1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the TCP module.
7 *
8 * Version: @(#)tcp.h 1.0.5 05/23/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * as published by the Free Software Foundation; either version
16 * 2 of the License, or (at your option) any later version.
17 */
18 #ifndef _TCP_H
19 #define _TCP_H
20
21 #define FASTRETRANS_DEBUG 1
22
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/dmaengine.h>
31 #include <linux/crypto.h>
32 #include <linux/cryptohash.h>
33 #include <linux/kref.h>
34
35 #include <net/inet_connection_sock.h>
36 #include <net/inet_timewait_sock.h>
37 #include <net/inet_hashtables.h>
38 #include <net/checksum.h>
39 #include <net/request_sock.h>
40 #include <net/sock.h>
41 #include <net/snmp.h>
42 #include <net/ip.h>
43 #include <net/tcp_states.h>
44 #include <net/inet_ecn.h>
45 #include <net/dst.h>
46
47 #include <linux/seq_file.h>
48 #include <linux/memcontrol.h>
49
50 extern struct inet_hashinfo tcp_hashinfo;
51
52 extern struct percpu_counter tcp_orphan_count;
53 extern void tcp_time_wait(struct sock *sk, int state, int timeo);
54
55 #define MAX_TCP_HEADER (128 + MAX_HEADER)
56 #define MAX_TCP_OPTION_SPACE 40
57
58 /*
59 * Never offer a window over 32767 without using window scaling. Some
60 * poor stacks do signed 16bit maths!
61 */
62 #define MAX_TCP_WINDOW 32767U
63
64 /* Offer an initial receive window of 10 mss. */
65 #define TCP_DEFAULT_INIT_RCVWND 10
66
67 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
68 #define TCP_MIN_MSS 88U
69
70 /* The least MTU to use for probing */
71 #define TCP_BASE_MSS 512
72
73 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
74 #define TCP_FASTRETRANS_THRESH 3
75
76 /* Maximal reordering. */
77 #define TCP_MAX_REORDERING 127
78
79 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
80 #define TCP_MAX_QUICKACKS 16U
81
82 /* urg_data states */
83 #define TCP_URG_VALID 0x0100
84 #define TCP_URG_NOTYET 0x0200
85 #define TCP_URG_READ 0x0400
86
87 #define TCP_RETR1 3 /*
88 * This is how many retries it does before it
89 * tries to figure out if the gateway is
90 * down. Minimal RFC value is 3; it corresponds
91 * to ~3sec-8min depending on RTO.
92 */
93
94 #define TCP_RETR2 15 /*
95 * This should take at least
96 * 90 minutes to time out.
97 * RFC1122 says that the limit is 100 sec.
98 * 15 is ~13-30min depending on RTO.
99 */
100
101 #define TCP_SYN_RETRIES 5 /* number of times to retry active opening a
102 * connection: ~180sec is RFC minimum */
103
104 #define TCP_SYNACK_RETRIES 5 /* number of times to retry passive opening a
105 * connection: ~180sec is RFC minimum */
106
107 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
108 * state, about 60 seconds */
109 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
110 /* BSD style FIN_WAIT2 deadlock breaker.
111 * It used to be 3min, new value is 60sec,
112 * to combine FIN-WAIT-2 timeout with
113 * TIME-WAIT timer.
114 */
115
116 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */
117 #if HZ >= 100
118 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */
119 #define TCP_ATO_MIN ((unsigned)(HZ/25))
120 #else
121 #define TCP_DELACK_MIN 4U
122 #define TCP_ATO_MIN 4U
123 #endif
124 #define TCP_RTO_MAX ((unsigned)(120*HZ))
125 #define TCP_RTO_MIN ((unsigned)(HZ/5))
126 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC2988bis initial RTO value */
127 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now
128 * used as a fallback RTO for the
129 * initial data transmission if no
130 * valid RTT sample has been acquired,
131 * most likely due to retrans in 3WHS.
132 */
133
134 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
135 * for local resources.
136 */
137
138 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */
139 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */
140 #define TCP_KEEPALIVE_INTVL (75*HZ)
141
142 #define MAX_TCP_KEEPIDLE 32767
143 #define MAX_TCP_KEEPINTVL 32767
144 #define MAX_TCP_KEEPCNT 127
145 #define MAX_TCP_SYNCNT 127
146
147 #define TCP_SYNQ_INTERVAL (HZ/5) /* Period of SYNACK timer */
148
149 #define TCP_PAWS_24DAYS (60 * 60 * 24 * 24)
150 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated
151 * after this time. It should be equal
152 * (or greater than) TCP_TIMEWAIT_LEN
153 * to provide reliability equal to one
154 * provided by timewait state.
155 */
156 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host
157 * timestamps. It must be less than
158 * minimal timewait lifetime.
159 */
160 /*
161 * TCP option
162 */
163
164 #define TCPOPT_NOP 1 /* Padding */
165 #define TCPOPT_EOL 0 /* End of options */
166 #define TCPOPT_MSS 2 /* Segment size negotiating */
167 #define TCPOPT_WINDOW 3 /* Window scaling */
168 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */
169 #define TCPOPT_SACK 5 /* SACK Block */
170 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */
171 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */
172 #define TCPOPT_COOKIE 253 /* Cookie extension (experimental) */
173
174 /*
175 * TCP option lengths
176 */
177
178 #define TCPOLEN_MSS 4
179 #define TCPOLEN_WINDOW 3
180 #define TCPOLEN_SACK_PERM 2
181 #define TCPOLEN_TIMESTAMP 10
182 #define TCPOLEN_MD5SIG 18
183 #define TCPOLEN_COOKIE_BASE 2 /* Cookie-less header extension */
184 #define TCPOLEN_COOKIE_PAIR 3 /* Cookie pair header extension */
185 #define TCPOLEN_COOKIE_MIN (TCPOLEN_COOKIE_BASE+TCP_COOKIE_MIN)
186 #define TCPOLEN_COOKIE_MAX (TCPOLEN_COOKIE_BASE+TCP_COOKIE_MAX)
187
188 /* But this is what stacks really send out. */
189 #define TCPOLEN_TSTAMP_ALIGNED 12
190 #define TCPOLEN_WSCALE_ALIGNED 4
191 #define TCPOLEN_SACKPERM_ALIGNED 4
192 #define TCPOLEN_SACK_BASE 2
193 #define TCPOLEN_SACK_BASE_ALIGNED 4
194 #define TCPOLEN_SACK_PERBLOCK 8
195 #define TCPOLEN_MD5SIG_ALIGNED 20
196 #define TCPOLEN_MSS_ALIGNED 4
197
198 /* Flags in tp->nonagle */
199 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */
200 #define TCP_NAGLE_CORK 2 /* Socket is corked */
201 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */
202
203 /* TCP thin-stream limits */
204 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */
205
206 /* TCP initial congestion window as per draft-hkchu-tcpm-initcwnd-01 */
207 #define TCP_INIT_CWND 10
208
209 extern struct inet_timewait_death_row tcp_death_row;
210
211 /* sysctl variables for tcp */
212 extern int sysctl_tcp_timestamps;
213 extern int sysctl_tcp_window_scaling;
214 extern int sysctl_tcp_sack;
215 extern int sysctl_tcp_fin_timeout;
216 extern int sysctl_tcp_keepalive_time;
217 extern int sysctl_tcp_keepalive_probes;
218 extern int sysctl_tcp_keepalive_intvl;
219 extern int sysctl_tcp_syn_retries;
220 extern int sysctl_tcp_synack_retries;
221 extern int sysctl_tcp_retries1;
222 extern int sysctl_tcp_retries2;
223 extern int sysctl_tcp_orphan_retries;
224 extern int sysctl_tcp_syncookies;
225 extern int sysctl_tcp_retrans_collapse;
226 extern int sysctl_tcp_stdurg;
227 extern int sysctl_tcp_rfc1337;
228 extern int sysctl_tcp_abort_on_overflow;
229 extern int sysctl_tcp_max_orphans;
230 extern int sysctl_tcp_fack;
231 extern int sysctl_tcp_reordering;
232 extern int sysctl_tcp_ecn;
233 extern int sysctl_tcp_dsack;
234 extern int sysctl_tcp_wmem[3];
235 extern int sysctl_tcp_rmem[3];
236 extern int sysctl_tcp_app_win;
237 extern int sysctl_tcp_adv_win_scale;
238 extern int sysctl_tcp_tw_reuse;
239 extern int sysctl_tcp_frto;
240 extern int sysctl_tcp_frto_response;
241 extern int sysctl_tcp_low_latency;
242 extern int sysctl_tcp_dma_copybreak;
243 extern int sysctl_tcp_nometrics_save;
244 extern int sysctl_tcp_moderate_rcvbuf;
245 extern int sysctl_tcp_tso_win_divisor;
246 extern int sysctl_tcp_abc;
247 extern int sysctl_tcp_mtu_probing;
248 extern int sysctl_tcp_base_mss;
249 extern int sysctl_tcp_workaround_signed_windows;
250 extern int sysctl_tcp_slow_start_after_idle;
251 extern int sysctl_tcp_max_ssthresh;
252 extern int sysctl_tcp_cookie_size;
253 extern int sysctl_tcp_thin_linear_timeouts;
254 extern int sysctl_tcp_thin_dupack;
255 extern int sysctl_tcp_challenge_ack_limit;
256
257 extern atomic_long_t tcp_memory_allocated;
258 extern struct percpu_counter tcp_sockets_allocated;
259 extern int tcp_memory_pressure;
260
261 /*
262 * The next routines deal with comparing 32 bit unsigned ints
263 * and worry about wraparound (automatic with unsigned arithmetic).
264 */
265
before(__u32 seq1,__u32 seq2)266 static inline int before(__u32 seq1, __u32 seq2)
267 {
268 return (__s32)(seq1-seq2) < 0;
269 }
270 #define after(seq2, seq1) before(seq1, seq2)
271
272 /* is s2<=s1<=s3 ? */
between(__u32 seq1,__u32 seq2,__u32 seq3)273 static inline int between(__u32 seq1, __u32 seq2, __u32 seq3)
274 {
275 return seq3 - seq2 >= seq1 - seq2;
276 }
277
tcp_out_of_memory(struct sock * sk)278 static inline bool tcp_out_of_memory(struct sock *sk)
279 {
280 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
281 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
282 return true;
283 return false;
284 }
285
tcp_too_many_orphans(struct sock * sk,int shift)286 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
287 {
288 struct percpu_counter *ocp = sk->sk_prot->orphan_count;
289 int orphans = percpu_counter_read_positive(ocp);
290
291 if (orphans << shift > sysctl_tcp_max_orphans) {
292 orphans = percpu_counter_sum_positive(ocp);
293 if (orphans << shift > sysctl_tcp_max_orphans)
294 return true;
295 }
296 return false;
297 }
298
299 extern bool tcp_check_oom(struct sock *sk, int shift);
300
301 /* syncookies: remember time of last synqueue overflow */
tcp_synq_overflow(struct sock * sk)302 static inline void tcp_synq_overflow(struct sock *sk)
303 {
304 tcp_sk(sk)->rx_opt.ts_recent_stamp = jiffies;
305 }
306
307 /* syncookies: no recent synqueue overflow on this listening socket? */
tcp_synq_no_recent_overflow(const struct sock * sk)308 static inline int tcp_synq_no_recent_overflow(const struct sock *sk)
309 {
310 unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
311 return time_after(jiffies, last_overflow + TCP_TIMEOUT_FALLBACK);
312 }
313
314 extern struct proto tcp_prot;
315
316 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field)
317 #define TCP_INC_STATS_BH(net, field) SNMP_INC_STATS_BH((net)->mib.tcp_statistics, field)
318 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
319 #define TCP_ADD_STATS_USER(net, field, val) SNMP_ADD_STATS_USER((net)->mib.tcp_statistics, field, val)
320 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
321
322 extern void tcp_init_mem(struct net *net);
323
324 extern void tcp_v4_err(struct sk_buff *skb, u32);
325
326 extern void tcp_shutdown (struct sock *sk, int how);
327
328 extern int tcp_v4_rcv(struct sk_buff *skb);
329
330 extern struct inet_peer *tcp_v4_get_peer(struct sock *sk, bool *release_it);
331 extern void *tcp_v4_tw_get_peer(struct sock *sk);
332 extern int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
333 extern int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
334 size_t size);
335 extern int tcp_sendpage(struct sock *sk, struct page *page, int offset,
336 size_t size, int flags);
337 extern int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
338 extern int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
339 const struct tcphdr *th, unsigned int len);
340 extern int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
341 const struct tcphdr *th, unsigned int len);
342 extern void tcp_rcv_space_adjust(struct sock *sk);
343 extern void tcp_cleanup_rbuf(struct sock *sk, int copied);
344 extern int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
345 extern void tcp_twsk_destructor(struct sock *sk);
346 extern ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
347 struct pipe_inode_info *pipe, size_t len,
348 unsigned int flags);
349
tcp_dec_quickack_mode(struct sock * sk,const unsigned int pkts)350 static inline void tcp_dec_quickack_mode(struct sock *sk,
351 const unsigned int pkts)
352 {
353 struct inet_connection_sock *icsk = inet_csk(sk);
354
355 if (icsk->icsk_ack.quick) {
356 if (pkts >= icsk->icsk_ack.quick) {
357 icsk->icsk_ack.quick = 0;
358 /* Leaving quickack mode we deflate ATO. */
359 icsk->icsk_ack.ato = TCP_ATO_MIN;
360 } else
361 icsk->icsk_ack.quick -= pkts;
362 }
363 }
364
365 #define TCP_ECN_OK 1
366 #define TCP_ECN_QUEUE_CWR 2
367 #define TCP_ECN_DEMAND_CWR 4
368 #define TCP_ECN_SEEN 8
369
370 static __inline__ void
TCP_ECN_create_request(struct request_sock * req,struct tcphdr * th)371 TCP_ECN_create_request(struct request_sock *req, struct tcphdr *th)
372 {
373 if (sysctl_tcp_ecn && th->ece && th->cwr)
374 inet_rsk(req)->ecn_ok = 1;
375 }
376
377 enum tcp_tw_status {
378 TCP_TW_SUCCESS = 0,
379 TCP_TW_RST = 1,
380 TCP_TW_ACK = 2,
381 TCP_TW_SYN = 3
382 };
383
384
385 extern enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
386 struct sk_buff *skb,
387 const struct tcphdr *th);
388 extern struct sock * tcp_check_req(struct sock *sk,struct sk_buff *skb,
389 struct request_sock *req,
390 struct request_sock **prev);
391 extern int tcp_child_process(struct sock *parent, struct sock *child,
392 struct sk_buff *skb);
393 extern int tcp_use_frto(struct sock *sk);
394 extern void tcp_enter_frto(struct sock *sk);
395 extern void tcp_enter_loss(struct sock *sk, int how);
396 extern void tcp_clear_retrans(struct tcp_sock *tp);
397 extern void tcp_update_metrics(struct sock *sk);
398 extern void tcp_close(struct sock *sk, long timeout);
399 extern unsigned int tcp_poll(struct file * file, struct socket *sock,
400 struct poll_table_struct *wait);
401 extern int tcp_getsockopt(struct sock *sk, int level, int optname,
402 char __user *optval, int __user *optlen);
403 extern int tcp_setsockopt(struct sock *sk, int level, int optname,
404 char __user *optval, unsigned int optlen);
405 extern int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
406 char __user *optval, int __user *optlen);
407 extern int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
408 char __user *optval, unsigned int optlen);
409 extern void tcp_set_keepalive(struct sock *sk, int val);
410 extern void tcp_syn_ack_timeout(struct sock *sk, struct request_sock *req);
411 extern int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
412 size_t len, int nonblock, int flags, int *addr_len);
413 extern void tcp_parse_options(const struct sk_buff *skb,
414 struct tcp_options_received *opt_rx, const u8 **hvpp,
415 int estab);
416 extern const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
417
418 /*
419 * TCP v4 functions exported for the inet6 API
420 */
421
422 extern void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
423 extern int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
424 extern struct sock * tcp_create_openreq_child(struct sock *sk,
425 struct request_sock *req,
426 struct sk_buff *skb);
427 extern struct sock * tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
428 struct request_sock *req,
429 struct dst_entry *dst);
430 extern int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
431 extern int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr,
432 int addr_len);
433 extern int tcp_connect(struct sock *sk);
434 extern struct sk_buff * tcp_make_synack(struct sock *sk, struct dst_entry *dst,
435 struct request_sock *req,
436 struct request_values *rvp);
437 extern int tcp_disconnect(struct sock *sk, int flags);
438
439
440 /* From syncookies.c */
441 extern __u32 syncookie_secret[2][16-4+SHA_DIGEST_WORDS];
442 extern struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb,
443 struct ip_options *opt);
444 #ifdef CONFIG_SYN_COOKIES
445 extern __u32 cookie_v4_init_sequence(struct sock *sk, struct sk_buff *skb,
446 __u16 *mss);
447 #else
cookie_v4_init_sequence(struct sock * sk,struct sk_buff * skb,__u16 * mss)448 static inline __u32 cookie_v4_init_sequence(struct sock *sk,
449 struct sk_buff *skb,
450 __u16 *mss)
451 {
452 return 0;
453 }
454 #endif
455
456 extern __u32 cookie_init_timestamp(struct request_sock *req);
457 extern bool cookie_check_timestamp(struct tcp_options_received *opt, bool *);
458
459 /* From net/ipv6/syncookies.c */
460 extern struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
461 #ifdef CONFIG_SYN_COOKIES
462 extern __u32 cookie_v6_init_sequence(struct sock *sk, const struct sk_buff *skb,
463 __u16 *mss);
464 #else
cookie_v6_init_sequence(struct sock * sk,struct sk_buff * skb,__u16 * mss)465 static inline __u32 cookie_v6_init_sequence(struct sock *sk,
466 struct sk_buff *skb,
467 __u16 *mss)
468 {
469 return 0;
470 }
471 #endif
472 /* tcp_output.c */
473
474 extern void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
475 int nonagle);
476 extern int tcp_may_send_now(struct sock *sk);
477 extern int tcp_retransmit_skb(struct sock *, struct sk_buff *);
478 extern void tcp_retransmit_timer(struct sock *sk);
479 extern void tcp_xmit_retransmit_queue(struct sock *);
480 extern void tcp_simple_retransmit(struct sock *);
481 extern int tcp_trim_head(struct sock *, struct sk_buff *, u32);
482 extern int tcp_fragment(struct sock *, struct sk_buff *, u32, unsigned int);
483
484 extern void tcp_send_probe0(struct sock *);
485 extern void tcp_send_partial(struct sock *);
486 extern int tcp_write_wakeup(struct sock *);
487 extern void tcp_send_fin(struct sock *sk);
488 extern void tcp_send_active_reset(struct sock *sk, gfp_t priority);
489 extern int tcp_send_synack(struct sock *);
490 extern int tcp_syn_flood_action(struct sock *sk,
491 const struct sk_buff *skb,
492 const char *proto);
493 extern void tcp_push_one(struct sock *, unsigned int mss_now);
494 extern void tcp_send_ack(struct sock *sk);
495 extern void tcp_send_delayed_ack(struct sock *sk);
496
497 /* tcp_input.c */
498 extern void tcp_cwnd_application_limited(struct sock *sk);
499
500 /* tcp_timer.c */
501 extern void tcp_init_xmit_timers(struct sock *);
tcp_clear_xmit_timers(struct sock * sk)502 static inline void tcp_clear_xmit_timers(struct sock *sk)
503 {
504 inet_csk_clear_xmit_timers(sk);
505 }
506
507 extern unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
508 extern unsigned int tcp_current_mss(struct sock *sk);
509
510 /* Bound MSS / TSO packet size with the half of the window */
tcp_bound_to_half_wnd(struct tcp_sock * tp,int pktsize)511 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
512 {
513 int cutoff;
514
515 /* When peer uses tiny windows, there is no use in packetizing
516 * to sub-MSS pieces for the sake of SWS or making sure there
517 * are enough packets in the pipe for fast recovery.
518 *
519 * On the other hand, for extremely large MSS devices, handling
520 * smaller than MSS windows in this way does make sense.
521 */
522 if (tp->max_window >= 512)
523 cutoff = (tp->max_window >> 1);
524 else
525 cutoff = tp->max_window;
526
527 if (cutoff && pktsize > cutoff)
528 return max_t(int, cutoff, 68U - tp->tcp_header_len);
529 else
530 return pktsize;
531 }
532
533 /* tcp.c */
534 extern void tcp_get_info(const struct sock *, struct tcp_info *);
535
536 /* Read 'sendfile()'-style from a TCP socket */
537 typedef int (*sk_read_actor_t)(read_descriptor_t *, struct sk_buff *,
538 unsigned int, size_t);
539 extern int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
540 sk_read_actor_t recv_actor);
541
542 extern void tcp_initialize_rcv_mss(struct sock *sk);
543
544 extern int tcp_mtu_to_mss(const struct sock *sk, int pmtu);
545 extern int tcp_mss_to_mtu(const struct sock *sk, int mss);
546 extern void tcp_mtup_init(struct sock *sk);
547 extern void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt);
548
tcp_bound_rto(const struct sock * sk)549 static inline void tcp_bound_rto(const struct sock *sk)
550 {
551 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
552 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
553 }
554
__tcp_set_rto(const struct tcp_sock * tp)555 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
556 {
557 return (tp->srtt >> 3) + tp->rttvar;
558 }
559
__tcp_fast_path_on(struct tcp_sock * tp,u32 snd_wnd)560 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
561 {
562 tp->pred_flags = htonl((tp->tcp_header_len << 26) |
563 ntohl(TCP_FLAG_ACK) |
564 snd_wnd);
565 }
566
tcp_fast_path_on(struct tcp_sock * tp)567 static inline void tcp_fast_path_on(struct tcp_sock *tp)
568 {
569 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
570 }
571
tcp_fast_path_check(struct sock * sk)572 static inline void tcp_fast_path_check(struct sock *sk)
573 {
574 struct tcp_sock *tp = tcp_sk(sk);
575
576 if (skb_queue_empty(&tp->out_of_order_queue) &&
577 tp->rcv_wnd &&
578 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
579 !tp->urg_data)
580 tcp_fast_path_on(tp);
581 }
582
583 /* Compute the actual rto_min value */
tcp_rto_min(struct sock * sk)584 static inline u32 tcp_rto_min(struct sock *sk)
585 {
586 const struct dst_entry *dst = __sk_dst_get(sk);
587 u32 rto_min = TCP_RTO_MIN;
588
589 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
590 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
591 return rto_min;
592 }
593
594 /* Compute the actual receive window we are currently advertising.
595 * Rcv_nxt can be after the window if our peer push more data
596 * than the offered window.
597 */
tcp_receive_window(const struct tcp_sock * tp)598 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
599 {
600 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
601
602 if (win < 0)
603 win = 0;
604 return (u32) win;
605 }
606
607 /* Choose a new window, without checks for shrinking, and without
608 * scaling applied to the result. The caller does these things
609 * if necessary. This is a "raw" window selection.
610 */
611 extern u32 __tcp_select_window(struct sock *sk);
612
613 /* TCP timestamps are only 32-bits, this causes a slight
614 * complication on 64-bit systems since we store a snapshot
615 * of jiffies in the buffer control blocks below. We decided
616 * to use only the low 32-bits of jiffies and hide the ugly
617 * casts with the following macro.
618 */
619 #define tcp_time_stamp ((__u32)(jiffies))
620
621 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
622
623 #define TCPHDR_FIN 0x01
624 #define TCPHDR_SYN 0x02
625 #define TCPHDR_RST 0x04
626 #define TCPHDR_PSH 0x08
627 #define TCPHDR_ACK 0x10
628 #define TCPHDR_URG 0x20
629 #define TCPHDR_ECE 0x40
630 #define TCPHDR_CWR 0x80
631
632 /* This is what the send packet queuing engine uses to pass
633 * TCP per-packet control information to the transmission code.
634 * We also store the host-order sequence numbers in here too.
635 * This is 44 bytes if IPV6 is enabled.
636 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
637 */
638 struct tcp_skb_cb {
639 union {
640 struct inet_skb_parm h4;
641 #if IS_ENABLED(CONFIG_IPV6)
642 struct inet6_skb_parm h6;
643 #endif
644 } header; /* For incoming frames */
645 __u32 seq; /* Starting sequence number */
646 __u32 end_seq; /* SEQ + FIN + SYN + datalen */
647 __u32 when; /* used to compute rtt's */
648 __u8 tcp_flags; /* TCP header flags. (tcp[13]) */
649 __u8 sacked; /* State flags for SACK/FACK. */
650 #define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */
651 #define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */
652 #define TCPCB_LOST 0x04 /* SKB is lost */
653 #define TCPCB_TAGBITS 0x07 /* All tag bits */
654 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */
655 /* 1 byte hole */
656 #define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */
657 #define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS)
658
659 __u32 ack_seq; /* Sequence number ACK'd */
660 };
661
662 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0]))
663
664 /* Due to TSO, an SKB can be composed of multiple actual
665 * packets. To keep these tracked properly, we use this.
666 */
tcp_skb_pcount(const struct sk_buff * skb)667 static inline int tcp_skb_pcount(const struct sk_buff *skb)
668 {
669 return skb_shinfo(skb)->gso_segs;
670 }
671
672 /* This is valid iff tcp_skb_pcount() > 1. */
tcp_skb_mss(const struct sk_buff * skb)673 static inline int tcp_skb_mss(const struct sk_buff *skb)
674 {
675 return skb_shinfo(skb)->gso_size;
676 }
677
678 /* Events passed to congestion control interface */
679 enum tcp_ca_event {
680 CA_EVENT_TX_START, /* first transmit when no packets in flight */
681 CA_EVENT_CWND_RESTART, /* congestion window restart */
682 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */
683 CA_EVENT_FRTO, /* fast recovery timeout */
684 CA_EVENT_LOSS, /* loss timeout */
685 CA_EVENT_FAST_ACK, /* in sequence ack */
686 CA_EVENT_SLOW_ACK, /* other ack */
687 };
688
689 /*
690 * Interface for adding new TCP congestion control handlers
691 */
692 #define TCP_CA_NAME_MAX 16
693 #define TCP_CA_MAX 128
694 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX)
695
696 #define TCP_CONG_NON_RESTRICTED 0x1
697 #define TCP_CONG_RTT_STAMP 0x2
698
699 struct tcp_congestion_ops {
700 struct list_head list;
701 unsigned long flags;
702
703 /* initialize private data (optional) */
704 void (*init)(struct sock *sk);
705 /* cleanup private data (optional) */
706 void (*release)(struct sock *sk);
707
708 /* return slow start threshold (required) */
709 u32 (*ssthresh)(struct sock *sk);
710 /* lower bound for congestion window (optional) */
711 u32 (*min_cwnd)(const struct sock *sk);
712 /* do new cwnd calculation (required) */
713 void (*cong_avoid)(struct sock *sk, u32 ack, u32 in_flight);
714 /* call before changing ca_state (optional) */
715 void (*set_state)(struct sock *sk, u8 new_state);
716 /* call when cwnd event occurs (optional) */
717 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
718 /* new value of cwnd after loss (optional) */
719 u32 (*undo_cwnd)(struct sock *sk);
720 /* hook for packet ack accounting (optional) */
721 void (*pkts_acked)(struct sock *sk, u32 num_acked, s32 rtt_us);
722 /* get info for inet_diag (optional) */
723 void (*get_info)(struct sock *sk, u32 ext, struct sk_buff *skb);
724
725 char name[TCP_CA_NAME_MAX];
726 struct module *owner;
727 };
728
729 extern int tcp_register_congestion_control(struct tcp_congestion_ops *type);
730 extern void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
731
732 extern void tcp_init_congestion_control(struct sock *sk);
733 extern void tcp_cleanup_congestion_control(struct sock *sk);
734 extern int tcp_set_default_congestion_control(const char *name);
735 extern void tcp_get_default_congestion_control(char *name);
736 extern void tcp_get_available_congestion_control(char *buf, size_t len);
737 extern void tcp_get_allowed_congestion_control(char *buf, size_t len);
738 extern int tcp_set_allowed_congestion_control(char *allowed);
739 extern int tcp_set_congestion_control(struct sock *sk, const char *name);
740 extern void tcp_slow_start(struct tcp_sock *tp);
741 extern void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w);
742
743 extern struct tcp_congestion_ops tcp_init_congestion_ops;
744 extern u32 tcp_reno_ssthresh(struct sock *sk);
745 extern void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 in_flight);
746 extern u32 tcp_reno_min_cwnd(const struct sock *sk);
747 extern struct tcp_congestion_ops tcp_reno;
748
tcp_set_ca_state(struct sock * sk,const u8 ca_state)749 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
750 {
751 struct inet_connection_sock *icsk = inet_csk(sk);
752
753 if (icsk->icsk_ca_ops->set_state)
754 icsk->icsk_ca_ops->set_state(sk, ca_state);
755 icsk->icsk_ca_state = ca_state;
756 }
757
tcp_ca_event(struct sock * sk,const enum tcp_ca_event event)758 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
759 {
760 const struct inet_connection_sock *icsk = inet_csk(sk);
761
762 if (icsk->icsk_ca_ops->cwnd_event)
763 icsk->icsk_ca_ops->cwnd_event(sk, event);
764 }
765
766 /* These functions determine how the current flow behaves in respect of SACK
767 * handling. SACK is negotiated with the peer, and therefore it can vary
768 * between different flows.
769 *
770 * tcp_is_sack - SACK enabled
771 * tcp_is_reno - No SACK
772 * tcp_is_fack - FACK enabled, implies SACK enabled
773 */
tcp_is_sack(const struct tcp_sock * tp)774 static inline int tcp_is_sack(const struct tcp_sock *tp)
775 {
776 return tp->rx_opt.sack_ok;
777 }
778
tcp_is_reno(const struct tcp_sock * tp)779 static inline int tcp_is_reno(const struct tcp_sock *tp)
780 {
781 return !tcp_is_sack(tp);
782 }
783
tcp_is_fack(const struct tcp_sock * tp)784 static inline int tcp_is_fack(const struct tcp_sock *tp)
785 {
786 return tp->rx_opt.sack_ok & TCP_FACK_ENABLED;
787 }
788
tcp_enable_fack(struct tcp_sock * tp)789 static inline void tcp_enable_fack(struct tcp_sock *tp)
790 {
791 tp->rx_opt.sack_ok |= TCP_FACK_ENABLED;
792 }
793
tcp_left_out(const struct tcp_sock * tp)794 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
795 {
796 return tp->sacked_out + tp->lost_out;
797 }
798
799 /* This determines how many packets are "in the network" to the best
800 * of our knowledge. In many cases it is conservative, but where
801 * detailed information is available from the receiver (via SACK
802 * blocks etc.) we can make more aggressive calculations.
803 *
804 * Use this for decisions involving congestion control, use just
805 * tp->packets_out to determine if the send queue is empty or not.
806 *
807 * Read this equation as:
808 *
809 * "Packets sent once on transmission queue" MINUS
810 * "Packets left network, but not honestly ACKed yet" PLUS
811 * "Packets fast retransmitted"
812 */
tcp_packets_in_flight(const struct tcp_sock * tp)813 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
814 {
815 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
816 }
817
818 #define TCP_INFINITE_SSTHRESH 0x7fffffff
819
tcp_in_initial_slowstart(const struct tcp_sock * tp)820 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
821 {
822 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
823 }
824
825 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
826 * The exception is rate halving phase, when cwnd is decreasing towards
827 * ssthresh.
828 */
tcp_current_ssthresh(const struct sock * sk)829 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
830 {
831 const struct tcp_sock *tp = tcp_sk(sk);
832
833 if ((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_CWR | TCPF_CA_Recovery))
834 return tp->snd_ssthresh;
835 else
836 return max(tp->snd_ssthresh,
837 ((tp->snd_cwnd >> 1) +
838 (tp->snd_cwnd >> 2)));
839 }
840
841 /* Use define here intentionally to get WARN_ON location shown at the caller */
842 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out)
843
844 extern void tcp_enter_cwr(struct sock *sk, const int set_ssthresh);
845 extern __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
846
847 /* The maximum number of MSS of available cwnd for which TSO defers
848 * sending if not using sysctl_tcp_tso_win_divisor.
849 */
tcp_max_tso_deferred_mss(const struct tcp_sock * tp)850 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
851 {
852 return 3;
853 }
854
855 /* Slow start with delack produces 3 packets of burst, so that
856 * it is safe "de facto". This will be the default - same as
857 * the default reordering threshold - but if reordering increases,
858 * we must be able to allow cwnd to burst at least this much in order
859 * to not pull it back when holes are filled.
860 */
tcp_max_burst(const struct tcp_sock * tp)861 static __inline__ __u32 tcp_max_burst(const struct tcp_sock *tp)
862 {
863 return tp->reordering;
864 }
865
866 /* Returns end sequence number of the receiver's advertised window */
tcp_wnd_end(const struct tcp_sock * tp)867 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
868 {
869 return tp->snd_una + tp->snd_wnd;
870 }
871 extern int tcp_is_cwnd_limited(const struct sock *sk, u32 in_flight);
872
tcp_minshall_update(struct tcp_sock * tp,unsigned int mss,const struct sk_buff * skb)873 static inline void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss,
874 const struct sk_buff *skb)
875 {
876 if (skb->len < mss)
877 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
878 }
879
tcp_check_probe_timer(struct sock * sk)880 static inline void tcp_check_probe_timer(struct sock *sk)
881 {
882 const struct tcp_sock *tp = tcp_sk(sk);
883 const struct inet_connection_sock *icsk = inet_csk(sk);
884
885 if (!tp->packets_out && !icsk->icsk_pending)
886 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
887 icsk->icsk_rto, TCP_RTO_MAX);
888 }
889
tcp_init_wl(struct tcp_sock * tp,u32 seq)890 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
891 {
892 tp->snd_wl1 = seq;
893 }
894
tcp_update_wl(struct tcp_sock * tp,u32 seq)895 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
896 {
897 tp->snd_wl1 = seq;
898 }
899
900 /*
901 * Calculate(/check) TCP checksum
902 */
tcp_v4_check(int len,__be32 saddr,__be32 daddr,__wsum base)903 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
904 __be32 daddr, __wsum base)
905 {
906 return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
907 }
908
__tcp_checksum_complete(struct sk_buff * skb)909 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
910 {
911 return __skb_checksum_complete(skb);
912 }
913
tcp_checksum_complete(struct sk_buff * skb)914 static inline int tcp_checksum_complete(struct sk_buff *skb)
915 {
916 return !skb_csum_unnecessary(skb) &&
917 __tcp_checksum_complete(skb);
918 }
919
920 /* Prequeue for VJ style copy to user, combined with checksumming. */
921
tcp_prequeue_init(struct tcp_sock * tp)922 static inline void tcp_prequeue_init(struct tcp_sock *tp)
923 {
924 tp->ucopy.task = NULL;
925 tp->ucopy.len = 0;
926 tp->ucopy.memory = 0;
927 skb_queue_head_init(&tp->ucopy.prequeue);
928 #ifdef CONFIG_NET_DMA
929 tp->ucopy.dma_chan = NULL;
930 tp->ucopy.wakeup = 0;
931 tp->ucopy.pinned_list = NULL;
932 tp->ucopy.dma_cookie = 0;
933 #endif
934 }
935
936 /* Packet is added to VJ-style prequeue for processing in process
937 * context, if a reader task is waiting. Apparently, this exciting
938 * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
939 * failed somewhere. Latency? Burstiness? Well, at least now we will
940 * see, why it failed. 8)8) --ANK
941 *
942 * NOTE: is this not too big to inline?
943 */
tcp_prequeue(struct sock * sk,struct sk_buff * skb)944 static inline int tcp_prequeue(struct sock *sk, struct sk_buff *skb)
945 {
946 struct tcp_sock *tp = tcp_sk(sk);
947
948 if (sysctl_tcp_low_latency || !tp->ucopy.task)
949 return 0;
950
951 skb_dst_force(skb);
952 __skb_queue_tail(&tp->ucopy.prequeue, skb);
953 tp->ucopy.memory += skb->truesize;
954 if (tp->ucopy.memory > sk->sk_rcvbuf) {
955 struct sk_buff *skb1;
956
957 BUG_ON(sock_owned_by_user(sk));
958
959 while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) {
960 sk_backlog_rcv(sk, skb1);
961 NET_INC_STATS_BH(sock_net(sk),
962 LINUX_MIB_TCPPREQUEUEDROPPED);
963 }
964
965 tp->ucopy.memory = 0;
966 } else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
967 wake_up_interruptible_sync_poll(sk_sleep(sk),
968 POLLIN | POLLRDNORM | POLLRDBAND);
969 if (!inet_csk_ack_scheduled(sk))
970 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
971 (3 * tcp_rto_min(sk)) / 4,
972 TCP_RTO_MAX);
973 }
974 return 1;
975 }
976
977
978 #undef STATE_TRACE
979
980 #ifdef STATE_TRACE
981 static const char *statename[]={
982 "Unused","Established","Syn Sent","Syn Recv",
983 "Fin Wait 1","Fin Wait 2","Time Wait", "Close",
984 "Close Wait","Last ACK","Listen","Closing"
985 };
986 #endif
987 extern void tcp_set_state(struct sock *sk, int state);
988
989 extern void tcp_done(struct sock *sk);
990
tcp_sack_reset(struct tcp_options_received * rx_opt)991 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
992 {
993 rx_opt->dsack = 0;
994 rx_opt->num_sacks = 0;
995 }
996
997 /* Determine a window scaling and initial window to offer. */
998 extern void tcp_select_initial_window(int __space, __u32 mss,
999 __u32 *rcv_wnd, __u32 *window_clamp,
1000 int wscale_ok, __u8 *rcv_wscale,
1001 __u32 init_rcv_wnd);
1002
tcp_win_from_space(int space)1003 static inline int tcp_win_from_space(int space)
1004 {
1005 return sysctl_tcp_adv_win_scale<=0 ?
1006 (space>>(-sysctl_tcp_adv_win_scale)) :
1007 space - (space>>sysctl_tcp_adv_win_scale);
1008 }
1009
1010 /* Note: caller must be prepared to deal with negative returns */
tcp_space(const struct sock * sk)1011 static inline int tcp_space(const struct sock *sk)
1012 {
1013 return tcp_win_from_space(sk->sk_rcvbuf -
1014 atomic_read(&sk->sk_rmem_alloc));
1015 }
1016
tcp_full_space(const struct sock * sk)1017 static inline int tcp_full_space(const struct sock *sk)
1018 {
1019 return tcp_win_from_space(sk->sk_rcvbuf);
1020 }
1021
tcp_openreq_init(struct request_sock * req,struct tcp_options_received * rx_opt,struct sk_buff * skb)1022 static inline void tcp_openreq_init(struct request_sock *req,
1023 struct tcp_options_received *rx_opt,
1024 struct sk_buff *skb)
1025 {
1026 struct inet_request_sock *ireq = inet_rsk(req);
1027
1028 req->rcv_wnd = 0; /* So that tcp_send_synack() knows! */
1029 req->cookie_ts = 0;
1030 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
1031 req->mss = rx_opt->mss_clamp;
1032 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
1033 ireq->tstamp_ok = rx_opt->tstamp_ok;
1034 ireq->sack_ok = rx_opt->sack_ok;
1035 ireq->snd_wscale = rx_opt->snd_wscale;
1036 ireq->wscale_ok = rx_opt->wscale_ok;
1037 ireq->acked = 0;
1038 ireq->ecn_ok = 0;
1039 ireq->rmt_port = tcp_hdr(skb)->source;
1040 ireq->loc_port = tcp_hdr(skb)->dest;
1041 }
1042
1043 extern void tcp_enter_memory_pressure(struct sock *sk);
1044
keepalive_intvl_when(const struct tcp_sock * tp)1045 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1046 {
1047 return tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl;
1048 }
1049
keepalive_time_when(const struct tcp_sock * tp)1050 static inline int keepalive_time_when(const struct tcp_sock *tp)
1051 {
1052 return tp->keepalive_time ? : sysctl_tcp_keepalive_time;
1053 }
1054
keepalive_probes(const struct tcp_sock * tp)1055 static inline int keepalive_probes(const struct tcp_sock *tp)
1056 {
1057 return tp->keepalive_probes ? : sysctl_tcp_keepalive_probes;
1058 }
1059
keepalive_time_elapsed(const struct tcp_sock * tp)1060 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1061 {
1062 const struct inet_connection_sock *icsk = &tp->inet_conn;
1063
1064 return min_t(u32, tcp_time_stamp - icsk->icsk_ack.lrcvtime,
1065 tcp_time_stamp - tp->rcv_tstamp);
1066 }
1067
tcp_fin_time(const struct sock * sk)1068 static inline int tcp_fin_time(const struct sock *sk)
1069 {
1070 int fin_timeout = tcp_sk(sk)->linger2 ? : sysctl_tcp_fin_timeout;
1071 const int rto = inet_csk(sk)->icsk_rto;
1072
1073 if (fin_timeout < (rto << 2) - (rto >> 1))
1074 fin_timeout = (rto << 2) - (rto >> 1);
1075
1076 return fin_timeout;
1077 }
1078
tcp_paws_check(const struct tcp_options_received * rx_opt,int paws_win)1079 static inline int tcp_paws_check(const struct tcp_options_received *rx_opt,
1080 int paws_win)
1081 {
1082 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1083 return 1;
1084 if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1085 return 1;
1086 /*
1087 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1088 * then following tcp messages have valid values. Ignore 0 value,
1089 * or else 'negative' tsval might forbid us to accept their packets.
1090 */
1091 if (!rx_opt->ts_recent)
1092 return 1;
1093 return 0;
1094 }
1095
tcp_paws_reject(const struct tcp_options_received * rx_opt,int rst)1096 static inline int tcp_paws_reject(const struct tcp_options_received *rx_opt,
1097 int rst)
1098 {
1099 if (tcp_paws_check(rx_opt, 0))
1100 return 0;
1101
1102 /* RST segments are not recommended to carry timestamp,
1103 and, if they do, it is recommended to ignore PAWS because
1104 "their cleanup function should take precedence over timestamps."
1105 Certainly, it is mistake. It is necessary to understand the reasons
1106 of this constraint to relax it: if peer reboots, clock may go
1107 out-of-sync and half-open connections will not be reset.
1108 Actually, the problem would be not existing if all
1109 the implementations followed draft about maintaining clock
1110 via reboots. Linux-2.2 DOES NOT!
1111
1112 However, we can relax time bounds for RST segments to MSL.
1113 */
1114 if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1115 return 0;
1116 return 1;
1117 }
1118
tcp_mib_init(struct net * net)1119 static inline void tcp_mib_init(struct net *net)
1120 {
1121 /* See RFC 2012 */
1122 TCP_ADD_STATS_USER(net, TCP_MIB_RTOALGORITHM, 1);
1123 TCP_ADD_STATS_USER(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1124 TCP_ADD_STATS_USER(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1125 TCP_ADD_STATS_USER(net, TCP_MIB_MAXCONN, -1);
1126 }
1127
1128 /* from STCP */
tcp_clear_retrans_hints_partial(struct tcp_sock * tp)1129 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1130 {
1131 tp->lost_skb_hint = NULL;
1132 tp->scoreboard_skb_hint = NULL;
1133 }
1134
tcp_clear_all_retrans_hints(struct tcp_sock * tp)1135 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1136 {
1137 tcp_clear_retrans_hints_partial(tp);
1138 tp->retransmit_skb_hint = NULL;
1139 }
1140
1141 /* MD5 Signature */
1142 struct crypto_hash;
1143
1144 union tcp_md5_addr {
1145 struct in_addr a4;
1146 #if IS_ENABLED(CONFIG_IPV6)
1147 struct in6_addr a6;
1148 #endif
1149 };
1150
1151 /* - key database */
1152 struct tcp_md5sig_key {
1153 struct hlist_node node;
1154 u8 keylen;
1155 u8 family; /* AF_INET or AF_INET6 */
1156 union tcp_md5_addr addr;
1157 u8 key[TCP_MD5SIG_MAXKEYLEN];
1158 struct rcu_head rcu;
1159 };
1160
1161 /* - sock block */
1162 struct tcp_md5sig_info {
1163 struct hlist_head head;
1164 struct rcu_head rcu;
1165 };
1166
1167 /* - pseudo header */
1168 struct tcp4_pseudohdr {
1169 __be32 saddr;
1170 __be32 daddr;
1171 __u8 pad;
1172 __u8 protocol;
1173 __be16 len;
1174 };
1175
1176 struct tcp6_pseudohdr {
1177 struct in6_addr saddr;
1178 struct in6_addr daddr;
1179 __be32 len;
1180 __be32 protocol; /* including padding */
1181 };
1182
1183 union tcp_md5sum_block {
1184 struct tcp4_pseudohdr ip4;
1185 #if IS_ENABLED(CONFIG_IPV6)
1186 struct tcp6_pseudohdr ip6;
1187 #endif
1188 };
1189
1190 /* - pool: digest algorithm, hash description and scratch buffer */
1191 struct tcp_md5sig_pool {
1192 struct hash_desc md5_desc;
1193 union tcp_md5sum_block md5_blk;
1194 };
1195
1196 /* - functions */
1197 extern int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1198 const struct sock *sk,
1199 const struct request_sock *req,
1200 const struct sk_buff *skb);
1201 extern int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1202 int family, const u8 *newkey,
1203 u8 newkeylen, gfp_t gfp);
1204 extern int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1205 int family);
1206 extern struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
1207 struct sock *addr_sk);
1208
1209 #ifdef CONFIG_TCP_MD5SIG
1210 extern struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
1211 const union tcp_md5_addr *addr, int family);
1212 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key)
1213 #else
tcp_md5_do_lookup(struct sock * sk,const union tcp_md5_addr * addr,int family)1214 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
1215 const union tcp_md5_addr *addr,
1216 int family)
1217 {
1218 return NULL;
1219 }
1220 #define tcp_twsk_md5_key(twsk) NULL
1221 #endif
1222
1223 extern struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *);
1224 extern void tcp_free_md5sig_pool(void);
1225
1226 extern struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1227 extern void tcp_put_md5sig_pool(void);
1228
1229 extern int tcp_md5_hash_header(struct tcp_md5sig_pool *, const struct tcphdr *);
1230 extern int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1231 unsigned header_len);
1232 extern int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1233 const struct tcp_md5sig_key *key);
1234
1235 /* write queue abstraction */
tcp_write_queue_purge(struct sock * sk)1236 static inline void tcp_write_queue_purge(struct sock *sk)
1237 {
1238 struct sk_buff *skb;
1239
1240 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
1241 sk_wmem_free_skb(sk, skb);
1242 sk_mem_reclaim(sk);
1243 tcp_clear_all_retrans_hints(tcp_sk(sk));
1244 }
1245
tcp_write_queue_head(const struct sock * sk)1246 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1247 {
1248 return skb_peek(&sk->sk_write_queue);
1249 }
1250
tcp_write_queue_tail(const struct sock * sk)1251 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1252 {
1253 return skb_peek_tail(&sk->sk_write_queue);
1254 }
1255
tcp_write_queue_next(const struct sock * sk,const struct sk_buff * skb)1256 static inline struct sk_buff *tcp_write_queue_next(const struct sock *sk,
1257 const struct sk_buff *skb)
1258 {
1259 return skb_queue_next(&sk->sk_write_queue, skb);
1260 }
1261
tcp_write_queue_prev(const struct sock * sk,const struct sk_buff * skb)1262 static inline struct sk_buff *tcp_write_queue_prev(const struct sock *sk,
1263 const struct sk_buff *skb)
1264 {
1265 return skb_queue_prev(&sk->sk_write_queue, skb);
1266 }
1267
1268 #define tcp_for_write_queue(skb, sk) \
1269 skb_queue_walk(&(sk)->sk_write_queue, skb)
1270
1271 #define tcp_for_write_queue_from(skb, sk) \
1272 skb_queue_walk_from(&(sk)->sk_write_queue, skb)
1273
1274 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \
1275 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1276
tcp_send_head(const struct sock * sk)1277 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1278 {
1279 return sk->sk_send_head;
1280 }
1281
tcp_skb_is_last(const struct sock * sk,const struct sk_buff * skb)1282 static inline bool tcp_skb_is_last(const struct sock *sk,
1283 const struct sk_buff *skb)
1284 {
1285 return skb_queue_is_last(&sk->sk_write_queue, skb);
1286 }
1287
tcp_advance_send_head(struct sock * sk,const struct sk_buff * skb)1288 static inline void tcp_advance_send_head(struct sock *sk, const struct sk_buff *skb)
1289 {
1290 if (tcp_skb_is_last(sk, skb))
1291 sk->sk_send_head = NULL;
1292 else
1293 sk->sk_send_head = tcp_write_queue_next(sk, skb);
1294 }
1295
tcp_check_send_head(struct sock * sk,struct sk_buff * skb_unlinked)1296 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1297 {
1298 if (sk->sk_send_head == skb_unlinked)
1299 sk->sk_send_head = NULL;
1300 }
1301
tcp_init_send_head(struct sock * sk)1302 static inline void tcp_init_send_head(struct sock *sk)
1303 {
1304 sk->sk_send_head = NULL;
1305 }
1306
__tcp_add_write_queue_tail(struct sock * sk,struct sk_buff * skb)1307 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1308 {
1309 __skb_queue_tail(&sk->sk_write_queue, skb);
1310 }
1311
tcp_add_write_queue_tail(struct sock * sk,struct sk_buff * skb)1312 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1313 {
1314 __tcp_add_write_queue_tail(sk, skb);
1315
1316 /* Queue it, remembering where we must start sending. */
1317 if (sk->sk_send_head == NULL) {
1318 sk->sk_send_head = skb;
1319
1320 if (tcp_sk(sk)->highest_sack == NULL)
1321 tcp_sk(sk)->highest_sack = skb;
1322 }
1323 }
1324
__tcp_add_write_queue_head(struct sock * sk,struct sk_buff * skb)1325 static inline void __tcp_add_write_queue_head(struct sock *sk, struct sk_buff *skb)
1326 {
1327 __skb_queue_head(&sk->sk_write_queue, skb);
1328 }
1329
1330 /* Insert buff after skb on the write queue of sk. */
tcp_insert_write_queue_after(struct sk_buff * skb,struct sk_buff * buff,struct sock * sk)1331 static inline void tcp_insert_write_queue_after(struct sk_buff *skb,
1332 struct sk_buff *buff,
1333 struct sock *sk)
1334 {
1335 __skb_queue_after(&sk->sk_write_queue, skb, buff);
1336 }
1337
1338 /* Insert new before skb on the write queue of sk. */
tcp_insert_write_queue_before(struct sk_buff * new,struct sk_buff * skb,struct sock * sk)1339 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1340 struct sk_buff *skb,
1341 struct sock *sk)
1342 {
1343 __skb_queue_before(&sk->sk_write_queue, skb, new);
1344
1345 if (sk->sk_send_head == skb)
1346 sk->sk_send_head = new;
1347 }
1348
tcp_unlink_write_queue(struct sk_buff * skb,struct sock * sk)1349 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1350 {
1351 __skb_unlink(skb, &sk->sk_write_queue);
1352 }
1353
tcp_write_queue_empty(struct sock * sk)1354 static inline int tcp_write_queue_empty(struct sock *sk)
1355 {
1356 return skb_queue_empty(&sk->sk_write_queue);
1357 }
1358
tcp_push_pending_frames(struct sock * sk)1359 static inline void tcp_push_pending_frames(struct sock *sk)
1360 {
1361 if (tcp_send_head(sk)) {
1362 struct tcp_sock *tp = tcp_sk(sk);
1363
1364 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1365 }
1366 }
1367
1368 /* Start sequence of the skb just after the highest skb with SACKed
1369 * bit, valid only if sacked_out > 0 or when the caller has ensured
1370 * validity by itself.
1371 */
tcp_highest_sack_seq(struct tcp_sock * tp)1372 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1373 {
1374 if (!tp->sacked_out)
1375 return tp->snd_una;
1376
1377 if (tp->highest_sack == NULL)
1378 return tp->snd_nxt;
1379
1380 return TCP_SKB_CB(tp->highest_sack)->seq;
1381 }
1382
tcp_advance_highest_sack(struct sock * sk,struct sk_buff * skb)1383 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1384 {
1385 tcp_sk(sk)->highest_sack = tcp_skb_is_last(sk, skb) ? NULL :
1386 tcp_write_queue_next(sk, skb);
1387 }
1388
tcp_highest_sack(struct sock * sk)1389 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1390 {
1391 return tcp_sk(sk)->highest_sack;
1392 }
1393
tcp_highest_sack_reset(struct sock * sk)1394 static inline void tcp_highest_sack_reset(struct sock *sk)
1395 {
1396 tcp_sk(sk)->highest_sack = tcp_write_queue_head(sk);
1397 }
1398
1399 /* Called when old skb is about to be deleted (to be combined with new skb) */
tcp_highest_sack_combine(struct sock * sk,struct sk_buff * old,struct sk_buff * new)1400 static inline void tcp_highest_sack_combine(struct sock *sk,
1401 struct sk_buff *old,
1402 struct sk_buff *new)
1403 {
1404 if (tcp_sk(sk)->sacked_out && (old == tcp_sk(sk)->highest_sack))
1405 tcp_sk(sk)->highest_sack = new;
1406 }
1407
1408 /* Determines whether this is a thin stream (which may suffer from
1409 * increased latency). Used to trigger latency-reducing mechanisms.
1410 */
tcp_stream_is_thin(struct tcp_sock * tp)1411 static inline unsigned int tcp_stream_is_thin(struct tcp_sock *tp)
1412 {
1413 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1414 }
1415
1416 /* /proc */
1417 enum tcp_seq_states {
1418 TCP_SEQ_STATE_LISTENING,
1419 TCP_SEQ_STATE_OPENREQ,
1420 TCP_SEQ_STATE_ESTABLISHED,
1421 TCP_SEQ_STATE_TIME_WAIT,
1422 };
1423
1424 int tcp_seq_open(struct inode *inode, struct file *file);
1425
1426 struct tcp_seq_afinfo {
1427 char *name;
1428 sa_family_t family;
1429 const struct file_operations *seq_fops;
1430 struct seq_operations seq_ops;
1431 };
1432
1433 struct tcp_iter_state {
1434 struct seq_net_private p;
1435 sa_family_t family;
1436 enum tcp_seq_states state;
1437 struct sock *syn_wait_sk;
1438 int bucket, offset, sbucket, num, uid;
1439 loff_t last_pos;
1440 };
1441
1442 extern int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1443 extern void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1444
1445 extern struct request_sock_ops tcp_request_sock_ops;
1446 extern struct request_sock_ops tcp6_request_sock_ops;
1447
1448 extern void tcp_v4_destroy_sock(struct sock *sk);
1449
1450 extern int tcp_v4_gso_send_check(struct sk_buff *skb);
1451 extern struct sk_buff *tcp_tso_segment(struct sk_buff *skb,
1452 netdev_features_t features);
1453 extern struct sk_buff **tcp_gro_receive(struct sk_buff **head,
1454 struct sk_buff *skb);
1455 extern struct sk_buff **tcp4_gro_receive(struct sk_buff **head,
1456 struct sk_buff *skb);
1457 extern int tcp_gro_complete(struct sk_buff *skb);
1458 extern int tcp4_gro_complete(struct sk_buff *skb);
1459
1460 #ifdef CONFIG_PROC_FS
1461 extern int tcp4_proc_init(void);
1462 extern void tcp4_proc_exit(void);
1463 #endif
1464
1465 /* TCP af-specific functions */
1466 struct tcp_sock_af_ops {
1467 #ifdef CONFIG_TCP_MD5SIG
1468 struct tcp_md5sig_key *(*md5_lookup) (struct sock *sk,
1469 struct sock *addr_sk);
1470 int (*calc_md5_hash) (char *location,
1471 struct tcp_md5sig_key *md5,
1472 const struct sock *sk,
1473 const struct request_sock *req,
1474 const struct sk_buff *skb);
1475 int (*md5_parse) (struct sock *sk,
1476 char __user *optval,
1477 int optlen);
1478 #endif
1479 };
1480
1481 struct tcp_request_sock_ops {
1482 #ifdef CONFIG_TCP_MD5SIG
1483 struct tcp_md5sig_key *(*md5_lookup) (struct sock *sk,
1484 struct request_sock *req);
1485 int (*calc_md5_hash) (char *location,
1486 struct tcp_md5sig_key *md5,
1487 const struct sock *sk,
1488 const struct request_sock *req,
1489 const struct sk_buff *skb);
1490 #endif
1491 };
1492
1493 /* Using SHA1 for now, define some constants.
1494 */
1495 #define COOKIE_DIGEST_WORDS (SHA_DIGEST_WORDS)
1496 #define COOKIE_MESSAGE_WORDS (SHA_MESSAGE_BYTES / 4)
1497 #define COOKIE_WORKSPACE_WORDS (COOKIE_DIGEST_WORDS + COOKIE_MESSAGE_WORDS)
1498
1499 extern int tcp_cookie_generator(u32 *bakery);
1500
1501 /**
1502 * struct tcp_cookie_values - each socket needs extra space for the
1503 * cookies, together with (optional) space for any SYN data.
1504 *
1505 * A tcp_sock contains a pointer to the current value, and this is
1506 * cloned to the tcp_timewait_sock.
1507 *
1508 * @cookie_pair: variable data from the option exchange.
1509 *
1510 * @cookie_desired: user specified tcpct_cookie_desired. Zero
1511 * indicates default (sysctl_tcp_cookie_size).
1512 * After cookie sent, remembers size of cookie.
1513 * Range 0, TCP_COOKIE_MIN to TCP_COOKIE_MAX.
1514 *
1515 * @s_data_desired: user specified tcpct_s_data_desired. When the
1516 * constant payload is specified (@s_data_constant),
1517 * holds its length instead.
1518 * Range 0 to TCP_MSS_DESIRED.
1519 *
1520 * @s_data_payload: constant data that is to be included in the
1521 * payload of SYN or SYNACK segments when the
1522 * cookie option is present.
1523 */
1524 struct tcp_cookie_values {
1525 struct kref kref;
1526 u8 cookie_pair[TCP_COOKIE_PAIR_SIZE];
1527 u8 cookie_pair_size;
1528 u8 cookie_desired;
1529 u16 s_data_desired:11,
1530 s_data_constant:1,
1531 s_data_in:1,
1532 s_data_out:1,
1533 s_data_unused:2;
1534 u8 s_data_payload[0];
1535 };
1536
tcp_cookie_values_release(struct kref * kref)1537 static inline void tcp_cookie_values_release(struct kref *kref)
1538 {
1539 kfree(container_of(kref, struct tcp_cookie_values, kref));
1540 }
1541
1542 /* The length of constant payload data. Note that s_data_desired is
1543 * overloaded, depending on s_data_constant: either the length of constant
1544 * data (returned here) or the limit on variable data.
1545 */
tcp_s_data_size(const struct tcp_sock * tp)1546 static inline int tcp_s_data_size(const struct tcp_sock *tp)
1547 {
1548 return (tp->cookie_values != NULL && tp->cookie_values->s_data_constant)
1549 ? tp->cookie_values->s_data_desired
1550 : 0;
1551 }
1552
1553 /**
1554 * struct tcp_extend_values - tcp_ipv?.c to tcp_output.c workspace.
1555 *
1556 * As tcp_request_sock has already been extended in other places, the
1557 * only remaining method is to pass stack values along as function
1558 * parameters. These parameters are not needed after sending SYNACK.
1559 *
1560 * @cookie_bakery: cryptographic secret and message workspace.
1561 *
1562 * @cookie_plus: bytes in authenticator/cookie option, copied from
1563 * struct tcp_options_received (above).
1564 */
1565 struct tcp_extend_values {
1566 struct request_values rv;
1567 u32 cookie_bakery[COOKIE_WORKSPACE_WORDS];
1568 u8 cookie_plus:6,
1569 cookie_out_never:1,
1570 cookie_in_always:1;
1571 };
1572
tcp_xv(struct request_values * rvp)1573 static inline struct tcp_extend_values *tcp_xv(struct request_values *rvp)
1574 {
1575 return (struct tcp_extend_values *)rvp;
1576 }
1577
1578 extern void tcp_v4_init(void);
1579 extern void tcp_init(void);
1580
1581 #endif /* _TCP_H */
1582