1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the TCP module.
8 *
9 * Version: @(#)tcp.h 1.0.5 05/23/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 */
14 #ifndef _TCP_H
15 #define _TCP_H
16
17 #define FASTRETRANS_DEBUG 1
18
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/inet_ecn.h>
41 #include <net/dst.h>
42 #include <net/mptcp.h>
43
44 #include <linux/seq_file.h>
45 #include <linux/memcontrol.h>
46 #include <linux/bpf-cgroup.h>
47 #include <linux/siphash.h>
48
49 extern struct inet_hashinfo tcp_hashinfo;
50
51 DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
52 int tcp_orphan_count_sum(void);
53
54 void tcp_time_wait(struct sock *sk, int state, int timeo);
55
56 #define MAX_TCP_HEADER L1_CACHE_ALIGN(128 + MAX_HEADER)
57 #define MAX_TCP_OPTION_SPACE 40
58 #define TCP_MIN_SND_MSS 48
59 #define TCP_MIN_GSO_SIZE (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
60
61 /*
62 * Never offer a window over 32767 without using window scaling. Some
63 * poor stacks do signed 16bit maths!
64 */
65 #define MAX_TCP_WINDOW 32767U
66
67 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
68 #define TCP_MIN_MSS 88U
69
70 /* The initial MTU to use for probing */
71 #define TCP_BASE_MSS 1024
72
73 /* probing interval, default to 10 minutes as per RFC4821 */
74 #define TCP_PROBE_INTERVAL 600
75
76 /* Specify interval when tcp mtu probing will stop */
77 #define TCP_PROBE_THRESHOLD 8
78
79 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
80 #define TCP_FASTRETRANS_THRESH 3
81
82 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
83 #define TCP_MAX_QUICKACKS 16U
84
85 /* Maximal number of window scale according to RFC1323 */
86 #define TCP_MAX_WSCALE 14U
87
88 /* urg_data states */
89 #define TCP_URG_VALID 0x0100
90 #define TCP_URG_NOTYET 0x0200
91 #define TCP_URG_READ 0x0400
92
93 #define TCP_RETR1 3 /*
94 * This is how many retries it does before it
95 * tries to figure out if the gateway is
96 * down. Minimal RFC value is 3; it corresponds
97 * to ~3sec-8min depending on RTO.
98 */
99
100 #define TCP_RETR2 15 /*
101 * This should take at least
102 * 90 minutes to time out.
103 * RFC1122 says that the limit is 100 sec.
104 * 15 is ~13-30min depending on RTO.
105 */
106
107 #define TCP_SYN_RETRIES 6 /* This is how many retries are done
108 * when active opening a connection.
109 * RFC1122 says the minimum retry MUST
110 * be at least 180secs. Nevertheless
111 * this value is corresponding to
112 * 63secs of retransmission with the
113 * current initial RTO.
114 */
115
116 #define TCP_SYNACK_RETRIES 5 /* This is how may retries are done
117 * when passive opening a connection.
118 * This is corresponding to 31secs of
119 * retransmission with the current
120 * initial RTO.
121 */
122
123 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
124 * state, about 60 seconds */
125 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
126 /* BSD style FIN_WAIT2 deadlock breaker.
127 * It used to be 3min, new value is 60sec,
128 * to combine FIN-WAIT-2 timeout with
129 * TIME-WAIT timer.
130 */
131 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
132
133 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */
134 #if HZ >= 100
135 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */
136 #define TCP_ATO_MIN ((unsigned)(HZ/25))
137 #else
138 #define TCP_DELACK_MIN 4U
139 #define TCP_ATO_MIN 4U
140 #endif
141 #define TCP_RTO_MAX ((unsigned)(120*HZ))
142 #define TCP_RTO_MIN ((unsigned)(HZ/5))
143 #define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */
144 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */
145 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now
146 * used as a fallback RTO for the
147 * initial data transmission if no
148 * valid RTT sample has been acquired,
149 * most likely due to retrans in 3WHS.
150 */
151
152 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
153 * for local resources.
154 */
155 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */
156 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */
157 #define TCP_KEEPALIVE_INTVL (75*HZ)
158
159 #define MAX_TCP_KEEPIDLE 32767
160 #define MAX_TCP_KEEPINTVL 32767
161 #define MAX_TCP_KEEPCNT 127
162 #define MAX_TCP_SYNCNT 127
163
164 #define TCP_SYNQ_INTERVAL (HZ/5) /* Period of SYNACK timer */
165
166 #define TCP_PAWS_24DAYS (60 * 60 * 24 * 24)
167 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated
168 * after this time. It should be equal
169 * (or greater than) TCP_TIMEWAIT_LEN
170 * to provide reliability equal to one
171 * provided by timewait state.
172 */
173 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host
174 * timestamps. It must be less than
175 * minimal timewait lifetime.
176 */
177 /*
178 * TCP option
179 */
180
181 #define TCPOPT_NOP 1 /* Padding */
182 #define TCPOPT_EOL 0 /* End of options */
183 #define TCPOPT_MSS 2 /* Segment size negotiating */
184 #define TCPOPT_WINDOW 3 /* Window scaling */
185 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */
186 #define TCPOPT_SACK 5 /* SACK Block */
187 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */
188 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */
189 #define TCPOPT_MPTCP 30 /* Multipath TCP (RFC6824) */
190 #define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */
191 #define TCPOPT_EXP 254 /* Experimental */
192 /* Magic number to be after the option value for sharing TCP
193 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
194 */
195 #define TCPOPT_FASTOPEN_MAGIC 0xF989
196 #define TCPOPT_SMC_MAGIC 0xE2D4C3D9
197
198 /*
199 * TCP option lengths
200 */
201
202 #define TCPOLEN_MSS 4
203 #define TCPOLEN_WINDOW 3
204 #define TCPOLEN_SACK_PERM 2
205 #define TCPOLEN_TIMESTAMP 10
206 #define TCPOLEN_MD5SIG 18
207 #define TCPOLEN_FASTOPEN_BASE 2
208 #define TCPOLEN_EXP_FASTOPEN_BASE 4
209 #define TCPOLEN_EXP_SMC_BASE 6
210
211 /* But this is what stacks really send out. */
212 #define TCPOLEN_TSTAMP_ALIGNED 12
213 #define TCPOLEN_WSCALE_ALIGNED 4
214 #define TCPOLEN_SACKPERM_ALIGNED 4
215 #define TCPOLEN_SACK_BASE 2
216 #define TCPOLEN_SACK_BASE_ALIGNED 4
217 #define TCPOLEN_SACK_PERBLOCK 8
218 #define TCPOLEN_MD5SIG_ALIGNED 20
219 #define TCPOLEN_MSS_ALIGNED 4
220 #define TCPOLEN_EXP_SMC_BASE_ALIGNED 8
221
222 /* Flags in tp->nonagle */
223 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */
224 #define TCP_NAGLE_CORK 2 /* Socket is corked */
225 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */
226
227 /* TCP thin-stream limits */
228 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */
229
230 /* TCP initial congestion window as per rfc6928 */
231 #define TCP_INIT_CWND 10
232
233 /* Bit Flags for sysctl_tcp_fastopen */
234 #define TFO_CLIENT_ENABLE 1
235 #define TFO_SERVER_ENABLE 2
236 #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */
237
238 /* Accept SYN data w/o any cookie option */
239 #define TFO_SERVER_COOKIE_NOT_REQD 0x200
240
241 /* Force enable TFO on all listeners, i.e., not requiring the
242 * TCP_FASTOPEN socket option.
243 */
244 #define TFO_SERVER_WO_SOCKOPT1 0x400
245
246
247 /* sysctl variables for tcp */
248 extern int sysctl_tcp_max_orphans;
249 extern long sysctl_tcp_mem[3];
250
251 #define TCP_RACK_LOSS_DETECTION 0x1 /* Use RACK to detect losses */
252 #define TCP_RACK_STATIC_REO_WND 0x2 /* Use static RACK reo wnd */
253 #define TCP_RACK_NO_DUPTHRESH 0x4 /* Do not use DUPACK threshold in RACK */
254
255 extern atomic_long_t tcp_memory_allocated;
256 extern struct percpu_counter tcp_sockets_allocated;
257 extern unsigned long tcp_memory_pressure;
258
259 /* optimized version of sk_under_memory_pressure() for TCP sockets */
tcp_under_memory_pressure(const struct sock * sk)260 static inline bool tcp_under_memory_pressure(const struct sock *sk)
261 {
262 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
263 mem_cgroup_under_socket_pressure(sk->sk_memcg))
264 return true;
265
266 return READ_ONCE(tcp_memory_pressure);
267 }
268 /*
269 * The next routines deal with comparing 32 bit unsigned ints
270 * and worry about wraparound (automatic with unsigned arithmetic).
271 */
272
before(__u32 seq1,__u32 seq2)273 static inline bool before(__u32 seq1, __u32 seq2)
274 {
275 return (__s32)(seq1-seq2) < 0;
276 }
277 #define after(seq2, seq1) before(seq1, seq2)
278
279 /* is s2<=s1<=s3 ? */
between(__u32 seq1,__u32 seq2,__u32 seq3)280 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
281 {
282 return seq3 - seq2 >= seq1 - seq2;
283 }
284
tcp_out_of_memory(struct sock * sk)285 static inline bool tcp_out_of_memory(struct sock *sk)
286 {
287 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
288 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
289 return true;
290 return false;
291 }
292
tcp_wmem_free_skb(struct sock * sk,struct sk_buff * skb)293 static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
294 {
295 sk_wmem_queued_add(sk, -skb->truesize);
296 if (!skb_zcopy_pure(skb))
297 sk_mem_uncharge(sk, skb->truesize);
298 else
299 sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
300 __kfree_skb(skb);
301 }
302
303 void sk_forced_mem_schedule(struct sock *sk, int size);
304
305 bool tcp_check_oom(struct sock *sk, int shift);
306
307
308 extern struct proto tcp_prot;
309
310 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field)
311 #define __TCP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.tcp_statistics, field)
312 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
313 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
314
315 void tcp_tasklet_init(void);
316
317 int tcp_v4_err(struct sk_buff *skb, u32);
318
319 void tcp_shutdown(struct sock *sk, int how);
320
321 int tcp_v4_early_demux(struct sk_buff *skb);
322 int tcp_v4_rcv(struct sk_buff *skb);
323
324 void tcp_remove_empty_skb(struct sock *sk);
325 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
326 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
327 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
328 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
329 int flags);
330 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
331 size_t size, int flags);
332 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
333 size_t size, int flags);
334 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
335 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
336 int size_goal);
337 void tcp_release_cb(struct sock *sk);
338 void tcp_wfree(struct sk_buff *skb);
339 void tcp_write_timer_handler(struct sock *sk);
340 void tcp_delack_timer_handler(struct sock *sk);
341 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
342 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
343 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
344 void tcp_rcv_space_adjust(struct sock *sk);
345 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
346 void tcp_twsk_destructor(struct sock *sk);
347 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
348 struct pipe_inode_info *pipe, size_t len,
349 unsigned int flags);
350 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
351 bool force_schedule);
352
353 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
tcp_dec_quickack_mode(struct sock * sk,const unsigned int pkts)354 static inline void tcp_dec_quickack_mode(struct sock *sk,
355 const unsigned int pkts)
356 {
357 struct inet_connection_sock *icsk = inet_csk(sk);
358
359 if (icsk->icsk_ack.quick) {
360 if (pkts >= icsk->icsk_ack.quick) {
361 icsk->icsk_ack.quick = 0;
362 /* Leaving quickack mode we deflate ATO. */
363 icsk->icsk_ack.ato = TCP_ATO_MIN;
364 } else
365 icsk->icsk_ack.quick -= pkts;
366 }
367 }
368
369 #define TCP_ECN_OK 1
370 #define TCP_ECN_QUEUE_CWR 2
371 #define TCP_ECN_DEMAND_CWR 4
372 #define TCP_ECN_SEEN 8
373
374 enum tcp_tw_status {
375 TCP_TW_SUCCESS = 0,
376 TCP_TW_RST = 1,
377 TCP_TW_ACK = 2,
378 TCP_TW_SYN = 3
379 };
380
381
382 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
383 struct sk_buff *skb,
384 const struct tcphdr *th);
385 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
386 struct request_sock *req, bool fastopen,
387 bool *lost_race);
388 int tcp_child_process(struct sock *parent, struct sock *child,
389 struct sk_buff *skb);
390 void tcp_enter_loss(struct sock *sk);
391 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
392 void tcp_clear_retrans(struct tcp_sock *tp);
393 void tcp_update_metrics(struct sock *sk);
394 void tcp_init_metrics(struct sock *sk);
395 void tcp_metrics_init(void);
396 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
397 void __tcp_close(struct sock *sk, long timeout);
398 void tcp_close(struct sock *sk, long timeout);
399 void tcp_init_sock(struct sock *sk);
400 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
401 __poll_t tcp_poll(struct file *file, struct socket *sock,
402 struct poll_table_struct *wait);
403 int tcp_getsockopt(struct sock *sk, int level, int optname,
404 char __user *optval, int __user *optlen);
405 bool tcp_bpf_bypass_getsockopt(int level, int optname);
406 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
407 unsigned int optlen);
408 void tcp_set_keepalive(struct sock *sk, int val);
409 void tcp_syn_ack_timeout(const struct request_sock *req);
410 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
411 int flags, int *addr_len);
412 int tcp_set_rcvlowat(struct sock *sk, int val);
413 int tcp_set_window_clamp(struct sock *sk, int val);
414 void tcp_update_recv_tstamps(struct sk_buff *skb,
415 struct scm_timestamping_internal *tss);
416 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
417 struct scm_timestamping_internal *tss);
418 void tcp_data_ready(struct sock *sk);
419 #ifdef CONFIG_MMU
420 int tcp_mmap(struct file *file, struct socket *sock,
421 struct vm_area_struct *vma);
422 #endif
423 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
424 struct tcp_options_received *opt_rx,
425 int estab, struct tcp_fastopen_cookie *foc);
426 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
427
428 /*
429 * BPF SKB-less helpers
430 */
431 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
432 struct tcphdr *th, u32 *cookie);
433 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
434 struct tcphdr *th, u32 *cookie);
435 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
436 const struct tcp_request_sock_ops *af_ops,
437 struct sock *sk, struct tcphdr *th);
438 /*
439 * TCP v4 functions exported for the inet6 API
440 */
441
442 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
443 void tcp_v4_mtu_reduced(struct sock *sk);
444 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
445 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
446 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
447 struct sock *tcp_create_openreq_child(const struct sock *sk,
448 struct request_sock *req,
449 struct sk_buff *skb);
450 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
451 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
452 struct request_sock *req,
453 struct dst_entry *dst,
454 struct request_sock *req_unhash,
455 bool *own_req);
456 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
457 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
458 int tcp_connect(struct sock *sk);
459 enum tcp_synack_type {
460 TCP_SYNACK_NORMAL,
461 TCP_SYNACK_FASTOPEN,
462 TCP_SYNACK_COOKIE,
463 };
464 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
465 struct request_sock *req,
466 struct tcp_fastopen_cookie *foc,
467 enum tcp_synack_type synack_type,
468 struct sk_buff *syn_skb);
469 int tcp_disconnect(struct sock *sk, int flags);
470
471 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
472 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
473 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
474
475 /* From syncookies.c */
476 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
477 struct request_sock *req,
478 struct dst_entry *dst, u32 tsoff);
479 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
480 u32 cookie);
481 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
482 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
483 const struct tcp_request_sock_ops *af_ops,
484 struct sock *sk, struct sk_buff *skb);
485 #ifdef CONFIG_SYN_COOKIES
486
487 /* Syncookies use a monotonic timer which increments every 60 seconds.
488 * This counter is used both as a hash input and partially encoded into
489 * the cookie value. A cookie is only validated further if the delta
490 * between the current counter value and the encoded one is less than this,
491 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
492 * the counter advances immediately after a cookie is generated).
493 */
494 #define MAX_SYNCOOKIE_AGE 2
495 #define TCP_SYNCOOKIE_PERIOD (60 * HZ)
496 #define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
497
498 /* syncookies: remember time of last synqueue overflow
499 * But do not dirty this field too often (once per second is enough)
500 * It is racy as we do not hold a lock, but race is very minor.
501 */
tcp_synq_overflow(const struct sock * sk)502 static inline void tcp_synq_overflow(const struct sock *sk)
503 {
504 unsigned int last_overflow;
505 unsigned int now = jiffies;
506
507 if (sk->sk_reuseport) {
508 struct sock_reuseport *reuse;
509
510 reuse = rcu_dereference(sk->sk_reuseport_cb);
511 if (likely(reuse)) {
512 last_overflow = READ_ONCE(reuse->synq_overflow_ts);
513 if (!time_between32(now, last_overflow,
514 last_overflow + HZ))
515 WRITE_ONCE(reuse->synq_overflow_ts, now);
516 return;
517 }
518 }
519
520 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
521 if (!time_between32(now, last_overflow, last_overflow + HZ))
522 WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now);
523 }
524
525 /* syncookies: no recent synqueue overflow on this listening socket? */
tcp_synq_no_recent_overflow(const struct sock * sk)526 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
527 {
528 unsigned int last_overflow;
529 unsigned int now = jiffies;
530
531 if (sk->sk_reuseport) {
532 struct sock_reuseport *reuse;
533
534 reuse = rcu_dereference(sk->sk_reuseport_cb);
535 if (likely(reuse)) {
536 last_overflow = READ_ONCE(reuse->synq_overflow_ts);
537 return !time_between32(now, last_overflow - HZ,
538 last_overflow +
539 TCP_SYNCOOKIE_VALID);
540 }
541 }
542
543 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
544
545 /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
546 * then we're under synflood. However, we have to use
547 * 'last_overflow - HZ' as lower bound. That's because a concurrent
548 * tcp_synq_overflow() could update .ts_recent_stamp after we read
549 * jiffies but before we store .ts_recent_stamp into last_overflow,
550 * which could lead to rejecting a valid syncookie.
551 */
552 return !time_between32(now, last_overflow - HZ,
553 last_overflow + TCP_SYNCOOKIE_VALID);
554 }
555
tcp_cookie_time(void)556 static inline u32 tcp_cookie_time(void)
557 {
558 u64 val = get_jiffies_64();
559
560 do_div(val, TCP_SYNCOOKIE_PERIOD);
561 return val;
562 }
563
564 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
565 u16 *mssp);
566 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
567 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
568 bool cookie_timestamp_decode(const struct net *net,
569 struct tcp_options_received *opt);
570 bool cookie_ecn_ok(const struct tcp_options_received *opt,
571 const struct net *net, const struct dst_entry *dst);
572
573 /* From net/ipv6/syncookies.c */
574 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
575 u32 cookie);
576 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
577
578 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
579 const struct tcphdr *th, u16 *mssp);
580 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
581 #endif
582 /* tcp_output.c */
583
584 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
585 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
586 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
587 int nonagle);
588 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
589 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
590 void tcp_retransmit_timer(struct sock *sk);
591 void tcp_xmit_retransmit_queue(struct sock *);
592 void tcp_simple_retransmit(struct sock *);
593 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
594 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
595 enum tcp_queue {
596 TCP_FRAG_IN_WRITE_QUEUE,
597 TCP_FRAG_IN_RTX_QUEUE,
598 };
599 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
600 struct sk_buff *skb, u32 len,
601 unsigned int mss_now, gfp_t gfp);
602
603 void tcp_send_probe0(struct sock *);
604 void tcp_send_partial(struct sock *);
605 int tcp_write_wakeup(struct sock *, int mib);
606 void tcp_send_fin(struct sock *sk);
607 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
608 int tcp_send_synack(struct sock *);
609 void tcp_push_one(struct sock *, unsigned int mss_now);
610 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
611 void tcp_send_ack(struct sock *sk);
612 void tcp_send_delayed_ack(struct sock *sk);
613 void tcp_send_loss_probe(struct sock *sk);
614 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
615 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
616 const struct sk_buff *next_skb);
617
618 /* tcp_input.c */
619 void tcp_rearm_rto(struct sock *sk);
620 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
621 void tcp_reset(struct sock *sk, struct sk_buff *skb);
622 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
623 void tcp_fin(struct sock *sk);
624 void tcp_check_space(struct sock *sk);
625
626 /* tcp_timer.c */
627 void tcp_init_xmit_timers(struct sock *);
tcp_clear_xmit_timers(struct sock * sk)628 static inline void tcp_clear_xmit_timers(struct sock *sk)
629 {
630 if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
631 __sock_put(sk);
632
633 if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
634 __sock_put(sk);
635
636 inet_csk_clear_xmit_timers(sk);
637 }
638
639 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
640 unsigned int tcp_current_mss(struct sock *sk);
641 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
642
643 /* Bound MSS / TSO packet size with the half of the window */
tcp_bound_to_half_wnd(struct tcp_sock * tp,int pktsize)644 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
645 {
646 int cutoff;
647
648 /* When peer uses tiny windows, there is no use in packetizing
649 * to sub-MSS pieces for the sake of SWS or making sure there
650 * are enough packets in the pipe for fast recovery.
651 *
652 * On the other hand, for extremely large MSS devices, handling
653 * smaller than MSS windows in this way does make sense.
654 */
655 if (tp->max_window > TCP_MSS_DEFAULT)
656 cutoff = (tp->max_window >> 1);
657 else
658 cutoff = tp->max_window;
659
660 if (cutoff && pktsize > cutoff)
661 return max_t(int, cutoff, 68U - tp->tcp_header_len);
662 else
663 return pktsize;
664 }
665
666 /* tcp.c */
667 void tcp_get_info(struct sock *, struct tcp_info *);
668
669 /* Read 'sendfile()'-style from a TCP socket */
670 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
671 sk_read_actor_t recv_actor);
672
673 void tcp_initialize_rcv_mss(struct sock *sk);
674
675 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
676 int tcp_mss_to_mtu(struct sock *sk, int mss);
677 void tcp_mtup_init(struct sock *sk);
678
tcp_bound_rto(const struct sock * sk)679 static inline void tcp_bound_rto(const struct sock *sk)
680 {
681 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
682 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
683 }
684
__tcp_set_rto(const struct tcp_sock * tp)685 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
686 {
687 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
688 }
689
__tcp_fast_path_on(struct tcp_sock * tp,u32 snd_wnd)690 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
691 {
692 /* mptcp hooks are only on the slow path */
693 if (sk_is_mptcp((struct sock *)tp))
694 return;
695
696 tp->pred_flags = htonl((tp->tcp_header_len << 26) |
697 ntohl(TCP_FLAG_ACK) |
698 snd_wnd);
699 }
700
tcp_fast_path_on(struct tcp_sock * tp)701 static inline void tcp_fast_path_on(struct tcp_sock *tp)
702 {
703 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
704 }
705
tcp_fast_path_check(struct sock * sk)706 static inline void tcp_fast_path_check(struct sock *sk)
707 {
708 struct tcp_sock *tp = tcp_sk(sk);
709
710 if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
711 tp->rcv_wnd &&
712 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
713 !tp->urg_data)
714 tcp_fast_path_on(tp);
715 }
716
717 /* Compute the actual rto_min value */
tcp_rto_min(struct sock * sk)718 static inline u32 tcp_rto_min(struct sock *sk)
719 {
720 const struct dst_entry *dst = __sk_dst_get(sk);
721 u32 rto_min = inet_csk(sk)->icsk_rto_min;
722
723 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
724 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
725 return rto_min;
726 }
727
tcp_rto_min_us(struct sock * sk)728 static inline u32 tcp_rto_min_us(struct sock *sk)
729 {
730 return jiffies_to_usecs(tcp_rto_min(sk));
731 }
732
tcp_ca_dst_locked(const struct dst_entry * dst)733 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
734 {
735 return dst_metric_locked(dst, RTAX_CC_ALGO);
736 }
737
738 /* Minimum RTT in usec. ~0 means not available. */
tcp_min_rtt(const struct tcp_sock * tp)739 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
740 {
741 return minmax_get(&tp->rtt_min);
742 }
743
744 /* Compute the actual receive window we are currently advertising.
745 * Rcv_nxt can be after the window if our peer push more data
746 * than the offered window.
747 */
tcp_receive_window(const struct tcp_sock * tp)748 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
749 {
750 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
751
752 if (win < 0)
753 win = 0;
754 return (u32) win;
755 }
756
757 /* Choose a new window, without checks for shrinking, and without
758 * scaling applied to the result. The caller does these things
759 * if necessary. This is a "raw" window selection.
760 */
761 u32 __tcp_select_window(struct sock *sk);
762
763 void tcp_send_window_probe(struct sock *sk);
764
765 /* TCP uses 32bit jiffies to save some space.
766 * Note that this is different from tcp_time_stamp, which
767 * historically has been the same until linux-4.13.
768 */
769 #define tcp_jiffies32 ((u32)jiffies)
770
771 /*
772 * Deliver a 32bit value for TCP timestamp option (RFC 7323)
773 * It is no longer tied to jiffies, but to 1 ms clock.
774 * Note: double check if you want to use tcp_jiffies32 instead of this.
775 */
776 #define TCP_TS_HZ 1000
777
tcp_clock_ns(void)778 static inline u64 tcp_clock_ns(void)
779 {
780 return ktime_get_ns();
781 }
782
tcp_clock_us(void)783 static inline u64 tcp_clock_us(void)
784 {
785 return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
786 }
787
788 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
tcp_time_stamp(const struct tcp_sock * tp)789 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
790 {
791 return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
792 }
793
794 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
tcp_ns_to_ts(u64 ns)795 static inline u32 tcp_ns_to_ts(u64 ns)
796 {
797 return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
798 }
799
800 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
tcp_time_stamp_raw(void)801 static inline u32 tcp_time_stamp_raw(void)
802 {
803 return tcp_ns_to_ts(tcp_clock_ns());
804 }
805
806 void tcp_mstamp_refresh(struct tcp_sock *tp);
807
tcp_stamp_us_delta(u64 t1,u64 t0)808 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
809 {
810 return max_t(s64, t1 - t0, 0);
811 }
812
tcp_skb_timestamp(const struct sk_buff * skb)813 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
814 {
815 return tcp_ns_to_ts(skb->skb_mstamp_ns);
816 }
817
818 /* provide the departure time in us unit */
tcp_skb_timestamp_us(const struct sk_buff * skb)819 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
820 {
821 return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
822 }
823
824
825 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
826
827 #define TCPHDR_FIN 0x01
828 #define TCPHDR_SYN 0x02
829 #define TCPHDR_RST 0x04
830 #define TCPHDR_PSH 0x08
831 #define TCPHDR_ACK 0x10
832 #define TCPHDR_URG 0x20
833 #define TCPHDR_ECE 0x40
834 #define TCPHDR_CWR 0x80
835
836 #define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
837
838 /* This is what the send packet queuing engine uses to pass
839 * TCP per-packet control information to the transmission code.
840 * We also store the host-order sequence numbers in here too.
841 * This is 44 bytes if IPV6 is enabled.
842 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
843 */
844 struct tcp_skb_cb {
845 __u32 seq; /* Starting sequence number */
846 __u32 end_seq; /* SEQ + FIN + SYN + datalen */
847 union {
848 /* Note : tcp_tw_isn is used in input path only
849 * (isn chosen by tcp_timewait_state_process())
850 *
851 * tcp_gso_segs/size are used in write queue only,
852 * cf tcp_skb_pcount()/tcp_skb_mss()
853 */
854 __u32 tcp_tw_isn;
855 struct {
856 u16 tcp_gso_segs;
857 u16 tcp_gso_size;
858 };
859 };
860 __u8 tcp_flags; /* TCP header flags. (tcp[13]) */
861
862 __u8 sacked; /* State flags for SACK. */
863 #define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */
864 #define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */
865 #define TCPCB_LOST 0x04 /* SKB is lost */
866 #define TCPCB_TAGBITS 0x07 /* All tag bits */
867 #define TCPCB_REPAIRED 0x10 /* SKB repaired (no skb_mstamp_ns) */
868 #define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */
869 #define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
870 TCPCB_REPAIRED)
871
872 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */
873 __u8 txstamp_ack:1, /* Record TX timestamp for ack? */
874 eor:1, /* Is skb MSG_EOR marked? */
875 has_rxtstamp:1, /* SKB has a RX timestamp */
876 unused:5;
877 __u32 ack_seq; /* Sequence number ACK'd */
878 union {
879 struct {
880 #define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
881 /* There is space for up to 24 bytes */
882 __u32 is_app_limited:1, /* cwnd not fully used? */
883 delivered_ce:20,
884 unused:11;
885 /* pkts S/ACKed so far upon tx of skb, incl retrans: */
886 __u32 delivered;
887 /* start of send pipeline phase */
888 u64 first_tx_mstamp;
889 /* when we reached the "delivered" count */
890 u64 delivered_mstamp;
891 } tx; /* only used for outgoing skbs */
892 union {
893 struct inet_skb_parm h4;
894 #if IS_ENABLED(CONFIG_IPV6)
895 struct inet6_skb_parm h6;
896 #endif
897 } header; /* For incoming skbs */
898 };
899 };
900
901 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0]))
902
903 extern const struct inet_connection_sock_af_ops ipv4_specific;
904
905 #if IS_ENABLED(CONFIG_IPV6)
906 /* This is the variant of inet6_iif() that must be used by TCP,
907 * as TCP moves IP6CB into a different location in skb->cb[]
908 */
tcp_v6_iif(const struct sk_buff * skb)909 static inline int tcp_v6_iif(const struct sk_buff *skb)
910 {
911 return TCP_SKB_CB(skb)->header.h6.iif;
912 }
913
tcp_v6_iif_l3_slave(const struct sk_buff * skb)914 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
915 {
916 bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
917
918 return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
919 }
920
921 /* TCP_SKB_CB reference means this can not be used from early demux */
tcp_v6_sdif(const struct sk_buff * skb)922 static inline int tcp_v6_sdif(const struct sk_buff *skb)
923 {
924 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
925 if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
926 return TCP_SKB_CB(skb)->header.h6.iif;
927 #endif
928 return 0;
929 }
930
931 extern const struct inet_connection_sock_af_ops ipv6_specific;
932
933 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
934 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
935 void tcp_v6_early_demux(struct sk_buff *skb);
936
937 #endif
938
939 /* TCP_SKB_CB reference means this can not be used from early demux */
tcp_v4_sdif(struct sk_buff * skb)940 static inline int tcp_v4_sdif(struct sk_buff *skb)
941 {
942 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
943 if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
944 return TCP_SKB_CB(skb)->header.h4.iif;
945 #endif
946 return 0;
947 }
948
949 /* Due to TSO, an SKB can be composed of multiple actual
950 * packets. To keep these tracked properly, we use this.
951 */
tcp_skb_pcount(const struct sk_buff * skb)952 static inline int tcp_skb_pcount(const struct sk_buff *skb)
953 {
954 return TCP_SKB_CB(skb)->tcp_gso_segs;
955 }
956
tcp_skb_pcount_set(struct sk_buff * skb,int segs)957 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
958 {
959 TCP_SKB_CB(skb)->tcp_gso_segs = segs;
960 }
961
tcp_skb_pcount_add(struct sk_buff * skb,int segs)962 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
963 {
964 TCP_SKB_CB(skb)->tcp_gso_segs += segs;
965 }
966
967 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
tcp_skb_mss(const struct sk_buff * skb)968 static inline int tcp_skb_mss(const struct sk_buff *skb)
969 {
970 return TCP_SKB_CB(skb)->tcp_gso_size;
971 }
972
tcp_skb_can_collapse_to(const struct sk_buff * skb)973 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
974 {
975 return likely(!TCP_SKB_CB(skb)->eor);
976 }
977
tcp_skb_can_collapse(const struct sk_buff * to,const struct sk_buff * from)978 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
979 const struct sk_buff *from)
980 {
981 return likely(tcp_skb_can_collapse_to(to) &&
982 mptcp_skb_can_collapse(to, from) &&
983 skb_pure_zcopy_same(to, from));
984 }
985
986 /* Events passed to congestion control interface */
987 enum tcp_ca_event {
988 CA_EVENT_TX_START, /* first transmit when no packets in flight */
989 CA_EVENT_CWND_RESTART, /* congestion window restart */
990 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */
991 CA_EVENT_LOSS, /* loss timeout */
992 CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */
993 CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */
994 };
995
996 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
997 enum tcp_ca_ack_event_flags {
998 CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */
999 CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */
1000 CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */
1001 };
1002
1003 /*
1004 * Interface for adding new TCP congestion control handlers
1005 */
1006 #define TCP_CA_NAME_MAX 16
1007 #define TCP_CA_MAX 128
1008 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX)
1009
1010 #define TCP_CA_UNSPEC 0
1011
1012 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1013 #define TCP_CONG_NON_RESTRICTED 0x1
1014 /* Requires ECN/ECT set on all packets */
1015 #define TCP_CONG_NEEDS_ECN 0x2
1016 #define TCP_CONG_MASK (TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1017
1018 union tcp_cc_info;
1019
1020 struct ack_sample {
1021 u32 pkts_acked;
1022 s32 rtt_us;
1023 u32 in_flight;
1024 };
1025
1026 /* A rate sample measures the number of (original/retransmitted) data
1027 * packets delivered "delivered" over an interval of time "interval_us".
1028 * The tcp_rate.c code fills in the rate sample, and congestion
1029 * control modules that define a cong_control function to run at the end
1030 * of ACK processing can optionally chose to consult this sample when
1031 * setting cwnd and pacing rate.
1032 * A sample is invalid if "delivered" or "interval_us" is negative.
1033 */
1034 struct rate_sample {
1035 u64 prior_mstamp; /* starting timestamp for interval */
1036 u32 prior_delivered; /* tp->delivered at "prior_mstamp" */
1037 u32 prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1038 s32 delivered; /* number of packets delivered over interval */
1039 s32 delivered_ce; /* number of packets delivered w/ CE marks*/
1040 long interval_us; /* time for tp->delivered to incr "delivered" */
1041 u32 snd_interval_us; /* snd interval for delivered packets */
1042 u32 rcv_interval_us; /* rcv interval for delivered packets */
1043 long rtt_us; /* RTT of last (S)ACKed packet (or -1) */
1044 int losses; /* number of packets marked lost upon ACK */
1045 u32 acked_sacked; /* number of packets newly (S)ACKed upon ACK */
1046 u32 prior_in_flight; /* in flight before this ACK */
1047 u32 last_end_seq; /* end_seq of most recently ACKed packet */
1048 bool is_app_limited; /* is sample from packet with bubble in pipe? */
1049 bool is_retrans; /* is sample from retransmission? */
1050 bool is_ack_delayed; /* is this (likely) a delayed ACK? */
1051 };
1052
1053 struct tcp_congestion_ops {
1054 /* fast path fields are put first to fill one cache line */
1055
1056 /* return slow start threshold (required) */
1057 u32 (*ssthresh)(struct sock *sk);
1058
1059 /* do new cwnd calculation (required) */
1060 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1061
1062 /* call before changing ca_state (optional) */
1063 void (*set_state)(struct sock *sk, u8 new_state);
1064
1065 /* call when cwnd event occurs (optional) */
1066 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1067
1068 /* call when ack arrives (optional) */
1069 void (*in_ack_event)(struct sock *sk, u32 flags);
1070
1071 /* hook for packet ack accounting (optional) */
1072 void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1073
1074 /* override sysctl_tcp_min_tso_segs */
1075 u32 (*min_tso_segs)(struct sock *sk);
1076
1077 /* call when packets are delivered to update cwnd and pacing rate,
1078 * after all the ca_state processing. (optional)
1079 */
1080 void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1081
1082
1083 /* new value of cwnd after loss (required) */
1084 u32 (*undo_cwnd)(struct sock *sk);
1085 /* returns the multiplier used in tcp_sndbuf_expand (optional) */
1086 u32 (*sndbuf_expand)(struct sock *sk);
1087
1088 /* control/slow paths put last */
1089 /* get info for inet_diag (optional) */
1090 size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1091 union tcp_cc_info *info);
1092
1093 char name[TCP_CA_NAME_MAX];
1094 struct module *owner;
1095 struct list_head list;
1096 u32 key;
1097 u32 flags;
1098
1099 /* initialize private data (optional) */
1100 void (*init)(struct sock *sk);
1101 /* cleanup private data (optional) */
1102 void (*release)(struct sock *sk);
1103 } ____cacheline_aligned_in_smp;
1104
1105 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1106 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1107
1108 void tcp_assign_congestion_control(struct sock *sk);
1109 void tcp_init_congestion_control(struct sock *sk);
1110 void tcp_cleanup_congestion_control(struct sock *sk);
1111 int tcp_set_default_congestion_control(struct net *net, const char *name);
1112 void tcp_get_default_congestion_control(struct net *net, char *name);
1113 void tcp_get_available_congestion_control(char *buf, size_t len);
1114 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1115 int tcp_set_allowed_congestion_control(char *allowed);
1116 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1117 bool cap_net_admin);
1118 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1119 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1120
1121 u32 tcp_reno_ssthresh(struct sock *sk);
1122 u32 tcp_reno_undo_cwnd(struct sock *sk);
1123 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1124 extern struct tcp_congestion_ops tcp_reno;
1125
1126 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1127 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1128 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1129 #ifdef CONFIG_INET
1130 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1131 #else
tcp_ca_get_name_by_key(u32 key,char * buffer)1132 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1133 {
1134 return NULL;
1135 }
1136 #endif
1137
tcp_ca_needs_ecn(const struct sock * sk)1138 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1139 {
1140 const struct inet_connection_sock *icsk = inet_csk(sk);
1141
1142 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1143 }
1144
tcp_ca_event(struct sock * sk,const enum tcp_ca_event event)1145 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1146 {
1147 const struct inet_connection_sock *icsk = inet_csk(sk);
1148
1149 if (icsk->icsk_ca_ops->cwnd_event)
1150 icsk->icsk_ca_ops->cwnd_event(sk, event);
1151 }
1152
1153 /* From tcp_cong.c */
1154 void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
1155
1156 /* From tcp_rate.c */
1157 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1158 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1159 struct rate_sample *rs);
1160 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1161 bool is_sack_reneg, struct rate_sample *rs);
1162 void tcp_rate_check_app_limited(struct sock *sk);
1163
tcp_skb_sent_after(u64 t1,u64 t2,u32 seq1,u32 seq2)1164 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1165 {
1166 return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1167 }
1168
1169 /* These functions determine how the current flow behaves in respect of SACK
1170 * handling. SACK is negotiated with the peer, and therefore it can vary
1171 * between different flows.
1172 *
1173 * tcp_is_sack - SACK enabled
1174 * tcp_is_reno - No SACK
1175 */
tcp_is_sack(const struct tcp_sock * tp)1176 static inline int tcp_is_sack(const struct tcp_sock *tp)
1177 {
1178 return likely(tp->rx_opt.sack_ok);
1179 }
1180
tcp_is_reno(const struct tcp_sock * tp)1181 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1182 {
1183 return !tcp_is_sack(tp);
1184 }
1185
tcp_left_out(const struct tcp_sock * tp)1186 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1187 {
1188 return tp->sacked_out + tp->lost_out;
1189 }
1190
1191 /* This determines how many packets are "in the network" to the best
1192 * of our knowledge. In many cases it is conservative, but where
1193 * detailed information is available from the receiver (via SACK
1194 * blocks etc.) we can make more aggressive calculations.
1195 *
1196 * Use this for decisions involving congestion control, use just
1197 * tp->packets_out to determine if the send queue is empty or not.
1198 *
1199 * Read this equation as:
1200 *
1201 * "Packets sent once on transmission queue" MINUS
1202 * "Packets left network, but not honestly ACKed yet" PLUS
1203 * "Packets fast retransmitted"
1204 */
tcp_packets_in_flight(const struct tcp_sock * tp)1205 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1206 {
1207 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1208 }
1209
1210 #define TCP_INFINITE_SSTHRESH 0x7fffffff
1211
tcp_snd_cwnd(const struct tcp_sock * tp)1212 static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1213 {
1214 return tp->snd_cwnd;
1215 }
1216
tcp_snd_cwnd_set(struct tcp_sock * tp,u32 val)1217 static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1218 {
1219 WARN_ON_ONCE((int)val <= 0);
1220 tp->snd_cwnd = val;
1221 }
1222
tcp_in_slow_start(const struct tcp_sock * tp)1223 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1224 {
1225 return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1226 }
1227
tcp_in_initial_slowstart(const struct tcp_sock * tp)1228 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1229 {
1230 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1231 }
1232
tcp_in_cwnd_reduction(const struct sock * sk)1233 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1234 {
1235 return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1236 (1 << inet_csk(sk)->icsk_ca_state);
1237 }
1238
1239 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1240 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1241 * ssthresh.
1242 */
tcp_current_ssthresh(const struct sock * sk)1243 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1244 {
1245 const struct tcp_sock *tp = tcp_sk(sk);
1246
1247 if (tcp_in_cwnd_reduction(sk))
1248 return tp->snd_ssthresh;
1249 else
1250 return max(tp->snd_ssthresh,
1251 ((tcp_snd_cwnd(tp) >> 1) +
1252 (tcp_snd_cwnd(tp) >> 2)));
1253 }
1254
1255 /* Use define here intentionally to get WARN_ON location shown at the caller */
1256 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out)
1257
1258 void tcp_enter_cwr(struct sock *sk);
1259 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1260
1261 /* The maximum number of MSS of available cwnd for which TSO defers
1262 * sending if not using sysctl_tcp_tso_win_divisor.
1263 */
tcp_max_tso_deferred_mss(const struct tcp_sock * tp)1264 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1265 {
1266 return 3;
1267 }
1268
1269 /* Returns end sequence number of the receiver's advertised window */
tcp_wnd_end(const struct tcp_sock * tp)1270 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1271 {
1272 return tp->snd_una + tp->snd_wnd;
1273 }
1274
1275 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1276 * flexible approach. The RFC suggests cwnd should not be raised unless
1277 * it was fully used previously. And that's exactly what we do in
1278 * congestion avoidance mode. But in slow start we allow cwnd to grow
1279 * as long as the application has used half the cwnd.
1280 * Example :
1281 * cwnd is 10 (IW10), but application sends 9 frames.
1282 * We allow cwnd to reach 18 when all frames are ACKed.
1283 * This check is safe because it's as aggressive as slow start which already
1284 * risks 100% overshoot. The advantage is that we discourage application to
1285 * either send more filler packets or data to artificially blow up the cwnd
1286 * usage, and allow application-limited process to probe bw more aggressively.
1287 */
tcp_is_cwnd_limited(const struct sock * sk)1288 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1289 {
1290 const struct tcp_sock *tp = tcp_sk(sk);
1291
1292 /* If in slow start, ensure cwnd grows to twice what was ACKed. */
1293 if (tcp_in_slow_start(tp))
1294 return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1295
1296 return tp->is_cwnd_limited;
1297 }
1298
1299 /* BBR congestion control needs pacing.
1300 * Same remark for SO_MAX_PACING_RATE.
1301 * sch_fq packet scheduler is efficiently handling pacing,
1302 * but is not always installed/used.
1303 * Return true if TCP stack should pace packets itself.
1304 */
tcp_needs_internal_pacing(const struct sock * sk)1305 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1306 {
1307 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1308 }
1309
1310 /* Estimates in how many jiffies next packet for this flow can be sent.
1311 * Scheduling a retransmit timer too early would be silly.
1312 */
tcp_pacing_delay(const struct sock * sk)1313 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1314 {
1315 s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1316
1317 return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1318 }
1319
tcp_reset_xmit_timer(struct sock * sk,const int what,unsigned long when,const unsigned long max_when)1320 static inline void tcp_reset_xmit_timer(struct sock *sk,
1321 const int what,
1322 unsigned long when,
1323 const unsigned long max_when)
1324 {
1325 inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1326 max_when);
1327 }
1328
1329 /* Something is really bad, we could not queue an additional packet,
1330 * because qdisc is full or receiver sent a 0 window, or we are paced.
1331 * We do not want to add fuel to the fire, or abort too early,
1332 * so make sure the timer we arm now is at least 200ms in the future,
1333 * regardless of current icsk_rto value (as it could be ~2ms)
1334 */
tcp_probe0_base(const struct sock * sk)1335 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1336 {
1337 return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1338 }
1339
1340 /* Variant of inet_csk_rto_backoff() used for zero window probes */
tcp_probe0_when(const struct sock * sk,unsigned long max_when)1341 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1342 unsigned long max_when)
1343 {
1344 u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1345 inet_csk(sk)->icsk_backoff);
1346 u64 when = (u64)tcp_probe0_base(sk) << backoff;
1347
1348 return (unsigned long)min_t(u64, when, max_when);
1349 }
1350
tcp_check_probe_timer(struct sock * sk)1351 static inline void tcp_check_probe_timer(struct sock *sk)
1352 {
1353 if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1354 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1355 tcp_probe0_base(sk), TCP_RTO_MAX);
1356 }
1357
tcp_init_wl(struct tcp_sock * tp,u32 seq)1358 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1359 {
1360 tp->snd_wl1 = seq;
1361 }
1362
tcp_update_wl(struct tcp_sock * tp,u32 seq)1363 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1364 {
1365 tp->snd_wl1 = seq;
1366 }
1367
1368 /*
1369 * Calculate(/check) TCP checksum
1370 */
tcp_v4_check(int len,__be32 saddr,__be32 daddr,__wsum base)1371 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1372 __be32 daddr, __wsum base)
1373 {
1374 return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1375 }
1376
tcp_checksum_complete(struct sk_buff * skb)1377 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1378 {
1379 return !skb_csum_unnecessary(skb) &&
1380 __skb_checksum_complete(skb);
1381 }
1382
1383 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1384 enum skb_drop_reason *reason);
1385
1386
1387 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1388 void tcp_set_state(struct sock *sk, int state);
1389 void tcp_done(struct sock *sk);
1390 int tcp_abort(struct sock *sk, int err);
1391
tcp_sack_reset(struct tcp_options_received * rx_opt)1392 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1393 {
1394 rx_opt->dsack = 0;
1395 rx_opt->num_sacks = 0;
1396 }
1397
1398 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1399
tcp_slow_start_after_idle_check(struct sock * sk)1400 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1401 {
1402 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1403 struct tcp_sock *tp = tcp_sk(sk);
1404 s32 delta;
1405
1406 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1407 tp->packets_out || ca_ops->cong_control)
1408 return;
1409 delta = tcp_jiffies32 - tp->lsndtime;
1410 if (delta > inet_csk(sk)->icsk_rto)
1411 tcp_cwnd_restart(sk, delta);
1412 }
1413
1414 /* Determine a window scaling and initial window to offer. */
1415 void tcp_select_initial_window(const struct sock *sk, int __space,
1416 __u32 mss, __u32 *rcv_wnd,
1417 __u32 *window_clamp, int wscale_ok,
1418 __u8 *rcv_wscale, __u32 init_rcv_wnd);
1419
tcp_win_from_space(const struct sock * sk,int space)1420 static inline int tcp_win_from_space(const struct sock *sk, int space)
1421 {
1422 int tcp_adv_win_scale = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale);
1423
1424 return tcp_adv_win_scale <= 0 ?
1425 (space>>(-tcp_adv_win_scale)) :
1426 space - (space>>tcp_adv_win_scale);
1427 }
1428
1429 /* Note: caller must be prepared to deal with negative returns */
tcp_space(const struct sock * sk)1430 static inline int tcp_space(const struct sock *sk)
1431 {
1432 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1433 READ_ONCE(sk->sk_backlog.len) -
1434 atomic_read(&sk->sk_rmem_alloc));
1435 }
1436
tcp_full_space(const struct sock * sk)1437 static inline int tcp_full_space(const struct sock *sk)
1438 {
1439 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1440 }
1441
tcp_adjust_rcv_ssthresh(struct sock * sk)1442 static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1443 {
1444 int unused_mem = sk_unused_reserved_mem(sk);
1445 struct tcp_sock *tp = tcp_sk(sk);
1446
1447 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
1448 if (unused_mem)
1449 tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1450 tcp_win_from_space(sk, unused_mem));
1451 }
1452
1453 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1454
1455 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1456 * If 87.5 % (7/8) of the space has been consumed, we want to override
1457 * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1458 * len/truesize ratio.
1459 */
tcp_rmem_pressure(const struct sock * sk)1460 static inline bool tcp_rmem_pressure(const struct sock *sk)
1461 {
1462 int rcvbuf, threshold;
1463
1464 if (tcp_under_memory_pressure(sk))
1465 return true;
1466
1467 rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1468 threshold = rcvbuf - (rcvbuf >> 3);
1469
1470 return atomic_read(&sk->sk_rmem_alloc) > threshold;
1471 }
1472
tcp_epollin_ready(const struct sock * sk,int target)1473 static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1474 {
1475 const struct tcp_sock *tp = tcp_sk(sk);
1476 int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1477
1478 if (avail <= 0)
1479 return false;
1480
1481 return (avail >= target) || tcp_rmem_pressure(sk) ||
1482 (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1483 }
1484
1485 extern void tcp_openreq_init_rwin(struct request_sock *req,
1486 const struct sock *sk_listener,
1487 const struct dst_entry *dst);
1488
1489 void tcp_enter_memory_pressure(struct sock *sk);
1490 void tcp_leave_memory_pressure(struct sock *sk);
1491
keepalive_intvl_when(const struct tcp_sock * tp)1492 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1493 {
1494 struct net *net = sock_net((struct sock *)tp);
1495
1496 return tp->keepalive_intvl ? :
1497 READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1498 }
1499
keepalive_time_when(const struct tcp_sock * tp)1500 static inline int keepalive_time_when(const struct tcp_sock *tp)
1501 {
1502 struct net *net = sock_net((struct sock *)tp);
1503
1504 return tp->keepalive_time ? :
1505 READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1506 }
1507
keepalive_probes(const struct tcp_sock * tp)1508 static inline int keepalive_probes(const struct tcp_sock *tp)
1509 {
1510 struct net *net = sock_net((struct sock *)tp);
1511
1512 return tp->keepalive_probes ? :
1513 READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1514 }
1515
keepalive_time_elapsed(const struct tcp_sock * tp)1516 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1517 {
1518 const struct inet_connection_sock *icsk = &tp->inet_conn;
1519
1520 return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1521 tcp_jiffies32 - tp->rcv_tstamp);
1522 }
1523
tcp_fin_time(const struct sock * sk)1524 static inline int tcp_fin_time(const struct sock *sk)
1525 {
1526 int fin_timeout = tcp_sk(sk)->linger2 ? :
1527 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1528 const int rto = inet_csk(sk)->icsk_rto;
1529
1530 if (fin_timeout < (rto << 2) - (rto >> 1))
1531 fin_timeout = (rto << 2) - (rto >> 1);
1532
1533 return fin_timeout;
1534 }
1535
tcp_paws_check(const struct tcp_options_received * rx_opt,int paws_win)1536 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1537 int paws_win)
1538 {
1539 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1540 return true;
1541 if (unlikely(!time_before32(ktime_get_seconds(),
1542 rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1543 return true;
1544 /*
1545 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1546 * then following tcp messages have valid values. Ignore 0 value,
1547 * or else 'negative' tsval might forbid us to accept their packets.
1548 */
1549 if (!rx_opt->ts_recent)
1550 return true;
1551 return false;
1552 }
1553
tcp_paws_reject(const struct tcp_options_received * rx_opt,int rst)1554 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1555 int rst)
1556 {
1557 if (tcp_paws_check(rx_opt, 0))
1558 return false;
1559
1560 /* RST segments are not recommended to carry timestamp,
1561 and, if they do, it is recommended to ignore PAWS because
1562 "their cleanup function should take precedence over timestamps."
1563 Certainly, it is mistake. It is necessary to understand the reasons
1564 of this constraint to relax it: if peer reboots, clock may go
1565 out-of-sync and half-open connections will not be reset.
1566 Actually, the problem would be not existing if all
1567 the implementations followed draft about maintaining clock
1568 via reboots. Linux-2.2 DOES NOT!
1569
1570 However, we can relax time bounds for RST segments to MSL.
1571 */
1572 if (rst && !time_before32(ktime_get_seconds(),
1573 rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1574 return false;
1575 return true;
1576 }
1577
1578 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1579 int mib_idx, u32 *last_oow_ack_time);
1580
tcp_mib_init(struct net * net)1581 static inline void tcp_mib_init(struct net *net)
1582 {
1583 /* See RFC 2012 */
1584 TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1585 TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1586 TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1587 TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1588 }
1589
1590 /* from STCP */
tcp_clear_retrans_hints_partial(struct tcp_sock * tp)1591 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1592 {
1593 tp->lost_skb_hint = NULL;
1594 }
1595
tcp_clear_all_retrans_hints(struct tcp_sock * tp)1596 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1597 {
1598 tcp_clear_retrans_hints_partial(tp);
1599 tp->retransmit_skb_hint = NULL;
1600 }
1601
1602 union tcp_md5_addr {
1603 struct in_addr a4;
1604 #if IS_ENABLED(CONFIG_IPV6)
1605 struct in6_addr a6;
1606 #endif
1607 };
1608
1609 /* - key database */
1610 struct tcp_md5sig_key {
1611 struct hlist_node node;
1612 u8 keylen;
1613 u8 family; /* AF_INET or AF_INET6 */
1614 u8 prefixlen;
1615 u8 flags;
1616 union tcp_md5_addr addr;
1617 int l3index; /* set if key added with L3 scope */
1618 u8 key[TCP_MD5SIG_MAXKEYLEN];
1619 struct rcu_head rcu;
1620 };
1621
1622 /* - sock block */
1623 struct tcp_md5sig_info {
1624 struct hlist_head head;
1625 struct rcu_head rcu;
1626 };
1627
1628 /* - pseudo header */
1629 struct tcp4_pseudohdr {
1630 __be32 saddr;
1631 __be32 daddr;
1632 __u8 pad;
1633 __u8 protocol;
1634 __be16 len;
1635 };
1636
1637 struct tcp6_pseudohdr {
1638 struct in6_addr saddr;
1639 struct in6_addr daddr;
1640 __be32 len;
1641 __be32 protocol; /* including padding */
1642 };
1643
1644 union tcp_md5sum_block {
1645 struct tcp4_pseudohdr ip4;
1646 #if IS_ENABLED(CONFIG_IPV6)
1647 struct tcp6_pseudohdr ip6;
1648 #endif
1649 };
1650
1651 /* - pool: digest algorithm, hash description and scratch buffer */
1652 struct tcp_md5sig_pool {
1653 struct ahash_request *md5_req;
1654 void *scratch;
1655 };
1656
1657 /* - functions */
1658 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1659 const struct sock *sk, const struct sk_buff *skb);
1660 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1661 int family, u8 prefixlen, int l3index, u8 flags,
1662 const u8 *newkey, u8 newkeylen, gfp_t gfp);
1663 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1664 int family, u8 prefixlen, int l3index, u8 flags);
1665 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1666 const struct sock *addr_sk);
1667
1668 #ifdef CONFIG_TCP_MD5SIG
1669 #include <linux/jump_label.h>
1670 extern struct static_key_false tcp_md5_needed;
1671 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1672 const union tcp_md5_addr *addr,
1673 int family);
1674 static inline struct tcp_md5sig_key *
tcp_md5_do_lookup(const struct sock * sk,int l3index,const union tcp_md5_addr * addr,int family)1675 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1676 const union tcp_md5_addr *addr, int family)
1677 {
1678 if (!static_branch_unlikely(&tcp_md5_needed))
1679 return NULL;
1680 return __tcp_md5_do_lookup(sk, l3index, addr, family);
1681 }
1682
1683 enum skb_drop_reason
1684 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1685 const void *saddr, const void *daddr,
1686 int family, int dif, int sdif);
1687
1688
1689 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key)
1690 #else
1691 static inline struct tcp_md5sig_key *
tcp_md5_do_lookup(const struct sock * sk,int l3index,const union tcp_md5_addr * addr,int family)1692 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1693 const union tcp_md5_addr *addr, int family)
1694 {
1695 return NULL;
1696 }
1697
1698 static inline enum skb_drop_reason
tcp_inbound_md5_hash(const struct sock * sk,const struct sk_buff * skb,const void * saddr,const void * daddr,int family,int dif,int sdif)1699 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1700 const void *saddr, const void *daddr,
1701 int family, int dif, int sdif)
1702 {
1703 return SKB_NOT_DROPPED_YET;
1704 }
1705 #define tcp_twsk_md5_key(twsk) NULL
1706 #endif
1707
1708 bool tcp_alloc_md5sig_pool(void);
1709
1710 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
tcp_put_md5sig_pool(void)1711 static inline void tcp_put_md5sig_pool(void)
1712 {
1713 local_bh_enable();
1714 }
1715
1716 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1717 unsigned int header_len);
1718 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1719 const struct tcp_md5sig_key *key);
1720
1721 /* From tcp_fastopen.c */
1722 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1723 struct tcp_fastopen_cookie *cookie);
1724 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1725 struct tcp_fastopen_cookie *cookie, bool syn_lost,
1726 u16 try_exp);
1727 struct tcp_fastopen_request {
1728 /* Fast Open cookie. Size 0 means a cookie request */
1729 struct tcp_fastopen_cookie cookie;
1730 struct msghdr *data; /* data in MSG_FASTOPEN */
1731 size_t size;
1732 int copied; /* queued in tcp_connect() */
1733 struct ubuf_info *uarg;
1734 };
1735 void tcp_free_fastopen_req(struct tcp_sock *tp);
1736 void tcp_fastopen_destroy_cipher(struct sock *sk);
1737 void tcp_fastopen_ctx_destroy(struct net *net);
1738 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1739 void *primary_key, void *backup_key);
1740 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1741 u64 *key);
1742 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1743 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1744 struct request_sock *req,
1745 struct tcp_fastopen_cookie *foc,
1746 const struct dst_entry *dst);
1747 void tcp_fastopen_init_key_once(struct net *net);
1748 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1749 struct tcp_fastopen_cookie *cookie);
1750 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1751 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1752 #define TCP_FASTOPEN_KEY_MAX 2
1753 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1754 (TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1755
1756 /* Fastopen key context */
1757 struct tcp_fastopen_context {
1758 siphash_key_t key[TCP_FASTOPEN_KEY_MAX];
1759 int num;
1760 struct rcu_head rcu;
1761 };
1762
1763 void tcp_fastopen_active_disable(struct sock *sk);
1764 bool tcp_fastopen_active_should_disable(struct sock *sk);
1765 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1766 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1767
1768 /* Caller needs to wrap with rcu_read_(un)lock() */
1769 static inline
tcp_fastopen_get_ctx(const struct sock * sk)1770 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1771 {
1772 struct tcp_fastopen_context *ctx;
1773
1774 ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1775 if (!ctx)
1776 ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1777 return ctx;
1778 }
1779
1780 static inline
tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie * foc,const struct tcp_fastopen_cookie * orig)1781 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1782 const struct tcp_fastopen_cookie *orig)
1783 {
1784 if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1785 orig->len == foc->len &&
1786 !memcmp(orig->val, foc->val, foc->len))
1787 return true;
1788 return false;
1789 }
1790
1791 static inline
tcp_fastopen_context_len(const struct tcp_fastopen_context * ctx)1792 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1793 {
1794 return ctx->num;
1795 }
1796
1797 /* Latencies incurred by various limits for a sender. They are
1798 * chronograph-like stats that are mutually exclusive.
1799 */
1800 enum tcp_chrono {
1801 TCP_CHRONO_UNSPEC,
1802 TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1803 TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1804 TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1805 __TCP_CHRONO_MAX,
1806 };
1807
1808 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1809 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1810
1811 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1812 * the same memory storage than skb->destructor/_skb_refdst
1813 */
tcp_skb_tsorted_anchor_cleanup(struct sk_buff * skb)1814 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1815 {
1816 skb->destructor = NULL;
1817 skb->_skb_refdst = 0UL;
1818 }
1819
1820 #define tcp_skb_tsorted_save(skb) { \
1821 unsigned long _save = skb->_skb_refdst; \
1822 skb->_skb_refdst = 0UL;
1823
1824 #define tcp_skb_tsorted_restore(skb) \
1825 skb->_skb_refdst = _save; \
1826 }
1827
1828 void tcp_write_queue_purge(struct sock *sk);
1829
tcp_rtx_queue_head(const struct sock * sk)1830 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1831 {
1832 return skb_rb_first(&sk->tcp_rtx_queue);
1833 }
1834
tcp_rtx_queue_tail(const struct sock * sk)1835 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1836 {
1837 return skb_rb_last(&sk->tcp_rtx_queue);
1838 }
1839
tcp_write_queue_tail(const struct sock * sk)1840 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1841 {
1842 return skb_peek_tail(&sk->sk_write_queue);
1843 }
1844
1845 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \
1846 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1847
tcp_send_head(const struct sock * sk)1848 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1849 {
1850 return skb_peek(&sk->sk_write_queue);
1851 }
1852
tcp_skb_is_last(const struct sock * sk,const struct sk_buff * skb)1853 static inline bool tcp_skb_is_last(const struct sock *sk,
1854 const struct sk_buff *skb)
1855 {
1856 return skb_queue_is_last(&sk->sk_write_queue, skb);
1857 }
1858
1859 /**
1860 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1861 * @sk: socket
1862 *
1863 * Since the write queue can have a temporary empty skb in it,
1864 * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1865 */
tcp_write_queue_empty(const struct sock * sk)1866 static inline bool tcp_write_queue_empty(const struct sock *sk)
1867 {
1868 const struct tcp_sock *tp = tcp_sk(sk);
1869
1870 return tp->write_seq == tp->snd_nxt;
1871 }
1872
tcp_rtx_queue_empty(const struct sock * sk)1873 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1874 {
1875 return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1876 }
1877
tcp_rtx_and_write_queues_empty(const struct sock * sk)1878 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1879 {
1880 return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1881 }
1882
tcp_add_write_queue_tail(struct sock * sk,struct sk_buff * skb)1883 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1884 {
1885 __skb_queue_tail(&sk->sk_write_queue, skb);
1886
1887 /* Queue it, remembering where we must start sending. */
1888 if (sk->sk_write_queue.next == skb)
1889 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1890 }
1891
1892 /* Insert new before skb on the write queue of sk. */
tcp_insert_write_queue_before(struct sk_buff * new,struct sk_buff * skb,struct sock * sk)1893 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1894 struct sk_buff *skb,
1895 struct sock *sk)
1896 {
1897 __skb_queue_before(&sk->sk_write_queue, skb, new);
1898 }
1899
tcp_unlink_write_queue(struct sk_buff * skb,struct sock * sk)1900 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1901 {
1902 tcp_skb_tsorted_anchor_cleanup(skb);
1903 __skb_unlink(skb, &sk->sk_write_queue);
1904 }
1905
1906 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1907
tcp_rtx_queue_unlink(struct sk_buff * skb,struct sock * sk)1908 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1909 {
1910 tcp_skb_tsorted_anchor_cleanup(skb);
1911 rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1912 }
1913
tcp_rtx_queue_unlink_and_free(struct sk_buff * skb,struct sock * sk)1914 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1915 {
1916 list_del(&skb->tcp_tsorted_anchor);
1917 tcp_rtx_queue_unlink(skb, sk);
1918 tcp_wmem_free_skb(sk, skb);
1919 }
1920
tcp_push_pending_frames(struct sock * sk)1921 static inline void tcp_push_pending_frames(struct sock *sk)
1922 {
1923 if (tcp_send_head(sk)) {
1924 struct tcp_sock *tp = tcp_sk(sk);
1925
1926 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1927 }
1928 }
1929
1930 /* Start sequence of the skb just after the highest skb with SACKed
1931 * bit, valid only if sacked_out > 0 or when the caller has ensured
1932 * validity by itself.
1933 */
tcp_highest_sack_seq(struct tcp_sock * tp)1934 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1935 {
1936 if (!tp->sacked_out)
1937 return tp->snd_una;
1938
1939 if (tp->highest_sack == NULL)
1940 return tp->snd_nxt;
1941
1942 return TCP_SKB_CB(tp->highest_sack)->seq;
1943 }
1944
tcp_advance_highest_sack(struct sock * sk,struct sk_buff * skb)1945 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1946 {
1947 tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1948 }
1949
tcp_highest_sack(struct sock * sk)1950 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1951 {
1952 return tcp_sk(sk)->highest_sack;
1953 }
1954
tcp_highest_sack_reset(struct sock * sk)1955 static inline void tcp_highest_sack_reset(struct sock *sk)
1956 {
1957 tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1958 }
1959
1960 /* Called when old skb is about to be deleted and replaced by new skb */
tcp_highest_sack_replace(struct sock * sk,struct sk_buff * old,struct sk_buff * new)1961 static inline void tcp_highest_sack_replace(struct sock *sk,
1962 struct sk_buff *old,
1963 struct sk_buff *new)
1964 {
1965 if (old == tcp_highest_sack(sk))
1966 tcp_sk(sk)->highest_sack = new;
1967 }
1968
1969 /* This helper checks if socket has IP_TRANSPARENT set */
inet_sk_transparent(const struct sock * sk)1970 static inline bool inet_sk_transparent(const struct sock *sk)
1971 {
1972 switch (sk->sk_state) {
1973 case TCP_TIME_WAIT:
1974 return inet_twsk(sk)->tw_transparent;
1975 case TCP_NEW_SYN_RECV:
1976 return inet_rsk(inet_reqsk(sk))->no_srccheck;
1977 }
1978 return inet_sk(sk)->transparent;
1979 }
1980
1981 /* Determines whether this is a thin stream (which may suffer from
1982 * increased latency). Used to trigger latency-reducing mechanisms.
1983 */
tcp_stream_is_thin(struct tcp_sock * tp)1984 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1985 {
1986 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1987 }
1988
1989 /* /proc */
1990 enum tcp_seq_states {
1991 TCP_SEQ_STATE_LISTENING,
1992 TCP_SEQ_STATE_ESTABLISHED,
1993 };
1994
1995 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1996 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1997 void tcp_seq_stop(struct seq_file *seq, void *v);
1998
1999 struct tcp_seq_afinfo {
2000 sa_family_t family;
2001 };
2002
2003 struct tcp_iter_state {
2004 struct seq_net_private p;
2005 enum tcp_seq_states state;
2006 struct sock *syn_wait_sk;
2007 int bucket, offset, sbucket, num;
2008 loff_t last_pos;
2009 };
2010
2011 extern struct request_sock_ops tcp_request_sock_ops;
2012 extern struct request_sock_ops tcp6_request_sock_ops;
2013
2014 void tcp_v4_destroy_sock(struct sock *sk);
2015
2016 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2017 netdev_features_t features);
2018 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
2019 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2020 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2021 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
2022 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
2023 int tcp_gro_complete(struct sk_buff *skb);
2024
2025 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2026
tcp_notsent_lowat(const struct tcp_sock * tp)2027 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2028 {
2029 struct net *net = sock_net((struct sock *)tp);
2030 return tp->notsent_lowat ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2031 }
2032
2033 bool tcp_stream_memory_free(const struct sock *sk, int wake);
2034
2035 #ifdef CONFIG_PROC_FS
2036 int tcp4_proc_init(void);
2037 void tcp4_proc_exit(void);
2038 #endif
2039
2040 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2041 int tcp_conn_request(struct request_sock_ops *rsk_ops,
2042 const struct tcp_request_sock_ops *af_ops,
2043 struct sock *sk, struct sk_buff *skb);
2044
2045 /* TCP af-specific functions */
2046 struct tcp_sock_af_ops {
2047 #ifdef CONFIG_TCP_MD5SIG
2048 struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk,
2049 const struct sock *addr_sk);
2050 int (*calc_md5_hash)(char *location,
2051 const struct tcp_md5sig_key *md5,
2052 const struct sock *sk,
2053 const struct sk_buff *skb);
2054 int (*md5_parse)(struct sock *sk,
2055 int optname,
2056 sockptr_t optval,
2057 int optlen);
2058 #endif
2059 };
2060
2061 struct tcp_request_sock_ops {
2062 u16 mss_clamp;
2063 #ifdef CONFIG_TCP_MD5SIG
2064 struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2065 const struct sock *addr_sk);
2066 int (*calc_md5_hash) (char *location,
2067 const struct tcp_md5sig_key *md5,
2068 const struct sock *sk,
2069 const struct sk_buff *skb);
2070 #endif
2071 #ifdef CONFIG_SYN_COOKIES
2072 __u32 (*cookie_init_seq)(const struct sk_buff *skb,
2073 __u16 *mss);
2074 #endif
2075 struct dst_entry *(*route_req)(const struct sock *sk,
2076 struct sk_buff *skb,
2077 struct flowi *fl,
2078 struct request_sock *req);
2079 u32 (*init_seq)(const struct sk_buff *skb);
2080 u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2081 int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2082 struct flowi *fl, struct request_sock *req,
2083 struct tcp_fastopen_cookie *foc,
2084 enum tcp_synack_type synack_type,
2085 struct sk_buff *syn_skb);
2086 };
2087
2088 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2089 #if IS_ENABLED(CONFIG_IPV6)
2090 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2091 #endif
2092
2093 #ifdef CONFIG_SYN_COOKIES
cookie_init_sequence(const struct tcp_request_sock_ops * ops,const struct sock * sk,struct sk_buff * skb,__u16 * mss)2094 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2095 const struct sock *sk, struct sk_buff *skb,
2096 __u16 *mss)
2097 {
2098 tcp_synq_overflow(sk);
2099 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2100 return ops->cookie_init_seq(skb, mss);
2101 }
2102 #else
cookie_init_sequence(const struct tcp_request_sock_ops * ops,const struct sock * sk,struct sk_buff * skb,__u16 * mss)2103 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2104 const struct sock *sk, struct sk_buff *skb,
2105 __u16 *mss)
2106 {
2107 return 0;
2108 }
2109 #endif
2110
2111 int tcpv4_offload_init(void);
2112
2113 void tcp_v4_init(void);
2114 void tcp_init(void);
2115
2116 /* tcp_recovery.c */
2117 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2118 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2119 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2120 u32 reo_wnd);
2121 extern bool tcp_rack_mark_lost(struct sock *sk);
2122 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2123 u64 xmit_time);
2124 extern void tcp_rack_reo_timeout(struct sock *sk);
2125 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2126
2127 /* At how many usecs into the future should the RTO fire? */
tcp_rto_delta_us(const struct sock * sk)2128 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2129 {
2130 const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2131 u32 rto = inet_csk(sk)->icsk_rto;
2132 u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2133
2134 return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2135 }
2136
2137 /*
2138 * Save and compile IPv4 options, return a pointer to it
2139 */
tcp_v4_save_options(struct net * net,struct sk_buff * skb)2140 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2141 struct sk_buff *skb)
2142 {
2143 const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2144 struct ip_options_rcu *dopt = NULL;
2145
2146 if (opt->optlen) {
2147 int opt_size = sizeof(*dopt) + opt->optlen;
2148
2149 dopt = kmalloc(opt_size, GFP_ATOMIC);
2150 if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2151 kfree(dopt);
2152 dopt = NULL;
2153 }
2154 }
2155 return dopt;
2156 }
2157
2158 /* locally generated TCP pure ACKs have skb->truesize == 2
2159 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2160 * This is much faster than dissecting the packet to find out.
2161 * (Think of GRE encapsulations, IPv4, IPv6, ...)
2162 */
skb_is_tcp_pure_ack(const struct sk_buff * skb)2163 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2164 {
2165 return skb->truesize == 2;
2166 }
2167
skb_set_tcp_pure_ack(struct sk_buff * skb)2168 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2169 {
2170 skb->truesize = 2;
2171 }
2172
tcp_inq(struct sock * sk)2173 static inline int tcp_inq(struct sock *sk)
2174 {
2175 struct tcp_sock *tp = tcp_sk(sk);
2176 int answ;
2177
2178 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2179 answ = 0;
2180 } else if (sock_flag(sk, SOCK_URGINLINE) ||
2181 !tp->urg_data ||
2182 before(tp->urg_seq, tp->copied_seq) ||
2183 !before(tp->urg_seq, tp->rcv_nxt)) {
2184
2185 answ = tp->rcv_nxt - tp->copied_seq;
2186
2187 /* Subtract 1, if FIN was received */
2188 if (answ && sock_flag(sk, SOCK_DONE))
2189 answ--;
2190 } else {
2191 answ = tp->urg_seq - tp->copied_seq;
2192 }
2193
2194 return answ;
2195 }
2196
2197 int tcp_peek_len(struct socket *sock);
2198
tcp_segs_in(struct tcp_sock * tp,const struct sk_buff * skb)2199 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2200 {
2201 u16 segs_in;
2202
2203 segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2204
2205 /* We update these fields while other threads might
2206 * read them from tcp_get_info()
2207 */
2208 WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
2209 if (skb->len > tcp_hdrlen(skb))
2210 WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
2211 }
2212
2213 /*
2214 * TCP listen path runs lockless.
2215 * We forced "struct sock" to be const qualified to make sure
2216 * we don't modify one of its field by mistake.
2217 * Here, we increment sk_drops which is an atomic_t, so we can safely
2218 * make sock writable again.
2219 */
tcp_listendrop(const struct sock * sk)2220 static inline void tcp_listendrop(const struct sock *sk)
2221 {
2222 atomic_inc(&((struct sock *)sk)->sk_drops);
2223 __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2224 }
2225
2226 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2227
2228 /*
2229 * Interface for adding Upper Level Protocols over TCP
2230 */
2231
2232 #define TCP_ULP_NAME_MAX 16
2233 #define TCP_ULP_MAX 128
2234 #define TCP_ULP_BUF_MAX (TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2235
2236 struct tcp_ulp_ops {
2237 struct list_head list;
2238
2239 /* initialize ulp */
2240 int (*init)(struct sock *sk);
2241 /* update ulp */
2242 void (*update)(struct sock *sk, struct proto *p,
2243 void (*write_space)(struct sock *sk));
2244 /* cleanup ulp */
2245 void (*release)(struct sock *sk);
2246 /* diagnostic */
2247 int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2248 size_t (*get_info_size)(const struct sock *sk);
2249 /* clone ulp */
2250 void (*clone)(const struct request_sock *req, struct sock *newsk,
2251 const gfp_t priority);
2252
2253 char name[TCP_ULP_NAME_MAX];
2254 struct module *owner;
2255 };
2256 int tcp_register_ulp(struct tcp_ulp_ops *type);
2257 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2258 int tcp_set_ulp(struct sock *sk, const char *name);
2259 void tcp_get_available_ulp(char *buf, size_t len);
2260 void tcp_cleanup_ulp(struct sock *sk);
2261 void tcp_update_ulp(struct sock *sk, struct proto *p,
2262 void (*write_space)(struct sock *sk));
2263
2264 #define MODULE_ALIAS_TCP_ULP(name) \
2265 __MODULE_INFO(alias, alias_userspace, name); \
2266 __MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2267
2268 #ifdef CONFIG_NET_SOCK_MSG
2269 struct sk_msg;
2270 struct sk_psock;
2271
2272 #ifdef CONFIG_BPF_SYSCALL
2273 struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock);
2274 int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2275 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2276 #endif /* CONFIG_BPF_SYSCALL */
2277
2278 int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2279 int flags);
2280 #endif /* CONFIG_NET_SOCK_MSG */
2281
2282 #if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
tcp_bpf_clone(const struct sock * sk,struct sock * newsk)2283 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2284 {
2285 }
2286 #endif
2287
2288 #ifdef CONFIG_CGROUP_BPF
bpf_skops_init_skb(struct bpf_sock_ops_kern * skops,struct sk_buff * skb,unsigned int end_offset)2289 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2290 struct sk_buff *skb,
2291 unsigned int end_offset)
2292 {
2293 skops->skb = skb;
2294 skops->skb_data_end = skb->data + end_offset;
2295 }
2296 #else
bpf_skops_init_skb(struct bpf_sock_ops_kern * skops,struct sk_buff * skb,unsigned int end_offset)2297 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2298 struct sk_buff *skb,
2299 unsigned int end_offset)
2300 {
2301 }
2302 #endif
2303
2304 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2305 * is < 0, then the BPF op failed (for example if the loaded BPF
2306 * program does not support the chosen operation or there is no BPF
2307 * program loaded).
2308 */
2309 #ifdef CONFIG_BPF
tcp_call_bpf(struct sock * sk,int op,u32 nargs,u32 * args)2310 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2311 {
2312 struct bpf_sock_ops_kern sock_ops;
2313 int ret;
2314
2315 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2316 if (sk_fullsock(sk)) {
2317 sock_ops.is_fullsock = 1;
2318 sock_owned_by_me(sk);
2319 }
2320
2321 sock_ops.sk = sk;
2322 sock_ops.op = op;
2323 if (nargs > 0)
2324 memcpy(sock_ops.args, args, nargs * sizeof(*args));
2325
2326 ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2327 if (ret == 0)
2328 ret = sock_ops.reply;
2329 else
2330 ret = -1;
2331 return ret;
2332 }
2333
tcp_call_bpf_2arg(struct sock * sk,int op,u32 arg1,u32 arg2)2334 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2335 {
2336 u32 args[2] = {arg1, arg2};
2337
2338 return tcp_call_bpf(sk, op, 2, args);
2339 }
2340
tcp_call_bpf_3arg(struct sock * sk,int op,u32 arg1,u32 arg2,u32 arg3)2341 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2342 u32 arg3)
2343 {
2344 u32 args[3] = {arg1, arg2, arg3};
2345
2346 return tcp_call_bpf(sk, op, 3, args);
2347 }
2348
2349 #else
tcp_call_bpf(struct sock * sk,int op,u32 nargs,u32 * args)2350 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2351 {
2352 return -EPERM;
2353 }
2354
tcp_call_bpf_2arg(struct sock * sk,int op,u32 arg1,u32 arg2)2355 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2356 {
2357 return -EPERM;
2358 }
2359
tcp_call_bpf_3arg(struct sock * sk,int op,u32 arg1,u32 arg2,u32 arg3)2360 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2361 u32 arg3)
2362 {
2363 return -EPERM;
2364 }
2365
2366 #endif
2367
tcp_timeout_init(struct sock * sk)2368 static inline u32 tcp_timeout_init(struct sock *sk)
2369 {
2370 int timeout;
2371
2372 timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2373
2374 if (timeout <= 0)
2375 timeout = TCP_TIMEOUT_INIT;
2376 return min_t(int, timeout, TCP_RTO_MAX);
2377 }
2378
tcp_rwnd_init_bpf(struct sock * sk)2379 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2380 {
2381 int rwnd;
2382
2383 rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2384
2385 if (rwnd < 0)
2386 rwnd = 0;
2387 return rwnd;
2388 }
2389
tcp_bpf_ca_needs_ecn(struct sock * sk)2390 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2391 {
2392 return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2393 }
2394
tcp_bpf_rtt(struct sock * sk)2395 static inline void tcp_bpf_rtt(struct sock *sk)
2396 {
2397 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2398 tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2399 }
2400
2401 #if IS_ENABLED(CONFIG_SMC)
2402 extern struct static_key_false tcp_have_smc;
2403 #endif
2404
2405 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2406 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2407 void (*cad)(struct sock *sk, u32 ack_seq));
2408 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2409 void clean_acked_data_flush(void);
2410 #endif
2411
2412 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
tcp_add_tx_delay(struct sk_buff * skb,const struct tcp_sock * tp)2413 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2414 const struct tcp_sock *tp)
2415 {
2416 if (static_branch_unlikely(&tcp_tx_delay_enabled))
2417 skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2418 }
2419
2420 /* Compute Earliest Departure Time for some control packets
2421 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2422 */
tcp_transmit_time(const struct sock * sk)2423 static inline u64 tcp_transmit_time(const struct sock *sk)
2424 {
2425 if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2426 u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2427 tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2428
2429 return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2430 }
2431 return 0;
2432 }
2433
2434 #endif /* _TCP_H */
2435