1 #ifndef _ASM_POWERPC_MMU_HASH64_H_
2 #define _ASM_POWERPC_MMU_HASH64_H_
3 /*
4  * PowerPC64 memory management structures
5  *
6  * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
7  *   PPC64 rework.
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * as published by the Free Software Foundation; either version
12  * 2 of the License, or (at your option) any later version.
13  */
14 
15 #include <asm/asm-compat.h>
16 #include <asm/page.h>
17 
18 /*
19  * Segment table
20  */
21 
22 #define STE_ESID_V	0x80
23 #define STE_ESID_KS	0x20
24 #define STE_ESID_KP	0x10
25 #define STE_ESID_N	0x08
26 
27 #define STE_VSID_SHIFT	12
28 
29 /* Location of cpu0's segment table */
30 #define STAB0_PAGE	0x8
31 #define STAB0_OFFSET	(STAB0_PAGE << 12)
32 #define STAB0_PHYS_ADDR	(STAB0_OFFSET + PHYSICAL_START)
33 
34 #ifndef __ASSEMBLY__
35 extern char initial_stab[];
36 #endif /* ! __ASSEMBLY */
37 
38 /*
39  * SLB
40  */
41 
42 #define SLB_NUM_BOLTED		3
43 #define SLB_CACHE_ENTRIES	8
44 #define SLB_MIN_SIZE		32
45 
46 /* Bits in the SLB ESID word */
47 #define SLB_ESID_V		ASM_CONST(0x0000000008000000) /* valid */
48 
49 /* Bits in the SLB VSID word */
50 #define SLB_VSID_SHIFT		12
51 #define SLB_VSID_SHIFT_1T	24
52 #define SLB_VSID_SSIZE_SHIFT	62
53 #define SLB_VSID_B		ASM_CONST(0xc000000000000000)
54 #define SLB_VSID_B_256M		ASM_CONST(0x0000000000000000)
55 #define SLB_VSID_B_1T		ASM_CONST(0x4000000000000000)
56 #define SLB_VSID_KS		ASM_CONST(0x0000000000000800)
57 #define SLB_VSID_KP		ASM_CONST(0x0000000000000400)
58 #define SLB_VSID_N		ASM_CONST(0x0000000000000200) /* no-execute */
59 #define SLB_VSID_L		ASM_CONST(0x0000000000000100)
60 #define SLB_VSID_C		ASM_CONST(0x0000000000000080) /* class */
61 #define SLB_VSID_LP		ASM_CONST(0x0000000000000030)
62 #define SLB_VSID_LP_00		ASM_CONST(0x0000000000000000)
63 #define SLB_VSID_LP_01		ASM_CONST(0x0000000000000010)
64 #define SLB_VSID_LP_10		ASM_CONST(0x0000000000000020)
65 #define SLB_VSID_LP_11		ASM_CONST(0x0000000000000030)
66 #define SLB_VSID_LLP		(SLB_VSID_L|SLB_VSID_LP)
67 
68 #define SLB_VSID_KERNEL		(SLB_VSID_KP)
69 #define SLB_VSID_USER		(SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
70 
71 #define SLBIE_C			(0x08000000)
72 #define SLBIE_SSIZE_SHIFT	25
73 
74 /*
75  * Hash table
76  */
77 
78 #define HPTES_PER_GROUP 8
79 
80 #define HPTE_V_SSIZE_SHIFT	62
81 #define HPTE_V_AVPN_SHIFT	7
82 #define HPTE_V_AVPN		ASM_CONST(0x3fffffffffffff80)
83 #define HPTE_V_AVPN_VAL(x)	(((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
84 #define HPTE_V_COMPARE(x,y)	(!(((x) ^ (y)) & 0xffffffffffffff80UL))
85 #define HPTE_V_BOLTED		ASM_CONST(0x0000000000000010)
86 #define HPTE_V_LOCK		ASM_CONST(0x0000000000000008)
87 #define HPTE_V_LARGE		ASM_CONST(0x0000000000000004)
88 #define HPTE_V_SECONDARY	ASM_CONST(0x0000000000000002)
89 #define HPTE_V_VALID		ASM_CONST(0x0000000000000001)
90 
91 #define HPTE_R_PP0		ASM_CONST(0x8000000000000000)
92 #define HPTE_R_TS		ASM_CONST(0x4000000000000000)
93 #define HPTE_R_KEY_HI		ASM_CONST(0x3000000000000000)
94 #define HPTE_R_RPN_SHIFT	12
95 #define HPTE_R_RPN		ASM_CONST(0x0ffffffffffff000)
96 #define HPTE_R_PP		ASM_CONST(0x0000000000000003)
97 #define HPTE_R_N		ASM_CONST(0x0000000000000004)
98 #define HPTE_R_G		ASM_CONST(0x0000000000000008)
99 #define HPTE_R_M		ASM_CONST(0x0000000000000010)
100 #define HPTE_R_I		ASM_CONST(0x0000000000000020)
101 #define HPTE_R_W		ASM_CONST(0x0000000000000040)
102 #define HPTE_R_WIMG		ASM_CONST(0x0000000000000078)
103 #define HPTE_R_C		ASM_CONST(0x0000000000000080)
104 #define HPTE_R_R		ASM_CONST(0x0000000000000100)
105 #define HPTE_R_KEY_LO		ASM_CONST(0x0000000000000e00)
106 
107 #define HPTE_V_1TB_SEG		ASM_CONST(0x4000000000000000)
108 #define HPTE_V_VRMA_MASK	ASM_CONST(0x4001ffffff000000)
109 
110 /* Values for PP (assumes Ks=0, Kp=1) */
111 #define PP_RWXX	0	/* Supervisor read/write, User none */
112 #define PP_RWRX 1	/* Supervisor read/write, User read */
113 #define PP_RWRW 2	/* Supervisor read/write, User read/write */
114 #define PP_RXRX 3	/* Supervisor read,       User read */
115 #define PP_RXXX	(HPTE_R_PP0 | 2)	/* Supervisor read, user none */
116 
117 #ifndef __ASSEMBLY__
118 
119 struct hash_pte {
120 	unsigned long v;
121 	unsigned long r;
122 };
123 
124 extern struct hash_pte *htab_address;
125 extern unsigned long htab_size_bytes;
126 extern unsigned long htab_hash_mask;
127 
128 /*
129  * Page size definition
130  *
131  *    shift : is the "PAGE_SHIFT" value for that page size
132  *    sllp  : is a bit mask with the value of SLB L || LP to be or'ed
133  *            directly to a slbmte "vsid" value
134  *    penc  : is the HPTE encoding mask for the "LP" field:
135  *
136  */
137 struct mmu_psize_def
138 {
139 	unsigned int	shift;	/* number of bits */
140 	unsigned int	penc;	/* HPTE encoding */
141 	unsigned int	tlbiel;	/* tlbiel supported for that page size */
142 	unsigned long	avpnm;	/* bits to mask out in AVPN in the HPTE */
143 	unsigned long	sllp;	/* SLB L||LP (exact mask to use in slbmte) */
144 };
145 
146 #endif /* __ASSEMBLY__ */
147 
148 /*
149  * Segment sizes.
150  * These are the values used by hardware in the B field of
151  * SLB entries and the first dword of MMU hashtable entries.
152  * The B field is 2 bits; the values 2 and 3 are unused and reserved.
153  */
154 #define MMU_SEGSIZE_256M	0
155 #define MMU_SEGSIZE_1T		1
156 
157 
158 #ifndef __ASSEMBLY__
159 
160 /*
161  * The current system page and segment sizes
162  */
163 extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
164 extern int mmu_linear_psize;
165 extern int mmu_virtual_psize;
166 extern int mmu_vmalloc_psize;
167 extern int mmu_vmemmap_psize;
168 extern int mmu_io_psize;
169 extern int mmu_kernel_ssize;
170 extern int mmu_highuser_ssize;
171 extern u16 mmu_slb_size;
172 extern unsigned long tce_alloc_start, tce_alloc_end;
173 
174 /*
175  * If the processor supports 64k normal pages but not 64k cache
176  * inhibited pages, we have to be prepared to switch processes
177  * to use 4k pages when they create cache-inhibited mappings.
178  * If this is the case, mmu_ci_restrictions will be set to 1.
179  */
180 extern int mmu_ci_restrictions;
181 
182 /*
183  * This function sets the AVPN and L fields of the HPTE  appropriately
184  * for the page size
185  */
hpte_encode_v(unsigned long va,int psize,int ssize)186 static inline unsigned long hpte_encode_v(unsigned long va, int psize,
187 					  int ssize)
188 {
189 	unsigned long v;
190 	v = (va >> 23) & ~(mmu_psize_defs[psize].avpnm);
191 	v <<= HPTE_V_AVPN_SHIFT;
192 	if (psize != MMU_PAGE_4K)
193 		v |= HPTE_V_LARGE;
194 	v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
195 	return v;
196 }
197 
198 /*
199  * This function sets the ARPN, and LP fields of the HPTE appropriately
200  * for the page size. We assume the pa is already "clean" that is properly
201  * aligned for the requested page size
202  */
hpte_encode_r(unsigned long pa,int psize)203 static inline unsigned long hpte_encode_r(unsigned long pa, int psize)
204 {
205 	unsigned long r;
206 
207 	/* A 4K page needs no special encoding */
208 	if (psize == MMU_PAGE_4K)
209 		return pa & HPTE_R_RPN;
210 	else {
211 		unsigned int penc = mmu_psize_defs[psize].penc;
212 		unsigned int shift = mmu_psize_defs[psize].shift;
213 		return (pa & ~((1ul << shift) - 1)) | (penc << 12);
214 	}
215 	return r;
216 }
217 
218 /*
219  * Build a VA given VSID, EA and segment size
220  */
hpt_va(unsigned long ea,unsigned long vsid,int ssize)221 static inline unsigned long hpt_va(unsigned long ea, unsigned long vsid,
222 				   int ssize)
223 {
224 	if (ssize == MMU_SEGSIZE_256M)
225 		return (vsid << 28) | (ea & 0xfffffffUL);
226 	return (vsid << 40) | (ea & 0xffffffffffUL);
227 }
228 
229 /*
230  * This hashes a virtual address
231  */
232 
hpt_hash(unsigned long va,unsigned int shift,int ssize)233 static inline unsigned long hpt_hash(unsigned long va, unsigned int shift,
234 				     int ssize)
235 {
236 	unsigned long hash, vsid;
237 
238 	if (ssize == MMU_SEGSIZE_256M) {
239 		hash = (va >> 28) ^ ((va & 0x0fffffffUL) >> shift);
240 	} else {
241 		vsid = va >> 40;
242 		hash = vsid ^ (vsid << 25) ^ ((va & 0xffffffffffUL) >> shift);
243 	}
244 	return hash & 0x7fffffffffUL;
245 }
246 
247 extern int __hash_page_4K(unsigned long ea, unsigned long access,
248 			  unsigned long vsid, pte_t *ptep, unsigned long trap,
249 			  unsigned int local, int ssize, int subpage_prot);
250 extern int __hash_page_64K(unsigned long ea, unsigned long access,
251 			   unsigned long vsid, pte_t *ptep, unsigned long trap,
252 			   unsigned int local, int ssize);
253 struct mm_struct;
254 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap);
255 extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap);
256 int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid,
257 		     pte_t *ptep, unsigned long trap, int local, int ssize,
258 		     unsigned int shift, unsigned int mmu_psize);
259 extern void hash_failure_debug(unsigned long ea, unsigned long access,
260 			       unsigned long vsid, unsigned long trap,
261 			       int ssize, int psize, unsigned long pte);
262 extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
263 			     unsigned long pstart, unsigned long prot,
264 			     int psize, int ssize);
265 extern void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages);
266 extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
267 
268 extern void hpte_init_native(void);
269 extern void hpte_init_lpar(void);
270 extern void hpte_init_beat(void);
271 extern void hpte_init_beat_v3(void);
272 
273 extern void stabs_alloc(void);
274 extern void slb_initialize(void);
275 extern void slb_flush_and_rebolt(void);
276 extern void stab_initialize(unsigned long stab);
277 
278 extern void slb_vmalloc_update(void);
279 extern void slb_set_size(u16 size);
280 #endif /* __ASSEMBLY__ */
281 
282 /*
283  * VSID allocation
284  *
285  * We first generate a 36-bit "proto-VSID".  For kernel addresses this
286  * is equal to the ESID, for user addresses it is:
287  *	(context << 15) | (esid & 0x7fff)
288  *
289  * The two forms are distinguishable because the top bit is 0 for user
290  * addresses, whereas the top two bits are 1 for kernel addresses.
291  * Proto-VSIDs with the top two bits equal to 0b10 are reserved for
292  * now.
293  *
294  * The proto-VSIDs are then scrambled into real VSIDs with the
295  * multiplicative hash:
296  *
297  *	VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
298  *	where	VSID_MULTIPLIER = 268435399 = 0xFFFFFC7
299  *		VSID_MODULUS = 2^36-1 = 0xFFFFFFFFF
300  *
301  * This scramble is only well defined for proto-VSIDs below
302  * 0xFFFFFFFFF, so both proto-VSID and actual VSID 0xFFFFFFFFF are
303  * reserved.  VSID_MULTIPLIER is prime, so in particular it is
304  * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
305  * Because the modulus is 2^n-1 we can compute it efficiently without
306  * a divide or extra multiply (see below).
307  *
308  * This scheme has several advantages over older methods:
309  *
310  * 	- We have VSIDs allocated for every kernel address
311  * (i.e. everything above 0xC000000000000000), except the very top
312  * segment, which simplifies several things.
313  *
314  *	- We allow for 16 significant bits of ESID and 19 bits of
315  * context for user addresses.  i.e. 16T (44 bits) of address space for
316  * up to half a million contexts.
317  *
318  * 	- The scramble function gives robust scattering in the hash
319  * table (at least based on some initial results).  The previous
320  * method was more susceptible to pathological cases giving excessive
321  * hash collisions.
322  */
323 /*
324  * WARNING - If you change these you must make sure the asm
325  * implementations in slb_allocate (slb_low.S), do_stab_bolted
326  * (head.S) and ASM_VSID_SCRAMBLE (below) are changed accordingly.
327  */
328 
329 #define VSID_MULTIPLIER_256M	ASM_CONST(200730139)	/* 28-bit prime */
330 #define VSID_BITS_256M		36
331 #define VSID_MODULUS_256M	((1UL<<VSID_BITS_256M)-1)
332 
333 #define VSID_MULTIPLIER_1T	ASM_CONST(12538073)	/* 24-bit prime */
334 #define VSID_BITS_1T		24
335 #define VSID_MODULUS_1T		((1UL<<VSID_BITS_1T)-1)
336 
337 #define CONTEXT_BITS		19
338 #define USER_ESID_BITS		16
339 #define USER_ESID_BITS_1T	4
340 
341 #define USER_VSID_RANGE	(1UL << (USER_ESID_BITS + SID_SHIFT))
342 
343 /*
344  * This macro generates asm code to compute the VSID scramble
345  * function.  Used in slb_allocate() and do_stab_bolted.  The function
346  * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
347  *
348  *	rt = register continaing the proto-VSID and into which the
349  *		VSID will be stored
350  *	rx = scratch register (clobbered)
351  *
352  * 	- rt and rx must be different registers
353  * 	- The answer will end up in the low VSID_BITS bits of rt.  The higher
354  * 	  bits may contain other garbage, so you may need to mask the
355  * 	  result.
356  */
357 #define ASM_VSID_SCRAMBLE(rt, rx, size)					\
358 	lis	rx,VSID_MULTIPLIER_##size@h;				\
359 	ori	rx,rx,VSID_MULTIPLIER_##size@l;				\
360 	mulld	rt,rt,rx;		/* rt = rt * MULTIPLIER */	\
361 									\
362 	srdi	rx,rt,VSID_BITS_##size;					\
363 	clrldi	rt,rt,(64-VSID_BITS_##size);				\
364 	add	rt,rt,rx;		/* add high and low bits */	\
365 	/* Now, r3 == VSID (mod 2^36-1), and lies between 0 and		\
366 	 * 2^36-1+2^28-1.  That in particular means that if r3 >=	\
367 	 * 2^36-1, then r3+1 has the 2^36 bit set.  So, if r3+1 has	\
368 	 * the bit clear, r3 already has the answer we want, if it	\
369 	 * doesn't, the answer is the low 36 bits of r3+1.  So in all	\
370 	 * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
371 	addi	rx,rt,1;						\
372 	srdi	rx,rx,VSID_BITS_##size;	/* extract 2^VSID_BITS bit */	\
373 	add	rt,rt,rx
374 
375 
376 #ifndef __ASSEMBLY__
377 
378 #ifdef CONFIG_PPC_SUBPAGE_PROT
379 /*
380  * For the sub-page protection option, we extend the PGD with one of
381  * these.  Basically we have a 3-level tree, with the top level being
382  * the protptrs array.  To optimize speed and memory consumption when
383  * only addresses < 4GB are being protected, pointers to the first
384  * four pages of sub-page protection words are stored in the low_prot
385  * array.
386  * Each page of sub-page protection words protects 1GB (4 bytes
387  * protects 64k).  For the 3-level tree, each page of pointers then
388  * protects 8TB.
389  */
390 struct subpage_prot_table {
391 	unsigned long maxaddr;	/* only addresses < this are protected */
392 	unsigned int **protptrs[2];
393 	unsigned int *low_prot[4];
394 };
395 
396 #define SBP_L1_BITS		(PAGE_SHIFT - 2)
397 #define SBP_L2_BITS		(PAGE_SHIFT - 3)
398 #define SBP_L1_COUNT		(1 << SBP_L1_BITS)
399 #define SBP_L2_COUNT		(1 << SBP_L2_BITS)
400 #define SBP_L2_SHIFT		(PAGE_SHIFT + SBP_L1_BITS)
401 #define SBP_L3_SHIFT		(SBP_L2_SHIFT + SBP_L2_BITS)
402 
403 extern void subpage_prot_free(struct mm_struct *mm);
404 extern void subpage_prot_init_new_context(struct mm_struct *mm);
405 #else
subpage_prot_free(struct mm_struct * mm)406 static inline void subpage_prot_free(struct mm_struct *mm) {}
subpage_prot_init_new_context(struct mm_struct * mm)407 static inline void subpage_prot_init_new_context(struct mm_struct *mm) { }
408 #endif /* CONFIG_PPC_SUBPAGE_PROT */
409 
410 typedef unsigned long mm_context_id_t;
411 struct spinlock;
412 
413 typedef struct {
414 	mm_context_id_t id;
415 	u16 user_psize;		/* page size index */
416 
417 #ifdef CONFIG_PPC_MM_SLICES
418 	u64 low_slices_psize;	/* SLB page size encodings */
419 	u64 high_slices_psize;  /* 4 bits per slice for now */
420 #else
421 	u16 sllp;		/* SLB page size encoding */
422 #endif
423 	unsigned long vdso_base;
424 #ifdef CONFIG_PPC_SUBPAGE_PROT
425 	struct subpage_prot_table spt;
426 #endif /* CONFIG_PPC_SUBPAGE_PROT */
427 #ifdef CONFIG_PPC_ICSWX
428 	struct spinlock *cop_lockp; /* guard acop and cop_pid */
429 	unsigned long acop;	/* mask of enabled coprocessor types */
430 	unsigned int cop_pid;	/* pid value used with coprocessors */
431 #endif /* CONFIG_PPC_ICSWX */
432 } mm_context_t;
433 
434 
435 #if 0
436 /*
437  * The code below is equivalent to this function for arguments
438  * < 2^VSID_BITS, which is all this should ever be called
439  * with.  However gcc is not clever enough to compute the
440  * modulus (2^n-1) without a second multiply.
441  */
442 #define vsid_scramble(protovsid, size) \
443 	((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
444 
445 #else /* 1 */
446 #define vsid_scramble(protovsid, size) \
447 	({								 \
448 		unsigned long x;					 \
449 		x = (protovsid) * VSID_MULTIPLIER_##size;		 \
450 		x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
451 		(x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
452 	})
453 #endif /* 1 */
454 
455 /* This is only valid for addresses >= PAGE_OFFSET */
get_kernel_vsid(unsigned long ea,int ssize)456 static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
457 {
458 	if (ssize == MMU_SEGSIZE_256M)
459 		return vsid_scramble(ea >> SID_SHIFT, 256M);
460 	return vsid_scramble(ea >> SID_SHIFT_1T, 1T);
461 }
462 
463 /* Returns the segment size indicator for a user address */
user_segment_size(unsigned long addr)464 static inline int user_segment_size(unsigned long addr)
465 {
466 	/* Use 1T segments if possible for addresses >= 1T */
467 	if (addr >= (1UL << SID_SHIFT_1T))
468 		return mmu_highuser_ssize;
469 	return MMU_SEGSIZE_256M;
470 }
471 
472 /* This is only valid for user addresses (which are below 2^44) */
get_vsid(unsigned long context,unsigned long ea,int ssize)473 static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
474 				     int ssize)
475 {
476 	if (ssize == MMU_SEGSIZE_256M)
477 		return vsid_scramble((context << USER_ESID_BITS)
478 				     | (ea >> SID_SHIFT), 256M);
479 	return vsid_scramble((context << USER_ESID_BITS_1T)
480 			     | (ea >> SID_SHIFT_1T), 1T);
481 }
482 
483 #endif /* __ASSEMBLY__ */
484 
485 #endif /* _ASM_POWERPC_MMU_HASH64_H_ */
486