
1048 uctxt->urgent = 0;
1049 uctxt->urgent_poll = 0;
1050
1051 /*
1052 * Now enable the ctxt for receive.
1053 * For chips that are set to DMA the tail register to memory
1054 * when they change (and when the update bit transitions from
1055 * 0 to 1. So for those chips, we turn it off and then back on.
1056 * This will (very briefly) affect any other open ctxts, but the
1057 * duration is very short, and therefore isn't an issue. We
1058 * explicitly set the in-memory tail copy to 0 beforehand, so we
1059 * don't have to wait to be sure the DMA update has happened
1060 * (chip resets head/tail to 0 on transition to enable).
1061 */
1062 if (hfi1_rcvhdrtail_kvaddr(uctxt))
1063 clear_rcvhdrtail(uctxt);
1064
1065 /* Setup J_KEY before enabling the context */
1066 hfi1_set_ctxt_jkey(uctxt->dd, uctxt, uctxt->jkey);
1067
1068 rcvctrl_ops = HFI1_RCVCTRL_CTXT_ENB;
1069 rcvctrl_ops |= HFI1_RCVCTRL_URGENT_ENB;
1070 if (HFI1_CAP_UGET_MASK(uctxt->flags, HDRSUPP))
1071 rcvctrl_ops |= HFI1_RCVCTRL_TIDFLOW_ENB;
1072 /*
1073 * Ignore the bit in the flags for now until proper
1074 * support for multiple packet per rcv array entry is
1075 * added.
1076 */
1077 if (!HFI1_CAP_UGET_MASK(uctxt->flags, MULTI_PKT_EGR))
1078 rcvctrl_ops |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
1079 if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_EGR_FULL))
1080 rcvctrl_ops |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
1081 if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_RHQ_FULL))
1082 rcvctrl_ops |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
1083 /*
1084 * The RcvCtxtCtrl.TailUpd bit has to be explicitly written.
1085 * We can't rely on the correct value to be set from prior
1086 * uses of the chip or ctxt. Therefore, add the rcvctrl op
1087 * for both cases.
1088 */
1089 if (HFI1_CAP_UGET_MASK(uctxt->flags, DMA_RTAIL))
1090 rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_ENB;
1091 else
1092 rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_DIS;
1093 hfi1_rcvctrl(uctxt->dd, rcvctrl_ops, uctxt);
1094 }
1095
get_ctxt_info(struct hfi1_filedata * fd,unsigned long arg,u32 len)1096 static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len)
1097 {
1098 struct hfi1_ctxt_info cinfo;
1099 struct hfi1_ctxtdata *uctxt = fd->uctxt;
1100
1101 if (sizeof(cinfo) != len)
1102 return -EINVAL;
1103
1104 memset(&cinfo, 0, sizeof(cinfo));
1105 cinfo.runtime_flags = (((uctxt->flags >> HFI1_CAP_MISC_SHIFT) &
1106 HFI1_CAP_MISC_MASK) << HFI1_CAP_USER_SHIFT) |
1107 HFI1_CAP_UGET_MASK(uctxt->flags, MASK) |
1108 HFI1_CAP_KGET_MASK(uctxt->flags, K2U);
1109 /* adjust flag if this fd is not able to cache */
1110 if (!fd->use_mn)
1111 cinfo.runtime_flags |= HFI1_CAP_TID_UNMAP; /* no caching */
1112
1113 cinfo.num_active = hfi1_count_active_units();
1114 cinfo.unit = uctxt->dd->unit;
1115 cinfo.ctxt = uctxt->ctxt;
1116 cinfo.subctxt = fd->subctxt;
1117 cinfo.rcvtids = roundup(uctxt->egrbufs.alloced,
1118 uctxt->dd->rcv_entries.group_size) +
1119 uctxt->expected_count;
1120 cinfo.credits = uctxt->sc->credits;
1121 cinfo.numa_node = uctxt->numa_id;
1122 cinfo.rec_cpu = fd->rec_cpu_num;
1123 cinfo.send_ctxt = uctxt->sc->hw_context;
1124
1125 cinfo.egrtids = uctxt->egrbufs.alloced;
1126 cinfo.rcvhdrq_cnt = get_hdrq_cnt(uctxt);
1127 cinfo.rcvhdrq_entsize = get_hdrqentsize(uctxt) << 2;
1128 cinfo.sdma_ring_size = fd->cq->nentries;
1129 cinfo.rcvegr_size = uctxt->egrbufs.rcvtid_size;
1130
1131 trace_hfi1_ctxt_info(uctxt->dd, uctxt->ctxt, fd->subctxt, &cinfo);
1132 if (copy_to_user((void __user *)arg, &cinfo, len))
1133 return -EFAULT;
1134
1135 return 0;
1136 }
1137
init_user_ctxt(struct hfi1_filedata * fd,struct hfi1_ctxtdata * uctxt)1138 static int init_user_ctxt(struct hfi1_filedata *fd,
1139 struct hfi1_ctxtdata *uctxt)
1140 {
1141 int ret;
1142
1143 ret = hfi1_user_sdma_alloc_queues(uctxt, fd);
1144 if (ret)
1145 return ret;
1146
1147 ret = hfi1_user_exp_rcv_init(fd, uctxt);
1148 if (ret)
1149 hfi1_user_sdma_free_queues(fd, uctxt);
1150
1151 return ret;
1152 }
1153
setup_base_ctxt(struct hfi1_filedata * fd,struct hfi1_ctxtdata * uctxt)1154 static int setup_base_ctxt(struct hfi1_filedata *fd,
1155 struct hfi1_ctxtdata *uctxt)
1156 {
1157 struct hfi1_devdata *dd = uctxt->dd;
1158 int ret = 0;
1159
1160 hfi1_init_ctxt(uctxt->sc);
1161
1162 /* Now allocate the RcvHdr queue and eager buffers. */
1163 ret = hfi1_create_rcvhdrq(dd, uctxt);
1164 if (ret)
1165 goto done;
1166
1167 ret = hfi1_setup_eagerbufs(uctxt);
1168 if (ret)
1169 goto done;
1170
1171 /* If sub-contexts are enabled, do the appropriate setup */
1172 if (uctxt->subctxt_cnt)
1173 ret = setup_subctxt(uctxt);
1174 if (ret)
1175 goto done;
1176
1177 ret = hfi1_alloc_ctxt_rcv_groups(uctxt);
1178 if (ret)
1179 goto done;
1180
1181 ret = init_user_ctxt(fd, uctxt);
1182 if (ret) {
1183 hfi1_free_ctxt_rcv_groups(uctxt);
1184 goto done;
1185 }
1186
1187 user_init(uctxt);
1188
1189 /* Now that the context is set up, the fd can get a reference. */
1190 fd->uctxt = uctxt;
1191 hfi1_rcd_get(uctxt);
1192
1193 done:
1194 if (uctxt->subctxt_cnt) {
1195 /*
1196 * On error, set the failed bit so sub-contexts will clean up
1197 * correctly.
1198 */
1199 if (ret)
1200 set_bit(HFI1_CTXT_BASE_FAILED, &uctxt->event_flags);
1201
1202 /*
1203 * Base context is done (successfully or not), notify anybody
1204 * using a sub-context that is waiting for this completion.
1205 */
1206 clear_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags);
1207 wake_up(&uctxt->wait);
1208 }
1209
1210 return ret;
1211 }
1212
get_base_info(struct hfi1_filedata * fd,unsigned long arg,u32 len)1213 static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len)
1214 {
1215 struct hfi1_base_info binfo;
1216 struct hfi1_ctxtdata *uctxt = fd->uctxt;
1217 struct hfi1_devdata *dd = uctxt->dd;
1218 unsigned offset;
1219
1220 trace_hfi1_uctxtdata(uctxt->dd, uctxt, fd->subctxt);
1221
1222 if (sizeof(binfo) != len)
1223 return -EINVAL;
1224
1225 memset(&binfo, 0, sizeof(binfo));
1226 binfo.hw_version = dd->revision;
1227 binfo.sw_version = HFI1_USER_SWVERSION;
1228 binfo.bthqp = RVT_KDETH_QP_PREFIX;
1229 binfo.jkey = uctxt->jkey;
1230 /*
1231 * If more than 64 contexts are enabled the allocated credit
1232 * return will span two or three contiguous pages. Since we only
1233 * map the page containing the context's credit return address,
1234 * we need to calculate the offset in the proper page.
1235 */
1236 offset = ((u64)uctxt->sc->hw_free -
1237 (u64)dd->cr_base[uctxt->numa_id].va) % PAGE_SIZE;
1238 binfo.sc_credits_addr = HFI1_MMAP_TOKEN(PIO_CRED, uctxt->ctxt,
1239 fd->subctxt, offset);
1240 binfo.pio_bufbase = HFI1_MMAP_TOKEN(PIO_BUFS, uctxt->ctxt,
1241 fd->subctxt,
1242 uctxt->sc->base_addr);
1243 binfo.pio_bufbase_sop = HFI1_MMAP_TOKEN(PIO_BUFS_SOP,
1244 uctxt->ctxt,
1245 fd->subctxt,
1246 uctxt->sc->base_addr);
1247 binfo.rcvhdr_bufbase = HFI1_MMAP_TOKEN(RCV_HDRQ, uctxt->ctxt,
1248 fd->subctxt,
1249 uctxt->rcvhdrq);
1250 binfo.rcvegr_bufbase = HFI1_MMAP_TOKEN(RCV_EGRBUF, uctxt->ctxt,
1251 fd->subctxt,
1252 uctxt->egrbufs.rcvtids[0].dma);
1253 binfo.sdma_comp_bufbase = HFI1_MMAP_TOKEN(SDMA_COMP, uctxt->ctxt,
1254 fd->subctxt, 0);
1255 /*
1256 * user regs are at
1257 * (RXE_PER_CONTEXT_USER + (ctxt * RXE_PER_CONTEXT_SIZE))
1258 */
1259 binfo.user_regbase = HFI1_MMAP_TOKEN(UREGS, uctxt->ctxt,
1260 fd->subctxt, 0);
1261 offset = offset_in_page((uctxt_offset(uctxt) + fd->subctxt) *
1262 sizeof(*dd->events));
1263 binfo.events_bufbase = HFI1_MMAP_TOKEN(EVENTS, uctxt->ctxt,
1264 fd->subctxt,
1265 offset);
1266 binfo.status_bufbase = HFI1_MMAP_TOKEN(STATUS, uctxt->ctxt,
1267 fd->subctxt,
1268 dd->status);
1269 if (HFI1_CAP_IS_USET(DMA_RTAIL))
1270 binfo.rcvhdrtail_base = HFI1_MMAP_TOKEN(RTAIL, uctxt->ctxt,
1271 fd->subctxt, 0);
1272 if (uctxt->subctxt_cnt) {
1273 binfo.subctxt_uregbase = HFI1_MMAP_TOKEN(SUBCTXT_UREGS,
1274 uctxt->ctxt,
1275 fd->subctxt, 0);
1276 binfo.subctxt_rcvhdrbuf = HFI1_MMAP_TOKEN(SUBCTXT_RCV_HDRQ,
1277 uctxt->ctxt,
1278 fd->subctxt, 0);
1279 binfo.subctxt_rcvegrbuf = HFI1_MMAP_TOKEN(SUBCTXT_EGRBUF,
1280 uctxt->ctxt,
1281 fd->subctxt, 0);
1282 }
1283
1284 if (copy_to_user((void __user *)arg, &binfo, len))
1285 return -EFAULT;
1286
1287 return 0;
1288 }
1289
1290 /**
1291 * user_exp_rcv_setup - Set up the given tid rcv list
1292 * @fd: file data of the current driver instance
1293 * @arg: ioctl argumnent for user space information
1294 * @len: length of data structure associated with ioctl command
1295 *
1296 * Wrapper to validate ioctl information before doing _rcv_setup.
1297 *
1298 */
user_exp_rcv_setup(struct hfi1_filedata * fd,unsigned long arg,u32 len)1299 static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg,
1300 u32 len)
1301 {
1302 int ret;
1303 unsigned long addr;
1304 struct hfi1_tid_info tinfo;
1305
1306 if (sizeof(tinfo) != len)
1307 return -EINVAL;
1308
1309 if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1310 return -EFAULT;
1311
1312 ret = hfi1_user_exp_rcv_setup(fd, &tinfo);
1313 if (!ret) {
1314 /*
1315 * Copy the number of tidlist entries we used
1316 * and the length of the buffer we registered.
1317 */
1318 addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1319 if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1320 sizeof(tinfo.tidcnt)))
1321 return -EFAULT;
1322
1323 addr = arg + offsetof(struct hfi1_tid_info, length);
1324 if (copy_to_user((void __user *)addr, &tinfo.length,
1325 sizeof(tinfo.length)))
1326 ret = -EFAULT;
1327 }
1328
1329 return ret;
1330 }
1331
1332 /**
1333 * user_exp_rcv_clear - Clear the given tid rcv list
1334 * @fd: file data of the current driver instance
1335 * @arg: ioctl argumnent for user space information
1336 * @len: length of data structure associated with ioctl command
1337 *
1338 * The hfi1_user_exp_rcv_clear() can be called from the error path. Because
1339 * of this, we need to use this wrapper to copy the user space information
1340 * before doing the clear.
1341 */
user_exp_rcv_clear(struct hfi1_filedata * fd,unsigned long arg,u32 len)1342 static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg,
1343 u32 len)
1344 {
1345 int ret;
1346 unsigned long addr;
1347 struct hfi1_tid_info tinfo;
1348
1349 if (sizeof(tinfo) != len)
1350 return -EINVAL;
1351
1352 if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1353 return -EFAULT;
1354
1355 ret = hfi1_user_exp_rcv_clear(fd, &tinfo);
1356 if (!ret) {
1357 addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1358 if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1359 sizeof(tinfo.tidcnt)))
1360 return -EFAULT;
1361 }
1362
1363 return ret;
1364 }
1365
1366 /**
1367 * user_exp_rcv_invalid - Invalidate the given tid rcv list
1368 * @fd: file data of the current driver instance
1369 * @arg: ioctl argumnent for user space information
1370 * @len: length of data structure associated with ioctl command
1371 *
1372 * Wrapper to validate ioctl information before doing _rcv_invalid.
1373 *
1374 */
user_exp_rcv_invalid(struct hfi1_filedata * fd,unsigned long arg,u32 len)1375 static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg,
1376 u32 len)
1377 {
1378 int ret;
1379 unsigned long addr;
1380 struct hfi1_tid_info tinfo;
1381
1382 if (sizeof(tinfo) != len)
1383 return -EINVAL;
1384
1385 if (!fd->invalid_tids)
1386 return -EINVAL;
1387
1388 if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1389 return -EFAULT;
1390
1391 ret = hfi1_user_exp_rcv_invalid(fd, &tinfo);
1392 if (ret)
1393 return ret;
1394
1395 addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1396 if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1397 sizeof(tinfo.tidcnt)))
1398 ret = -EFAULT;
1399
1400 return ret;
1401 }
1402
poll_urgent(struct file * fp,struct poll_table_struct * pt)1403 static __poll_t poll_urgent(struct file *fp,
1404 struct poll_table_struct *pt)
1405 {
1406 struct hfi1_filedata *fd = fp->private_data;
1407 struct hfi1_ctxtdata *uctxt = fd->uctxt;
1408 struct hfi1_devdata *dd = uctxt->dd;
1409 __poll_t pollflag;
1410
1411 poll_wait(fp, &uctxt->wait, pt);
1412
1413 spin_lock_irq(&dd->uctxt_lock);
1414 if (uctxt->urgent != uctxt->urgent_poll) {
1415 pollflag = EPOLLIN | EPOLLRDNORM;
1416 uctxt->urgent_poll = uctxt->urgent;
1417 } else {
1418 pollflag = 0;
1419 set_bit(HFI1_CTXT_WAITING_URG, &uctxt->event_flags);
1420 }
1421 spin_unlock_irq(&dd->uctxt_lock);
1422
1423 return pollflag;
1424 }
1425
poll_next(struct file * fp,struct poll_table_struct * pt)1426 static __poll_t poll_next(struct file *fp,
1427 struct poll_table_struct *pt)
1428 {
1429 struct hfi1_filedata *fd = fp->private_data;
1430 struct hfi1_ctxtdata *uctxt = fd->uctxt;
1431 struct hfi1_devdata *dd = uctxt->dd;
1432 __poll_t pollflag;
1433
1434 poll_wait(fp, &uctxt->wait, pt);
1435
1436 spin_lock_irq(&dd->uctxt_lock);
1437 if (hdrqempty(uctxt)) {
1438 set_bit(HFI1_CTXT_WAITING_RCV, &uctxt->event_flags);
1439 hfi1_rcvctrl(dd, HFI1_RCVCTRL_INTRAVAIL_ENB, uctxt);
1440 pollflag = 0;
1441 } else {
1442 pollflag = EPOLLIN | EPOLLRDNORM;
1443 }
1444 spin_unlock_irq(&dd->uctxt_lock);
1445
1446 return pollflag;
1447 }
1448
1449 /*
1450 * Find all user contexts in use, and set the specified bit in their
1451 * event mask.
1452 * See also find_ctxt() for a similar use, that is specific to send buffers.
1453 */
hfi1_set_uevent_bits(struct hfi1_pportdata * ppd,const int evtbit)1454 int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit)
1455 {
1456 struct hfi1_ctxtdata *uctxt;
1457 struct hfi1_devdata *dd = ppd->dd;
1458 u16 ctxt;
1459
1460 if (!dd->events)
1461 return -EINVAL;
1462
1463 for (ctxt = dd->first_dyn_alloc_ctxt; ctxt < dd->num_rcv_contexts;
1464 ctxt++) {
1465 uctxt = hfi1_rcd_get_by_index(dd, ctxt);
1466 if (uctxt) {
1467 unsigned long *evs;
1468 int i;
1469 /*
1470 * subctxt_cnt is 0 if not shared, so do base
1471 * separately, first, then remaining subctxt, if any
1472 */
1473 evs = dd->events + uctxt_offset(uctxt);
1474 set_bit(evtbit, evs);
1475 for (i = 1; i < uctxt->subctxt_cnt; i++)
1476 set_bit(evtbit, evs + i);
1477 hfi1_rcd_put(uctxt);
1478 }
1479 }
1480
1481 return 0;
1482 }
1483
1484 /**
1485 * manage_rcvq - manage a context's receive queue
1486 * @uctxt: the context
1487 * @subctxt: the sub-context
1488 * @arg: start/stop action to carry out
1489 *
1490 * start_stop == 0 disables receive on the context, for use in queue
1491 * overflow conditions. start_stop==1 re-enables, to be used to
1492 * re-init the software copy of the head register
1493 */
manage_rcvq(struct hfi1_ctxtdata * uctxt,u16 subctxt,unsigned long arg)1494 static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt,
1495 unsigned long arg)
1496 {
1497 struct hfi1_devdata *dd = uctxt->dd;
1498 unsigned int rcvctrl_op;
1499 int start_stop;
1500
1501 if (subctxt)
1502 return 0;
1503
1504 if (get_user(start_stop, (int __user *)arg))
1505 return -EFAULT;
1506
1507 /* atomically clear receive enable ctxt. */
1508 if (start_stop) {
1509 /*
1510 * On enable, force in-memory copy of the tail register to
1511 * 0, so that protocol code doesn't have to worry about
1512 * whether or not the chip has yet updated the in-memory
1513 * copy or not on return from the system call. The chip
1514 * always resets it's tail register back to 0 on a
1515 * transition from disabled to enabled.
1516 */
1517 if (hfi1_rcvhdrtail_kvaddr(uctxt))
1518 clear_rcvhdrtail(uctxt);
1519 rcvctrl_op = HFI1_RCVCTRL_CTXT_ENB;
1520 } else {
1521 rcvctrl_op = HFI1_RCVCTRL_CTXT_DIS;
1522 }
1523 hfi1_rcvctrl(dd, rcvctrl_op, uctxt);
1524 /* always; new head should be equal to new tail; see above */
1525
1526 return 0;
1527 }
1528
1529 /*
1530 * clear the event notifier events for this context.
1531 * User process then performs actions appropriate to bit having been
1532 * set, if desired, and checks again in future.
1533 */
user_event_ack(struct hfi1_ctxtdata * uctxt,u16 subctxt,unsigned long arg)1534 static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt,
1535 unsigned long arg)
1536 {
1537 int i;
1538 struct hfi1_devdata *dd = uctxt->dd;
1539 unsigned long *evs;
1540 unsigned long events;
1541
1542 if (!dd->events)
1543 return 0;
1544
1545 if (get_user(events, (unsigned long __user *)arg))
1546 return -EFAULT;
1547
1548 evs = dd->events + uctxt_offset(uctxt) + subctxt;
1549
1550 for (i = 0; i <= _HFI1_MAX_EVENT_BIT; i++) {
1551 if (!test_bit(i, &events))
1552 continue;
1553 clear_bit(i, evs);
1554 }
1555 return 0;
1556 }
1557
set_ctxt_pkey(struct hfi1_ctxtdata * uctxt,unsigned long arg)1558 static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg)
1559 {
1560 int i;
1561 struct hfi1_pportdata *ppd = uctxt->ppd;
1562 struct hfi1_devdata *dd = uctxt->dd;
1563 u16 pkey;
1564
1565 if (!HFI1_CAP_IS_USET(PKEY_CHECK))
1566 return -EPERM;
1567
1568 if (get_user(pkey, (u16 __user *)arg))
1569 return -EFAULT;
1570
1571 if (pkey == LIM_MGMT_P_KEY || pkey == FULL_MGMT_P_KEY)
1572 return -EINVAL;
1573
1574 for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++)
1575 if (pkey == ppd->pkeys[i])
1576 return hfi1_set_ctxt_pkey(dd, uctxt, pkey);
1577
1578 return -ENOENT;
1579 }
1580
1581 /**
1582 * ctxt_reset - Reset the user context
1583 * @uctxt: valid user context
1584 */
ctxt_reset(struct hfi1_ctxtdata * uctxt)1585 static int ctxt_reset(struct hfi1_ctxtdata *uctxt)
1586 {
1587 struct send_context *sc;
1588 struct hfi1_devdata *dd;
1589 int ret = 0;
1590
1591 if (!uctxt || !uctxt->dd || !uctxt->sc)
1592 return -EINVAL;
1593
1594 /*
1595 * There is no protection here. User level has to guarantee that
1596 * no one will be writing to the send context while it is being
1597 * re-initialized. If user level breaks that guarantee, it will
1598 * break it's own context and no one else's.
1599 */
1600 dd = uctxt->dd;
1601 sc = uctxt->sc;
1602
1603 /*
1604 * Wait until the interrupt handler has marked the context as
1605 * halted or frozen. Report error if we time out.
1606 */
1607 wait_event_interruptible_timeout(
1608 sc->halt_wait, (sc->flags & SCF_HALTED),
1609 msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
1610 if (!(sc->flags & SCF_HALTED))
1611 return -ENOLCK;
1612
1613 /*
1614 * If the send context was halted due to a Freeze, wait until the
1615 * device has been "unfrozen" before resetting the context.
1616 */
1617 if (sc->flags & SCF_FROZEN) {
1618 wait_event_interruptible_timeout(
1619 dd->event_queue,
1620 !(READ_ONCE(dd->flags) & HFI1_FROZEN),
1621 msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
1622 if (dd->flags & HFI1_FROZEN)
1623 return -ENOLCK;
1624
1625 if (dd->flags & HFI1_FORCED_FREEZE)
1626 /*
1627 * Don't allow context reset if we are into
1628 * forced freeze
1629 */
1630 return -ENODEV;
1631
1632 sc_disable(sc);
1633 ret = sc_enable(sc);
1634 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_ENB, uctxt);
1635 } else {
1636 ret = sc_restart(sc);
1637 }
1638 if (!ret)
1639 sc_return_credits(sc);
1640
1641 return ret;
1642 }
1643
user_remove(struct hfi1_devdata * dd)1644 static void user_remove(struct hfi1_devdata *dd)
1645 {
1646
1647 hfi1_cdev_cleanup(&dd->user_cdev, &dd->user_device);
1648 }
1649
user_add(struct hfi1_devdata * dd)1650 static int user_add(struct hfi1_devdata *dd)
1651 {
1652 char name[10];
1653 int ret;
1654
1655 snprintf(name, sizeof(name), "%s_%d", class_name(), dd->unit);
1656 ret = hfi1_cdev_init(dd->unit, name, &hfi1_file_ops,
1657 &dd->user_cdev, &dd->user_device,
1658 true, &dd->verbs_dev.rdi.ibdev.dev.kobj);
1659 if (ret)
1660 user_remove(dd);
1661
1662 return ret;
1663 }
1664
1665 /*
1666 * Create per-unit files in /dev
1667 */
hfi1_device_create(struct hfi1_devdata * dd)1668 int hfi1_device_create(struct hfi1_devdata *dd)
1669 {
1670 return user_add(dd);
1671 }
1672
1673 /*
1674 * Remove per-unit files in /dev
1675 * void, core kernel returns no errors for this stuff
1676 */
hfi1_device_remove(struct hfi1_devdata * dd)1677 void hfi1_device_remove(struct hfi1_devdata *dd)
1678 {
1679 user_remove(dd);
1680 }
1681